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Abstract A complex screen is an arrangement of panels that may not be even lo-

cally orientable because of junction lines. A comprehensive trace space framework

for first-kind variational boundary integral equations on complex screens has been

established in [ X. CLAEYS AND R. HIPTMAIR, Integral equations on multi-screens,

Integral Equations and Operator Theory, 77 (2013), pp. 167–197] for the Helmholtz

equation, and in [X. CLAEYS AND R. HIPTMAIR, Integral equations for electromag-

netic scattering at multi-screens, Integral Equations and Operator Theory, 84 (2016),

pp. 33–68] for Maxwell’s equations in frequency domain. The gist is a quotient space

perspective that allows to make sense of jumps of traces as factor spaces of multi-

trace spaces modulo single-trace spaces without relying on orientation. This paves

the way for formulating first-kind boundary integral equations in weak form posed

on energy trace spaces.

In this article we extend that idea to the Galerkin boundary element (BE) dis-

cretization of first-kind boundary integral equations. Instead of trying to approxi-

mate jumps directly, the new quotient space boundary element method employs a

Galerkin BE approach in multi-trace boundary element spaces. This spawns discrete

boundary integral equations with large null spaces comprised of single-trace func-

tions. Yet, since the right-hand-sides of the linear systems of equations are consistent,
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Krylov subspace iterative solvers like GMRES are not affected by the presence of a

kernel and still converge to a solution. This is strikingly confirmed by numerical tests.

Keywords Complex screens · Galerkin Boundary Element Method · Quotient Space

Boundary Element Method

Mathematics Subject Classification (2000) 65N38, 78M15

1 Scattering at Multi-Screens

We are concerned with the scattering of acoustic or electromagnetic waves at ob-

jects like those displayed in Fig. 1.1, i.e. geometries composed of essentially two-

dimensional piecewise smooth surfaces joined together. These objects can be re-

garded as non-penetrable, more precisely: sound-soft, sound-hard, or perfectly con-

ducting, respectively. This implies vanishing traces of some fields on their “surface”.

We face boundary value problems posed on the unbounded complement of the scat-

tering object. Our goal is to solve them, that is, to compute the scattered wave by

means of a Galerkin boundary element method (BEM).

Fig. 1.1: Two examples of multi-screen geometries; junctions lines colored red

To that end, we recast the boundary value problems as variational boundary in-

tegral equations (BIEs) posed in spaces of functions on the surface of the scattering

object. For simple screens this is well established [31, Section 3.5.3]. Here, we call a

simple screen an orientable, piecewise smooth two-dimensional bounded manifold Γ
embedded in 3D space R3. In this case, coercive variational first-kind boundary inte-

gral equations arise, known as weakly singular and hypersingular BIEs in the acoustic

setting [33,15,14], and as Electric Field Integral Equation (EFIE) for electromagnet-

ics [4]. These BIEs are set in Sobolev spaces of jumps of suitable field traces, in

H̃−
1
2 (Γ ) and H̃

1
2 (Γ ), respectively, for acoustics [24, Ch. 3], and in H̃−

1
2 (curlΓ ,Γ )

for the EFIE. For these trace spaces, conforming boundary element subspaces are

readily available, and they give rise to Galerkin approximations whose numerical

analysis is fairly mature [5].

Obviously, for two-dimensional objects Γ , like those shown in Fig. 1.1, which are

not globally orientable, the notion of jumps becomes problematic. It is not straight-
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forward how to adapt the jump trace spaces from the simple-screen setting to more

general situations. A breakthrough was achieved in [8] for the BIEs of acoustic scat-

tering, and in [9] towards generalizing the EFIE. The main idea was to consistently

view trace spaces, including those for jumps, from the perspective of quotient spaces

and to start from multi-valued traces. We survey these results in Section 2.

An important step in [8] and [9] was the rigorous characterization of geometries

as those of Fig. 1.1. The authors introduced the class of multi-screens and defined

them as follows, see [8, Section 2] for more details:

Definition 1.1 (Lipschitz Partition [8, Definition 2.2]) A Lipschitz partition of

Rd , d = 2,3, is a finite collection of Lipschitz open sets (Ω j) j=0...n such that Rd =

∪n
j=0Ω j and Ω j ∩Ωk = /0, if j 6= k.

Definition 1.2 (Multi-screen [8, Definition 2.3]) A multi-screen is a subset Γ ⊂Rd

such that there exists a Lipschitz partition Rd denoted (Ω j) j=0...n satisfying Γ ⊂
∪n

j=0∂Ω j and such that for each j = 0 . . .n, we have Γ ∩∂Ω j = Γ j where Γ j ⊂ ∂Ω j

is some Lipschitz screen in the sense of Buffa-Christiansen [4, section 1.1].

Fig. 1.2: Two examples of triangulated multi-screens: triple- and quadruple junctions

We want to take the cue from the theoretical investigations to develop Galerkin

BEM for multi-screens in 3D (d = 3). Of course, application of the BEM entails

restricting the set of admissible multi-screens. We confine ourselves to those that are

the union of (closed) triangles such that the intersection of two triangles is either

empty, a single point, or a common edge of both. Fittingly, we call these shapes

triangulated multi-screens, and some of them are rendered in Fig. 1.2.

We are going to present an approach that will yield a Galerkin BEM discretization

of the boundary integral equations for acoustic and electromagnetic scattering at gen-

eral triangulated multi-screens. We rely on minimal information about the geometry

and no special treatment of “junction lines” or ”joints” is necessary. Moreover, as-

sembly of the linear systems of equations arising from Galerkin BEM can be farmed
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out to codes designed for closed surfaces. No modifications nor augmentations of

these linear systems is required, nor is user interaction in the form of marking special

edges or nodes, see the core Section 4 of this article.

We stress this benefit, because it sets our method apart from the heuristics em-

ployed in computational acoustics and electromagnetics so far. For these approaches

the underlying intuition is that the unknowns of the first-kind BIEs still represent local

jumps of field variables. For instance, for the geometric situation of a triple-junction

of Fig. 1.1 (left) and a scalar field, this means that the three jumps have to add to

zero at the junction line, which gives rise to an algebraic constraint on the level of

boundary-element degrees of freedom. Similarly, for electromagnetic scattering, sim-

ulation codes impose a sort of Kirchhoff law at junction lines: the equivalent surface

currents have to satisfy some linear constraints, see [30, Section V], [35, Section 3.4],

[6, Section 3], and [10, Section I]. Alternatively, in [18] the authors impose essential

Kirchhoff conditions in the trial space, while [10] proposes to enforce the Kirchhoff

condition weakly on the discrete level in the spirit of mortar finite element techniques.

A rigorous mathematical underpinning for these approaches and analysis in suitable

trace spaces has not been provided thus far.

