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Abstract

Phase retrieval refers to the problem of recovering some signal (which is often
modelled as an element of a Hilbert space) from phaseless measurements. It has
been shown that, in the deterministic setting, phase retrieval from frame coefficients
is always unstable in infinite dimensional Hilbert spaces [7] and possibly severely ill-
conditioned in finite dimensional Hilbert spaces [7].

Recently, it was also shown that phase retrieval from measurements induced by
the Gabor transform with Gaussian window function is stable when one is willing to
accept a more relaxed semi-global stability regime [1].

We present first evidence that this semi-global stability regime allows one to do
phase retrieval from measurements induced by the discrete Gabor transform in such
a way that the corresponding stability constant only scales linearly in the space di-
mension. To this end, we utilise well-known reconstruction formulae which have been
used repeatedly in recent years [6, 12, 18, 20].

1 Introduction

Phase retrieval generally alludes to the non-linear inverse problem of recovering some
signal (which in this paper will be modelled by x ∈ C

L) from phaseless measurements.
Some of its more well-known applications include ptychography for coherent diffraction
imaging [15,19,23,26] and audio processing [11,13,17]. It has been shown that the phase
retrieval problem for frames in finite-dimensional Hilbert spaces [7] and a forteriori in
finite-dimensional reflexive Banach spaces [2] is always stable, which elicits the question:
Why are we still concerned with stability estimates for phase retrieval from discrete Gabor
measurements? The reason is that phase retrieval for frames in infinite-dimensional spaces
is always unstable [2,7] and in addition one can construct sequences of finite-dimensional
subspaces of infinite-dimensional Hilbert spaces along with frames for which the stability
constant of phase retrieval increases exponentially in the dimension of the constructed
subspaces [7]. Recent research [1] into the infinite dimensional phase retrieval problem has,
however, led us to believe that the instability of phase retrieval is not an insurmountable
obstacle to reconstruction. It was shown that stability can be restored for examples that
exhibit a disconnectedness in the measurements by only reconstructing the phase semi-
globally or in an atoll sense. Furthermore, it was shown in [14] that such disconnectedness
in the measurements is the only source of instabilities for phase retrieval. The most
prominent of these examples certainly consists of the Gaussian window g(t) := e−πt2 in
conjunction with the signals

f+
λ (t) := g(t− λ) + g(t+ λ) and f−

λ (t) := g(t− λ)− g(t+ λ)

depicted in figure 1. When λ increases, the Gaussian bumps in the signals f±
λ start to

move further apart effectively generating what we call a time gap whose length depends
linearly on λ. It can be shown, see [3], that the measurements generated by the continuous
Gabor transform with Gaussian window of the signals f±

λ have distance on the order of
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Figure 1: The most prominent example for instability of phase retrieval with continuous
Gabor measurements.

e−λ2
in the standard Sobolev space W 1,2(R2) and that one can therefore not stably retrieve

f±
λ from continuous Gabor transform measurements. Similar phenomena can be observed
for the discrete setting considered in this paper and we do therefore propose the same
paradigm as in [1] and try to recover signals in a more semi-global fashion than is usual
in the phase retrieval literature up to this point.

One should note that in recent years a variety of stability result for phase retrieval have
been proven. Some highlights of this research include:

i. The PhaseLift method [8,10] which guarantees stable recovery from O(L logL) ran-
domly chosen Gaussian measurements with high probability.

ii. The research on polarisation for phase retrieval [4,5,21] in which the authors supple-
ment an existing measurement ensemble in order to obtain a phase retrieval problem
that is efficiently and stably solvable.

iii. Wirtinger flow and related methods [9, 24, 25] which offer stability guarantees for
sufficiently many randomly chosen Gaussian measurements.

iv. The eigenvector-based angular synchronisation approach [16] which relies on a cer-
tain weak form of invertibility of the phase retrieval problem to prove a stability
result for deterministic measurement systems.

In some way or another, all of these results are based on different setups than ours: As
opposed to the papers referenced in item i. and iii., we will not work with a probabilistic
measurement system but with a deterministic one. We will also not supplement our
measurement ensemble as is done in the results referenced in item ii. and we will not work
with the weak form of invertibility that is present in the paper referenced in item iv. In
fact, we will consider the two well-known formulae (1) and (2) presented in section 2 which
are heavily used to develop methods for exact phase retrieval from Gabor measurements
in the literature [12, 18, 20]. We show that through a further analysis of the formulae
(1) and (2), one can derive stability results for some of those methods and therefore also
for phase retrieval in general. Our stability results come with constants that scale only
linearly in the space dimension at the cost of relaxing the notion of stability to resemble
the one proposed in [1].

Outline In section 2, we present the reader with the uniqueness results and the formulae
on which our stability results hinge. In section 3, we utilise the ambiguity function relation
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(2) in order to show that phase retrieval can be stably done based on the considerations
in [6,22]. In section 4, we use the autocorrelation relation (1) in order to show that phase
retrieval can be done stably utilising results from [12,18]. As the proofs of our main results
are a bit technical, they appear separately in section 5.

2 Prerequisites

Let x, ϕ ∈ C
L. We define the discrete Gabor transform (DGT) of x with window function

ϕ to be

Vϕ[x](m,n) :=
1√
L

·
L−1∑

ℓ=0

x(ℓ)ϕ(ℓ−m)e−2πi ℓn
L , m, n = 0, . . . , L− 1.

