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christoph.schwab@sam.math.ethz.ch

‡IWR, Heidelberg University, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany.
jakob.zech@uni-heidelberg.de

July 14, 2020

Abstract

For Bayesian inverse problems with input-to-response maps given by well-posed partial
differential equations (PDEs) and subject to uncertain parametric or function space input,
we establish (under rather weak conditions on the “forward”, input-to-response maps) the
parametric holomorphy of the data-to-QoI map relating observation data δ to the Bayesian
estimate for an unknown quantity of interest (QoI). We prove exponential expression rate
bounds for this data-to-QoI map by deep neural networks with rectified linear unit (ReLU)
activation function, which are uniform with respect to the data δ taking values in a compact
subset of RK . Similar convergence rates are verified for polynomial and rational approxi-
mations of the data-to-QoI map. We discuss the extension to other activation functions,
and to mere Lipschitz continuity of the data-to-QoI map.

Key words: Deep ReLU neural networks, Bayesian inverse problems, approximation rates,
exponential convergence, Uncertainty Quantification
Subject Classification: 41A25, 41A10, 41A46

1 Introduction

In recent years, computational Bayesian inversion of partial differential equations (PDEs) sub-
ject to uncertain inputs from function spaces (“distributed random inputs”), subject to various
function space prior probability measures has received considerable attention. We refer for ex-
ample to [22, 5, 6] and to the references there. The currently most widely used computational
method for numerical Bayesian inversion with assimilation of noisy observation data is the
Markov Chain Monte Carlo (MCMC) algorithm, and its variants (e.g. [16, 15]). In practice,
it is obstructed by the low Monte Carlo (MC) convergence rate (at most 1/2 in terms of the
number of MCMC proposals) and the need to numerically solve a forward PDE problem of each

∗The main part of the paper was written while LH was at the Seminar for Applied Mathematics, ETH Zürich,
Rämistrasse 101, CH–8092 Zürich, Switzerland, and during the postdoctoral stay of JZ to the Department of
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Foundation under Early Postdoc.Mobility Fellowship 184530. CS acknowledges stimulating discussions at the
RICAM WS on Optimization under uncertainty in November 2019 at RICAM, Linz, Austria, and at the WIAS
WS on Deep Learning for PDEs at the Weierstrass Institute Berlin, Germany, 2-6 December 2019.
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MCMC proposal, or also by a possibly extended burn-in phase of MCMC to reach asymptotic
convergence.

These arguments remain valid, in part, also for multilevel variants of MCMC, see e.g. [16, 15]
and the references there. Therefore, in recent years, alternative numerical methods have been
proposed which offer the possibility to circumvent the burn-in phase, and which afford po-
tentially higher convergence rates than 1/2; see, e.g. [29, 8, 7, 13] and the references there.
Parametrization of the function space of uncertain PDE inputs, for example by means of a
(Riesz- or Schauder) basis, and constructing a prior measure on the corresponding coordinate
domain converts the Bayesian inverse problem (BIP) for the forward PDE with uncertain func-
tion space input into a parametric PDE inverse problem on high- or even infinite-dimensional
parameter spaces, rendering the BIP amenable to deterministic numerical methods. The high-
dimensionality of the parameter spaces obstructs the use of standard numerical methods and
has, classically, been addressed computationally by adopting MC-based numerical methods,
such as MCMC and its variants, for the numerical solution of PDE BIPs.

1.1 Previous Work

In recent years, efficient deterministic numerical methods capable of overcoming the men-
tioned curse of dimensionality in Bayesian PDE inversion and of providing higher (dimension-
independent) convergence rates than the rate 1/2 afforded by MC-based methods have been
developed. We mention in particular Quasi-Monte Carlo (QMC) (see, e.g., [8, 7]), and Sparse-
grid, resp. (adaptive) Smolyak-type numerical integration schemes, see, e.g., [29, 9, 39] and
the references there for an analysis of these methods in the presently considered forward and
Bayesian inverse uncertainty quantification. The mentioned numerical methods do retain their
significance in the context of training algorithms for deep neural network surrogates (DNNs) for
data-to-QoI maps which are numerically approximated by “standard” schemes such as MCMC
methods (see, e.g., [16] and the references there) as we will analyze in [12].

1.2 Contributions

In the present paper, we show that the data-to-QoI map which results from Bayesian inversion
of a (well-posed) PDE with uncertain input data from function spaces and subject to additive,
centered Gaussian observation noise can be expressed by deep neural networks (DNNs) with
rectified linear unit (ReLU) activation function, and certain other, multivariate approxima-
tion methods, with exponential rate which is independent of the number of coordinates in the
parametrization of the uncertain input from function spaces. These mathematical results are
based on the strong, regularizing effect of the Gaussian weight in the high-dimensional integra-
tion in Bayesian posterior expectation. Due to Bayes’ theorem, the appearance of the Gaussian
in the Bayesian posterior expectation is a consequence of the (assumed) centered, Gaussian law
of the observation noise in the data. As we show here, the strong smoothing property of a
convolution with a Gaussian (or, equivalently, under a heat-flow) will imply exponential expres-
sion rates of the corresponding data-to-QoI maps in (Bayesian) inverse UQ. Importantly, this is
valid under rather weak assumptions on the parameter-to-response map in forward UQ. Similar
smoothing effects have, earlier, been identified by some of us to facilitate high approximation
rates for statistical moments of (in general discontinuous) solution of nonlinear conservation
laws [31]. As a “byproduct” of the present expression rate analysis, we also obtain quantita-
tive bounds on the expression of the data-to-QoI maps by multivariate polynomial and rational
surrogate maps in Section 5.2. These approximation rate bounds are of independent interest,
as they also justify other approximations (different from the presently considered, DNN-based
constructions of surrogates, such as tensor-structured surrogates) of these maps. The approxi-
mation of the map [x 7→ 1/x] by ReLU NNs analyzed in Appendix C (needed in our analysis)
could also be of independent interest.
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The proven expression rate bounds by rational models will imply generalization error bounds
in either the worst-case or in the mean-square sense. In “learning” data-to-QoI maps, there
arises the practically significant question of how the DNN (or the mentioned alternative archi-
tectures) should be “trained”. I.e., calibrated on a set of (possibly synthetic) “training data”
and observables of varying levels of fidelity.

Our analysis will yield, in particular, guidelines for in a sense minimal sets of synthetic
training data which are sufficient for the calibration of the (polynomial, tensor-structured, or
deep ReLU NN) surrogates. In the task of Bayesian PDE inversion considered here, “exact”
Bayesian expectations for training the surrogate architectures are usually not available. As
mentioned, reference values for surrogate training are rather assumed to be furnished by a
numerical algorithm for Bayesian PDE inversion which, being based on PDE discretization
and approximate posterior sampling, incurs modeling and discretization errors. Typically, then,
several levels of accuracy (or “fidelity”) of the reference values are accessible numerically, at
corresponding cost. These extensions will be developed in [12].

1.3 Outline

The outline of the present paper is as follows. In Section 2 we present the general setting for
the presently considered class of Bayesian PDE constrained inverse problems. We recapitulate
abstract results from [6] and from the references there to delineate sufficient conditions for
its well-posedness. We distinguish uncertain inputs from finite and from infinite-dimensional
spaces. In Section 3, we present examples of Bayesian inverse problems for two exemplary PDEs
(elliptic, with level-set models for uncertain coefficient interfaces, and nonlinear hyperbolic
PDEs with uncertain flux functions) which we show to fit into the abstract setting. The
holomorphy of the mappings relating observation data δ to the Bayesian posterior expectation
and to the normalization constant is shown, for nondegenerate Gaussian observation noise, in
Section 4.2. In Section 5.1 we introduce the DNNs considered in the ensuing expressive power
bounds. Section 5.2 discusses polynomial and rational approximation of data-to-QoI maps, and
Section 5.3 contains the statement and the proof of our main result: exponential expression
rate bounds for deep ReLU NNs for the data-to-QoI maps in Bayesian inverse UQ for partial
differential equations. Section 6 presents numerical experiments for a model, linear elliptic
problem with uncertain coefficient which demonstrates the exponential expressivity of the DNN
emulation. Section 7 contains some conclusions and straightforward generalizations of the
present results, in particular an exponential expression rate bound for the finite-dimensional
setting in Section 2.1 and additive noise distributed according to a Lipschitz density ρ with
respect to Lebesgue measure. In Appendix C, Lemma C.1, we prove a novel bound for the
error of expressing the map [x 7→ 1/x] by ReLU DNNs.

In [12], we will address bounds on the DNN generalization error for observables in forward
UQ and for unobservable quantities of interest in Bayesian inverse UQ constrained by forward
PDE models with uncertain inputs from function spaces. There, we also furnish an error analysis
of DNN training based on generic, randomized “coaching” routines for Bayesian inversion, such
as the mentioned multilevel MCMC algorithms (e.g., [16]) or QMC integration with randomly
shifted lattice rules (e.g. [10]).

1.4 Notation

We adopt standard notation. Let | · | denote the Euclidean norm on RK , K ∈ N. For r > 0
we denote by Br(0) the closed ball with radius r in either RK (with respect to the Euclidean
norm) or in a Banach space X (which case is meant shall be clear from the context). By π0 we
shall generically denote a prior probability measure on a (assumed polish) space of uncertain
PDE inputs u. Observation data will be denoted by the symbol δ and is assumed to take values
in RK for some finite value of K. The symbols Z, Z ′ shall denote certain quantities in the
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Bayesian estimate and, with various sub- and superscripts, bounds on these.

2 Bayesian Inverse Problems

In order to develop the holomorphic dependence of the Bayesian estimate on the observation
data (vector) in some generality, we present an abstract setting of BIP, accommodating in
particular forward problems given by PDEs with random field (“distributed”) uncertain input
from function spaces. A reference on the mathematical setting and the well-posedness can be [6]
and the references therein. We briefly recapitulate its mathematical setting, as our subsequent
analysis will be based on its properties. For ease of presentation we first address the finite-
dimensional case, before generalizing to infinite dimensions, as required by PDE constrained
Bayesian inversion with uncertain function space inputs.

2.1 Finite-Dimensional Case

We wish to infer uncertain input data u ∈ Rn from noisy observation data δ ∈ RK . We assume
that the noiseless response δ is related to the uncertain input u by a data-to-observable map
δ = G(u). Assuming δ is only accessible up to additive, centered observation noise denoted by
a mean-zero random variable η ∼ Q0, we postulate

δ = G(u) + η , η ∼ Q0. (1)

We model uncertainty in the input by furthermore assuming that u ∈ Rn is a random
variable (RV) whose law admits a Borel measurable prior density ρ0 w.r. to the Lebesgue
measure λn, i.e.,

u ∼ π0 := ρ0(u)λ
n . (2)

We assume in (1) that the forward map [G : Rn → RK : u 7→ δ] is Borel measurable and that
the observation noise η ∼ Q0 is independent of the uncertain input u. In the case that the law
Q0 of η admits a density ρ w.r. to λK , the pair (u, δ) ∈ Rn ×RK is a RV with product density
ρ(δ − G(u))ρ0(u). The distribution of the RV u|δ (read “u given observation data δ”) is then
given by the following result.

Theorem 2.1 (Bayes’ Theorem) Assume that the data δ ∈ RK is such that

Z = Z(δ) :=

∫

Rn

ρ(δ −G(u))ρ0(u)du > 0 . (3)

Then, u|δ is a RV on Rn distributed according to the posterior πδ. The posterior πδ admits the
density

ρδ(u) =
1

Z
ρ(δ −G(u))ρ0(u) , u ∈ Rn (4)

with respect to the Lebesgue measure λn on Rn.

The expression (u, δ) 7→ ρ(δ−G(u)) in (3), (4) is also referred to as the likelihood. The negative
log-likelihood, denoted by Φ, will be referred to as Bayesian potential, i.e.