List of Symbols

H
+ 1

2 (Γ ) := H1(Rd\Γ )/H1
0,Γ (R

d), multi-trace space, (2.2a)

H
− 1

2 (Γ ) := H(div,Rd\Γ )/H0,Γ (div,Rd), multi-trace space, (2.2b)

H+ 1
2 ([Γ ]) := H1(Rd)/H1

0,Γ (R
d), single-trace space, (2.3a)

H−
1
2 ([Γ ]) := H(div,Rd)/H0,Γ (div,Rd), single-trace space, (2.3b)

H̃+ 1
2 ([Γ ]) :=H+ 1

2 (Γ )/H+ 1
2 ([Γ ]), jump space, (2.4)

H̃−
1
2 ([Γ ]) :=H−

1
2 (Γ )/H−

1
2 ([Γ ]), jump space, (2.4)

≪ u̇, ṗ≫:=
∫
[Γ ] u̇ ṗ dσ , bilinear pairing on H+ 1

2 (Γ )×H−
1
2 (Γ ), (2.6)

H
− 1

2 (curlΓ ,Γ ) := H(curl,R3\Γ )/H0,Γ (curl,R3\Γ ), multi-trace space, (2.8)

H−
1
2 (curlΓ , [Γ ]) := H(curl,R3)/H0,Γ (curl,R3), single-trace space, (2.9)

H̃−
1
2 (curlΓ , [Γ ]) :=H

− 1
2 (curlΓ ,Γ )/H−

1
2 (curlΓ , [Γ ]), jump space, (2.10)

≪ u̇, v̇≫×=
∫
[Γ ](u̇×n) · v̇dσ , bilinear pairing on H

− 1
2 (curlΓ ,Γ )×H

− 1
2 (curlΓ ,Γ ), (2.11)

gradΓ : surface gradient, (2.12)

curlΓ : surface rotation/curl, (2.13)

γD/γN : Dirichlet/Neumann trace, Page 8

SLκ /DLκ : single-layer and double-layer potentials, Page 8

Vκ /Wκ : weakly singular and hypersingular BIO, (3.1), (3.2)

γT /γR: electric and magnetic trace, (3.13a) and (3.13b)

T0: triangulation of screen Γ , Page 12

T : triangulation of inflated screen, Page 12

S 0
1 (T ) p.w. linear continuous functions on inflated screen, Page 14

S
−1

0 (T ) p.w. constant functions on inflated screen, Page 14
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2 Trace Spaces: Quotient-Space View

We briefly review the new perspective on trace spaces on multi-screens developed in

[8, Section 4-6] and [9, Section 3-5]. The underlying ideas will inspire the construc-

tion of boundary element spaces in Section 4.

2.1 Acoustic Scattering: Scalar Trace Spaces

Given a multi-screen we consider the following chains of nested Sobolev spaces of

functions/vectorfields1

H1
0,Γ (R

d)⊂ H1(Rd)⊂ H1(Rd\Γ ), (2.1a)

H0,Γ (div,Rd)⊂H(div,Rd)⊂H(div,Rd \Γ ), (2.1b)

where a subscript X0,Γ indicates a space obtained as the closure in X of smooth func-

tions/vectorfields compactly supported in Rd \Γ . All inclusions in (2.1) define closed

subspaces, which renders the associated quotient spaces Hilbert spaces. A particular

pair of them, called multi-trace spaces [8, Section 5], is

H
+ 1

2 (Γ ) := H1(Rd\Γ )/H1
0,Γ (R

d), (2.2a)

H
− 1

2 (Γ ) := H(div,Rd\Γ )/H0,Γ (div,Rd). (2.2b)

We will tag the elements of these spaces with a dot on top (e.g. u̇, ṗ), and the symbol

under the˙should be regarded as a representative function∈H1(Rd\Γ ) or H(div,Rd \
Γ ), respectively. Another pair of quotient spaces, the single-trace spaces [8, Sec-

tion 6.1], are defined as

H+ 1
2 ([Γ ]) := H1(Rd)/H1

0,Γ (R
d), (2.3a)

H−
1
2 ([Γ ]) := H(div,Rd)/H0,Γ (div,Rd). (2.3b)

From [8, Proposition 6.2] we learn that the spaces H+ 1
2 ([Γ ]) and H−

1
2 ([Γ ]) are

closed subspaces of H+ 1
2 (Γ ) and H

− 1
2 (Γ ), respectively. This allows us to introduce

the jump spaces [8, Section 6.2]

H̃+ 1
2 ([Γ ]) :=H

+ 1
2 (Γ )/H+ 1

2 ([Γ ]) and H̃−
1
2 ([Γ ]) :=H

− 1
2 (Γ )/H−

1
2 ([Γ ]). (2.4)

Trace-like operators for functions in H1(Rd\Γ ) and H(div,Rd\Γ ) are supplied by

the canonical surjections

πD : H1(Rd\Γ )→H
1
2 (Γ ) and πN : H(div,Rd\Γ )→H

− 1
2 (Γ ). (2.5)

Restricted to H1(Rd) and H(div,Rd) they give rise to traces onto H+ 1
2 ([Γ ]) and

H−
1
2 ([Γ ]), respectively.

1 See [17, Section 1.1] for an introduction to the relevant Sobolev spaces.
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Remark 2.1 As explained in [8, Section 5.2], if Γ = ∂Ω , Ω ⊂Rd a Lipschitz domain,

then then the multi-trace spaces agree with product spaces of traces from inside and

outside,

H
+ 1

2 (Γ ) = H
1
2 (∂Ω)×H

1
2 (∂Ω) and H

− 1
2 (Γ ) = H−

1
2 (∂Ω)×H−

1
2 (∂Ω),

whereas the single-traces spaces coincide with the standard trace spaces,

H+ 1
2 ([Γ ]) = H

1
2 (∂Ω) and H−

1
2 ([Γ ]) = H−

1
2 (∂Ω),

and so do the jump spaces:

H̃+ 1
2 ([Γ ]) = H

1
2 (∂Ω) and H̃−

1
2 ([Γ ]) = H−

1
2 (∂Ω).

Remark 2.2 Let us convey an intuitive grasp of the trace spaces introduced above.

We start with the multi-trace spaces and the observation that H(div,Rd \Γ ) is a

space of functions attaining different values on both sides of Γ . Thus functions in the

multi-trace space H+ 1
2 (Γ ) are multi-valued on Γ : they are given independently on

both sides of Γ . A way to understand this is to imagine an “infinitesimally inflated”

screen, see Fig. 2.1 for a 2D rendering. Then H+ 1
2 (Γ ) can be viewed as a standard

Dirichlet trace space on the surface of the inflated screen. The same considerations

apply to H−
1
2 (Γ ), where we now deal with normal component traces onto the inflated

screen.

Γ

⇒

Fig. 2.1: Inflating a 2D multi-screen

The single-trace space H+ 1
2 ([Γ ]) is easier to understand: it simply comprises

single-valued functions on Γ . More care has to be taken to arrive at the right in-

terpretation of H−
1
2 ([Γ ]), because we have to fix a local normal n on Γ in order to

make sense of a single-valued normal component.

Following [8, Section 5.1] we introduce a bilinear pairing on H+ 1
2 (Γ )×H−

1
2 (Γ ):

≪ u̇, ṗ≫:=
∫

[Γ ]
u̇ ṗ dσ :=

∫

Rd\Γ
p ·∇u+ udiv(p) dx, (2.6)
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with u ∈ H1(Rd \Γ ) and p ∈H(div,Rd \Γ ). According to [8, Prop. 5.1] this pairing

induces an isometric duality between H
+ 1

2 (Γ ) and H
− 1

2 (Γ ). From [8, Section 6.2]

we also learn that ≪ u̇, ṗ≫ spawns isometric dualities connecting H+ 1
2 ([Γ ]) and

H̃−
1
2 ([Γ ]), and H−

1
2 ([Γ ]) and H̃+ 1

2 ([Γ ]), respectively.

The bilinear pairing also offers a characterization of single-trace spaces through

self-polarity:

Proposition 2.1 ([8, Proposition 6.3]) For u̇ ∈ H+ 1
2 (Γ ) and ṗ ∈ H−

1
2 (Γ ) the fol-

lowing equivalences hold true:

u̇ ∈ H+ 1
2 ([Γ ]) ⇐⇒ ∫

[Γ ] u̇q̇ dσ = 0 ∀q̇ ∈ H−
1
2 ([Γ ]),

ṗ ∈ H−
1
2 ([Γ ]) ⇐⇒ ∫

[Γ ] v̇q̇ dσ = 0 ∀v̇ ∈ H+ 1
2 ([Γ ]).