Here, and throughout this paper, the indexing is understood to be periodic. In particular,
we use the convention ϕ(ℓ) = ϕ(ℓ mod L), for ℓ ∈ Z. Introducing the linear operator
Π(m,n) : C

L → C
L, for m,n ∈ {0, . . . , L− 1}, as

Π(m,n)[ϕ](ℓ) :=
1√
L

· ϕ(ℓ−m)e2πi
ℓn
L , ℓ = 0, . . . , L− 1,

allows us to write
Vϕ[x](m,n) =

(
x,Π(m,n)[ϕ]

)

where (·, ·) denotes the standard inner product on C
L. Another helpful way of looking at

the DGT is to view it as a collection of windowed Fourier transforms. For this purpose,
we denote xm(ℓ) := x(ℓ)ϕ(ℓ−m) and obtain

Vϕ[x](m,n) = F [xm] (n),

where F : CL → C
L denotes the discrete Fourier transform (DFT)

F [x](k) :=
1√
L

·
L−1∑

ℓ=0

x(ℓ)e−2πi ℓk
L , k = 0, . . . , L− 1,

with inverse

F−1[x](ℓ) =
1√
L

·
L−1∑

k=0

x(k)e2πi
kℓ
L , ℓ = 0, . . . , L− 1.

We are interested in the recovery of signals x ∈ C
L from the measurements

Mϕ[x](m,n) := |Vϕ[x](m,n)|2, m, n = 0, . . . , L− 1.

It is immediately obvious that x ∈ C
L and any signal xeiα, with α ∈ R, will yield the

same measurements Mϕ[xe
iα] = Mϕ[x]. Therefore, to have any chance of recovery, we

will actually view Mϕ as an operator defined on the quotient space C
L/S1, where S1

denotes the unit circle. Under various assumptions, which we will lay out in section 2,
one can show that Mϕ : CL/S1 → R

L×L
+ is an injective operator and that phase retrieval

is therefore possible up to a global phase factor. In addition, it was shown in [7] that Mϕ

has a uniformly continuous inverse whenever it is injective. In particular,

inf
α∈R

‖x− eiαy‖2 . ‖Mϕ[x]−Mϕ[y]‖F,

for all x, y ∈ C
L, where ‖·‖F denotes the Frobenius norm and the estimate depends on a

constant which might increase exponentially in the space dimension L. Our phase retrieval
problem is therefore possibly ill-conditioned.
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As mentioned before, the number of known uniqueness results has seen a stark rise in
the past few years. In the following, we want to mention those that inspired our stability
estimates. Let us start by remarking that almost all uniqueness results can be traced back
to two consequential formulae which are well-known in the literature. The first of these
relates the Gabor measurements to the autocorrelation of xm.

Lemma 2.1 Let x, ϕ ∈ C
L. Then,

F−1 [Mϕ[x](m, ·)] (n) = 1√
L

·
(
xm ∗ x#m

)
(n), m, n = 0, . . . , L− 1, (1)

holds with x#m(ℓ) = xm(−ℓ) and xm(ℓ) = x(ℓ)ϕ(ℓ−m).

Proof See appendix B. �

The right-hand side in the above result is the aforementioned autocorrelation of xm

(
xm ∗ x#m

)
(n) =

L−1∑

ℓ=0

x(ℓ)x(ℓ− n)ϕ(ℓ− n−m)ϕ(ℓ−m).

The second of these formulae relates the Gabor measurements to the ambiguity function
of x and the ambiguity function of ϕ.

Lemma 2.2 Let x, ϕ ∈ C
L. Then,

F [Mϕ[x]] (m,n) =
(
x,Π(−n,m)[x]

)
·
(
Π(−n,m)[ϕ], ϕ

)
, m, n = 0, . . . , L− 1. (2)

holds, where F [Mϕ[x]] denotes the two-dimensional Fourier transform which is the com-
position of two standard DFTs.

Proof See appendix B. �

The right-hand side in the above result is the multiplication of the ambiguity function of
x with the ambiguity function of ϕ.

First, we want to consider the uniqueness results from [6, 22] which are based solely on
equation (2).

Corollary 2.3 (Theorem 2.2 in [6], p. 547) Let x, ϕ ∈ C
L with

(
ϕ,Π(m,n)[ϕ]

)
6= 0, m, n = 0, . . . , L− 1.

Then, x is uniquely determined by the measurements Mϕ[x] up to global phase.

While this result is exceptionally nice in the sense that it does not impose any requirements
on the signal, it is quite restrictive in its requirements on the window function ϕ. For
instance, windows ϕ with support length |suppϕ| smaller than L/2 will always have zero
entries in their ambiguity function.

Corollary 2.4 (Theorem 2.4 in [6], p. 549) Let x, ϕ ∈ C
L with x nowhere-vanishing,

i.e. suppx = {0, . . . , L− 1}, and
(
ϕ,Π(m,n)[ϕ]

)
6= 0, m = 0, 1, n = 0, . . . , L− 1.

Then, x is uniquely determined by the measurements Mϕ[x] up to global phase.

This result is in some sense orthogonal to corollary 2.3: Its requirements on the window
function are moderate while its requirements on the signal are rather restrictive. Of course,
we might also infer a variety of results that are based on different trade-offs between
restrictions on the window and restrictions on the signal.
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Corollary 2.5 Let x, ϕ ∈ C
L and let ∆time ∈ {0, . . . , ⌊L/2⌋ − 1} be a maximum time

separation parameter. Suppose that x has at most ∆time consecutive zeroes in between two
non-zero entries and assume that

(
ϕ,Π(m,n)[ϕ]

)
6= 0, m = 0, . . . ,∆time + 1, n = 0, . . . , L− 1.