Φ(u; δ) := − log ρ(δ −G(u)) . (5)

Denoting for δ ∈ RK the measure with density ρδ in (4) as πδ, we may write (3), (4) as

dπδ

dπ0
=

1

Z
exp(−Φ(u; δ)), Z :=

∫

u∈Rn

exp(−Φ(u; δ))π0(du) . (6)
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Remark 2.2 The assumptions imply that the map [δ 7→ Z(δ)] is a probability density: the RV
(δ, u) admits the joint density ρ(δ − G(u))ρ0(u). The marginal density [δ 7→ Z(δ)] is given by
Z(δ) =

∫
ρ(δ −G(u))ρ0(u) du.

Example 2.3 (Gaussian observation noise) Assume that in (1), the observation noise η is
centered, nondegenerate Gaussian observation noise on RK . Then Q0 ∼ N(0,Σ) with symmet-
ric, positive definite covariance matrix Σ ∈ RK×K

sym , so that

ρ :

{
RK → R

ζ 7→ (2π)−K/2det(Σ)−1/2 exp(−ζ⊤Σ−1ζ/2),

whence

Φ(u; δ) = − log ρ(δ −G(u)) =
1

2
(δ −G(u))⊤Σ−1(δ −G(u)) +

1

2
log((2π)Kdet(Σ)), (7)

i.e. the Bayesian potential is the negative log-likelihood, respectively the (observation noise)
covariance-weighted data-to-prediction misfit functional.

For any given, measurable QoI φ : Rn → R, the expected value under the posterior, given
the data δ ∈ RK , is

Eπδ

[φ] = Eπ0

[
dπδ

dπ0
φ

]
=

1

Z

∫

u∈Rn

exp(−Φ(u; δ))φ(u)π0(du) . (8)

2.2 Infinite-dimensional Case

We denote by X and Y real, separable Banach spaces, equipped with the Borel sigma-algebra.
In the finite-dimensional setting of the preceding section, X = Rn denotes the space of uncertain
inputs and Y = RK denotes the data space. Here, we retain Y = RK finite-dimensional, but
admit X to be a real, separable Banach space corresponding to uncertain function space input
for PDEs.

The forward (“input-to-observation”) map will again be denoted by G : X → Y . We assume
G be measurable and consider again the BIP: given noisy observation data δ ∈ Y , find u ∈ X
such that

δ = G(u) + η . (9)

Here, η denotes a Y -valued RV which describes additive observation noise on the data δ. As-
sumption (9) renders (u, δ) ∈ X × Y a RV with respect to the product sigma algebra.

We are interested in the law of u|δ. To calculate it, we place a (Bayesian) prior probability
measure π0 on (X,B(X)), and a probability measure Q0 on (Y,B(Y )) corresponding to the
distribution of η. We assume Q0 to be centered, and the RVs u and η to be independent.
Then, the product probability measure ν0 = π0 ⊗ Q0 is well-defined. To derive the law of
(u, δ) ∈ X ×Y , we observe that given u ∈ X, δ|u is a RV taking values in Y with law Qu being
Q0 translated by G(u). We assume

Qu ≪ Q0 π0-a.e. u ∈ X . (10)

This assumption implies that for π0-a.e. u ∈ X the nonnegative Radon-Nikodym derivative dQu

dQ0

exists and we denote it by exp(−Φ(u; δ)) with the log-likelihood −Φ(·; δ) : X → R, i.e.

dQu

dQ0
= exp(−Φ(u; δ)) . (11)
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Then, for π0-a.e. u ∈ X, Φ(u, ·) : Y → R is measurable with EQ0 [exp(−Φ(u; ·))] = 1. Further-
more, the law of the RV (u, δ) is ν = π0 ⊗Qu and ν ≪ ν0 with

dν

dν0
= exp(−Φ(u; δ)) .

Theorem 2.4 Assume that Φ : X × Y → R is ν0-measurable with

Z :=

∫

X

exp(−Φ(u; δ))π0(du) > 0 Q0-a.e. δ ∈ Y . (12)

Then the law of u|δ, denoted as πδ, exists for Q0-a.e. δ, and π
δ ≪ π0. Moreover, for ν-a.e.

(u, δ) holds
dπδ

dπ0
=

1

Z
exp(−Φ(u; δ)) . (13)

We refer to [6, Theorem 3.4] for a proof.

3 Examples

This section discusses a few examples, which are covered by our main results. While our abstract
setting accommodates a wide range of parameter dependent PDEs—including the standard
affine parametric elliptic problem (see for instance [6, Sec. 1.3 and 2.2])—the current section
focuses on models exhibiting merely continuous parameter dependence (in fact even continuity
is not necessary for our subsequent results). We emphasize that this is in stark contrast with
the majority of previous work concerned with higher-order methods for Bayesian inference in
uncertainty quantification. We refer for example to [30, 8, 29], all of which investigate PDEs with
analytic parameter dependence. The reason why we are able to treat such rough dependence
on the parameter, is that unlike in the given references, we are not concerned with posterior
density approximation, but with the approximation of the data-to-QoI map. As subsequently
shown in Sec. 4, the data-to-QoI map is smooth even for the presently discussed models.

Throughout this section we use several times the following: if the forward solution operator
G : X ′ → RK is continuous, then G is Borel-Borel measurable and thus the map (u, δ) 7→ ρ(δ−
G(u)) is Borel-Borel measurable provided the density ρ : RK → R is Borel-Borel measurable.
Since ρ is a Lebesgue density, ρ is in general only Lebesgue-Borel measurable. However, in all
examples considered below, ρ is actually continuous and thus also Borel-Borel measurable.

With this prerequisite in mind, we now illustrate how to verify the above, general assump-
tions for a selection of parametric PDE problems with uncertain PDE inputs from (subsets
X ′ of) function spaces X. The prior probability measure π0 in (10) will, in this case, be a
pushforward of a probability measure P on a measurable space (Ω,F), to a separable subset
X ′ of a Banach space X of admissible inputs for the PDE under consideration. Specifically,
we suppose that u : Ω → X is strongly measurable. This implies by Pettis’ theorem that there
exists a measurable subset Ω′ ⊂ Ω such that P(Ω′) = 1 and {u(ω) : ω ∈ Ω′} is separable in
X, cf. [38, Theorem V.4]. We refer to [5, Section 2] for a detailed derivation of such priors
π0 for linear, well-posed elliptic PDEs with uncertain coefficients. Rather than covering the
most general case, we opt for developing two PDE models and also discuss examples of priors,
which we construct as the law of a strongly measurable random field u. More PDE problems
are admissible in our framework, for example the problem to recover the unknown conductivity
from noisy boundary measurements in Calderón problems, see [1] and the references therein.
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3.1 PDE models

We will consider forward data-to-solution maps which are realized through the solution of
a governing PDE for uncertain function space input. Generally, the uncertain function space
input is denoted by u ∈ X, which should be constrained such that the PDE under consideration
is well-posed for this input data. For that reason, we may restrict the function space X to a
subset X ′. The unique solution given input u is denoted by q ∈ V and the forward solution
map is denoted by S, i.e., u 7→ q = S(u) ∈ V , where V is a Banach space.

In numerical Bayesian inversion of a PDE, we aim at computing a conditional expectation
of a Quantity of Interest (“QoI” for short) φ ∈ V ∗, which is here assumed to be a linear
functional. To this end, we assume at hand (noisy) observations O◦S(u)+η where O ∈ (V ∗)K ,
and, as before, η ∈ RK is a RV on RK whose law admits a Borel measurable density ρ. In
this case the input-to-observation map G in (9) is given by G = O ◦ S. We assume that the
prior π0 is the law of a random field u : Ω → X ′, which is strongly measurable with respect
to the topology of X. Moreover, we assume that the forward solution operator S : X ′ → V
is continuous. Then, as a composition of two continuous maps the data-to-observation map
O ◦ S : X ′ → Y is also continuous. The strong measurability of u : Ω → X ′ implies that the
observable [G : Ω → Y : u 7→ (O ◦ S)(u)] is a RV, i.e. measurable with respect to the Borel
sigma algebra of Y = RK . Let us assume that

Eπ0 [|φ|] =
∫

X

|(φ ◦ S)(u)|π0(du) <∞. (14)

Then, given noisy observation data δ ∈ Y , the posterior expectation of the QoI φ takes the
form

Eπδ

[φ] =
1

Z

∫

X

(φ ◦ S)(u)ρ(δ −G(u))π0(du) . (15)

This expression is well-defined by the (assumed) measurability of the density ρ with respect to
the Borel sigma-algebra.

3.1.1 Diffusion equations

In a bounded Lipschitz domain D ⊂ Rd, given a (assumed uncertain) coefficient u ∈ L∞(D)
and a deterministic (i.e., deterministic assumed known with certainty) source term f ∈ L2(D),
as a forward model, we are interested in finding q ∈ H1

0 (D) such that

f +∇ · (u∇q) = 0 in H−1(D) , q|∂D = 0 . (16)

As is well-known, for every u ∈ L∞(D) such that ess infx∈D u(x) > 0, the forward problem (16)
admits a unique variational solution q ∈ H1

0 (D). Here V = H1
0 (D). For fixed f in (16), the

input-to-solution map

S : {u ∈ L∞(D) : ess inf
x∈D

u(x) > 0} → V : u 7→ q (17)

induced by (16) satisfies

‖S(u)‖V ≤ ‖f‖V ∗

ess infx∈D{u(x)} . (18)

The map S is Lipschitz continuous which implies measurability of the likelihood as follows. For
any u, u′ ∈ {u ∈ L∞(D) : ess infx∈D u(x) > 0} such that S(u) ∈ W 1,r(D) for some r ∈ [2,∞),
there holds

‖S(u)− S(u′)‖V ≤ ‖∇S(u)‖Lr(D)

ess infx∈D{u′(x)}‖u− u′‖L2r/(r−2)(D) . (19)

For X ′ ⊂ {u ∈ L∞ : ess infx∈D{u(x)} > 0} being (Borel) measurable, we endow X ′ with
the L∞(D)-norm and suppose that X ′ is separable with respect to the L∞(D)-norm. In this
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case, r′ = 2r/(r − 2) = ∞ and r = 2. Note that S(u) ∈ W 1,r(D) is satisfied by (18). Thus,
by (19), the forward operator S : X ′ → V is Lipschitz continuous. But the verification of the
condition (14) becomes non-trivial and shall be discussed in the particular construction of the
prior (see ahead Section 3.2.2).

Suppose there exists C > 0 such that

X ′ = {u ∈ L∞(D) : C−1 ≤ ess inf
x∈D

{u(x)} ≤ ‖u‖L∞(D) ≤ C} .

Then, there exists r > 2 such that S(u) ∈W 1,r(D) for every u ∈ X ′ if also f ∈ (W
1,r/(r−1)
0 (D))∗,

cf. [2, Proposition 1] (the conditions of [2, Proposition 1] are verified for example by [21,
Theorems 1.1 and 1.3]). Note that the earlier assumption f ∈ L2(D) implies that f ∈
(W

1,r/(r−1)
0 (D))∗ for d = 1, 2 and for d > 2 if r < 2d/(d − 2). We endow X ′ with the

Lr′(D)-norm for r′ = 2r/(r − 2). Thus, by (19), S : X ′ → V is Lipschitz continuous. In this
case the condition (14) is always satisfied, which follows by (18).

