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Abstract

Phase retrieval refers to the problem of recovering some signal (which is often modelled as an element
of a Hilbert space) from phaseless measurements. It has been shown that in the deterministic setting
phase retrieval from frame coefficients is always unstable in infinite-dimensional Hilbert spaces [7]
and possibly severely ill-conditioned in finite-dimensional Hilbert spaces [7].

Recently, it has also been shown that phase retrieval from measurements induced by the Gabor
transform with Gaussian window function is stable under a more relaxed semi-global phase recovery
regime based on atoll functions [1].

In finite dimensions, we present first evidence that this semi-global reconstruction regime allows
one to do phase retrieval from measurements of bandlimited signals induced by the discrete Gabor
transform in such a way that the corresponding stability constant only scales like a low order
polynomial in the space dimension. To this end, we utilise reconstruction formulae which have
become common tools in recent years [6, 13, 19, 21].

Keywords Phase retrieval, Gabor frames, Time-frequency analysis

Mathematics Subject Classification 42C15, 42A38, 94A12, 65T50

1 Introduction

Phase retrieval generally alludes to the non-linear inverse problem of recovering some signal (which in
this paper will be modelled by x ∈ C

L) from phaseless measurements. Some of its more well-known
applications include ptychography for coherent diffraction imaging [16, 20, 24, 29] and audio processing
[14, 18, 12]. It has been shown that the phase retrieval problem for frames in finite-dimensional Hilbert
spaces [7] and a forteriori in finite-dimensional reflexive Banach spaces [2] is always stable, which elicits
the question: Why are we concerned with stability estimates for phase retrieval from discrete Gabor
measurements at all? The reason is that phase retrieval for frames in infinite-dimensional spaces is
always unstable [7, 2] and in addition one can construct sequences of finite-dimensional subspaces of
infinite-dimensional Hilbert spaces along with frames for which the stability constant of phase retrieval
increases exponentially in the dimension of the constructed subspaces [7]. Recent research [1] into
the infinite-dimensional phase retrieval problem has however led us to believe that the instability of
phase retrieval is not an insurmountable obstacle to reconstruction. It was shown that stability can be
restored for examples that exhibit a disconnectedness in the measurements by only reconstructing the
phase semi-globally or in an atoll sense. Furthermore, it was shown in [15] that such disconnectedness
in the measurements is the only source of instabilities for phase retrieval.

A simple example of instability can be obtained by considering the Gaussian functions g(t) := e−πt2

in conjunction with the signals

f+
λ (t) := g(t− λ) + g(t+ λ) and f−

λ (t) := g(t− λ)− g(t+ λ)

depicted in figure 1. When λ increases, the Gaussian bumps in the signals f±
λ start to move further apart

effectively generating what we call a time gap whose length depends linearly on λ. It can be shown, see
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Figure 1: A simple example for instability of phase retrieval with continuous Gabor measurements.

[3], that the measurements generated by the continuous Gabor transform with Gaussian window of the

signals f±
λ have distance on the order of e−λ2

in the standard Sobolev space W 1,2(R2) and that one can
therefore not stably retrieve f±

λ from continuous Gabor transform measurements. Similar phenomena
can be observed for the discrete setting considered in this paper and we do therefore propose a similar
paradigm as in [1] and try to recover signals in a semi-global fashion that is not common in the phase
retrieval literature up to this point. Note that in audio processing, it is natural to consider (audio)
signals up to semi-global phase as human listeners are not able to distinguish between two signals which
differ by semi-global phase [1].

One should note that in recent years a variety of stability result for phase retrieval have been proven.
Some highlights of this research include:

i. The PhaseLift method [8, 11] which guarantees stable recovery from O(L) randomly chosen Gaus-
sian measurements with high probability [9].

ii. The research on polarisation for phase retrieval [4, 5, 22, 26] in which the authors supplement an
existing measurement ensemble in order to obtain a phase retrieval problem that is efficiently and
stably solvable.

iii. Wirtinger flow and related methods [10, 27, 28] which offer stability guarantees for sufficiently
many randomly chosen Gaussian measurements.

iv. The eigenvector-based angular synchronisation approach [17] which relies on a certain weak form of
invertibility of the phase retrieval problem to prove a stability result for deterministic measurement
systems.

v. The very recent work [25] in which the stability of phase retrieval from (random) frames whose
frame vectors are uniformly distributed on the unit sphere (but not necessarily independent) is
considered.

In some way or another, all of these results are based on different setups than ours: As opposed to the
papers referenced in item i., iii. and v. we will not work with a probabilistic measurement system but
with a deterministic one. We will also not supplement our measurement ensemble as is done in the
results referenced in item ii. and we will not work with the weak form of invertibility that is present
in the paper referenced in item iv. In fact, we will consider the two well-known formulae (1) and (2)
presented in section 2 which are heavily used to develop methods for exact phase retrieval from Gabor
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measurements in the literature [13, 19, 21]. We show that through further analysis of the formulae (1)
and (2), one can derive stability results for some of those methods and therefore also for phase retrieval
in general. Our stability results are designed for bandlimited signals and come with constants that scale
in the square root of the space dimension at the cost of relaxing the notion of stability to resemble the
one proposed in [1].

Outline In section 2, we present the reader with the uniqueness results and the formulae on which
our stability results hinge. In section 3, we utilise the ambiguity function relation (2) in order to show
that phase retrieval can be stably done for bandlimited signals based on the considerations in [6, 23].
In section 4, we use the autocorrelation relation (1) in order to show that phase retrieval can be done
stably for bandlimited signals utilising results from [13, 19]. As the proofs of our main results are a bit
technical, they appear separately in section 5.

2 Prerequisites

Throughout this paper, we fix the dimension L ∈ N and let x, φ ∈ C
L. We define the discrete Gabor

transform (DGT) of x with window function φ to be

Vφ[x](m,n) :=
1√
L

·
L−1∑

ℓ=0

x(ℓ)φ(ℓ−m)e−2πi ℓn
L , m, n = 0, . . . , L− 1.

Here and throughout this paper, the indexing is understood to be periodic. In particular, we use the
convention φ(ℓ) = φ(ℓ mod L), for ℓ ∈ Z. A helpful way of looking at the DGT is to view it as a
collection of windowed Fourier transforms. For this purpose, we denote xm(ℓ) := x(ℓ)φ(ℓ−m), for
ℓ,m ∈ {0, . . . , L− 1}, and obtain

Vφ[x](m,n) = F [xm] (n), m, n = 0, . . . , L− 1,

where F : CL → C
L denotes the discrete Fourier transform (DFT)

F [x](k) :=
1√
L

·
L−1∑

ℓ=0

x(ℓ)e−2πi ℓk
L , k = 0, . . . , L− 1,

with inverse

F−1[x](ℓ) =
1√
L

·
L−1∑

k=0

x(k)e2πi
kℓ

L , ℓ = 0, . . . , L− 1.

We will frequently use the two-dimensional discrete Fourier transform which is the composition of two
DFTs as defined above. Additionally, we define the ambiguity function of a signal x via A[x] := Vx[x].
We are interested in the recovery of signals x ∈ C

L from the measurements

Mφ[x](m,n) := |Vφ[x](m,n)|2 , m, n = 0, . . . , L− 1.

It is immediately obvious that x ∈ C
L and any signal eiαx, with α ∈ R, yield the same measurements

Mφ[e
iαx] = Mφ[x]. Therefore, to have any chance of recovery, we will actually view Mφ as an operator

defined on the quotient space C
L/S1, where S1 denotes the unit circle. Under various assumptions,

which we will lay out in the following, one can show that Mφ : CL/S1 → R
L×L
+ is an injective operator

and that phase retrieval is therefore possible up to a global phase factor. In addition, it was shown in
[7] that

inf
α∈R

‖x− eiαy‖2 . ‖|Vφ[x]| − |Vφ[y]|‖F,

for all x, y ∈ C
L, where ‖·‖F denotes the Frobenius norm and the estimate depends on a constant which

might increase exponentially in the space dimension L. Our phase retrieval problem is therefore possibly
ill-conditioned.
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As mentioned before, the number of known uniqueness results has seen a stark rise in the past few
years. In the following, we want to mention those that inspired our stability estimates. Let us start by
remarking that almost all uniqueness results can be traced back to two consequential formulae which are
well-known in the literature. The first of these relates the Gabor measurements to the autocorrelation
of xm. In what follows, time-reversal of a signal will be denoted by x#(ℓ) = x(−ℓ).

Lemma 2.1. For any x ∈ C
L,

F−1 [Mφ[x](m, ·)] (n) = 1√
L

·
(
xm ∗ x#

m

)
(n), m, n = 0, . . . , L− 1. (1)

Proof. See appendix B.