2.2 Electromagnetic Scattering: Tangential Vectorial Trace Spaces

In the context of electromagnetic scattering we start from the chain of nested closed

subspaces

H0,Γ (curl,R3)⊂H(curl,R3)⊂H(curl,R3\Γ ). (2.7)

Parallel to Section 2.1 we introduce the quotient spaces of “tangential vector fields”

multi-trace space: H
− 1

2 (curlΓ ,Γ ) := H(curl,R3\Γ )/H0,Γ (curl,R3), (2.8)

single-trace space: H−
1
2 (curlΓ , [Γ ]) := H(curl,R3)/H0,Γ (curl,R3), (2.9)

jump space: H̃−
1
2 (curlΓ , [Γ ]) :=H

− 1
2 (curlΓ ,Γ )/H−

1
2 (curlΓ , [Γ ]), (2.10)

with associated canonical surjection πT : H(curl,R3\Γ )→ H
− 1

2 (curlΓ ,Γ ), which

supplies a generalized tangential trace operator. More details can be found in [9,

Section 4.3], [9, Def. 4.4], and [9, Def. 4.6], respectively.

By [9, Prop. 4.2] an isometric self-duality of H−
1
2 (curlΓ ,Γ ) is induced by the

bilinear form≪ ·, · ≫×: H−
1
2 (curlΓ ,Γ )×H

− 1
2 (curlΓ ,Γ ) 7→ C defined as

≪ u̇, v̇≫×:=

∫

[Γ ]
(u̇×n) · v̇dσ :=

∫

R3\Γ
curl(u) ·v−u · curl(v)dx, (2.11)

u,v∈H(curl,R3\Γ ). This pairing also gives rise to an isometric duality of H−
1
2 (curlΓ , [Γ ])

and H̃−
1
2 (curlΓ , [Γ ]), cf. [9, Lemma 4.7]. A result analogous to Proposition 2.1 holds

as well:

Proposition 2.2 ( [9, Proposition 4.5]) For u̇ ∈H
− 1

2 (curlΓ ,Γ ), we have

u̇ ∈H−
1
2 (curlΓ , [Γ ]) ⇐⇒ ≪ u̇, v̇≫×= 0 ∀v̇ ∈H−

1
2 (curlΓ , [Γ ])
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The variational formulations of boundary integral equations for electromagnetic

scattering rely on surface differential operators. To begin with we define the surface

gradient gradΓ : H
1
2 (Γ )→H

1
2 (curlΓ ,Γ ) through the formula

gradΓ (πD(p)) := πT (grad p) ∀p ∈ H1(R3\Γ ), (2.12)

and the surface curl operator curlΓ : H−
1
2 (curlΓ ,Γ )→H−

1
2 (Γ ) using the formula

curlΓ (πT (u)) := πN(curl(u)) ∀u ∈H(curl,R3\Γ ). (2.13)

By restriction and duality the surface differential can also be defined for tangential

single-trace and jump spaces, see the commuting diagram of [9, Lemma 5.3].

Remark 2.3 In line with Remark 2.1 we find H
− 1

2 (curlΓ ,Γ ) = H−
1
2 (curlΓ ,Γ )×

H−
1
2 (curlΓ ,Γ ) and H−

1
2 (curlΓ , [Γ ]) = H−

1
2 (curlΓ ,Γ ) for Γ = ∂Ω , Ω a 3D Lips-

chitz domain.

The gist of the interpretation suggested in Remark 2.2 carries over to the vectorial

case too.

3 Boundary Integral Equations on Multi-Screens

We summarize the contents of [8, Section 8] and [9, Section 7-9], which introduced

and analyzed representation formulas and boundary integral operators for acous-

tic and electromagnetic scattering at multi-screens. We restrict ourselves to multi-

screens in 3D, d = 3.

3.1 Weakly Singular and Hypersingular Scalar BIEs

We first study acoustic wave propagation governed by the Helmholtz equation−∆u−
κ2u = 0 in Rd \Γ , Γ a multi-screen, κ ∈ C, Reκ ≥ 0, the wave number. The two

relevant trace operators are the2

Dirichlet trace: γD : H1(Rd \Γ )→H
+ 1

2 (Γ ) , γD := πD ,

Neumann trace: γN : H1(∆ ,Rd \Γ )→H
− 1

2 (Γ ) , γN := πN ◦ grad ,

where we used the canonical surjections from (2.5). By means of two potentials we

can state the boundary representation formula [8, (8.3)] for solutions of the homoge-

neous Helmholtz equation satisfying Sommerfeld radiation conditions. These poten-

tials are the

single-layer potential: SLκ(q̇)(x) :=

∫

[Γ ]
γD(Gκ ,x)q̇ dσ , q̇ ∈H

− 1
2 (Γ ),

double-layer potential: DLκ(v̇)(x) :=
∫

[Γ ]
γN(Gκ ,x)v̇ dσ , v̇ ∈H

+ 1
2 (Γ ),

x 6∈ Γ ,

2 Notation: H1(∆ ,Rd \Γ ) := {v ∈ H1(Rd \Γ ), ∆ v ∈ L2(Rd \Γ )}
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where Gκ ,x(y) := Gκ(x−y), with Gκ(z) :=
exp(ıκ‖z‖)

4π‖z‖ being the radiating fundamental

solution of the Helmholtz equation in R3 .

A key novel feature of the layer potentials for multi-screens are their non-trivial

kernels that even allow a precise characterization:

Lemma 3.1 ([8, Lemma 8.6]) The kernels of the layer potentials coincide with

the single-trace subspaces:

ṗ ∈H
− 1

2 (Γ ) : SLκ(ṗ) = 0 ⇔ ṗ ∈H−
1
2 ([Γ ]) ,

v̇ ∈H
− 1

2 (Γ ) : DLκ(v̇) = 0 ⇔ v̇ ∈H
1
2 ([Γ ]).

By the regularity of the potentials and the pertinent jump relations the following

boundary integral operators (BIOs) are well-defined and continuous:

Weakly singular BIO: Vκ := γD ◦SLκ : H−
1
2 (Γ )→H

+ 1
2 (Γ ), (3.1)

Hypersingular BIO: Wκ := γN ◦DLκ : H+ 1
2 (Γ )→H

− 1
2 (Γ ). (3.2)

For sufficiently regular arguments the weakly singular BIO can be stated in integral

form

(Vκ φ̇)(x) =
∫

[Γ ]
Gκ(x− y)φ̇(y)dσ(y) , φ̇ ∈H

− 1
2 (Γ )∩L∞(Γ ), (3.3)

where integration is carried out over the virtual inflated screen, cf. Fig. 2.1.