3.1.2 Scalar hyperbolic conservation law

We consider the Cauchy problem for the scalar, nonlinear hyperbolic conservation law

∂tq + ∂x(u(q)) = 0 , q|t=0 = q0 . (20)

The initial condition q0 ∈ L1(R) has bounded variation and is assumed known, i.e., de-
terministic. Denote by M := ‖q0‖L∞(R) and note the maximum principle satisfied by the
(unique) entropy solutions, cf. e.g. [17, Theorem 2.14(i)]. The Lipschitz continuous flux func-
tion u ∈ W 1,∞([−M,M ]) in (20) is assumed to be uncertain. For any fixed realization
u ∈ W 1,∞([−M,M ]) of the flux function u in (20), there exists a unique entropy solution
q to (20) by [17, Theorem 2.14]. For fixed t > 0, let us denote by St the operator u 7→ q(t),
for fixed initial data q0, i.e., q(t) = St(u). The L1(R)-norm of the entropy solution at time
t > 0 is bounded in terms of the data. Specifically, by [17, Theorem 2.14(vi)] and the triangle
inequality

‖St(u)‖L1(R) ≤ ‖q0‖L1(R) + tTV(q0)‖∂xu‖L∞([−M,M ]). (21)

Furthermore, the entropy solution q depends Lipschitz continuously on the flux function u:
by [17, Theorem 2.13], for any two Lipschitz flux functions u, ũ ∈ W 1,∞([−M,M ]) and for
every t > 0 holds

‖St(u)− St(ũ)‖L1(R) ≤ tTV(q0)‖∂x(u− ũ)‖L∞([−M,M ]). (22)

Thus, for every t > 0, the forward (“flux-to-entropy solution”) map St : W 1,∞([−M,M ]) →
L1(R) is continuous. Hence, we are in the abstract setting for Bayesian inversion with X =
W 1,∞([−M,M ]) and V = L1(R).

3.2 Priors

We present several constructions of parametric function space priors, for which our results
apply. These constructions are by no means meant to be exhaustive; they are merely listed,
with references, in order to illustrate the scope of applicability of our principal results on DNN
expression rate bounds for PDE constrained Bayesian inverse problems.

3.2.1 Level set priors

We shall discuss in some detail a class of uncertain u such that u is piecewise constant and
attains known values (or levels) at uncertain locations in the spatial domain D, i.e.,

u =
n∑

i=1

ui✶Di
(23)
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for certain numbers ui ∈ (0,∞), i = 1, . . . , n, and uncertain subsets Di of D such that D =⋃n
i=1Di and Di ∩ Di′ = ∅ for i 6= i′. Suppose that g : Ω → C0(D) is a strongly measurable

Gaussian random field on an auxiliary probability space (Ω,A,P). For constants −∞ = c0 <
c1 < . . . < cn = ∞, define the function F : R → (0,∞) by

F =

n∑

i=1

ui✶[ci−1,ci).

It follows that u := F (g) satisfies (23) with the uncertain sets Di defined by

Di := {x ∈ D : ci−1 ≤ g(x) < ci}, i = 1, . . . , n.

Lemma 3.1 The level set random field u : Ω → Lr(D) defined by ω 7→ u(ω) := F (g(ω)) is
strongly measurable with respect to the topology of Lr(D) for every r ∈ [1,∞).

Proof. By definition of strong measurability, cf. e.g. [38, Definition V.4.1], there exist functions

gNi ∈ C0(D) and measurable, disjoint sets ΩN
i ⊂ Ω such that ‖g −∑N

i=1 g
N
i ✶ΩN

j
‖C0(D) → 0

as N → ∞ P-a.s. This is to say that
∑N

i=1 g
N
i ✶ΩN

j
is “finitely valued”. We observe that

F (
∑N

i=1 g
N
i ✶ΩN

j
) =

∑N
i=1 F (g

N
i )✶ΩN

j
is also finitely valued, since the sets ΩN

i , i = 1, . . . , N , are

disjoint.
We state the fact that v 7→ F ◦ v is a mapping from C0(D) to Lr(D) for every r ∈ [1,∞).

This map is continuous at some v ∈ C0(D) if and only if {x ∈ D : v(x) = ci} is a nullset with
respect to the Lebesgue measure for every i = 2, . . . , n− 1, cf. e.g. [20, Proposition 2.6].

By [20, Proposition 7.2], P({ω ∈ Ω : |{x ∈ D : g(ω)(x) = ci}| = 0}) = 1, i = 1, . . . , n − 1.

This implies with the aforementioned fact that ‖F (g)−∑N
i=1 F (g

N
i )✶ΩN

j
‖Lr(D) → 0 as N → ∞

P-a.s. Thus, the composition F ◦ g is strongly measurable with respect to Lr(D). ✷

Diffusion equations

In the setting of Section 3.1.1 we let X := L∞(D), X ′ := {u ∈ L∞(D) : min{u1, . . . , un} ≤
u(x) ≤ max{u1, . . . , un} a.e. x ∈ D} and V := H1

0 (D). There exists r′ ∈ [2,∞) in dependence
of min{u1, . . . , un} and max{u1, . . . , un} such that S : X ′ → V is continuous, see Section 3.1.1,
where we endowedX ′ with the Lr′(D)-norm. By Lemma 3.1, u : Ω → X ′ is strongly measurable
and we define the prior on X ′ as the law of u, i.e., π0(A) = P((F ◦ g)−1(A)) for all Borel
measurable A ⊆ X ′.

3.2.2 Log-Besov parametric priors

Let m ∈ {0, 1}. Consider now u taking log-affine form, i.e.

u(x,y) = u0(x) + exp



∑

j≥1

yjψj(x)


 x ∈ D. (24)

where u0 ∈ X = Wm,∞(D) satisfies ess infx∈D{u0(x)} ≥ 0. We assume again summability of
the function system Ψ = (ψj)j≥1, i.e.,

∑

j≥1

‖ψj‖Wm,∞(D) <∞.

For p ∈ [1, 2], we define P as the product measure

P(dy) :=
⊗

j≥1

p

2p1/pΓ(1/p)
e−

|yj |
p

p dyj
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on Ω := R∞, where Γ denotes the Gamma function. We suppose that y in (24) is distributed
according to P, and Ω is equipped with the product Borel sigma algebra. As a consequence [10,
Proposition 3.2], it holds that

ess inf
x∈D

{u(x,y)} > 0 P− a.e. y ∈ Ω,

where for p = 1 we require supj≥1 ‖ψj‖L∞ < 1.
Here, X ′ = {u ∈ Wm,∞(D) : u = u0 + exp(

∑
j≥1 yjψj),P − a.e. y ∈ Ω}. By [10, Proposi-

tion 3.2], in the case p ∈ (1, 2]

∫

Ω

‖u(y)‖Wm,∞(D)P(dy) <∞, (25)

which also holds for p = 1 if supj≥1{‖ψj‖Wm,∞(D)} < 1. Also by [10, Proposition 3.2], u :
Ω → X ′ is strongly measurable. We construct the Besov prior π0 as the law of u, i.e., π0(A) :=
P(u−1(A)) for every measurable A ⊂ X ′.

Diffusion equations

For the PDE model (16), m = 0, X = L∞(D) and V = H1
0 (D). The condition (14) is satisfied

by (25) and (18) for every QoI φ ∈ V ∗.

Scalar conservation laws

For the PDE model (20), m = 1, X = W 1,∞(D) and D = [−M,M ], where we recall that
M = ‖q0‖L∞(R) and q0 is the initial condition. Furthermore V = L1(R). The condition (14) is
satisfied by (25) and (21) for every QoI φ ∈ V ∗.

Remark 3.2 For p = 2 and u0 ≡ 0, we recover the widely used case of parametric log-Gaussian
diffusion coefficients u as a special case of the constructed log-Besov priors. Hence, BIPs with
Gaussian priors are also covered by the present results.

4 Regularity of the Data-to-QoI Map

We now investigate the regularity of the data-to-QoI map δ 7→ Eπδ

[φ]. This regularity is crucial,
on the one hand, for the ensuing DNN expression rate analysis and, on the other hand, will be
seen to determine to some extent the DNN architecture. As we show, this regularity is strongly
dependent on the regularity of the density ρ of the observation noise η in the additive model
(1).

4.1 Lipschitz Regularity

We assume we are in the finite-dimensional case described in Theorem 2.1 and that the density
function ρ in (3), (4) is globally Lipschitz continuous.

Example 4.1 Consider the function ρ : RK → R : ζ 7→ exp(−‖ζ‖1) where, for ζ ∈ RK ,
‖ζ‖1 = |ζ1|+ ...+ |ζK |. Then ρ is globally Lipschitz, since for ζ, ζ ′ ∈ RK holds

|ρ(ζ)− ρ(ζ ′)| = | exp(−‖ζ‖1)− exp(−‖ζ ′‖1)| ≤ |‖ζ‖1 − ‖ζ ′‖1| ≤ ‖ζ − ζ ′‖1 .

The Lipschitz property of ρ is inherited by the data-to-QoI map δ 7→ Eπδ

[φ] in (8).

Proposition 4.2 In the setting of Theorem 2.1, assume that ρ ∈ Lip(RK) with respect to some
norm ‖ ◦ ‖ on RK . Suppose in addition that the QoI φ satisfies φ ∈ L1(X ′, π0).

10



Then, for every r > 0 the map [δ 7→ Eπδ

[φ]] ∈ Lip(Br(0)), i.e, there exists a constant
C(r, φ) > 0 such that

∀δ, δ′ ∈ Br(0) :
∣∣∣Eπδ

[φ]− Eπδ′

[φ]
∣∣∣ ≤ C ‖δ − δ′‖ .

Proof. Let for the moment δ, δ′ ∈ RK be arbitrary realizations of the observation data. Fur-

thermore, denote Z ′(δ) := Z(δ)Eπδ

[φ] and Z ′(δ′) := Z(δ′)Eπδ′

[φ]. Then,
∣∣∣∣
Z ′(δ)

Z(δ)
− Z ′(δ′)

Z(δ′)

∣∣∣∣ ≤
|Z ′(δ)− Z ′(δ′)|

Z(δ)
+

|Z ′(δ′)||Z(δ′)− Z(δ)|
Z(δ)Z(δ′)

. (26)

By assumption the density ρ is globally Lipschitz on RK with constant CLip > 0. Thus by
definition of Z in (6),

|Z(δ)− Z(δ′)| ≤ CLip‖δ − δ′‖
∫

X

π0(du) = CLip‖δ − δ′‖.

Similarly, |Z ′(δ)− Z ′(δ′)| ≤ CLipE
π0 [|φ|]‖δ − δ′‖. For every r > 0, define

Zmin,r := inf
δ′′∈Br(0)

Z(δ′′) and Z ′
max,r := sup

δ′′∈Br(0)

Z ′(δ′′).

Since we have proven already that the nonnegative mappings [δ → Z(δ)] and [δ → Z ′(δ)] are
Lipschitz continuous on RK , they achieve their minimum and maximum on the compact set
Br(0) ⊂ RK so that 0 < Zmin,r, Z

′
max,r <∞. The assertion now follows with

C = CLip

(
Eπ0 [|φ|]
Zmin,r

+
Z ′
max,r

Z2
min,r

)
.

✷

4.2 Holomorphy

We now establish one core result of the present paper, namely the holomorphy of the data-
to-QoI map which results from the expectation under the Bayesian posterior, for the negative
log-likelihood Φ in (5) being a quadratic. This corresponds to the important assumption that
the additive observation noise η in (1) is centered, Gaussian.

As we admit vector-valued data δ ∈ RK for some integer K ≥ 1 and as the QoI φ is assumed
to be scalar, taking values in R (or, upon complexification, in C), this amounts to verifying
holomorphy of a scalar function of K complex variables. Based on standard results (e.g. [18])
on functions of several complex variables, we shall verify this first in the univariate case (i.e.,
for K = 1) and subsequently infer holomorphy of the multivariate map by means of Hartogs’
theorem.

We shall use the following technical result on averages of holomorphic maps, which is asser-
tion C3 of the Theorem in [24].