Then, x is uniquely determined by the measurements Mϕ[x] up to global phase.

Proof According to equation (2), we can reconstruct
(
x,Π(m,n)[x]

)
, form = 0, . . . ,∆time+

1, n = 0, . . . , L−1, from the measurements Mϕ[x]. Applying the inverse Fourier transform
in n yields

F−1
[(
x,Π(m,·)[x]

)]
(n) = x(n)x(n−m), m = 0, . . . ,∆time + 1, n = 0, . . . , L− 1.

As x has at most ∆time consecutive zeros between two non-zero entries, we can recover
it up to global phase by phase propagation. We start with any non-zero entry x(ℓ0) of x
which we reconstruct up to global phase by computing its absolute value

|x(ℓ0)|2 = F−1
[(
x,Π(0,·)[x]

)]
(ℓ0)

and setting its phase value to be zero. Then, we propagate phase information to the next
non-zero entry x(ℓ1) (which by assumption satisfies ℓ1 − ℓ0 ≤ ∆time + 1) by the formula

F−1
[(
x,Π(m,·)[x]

)]
(n) = x(n)x(n−m)

with m ≤ ∆time + 1. �

Secondly, we will work with a uniqueness result first proven in [12] and later generalised
in [18] based mostly on equation (1). Consider the following statement.

Corollary 2.6 (Theorem 1 in [12], p. 639) Let x, ϕ ∈ C
L. Suppose that

suppϕ = [n0, n0 + ℓϕ] mod L,

with n0, ℓϕ ∈ {0, . . . , L − 1} and ℓϕ < L/2. Suppose additionally that F [|ϕ|2] and x are
nowhere-vanishing as well as that ℓϕ−1 and L are coprime. Then, x is uniquely determined
by the measurements Mϕ[x] up to global phase.

The work in [18] shows that one can also derive this result as part of a graph-theoretical
formulation for phase retrieval. Consider the graph G = (V,E) with vertex set V :=
suppx and edge between the vertices ℓ ∈ V and ℓ′ ∈ V if |ℓ − ℓ′| = ℓϕ mod L. The
connectedness of this graph will then allow us to do phase retrieval under some mild
additional assumptions.

Corollary 2.7 (Theorem 3.1 in [18], p. 373) Let x, ϕ ∈ C
L. Suppose that

suppϕ = [n0, n0 + ℓϕ] mod L,

with n0, ℓϕ ∈ {0, . . . , L− 1} and ℓϕ < L/2 as well as that F [|ϕ|2] is nowhere-vanishing. If
G = (V,E) is connected, then x is uniquely determined by the measurements Mϕ[x] up to
global phase.
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Figure 2: For x(ℓ), η ∈ C, the difference in absolute values satisfies ||x(ℓ)|−|x(ℓ)+η|| ≤ |η|
such that the map |·| : C → R+ can be seen to be stable. At the same time, we could
choose x(ℓ) = −ε/2, η = ε such that |α − β| = π ≥ π/ε · |η|, where α, β ∈ (−π, π] denote
the principal values of the arguments of x(ℓ), x(ℓ + η) ∈ C, respectively. Evidently, the
function which maps complex numbers to their phase is unstable at the origin.

3 Stability estimates based on the ambiguity function rela-

tion

3.1 The simplest case: Mild restrictions on the window

First, we will derive stability estimates by employing equation (2) and corollaries 2.3–2.5.
In doing this, we want to start with the very simple setup of corollary 2.4.

One can immediately see that there are some intricacies to the phase retrieval problem for
signals x ∈ C

L. One of those is dealing with entries x(ℓ) of x which have small (or even
vanishing) magnitude. For these entries, extracting the phase of x(ℓ) is unstable (or even
impossible). See figure 2 for a depiction of this situation. Because of this, we will mostly
work with a graph capturing only the larger entries of our signals. For x, y ∈ C

L and a
tolerance parameter δ0 > 0, we define the vertex set

V := V (δ0, x, y) := {ℓ ∈ {0, . . . , L− 1} | |x(ℓ)|, |y(ℓ)| > δ0}. (3)

In the following, we will work with the ℓ2-norm on subsets of {0, . . . , L−1}. For the vertex
set V , we define

‖x‖ℓ2(V ) :=

(
∑

ℓ∈V
|x(ℓ)|2

) 1
2

.

We may now prove the following result on the stability of magnitude retrieval.

Lemma 3.1 (Stability of magnitude retrieval) Let x, y ∈ C
L be two signals. Let

δ0, δ1 > 0 be tolerance parameters, and let V = V (δ0, x, y) be as in equation (3). Then,

‖|x| − |y|‖ℓ2(V ) ≤
1

2δ0δ1
· ‖Mϕ[x]−Mϕ[y]‖F +

1

2δ0
· ε

holds, with

ε := ε(δ1, x, y, ϕ) :=




L−1∑

ℓ=0
|F [|ϕ|2](ℓ)|≤δ1

∣∣∣F
[
|x|2 − |y|2

]
(ℓ)
∣∣∣
2




1
2

.
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Proof Let us start with the simple fact

||x(ℓ)| − |y(ℓ)||2 =
∣∣|x(ℓ)|2 − |y(ℓ)|2

∣∣2

||x(ℓ)|+ |y(ℓ)||2
.