Both integral operators occur in first-kind boundary integral equations (BIE) re-

lated to exterior boundary value problems (BVPs) for the Helmholtz equation. If

u ∈ H1
loc(R

d \Γ ) is a solution of the exterior Helmholtz Dirichlet BVP





−∆u−κ2u = 0 in Rd\Γ ,

γDu = ġD ∈ H+ 1
2 ([Γ ]) on Γ ,

lim
r→∞

r
(

∂u
∂ r
(x)− iκu(x)

)
= 0, r := ‖x‖,

(3.4)

then the unknown Neumann trace γN(u) ∈H
− 1

2 (Γ ) can be found by solving

φ̇ ∈H
− 1

2 (Γ ) : Vκ(φ̇ ) = ġD. (3.5)

This BIE can be cast in equivalent variational form as follows: find φ̇ ∈H− 1
2 (Γ ) such

that

≪ Vκ φ̇ , ψ̇ ≫=≪ ġD, ψ̇ ≫ ∀ψ̇ ∈H
− 1

2 (Γ ). (3.6)

We can proceed similarly for the exterior Helmholtz-Neumann BVP





−∆u(x)−κ2u = 0 in Rd\Γ ,

γNu = ḣN ∈H−
1
2 ([Γ ]) on Γ ,

limr→∞ r
(

∂u
∂ r
(x)− iκu(x)

)
= 0, r = ‖x‖,

(3.7)
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for which the unknown Dirichlet data γD(u) ∈H
+ 1

2 (Γ ) solve the BIE

v̇ ∈H
+ 1

2 (Γ ) : Wκ(v̇) = ḣN . (3.8)

Also this BIE can be written in variational form and it results in the problem

Find v̇ ∈H
+ 1

2 (Γ ) such that ≪Wκ v̇, ṗ≫=≪ ḣN , ṗ≫ ∀ṗ ∈H
+ 1

2 (Γ ). (3.9)

The bilinear form on the left-hand side can be conveniently expressed by integration

by parts as shown in [31, Section 3.3]. For sufficiently regular argument functions we

find the integral representation through an improper integral over the virtual inflated

screen:

≪Wκ v̇, ṗ≫=

∫

[Γ ]

∫

[Γ ]
Gκ(y− x)

{
(gradΓ v̇×n)(y) · (gradΓ ṗ×n)(x)

−κ2n(y) ·n(y)v̇(y)ṗ(x)
}

dσ(y)dσ(x).

(3.10)

Lemma 3.1 has the direct implication that also the BIOs Vκ and Wκ have non-trivial

kernels given by single-trace functions.

Lemma 3.2 (Kernels of boundary integral operators) The kernels of Vκ and

Wκ agree with H−
1
2 ([Γ ]) and H+ 1

2 ([Γ ]), respectively.

Hence, Vκ and Wκ remain well-defined on the quotient spaces H̃−
1
2 ([Γ ]) and

H̃+ 1
2 ([Γ ]), respectively. They even enjoy coercivity on jump spaces: there exist com-

pact operators KV : H̃−
1
2 ([Γ ])→ H+ 1

2 ([Γ ]) and KW : H̃+ 1
2 ([Γ ])→ H−

1
2 ([Γ ]) such

that the following Gårding inequalities are satisfied [8, Prop. 8.8]

Re

{∫

[Γ ]
q̇(Vκ +KV ) ¯̇q dσ

}
≥C‖q̇‖2

H̃
− 1

2 ([Γ ])
∀q̇ ∈ H̃−

1
2 ([Γ ]), (3.11)

Re

{∫

[Γ ]
v̇(Wκ +KW ) ¯̇v dσ

}
≥C‖v̇‖2

H̃
+ 1

2 ([Γ ])
∀v̇ ∈ H̃+ 1

2 ([Γ ]), (3.12)

with C > 0 depending only on κ and Γ .

We remark that the presence of non-trivial kernels thwarts uniqueness of solutions

of (3.6) and (3.9). Yet, Proposition 2.1 still gives us existence, since ġD ∈ H+ 1
2 ([Γ ])

and ḣN ∈ H−
1
2 ([Γ ]) ensures consistency of the right-hand side linear forms: they

vanish on the single-trace spaces.

3.2 Electric-Field Integral Equations

The complex amplitudes of the electric and magnetic fields for time-harmonic elec-

tromagnetic waves propagating in empty space satisfy the homogeneous Maxwell’s
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equations curlcurlE−κ2E = 0, with wave number κ > 0. This second order partial

differential equation induces two key trace operators:

Electric trace: γT : H(curl,R3\Γ )→H
− 1

2 (curlΓ ,Γ ), γT := πT , (3.13a)

Magnetic trace: γR :H(curl2,R3\Γ )→H
− 1

2 (curlΓ ,Γ ), γR := πT ◦ curl ,
(3.13b)

where πT is the canonical surjection implied by the definition (2.8) of H−
1
2 (curlΓ ,Γ ).

Both trace operators are continuous and surjective. They are instrumental in the def-

inition of Maxwell single- and double-layer potentials, here given in distributional

form as in [9, Section 7.1]: for u̇ ∈H
− 1

2 (curlΓ ,Γ ),

SLκ(u̇) =−Gκ ∗ γ ′T (u̇)+κ−2∇(Gκ ∗ γ ′D · curlΓ (u̇)), (3.14)

DLκ(u̇) =−Gκ ∗ γ ′R(u̇). (3.15)

Slightly abusing notation, the operator Gκ∗ is the Newton potential for the vecto-

rial Helmholtz operator with wave number κ > 0 [31, Section 3.1.1]. From [9, Sec-

tion 7.2] we know that the single-layer potential SLκ maps continuously the space

H
− 1

2 (curlΓ ,Γ ) into Hloc(curl,R3) and the double-layer potential DLκ maps contin-

uously the space H
− 1

2 (curlΓ ,Γ ) into Hloc(curl,R3\Γ ).
We consider the exterior boundary value problem modeling electromagnetic scat-

tering at the screen Γ :






curlcurlE−κ2E = 0 in Rd\Γ ,

γT E = ġ ∈H−
1
2 (curlΓ , [Γ ]) on Γ ,

lim
r→∞

r
(
curlE(x)× x

‖x‖ − iκE(x)
)
= 0, r := ‖x‖.

(3.16)

Introducing the boundary integral operatorTκ := γT ◦SLκ :H−
1
2 (curlΓ ,Γ )→H

− 1
2 (curlΓ ,Γ )

we find that the magnetic trace ṗ := γR(E) ∈H
− 1

2 (curlΓ ,Γ ) of the solution E of

(3.16) solves the first-kind boundary integral equation

Tκ ṗ = ġ in H
− 1

2 (curlΓ ,Γ ), (3.17)

called the electric field integral equation (EFIE), which can be cast into weak form:

Seek ṗ ∈H
− 1

2 (curlΓ ,Γ ) such that

≪ Tκ(ṗ), q̇≫×=≪ ġ, q̇≫× ∀q̇ ∈H
− 1

2 (curlΓ ,Γ ) . (3.18)

It is possible to give a more explicit form to the left-hand side of the EFIE by plugging

into it the definition of the single layer potential:

≪ Tκ(ṗ), q̇≫×
= κ−2≪ γD ·Gκ ∗ γ ′D(curlΓ ṗ),curlΓ q̇≫−≪ γT ·Gκ ∗ γ ′T (ṗ), q̇≫×, (3.19)
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which, for sufficiently regular ṗ, q̇ ∈H
− 1

2 (curlΓ ,Γ ), can be written explicitly as

≪ γD ·Gκ ∗ γ ′D(curlΓ ṗ),curlΓ q̇≫

=
∫

[Γ ]

∫

[Γ ]
Gκ(x− y)curlΓ ṗ(x)curlΓ q̇(y)dσ(x)dσ(y), (3.20)

≪ γT ·Gκ ∗ γ ′T (ṗ), q̇≫×
=

∫

[Γ ]

∫

[Γ ]
Gκ(x− y)(n(x)× ṗ(x)) · (n(y)× q̇(y))dσ(x)dσ(y). (3.21)

The weak EFIE possesses a unique solution in the jump space H̃−
1
2 (curlΓ , [Γ ]), since

its associated bilinear form satisfies a generalized Gårding inequality, see [9, Section

9]. Conversely, solutions in H
− 1

2 (curlΓ ,Γ ) cannot be unique:

Lemma 3.3 (Kernel of EFIE boundary integral operator, [9, Lemma 7.9]) The

kernel of Tκ coincides with the single-trace space H−
1
2 (curlΓ , [Γ ]).