The right-hand side in the above result is the aforementioned autocorrelation of xm:

(
xm ∗ x#

m

)
(n) =

L−1∑

ℓ=0

x(ℓ)x(ℓ− n)φ(ℓ− n−m)φ(ℓ−m), m, n = 0, . . . , L− 1.

The second of these formulae relates the Gabor measurements to the ambiguity function of x and the
ambiguity function of φ.

Lemma 2.2. For any x ∈ C
L, the following holds:

F [Mφ[x]] (m,n) = A[x](−n,m)A[φ](−n,m), for m,n = 0, . . . , L− 1. (2)

Proof. See appendix B.

Next, we will consider the uniqueness results from [6, 23] which are based on equation (2).

Corollary 2.3 (Theorem 2.2 in [6], p. 547). Suppose that φ satisfies

A[φ](m,n) 6= 0, for m,n = 0, . . . , L− 1.

Then, x is uniquely determined by the measurements Mφ[x] up to global phase.

While this result is exceptionally nice in the sense that it does not impose any requirements on the
signal, it is quite restrictive in its requirements on the window function φ. For instance, windows φ with
support length |suppφ| smaller than L/2 will always have zero entries in their ambiguity function.

Corollary 2.4 (Theorem 2.4 in [6], p. 549). Let x ∈ C
L be nowhere-vanishing, i.e. suppx = {0, . . . , L−

1}, and
A[φ](m,n) 6= 0, for m = 0, 1, n = 0, . . . , L− 1.

Then, x is uniquely determined by the measurements Mφ[x] up to global phase.

This result is in some sense orthogonal to corollary 2.3: Its requirements on the window function
are moderate while its requirements on the signal are rather restrictive. Of course, we might also
infer a variety of results that are based on different trade-offs between restrictions on the window and
restrictions on the signal. For this purpose, we introduce the parameter ∆ ∈ N0. It corresponds to
the maximum number of adjacent zeroes across which we may propagate phase in the reconstruction
procedure used in the proof of the following corollary. Stated a bit more precisely: If x is a signal of
which we only know its measurements Mφ[x], then it follows from A[φ](0, ·) being nowhere-vanishing
(and the use of the ambiguity function relation) that we can reconstruct the magnitudes of x. Therefore,
it suffices to propagate phase between the entries of x to reconstruct x up to global phase. When we
assume that A[φ](m, ·) is nowhere-vanishing, for some m, then we allow (according to the ambiguity
function relation) the phase propagation from the entry with index ℓ to the entry with index ℓ+m (and
to the entry with index ℓ−m). Whether this allows us to reconstruct x up to global phase depends on
the set of m for which A[φ](m, ·) is nowhere-vanishing and on the support set of x. This is the central
idea on which the following corollary is built:
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Corollary 2.5. Let ∆ ∈ N0 and let x, y, φ ∈ C
L be such that Mφ[x] = Mφ[y] and

A[φ](m,n) 6= 0, for m ∈ {0, . . . ,∆+ 1}, n ∈ {0, . . . , L− 1}.

Furthermore, let G = (V,E) denote the graph with vertex set V = suppx and edge set E ⊂ V × V such
that

(ℓ, k) ∈ E ⇔ |ℓ− k| ∈ (0,∆+ 1] ∪ [L−∆− 1, L),

i.e. two vertices are connected if and only if they are at most ∆ + 1 apart. If {Vk}Kk=1 constitute the
vertex sets of the connected components of G, then for each k ∈ {1, . . . ,K} there exists an αk ∈ R such
that

x(ℓ) = eiαky(ℓ), ℓ ∈ Vk.

Proof. See section 5.

Remark 2.6. The corollary above is more general than corollaries 2.3 and 2.4. Indeed, if ∆ ≥ L
2 − 1,

then G is connected. In fact, one can see from the definition of the edge set that G is the complete graph
on the vertex set suppx. In particular, corollary 2.3 follows. If ∆ = 0 and x is nowhere-vanishing, then
G is the circle graph on L vertices and is thus connected. In this way, we recover corollary 2.4.

Finally, we will work with a uniqueness result first proven in [13] and later generalised in [19] based
mostly on equation (1). Consider the following statement.

Corollary 2.7 (Theorem 1 in [13], p. 639). Let n0, ℓφ ∈ {0, . . . , L − 1} be such that ℓφ < L/2 and
suppose that ℓφ − 1 and L are coprime. If

suppφ = {n0, . . . , n0 + ℓφ}

and F [|φ|2] and x are nowhere-vanishing, then x is uniquely determined by the measurements Mφ[x] up
to global phase.

The work in [19] shows that one can also derive this result as part of a graph-theoretical formulation
for phase retrieval.

Corollary 2.8 (Theorem 3.1 in [19], p. 373). Let n0, ℓφ ∈ {0, . . . , L − 1} be such that ℓφ < L/2 and
suppose that

suppφ = {n0, . . . , n0 + ℓφ}
and F [|φ|2] is nowhere-vanishing. Let the graph G = (V,E) defined by having the vertex set V = suppx
and an edge between ℓ, k ∈ V if

|ℓ− k| ∈ {ℓφ, L− ℓφ}
be connected. Then, x is uniquely determined by the measurements Mφ[x] up to global phase.

3 Stability estimates based on the ambiguity function relation

3.1 Stability for a single island

First, we derive stability estimates by employing equation (2) and corollaries 2.3–2.5. In doing this, we
want to start with the very simple setup of corollary 2.4.

One can immediately see that there are some intricacies to the phase retrieval problem for signals
x ∈ C

L. One of those is dealing with entries x(ℓ) of x which have small (or even vanishing) magnitude.
For these entries, extracting the phase of x(ℓ) is unstable (or even impossible). See figure 2 for a
depiction of this situation. Because of this, we will mostly work with a graph capturing only the larger
entries of the signals.
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Figure 2: For x(ℓ), η ∈ C, the difference in absolute values satisfies ||x(ℓ)| − |x(ℓ) + η|| ≤ |η| such that
the map |·| : C → R+ can be seen to be stable. On the other hand, the function which maps complex
numbers to their phase is unstable at the origin: To see this, we can choose x(ℓ) = (−1 + i)ǫ, η = 2ǫ
such that |α−β| = π/2 ≥ π/(4ǫ) · |η|, where α, β ∈ (−π, π] denote the principal values of the arguments
of x(ℓ), x(ℓ) + η ∈ C, respectively.

Definition 3.1. Let ∆ ∈ N0 and δ > 0. We call the graph Gδ = (Vδ, E) defined by having the vertex
set

Vδ = {ℓ ∈ {0, . . . , L− 1} | |x(ℓ)| ≥ δ}
and an edge between ℓ, k ∈ V if

|ℓ− k| ∈ (0,∆+ 1] ∪ [L−∆− 1, L),

the essential support graph of x with time separation parameter ∆. We will also simply call the essential
support graph of x with time separation parameter zero the essential support graph of x.

The stability estimates we derive hold for bandlimited signals defined as follows:

Definition 3.2. Let B ∈ N0. We call x ∈ C
L B-bandlimited if

suppF [x] ⊂ {−B, . . . , B} mod L.

One important property of bandlimited signals is that their ambguity function does not have full
support (when 4B < L).

Proposition 3.3. Let x ∈ C
L be B-bandlimited, for some B ∈ N0. Then, it holds for all m ∈

{0, . . . , L− 1} that
suppA[x](m, ·) ⊂ {−2B, . . . , 2B} mod L.

We included a proof of this basic proposition in appendix B. In the following, we will work with the
ℓ2-norm on subsets S of {0, . . . , L− 1}. For such sets, we define

‖x‖ℓ2(S) :=

(
∑

ℓ∈S

|x(ℓ)|2
) 1

2

.

We may now prove the following result on the stability of magnitude retrieval:
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Lemma 3.4 (Stability of magnitude retrieval). Let δ > 0 and let x, y ∈ C
L be B-bandlimited, for some

B ∈ N0. Define Gδ = (Vδ, E) to be the essential support graph of x and let φ ∈ C
L be such that

min
n∈{−2B,...,2B}

|A[φ](0, n)| ≥ 1

c
,

for some c > 0. Then,

‖|x| − |y|‖ℓ2(Vδ)
≤ c

δ
‖Mφ[x]−Mφ[y]‖F .

Proof. Let us start with the simple fact that for ℓ ∈ Vδ (cf. definition 3.1),

||x(ℓ)| − |y(ℓ)|| =
∣∣|x(ℓ)|2 − |y(ℓ)|2

∣∣
||x(ℓ)|+ |y(ℓ)|| ≤ 1

δ

∣∣|x(ℓ)|2 − |y(ℓ)|2
∣∣ .

Thus, we have

‖|x| − |y|‖ℓ2(Vδ)
≤ 1

δ

∥∥|x|2 − |y|2
∥∥
ℓ2(Vδ)

≤ 1

δ

∥∥|x|2 − |y|2
∥∥
2
.