Summing over ℓ ∈ V and taking the square root gives the ℓ2-norm which we might estimate
by

‖|x| − |y|‖ℓ2(V ) =

(
∑

ℓ∈V

∣∣|x(ℓ)|2 − |y(ℓ)|2
∣∣2

(|x(ℓ)|+ |y(ℓ)|)2

) 1
2

≤ 1

2δ0
·
∥∥|x|2 − |y|2

∥∥
ℓ2(V )

.

According to Plancherel’s theorem, we have
∥∥|x|2 − |y|2

∥∥
ℓ2(V )

≤
∥∥|x|2 − |y|2

∥∥
2
=
∥∥F
[
|x|2 − |y|2

]∥∥
2
.

We are now ready to bring in equation (2) in the form of

F [Mϕ[x]] (m, 0) = F
[
|x|2
]
(m) · F [|ϕ|2] (m).

To do this stably, the norm ‖F [|x|2 − |y|2]‖2 may be split into a region where |F [|ϕ|2]| is
small and one where it is not. We get

∥∥F
[
|x|2 − |y|2

]∥∥
2
≤




L−1∑

ℓ=0
|F [|ϕ|2](ℓ)|>δ1

|F [Mϕ[x]−Mϕ[y]] (ℓ, 0)|2

|F [|ϕ|2] (ℓ)|2




1
2

+




L−1∑

ℓ=0
|F [|ϕ|2](ℓ)|≤δ1

∣∣∣F
[
|x|2 − |y|2

]
(ℓ)
∣∣∣
2




1
2

,

which immediately gives rise to the estimate

∥∥F
[
|x|2 − |y|2

]∥∥
2
≤ 1

δ1
· ‖F [Mϕ[x]−Mϕ[y]] (·, 0)‖2 + ε.

Finally, we can use a quite crude estimate and Plancherel’s theorem in two dimensions to
see that

‖F [Mϕ[x]−Mϕ[y]] (·, 0)‖2 ≤ ‖F [Mϕ[x]−Mϕ[y]]‖2 = ‖Mϕ[x]−Mϕ[y]‖F
holds. Putting all our calculations together yields

‖|x| − |y|‖ℓ2(V ) ≤
1

2δ0δ1
· ‖Mϕ[x]−Mϕ[y]‖F +

1

2δ0
· ε

as desired. �

Remark 3.2 We arrive at the stability constant

1

2δ0δ1

for magnitude retrieval. Note that δ0 enters the constant as the map x 7→ x2 is not
Lipschitz continuous close to zero and we do therefore need a lower bound on the absolute
value of our signal entries. Note also that δ1 and the error term ε encapsulate the instability
of recovering F [|x|2] through equation (2). In particular, the division by F [|ϕ|2] can only
be stable if F [|x|2] is small whenever the divisor is small. In the setting of the above
theorem this can (somewhat heuristically) be rephrased to: ’Whenever F [|ϕ|2] falls below
the threshold δ1, the signals must have well-aligned frequency supports in the sense that
F [|x|2 − |y|2] is small’.
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Next, we can deal with the retrieval of the phases. First, in accordance with corollary 2.4,
we will only use the entries (x,Π(1,m)x) and (ϕ,Π(1,m)ϕ), where m ∈ {0, . . . , L − 1}, for
our recovery which allows us to do phase propagation on adjacent entries. To be precise,
we can propagate the phase from x(ℓ) to x(ℓ + 1) (or back), for any ℓ ∈ {0, . . . , L − 1}.
Mathematically this fact can probably best be described by supplying an edge set E in
addition to the vertex set V from (3). We will put an edge between ℓ ∈ V and ℓ′ ∈ V if

|ℓ− ℓ′| = 1 mod L.

The resulting graph will subsequently be denoted by G = (V,E) and the connected com-
ponents of G will be called temporal islands.

Theorem 3.3 (Stability of phase retrieval on a single temporal island) Consider
two signals x, y ∈ C

L, a window ϕ ∈ C
L and two tolerance parameters δ0, δ1 > 0. Let

G = (V,E) be defined as above (with V = V (δ0, x, y) as in equation (3)) and assume that
G is connected. Then,

inf
α∈R

∥∥x− eiαy
∥∥
ℓ2(V )

≤ 1

δ0δ1
·
(
1

2
+

min{‖x‖∞, ‖y‖∞}
δ0

· |V |
)
· ‖Mϕ[x]−Mϕ[y]‖F

+
1

δ0
·
(
1

2
+

min{‖x‖∞, ‖y‖∞}
δ0

· |V |
)
· ε.

holds, with

ε := ε(δ1, x, y, ϕ) :=




L−1∑

ℓ=0
|(ϕ,Π(0,ℓ)ϕ)|≤δ1

∣∣(x,Π(0,ℓ)x)− (y,Π(0,ℓ)y)
∣∣2

+2 ·
L−1∑

ℓ=0
|(ϕ,Π(1,ℓ)ϕ)|≤δ1

∣∣(x,Π(1,ℓ)x)− (y,Π(1,ℓ)y)
∣∣2




1
2

.