Proposition 4.3 Let (Ω,A, π) be a measure space and let G ⊂ C be an open set. Suppose that
the functions f : Ω×G→ C satisfies

(i) [Ω ∋ ω 7→ f(ω, z)] is measurable with respect to A for every z ∈ G.

(ii) [G ∋ z 7→ f(ω, z)] is holomorphic for every ω ∈ Ω.

(iii) for every z0 ∈ G, there is δ > 0 such that supz∈G,|z−z0|≤δ

∫
Ω
|f(ω, z)|π(dω) <∞.

Then, [G ∋ z 7→
∫
Ω
f(ω, z)π(dω)] is holomorphic.

Proof. This is assertion C3 of the theorem in [24]. ✷
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4.2.1 Univariate Data (K = 1)

Lemma 4.4 In the setting of Theorem 2.4 let K = 1 and assume that φ ∈ L1(X ′, π0) and
Φ(u; δ) = (δ −G(u))(δ −G(u))/(2σ2) for some σ > 0.

Then the map

δ 7→
∫

X′

φ(u) exp(−Φ(u; δ))π0(du)

is holomorphic on C.

Proof. We shall verify assumptions (i), (ii) and (iii) in Proposition 4.3. Since u 7→ Φ(u; δ) is
measurable for every δ ∈ C and δ 7→ Φ(u; δ) is holomorphic for π0-a.e. u ∈ X ′, the same is true
for the map (u, δ) 7→ exp(−Φ(u; δ)). This completes the verification of assumptions (i) and (ii)
in Proposition 4.3.

It remains to show that
∫
X′ φ(u) exp(−Φ(u; δ))π0(du) is locally bounded for every δ ∈ C. It

holds 2σ2Φ(u; δ) = δ2 − 2δG(u) +G(u)2. For some δ0 ∈ C, consider arbitrary δ ∈ C such that
|δ − δ0| ≤ 1. By the triangle inequality,

| exp(−Φ(u; δ))| ≤ | exp(−δ2/(2σ2))| exp(−(G(u)2 − 2|G(u)|[|δ0|+ 1])/(2σ2)).

By maximizing the quadratic polynomial G(u) 7→ −G(u)2 + 2G(u)(|δ0|+ 1) we get

| exp(−Φ(u; δ))| ≤ | exp(−δ2/(2σ2))| exp
(
(|δ0|+ 1)2

2σ2

)
,

where we used that G(u) ∈ R for u ∈ X ′. Thus, for every δ0 ∈ C,

sup
δ∈C,|δ−δ0|≤1

∫

X′

|φ(u)|| exp(−Φ(u; δ))|π0(du)

≤ sup
δ∈C,|δ−δ0|≤1

| exp(−δ2/(2σ2))| exp
(
(|δ0|+ 1)2

2σ2

)
Eπ0(|φ|) <∞.

This verifies assumption (iii) in Proposition 4.3, i.e., δ 7→
∫
X′ |φ(u)|| exp(−Φ(u; δ))|π0(dy) is

locally bounded for every δ ∈ C. The assertion of the lemma is then implied Proposition 4.3.
✷

4.2.2 Multivariate Case (K > 1)

Lemma 4.5 In the setting of Theorem 2.4 let 1 < K ∈ N and assume that φ ∈ L1(X ′, π0) and
Φ(u; δ) = (δ −G(u))⊤Σ−1(δ −G(u))/2 for some SPD matrix Σ ∈ RK×K .

Then, for each fixed δ̃ ∈ RK−1, the mapping

δ 7→
∫

X′

φ(u) exp(−Φ((δ; δ̃);u))π0(du)

is holomorphic on C.

Proof. The assertion is proven similarly to Lemma 4.4 and is also a consequence of Proposi-
tion 4.3. In the ensuing argument, for δ ∈ CK we denote by |δ| = +

√
δHδ the modulus with

respect to the Euclidean norm on CK and, for a K ×K real, symmetric matrix Σ, we denote
by ‖Σ‖ its spectral norm.

The mapping C ∋ δ →
∫
X′ exp(−Φ(u; δ))π0(du) satisfies assumptions (i) and (ii) in Propo-

sition 4.3.
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For the verification of assumption (iii) in Proposition 4.3, let us denote δ := (δ; δ̃) ∈ CK

for any δ ∈ C and δ̃ ∈ CK−1. We observe that 2Φ(u; δ) = (δ⊤Σ−1δ − 2δ⊤Σ−1G(u) +
G(u)⊤Σ−1G(u)). Moreover, it holds that

| exp(δ⊤Σ−1G(u))| = exp(δ⊤ReΣ
−1G(u))) ≤ exp(‖Σ−1‖|δRe||G(u)|).

Let δ̃ ∈ CK−1 and δ0 ∈ C be arbitrary and denote δ0 := (δ0; δ̃). Denote by σ > 0 the largest
eigenvalue of Σ1/2. For every δ ∈ C such that |δ − δ0| ≤ 1,

| exp(−Φ(u; δ))|
≤ | exp(−δ⊤Σ−1δ/2)|| exp(−|G(u)|2/(2σ2) + ‖Σ−1‖(|δ̃|+ |δ0|+ 1)|G(u)|)|.

Similar as in the proof of Lemma 4.4, maximizing the polynomial s 7→ −s2/(2σ2)+‖Σ−1‖(|δ̃|+
|δ0|+ 1)s, we get

| exp(−Φ(u; δ))| ≤ | exp(−δ⊤Σ−1δ/2)| exp
(
(|δ̃|+ |δ0|+ 1)2σ2‖Σ−1‖2

2

)
.

Thus

sup
δ∈C,|δ−δ0|≤1

∫

X′

|φ(u)|| exp(−Φ(u; δ))|π0(du) <∞,

which establishes the local boundedness of δ →
∫
X′ φ(u) exp(−Φ(u; δ))π0(du), i.e., assumption

(iii) in Proposition 4.3. The assertion of this lemma then follows from Proposition 4.3. ✷

Proposition 4.6 In the setting of Theorem 2.4 let 1 < K ∈ N and assume that φ ∈ L1(X ′, π0)
and Φ(u; δ) = (δ −G(u))⊤Σ−1(δ −G(u))/2 for some SPD matrix Σ ∈ RK×K .

Then the map

δ 7→
∫

X′

φ(u) exp(−Φ(u; δ)π0(du)

is holomorphic on CK .

Proof. Lemma 4.5 implies holomorphy in every coordinate δi, i = 1, . . . ,K. The assertion now
follows by Hartogs’ theorem, cf. [18, Theorem 2.2.8]. ✷

Corollary 4.7 In the setting of Theorem 2.4 and Proposition 4.6, and for every finite r > 0,
the map

[−r, r]K ∋ δ 7→ Eπδ

[φ] ∈ R (27)

admits a holomorphic extension to some open set E such that [−r, r]K ⊂ E ⊂ CK .

Proof. By Proposition 4.6 the maps

δ 7→ Z ′(δ) =

∫

X′

φ(u) exp(−Φ(u; δ))π0( du), δ 7→ Z(δ) =

∫

X′

exp(−Φ(u; δ))π0( du),

admit (unique) holomorphic extensions to all of CK . Furthermore Z(δ) > 0 for Q0-a.e. δ ∈ RK .
Since Q0 is a Gaussian measure and Z is continuous (even analytic) as a function of δ ∈ RK , we
conclude Z(δ) > 0 for every δ ∈ RK . Hence there is a bounded set E ⊂ CK strictly containing

[−r, r]K such that the map δ 7→ Eπδ

[φ] = Z ′(δ)/Z(δ) admits an holomorphic extension to E . ✷
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5 Exponential DNN Expression Rate

Using the holomorphy of the data-to-QoI map [δ 7→ Eπδ

[φ]] established in Section 2 (for addi-
tive, centered Gaussian observation noise η in (1)), in this section we prove for this map and
deep ReLU NNs an exponential expression rate bound in term of the overall NN size. As a
byproduct of the proof, we also show exponential convergence rates for polynomial and rational
approximations.

The approximation of the data-to-QoI map [δ 7→ Eπδ

[φ]] by ReLU NNs will be developed for
observation data δ in compact subsets of RK . We immediately point out that in the (assumed)
observation noise model (1), i.e. δ = G(u) + η, the RV δ can take arbitrarily large values with
positive probability. This may be due to the unboundedness of the uncertain input u (see
for example Section 3.2.2) or due to the unboundedness of the additive noise η, e.g. additive
Gaussian noise. However, bounds on the tails of these distributions entail that the RV δ takes
values in a compact set with high probability. Specifically, in the case of a prior measure
with bounded support, the probability of data δ outside of a compact box [−r, r]K decays
double exponentially, i.e., upper bounded by C exp(−r2K/(2λmax)), where λmax is the largest
eigenvalue of the covariance matrix of the additive Gaussian observation noise and C > 0 is a
constant that does not depend on r, cf. [19, Theorem 1]. The approximation of the data-to-QoI
map by ReLU NNs will be developed on compact subsets of RK .

The structure of the section is as follows: in Section 5.1, we recapitulate notation and define
the architecture for the ReLU DNN approximations to be analyzed. The main reference here
is [26], and also [27, 32]. We remark in passing that alternative, more involved architectures
could afford better expression rate bounds; we refer to [37] and to the discussion in Section
7 ahead. Next, in Section 5.2 we show exponential convergence of polynomial and rational
approximations, with a slightly better result in the latter case. Finally, in Section 5.3, we infer
the expression rate bounds, based on holomorphy (δ 7→ Z ′(δ) and δ 7→ Z(δ) are holomorphic
on all of CK) of the data-to-QoI map in Bayesian inversion.

5.1 Definitions and Architecture of Deep ReLU NNs

We consider feed-forward deep neural networks (DNNs). These DNNs are obtained as iterated
compositions of linear transformations followed by a nonlinearity. This nonlinearity is specified
via the so-called activation function σ : R → R of the DNN. The architecture of the DNN
comprises a fixed number of hidden layers L ∈ N, numbers Nℓ ∈ N of computation nodes in
layer ℓ ∈ {0, . . . , L}, the map f : RN0 → RNL+1 is said to be realized by a feedforward neural
network, if for certain weights wℓ

i,j ∈ R, and biases bℓj ∈ R it holds for all x = (xi)
N0
i=1

z1j = σ

(
N0∑

i=1

w1
i,jxi + b1j

)
, j ∈ {1, . . . , N1} , (28)

and

zℓ+1
j = σ

(
Nℓ∑

i=1

wℓ+1
i,j zℓi + bℓ+1

j

)
, ℓ ∈ {1, . . . , L− 1}, j ∈ {1, . . . , Nℓ+1} , (29)

and finally

f(x) = (zL+1
j )

NL+1

j=1 =

(
NL∑

i=1

wL+1
i,j zLi + bL+1

j

)NL+1

j=1

. (30)

In this case n = N0 is the dimension of the NN input, and m = NL+1 is the dimension of
the output. Furthermore zℓj denotes the output of unit j in layer ℓ. The weight wℓ

i,j has the
interpretation of connecting the ith unit in layer ℓ− 1 with the jth unit in layer ℓ. We do not
distinguish between the network (which is defined through σ, the wℓ

i,j and bℓj) and the function
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f : RN0 → RNL+1 it realizes although such distinction is mathematically at times mandatory
(we refer to the discussion in [27, Definition 2.1]). The number of hidden layers L of a NN is
referred to as depth of the DNN. We shall in particular consider DNNs with the so-called ReLU
activation σ = σ1 given by x 7→ σ1(x) := max{0, x}. Let us also denote the tensor of weights
by w and of biases by b.

5.2 Polynomial and Rational Approximation

We have seen in the previous sections that the data-to-QoI map with respect to the unnor-
malized posterior density, i.e., δ 7→

∫
X′ φ(u) exp(−Φ(u; δ))π0(du) can be extended to an entire

function on CK under the assumption of additive, nondegenerate Gaussian observation noise.
Holomorphy implies fast convergence of Taylor expansions as we recall this in the next theorem.
The proof (which is based on standard arguments) is provided in Appendix A.