Fortunately, as ġ ∈ H−
1
2 (curlΓ , [Γ ]), the right-hand side of (3.18) is consistent

thanks to Proposition 2.2.

4 Quotient-Space Boundary-Element Methods

We aim for a conforming Galerkin discretization of the variational boundary integral

equations (3.6), (3.9), and (3.18), employing piecewise polynomial subspaces of the

multi-trace spaces H+ 1
2 (Γ ), H−

1
2 (Γ ), and H

− 1
2 (curlΓ ,Γ ).

Functions belonging to multi-traces spaces can have different values on “opposite

sides” of parts of a multi-screen. In the spirit of Remark 2.2 we adopt the perspective

of a virtual inflated screen as indicated in Fig. 2.1 for a 2D situation. On such an

inflated screen [Γ ], in a combinatorial sense, a “virtual surface mesh” T consisting

of smooth panels can be defined as if [Γ ] was the surface of a domain, see Fig. 2.1

right. In terms of geometry, different panels may overlap or even coincide, of course.

We restrict ourselves to triangulated multi-screens embedded in 3D space as al-

ready adressed in the Introduction. For the sake of simplicity we assume that the

multi-screen Γ is composed of flat parts only and that all meshes comprise only flat

triangular panels.

4.1 Oriented Multi-Screen Surface Triangulations

Let T0 be a triangulation of Γ , that is, a set of open flat triangles, T0 = {K}, such

that

(I) Γ 0 =
⋃{K : K ∈T0},

(II) the triangles K are mutually disjoint: K,K′ ∈ T0, K 6= K′ implies K ∩K′ = /0,
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Γ

⇒

Γ

Fig. 4.1: 2D multi-screen and inflated screen equipped with a mesh: the blue strokes

represent nodes of the mesh.

(III) for K,K′ ∈T0, K 6=K′, the intersection K∩K′ is either empty or a common vertex

or edge of both,

(IV) and no triangle of T0 has more than one edge on the boundary ∂Γ .

The notion of “edges”, “boundary edges”, and “nodes” of T0 should be clear. Re-

quirement (IV) has been included merely to simplify the presentation of the algorithm

below. Further, we designate

– by E (K) the set of the three edges of a triangle K ∈ T0,

– and by T (e) the set of triangles abutting an edge e of T0.

We equip every triangle K with a fixed orientation by ordering its vertices or,

equivalently, prescribing a unit normal vector nK ∈R3. We also endow every edge of

T0 with an intrinsic direction and write oK,e ∈ {−1,+1} for the relative orientation

of the edge e ∈ E (K) and the triangle K.

For two adjacent triangles K,K′ ∈ T0 with joint edge e := ∂K ∩ ∂K′ we set

oK,K′ = −oK,e · oK′,e, that is oK,K′ = 1 tells us that both triangles are oriented con-

sistently. Then we can define the angle enclosed by K and K′, ∠(K,K′) ∈ [0,2π), as

the angle of the counterclockwise rotation around the common edge ∂K ∩ ∂K′ that

transforms oK,K′ ·nK′ into −nK , see Fig. 4.2.

∠(K,K′)K′

K

e
nK′

nK

Fig. 4.2: Definition of the angle between two (oriented) triangles sharing an edge:

case of consistently oriented triangles
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In a first step for every K ∈ T0 we create two copies K+ and K− with the same

geometry but to be regarded as different entities. The reader may imagine K+ and

K− as the two sides of K with nK pointing from K− to K+. These sides form the set

underlying what we call the virtual surface mesh for Γ :

T := {K+,K− : K ∈T0} . (4.1)

In addition, K+ will be endowed with the unit normal nK , whereas the unit normal

−nK is assigned to K−. This defines the orientation for every triangle of T .

Now we present an algorithm that constructs the incidence information for T in

the form of the symmetric adjacency relation adjT ⊂T ×T for T : (K1,K2)∈ adjT ,

if and only if these two triangles have a common edge in T . With adjT at our disposal

the edge and vertex sets for T can be built.

1 fo rea ch K ∈ T0 {
2 fo rea ch e ∈ E (K) {
3 i f (♯T (e) = 1) { // Test for boundary edge

4 adjT ← adjT ∪{(K+,K−),(K−,K+)} ;
5 }
6 e l s e { // Geometric test for finding adjacent sides

7 Tmin := argminT{∠(K,T ) : T ∈ T (e)\ {K}} ;
8 Tmax := argmaxT{∠(K,T ) : T ∈ T (e)\ {K}} ;
9 adjT ← adjT ∪{(K+,T

oK,Tmin
min )} ; // “upper side”

10 adjT ← adjT ∪{(K−,T
−oK,Tmax

max )} ; // “lower side”

11 }}}

The asymptotic computational effort for running this algorithm is O(♯T0) for

♯T0→ ∞. It yields a relation adjT such that

♯{(T,T ′) : ∃T ′ ∈ T , (T,T ′) ∈ adjT }= 3 ∀T ∈T ,

that is, every triangle has three neighbors and every edge of T belongs to two tri-

angles. This is characteristic of a triangulation of the closed surface of a volume

domain. Furthermore, using the normal directions for panels of T as detailed above,

those turn out to be oriented consistently: their normals all point into the exterior of

the virtual inflated screen.

4.2 Boundary-Element Spaces

We take for granted the availability of a triangular virtual surface mesh T as built in

Section 4.1. On this mesh we introduce the standard lowest-order piecewise polyno-

mial boundary element spaces

– S 0
1 (T )⊂C0([Γ ]) of T -piecewise linear “continuous” functions on the inflated

screen [Γ ], and

– S
−1
0 (T )⊂ L2([Γ ]) of T -piecewise constant functions on [Γ ].
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We equip these spaces with the usual minimally supported local basis functions

S
0
1 (T ) = span{bi}NV (T )

i=1 , NV (T )=̂ no. of nodes of T , (4.2)

S
−1

0 (T ) = span{β i}NT (T )
i=1 , NT (T )=̂ no. of triangles of T . (4.3)

These spaces supply finite-dimensional subspaces of the multi-trace spaces:

S
0
1 (T )⊂H

+ 1
2 (Γ ) , S

−1
0 (T )⊂H

− 1
2 (Γ ) , (4.4)

which qualifies them as trial and test spaces for boundary element Galerkin discretiza-

tion of the variational problems (3.9) and (3.6), respectively.

For the Galerkin discretization of the EFIE (3.18) we rely on the standard edge

element space on T [5, Section 8]

N0(T )⊂H
− 1

2 (curlΓ ,Γ ), (4.5)

also known as Rao-Wilton-Glisson (RWG) boundary element space in computational

engineering. For the edge-associated local basis functions with minimal supports we

write η1, . . . ,ηNE (T ), where NE(T ) is the total number of edges of T .

These boundary element spaces enjoy the customary approximation properties. In

particular, they are asymptotically dense. To state the result, we consider a uniformly

shape-regular sequence {Tℓ}ℓ∈N of meshes with hℓ→ 0 for ℓ→ ∞, where hℓ stands

for the mesh width hℓ := max
K∈Tℓ

diamK.