Next, suppose that 4B < L. Employing Plancherel’s theorem, the ambiguity function relation and
proposition 3.3, we find

∥∥|x|2 − |y|2
∥∥2
2
= ‖A[x](0, ·)−A[y](0, ·)‖22 =

L−1∑

n=0

|A[x](0, n)−A[y](0, n)|2

=

2B∑

n=−2B

|A[x](0, n)−A[y](0, n)|2 =

2B∑

n=−2B

∣∣∣∣
F [Mφ[x]−Mφ[y]] (n, 0)

A[φ](0, n)

∣∣∣∣
2

≤ c2
2B∑

n=−2B

|F [Mφ[x]−Mφ[y]] (n, 0)|2 ≤ c2 ‖F [Mφ[x]−Mφ[y]]‖22

= c2 ‖Mφ[x]−Mφ[y]‖22 .

The proof for 4B ≥ L is even simpler: In this case A[φ](0, ·) is lower bounded everywhere.

Remark 3.5. Note that we need to restrict our stability result to the essential support Vδ of x because
the square root t 7→

√
t is not Lipschitz continuous. For this reason, we obtain the dependence of our

stability result on δ. We note that in the above proof, we derive

∥∥|x|2 − |y|2
∥∥
2
≤ c ‖Mφ[x]−Mφ[y]‖2 .

Hence, magnitude retrieval is, in fact, stable even when we consider small entries as long as we compare
the squared magnitudes of the signals with the squared absolute values of the Gabor transform.

Next, we turn to the retrieval of the phases. First, in accordance with corollary 2.4, we will only
use the entries of A[x](1, ·) (and of A[x](0, ·)) for our recovery which allows us to do phase propagation
on adjacent entries. To be precise, we can propagate the phase from x(ℓ) to x(ℓ+ 1) (or back), for any
ℓ ∈ {0, . . . , L−1}. Mathematically this fact can be captured with the help of the essential support graph
Gδ of x with time-separation parameter zero, i.e. ∆ = 0. In the following, we will call the connected
components of Gδ temporal islands.

Theorem 3.6 (Stability of phase retrieval on a single temporal island). Let δ > 0 and let x, y ∈ C
L be

B-bandlimited, for B ∈ N0. For Gδ = (Vδ, E) the essential support graph of x, assume that the subgraph
induced by the vertex set Sδ = Vδ ∩ supp y is connected. If φ ∈ C

L is such that

min
m∈{0,1}

n∈{−2B,...,2B}

|A[φ](m,n)| ≥ 1

c
,
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for some c > 0, then

inf
α∈R

∥∥x− eiαy
∥∥
ℓ2(Vδ)

≤ c

δ

(
1 +

√
2|Sδ|‖x‖ℓ2(Sδ)

δ

)
‖Mφ[x]−Mφ[y]‖F .

Proof. See section 5.

Remark 3.7. The stability constant derived in the above result is

c

δ

(
1 +

√
2|Sδ|‖x‖ℓ2(Sδ)

δ

)

and consists of a contribution from the magnitude retrieval estimate in lemma 3.4 and the phase retrieval
estimate presented in section 5. The contribution from the phase retrieval estimate contains a factor√
2|Sδ| which can be interpreted as a mild ill-conditioning of phase retrieval as it might scale like L

1
2 .

Additionally, the phase retrieval estimate contains a factor 1/δ which captures the dependence on the
size of the magnitudes of x.

For a visualisation, we plot the magnitudes ambiguity functions of four commonly used window
functions φ ∈ C

L in figure 3. For reference, we use L = 1024 and the windows

φgauss(ℓ) = e−π
(ℓ−512)2

322 , φhamming(ℓ) :=

{
25
46 − 21

46 cos
(
2πℓ
63

)
if ℓ = 0, . . . , 63,

0 else,

φhann(ℓ) :=

{
1
2 − 1

2 cos
(
2πℓ
63

)
if ℓ = 0, . . . , 63,

0 else,
φrectangular(ℓ) :=

{
1 if ℓ = 0, . . . , 63,

0 else.

Example 3.8. We want to present an example to clarify the statement of Theorem 3.6. For this
purpose, we let L ∈ N, with L ≥ 6, be arbitrary but fixed and consider the rectangular window of length
two

φ(ℓ) :=

{
1 if ℓ = 0, 1,

0 else.

Note that the choice of the rectangular window of length two is rather arbitrary. One could, in fact,
perform similar calculations with most other common window functions as long as one picks the window
in such a way that its time support is small enough. We observe that, for large L, the rectangular window
of length two will have a small time support (by which we mean that |suppφ| = 2 is small compared to
L) and a large frequency support (by which we mean that |suppF [φ]|, which is readily seen to be L or
L − 1 depending on whether L is even or odd, is comparable to L). This property of the rectangular
window of length two will carry over to its ambiguity function in the sense that even for large B, we
find that

min
m∈{0,1}

n∈{−2B,...,2B}

|A[φ](m,n)|

is rather large and thereby the constant c in Theorem 3.6 is rather small. So let c̃ > 1 and B ∈ N0 be
such that L

c̃ ≤ 6B ≤ L. Then, we find that

min
m∈{0,1}

n∈{−2B,...,2B}

|A[φ](m,n)| = 1√
L
.

Therefore, it follows that Theorem 3.6 holds with c =
√
L, i.e. for δ > 0 and x, y ∈ C

L B-bandlimited
such that the subgraph of the essential support graph of x induced by the vertex set Sδ = Vδ ∩ supp y is
connected, we have

inf
α∈R

∥∥x− eiαy
∥∥
ℓ2(Vδ)

≤
√
L

δ

(
1 +

√
2|Sδ|‖x‖ℓ2(Sδ)

δ

)
‖Mφ[x]−Mφ[y]‖F .
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(a) The ambiguity function of the Gaussian window.
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(b) The ambiguity function of the Hamming window.
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(c) The ambiguity function of the Hann window.
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Figure 3: Visualisation of the magnitudes of the ambiguity functions of some commonly used window
functions in a logarithmic scale (we plot 20 log10|A[φ]|).
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It follows that for the rectangular window of size two and for 6B ≤ L, the stability constant scales
linearly in L. The dimension of the space of B-bandlimited signals is d := 2B + 1 and therefore it
follows from L

c̃ ≤ 6B that

inf
α∈R

∥∥x− eiαy
∥∥
ℓ2(Vδ)

≤
√
6(d− 1)

δ

(
1 +

√
6c̃(d− 1)‖x‖ℓ2(Sδ)

δ

)
‖Mφ[x]−Mφ[y]‖F .

Example 3.9. We also want to give an example which elaborates on the dependence of the stability
constant on δ−1. On first glance, it might look like this dependence is only due to our analysis (the
propagation of phases between adjacent entries.) However, this is not the case. Consider the rectangular
window φ of length two along with the signals

x(ℓ) =





1 if ℓ = 0,

δ if ℓ = 1,

1 if ℓ = 2,

0 else,

y(ℓ) =





1 if ℓ = 0,

δ if ℓ = 1,

−1 if ℓ = 2,

0 else,

where δ ∈ (0, 1). Then, we have
inf
α∈R

∥∥x− eiαy
∥∥
2
= 2.

In addition, we have

‖Mφ[x]−Mφ[y]‖F = 2
√
2

δ√
L
.

Therefore, it follows that
infα∈R

∥∥x− eiαy
∥∥
2

‖Mφ[x]−Mφ[y]‖F
=

√
L

2
· δ−1 (3)

is a lower bound for the stability constant. Note that this example is independent of the reconstruction
technique we have chosen.

3.2 Multiple islands and frequency gaps

The phase propagation procedure presented as part of the proof of theorem 3.6 carries over quite
naturally to the case where the graph Gδ = (Vδ, E) is disconnected rather than connected. We say the
graph Gδ has multiple temporal islands. It is of course interesting to consider this case, as there is a
wide range of signals for which G will be disconnected. For instance, recordings of human speech will
typically consist of multiple temporal islands as speakers tend to leave short gaps (i.e. modes of silence)
in between words. In addition, a discretisation of the signal f+

λ from the introduction (see figure 4) will
yield two temporal islands.

Theorem 3.10 (Stability of phase retrieval on multiple temporal islands). Let δ > 0 and let x, y ∈ C
L

be B-bandlimited, for B ∈ N0. For the essential support graph Gδ = (Vδ, E) of x, assume that the
subgraph induced by the vertex set Sδ = Vδ ∩ supp y has K connected components whose vertex sets are
denoted by {Sk}Kk=1. If φ ∈ C

L is such that

min
m∈{0,1}

n∈{−2B,...,2B}

|A[φ](m,n)| ≥ 1

c
,

for some c > 0, then

inf
α1,...,αK∈R

K∑

k=1

∥∥x− eiαky
∥∥
ℓ2(Sk)

≤ c
√
K

δ

(
1 +

√
2|Sδ|‖x‖ℓ2(Sδ)

δ

)
‖Mφ[x]−Mφ[y]‖F .