Theorem 5.1 Let K ∈ N, and assume that f : CK → C is holomorphic. Then, for every
κ > 1 and every r > 0, there exists Cκ,f,r > 0 such that for every n ∈ N it holds

sup
δ∈[−r,r]K

∣∣∣∣∣∣
f(δ)−

∑

‖ν‖ℓ∞≤n

∂νf(0)

ν!
δν

∣∣∣∣∣∣
≤ Cκ,f,r exp(−κn). (31)

Note that {ν ∈ NK
0 : ‖ν‖ℓ∞ ≤ n} has cardinality cn := (n+ 1)K . With respect to the number

cn of terms in the Taylor expansion, the error in (31) thus decreases exponentially, namely like

exp(−κc1/Kn ).

In the following we show two approximation results for the data-to-QoI map [δ 7→ Eπδ

[φ]].
As earlier, for every δ ∈ RK we denote

Z ′(δ) := Eπδ

[φ]Z(δ) and Z(δ) :=

∫

X′

exp(−Φ(u; δ))π0(du). (32)

It is classical, that holomorphic (but not necessarily entire) functions can be approximated
at an exponential rate with polynomial functions (see for example [25, Theorem 3.5]). As a
consequence of Corollary 4.7 we thus have the following statement.

Proposition 5.2 Suppose the setting of Theorem 2.4 and Section 4.2 (i.e. the observation
noise η in (1) is Gaussian). Let r > 0 and K ∈ N. Then there exist constants κ > 0 and
Cr > 0 (depending also on the observation noise covariance Σ) such that for every n ∈ N there
exists a polynomial pn ∈ span{yν : ‖ν‖ℓ∞ ≤ n} such that

sup
δ∈[−r,r]K

∣∣∣Eπδ

[φ]− pn(δ)
∣∣∣ ≤ Cr exp(−κn).

Using Theorem 5.1, we can improve this statement using a rational rather than a polynomial
approximation (note that, contrary to Proposition 5.2, κ in Proposition 5.3 can be arbitrarily
large).

Proposition 5.3 Suppose the setting of Theorem 2.4 and Section 4.2 (i.e. the observation
noise η in (1) is Gaussian). Let r > 0 and K ∈ N. For every κ > 0 there exists Cr,κ > 0
(depending also on the observation noise covariance Σ) and n0 ∈ N such that for all n ≥ n0

sup
δ∈[−r,r]K

∣∣∣∣∣∣∣
Eπδ

[φ]−




∑

‖ν‖ℓ∞≤n

∂νZ ′(0)

ν!
δν






∑

‖ν‖ℓ∞≤n

∂νZ(0)

ν!
δν




−1
∣∣∣∣∣∣∣
≤ Cr,κ exp(−κn).
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Proof. Recall that Eπδ

[φ] = Z ′(δ)/Z(δ), where Z ′(δ) and Z(δ) are defined in (32). By Propo-
sition 4.6 and Theorem 5.1, for every κ > 0, there exists a constant Cr,κ > 0 such that for every
n ∈ N,

sup
δ∈[−r,r]K





∣∣∣∣∣∣
Z ′(δ)−

∑

‖ν‖ℓ∞≤n

∂νZ ′(0)

ν!
δν

∣∣∣∣∣∣
+

∣∣∣∣∣∣
Z(δ)−

∑

‖ν‖ℓ∞≤n

∂νZ(0)

ν!
δν

∣∣∣∣∣∣



 ≤ Cr,κ exp(−κn).

(33)
Since Z(δ) > 0 for every δ ∈ RK , it holds that Zmin := infδ∈[−r,r]K Z(δ) > 0, where we used

that [RK ∋ δ 7→ Z(δ)] is continuous by Proposition 4.6. Thus by (33), there exists n0 ∈ N such
that for every n ≥ n0 and every δ ∈ [−r, r]K

Zmin

2
≤

∑

‖ν‖ℓ∞≤n

∂νZ(0)

ν!
δν .

Thus,
∣∣∣∣∣∣∣
Eπδ

[φ]−




∑

‖ν‖ℓ∞≤n

∂νZ ′(0)

ν!
δν






∑

‖ν‖ℓ∞≤n

∂νZ(0)

ν!
δν




−1
∣∣∣∣∣∣∣

≤
|Z ′(δ)−∑‖ν‖ℓ∞≤n

∂νZ′(0)
ν! δν |

Zmin
+

|∑‖ν‖ℓ∞≤n
∂νZ′(0)

ν! δν ||Z(δ)−∑‖ν‖ℓ∞≤n
∂νZ(0)

ν! δν |
1
2 (Zmin)2

,

which follows similarly as (26). The asserted estimate follows now by (33). ✷

5.3 Deep ReLU Approximation

The following result is an improvement of the exponential convergence rate in [26, Theorem
3.7] for the (smaller) class of entire, analytic functions. The proof is similar to the argument
in [26], being mainly based on the NN approximation results of [36]. For convenience of the
reader, we provide a proof in Appendix B.

Theorem 5.4 Let K ∈ N and assume that f : CK → C is holomorphic such that f : RK → R.
Then for all κ > 1, r > 0 there exists a constant Cf,r,κ > 0 such that for all n ∈ N there exists

a ReLU NN f̃n : [−r, r]K → R with

sup
δ∈[−r,r]K

|f(δ)− f̃n(δ)| ≤ Cf,r,κ exp(−κn).

Moreover, there exists a constant C > 0 which is independent of κ such that depth(f̃n) ≤
C(1 + n log(n)), and size(f̃n) ≤ C(1 + n)K+1 for all n ∈ N .

In the following we use again the notation

Z ′(δ) =

∫

X′

φ(u) exp(−Φ(u; δ))π0( du), Z(δ) =

∫

X′

exp(−Φ(u; δ))π0( du),

so that Eπδ

[φ] = Z ′(δ)/Z(δ). Furthermore, we define the (finite, under the made assumptions)
constants

Zmin := inf
δ∈[−r,r]K

Z(δ), Zmax := sup
δ∈[−r,r]K

Z(δ) (34a)

and
Z ′
min := inf

δ∈[−r,r]K
Z ′(δ), Z ′

max := sup
δ∈[−r,r]K

Z ′(δ). (34b)

While of independent interest, the preceding Theorem 5.4 is a key ingredient in the proof of
the following result, which is a principal result of the present paper.
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Theorem 5.5 Suppose the setting of Theorem 2.4 and Section 4.2 (in particular that the ob-
servation noise η in (1) is Gaussian). Let r > 0 and K ∈ N. Then there holds

(i) For K = 1, there exist κ > 0 (independent of r, Z and Z ′) and a constant Cκ > 0
(depending on κ, r, Z, Z ′, Σ) such that for all n ∈ N there exists a ReLU NN f̃n :
[−r, r]K → R such that

sup
δ∈[−r,r]K

∣∣∣Eπδ

[φ]− f̃n(δ)
∣∣∣ ≤ Cκ exp

(
− κ√

⌈log(Zmax/Zmin)⌉
n

)
. (35)

Furthermore, there exists a constant C > 0 (independent of Z, Z ′) such that for every
n ∈ N holds

depth(f̃n) ≤ C(1 + n log(n) + log3(n)) ,

size(f̃n) ≤ C[1 + n2(log(n) + log(⌈
√
log(Zmax/Zmin)⌉))].

(ii) For K > 1, for every κ > 0 there exists a constant Cκ > 0 (depending on κ, r, Z, Z ′, Σ)
such that for all n ∈ N there exists a ReLU NN f̃n : [−r, r]K → R such that

sup
δ∈[−r,r]K

∣∣∣Eπδ

[φ]− f̃n(δ)
∣∣∣ ≤ Cκ exp(−κn). (36)

Furthermore, there exists a positive constant C > 0 such that for every n ∈ N holds

depth(f̃n) ≤ C(1 + n3/2 log(n)), size(f̃n) ≤ C(1 + n)K+1 .

Proof. Step 1. We provide the proof for K > 1. Fix κ > 1 (arbitrarily large). Due to the
compactness of [−r, r]K and the continuity (even analyticity) of δ 7→ Z(δ) and δ 7→ Z ′(δ), we
have (cf. (34))

0 < Zmin, Zmax <∞, −∞ < Z ′
min, Z ′

max <∞.

To approximate Eπδ

[φ] as a function of δ ∈ [−r, r]K we will combine the following NNs:

(i) Z̃n : [−r, r]K → [Zmin − εZ , Zmax + εZ ]: By Proposition 4.6 and Theorem 5.4 there exists
a constant Cr,κ, C > 0 and a network Z̃n such that

sup
δ∈[−r,r]K

|Z(δ)− Z̃n(δ)| ≤ Cr,κ exp(−κn) =: εZ , (37a)

and depth(Z̃n) ≤ C(1 + n log(n)) and size(Z̃n) ≤ C(1 + n)K+1.

(ii) Z̃ ′
n : [−r, r]K → [Z ′

min − εZ′ , Z ′
max + εZ′ ]: By Proposition 4.6 and by Theorem 5.4, there

exists a constant Cr,κ, C > 0 and a network Z̃ ′
n such that

sup
δ∈[−r,r]K

|Z ′(δ)− Z̃ ′
n(δ)| ≤ Cr,κ exp(−κn) =: εZ′ , (37b)

and depth(Z̃ ′
n) ≤ C(1+n log(n)) and size(Z̃ ′

n) ≤ C(1+n)K+1 (without loss of generality
we use here the same symbol for the constant Cr,κ as in (i)).

(iii) d̃n : [Zmin/2, 2Zmax] → [(2Zmax)
−1 − εd, (Zmin/2)

−1 + εd]: The map x 7→ 1/x is analytic
on C\{0}. Hence, by [26, Theorem 3.7] there exists κ0, C > 0 and a NN d̃n such that

|x−1 − d̃n(x)| ≤ exp(−κ0n) =: εd ∀x ∈ [Zmin/2, 2Zmax], (37c)

with size(d̃n) ≤ C(1 + n)2 and depth(d̃n) ≤ C(1 + n log(n)).
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(iv) m̃n : [Z ′
min/2, 2Z

′
max] × [(4Zmax)

−1, (Zmin/4)
−1] → R: by [32, Proposition 3.1] (this is a

variation of the original result from [36]), there exists κ0 > 0 and a ReLU NN m̃n such
that

|xy − m̃n(x, y)| ≤ exp(−κ0n) ∀(x, y) ∈ [̃Z ′
min/2, 2Z

′
max]× [(4Zmax)

−1, (Zmin/4)
−1]

(without loss of generality we use here the same symbol for the constant κ0 as in (iii)).
Furthermore, there is a constant C > 0 such that for every n ∈ N holds size(m̃n) ≤ Cn
and depth(m̃n) ≤ Cn.

Now consider
f̃n(δ) := m̃⌈n3/2⌉(Z̃

′
n(δ), d̃⌈n3/2⌉(Z̃n(δ))). (38)

As a consequence of (37), the terms εZ , ε
′
Z and εd tend to 0 as n → ∞. Hence there exists

n0 ∈ N (depending on κ, κ0, Z and Z ′), such that for the composition of networks in (38), the
output of each network belongs to the domain of the network it is composed with.