Proof See section 5. �

Remark 3.4 The stability constant derived in the above result is

1

δ0δ1
·
(
1

2
+

min{‖x‖∞, ‖y‖∞}
δ0

· |V |
)

and consists of a contribution from the magnitude retrieval estimate in lemma 3.1 and
the phase retrieval estimate presented in section 5. In addition to the dependencies on
δ0 and δ1, the new constant depends on the supremum norm of our signals and the size
of our graph G. The latter should be seen as a mild ill-conditioning as |V | is potentially
on the order of L such that the stability constant might increase linearly in the space
dimension. As mentioned before, the constant δ1 > 0 and the error ε reflect a trade-off:
Do we use the ambiguity function of the window (Π(σ,ℓ)[ϕ], ϕ) with possibly small values at
the expense of a larger stability constant? As before our stability result is only meaningful
if the difference of the ambiguity functions of the signals is small on the region where the
ambiguity function of the window is small.

To make this theorem and, in particular, the definition of the error ε more palpable,
we plot the ambiguity functions (ϕ,Π(m,n)[ϕ]) of four commonly used window functions

ϕ ∈ C
L in figure 3. For reference, we use L = 1024 and the windows

ϕgauss(ℓ) = e−π
(ℓ−512)2

322 , ϕhamming(ℓ) :=

{
25
46 − 21

46 cos
(
2πℓ
63

)
if ℓ = 0, . . . , 63,

0 else,

ϕhann(ℓ) :=

{
1
2 − 1

2 cos
(
2πℓ
63

)
if ℓ = 0, . . . , 63,

0 else,
ϕrectangular(ℓ) :=

{
1 if ℓ = 0, . . . , 63,

0 else.
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(a) The ambiguity function of the Gaussian
window.
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(b) The ambiguity function of the Hamming
window.
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(c) The ambiguity function of the Hann win-
dow.
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(d) The ambiguity function of the rectangular
window.

Figure 3: Visualisation of the ambiguity functions (ϕ,Π(m,n)[ϕ]) of some commonly used
window functions.
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ℓδ0

Figure 4: The function f+
λ from the introduction after discretisation. Entries of the

resulting signal that fall below a certain threshold δ0 > 0 are coloured in blue. The
remaining entries are coloured in green and make up the vertex set V . In this picture, we
can clearly see the two temporal islands.

ℓδ0

ϕ(ℓ)

Figure 5: A similar picture to figure 4. Here, we see how the Gaussian window ϕ can be
used to ’build a bridge’ from one island to the other.

One can immediately see that the ambiguity functions (ϕ,Π(m,n)[ϕ]) are always concen-
trated around the origin (0, 0) of the time-frequency plane. In particular, it is neces-
sary for stable recovery of signals x, y ∈ C

L through equation (2) that the quantity
|(x,Π(m,n)[x])− (y,Π(m,n)[y])| is not too big away from the origin.

3.2 Multiple islands and different restrictions on the window

The phase propagation procedure presented as part of the proof of theorem 3.3 carries
over quite naturally to the case where the graph G = (V,E) is disconnected rather than
connected. We say the graph G has multiple temporal islands. It is of course interesting to
consider this case, as there is a wide range of signals for which G will be disconnected. For
instance, recordings of human speech will typically consist of multiple temporal islands as
speakers tend to leave short gaps (i.e. modes of silence) in between words. In addition, a
discretisation of the signal f+

λ from the introduction as depicted in figure 4 will yield two
temporal islands.

In addition, one should note that until now we have only worked with minimal restrictions
on the ambiguity function (ϕ,Π(m,n)[ϕ]) of the window ϕ, i.e. we have only utilised the
ambiguity function for m = 0, 1. In the following, we want to generalise our result to be
able to use (ϕ,Π(m,n)[ϕ]) for m = 0, . . . ,∆time+1, where ∆time < L/2. The application for
this more general theorem is signals which have multiple temporal islands (i.e. connected
components of the graphG from subsection 3.1) together with a window ϕwhose ambiguity
function has a rather large support. In this case, we may be able to harness corollary 2.5
in order to propagate phase stably across a temporal gap. See figure 5 for a visualisation.

To precisely formulate this bridging procedure, we will redefine our graph G. Note that
the graph from the prior two theorems may be recovered from our new construction by
using the right parameters and, in particular, the following construction is more general
than the one in subsection 3.1. We let the vertex set V of our new graph be identical to
the one of our old graph and thus be defined by equation (3). Furthermore, we draw an
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edge between ℓ ∈ V and ℓ′ ∈ V if

1 ≤ |ℓ− ℓ′| ≤ ∆time + 1 mod L.

With this graph at our hands, we can formulate our stability result in full generality.

Theorem 3.5 (Main theorem) Consider two signals x, y ∈ C
L, a window ϕ ∈ C

L,
two tolerance parameters δ0, δ1 > 0 and a maximum time separation parameter ∆time ∈
{0, . . . , ⌊L/2⌋ − 1} as in corollary 2.5. Let G = (V,E) be defined as above (with V =
V (δ0, x, y) as in equation (3)) and assume that G has K connected components with vertex
sets {Vk}Kk=1. Then,

inf
α1,...,αK∈R

K∑

k=1

∥∥x− eiαky
∥∥
ℓ2(Vk)

≤ 1

δ0δ1

·
(
1

2
+

min{‖x‖∞, ‖y‖∞}
δ0

·
K∑

k=1

|Vk|
)

· ‖Mϕ[x]−Mϕ[y]‖F

+
1

δ0
·
(
1

2
+

min{‖x‖∞, ‖y‖∞}
δ0

·
K∑

k=1

|Vk|
)

· ε

holds, with

ε := ε(δ1, x, y, ϕ) :=


2 ·

∆time+1∑

k=0

L−1∑

ℓ=0
|(ϕ,Π(k,ℓ)ϕ)|≤δ1

∣∣(x,Π(k,ℓ)x)− (y,Π(k,ℓ)y)
∣∣2




1
2

.