10



ℓδ

Figure 4: The function f+
λ from the introduction after discretisation. Entries of the resulting signal

that fall below a certain threshold δ > 0 are coloured in grey. The remaining entries are coloured in
black and make up the vertex set Vδ. In this picture, we can clearly see the two temporal islands.

Proof. See theorem 3.11.

Furthermore, one should note that until now we have only worked with minimal restrictions on the
ambiguity function A[φ] of the window φ, i.e. we have only utilised the ambiguity function for m = 0, 1.
In the following, we want to generalise our result to be able to use A[φ](m,n) for m = 0, . . . ,∆+ 1. In
particular, we may be able to harness corollary 2.5 in order to propagate phase stably across a section
of the signal in which the entries consistently fall below a threshold δ. To precisely describe this phase
propagation procedure, we make use of the essential support graph of signals x with time-separation
parameter ∆.

Theorem 3.11 (Main theorem). Let ∆ ∈ N0, let δ > 0 and suppose that x, y ∈ C
L are B-bandlimited,

for B ∈ N0. Let Gδ = (Vδ, E) be the essential support graph of x with time-separation parameter ∆ and
assume that the subgraph induced by the vertex set Sδ = Vδ ∩ supp y has K connected components whose
vertex sets are denoted by {Sk}Kk=1. If φ ∈ C

L is such that

min
m∈{0,...,∆+1}
n∈{−2B,...,2B}

|A[φ](m,n)| ≥ 1

c
, (4)

for some c > 0, then

inf
α1,...,αK∈R

K∑

k=1

∥∥x− eiαky
∥∥
ℓ2(Sk)

≤ c
√
K

δ

(
1 + 2

√
L+∆

2 +∆

‖x‖ℓ2(Sδ)

δ

)
‖Mφ[x]−Mφ[y]‖F .

Proof. See section 5.

Remark 3.12. Alternatively, one can show

inf
α1,...,αK∈R

K∑

k=1

∥∥x− eiαky
∥∥
ℓ2(Sk)

≤ c

δ

(
√
K +

K∑

k=1

√
2|Sk|‖x‖ℓ2(Sk)

δ

)
‖Mφ[x]−Mφ[y]‖2

under the assumptions laid out in theorem 3.11. We prefer the result above as it is more compact. Note
that neither of these results is stronger or weaker than the other.

We note that one can obtain dual results to the above by considering F [x] instead of x. A straight-
forward calculation (see proof of proposition 3.3) yields

A[x](m,n) = e−2πimn

L A[F [x]](n,−m), m, n = 0, . . . , L− 1.

In this light, it is not surprising that we can derive stability results for recovering F [x] from the mea-
surements Mφ[x] resembling the theorems derived above. Note that in this way, one can also show the
following dual of the ambguity function relation:

F [Mφ[x]] (m,n) = A[F [x]](m,n)A[F [φ]](m,n), m, n = 0, . . . , L− 1.
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Theorem 3.13 (Stability for frequency gaps). Let B,∆ ∈ N0, let δ > 0 and suppose that x, y ∈ C
L

have their support contained in {−B, . . . , B} mod L. Let Gδ = (Vδ, E) be the essential support graph
of F [x] with time-separation parameter ∆ and assume that the subgraph induced by the vertex set Sδ =
Vδ ∩ suppF [y] has K connected components whose vertex sets are denoted by {Sk}Kk=1. If φ ∈ C

L is
such that

min
m∈{−2B,...,2B}
n∈{0,...,∆+1}

|A[φ](m,n)| ≥ 1

c
,

for some c > 0, then

inf
α1,...,αK∈R

K∑

k=1

∥∥F [x]− eiαkF [y]
∥∥
ℓ2(Sk)

≤ c
√
K

δ

(
1 + 2

√
L+∆

2 +∆

‖x‖2
δ

)
‖Mφ[x]−Mφ[y]‖2 .

Remark 3.14. In the preceding pages, we have presented approaches for phase retrieval for signals
with multiple temporal or frequency islands. Unfortunately, it is not so clear how to extend this work
to the more general case of time-frequency atolls considered in [1, 15]. It is likely that one has to come
up with a different approach that allows one to do phase propagation in frequency and time direction
simultaneously to actually handle time-frequency atolls.

We want to end this section by remarking that from our proof strategy for the frequency result a
straight-forward dual version of corollary 2.5 follows.

Corollary 3.15. Let ∆ ∈ N0 and let x, y, φ ∈ C
L be such that Mφ[x] = Mφ[y]. Assume that the window

φ satisfies
A[φ](m,n) 6= 0, for m ∈ {0, . . . , L− 1}, n ∈ {0, . . . ,∆+ 1}.

Define G = (V,E) as the graph with vertex set V = suppF [x] and edge set E ⊂ {0, . . . , L − 1} ×
{0, . . . , L− 1} given by

(ℓ, k) ∈ E ⇔ |ℓ− k| ∈ (0,∆+ 1] ∪ [L−∆− 1, L).

If {Vk}Kk=1 are the vertex sets of the connected components of G, then for all k ∈ {1, . . . ,K} there exists
an αk ∈ R such that

F [x](ℓ) = eiαkF [y](ℓ), ℓ ∈ Vk.

4 Stability estimates based on the autocorrelation relation

The goal of this section is to apply the techniques we have developed thus far to the setup proposed
in [19]. Our approach will be designed to work for bandlimited signals x ∈ C

L which potentially have
very small entries. In doing so, we do not need to require that the Fourier transform of the absolute
value squared of the window is nowhere-vanishing. We emphasise these particularities as the stability
result developed in [19] (theorem 4.2 on p. 375) relies on window functions for which F [|φ|2] is nowhere-
vanishing, and while one may apply it to signals x ∈ C

L with very small entries, the resulting stability
constant will be ill-behaved as it depends inversely on minℓ∈supp x|x(ℓ)|2.

Recall from section 2 that the authors of [19] consider the graph G = (V,E) with vertex set V :=
supp(x) and an edge between ℓ, k ∈ V if

|ℓ− k| ∈ {ℓφ, L− ℓφ},

where ℓφ+1 denotes the support length of the window function. They do then propose to reconstruct the
magnitude of a signal x ∈ C

L using the ambiguity function relation (2) (as in section 3) and propagate
phase from one entry of x to another if their indices have distance ℓφ using equation (1). As before, we
will work with local lower bounds on the ambiguity function of the window and the signal in order to
ensure that all the aforedescribed steps can be carried out stably.
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In order to introduce the local lower bounds on the signal, we will have to modify the graphs
presented in [19] slightly: Let us consider a signal x ∈ C

L, a tolerance parameter δ > 0 and a window
function φ ∈ C

L such that
supp(φ) = {n0, . . . , n0 + ℓφ} mod L,

for n0, ℓφ ∈ {0, . . . , L− 1} such that 2ℓφ < L. Introduce the graph Gδ = (Vδ, E) with vertex set

Vδ := {ℓ ∈ {0, . . . , L− 1} | |x(ℓ)| ≥ δ}

and an edge between ℓ, k ∈ V if
|ℓ− k| ∈ {ℓφ, L− ℓφ}.

Under these assumptions, we can state the following stability estimate whose proof is inspired by the
proof of corollary 2.8:

Theorem 4.1. Let ℓφ, n0 ∈ N0 such that 2ℓφ < L. Furthermore, let δ > 0 and let x, y ∈ C
L be

B-bandlimited, for B ∈ N0. Suppose that the subgraph induced by the vertex set Sδ = Vδ ∩ supp y is
connected and that the window φ satisfies

supp(φ) = {n0, . . . , n0 + ℓφ} mod L

as well as

min
k∈{−2B,...,2B}

∣∣F
[
|φ|2

]
(k)
∣∣ ≥ 1

c
,

for some c > 0. Then,

inf
α∈R

∥∥x− eiαy
∥∥
ℓ2(Vδ)

≤ 1

δ

(
c+

2
√
|Sδ|L‖x‖ℓ2(Sδ)

δ|φ(n0)φ(n0 + ℓφ)|

)
‖Mφ[x]−Mφ[y]‖F .

Proof. See section 5.

Remark 4.2. The stability constant in this result is

1

δ

(
c+

2
√
|Sδ|L‖x‖ℓ2(Sδ)

δ|φ(n0)φ(n0 + ℓφ)|

)
.

The part of the constant due to magnitude retrieval is exactly the same as in the results in section 3.
The part of the constant stemming from phase retrieval is a slight modification from the constants in
section 3. It is mostly the term |φ(n0)φ(n0 + ℓφ)| in the denominator that deserves some attention. It
is clear that phase propagation based on the relation

F−1 [Mφ[x](n, ·)] (ℓφ) = x(n0 + ℓφ + n)x(n0 + n)φ(n0)φ(n0 + ℓφ)

will be unstable whenever the ends of the window φ(n0) and φ(n0+ℓφ) are close to zero. In particular, the
reconstruction method proposed by the authors of [13, 19] benefits from windows for which |φ(n0)φ(n0+
ℓφ)| is large such as the Hamming or rectangular window.