We now bound the approximation error. For every δ ∈ [−r, r]K and for all n ≥ n0

|Eπδ

[φ]− f̃n(δ)| ≤ |m̃⌈n3/2⌉(Z̃
′
n(δ), d̃⌈n3/2⌉(Z̃n(δ)))− Z̃ ′

n(δ)d̃⌈n3/2⌉(Z̃n(δ))|

+ |d̃⌈n3/2⌉(Z̃n(δ))− Z̃n(δ)
−1||Z̃ ′

n(δ)|+
∣∣∣∣∣
Z̃ ′
n(δ)

Z̃n(δ)
− Z ′

n(δ)

Zn(δ)

∣∣∣∣∣ ,
(39)

which implies

|Eπδ

[φ]− f̃n(δ)| ≤ exp(−κ0⌈n3/2⌉) + exp(−κ0⌈n3/2⌉)|Z̃ ′
n(δ)|+

∣∣∣∣∣
Z̃ ′
n(δ)

Z̃n(δ)
− Z ′

n(δ)

Zn(δ)

∣∣∣∣∣ .

We have
|Z̃ ′

n(δ)| ≤ |Z ′(δ)− Z̃ ′
n(δ)|+ |Z ′(δ)| ≤ Cr,κ exp(−κn) + Z ′

max.

Hence

exp(−κ0⌈n3/2⌉) + exp(−κ0⌈n3/2⌉)|Z̃n(δ)| ≤ (1 + Cr,κ + Zmax) exp(−κ0⌈n3/2⌉)
≤ (1 + Cr,κ + Zmax) exp(−κn),

as long as ⌈n3/2⌉κ0 ≥ κn, which is ensured by the conditionn ≥ (κ/κ0)
2. Next, using that for

arbitrary a, b, c, d ∈ R it holds |a/b− c/d| = |ad− cb|/|bd| and |ad− cb| = |(a− c)d+(d− b)c| ≤
|a− c||d|+ |d− b||c|, we find
∣∣∣∣∣
Z̃ ′
n(δ)

Z̃n(δ)
− Z ′

n(δ)

Zn(δ)

∣∣∣∣∣ ≤
Z̃max|Z̃ ′

n(δ)− Z ′(δ)|+ Z ′
max|Z̃n(δ)− Z(δ)|

Z̃minZmin

≤ Cr,κ exp(−κn)
Z ′
max + Z̃max

Z̃minZmin

.

(40)
In all

|Eπδ

[φ]− f̃n(δ)| ≤
(
1 + Cr,κ + Zmax + Cr,κ

Z̃max + Z ′
max

ZminZ̃min

)
exp(−κn),

provided that n ≥ max{n0, (κ/κ0)
2}. In the complementary case n < max{n0, (κ/κ0)

2}, we set
f̃n := 0 so that

|Eπδ

[φ]− f̃n(δ)| ≤
supδ∈[−r,r]K |Eπδ

[φ]|
exp(−κmax{n0, (κ/κ0)2})

exp(−κn).

Hence, with

Cκ := max

{
supδ∈[−r,r]K |Eπδ

[φ]|
exp(−κmax{n0, (κ/κ0)2})

, 1 + Cr,κ + Zmax + Cr,κ
Z̃max + Z ′

max

ZminZ̃min

}
(41)
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we have |Eπδ

[φ]− f̃n(δ)| ≤ Cκ exp(−κn) for all n ∈ N.
Next we bound the size of the network. Since K ≥ 2, there exists a constant such that it

holds for all n ∈ N

size(f̃n) ≤ C(size(Z̃n) + size(Z̃ ′
n) + size(m̃⌈n3/2⌉) + size(d̃⌈n3/2⌉))

≤ C
(
(1 + n)K+1 + (1 + n)K+1 + (1 + n3/2)2 + n3/2

)

≤ C(1 + n)K+1.

Here, the positive constant C is independent also of κ. Similarly, one verifies the claimed bound
on the depth of f̃n. This completes the proof for K ≥ 2.

For K = 1, the proof will differ in the approximation of the map [x 7→ 1/x]. By Lemma C.1,
there exists a constant C > 0, κ̄ > 0 (C, κ are independent of Zmin, Zmax) such that for every
n ∈ N there exists a ReLU NN p̃n such that

sup
x∈[Zmin/2,2Zmax]

|x−1 − p̃n(x)|

≤ C
⌈log(Zmax/Zmin)⌉

Zmin

(
1 +

1

Zmax − Zmin

)
exp

(
− κ̄n√

⌈log(Zmax/Zmin)⌉

)

=: C̃ exp

(
− κ̄n√

⌈log(Zmax/Zmin)⌉

)
.

Moreover, there exists a constant C̄ > 0 such that depth(p̃n) ≤ C̄(1 + n log(n) + log3(n)) and
such that size(p̃n) ≤ C̄[1 + n2(log(n) + log(

√
⌈log(Zmax/Zmin)⌉))] . In this case we consider

f̃n(δ) := m̃n(Z̃
′
n(δ), p̃n(Z̃n(δ))). (42)

By a version of (39) (obtained by replacing d̃⌈n3/2⌉ by p̃n and m̃⌈n3/2⌉ by m̃n) and (40), there
exists a constant C (independent of n) such that

|Eπδ

[φ]− f̃n(δ)| ≤ C exp

(
− min{κ, κ0, κ̄}n√

⌈log(Zmax/Zmin)⌉

)

Finally, we bound the size of the network. There exists a constant C > 0 such that it holds

size(f̃n) ≤ C(size(Z̃n) + size(Z̃ ′
n) + size(m̃⌈n⌉) + size(p̃⌈n⌉))

≤ C
(
(1 + n)2 + (1 + n)2 + (1 + n)2 + 1 + n2(log(n) + log(

√
⌈log(Zmax/Zmin)⌉))

)

≤ C(1 + n2(log(n) + log(
√
⌈log(Zmax/Zmin)⌉))).

Similarly, one verifies the claimed bound on the depth of f̃n. ✷

The appearance of the exponent 3/2 in the depth of ReLU NN in Theorem 5.5 (ii) is an
artifact of the proof technique. In (38), n3/2 may be replaced by nϕ(n) for any strictly increasing
function ϕ : [1,∞) → [1,∞) which tends to infinity and satisfies ϕ(n) = O(n2) as n → ∞.
Possible choices include ϕ(n) = nε for 0 < ε ≪ 1 or ϕ(n) = log(n) + 1 (in Theorem 5.5 (ii)
ϕ(n) = n1/2 was used). This would result in depth(f̃) ≤ C(1 + nϕ(n) log(n)), but would also
result in a potentially larger constant Cκ with (κ/κ0)

2 replaced by ϕ−1(κ/κ0) in (41).

Remark 5.6 (Other activation functions) Our proofs hinge on the fact that ReLU net-
works admit an efficient approximate multiplication of two numbers. This implies efficient
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approximation of polynomials, and subsequently exponential convergence rates for the approx-
imation of the (analytic) data-to-QoI map by ReLU networks. In case σ : R → R is a C3

activation function for which there exists x ∈ R such that σ′′(x) 6= 0 (i.e. σ is non-affine), the
multiplication of two numbers can be expressed to arbitrary accuracy with a finite size (inde-
pendent of accuracy) network, see, e.g., [32, Sec. 3.3]. As a consequence, also such activation
functions can be shown to yield exponential convergence rates for the approximation of the
data-to-QoI map with deep networks.

6 Numerical experiments

In this section, we study numerically the accuracy versus the size of NN approximations of
data-to-QoI maps. The proof of the approximation result Theorem 5.5 is constructive. We
construct deep ReLU NNs as suggested in [11] we first construct NNs that approximate Cheby-
shev polynomials, which subsequently yield approximations to data-to-QoI maps. The whole
construction is explicit and deterministic. It bypasses the use of randomized optimization al-
gorithms, and specifies synthetic training data δ to be used. I.e., this data is chosen to be
evaluations or approximate evluations of the data-to-QoI map on a tensor-product, Gauss–
Lobatto grid (suitably sparsified experimental designs in the case of a large number of sensors
could also be envisioned, but the analysis of sparsity in observations is not pursued here).

Therefore, the ReLU NN is constructed based on a Lagrange interpolation polynomial in
spectral collocation points in “data space” being [−1, 1]K . The Lagrange basis may be changed
to a Chebyshev basis, which can be realized by a linear map using the inverse discrete Fourier
transform, see [11]. The Chebyshev polynomials are approximated by ReLU NNs which are
constructed based on the doubling formular of Chebyshev polynomials and the product of
scalars is approximately realized by ReLU NNs, see [32, Figure 1] for the architecture of a
ReLU NN that approximtates x 7→ x2, which is then used to emulate the product of two scalars
using the polarization identity.

The data-to-QoI map under consideration here is the forward operator S defined in (17)
composed with a linear functional. Specifically, let us recall (16) in the univariate case, i.e.,

− d

dx

(
u(x)

d

dx
q(x)

)
= f(x) in (−1, 1) and q(−1) = q(1) = 0, (43)

where u is distributed according to the prior π0. The prior π0 is chosen to be induced by
an affine-parametric representation of u, i.e., u(x) = ū +

∑s
j=1 yjψj , where yj , j = 1, . . . , s

are uniformly distributed on [−1/2, 1/2]s. Here, we choose s = 1, K = 1, ū = 1.5, ψj(x) =

2 cos(πx). The observation functional O is chosen to be v 7→ O(v) =
∫ 0

−1
vdx and the QoI φ is

chosen to be v 7→ φ(v) =
∫ 1

0
vdx. The right hand side f is chosen to be f = 1. The PDE (43)

is discretized by the Finite Element Method using first order hat functions with 65 degrees of
freedom. The integrals in (15) are well approximated by a Gauss–Legendre quadrature with 100
nodes which thus serves as a reference value. The additive Gaussian observation noise η in (9)
is assumed to have variance σ2 > 0. Subject to suitable data scaling, we may approximate the
data-to-QoI map on the data interval [−1, 1].

We use two approaches to construct a NN. In Approach 1 we use as training data direct
evaluations of the data-to-QoI map and construct the NN as sketched above (see also [11]
for further details). In Approach 2, we use training data from the mappings δ 7→ Z ′(δ) and
δ 7→ Z(δ), which are both entire functions and construct NNs that approximate these. A NN
that approximates the data-to-QoI map in the Approach 2 results by the composition with a
ReLU NN that approximates the product of two scalar and another NN that approximates the
reciprocal of a scalar. Approach 2 corresponds to the construction in the proof of Theorem 5.5
in the case K = 1.
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Figure 1: σ = 0.4

In Figures 1, 2, and 3, for our constructed ReLU NNs f̃n, we plot
√
size(f̃n) against the

achieved relative error

sup
δ∈[−1,1]

|Eπδ

[φ]− f̃n(δ)|
|Eπδ [φ]|

on the compact interval [−1, 1] of the data-to-QoI approximation. The supremum over δ ∈
[−1, 1] is approximated by the maximum of evaluations of the difference of the NN and the
data-to-QoI map on an equispaced grid of [−1, 1] with 100 nodes. From the numerical tests it
is apparent that the theoretical bounds on the accuracy and on the size of the ReLU NN to
approximate data-to-QoI maps in Theorem 5.5 can be realized by the construction that was
used and which is proposed and analyzed in detail in [11]. It seems that the size of the NN
in Approach 2 is significantly larger compared to Approach 1. The reason for this is, in our
view, that the Gaussian density of the additive noise requires accurate numerical realization
of the entire functions δ 7→ Z ′(δ) and δ 7→ Z(δ) over several orders of magnitude. There, in
particular, the NN approximation to Z must be strictly positive. Note that δ 7→ Z(δ) decays
double exponentially with respect to larger values of |δ|. This effect is the more significant the
smaller σ is. The holomorphic function δ 7→ Z ′(δ)/Z(δ) has smaller variation and may be easier
to approximate accurately.

7 Conclusions and Extensions

We established the holomorphy of the data-to-(Bayesian) prediction (aka. “data-to-QoI”) map
for a finite-dimensional quantity of interest in PDE-constrained Bayesian inverse problems.
It is applicable to general well-posed PDEs with uncertain input from function spaces, for
observation data δ subject to additive Gaussian observation noise η. Based on the holomorphy
of this map, we inferred exponential bounds on the expression rate of deep ReLU NNs for these
maps.