Proof See section 5. �

3.3 Frequency islands

It is well known that the time (or space) domain and the frequency domain are intimately
related through the Fourier transform. A textbook example of this relation is Parseval’s
formula

(x, y) = (F [x],F [y])

which effectively states that the DFT F : CL → C
L is a unitary operator. In this light,

it is not surprising that we can derive stability results for recovering F [x] from the mea-
surements Mϕ[x] resembling the theorems derived above by instrumentalising Parseval’s
identity. We will refer to these results as dual results to the theorems proven before.

Let us start by applying Parseval’s equality to equation (2) which yields

F [Mϕ[x]] (m,n) =
(
F [x],F [Π(−n,m)[x]]

)
·
(
F [Π(−n,m)[ϕ]],F [ϕ]

)
.

In addition,
F [Π(−n,m)[x]] = Π(m,n)[F [x]] · e−2πimn

L

holds, such that

F [Mϕ[x]] (m,n) =
(
F [x],Π(m,n)[F [x]]

)
·
(
Π(m,n)[F [ϕ]],F [ϕ]

)
. (4)

From this equation, which can be viewed as dual to equation (2), we can deduce the
stability of phase retrieval on frequency islands. Let us introduce the graph Ĝ = (V̂ , Ê)
with vertex set

V̂ := V̂ (δ0, x, y) := {ℓ ∈ {0, . . . , L− 1} | |F [x](ℓ)|, |F [y](ℓ)| > δ0}
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and edge between ℓ ∈ V̂ and ℓ′ ∈ V̂ if

1 ≤ |ℓ− ℓ′| ≤ ∆freq + 1 mod L,

for a fixed (but arbitrary) ∆freq ∈ {0, . . . , ⌊L/2⌋ − 1}. Now, consider the following result.

Theorem 3.6 (Stability for frequency gaps) Consider two signals x, y ∈ C
L, a win-

dow ϕ ∈ C
L, two tolerance parameters δ0, δ1 > 0 and a maximum frequency separation

parameter ∆freq ∈ {0, . . . , ⌊L/2⌋−1}. Let Ĝ = (V̂ , Ê) be defined as above and assume that

Ĝ has K connected components with vertex sets {V̂k}Kk=1. Then,

inf
α1,...,αK∈R

K∑

k=1

∥∥F [x]− eiαkF [y]
∥∥
ℓ2(V̂k)

≤ 1

δ0δ1

·
(
1

2
+

min{‖F [x]‖∞, ‖F [y]‖∞}
δ0

·
K∑

k=1

|V̂k|
)

· ‖Mϕ[x]−Mϕ[y]‖F

+
1

δ0
·
(
1

2
+

min{‖F [x]‖∞, ‖F [y]‖∞}
δ0

·
K∑

k=1

|V̂k|
)

· ε

holds, with

ε := ε(δ1, x, y, ϕ) :=


2 ·

∆freq+1∑

k=0

L−1∑

ℓ=0
|(ϕ,Π(ℓ,k)ϕ)|≤δ1

∣∣(x,Π(ℓ,k)x)− (y,Π(ℓ,k)y)
∣∣2




1
2

.

Proof See section 5. �

Remark 3.7 In the preceding pages, we have presented approaches to dealing with time
and frequency gaps in signals when doing phase retrieval. Unfortunately, it is not so
clear how to extend this work to the more general case of time-frequency gaps considered
in [1]. It is likely that one has to come up with a different approach that allows one to
do phase propagation in frequency and time direction simultaneously to actually handle
time-frequency gaps.

We want to end this section by remarking that from our proof strategy for the frequency
result a straight-forward dual version of corollary 2.5 follows.

Corollary 3.8 Let x, ϕ ∈ C
L and let ∆freq ∈ {0, . . . , ⌊L/2⌋− 1} be a maximum frequency

separation parameter. Suppose that F [x] has at most ∆freq consecutive zeroes in between
two non-zero entries and assume that

(
ϕ,Π(m,n)[ϕ]

)
6= 0, m = 0, . . . , L− 1, n = 0, . . . ,∆freq − 1.

Then, x is uniquely determined by the measurements Mϕ[x] up to global phase.

4 Stability estimates based on the autocorrelation relation

The goal of this section is to apply the techniques we have developed thus far to the
setup proposed in [18]. Our approach will be designed to work with signals x ∈ C

L

which potentially have very small entries and with window functions ϕ ∈ C
L for which

the Fourier transform of the magnitude squared F [|ϕ|2] potentially has zero entries. We
emphasise these two particularities as the stability result developed in [18] (theorem 4.2
on p. 375) relies on window functions for which F [|ϕ|2] is nowhere-vanishing, and while
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one may apply it to signals x ∈ C
L with very small entries, the resulting stability constant

will be ill-behaved as it depends inversely on minℓ∈suppx|x(ℓ)|2.

Remember from section 2 that the authors of [18] consider the graph G = (V,E) with
vertex set V := supp(x) and an edge between ℓ ∈ V and ℓ′ ∈ V if

|ℓ− ℓ′| = ℓϕ mod L,

where ℓϕ + 1 denotes the length of the window function. They do then propose to recon-
struct the magnitude of a signal x ∈ C

L using the ambiguity function relation (2) (as in
section 3) and propagate phase from one entry of x to another if their indices have distance
ℓϕ using equation (1). As before, we will work with local lower bounds on the ambiguity
function of the window and the signal in order to ascertain that all the aforedescribed
steps can be carried out stably.