As remarked before, in contrast to the stability result in [19], our result is applicable even when
the Fourier transform of the magnitude squared of the window function F [|φ|2] has vanishing entries at
the cost of only being applicable to bandlimited signals. We should also note that in [19] the stability
constant for the phase retrieval estimate scales like

√
|suppx| · L3 (which becomes L7/2 for nowhere-

vanishing signals) whereas our stability constant merely scales like
√
|Sδ|L (which becomes L for signals

whose entries have absolute values in excess of the threshold δ).
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Remark 4.3 (On disconnected graphs and duality results). Finally, we would like to note that one
can prove a result resembling theorem 4.1 in the case where Sδ has K ∈ N connected components whose
vertex sets are denoted by S1, . . . , SK ⊂ Sδ.

Similarly, we may utilise lemma 2.1 in order to deduce that

F [Mφ[x](·, n)] (m) =
1√
L

·
L−1∑

k=0

F [x](k)F [x](k −m)F [φ](k −m− n)F [φ](k − n)

holds, for x, φ ∈ C
L and m,n = 0, . . . , L− 1. This in turn can be used to deduce a stability result which

is essentially the Fourier-dual of theorem 4.1.

5 Proofs of the main results

Proof of corollary 2.5. By the ambiguity function relation and our assumptions, we find that

A[x](m,n) = A[y](m,n), for m ∈ {0, . . . ,∆+ 1}, n ∈ {0, . . . , L− 1}.

Therefore,

x(ℓ)x(ℓ−m) = y(ℓ)y(ℓ−m), for ℓ ∈ {0, . . . , L− 1}, m ∈ {0, . . . ,∆+ 1}, (5)

and in particular x and y have the same magnitudes. Let us now consider k ∈ {1, . . . ,K} as well as
some ℓ0 in Vk. We have |x(ℓ0)| = |y(ℓ0)| and hence x(ℓ0) = eiαky(ℓ0), for some αk ∈ R. As Vk is the
vertex set of a connected component of G, it follows that for all ℓ ∈ Vk \ {ℓ0}, there exists a (simple)
path from ℓ0 to ℓ. Therefore, we can consider ℓ ∈ Vk \ {ℓ0} and let (u0, . . . , un) be the vertex sequence
of the path from u0 = ℓ0 to un = ℓ. For j ∈ {0, . . . , n− 1} one has, by definition of the edge set, that

|uj+1 − uj | ∈ (0,∆+ 1] ∪ [L−∆− 1, L).

Thus, there exists an mj ∈ {1, . . . ,∆+1} such that uj+1−uj = mj mod L or uj −uj+1 = mj mod L.

In either case, it follows from equation (5) that x(uj+1)x(uj) = y(uj+1)y(uj). By induction on j, we
find that x(ℓ) = eiαky(ℓ).

Proof of theorem 3.6. The case 4B ≤ L is similar to the case 4B > L but simpler: Indeed consider
4B ≤ L. In this case, we have

min
m∈{0,1}

n∈{0,...,L−1}

|A[φ](m,n)| ≥ 1

c

by assumption. Therefore, we can replace all sums over {−2B, . . . , 2B} by sums over {0, . . . , L− 1} in
this proof. So let us consider 4B > L: Let α ∈ R be arbitrary. Employing proposition A.1, we have

∥∥x− eiαy
∥∥
ℓ2(Vδ)

≤ ‖|x| − |y|‖ℓ2(Vδ)
+

(
∑

ℓ∈Sδ

|x(ℓ)|2
∣∣∣∣
x(ℓ)

|x(ℓ)| − eiα
y(ℓ)

|y(ℓ)|

∣∣∣∣
2
) 1

2

. (6)

The magnitude difference is estimated as in lemma 3.4. For the estimate of the phase difference, we
develop inequalities in the following. Let ℓ, k ∈ Sδ. According to proposition A.2, we have

∣∣∣∣
x(ℓ)

|x(ℓ)| − eiα
y(ℓ)

|y(ℓ)|

∣∣∣∣ ≤
∣∣∣∣
x(k)

|x(k)| − eiα
y(k)

|y(k)|

∣∣∣∣+
2
∣∣∣x(ℓ)x(k)− y(ℓ)y(k)

∣∣∣
|x(ℓ)x(k)| .

Using the above inequality recursively, one obtains that for all M ∈ N and u0, u1, . . . , uM ∈ Sδ:

∣∣∣∣
x(uM )

|x(uM )| − eiα
y(uM )

|y(uM )|

∣∣∣∣ ≤
∣∣∣∣
x(u0)

|x(u0)|
− eiα

y(u0)

|y(u0)|

∣∣∣∣+ 2

M−1∑

j=0

∣∣∣x(uj+1)x(uj)− y(uj+1)y(uj)
∣∣∣

|x(uj+1)x(uj)|
. (7)
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Suppose now that ℓ0 is chosen such that any other vertex ℓ ∈ Sδ has graph distance (in the induced
subgraph) at most |Sδ|/2 from ℓ0. Then, for any ℓ ∈ Sδ\{ℓ0}, there existsM(ℓ) ∈ N, withM(ℓ) ≤ |Sδ|/2,
and a sequence uℓ

0 = ℓ0, u
ℓ
1, . . . , u

ℓ
M(ℓ) = ℓ in Sδ such that (cf. definition 3.1 with ∆ = 0)

|uℓ
j+1 − uℓ

j | ∈ {1, L− 1}, for j = 0, . . . ,M(ℓ)− 1.

Therefore, there exists a sequence σℓ
1, . . . , σ

ℓ
M(ℓ) in {−1, 1} such that

uℓ
j+1 − uℓ

j = σℓ
j+1 mod L, for j = 0, . . . ,M(ℓ)− 1.

Now, let α ∈ R be such that ∣∣∣∣
x(ℓ0)

|x(ℓ0)|
− eiα

y(ℓ0)

|y(ℓ0)|

∣∣∣∣ = 0.

Then, we have for any ℓ ∈ Sδ, according to the above considerations (and inequality (7)), that

∣∣∣∣
x(ℓ)

|x(ℓ)| − eiα
y(ℓ)

|y(ℓ)|

∣∣∣∣ ≤ 2

M(ℓ)∑

j=1

∣∣∣x(uℓ
j)x(u

ℓ
j − σℓ

j)− y(uℓ
j)y(u

ℓ
j − σℓ

j)
∣∣∣

|x(uℓ
j)x(u

ℓ
j − σℓ

j)|
.

For the second term of the right-hand side of inequality (6) this yields

(
∑

ℓ∈Sδ

|x(ℓ)|2
∣∣∣∣
x(ℓ)

|x(ℓ)| − eiα
y(ℓ)

|y(ℓ)|

∣∣∣∣
2
) 1

2

≤ 2



∑

ℓ∈Sδ

|x(ℓ)|2



M(ℓ)∑

j=1

∣∣∣x(uℓ
j)x(u

ℓ
j − σℓ

j)− y(uℓ
j)y(u

ℓ
j − σℓ

j)
∣∣∣

|x(uℓ
j)x(u

ℓ
j − σℓ

j)|




2



1
2

.

Applying Jensen’s inequality on the square of the inner sum and noting that M(ℓ) ≤ |Sδ|/2, we obtain

(
∑

ℓ∈Sδ

|x(ℓ)|2
∣∣∣∣
x(ℓ)

|x(ℓ)| − eiα
y(ℓ)

|y(ℓ)|

∣∣∣∣
2
) 1

2

≤
√
2|Sδ|



∑

ℓ∈Sδ

M(ℓ)∑

j=1

|x(ℓ)|2

|x(uℓ
j)x(u

ℓ
j − σℓ

j)|2
∣∣∣x(uℓ

j)x(u
ℓ
j − σℓ

j)− y(uℓ
j)y(u

ℓ
j − σℓ

j)
∣∣∣
2




1
2

.

Since uℓ
j ∈ Sδ, for j ∈ {1, . . . ,M(ℓ)}, we can further estimate

(
∑

ℓ∈Sδ

|x(ℓ)|2
∣∣∣∣
x(ℓ)

|x(ℓ)| − eiα
y(ℓ)

|y(ℓ)|

∣∣∣∣
2
) 1

2

≤
√
2|Sδ|
δ2



∑

ℓ∈Sδ

M(ℓ)∑

j=1

|x(ℓ)|2
∣∣∣x(uℓ

j)x(u
ℓ
j − σℓ

j)− y(uℓ
j)y(u

ℓ
j − σℓ

j)
∣∣∣
2




1
2

and with σℓ
j ∈ {±1}, for j ∈ {1, . . . ,M(ℓ)}, we also get

(
∑

ℓ∈Sδ

|x(ℓ)|2
∣∣∣∣
x(ℓ)

|x(ℓ)| − eiα
y(ℓ)

|y(ℓ)|

∣∣∣∣
2
) 1

2

15



≤
√

2|Sδ|
δ2




∑

σ∈{−1,1}

∑

ℓ∈Sδ

M(ℓ)∑

j=1

|x(ℓ)|2
∣∣∣x(uℓ

j)x(u
ℓ
j − σ)− y(uℓ

j)y(u
ℓ
j − σ)

∣∣∣
2




1
2

.