We analyzed here in detail only the expression by deep ReLU NNs. As is well-known, this
implies also exponential expression rates for DNNs with more regular activation functions as
pointed out in Rmk. 5.6.

We also showed that for more general, non-Gaussian observation noise models, the BIP is
still well-posed but holomorphy of the data-to-QoI map can, in general, not be expected. In
the particular case of finite-dimensional uncertain input and finite-dimensional observables, and
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Figure 2: σ = 0.5
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Figure 3: σ = 0.6
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for observation noise with Lipschitz continuous density, we showed that the data-to-QoI map is
likewise Lipschitz continuous. In this case, exponential convergence rates can still be realized by
DNNs with more elaborate architectures. Let us give here only one illustrative result indicating
possible gains afforded by admitting DNN architectures with activation functions which are
more general than ReLU.

Proposition 7.1 In the setting of Theorem 2.1, and for additive observation noise η ∈ RK in
(9) with law admitting a density ρ with respect to λK which is Lipschitz, ρ ∈ Lip(RK), for every
0 < r < ∞, there exist constants c1,K , C > 0 such that, for every W ∈ N, there exists a DNN

f̃W,r : [−r, r]K → R with both ReLU and sinusoidal activation functions and with at most W
nonzero weights such that

sup
δ∈[−r,r]K

∣∣∣Eπδ

[φ]− f̃W,r(δ)
∣∣∣ ≤ C exp

(
−c1,K

√
W
)
.

Proof. The assumptions imply with Proposition 4.2 that the data-to-QoI map [δ 7→ Eπδ

[φ]] ∈
Lip([−r, r]K). The assertion follows from [37, Theorem 5.1] by scaling and translation from the
unit box [0, 1]K (which was studied in [37]) to [−r, r]K . ✷

We note that the proof of [37, Theorem 5.1] allows to infer information about the architecture
of the DNN f̃ which appears in Proposition 7.1. In particular, the constant c1,K will, in general,
be upper bounded by c/K, where K is the (finite) dimension of the data space and and c > 0
a generic constant independent of K, cf. [37, p. 7]. Furthermore, analyticity of the data-
to-QoI map f : Br(0) → R is not required for Proposition 7.1 to hold. However, the very
accurate and stable evaluation of the sinusoidal activations is crucial for the expression rate in
Proposition 7.1 to materialize. As all DNNs are operated in finite float point precision, often
with rather short mantissas (e.g. when rather strong quantization of NN weights is employed),
the scope of Proposition 7.1 could be limited, in practice. Nevertheless, the result does cover,
for example, the finite dimensional setting in Theorem 2.1, where the law Q0 admits merely a
Lipschitz density w.r. to the Lebesgue measure λK on the space of observation data δ. We also
mention [33] for an alternative construction of DNNs achieving similar expressive power, with
combinations of floor and ReLU activations, but without invoking sinusoidal activations.

Remark 7.2 Improved approximation rates when admitting a wider range of activation func-
tions in an otherwise fixed DNN architecture is not surprising. See, e.g., [28, Theorem 7.1].
In practice, however, issues of DNN stability in finite precision arithmetic, in particular under
quantization, of DNNs with these rather intricate activation functions arise. The present, expo-
nential expression rate bounds are constructive and stable in that the DNN weight assignment
depends continuously on the data.

In the present paper, we analyzed the rates of expressive power of deep ReLU NN surrogates
for data-to-QoI maps for Bayesian inversion of well-posed PDEs subject to uncertain input data
from function spaces. The present analysis substantiates recent numerical evidence (e.g. in [23]
and the references there) that even for rather complex PDE models of physical systems, with
possible rough/ singular solutions, rather small DNNs can provide highly accurate surrogates for
input-to-observable maps in forward UQ and for data-to-QoI maps in Bayesian PDE inversion.
The mathematical convergence rate bounds in the present paper are a stepping stone to the
analysis of the generalization error, and to the mathematical analysis and the design of multi-
level training algorithms, which we shall provide in [12].

The constants in the expressive power estimates depend on the covariance Σ of the additive
Gaussian observation noise and on the dimension K of the data space. A detailed analysis of
the effect when Σ → 0 on the expressive power of ReLU NNs to approximate data-to-QoI maps
will be developed elsewhere.
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A Proof of Theorem 5.1

Fix γ > 1. We provide the standard bound on the Taylor coefficients and assume first that
K = 1, i.e. f : C → C. Cauchy’s integral formula gives for every j ∈ N0

∣∣∣∣
f (j)(0)

j!

∣∣∣∣ =
∣∣∣∣∣
1

2πi

∫

|ξ|=γ

f(ξ)

ξj+1
dξ

∣∣∣∣∣ ≤
sup|ξ|=γ |f(ξ)|

γj
, (44)

where i =
√
−1 ∈ C denotes a complex root of −1. Here we used that f is holomorphic on C

which in particular contains the ball of radius γ around 0.
If K > 1, we repeatedly apply the estimate (44) in each variable to obtain for every ν ∈ NK

0

∣∣∣∣
∂νf(0)

ν!

∣∣∣∣ ≤
sup|ξi|=γ |f(ξ1, . . . , ξK)|

γ|ν|
. (45)

For ν ∈ NK
0 denote tν := ∂νf(0)/ν!. Since f is holomorphic it admits a convergent multivariate

Taylor expansion

f(δ) =
∑

ν∈Nk
0

tνδ
ν ∀δ ∈ CK . (46)

We point out that with C̃f,γ := sup|ξ|=γ |f(ξ1, . . . , ξK)|, (45) shows |tν | ≤ C̃f,γγ
−|ν| and there-

fore
∑

ν∈NK
0

|tν | ≤ C̃f,γ

∑

ν∈NK
0

γ−|ν| = C̃f,γ

K∏

i=1



∑

j∈N0

γ−j


 <∞. (47)

Thus the order of summation in (46) does not matter, as the series is absolutely convergent for
all |δ| < γ.

Now let us estimate the error of the truncated Taylor expansion. Fix n ∈ N, r > 0 and
γ > r. Then

sup
δ∈[−r,r]K

∥∥∥∥∥∥
f(δ)−

∑

‖ν‖ℓ∞≤n

∂νf(0)

ν!
δν

∥∥∥∥∥∥
≤ C̃f,γ

∑

ν∈NK
0 \{0,...,n}K

(γ
r

)−|ν|

.

Next,

sup
δ∈[−r,r]K

∥∥∥∥∥∥
f(δ)−

∑

‖ν‖ℓ∞≤n

∂νf(0)

ν!
δν

∥∥∥∥∥∥
≤ C̃f,γ

∑

‖µ‖ℓ∞=n

∑

ν∈NK
0

(γ
r

)−|µ|−|ν|

≤ C̃f,γ

(γ
r

)−n

|{µ ∈ NK
0 : ‖µ‖ℓ∞ = n}|

∑

ν∈NK
0

(γ
r

)−|ν|

≤ C̃f,γ

(γ
r

)−n

(1 + n)K
∑

ν∈NK
0

(γ
r

)−|ν|

≤ C̃f,γ,r

(γ
r

)−n

(1 + n)K (48)

where C̃f,γ,r := C̃f,γ

∑
ν∈Nk

0
(γ/r)−|ν| is finite by the same argument as in (47).

For a given κ > 1 we can now choose γ > max{κ, r} so large that

(γ
r

)−n

(1 + n)K ≤ exp(−κn) ∀n ∈ N. (49)

The statement now follows by (48) and (49), which completes the proof of Theorem 5.1.
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B Proof of Theorem 5.4

We prove the theorem for the case r = 1. The general case r > 0 follows by setting fr(δ) :=
f(rδ), and then approximating fr with a neural network f̃r,n on [−1, 1]K . Then f̃n(δ) :=

f̃r,n(δ/r) is a suitable network approximating f , since for every δ ∈ [−r, r]K it holds f(δ) −
f̃n(δ) = fr(δ/r)− f̃r,n(δ/r). Furthermore we assume for now K ≥ 2, and discuss the case K = 1
in the last step.

According to [32, Proposition 3.3], for every m ∈ N and every γ > 0 there exists a network∏̃
m,γ : [−2, 2]m → R of size C(1 +m log(m/γ)) and depth C(1 + log(m) log(m/γ)) such that

sup
|xi|≤2

∣∣∣∣∣∣

m∏

j=1

xj −
∏̃

m,γ
(x1, . . . , xm)

∣∣∣∣∣∣
≤ γ. (50)

Step 1. Using (50), for every i ∈ N0 and γ > 0 we define pi,γ : [−1, 1] → R by pi,γ(x) :=∏̃
i,γ(x, . . . , x). Then, there exists a constant C > 0 such that for every i ∈ N0 and γ > 0 holds

size(pi,γ) ≤ C(1 + i log(i/γ)) and

sup
|x|≤1

|pi,γ(x)− xi| ≤ γ.

Fix n ∈ N, κ > 1 and set g(δ) :=
∑

‖ν‖ℓ∞≤n tνδ
ν , where tν = ∂νf(0)/ν. We have the

bound (31), i.e. sup|δ|≤r |f(δ) − g(δ)| ≤ Cf,r,κ exp(−κn). We now construct a neural network
approximation g̃ to g. We define

g̃(δ) :=
∑

‖ν‖ℓ∞≤n

tν
∏̃

K,γ
(pν1,γ(δ1), . . . , pνK ,γ(δK)), (51)

and fix here and throughout the rest of this proof

γ := exp(−κn) ≤ 1.

Since each pνj ,γ(δj) is the realization of a ReLU network, also g̃ is the realization of ReLU
network.

Step 2. We bound the error supδ∈[−1,1]K |g(δ)− g̃(δ)|. First, note that for any δ ∈ [−1, 1]K

holds |∏K
j=1 pνj ,γ(δj)| ≤ 2K since |pνj ,γ(δj)− δ

νj

j | ≤ γ ≤ 1 for all j. Thus for any δ ∈ [−1, 1]K

by (50)

|g(δ)− g̃(δ)| ≤
∑

‖ν‖ℓ∞≤n

|tν |

∣∣∣∣∣∣

K∏

j=1

δ
νj

j −
∏̃

K,γ
(pν1,γ(δ1), . . . , pνK ,γ(δK))

∣∣∣∣∣∣

≤
∑

‖ν‖ℓ∞≤n

|tν |


γ +

∣∣∣∣∣∣

K∏

j=1

δ
νj

j −
K∏

j=1

pνj ,γ(δj)

∣∣∣∣∣∣




≤
∑

‖ν‖ℓ∞≤n

|tν |


γ +

K∑

i=1

∣∣∣∣∣∣

i−1∏

j=1

δ
νj

j

∣∣∣∣∣∣
|δνi

i − pνi,γ(δi)|

∣∣∣∣∣∣

K∏

j=i+1

pνj ,γ(δj)

∣∣∣∣∣∣




≤
∑

‖ν‖ℓ∞≤n

|tν |(γ +K2Kγ)| ≤ γ(1 +K2K)
∑

ν∈NN
0

|tν |. (52)

Since f is an entire function, it holds
∑

ν∈NK
0
|tν | < ∞. This can be shown using bounds

on tν as for instance provided in the proof of Theorem 5.1 (cf. (45)). Hence we have shown
supδ∈[−1,1]K |g(δ)− g̃(δ)| ≤ Cγ = C exp(−κn).
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Step 3. We estimate the size and depth of (one realization of) the network g̃.
Whereas it is easy to see that g̃ is the realization of a neural network, there are different ways

to construct such a network (i.e. having different network architecture). In order to provide
one, we first consider a network F : RK → RKn which takes as input δ ∈ RK and computes in
parallel the Kn dimensional output (pi,γ(δj))i=1,...,n;j=1,...,K . For each i = 1, . . . , n, as stated
above,

size(pi,γ) ≤ C(1 + i log(i/γ)), depth(pi,γ) ≤ C(1 + log(i) log(i/γ)).