Lemma 4.1 (Asymptotic density of boundary element spaces)

∀v̇ ∈H
+ 1

2 (Γ ) : inf
vh∈S 0

1 (Tℓ)
‖v̇− vh‖

H
+ 1

2 (Γ )
→ 0,

∀ϕ̇ ∈H
− 1

2 (Γ ) : inf
ϕh∈S

−1
0 (Tℓ)

‖ϕ̇−ϕh‖
H
− 1

2 (Γ )
→ 0,

∀ṗ ∈H
− 1

2 (curlΓ ,Γ ) : inf
ph∈N0(Tℓ)

‖ṗ−ph‖
H
− 1

2 (curlΓ ,Γ )
→ 0

for ℓ→ ∞.

The proof relies on the fact that, using the notations of Definition 1.2, the space

X∞ :=
{

v ∈C∞(R3 \Γ ), v |Ω j
∈C∞(Ω j)

}

is dense in H1(R3\Γ ), and that (X∞)3 is dense in both H(div,R3\Γ ) and H(curl,R3\
Γ ). Then standard approximation estimates for traces of smooth functions yield asymp-

totic density.

Remark 4.1 Our considerations can easily be extended to boundary element spaces

of higher polynomial degree. We do not elaborate on this just for the sake of a concise

presentation.
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4.3 Assembly of BE Galerkin Matrices

We explain the approach in the case of (3.9) for Reκ≥0 using S 0
1 (T ) as trial and

test space. Invoking (3.10) the entries of the Galerkin matrix AWκ ∈ CNV (T ),NV (T )

are

(AW,κ)k,ℓ = ∑
K1∈T

∑
K2∈T

∫

K1

∫

K2

Gκ(y− x)
{

gradΓ bk(y)×n(y) ·gradΓ bℓ(x)×n(x)

−κ2n(y) ·n(y)bk(y)bℓ(x)
}

dσ(y)dσ(x),

(4.6)

for 1 ≤ k, ℓ ≤ NV , where bk,bℓ are “tent basis functions” of S 0
1 (T ). Note that n(y)

and n(x) stand for the “exterior” unit normals on K2 and K1, respectively, as intro-

duced above. The Galerkin matrices AV,κ ∈ CNT (T ),NT (T ) and AT,κ ∈ CNE (T ),NE (T )

for the variational weakly singular BIE (3.6) and EFIE (3.18) are given by analogous

formulas based on (3.3) and (3.20), (3.21). We skip the details.

Remark 4.2 The integrals in (4.6) are standard weakly singular integrals over pairs

of panels. They can be evaluated using the established quadrature policy from [31,

Chapter 5]. If BEM software that can compute contributions of pairs of panels to

Galerkin BEM matrices is available , it can be used without further adaption. The

only requirement is that the result, up to the last digit, depends exclusively on the

geometry of K1 and K2 and in no way on their internal representation (like the order-

ing of vertices, etc.). If this condition is not met, one might arrive at linear systems

of equations that are not consistent. This will disrupt the convergence of iterative

solvers.

4.4 Kernels of Discretized Boundary Integral Operators

According to Lemma 3.2 the kernels of the weakly singular and hypersingular bound-

ary integral operators Vκ and Wκ coincide with single-trace spaces. We immediately

conclude that

kern(AW,κ) ←→ ZW (T ) := S 0
1 (T ) ∩ H+ 1

2 ([Γ ]),

kern(AV,κ) ←→ ZV (T ) := S
−1

0 (T ) ∩ H−
1
2 ([Γ ]),

kern(AT,κ) ←→ ZT(T ) := N0(T ) ∩ H−
1
2 (curlΓ , [Γ ]).

(4.7)

Here,←→ means that the nullspace of the matrix on the left consists of the vectors

of basis expansion coefficients of all functions belonging to the BE function space on

the right.

In light of the interpretation of the single-trace spaces as spaces of “uni-valued

traces” we find that these kernels are the span of locally supported basis functions as-

sociated with the non-inflated screen mesh T0. Writing NV (T0), NE(T0), and NT (T0)
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for the number of nodes, edges, and triangles in T0, respectively, we conclude

dimkern(AW,κ) = NV (T0) ,
dimkern(AV,κ) = NT (T0) ,
dimkern(AT,κ) = NE(T0) .

(4.8)

Remark 4.3 If the multi-screen consists of a few flat parts, some contributions to the

kernels of the Galerkin matrices can be identified easily. Let us examine S 0
1 (T )∩

H+ 1
2 ([Γ ]): Let k and ℓ be the indices of those two distinct nodes of T spawned by a

single node of T0. Then,

bk + bℓ ∈ H+ 1
2 ([Γ ]) , bk− bℓ 6∈H+ 1

2 ([Γ ]) .

Thus, for the sake of Galerkin discretization of the hypersingular BIE, we can replace

the two basis functions bk and bℓ by their difference bk− bℓ in the boundary element

space. Similarly, if a node of T0 lies on ∂Γ and, therefore, spawns only a single

node of T with index m, then bm ∈H+ 1
2 ([Γ ]) and this basis function can be dropped

altogether. This results in a reduced boundary element space visualized in Fig. 4.3 for

a 2D setting.

Γ

0

00

Γ

Fig. 4.3: Reduced boundary element space on T by eliminating certain functions

in S 0
1 (T )∩H+ 1

2 ([Γ ]). Red squares represent (retained) basis functions of S 0
1 (T ),

magenta bullets differences of basis functions.

Remark 4.4 In the case of a simple screen, that is, if Γ is an orientable, two-dimensional,

triangulated manifold with boundary, a solution obtained by the quotient-space BEM

agrees with the solution produced by the standard Galerkin BEM in jump space up

to a multi-trace function in the kernel of the underlying boundary integral opera-

tors. Thus, the quotient-space BEM is a genuine generalization to complex screens

of well-established and widely used BEM.
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4.5 Convergence of Galerkin solutions

From [8, Prop. 8.9] we learn that the variational boundary integral equations (3.6)

and (3.9) have unique solutions in H̃−
1
2 ([Γ ]) and H̃+ 1

2 ([Γ ]), respectively. The analo-

gous result for (3.18) is given in [9, Prop. 6.6] and claims uniqueness of solutions in

H̃−
1
2 (curlΓ , [Γ ]).
Uniqueness of solutions combined with the coercivity estimates (3.11) and (3.12)

paves the way for using the abstract result of [31, Theorem 4.2.9] in the jump spaces

H̃−
1
2 ([Γ ]) and H̃+ 1

2 ([Γ ]). Thus we conclude asymptotic quasi-optimality of Galerkin

solutions with respect to the norms of the jump spaces.

For instance, if we adopt the setting of Lemma 4.1 and write φ̇ ∈ H
− 1

2 (Γ )/φℓ ∈
S
−1

0 (Tℓ) for the solution/boundary element Galerkin solution of (3.6), then for suf-

ficiently large ℓ

∥∥φ̇ −φℓ
∥∥

H̃
− 1

2 ([Γ ])
≤C inf

ϕℓ∈S
−1
0 (Tℓ)

∥∥φ̇ −ϕℓ

∥∥
H̃
− 1

2 ([Γ ])

≤C inf
ϕℓ∈S

−1
0 (Tℓ)

∥∥φ̇ −ϕℓ

∥∥
H
− 1

2 (Γ )
,

(4.9)

with C > 0 independent of ℓ. A corresponding estimate holds true for (3.9).