There are no repetitions in the sequences uℓ
1, u

ℓ
2, . . . , u

ℓ
M(ℓ) and hence

(
∑

ℓ∈Sδ

|x(ℓ)|2
∣∣∣∣
x(ℓ)

|x(ℓ)| − eiα
y(ℓ)

|y(ℓ)|

∣∣∣∣
2
) 1

2

≤
√

2|Sδ|
δ2




∑

σ∈{−1,1}

∑

ℓ∈Sδ

∑

u∈Sδ

|x(ℓ)|2
∣∣∣x(u)x(u− σ)− y(u)y(u− σ)

∣∣∣
2




1
2

.

Therefore, we have

(
∑

ℓ∈Sδ

|x(ℓ)|2
∣∣∣∣
x(ℓ)

|x(ℓ)| − eiα
y(ℓ)

|y(ℓ)|

∣∣∣∣
2
) 1

2

≤
√
2|Sδ|‖x‖ℓ2(Sδ)

δ2




∑

σ∈{−1,1}

L−1∑

u=0

∣∣∣x(u)x(u− σ)− y(u)y(u− σ)
∣∣∣
2




1
2

.

Suppose now that 4B < L. By Plancherel’s theorem, it holds that

(
∑

ℓ∈Sδ

|x(ℓ)|2
∣∣∣∣
x(ℓ)

|x(ℓ)| − eiα
y(ℓ)

|y(ℓ)|

∣∣∣∣
2
) 1

2

≤
√
2|Sδ|‖x‖ℓ2(Sδ)

δ2




∑

σ∈{−1,1}

L−1∑

n=0

|A[x](σ, n)−A[y](σ, n)|2



1
2

=

√
2|Sδ|‖x‖ℓ2(Sδ)

δ2




∑

σ∈{−1,1}

2B∑

n=−2B

|A[x](σ, n)−A[y](σ, n)|2



1
2

.

It follows from the ambiguity function relation and the lower bound on the ambiguity function of the
window on {0, 1} × {−2B, . . . , 2B} that

(
∑

ℓ∈Sδ

|x(ℓ)|2
∣∣∣∣
x(ℓ)

|x(ℓ)| − eiα
y(ℓ)

|y(ℓ)|

∣∣∣∣
2
) 1

2

≤ c ·
√
2|Sδ|‖x‖ℓ2(Sδ)

δ2




∑

σ∈{−1,1}

2B∑

n=−2B

|F [Mφ[x]−Mφ[y]] (n,−σ)|2



1
2

≤ c ·
√
2|Sδ|‖x‖ℓ2(Sδ)

δ2
· ‖F [Mφ[x]−Mφ[y]]‖F

= c ·
√
2|Sδ|‖x‖ℓ2(Sδ)

δ2
· ‖Mφ[x]−Mφ[y]‖F ,

where we have used Plancherel’s theorem in the last equality.
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Proof of theorem 3.11. Let k ∈ {1, . . . ,K} and αk ∈ R. As in the proof of theorem 3.6, we start by
splitting the estimate into a phase and a magnitude estimate using proposition A.1:

∥∥x− eiαky
∥∥
ℓ2(Sk)

≤ ‖|x| − |y|‖ℓ2(Sk)
+

(
∑

ℓ∈Sk

|x(ℓ)|2
∣∣∣∣
x(ℓ)

|x(ℓ)| − eiα
y(ℓ)

|y(ℓ)|

∣∣∣∣
2
) 1

2

.

As the connected components {Sk}Kk=1 are disjoint subsets of Vδ, we can use Jensen’s inequality to see
that

K∑

k=1

‖|x| − |y|‖ℓ2(Sk)
≤

√
K

(
K∑

k=1

‖|x| − |y|‖2ℓ2(Sk)

) 1
2

=
√
K ‖|x| − |y|‖ℓ2(⋃K

k=1 Sk)

≤
√
K ‖|x| − |y|‖ℓ2(Vδ)

.

Employing lemma 3.4, we obtain for the magnitude retrieval estimate

‖|x| − |y|‖ℓ2(Vδ)
≤ c

δ
‖Mφ[x]−Mφ[y]‖F .

The phase difference is estimated just like in theorem 3.6: First, observe that there must exist a vertex
ℓ0 ∈ Sk such that any other vertex ℓ ∈ Sk has graph distance M(ℓ) at most L+∆

2+∆ from ℓ0. Indeed,
consider the following argument: The worst case which could happen is that we need to connect the
vertex 0 to the vertex ⌊L/2⌋. By definition of the graph, it will take us exactly one step to go from 0 to
any ℓ ∈ {1, . . . ,∆+1}∩Sk; it will take us exactly two steps to go from 0 to ∆+2, if the latter is in Sk;
and it will take us at most three steps to go from 0 to ℓ ∈ {∆+3, 2∆+ 3} ∩ Sk. Following this logic, it
is not too hard to see that it will take us at most 2n steps to go from 0 to n(∆+2), if the latter is in Sk,
and it will take us at most 2n+1 steps to go from 0 to ℓ ∈ {n(∆+ 2)+ 1, . . . , (n+1)(∆+ 2)− 1} ∩Sk.
So, if there exists an element n ∈ N such that n(∆ + 2) = ⌊L/2⌋, then it will take us at most

2n =
2⌊L/2⌋
∆+ 2

≤ L

∆+ 2
≤ L+∆

2 +∆

steps to connect 0 and ⌊L/2⌋. Similarly, if there is an element n ∈ N0 such that ⌊L/2⌋ ∈ {n(∆ + 2) +
1, . . . , (n+ 1)(∆ + 2)− 1}, then there is a β ∈ {1, . . . ,∆+ 1} such that

2n+ 1 =
2⌊L/2⌋ − 2β

∆+ 2
+ 1 ≤ L− 2

∆ + 2
+ 1 =

L+∆

∆+ 2
.

So for any ℓ ∈ Sk \ {ℓ0}, there exists a path uℓ
0 = ℓ0, u

ℓ
1, . . . , u

ℓ
M(ℓ) = ℓ from ℓ0 to ℓ. By definition, this

path satisfies

∣∣uℓ
j+1 − uℓ

j

∣∣ ∈ (0,∆+ 1] ∪ [L−∆− 1, L), for j = 0, . . . ,M(ℓ)− 1.

Therefore, there exist sequences σℓ
1, . . . , σ

ℓ
M(ℓ) ∈ {±1} and ∆ℓ

1, . . . ,∆
ℓ
M(ℓ) ∈ {1, . . . ,∆+ 1} such that

uℓ
j+1 − uℓ

j = σℓ
j+1∆

ℓ
j+1 mod L, for j = 0, . . . ,M(ℓ)− 1.

We let αk ∈ R be chosen in such a way that

∣∣∣∣
x(ℓ0)

|x(ℓ0)|
− eiαk

y(ℓ0)

|y(ℓ0)|

∣∣∣∣ = 0.

Proceeding as in the proof of theorem 3.6 (now with M(ℓ) ≤ (L+∆)/(2 + ∆)), we derive
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(
∑

ℓ∈Sk

|x(ℓ)|2
∣∣∣∣
x(ℓ)

|x(ℓ)| − eiαk
y(ℓ)

|y(ℓ)|

∣∣∣∣
2
) 1

2

≤ 2

√
L+∆

2 +∆

1

δ2



∑

ℓ∈Sk

M(ℓ)∑

j=1

|x(ℓ)|2
∣∣∣x(uℓ

j)x(u
ℓ
j − σℓ

j∆
ℓ
j)− y(uℓ

j)y(u
ℓ
j − σℓ

j∆
ℓ
j)
∣∣∣
2




1
2

.

We first treat the case 2∆ < L− 2 and use that σℓ
j∆

ℓ
j ∈ {−∆− 1, . . . ,∆+ 1} to estimate

(
∑

ℓ∈Sk

|x(ℓ)|2
∣∣∣∣
x(ℓ)

|x(ℓ)| − eiαk
y(ℓ)

|y(ℓ)|

∣∣∣∣
2
) 1

2

≤ 2

√
L+∆

2 +∆

1

δ2




∆+1∑

m=−∆−1

∑

ℓ∈Sk

M(ℓ)∑

j=1

|x(ℓ)|2
∣∣∣x(uℓ

j)x(u
ℓ
j −m)− y(uℓ

j)y(u
ℓ
j −m)

∣∣∣
2




1
2

.