Concatenating pi,γ with O(log(n) log(n/γ)−log(i) log(i/γ)) times the one layer identity network
x = σ(x)− σ(−x) (where σ(x) = max{0, x} is the ReLU), we find that F can be realized by a
network of size CKn(1 + n log(n/γ)) and depth C(1 + log(n) log(n/γ)). Using γ = exp(−κn)
we get

size(F ) ≤ CKn(1 + n log(n/γ)) ≤ C(1 + n3),

depth(F ) ≤ C(1 + log(n) log(n/γ)) ≤ C(1 + n log(n)),

for a constant C depending on K and κ.
Next, we concatenate the NN F with a NN G expressing g̃ in (51) given the output

(pi,γ(δj))i=1,...,n;j=1,...,K of F . By (51), the size of this second part of the network can be

bounded by (n+1)Ksize(
∏̃

K,γ)+ (n+1)K , where the last (n+1)K stems from the summation

over the set {ν ∈ NK
0 : ‖ν‖ℓ∞ ≤ n} in (51), which has cardinality (1 + n)K . Hence (since

γ = exp(−κn))

size(G) ≤ (n+1)Ksize(
∏̃

K,γ
) + (n+1)K ≤ C(1+K log(K/γ))(n+1)K ≤ C̃(n+1)K+1 (53)

for constants C, C̃ depending on K and κ. For the depth of G we obtain 1 + depth(
∏̃

K,γ) ≤
C(1 + log(K) log(K/γ)) ≤ C̃(n+ 1) as an upper bound. In total

size(g̃) = size(G ◦ F ) ≤ C(n+ 1)K+1 + n3 ≤ C(n+ 1)K+1 (54)

is an upper bound of the complete network G ◦ F : RK → R realizing g̃ (here we used that
K ≥ 2). Together with the previous two steps we arrive at

sup
δ∈[−1,1]K

|f(δ)− g̃(δ)| ≤ sup
|δ|≤1

|f(δ)− g(δ)|+ sup
|δ|≤1

|g(δ)− g̃(δ)| ≤ C exp(−κn) .

Finally, depth(g̃) ≤ 1 + depth(F ) + depth(G) ≤ C(1 + n log(n)).
Step 4. We show the theorem in case K = 1. Fix again n ∈ N, κ > 0 and for δ ∈ [−1, 1]

set g(δ) =
∑n

j=0 tjδ
j where tj = g(j)(0)/j!. By Theorem 5.1 there exists Cκ,f,1 such that

sup|δ|≤1 |f(δ)− g(δ)| ≤ Cκ,f,1 exp(−κn).
Now we approximate g by a neural network f̃n up to the error γ := exp(−κn). First, since

f : C → C is an entire function, we have C0 :=
∑

j∈N0
|tj | < ∞. By [25, Proposition 4.2],

there exists a neural network f̃n : [−1, 1] → R such that sup|δ|≤1 |g(δ)− f̃n(δ)| ≤ γ, size(f̃n) ≤
C(1 + n log(C0/γ) + n log(n)) and depth(f̃n) ≤ C((1 + log(n)) log(C0/δ) + log(n)3) with C
independent of n and γ. With γ = exp(−κn) there exists a constant C > 0 such that for every
n ∈ N holds size(f̃n) ≤ C(1 + n2) and depth(f̃n) ≤ C(1 + n log(n)). This completes the proof
of Theorem 5.4. ✷

C ReLU Neural Network Approximation of x 7→ 1/x

The approximation of rational functions by ReLU NNs is studied in [35]. In the particu-
lar approximation of the map [x 7→ 1/x], we apply a different proof technique. We first

26



construct a sequence of certain variable degree, free-knot continuous splines with exponen-
tial convergence rate bounds. We re-express these spline approximations subsequently by
a corresponding sequence of deep ReLU NNs, with exponential error bounds. The follow-
ing lemma should be compared to [35, Lemma 3.5] in the approximation of the mapping
[x 7→ 1/x] on an interval [a, 1] for 0 < a ≤ 1/2, where possibly a is close to zero. Specif-
ically, to achieve an accuracy 0 < ε < 1 required in [35, Lemma 3.5]1 a ReLU NN with
size O(⌈log(1/a)⌉4⌈log(1/ε)⌉3). In the following lemma, we construct a ReLU NN with size
O(⌈log(1/a)⌉[⌈log(1/ε)⌉2+⌈log(1/a)⌉2][1 + log(⌈log(1/a)⌉) + log(⌈log(1/ε)⌉)]) that achieves an
accuracy 0 < ε < 1.

Lemma C.1 Let 0 < a < b < ∞. There exists κ > 0 and constants C,C1 > 0 that are
independent of a, b such that for every n ∈ N, there exists a ReLU NN f̃n such that

sup
x∈[a,b]

∣∣∣∣
1

x
− f̃n(x)

∣∣∣∣ ≤ C
⌈log(b/a)⌉

a

(
1 +

1

b− a

)
exp

(
− κ√

⌈log(b/a)⌉
n

)
.

Furthermore, it holds that depth(f̃n) ≤ C1(1 + n log(n) + log3(n)) and size(f̃n) ≤ C1[1 +
n2(log(n) + log(

√
⌈log(b/a)⌉))]

Proof: The proof is structured in two steps.
In the first step, we construct a polynomial spline approximation and in the second step,

we apply approximation error bounds of ReLU NNs for splines, see [25].

The interval J := [a, b] is decomposed into J =
⋃L

i=1 Ji, where Ji = [a2i−1, a2i], i =
1, . . . , L − 1, and JL = [a2L−1, b] for L = ⌈log2(b/a)⌉. Note that dist(0, Ji)/|Ji| = 1, i =
1, . . . , L− 1, and dist(0, JL)/|JL| ≥ 1.

Let i = 1, . . . , L − 1 be arbitrary. Let Fi : Ji 7→ [−1, 1] be the unique affine bijection
with affine inverse F−1

i : [−1, 1] 7→ Ji. Specifically, Fi(x) = x/(a2i−2) − 3 and F−1
i (x) =

a(2i−2x+ 3 · 2i−2). Note that the zero of F−1
i is at x = −3 and neither depends on i nor on a.

Thus, the map [z 7→ 1/F−1
i (z)] is holomorphic on the ellipse E̺ = { z+z−1

2 : z ∈ C, |z| ≤ ̺} for

any ̺ ∈ (1, ̺0) with ̺0 := 3+2
√
2. It is easy to see that |F−1

i (z)| ≥ a2i−2(3− ̺+̺−1

2 ) for every
z ∈ E̺. By [26, Theorem 3.5] for every 0 < β < log(̺) < log(3) there exists a constant C > 0
that neither depends on a, b nor on i such that for every p ∈ N,

sup
x∈[−1,1]

∣∣∣∣
1

F−1
i (x)

− P i
p(x)

∣∣∣∣ ≤ C
1

a2i−2(3− ̺)
exp(−βp), i = 1, . . . , L− 1, (55)

where P i
p is the pth order Legendre expansion of the mapping [x 7→ 1/(F−1

i (x))]; we also used

that ̺ > (̺ + ̺−1)/2. Denote by P̄ i
p the Lagrange interpolant of the mapping [[−1, 1] ∋ x 7→

1/(F−1
i (x))] using Gauss–Lobatto interpolation points. In particular, P̄ i

p(−1) = 1/(F−1
i (−1))

and P̄ i
p(1) = 1/(F−1

i (1)). Let us denote this Lagrange interpolation operator by Ip. By [4,
Equation (1.14)], the Lebesgue constant of the first p + 1 Gauss–Lobatto points in [−1, 1]
satisfies the bound (suboptimal, see [34], but sufficient for our purposes),

∀p ≥ 1, ∀f ∈ C0([−1, 1]) : ‖Ipf‖C0([−1,1]) ≤ 5(p+ 1)2 log(p+ 1)‖f‖C0([−1,1]). (56)

Since Ip(P
i
p) = P i

p, the estimate of the Lebesgue constant in (56) implies with (55) for every
i = 1, . . . , L− 1

sup
x∈[−1,1]

∣∣∣∣
1

F−1
i (x)

− P̄ i
p(x)

∣∣∣∣ ≤ sup
x∈[−1,1]

|P̄ i
p(x)− P i

p(x)|+ sup
x∈[−1,1]

∣∣∣∣
1

F−1
i (x)

− P i
p(x)

∣∣∣∣

≤ C
5(p+ 2)2 log(p+ 1)

a2i−2(3− ̺)
exp(−βp).

(57)

1The words “size” and “depth” in the statement of [35, Lemma 3.5] should be interchanged.
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The case i = L follows similarly. Define the spline interpolant Ip,L : [a, b] 7→ R by Ip,L(x) :=
P̄ i
p(Fi(x)), x ∈ Ji, i = 1, . . . , L. Note that Ip,L is continuous and, when restricted to Ji, is a

polynomial of degree p and has in total (p+ 1)L degrees of freedom. By the estimate (57), for
every 0 < β < log(3) there exists a constant C > 0 that neither depends on a nor on b such
that for every p ∈ N

sup
x∈[a,b]

∣∣∣∣
1

x
− Ip,L(x)

∣∣∣∣ ≤ max
i=1,...,L

sup
x∈[−1,1]

∣∣∣∣
1

F−1
i (x)

− P̄ i
p(x)

∣∣∣∣ ≤
C

a
exp(−βp). (58)

In the second step, we approximate the continuous piecewise polynomial Ip,L by a ReLU NN.
We shall bound theW 1,1([a, b])-norm of Ip,L. By the Markov inequality, cf. [14, Equation (1.16)
and p. 736], for every polynomial g of degree p,

sup
x∈Ji

|g′(x)| ≤ 4ep2

|Ji|
sup
x∈Ji

|g(x)|.

Thus, by the upper bound on the Lebesgue constant of the Gauss–Lobatto points in (56)

‖Ip,L‖W 1,1([a,b]) ≤
L∑

i=1

|Ji| sup
x∈Ji

|(Ip,L)′(x)|

≤ 4ep2
L∑

i=1

sup
x∈Ji

|P̄ i
p(x)| ≤ 20ep2(p+ 2)2 log(p+ 1)

⌈log(b/a)⌉
a

(59)

Continuous polynomial splines may be approximated by ReLU NNs due to [25, Proposition 5.1].
Specifically, by [25, Proposition 5.1] and by (59), there exists κ > 0 and constants, C,C1 > 0
(κ,C,C1 are independent of a, b) such that for every n ∈ N, there exists a ReLU NN f̃n such
that

‖Ip,L − f̃n‖W 1,1([a,b]) ≤
C⌈log(b/a)⌉

a
exp

(
− κn√

⌈log(b/a)⌉

)
. (60)

Moreover, depth(f̃n) ≤ C1(1 + p log(p) + n log(p) + log3(p)) and size(f̃n) ≤ C1(⌈log(b/a)⌉p2 +
n
√
⌈log(b/a)⌉p log(p)). We recall that by the Sobolev embedding, cf. [3, Theorems 8.6 and 8.8],

there exists a constant C > 0 (independent of a, b) such that for every g ∈W 1,1([a, b]),

‖g‖L∞([a,b]) ≤ C

(
1 +

1

b− a

)
‖g‖W 1,1([a,b]). (61)

The asserted error estimate of this lemma follows by (58) and by (60) and by (61) using

the triangle inequality, where we choose p = ⌈κn/(β
√
⌈log(b/a)⌉)⌉. Thus, by this choice,

depth(f̃n) ≤ C1(1 + n log(n) + log3(n)) and size(f̃n) ≤ C1[1 + n2(log(n) + log(
√
⌈log(b/a)⌉))].

✷
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