For the Galerkin discretization of the variational EFIE (3.18) the situation is more

complicated, since the sesqui-linear form merely satisfies a generalized Gårding in-

equality. Thus, we have to resort to Hodge-type splittings of H−
1
2 (curlΓ ,Γ ) induced

by regular decompositions of H(curl,R3 \Γ ), see [9, Section 9.2]. They possess

discrete counterparts and those can be used to verify asymptotic quasi-optimality

of Galerkin solutions in H̃−
1
2 (curlΓ , [Γ ]), as elaborated in [5, Section 9.1], [2, Sec-

tion 6], and [3].

Eventually, quasi-optimality estimates like (4.9) can be combined with interpo-

lation error estimates for boundary element spaces, e.g., from [31, Section 4.1] and

[5, Section 8], to infer rates of asymptotic convergence for our boundary element

Galerkin solutions in jump-space norms. For instance, for the concrete case of (4.9), a

piecewise smooth multi-screen, a shape-regular and quasi-uniform family of meshes

{Tℓ}ℓ∈N with meshwidths hℓ > 0, and assuming that the solution u of (3.4) belongs

to H2
loc(R

d), [31, Theorem 4.1.33] gives us

∥∥φ̇ −φℓ
∥∥

H̃
− 1

2 ([Γ ])
≤Ch

3/2
ℓ ∀ℓ ∈ N , (4.10)

because φ̇ will belong to H1 locally on each smooth part of Γ .

Remark 4.5 The right-hand side bound in (4.9) can be controlled by choosing meshes

adapted to the exact solution φ̇ ∈H
− 1

2 (Γ ). Since φ̇ = γN(u), where u ∈ H1
loc(∆ ,Rd \

Γ ) solves the exterior Dirichlet problem (3.4), elliptic regularity theory for linear

scalar second-order boundary value problems, see the monographs [13], [25, Chap-

ter 10 & 11], [23], provides precise information on the local behavior of φ̇ at edges,

corners, and junction lines of a multi-screen.
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Fig. 4.4: Simple 3D multi-screen composed of flat polygonal panels (cyan) with high-

lighted junction line (orange), edges (magenta), and corner points (red). Panels trian-

gulated with algebraically graded tensor-product mesh.

Let us discuss the case of a 3D multi-screen Γ comprised of a few flat polygonal

panels, like that shown in Fig. 4.4. Assume that the Dirichlet data ġD ∈H+ 1
2 ([Γ ]) are

the restriction to Γ of a function analytic in a neighborhood of Γ . Then the results

published in [12,27,29,32,11] and [34, Section 1.5] tell us that

– φ̇ is analytic in the interior of panels of Γ ,

– in a neighborhood U ⊂ [Γ ] of any interior point of a (straight) edge of the screen

φ̇ features a 1/
√

-type singularity,

φ̇ (x) =
1√

d(x,∂Γ )
ψ(x)+η(x) , x ∈U,

with smooth functions ψ ,η . Here we wrote d(x,∂Γ ) for the distance of x ∈ Γ to

∂Γ .

– locally at interior points of junction lines φ̇ is the sum of a smooth function and

countably many singular contributions behaving like r 7→ rαk , αk > − 1
2
, κ ∈ N,

where r is the distance to the junction line,

– “weaker” singularities arise at corner points.

As pointed out in [16], for low-order BEM this a priori knowledge of the singularities

of φ̇ suggests the use of sequences of anisotropic tensor-product meshes algebraically

graded towards edges and junction lines with a grading factor≥ 3, see Fig. 4.4. Thus,

we can expect to recover the same asymptotic rates of algebraic convergence (in terms

of number of degrees of freedom) as for a smooth φ̇ [26, Chapter 3], [28, Section 3],

[19, Chapter 7].
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If one is not confined to BE spaces of fixed low polynomial degree, then hp-

BEM on anisotropic geometrically graded tensor-product meshes is an option offer-

ing asymptotic exponential convergence [1][19, Chapter 8]. Since these topics are

outside the intended scope of this article, we are not going to pursue them further,

neither here nor in the next section.

5 Numerical Results for Triangulated Multi-Screens

We investigate the performance of quotient-space BEM in a few numerical experi-

ments, which were carried out using the BETL library [21]. For each of the BIE we

report the dimensions of the discrete kernels, we compute the generalized condition

numbers of the Galerkin matrices (quotient of largest and smallest non-zero singular

values), and study the convergence of the Conjugate Gradient (GC) and General-

ized Minimal Residual (GMRES) iterative solvers. We stop the iterations once the

Euclidean norm of the residual has shrunk by a factor of 106.

The experiments were carried out for the multi-screens displayed in Fig. 1.2: a

“triple junction” and a “quadruple junction”. That figure also displays the coarsest

mesh in each case. Table 5.1 provides information on the screen mesh T0 and the

associated virtual surface mesh T on different refinement levels. These refinement

levels were generated by uniform refinement of T0. As before, NT (M ), NE(M ) and

NV (M ) denote the number of triangular panels, edges, and nodes, respectively, of

the screen triangulation M ∈ {T ,T0}.
For each of the BIEs of interest, we summarize our results in a table and provide a

plot of singular values of the resulting Galerkin matrices for the sequences of meshes.

The tables report, for each refinement level (Ref. Level): the number of degrees of

freedom (DoFs); the generalized condition number of the Galerkin matrices (Gen.

Condition Number); the number of Krylov-subspace iterative solver iterations (CG

It. or GMRES It.); and the dimensions of the discrete kernels.

Generalized condition numbers were computed as the quotient of largest and

smallest non-zero singular values. These quantities are of interest because they are

related to the condition numbers one would obtain if computing the Galerkin ma-

trices by discretizing the jump spaces directly. For this reason, we expect that they

behave like O(h−1) for AV,κ and AW,κ , and like O(h−2) for AT,κ , with mesh width

h→ 0. We provide Table 5.2 at the end of this subsection to illustrate how these

quantities behave when the multi-screen is a unit disk, where the jump spaces can

be discretized with standard BEM. There we can see that the generalized condition

number of the quotient-space BEM matrices has the same growth as the condition

number of the standard BEM matrices.

For GMRES/CG, we chose as initial guess x0 = 0. As right hand side, we used

r := Az with z a random vector, and A the Galerkin matrix corresponding to the

associated BIE. Singular values, kernel dimensions and all plots were obtained using

MATLAB. Moreover, the generalized condition number was computed by regarding

every singular value smaller than 10−12 as zero. For simplicity, and given that the

size of the kernels (and thus the feasibility of our approach) does not depend on the

wavenumber κ , we take κ = 0 for the scalar BIEs and κ = 1 for the EFIE. This yields
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symmetric positive definite Galerkin matrices in the scalar case and allows the use of

CG.

Table 5.1: Mesh data.

Complex

Screen

Ref.

Level
NT (T0) NE (T0) NV (T0) NT (T ) NE (T ) NV (T )

Triple

Junction

1 12 22 11 24 36 14

2 48 80 33 96 144 50

3 192 304 113 384 576 194

Quadruple

Junction

1 16 29 16 32 48 18

2 64 106 43 128 192 68

3 256 404 149 512 768 258

Table 5.2: Comparison of condition numbers for AV,0, AW,0 and AT,1 on unit disk

discretized with standard BEM (T0) and quotient-space BEM (T ).

STANDARD BEM (T0) QUOTIENT-SPACE BEM (T )

Ref.