We may use that there are no repetitions in the sequences uℓ
1, . . . , u

ℓ
M(ℓ) to obtain

(
∑

ℓ∈Sk

|x(ℓ)|2
∣∣∣∣
x(ℓ)

|x(ℓ)| − eiαk
y(ℓ)

|y(ℓ)|

∣∣∣∣
2
) 1

2

≤ 2

√
L+∆

2 +∆

1

δ2

(
∆+1∑

m=−∆−1

∑

ℓ∈Sk

L−1∑

u=0

|x(ℓ)|2
∣∣∣x(u)x(u−m)− y(u)y(u−m)

∣∣∣
2
) 1

2

= 2

√
L+∆

2 +∆

‖x‖ℓ2(Sk)

δ2

(
∆+1∑

m=−∆−1

L−1∑

u=0

∣∣∣x(u)x(u−m)− y(u)y(u−m)
∣∣∣
2
) 1

2

.

Suppose furthermore that 4B > L. According to Plancherel’s theorem, we find that

(
∑

ℓ∈Sk

|x(ℓ)|2
∣∣∣∣
x(ℓ)

|x(ℓ)| − eiαk
y(ℓ)

|y(ℓ)|

∣∣∣∣
2
) 1

2

≤ 2

√
L+∆

2 +∆

‖x‖ℓ2(Sk)

δ2

(
∆+1∑

m=−∆−1

L−1∑

n=0

|A[x](m,n)−A[y](m,n)|2
) 1

2

= 2

√
L+∆

2 +∆

‖x‖ℓ2(Sk)

δ2

(
∆+1∑

m=−∆−1

2B∑

n=−2B

|A[x](m,n)−A[y](m,n)|2
) 1

2

.

Next, we use the ambiguity function relation, inequality (4) as well as the symmetry of the ambiguity
function of the window around the origin to derive

(
∑

ℓ∈Sk

|x(ℓ)|2
∣∣∣∣
x(ℓ)

|x(ℓ)| − eiαk
y(ℓ)

|y(ℓ)|

∣∣∣∣
2
) 1

2

≤ 2c

√
L+∆

2 +∆

‖x‖ℓ2(Sk)

δ2

(
∆+1∑

m=−∆−1

2B∑

n=−2B

|F [Mφ[x]−Mφ[y]] (n,m)|2
) 1

2

≤ 2c

√
L+∆

2 +∆

‖x‖ℓ2(Sk)

δ2
‖F [Mφ[x]−Mφ[y]]‖2
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= 2c

√
L+∆

2 +∆

‖x‖ℓ2(Sk)

δ2
‖Mφ[x]−Mφ[y]‖2 .

Note that we may once again use Jensen’s inequality to show that

K∑

k=1

‖x‖ℓ2(Sk) ≤
√
K‖x‖2.

Thus, combining the phase and the magnitude estimates yields

inf
α1,...,αK

K∑

k=1

∥∥x− eiαky
∥∥
ℓ2(Sk)

≤ c
√
K

δ

(
1 + 2

√
L+∆

2 +∆

‖x‖2
δ

)
‖Mφ[x]−Mφ[y]‖2 .

The cases in which 2∆ ≥ L− 2 or 4B ≥ L are dealt with similarly.

Proof of theorem 4.1. Let α ∈ R. As in the proof of theorem 3.6, we start by splitting the estimate into
a phase and a magnitude estimate

∥∥x− eiαky
∥∥
ℓ2(Vδ)

≤ ‖|x| − |y|‖ℓ2(Vδ)
+

(
∑

ℓ∈Sδ

|x(ℓ)|2
∣∣∣∣
x(ℓ)

|x(ℓ)| − eiα
y(ℓ)

|y(ℓ)|

∣∣∣∣
2
) 1

2

.

First, noting that
F
[
|φ|2

]
(k) = A[φ](0, k), for k = 0, . . . , L− 1,

we can apply lemma 3.4 to obtain the estimate

‖|x| − |y|‖ℓ2(Vδ)
≤ c

δ
‖Mφ[x]−Mφ[y]‖F .

For the estimate on the phase retrieval part, we need to consider a new strategy based on equation (1).
First, we find that there must exist a vertex ℓ0 ∈ Sδ such that any other vertex ℓ ∈ Sδ has graph distance
M(ℓ) at most |Sδ|/2 from ℓ0. So for any ℓ ∈ Sδ \ {ℓ0}, there exists a path uℓ

0 = ℓ0, u
ℓ
1, . . . , u

ℓ
M(ℓ) = ℓ

from ℓ0 to ℓ. By definition, this path satisfies

∣∣uℓ
j+1 − uℓ

j

∣∣ ∈ {ℓφ, L− ℓφ}, for j = 0, . . . ,M(ℓ)− 1.

Therefore, there exists a sequence σℓ
1, . . . , σ

ℓ
M(ℓ) ∈ {±1} such that

uℓ
j+1 − uℓ

j = σℓ
j+1ℓφ mod L, for j = 0, . . . ,M(ℓ)− 1.

With this at hand, we proceed similarly to the proof of theorem 3.6. We let α ∈ R be chosen in such a
way that ∣∣∣∣

x(ℓ0)

|x(ℓ0)|
− eiα

y(ℓ0)

|y(ℓ0)|

∣∣∣∣ = 0.

Then, we have that for any ℓ ∈ Sδ

∣∣∣∣
x(ℓ)

|x(ℓ)| − eiα
y(ℓ)

|y(ℓ)|

∣∣∣∣ ≤ 2

M(ℓ)∑

j=1

∣∣∣x(uℓ
j)x(u

ℓ
j − σℓ

jℓφ)− y(uℓ
j)y(u

ℓ
j − σℓ

jℓφ)
∣∣∣

|x(uℓ
j)x(u

ℓ
j − σℓ

jℓφ)|

and

(
∑

ℓ∈Sδ

|x(ℓ)|2
∣∣∣∣
x(ℓ)

|x(ℓ)| − eiα
y(ℓ)

|y(ℓ)|

∣∣∣∣
2
) 1

2
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≤
√

2|Sδ|
δ2



∑

ℓ∈Sδ

M(ℓ)∑

j=1

|x(ℓ)|2
∣∣∣x(uℓ

j)x(u
ℓ
j − σℓ

jℓφ)− y(uℓ
j)y(u

ℓ
j − σℓ

jℓφ)
∣∣∣
2




1
2

,

by Jensen’s inequality, M(ℓ) ≤ |Sδ|/2 and the fact that uℓ
j , u

ℓ
j − σℓ

jℓφ ∈ Sδ, for all j ∈ {1, . . . ,M(ℓ)}.
As before, we can further employ a crude estimate to derive

(
∑

ℓ∈Sδ

|x(ℓ)|2
∣∣∣∣
x(ℓ)

|x(ℓ)| − eiα
y(ℓ)

|y(ℓ)|

∣∣∣∣
2
) 1

2

=

√
2|Sδ|‖x‖ℓ2(Sδ)

δ2




∑

σ∈{±1}

∑

u∈Sδ

∣∣∣x(u)x(u− σℓφ)− y(u)y(u− σℓφ)
∣∣∣
2




1
2

,

since σℓ
j ∈ {±1}, for all j ∈ {1, . . . ,M(ℓ)} and all ℓ ∈ Sδ, and because for fixed ℓ ∈ Sδ, the uℓ

j are all
distinct. Next, we note that due to suppφ = {n0, . . . , n0+ℓφ} mod L, 2ℓφ < L, and the autocorrelation
relation, we have for u ∈ Sδ

x(u)x(u− ℓφ)φ(n0)φ(n0 + ℓφ) =

L−1∑

ℓ=0

x(ℓ)x(ℓ− ℓφ)φ(ℓ+ n0 − u)φ(ℓ+ n0 + ℓφ − u)

=
√
LF−1[Mφ[x](u− n0 − ℓφ, ·)](ℓφ),

as well as

x(u)x(u+ ℓφ)φ(n0 + ℓφ)φ(n0) =

L−1∑

ℓ=0

x(ℓ)x(ℓ+ ℓφ)φ(ℓ+ ℓφ + n0 − u)φ(ℓ+ n0 − u)

=
√
LF−1[Mφ[x](u− n0, ·)](−ℓφ).

This implies

(
∑

ℓ∈Sδ

|x(ℓ)|2
∣∣∣∣
x(ℓ)

|x(ℓ)| − eiα
y(ℓ)

|y(ℓ)|

∣∣∣∣
2
) 1

2

≤
√
2|Sδ|L‖x‖ℓ2(Sδ)

δ2|φ(n0)φ(n0 + ℓφ)|

(
∑

u∈Sδ

( ∣∣F−1[Mφ[x](u− n0 − ℓφ, ·)−Mφ[y](u− n0 − ℓφ, ·)](ℓφ)
∣∣2

+
∣∣F−1[Mφ[x](u− n0, ·)−Mφ[y](u− n0, ·)](−ℓφ)

∣∣2
)) 1

2

.