In order to introduce the local lower bounds on the signal, we will have to modify the graphs
presented in [18] slightly: Let us consider two signals x, y ∈ C

L, a tolerance parameter
δ0 > 0 and a window function ϕ ∈ C

L such that

supp(ϕ) = [n0, n0 + ℓϕ] mod L,

for n0 ∈ {0, . . . , L− 1} and ℓϕ ∈ {0, . . . , ⌈L/2⌉ − 1}. Introduce the graph G = (V,E) with
vertex set

V := V (δ0, x, y) := {ℓ ∈ {0, . . . , L− 1} | |x(ℓ)|, |y(ℓ)| > δ0} (5)

and edge between ℓ ∈ V and ℓ′ ∈ V if

|ℓ− ℓ′| = ℓϕ mod L. (6)

We can then state the following stability estimate whose proof is inspired by the proof of
corollary 2.7.

Theorem 4.1 Consider two signals x, y ∈ C
L and a window ϕ ∈ C

L such that

supp(ϕ) = [n0, n0 + ℓϕ] mod L,

for n0 ∈ {0, . . . , L − 1} and ℓϕ ∈ {0, . . . , ⌈L/2⌉ − 1}. Let δ0, δ1 > 0 be two tolerance
parameters and assume that the graph G = (V,E) constructed as in (5), (6) is connected.
Then,

inf
α∈R

∥∥x− eiαy
∥∥
ℓ2(V )

≤ 1

δ0

·
(

1

2δ1
+

(2L)
1
2 min{‖x‖∞, ‖y‖∞}

δ0|ϕ(n0)ϕ(n0 + ℓϕ)|
· |V |

)
· ‖Mϕ[x]−Mϕ[y]‖F +

1

2δ0
· ε

holds, with

ε := ε(δ1, x, y, ϕ) :=




L−1∑

ℓ=0
|F [|ϕ|2](ℓ)|≤δ1

∣∣∣F
[
|x|2 − |y|2

]
(ℓ)
∣∣∣
2




1
2

.

Proof See section 5. �

Remark 4.2 The stability constant in this result is

1

δ0
·
(

1

2δ1
+

(2L)
1
2 min{‖x‖∞, ‖y‖∞}

δ0|ϕ(n0)ϕ(n0 + ℓϕ)|
· |V |

)
.
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The part of the constant coming from the magnitude retrieval is exactly the same as in
the results in section 3 and was explained in section 3. The part of the constant coming
from phase retrieval is a slight modification from the constants in section 3. It is mostly
the term |ϕ(n0)ϕ(n0 + ℓϕ)| in the denominator that deserves some attention. It is clear
that phase propagation based on the relation

F−1 [Mϕ[x](n, ·)] (ℓϕ) = x(n0 + ℓϕ + n)x(n0 + n)ϕ(n0)ϕ(n0 + ℓϕ)

will be unstable whenever the ends of the window ϕ(n0) and ϕ(n0 + ℓϕ) are close to zero.
In particular, the reconstruction method proposed by the authors of [12, 18] benefits from
windows for which |ϕ(n0)ϕ(n0+ℓϕ)| is large such as the Hamming or rectangular windows.

As remarked upon before, in contrast to the stability result in [18], our result is applicable
even when the Fourier transform of the magnitude squared of the window function F [|ϕ|2]
has vanishing entries. We pay for this indulgence by having 1

2δ0δ1
as the stability constant

for magnitude retrieval and incurring the extra error term ε
2δ0

when compared to the result
from [18]. We should also note that in [18] the stability constant for the phase retrieval
estimate scales like

√
|suppx| · L3 (which becomes L7/2 for nowhere-vanishing signals)

whereas our stability constant merely scales like |V | ·L1/2 (which becomes L3/2 for signals
whose entries have absolute values in excess of the threshold δ0).

Remark 4.3 (On disconnected graphs and duality results) Finally, we would like
to remark that one can prove a result resembling theorem 4.1 in the case where G has
K ∈ N connected components whose vertex sets are denoted by V1, . . . , VK ⊂ V . In fact,
the proof works by repeating the proof of theorem 4.1 with every mention of α and V
replaced by αk and Vk, respectively, for a fixed k ∈ {1, . . . ,K}, and then summing the
resulting estimates over k.

Similarly, we may utilise lemma 2.1 in order to deduce that

F [Mϕ[x](·, n)] (m) =
1√
L

·
L−1∑

k=0

F [x](k)F [x](k −m)F [ϕ](k −m− n)F [ϕ](k − n)

holds, for x, ϕ ∈ C
L and m,n = 0, . . . , L−1. This in turn can be used to deduce a stability

result which is essentially the Fourier-dual of theorem 4.1.

5 Proofs of the main results

Proof of theorem 3.3 Let α ∈ R be arbitrary. According to proposition A.1, we have

|x(ℓ)− eiαy(ℓ)| ≤ ||x(ℓ)| − |y(ℓ)|| +min{|y(ℓ)|, |x(ℓ)|} ·
∣∣∣∣
x(ℓ)

|x(ℓ)| − eiα
y(ℓ)

|y(ℓ)|

∣∣∣∣

whenever x(ℓ) and y(ℓ) do not vanish. Squaring and summing over ℓ ∈ V yields the
estimate

∥∥x− eiαy
∥∥
ℓ2(V )

≤ ‖|x| − |y|‖ℓ2(V ) +

(
∑

ℓ∈V
min{|y(ℓ)|, |x(ℓ)|}2 ·

∣∣∣∣
x(ℓ)

|x(ℓ)| − eiα
y(ℓ)

|y(ℓ)|

∣∣∣∣
2
) 1

2

.