Level
DoFs

Condition

Number
DoFs Gen. Condition Number

AV,0

1 20 1.52·101 40 1.30·101

2 80 3.84·101 160 2.89·101

3 320 8.37·101 640 6.05·105

AW,0

1 6 1.46·100 12 1.15·102

2 31 2.67·100 62 2.37·102

3 141 5.45·100 282 7.77·102

AT,1

1 25 1.36·101 50 8.07·103

2 110 6.80·102 220 3.48·104

3 460 3.04·103 920 1.51·105

Remark 5.1 (Iterative solvers for singular linear systems) We remind that Krylov-

subspace iterative solvers can be applied for solving linear systems with singular

system matrices as long as they possess a solution, that is, if the right-hand side

vector is consistent, see [22,7] and [20, Sect. 6].

5.1 Scalar Case: Weakly Singular and Hypersingular BIEs

First we present the results for the weakly singular BIE. As discussed in Section 4.2,

we discretize with S
−1

0 (T ). Furthermore, following the discussion in Section 4.4, it

is clear that dimkern(AV,κ) =NV (T0), which is exactly what we observe in Table 5.3.

Moreover, Fig. 5.1 reveals the expected gap between the non-zero singular values of

AV,κ corresponding to discrete functions approximating H̃−
1
2 ([Γ ]), and the singular
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values corresponding to the single-trace space H−
1
2 ([Γ ]), which spawn the kernel of

AV,κ and are zero up to machine precision.

Table 5.3 also provides the computed generalized condition number, and the num-

ber of CG and GMRES iterations. These quantities are consistent with our expecta-

tions, and they confirm that Krylov subspace iterative solvers manage to find a solu-

tion to this singular yet consistent linear system.

Table 5.3: Results of the numerical experiments for AV,κ with κ = 0.

Complex

Screen

Ref.

Level
DoFs

Gen.

Condition

Number

CG It. GMRES It. dim kern(AV,κ)

Triple

Junction

1 24 1.09·101 8 9 12

2 96 2.38·101 13 15 48

3 384 4.89·101 20 18 192

Quadruple

Junction

1 32 1.54·101 9 10 16

2 128 3.25·101 16 16 64

3 512 6.66·101 21 18 256
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Fig. 5.1: Singular values for the weakly singular operator AV,κ with κ = 0 for different

levels of mesh refinement.

Next we consider the hypersingular BIE. One may compute the Galerkin matrix

AW,κ based on S 0
1 (T ) as described in Section 4.2, or, as done in our implementa-

tion, one may use S 0
1,0(T )⊂C0([Γ ]) of piecewise linear “continuous” functions on

the inflated screen [Γ ], which are zero at the boundary of ∂Γ . We remark that this

further simplification does not affect the algorithm, as the dropped boundary basis

functions belong to S
−1

0 (T )∩H−
1
2 ([Γ ]) and, thus, are contained in kern(AW,κ), c.f.

Remark 4.3. In other words, they do not affect GMRES. However, due to this choice,

the number of degrees of freedom (DoFs) correspond only to the internal vertices
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of T , and dimkern(AW,κ) = N∗V (T0), where N∗V (T0) denotes the number of internal

vertices of T0. This is exactly what one sees in Table 5.4.

Additionally, Fig. 5.1 shows the singular values of AW,κ . There we note the pre-

dicted gap between the non-zero singular values (corresponding to discrete functions

approximating H̃−1/2([Γ ])), and the singular values that are numerically zero (asso-

ciated to the single-trace space S 0
1,0(T0) ⊂ H−

1
2 ([Γ ]), which is the kernel of AW,κ

given our choice of discretization).

Table 5.3 also provides the computed generalized condition number, and the num-

ber of CG and GMRES iterations. It is worth noticing that these quantities behave as

expected and that both solvers converge.

Table 5.4: Results of the numerical experiments for AW,κ with κ = 0.

Complex

Screen

Ref.

lev.

No.

DoFs

Gen.

condition

no.

CG

It.

GMRES

It.

dim

kern(AW,κ)
N∗V (T0))

Triple

Junction

1 6 5.76·101 2 3 3 3

2 33 2.70·102 7 8 16 16

3 159 1.15·103 11 12 78 78

Quadruple

Junction

1 8 1.50·100 2 3 4 4

2 44 9.35·100 8 9 21 21

3 212 5.39·101 33 34 103 103
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Fig. 5.2: Singular values for the hypersingular operator AW,κ with κ = 0 for different

levels of mesh refinement.

5.2 Vectorial Case: EFIE

Finally, we study the EFIE. As for the hypersingular BIE, one can obtain the Galerkin

matrix AT,κ relying on the trial/test space N0(T ) as in Section 4.2, or one may use
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the space N0,0(T )⊂H
− 1

2 (curlΓ ,Γ ) of edge element functions on the inflated screen

[Γ ], which vanish at the boundary of ∂ [Γ ]. As before, the algorithm is not affected

by this further simplification, since the dropped boundary basis functions belong to

N0(T )∩H−
1
2 (curlΓ , [Γ ]) and, hence, just contribute to kern(AT,κ). In this approach

the number of degrees of freedom (DoFs) in Table 5.3 agrees with that of the internal

edges of T . Consequently, dimkern(AT ) = N∗E(T0), with N∗E(T0) the number of

internal edges of T0. This is verified by our numerical experiments.

We plot the singular values of AT,κ in Fig. 5.3. As before, we find a clear distinc-

tion between the singular values belonging to the kernel and those corresponding to

the jump space. Similarly, Table 5.5 reveals that GMRES works as predicted for this

setting, too.

Table 5.5: Results of the numerical experiments for AT,κ with κ = 1.

.

Complex

Screen

Ref.

Level
DoFs

Gen.

Condition

Number

GMRES It. dim kern(AT,κ) N∗E (T0)

Triple

Junction

1 27 2.13·101 14 13 13

2 126 4.07·101 63 62 62

3 540 2.04·102 207 268 268

Quadruple

Junction

1 36 4.53·102 19 17 17

2 168 5.09·102 80 82 82

3 720 1.78·103 279 356 356
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https://www.sam.math.ethz.ch/sam_reports/reports_final/reports2012/2012-36.pdf
22. Hochbruck, M., Lubich, C.: Error analysis of Krylov methods in a nutshell. SIAM J. Sci. Comput.

19, 695–701 (1998)
23. Maz’ya, V., Rossmann, J.: Elliptic equations in polyhedral domains, Mathematical Surveys and Mono-

graphs, vol. 162. American Mathematical Society, Providence, RI (2010). DOI 10.1090/surv/162

https://doi.org/10.1002/mma.1670120506
http://dx.doi.org/10.1137/090766620
https://doi.org/10.1007/s00211-002-0422-0
https://doi.org/10.1007/978-3-642-55483-4_3
https://doi.org/10.1007/s00020-013-2085-x
https://doi.org/10.1007/s00020-015-2242-5
http://dx.doi.org/10.1002/mma.1670130402
http://dx.doi.org/10.1002/mma.1670130403
https://doi.org/10.1007/s00211-018-0954-6
https://doi.org/10.1007/978-3-319-92001-6
https://www.sam.math.ethz.ch/sam_reports/reports_final/reports2012/2012-36.pdf


26 Xavier Claeys et al.

24. McLean, W.: Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University

Press, Cambridge, UK (2000)

25. Nazarov, S.A., Plamenevsky, B.A.: Elliptic problems in domains with piecewise smooth boundaries,

De Gruyter Expositions in Mathematics, vol. 13. Walter de Gruyter & Co., Berlin (1994). DOI

10.1515/9783110848915.525

26. von Petersdorff, T.: Randwertprobleme der elastizitätstheorie für polyeder - singularitäten und ap-
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