Yet another crude estimate results in

(
∑

ℓ∈Sδ

|x(ℓ)|2
∣∣∣∣
x(ℓ)

|x(ℓ)| − eiα
y(ℓ)

|y(ℓ)|

∣∣∣∣
2
) 1

2

≤ 2
√

|Sδ|L‖x‖ℓ2(Sδ)

δ2|φ(n0)φ(n0 + ℓφ)|

(
L−1∑

m,n=0

∣∣F−1[Mφ[x](m, ·)−Mφ[y](m, ·)](n)
∣∣2
) 1

2

=
2
√
|Sδ|L‖x‖ℓ2(Sδ)

δ2|φ(n0)φ(n0 + ℓφ)|
‖Mφ[x]−Mφ[y]‖F .
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A Pointwise estimates for the stability results

Let us start by the typical splitting of signal differences into phase and magnitude part.

Proposition A.1. Let x, y ∈ C
L. Then, we have for all α ∈ R that

|x(ℓ)− eiαy(ℓ)| ≤ ||x(ℓ)| − |y(ℓ)||+ |x(ℓ)|
∣∣∣∣
x(ℓ)

|x(ℓ)| − eiα
y(ℓ)

|y(ℓ)|

∣∣∣∣

holds for all ℓ ∈ {0, . . . , L− 1} for which x(ℓ) 6= 0 and y(ℓ) 6= 0. Moreover,

|x(ℓ)− eiαy(ℓ)| = ||x(ℓ)| − |y(ℓ)||

holds for all ℓ ∈ {0, . . . , L− 1} for which x(ℓ) = 0 or y(ℓ) = 0.

Proof. Consider the case x(ℓ) 6= 0 and y(ℓ) 6= 0:

|x(ℓ)− eiαy(ℓ)| =
∣∣∣∣|x(ℓ)|

x(ℓ)

|x(ℓ)| − eiα|y(ℓ)| y(ℓ)|y(ℓ)|

∣∣∣∣

=

∣∣∣∣(|x(ℓ)| − |y(ℓ)|) e
iαy(ℓ)

|y(ℓ)| + |x(ℓ)|
(

x(ℓ)

|x(ℓ)| − eiα
y(ℓ)

|y(ℓ)|

)∣∣∣∣

≤ ||x(ℓ)| − |y(ℓ)||+ |x(ℓ)|
∣∣∣∣
x(ℓ)

|x(ℓ)| − eiα
y(ℓ)

|y(ℓ)|

∣∣∣∣ .

If x(ℓ) = 0, then
|x(ℓ)− eiαy(ℓ)| = |y(ℓ)| = ||x(ℓ)| − |y(ℓ)|| .

In addition, a result about phase propagation will be handy.

Proposition A.2. Let x, y ∈ C
L and let α ∈ R. Then, we have that

∣∣∣∣
x(k)

|x(k)| − eiα
y(k)

|y(k)|

∣∣∣∣ ≤
∣∣∣∣
x(ℓ)

|x(ℓ)| − eiα
y(ℓ)

|y(ℓ)|

∣∣∣∣+
2
∣∣∣x(k)x(ℓ)− y(k)y(ℓ)

∣∣∣
|x(k)x(ℓ)|

holds, for all ℓ, k ∈ {0, . . . , L− 1} for which x(k), x(ℓ), y(k) and y(ℓ) are all different from zero.

Proof. We compute

∣∣∣∣
x(k)

|x(k)| − eiα
y(k)

|y(k)|

∣∣∣∣ =
∣∣∣∣∣
x(k)x(ℓ)x(ℓ)

|x(k)||x(ℓ)|2 − eiα
y(k)y(ℓ)y(ℓ)

|y(k)||y(ℓ)|2

∣∣∣∣∣

=

∣∣∣∣∣

(
x(ℓ)

|x(ℓ)| − eiα
y(ℓ)

|y(ℓ)|

)
x(k)x(ℓ)

|x(k)x(ℓ)| + eiα
y(ℓ)

|y(ℓ)|

(
x(k)x(ℓ)

|x(k)x(ℓ)| −
y(k)y(ℓ)

|y(k)y(ℓ)|

)∣∣∣∣∣

≤
∣∣∣∣
x(ℓ)

|x(ℓ)| − eiα
y(ℓ)

|y(ℓ)|

∣∣∣∣+
∣∣∣∣∣
x(k)x(ℓ)

|x(k)x(ℓ)| −
y(k)y(ℓ)

|y(k)y(ℓ)|

∣∣∣∣∣ .

The claim follows by noting that using the triangle inequality and the reverse triangle inequality, one
has ∣∣∣∣

z0
|z0|

− z1
|z1|

∣∣∣∣ =
∣∣z0|z1| − |z0|z1

∣∣
|z0z1|

≤ |z0 − z1|+
∣∣|z0| − |z1|

∣∣
|z0|

≤ 2|z0 − z1|
|z0|

,

for z0, z1 ∈ C.
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B Proofs of the most fundamental formulae

For convenience of the reader, we present the proofs of the two formulae presented in section 2. We note
that these formulae are well-known in the literature and have repeatedly been used to prove uniqueness
results in recent years [6, 13, 19, 21]. We start with lemma 2.1.

Proof of lemma 2.1. For m,n ∈ {0, . . . , L− 1}, one can calculate

Mφ[x](m,n) = |F [xm](n)|2 = F [xm](n) · F [xm](n) = F [xm](n) · F [x#
m](n)

=
1√
L

· F [xm ∗ x#
m](n),

using the convolution theorem for the DFT. Applying the inverse Fourier transform yields the statement.

Proof of lemma 2.2. According to lemma 2.1, we have

F−1 [Mφ[x](m, ·)] (n) = 1√
L

·
L−1∑

ℓ=0

x(ℓ)x(ℓ− n)φ(ℓ− n−m)φ(ℓ−m),

for m,n ∈ {0, . . . , L− 1}, and therefore

F [Mφ[x](m, ·)] (n) = 1√
L

·
L−1∑

ℓ=0

x(ℓ)x(ℓ+ n)φ(ℓ+ n−m)φ(ℓ−m).

Taking the DFT in m yields

F [Mφ[x]] (m,n) =
1

L
·

L−1∑

ℓ,k=0

x(ℓ)x(ℓ+ n)φ(ℓ+ n− k)φ(ℓ− k)e−2πi km

L

=
1

L
·
L−1∑

ℓ=0

x(ℓ)x(ℓ+ n)e−2πi ℓm
L

L−1∑

k=0

φ(ℓ+ n− k)φ(ℓ− k)e2πi
(ℓ−k)m

L

= A[x](−n,m)A[φ](−n,m).

Proof of proposition 3.3. Let us use the notation x′
m(ℓ) = x(ℓ−m), for ℓ,m ∈ {0, . . . , L − 1}, and

denote the entry-wise product of two vectors via ⊙. For m,n ∈ {0, . . . , L− 1} we apply the convolution
theorem for the DFT to see that

A[x](m,n) = F [x⊙ x′
m](n) =

1√
L
(F [x] ∗ F [x′

m]) (n).

Next, we compute

F [x′
m](k) =

1√
L

L−1∑

ℓ=0

x(ℓ−m)e−2πi ℓk
L =

e−2πimk

L

√
L

L−1∑

ℓ=0

x(ℓ)e−2πi ℓk
L = e−2πimk

L F [x]#(k),

for k ∈ {0, . . . , L− 1}. Therefore,

A[x](m,n) =
1√
L
(F [x] ∗ F [x′

m]) (n) =
1√
L

L−1∑

k=0

F [x](k)F [x](k − n)e2πi
m(k−n)

L
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=
1√
L

B∑

k=−B

F [x](k)F [x](k − n)e2πi
m(k−n)

L .

Let us assume that 4B < L and consider k ∈ {−B, . . . , B}. First, suppose that n ∈ (−L
2 ,−2B) ∩ Z.

Then, it follows that

k − n ∈ [−B − n,B − n] ∩ Z ⊂
(
B,

L

2
+B

)
∩ Z

and since L−B ≥ L
2 +B, it follows that F [x](k − n) = 0. Therefore,

A[x](m,n) = 0.

Secondly, suppose that n ∈ (2B, L
2 ] ∩ Z. Then, one has

k − n ∈ [−B − n,B − n] ∩ Z ⊂
[
−L

2
−B,−B

)
∩ Z

and L
2 −B > B implies F [x](k − n) = 0. Thus,

A[x](m,n) = 0.

What remains is the case 4B ≥ L: Note that by {−2B, . . . , 2B} = {0, . . . , L−1} mod L the proposition
is trivial in this case.
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