The magnitude difference ‖|x| − |y|‖ℓ2(V ) was already estimated in lemma 3.1. The phase
difference can be estimated by

min{‖x‖∞, ‖y‖∞} ·
(
∑

ℓ∈V

∣∣∣∣
x(ℓ)

|x(ℓ)| − eiα
y(ℓ)

|y(ℓ)|

∣∣∣∣
2
) 1

2

.
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ℓ0ℓ = uℓ1

σℓ
1 = −1

G = (V,E)

(a) For the left neighbour of ℓ0, we obtain the
one element sequences (uℓ

1 = ℓ) and (σℓ
1 = −1).

ℓ0ℓ = uℓ2 uℓ1

σℓ
2 = σℓ

1 = −1

G = (V,E)

(b) An example with two element sequences in
a graph with |V | = 6.

ℓ0 ℓ = uℓ3uℓ1 uℓ2

σℓ
3 = σℓ

2 = σℓ
1 = 1

G = (V,E)

(c) An example with three element sequences
in a graph with |V | = 6.

ℓ0ℓ′
G = (V,E)

(d) The arrows indicate the realisations of ℓ′ as

part of a sequence (uℓ
j)

M(ℓ)
j=1 . The upper arrow

indicates that ℓ′ comes up as uℓ′

1 . The lower

arrow indicates that ℓ′ comes up as uℓ′−1
1 .

Figure 6: Visualisation of our graph construction.

As in the proof of corollary 2.5, we will make use of a phase propagation procedure. We
start with a vertex ℓ0 ∈ V that has graph distance at most |V |/2 to all other vertices in
V . Then, we pick α ∈ R such that

∣∣∣∣
x(ℓ0)

|x(ℓ0)|
− eiα

y(ℓ0)

|y(ℓ0)|

∣∣∣∣ = 0.

According to proposition A.2, we have

∣∣∣∣
x(ℓ)

|x(ℓ)| − eiα
y(ℓ)

|y(ℓ)|

∣∣∣∣ ≤
∣∣∣∣
x(ℓ0)

|x(ℓ0)|
− eiα

y(ℓ0)

|y(ℓ0)|

∣∣∣∣+
2
∣∣∣x(ℓ)x(ℓ0)− y(ℓ)y(ℓ0)

∣∣∣
max{|x(ℓ)x(ℓ0)|, |y(ℓ)y(ℓ0)|}

=
2
∣∣∣x(ℓ)x(ℓ0)− y(ℓ)y(ℓ0)

∣∣∣
max{|x(ℓ)x(ℓ0)|, |y(ℓ)y(ℓ0)|}

≤ 2

δ20
·
∣∣∣x(ℓ)x(ℓ0)− y(ℓ)y(ℓ0)

∣∣∣,

for all ℓ ∈ V . Additionally, we have

F−1
[(
x,Π(σ,·)[x]

)]
(ℓ) = x(ℓ)x(ℓ− σ),

for x ∈ C
L and σ ∈ Z, which will finally allow us to bring equation (2) into the proof. If

ℓ ∈ V is a neighbour of ℓ0, then ℓ− σ = ℓ0 for some σ ∈ {±1}. Thus,
∣∣∣∣
x(ℓ)

|x(ℓ)| − eiα
y(ℓ)

|y(ℓ)|

∣∣∣∣ ≤
2

δ20
·
∣∣F−1

[(
x,Π(σ,·)[x]

)
−
(
y,Π(σ,·)[y]

)]
(ℓ)
∣∣.

In the same way, one may prove that for any ℓ ∈ V \{ℓ0}, there exist sequences (uℓj)
M(ℓ)
j=1 ⊂

V , (σℓ
j)

M(ℓ)
j=1 ⊂ {±1}, with M(ℓ) ≤ |V |/2, such that

∣∣∣∣
x(ℓ)

|x(ℓ)| − eiα
y(ℓ)

|y(ℓ)|

∣∣∣∣ ≤
2

δ20
·
M(ℓ)∑

j=1

∣∣∣F−1
[(

x,Π(σℓ
j ,·)[x]

)
−
(
y,Π(σℓ

j ,·)[y]
)]

(uℓj)
∣∣∣.

For a visualisation of the sequences (uℓj)
M(ℓ)
j=1 ⊂ V and (σℓ

j)
M(ℓ)
j=1 ⊂ {±1} see figure 6.

Squaring and summing over ℓ ∈ V yields the estimate

∥∥∥∥
x

|x| − eiα
y

|y|

∥∥∥∥
ℓ2(V )

≤ 2

δ20
·


∑

ℓ∈V




M(ℓ)∑

j=1

∣∣∣F−1
[(

x,Π(σℓ
j ,·)[x]

)
−
(
y,Π(σℓ

j ,·)[y]
)]

(uℓj)
∣∣∣




2


1
2

.
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An application of Jensen’s inequality implies

∥∥∥∥
x

|x| − eiα
y

|y|

∥∥∥∥
ℓ2(V )

≤ 2
1
2 |V | 12
δ20

·


∑

ℓ∈V

M(ℓ)∑

j=1

∣∣∣F−1
[(

x,Π(σℓ
j
,·)[x]

)
−
(
y,Π(σℓ

j
,·)[y]

)]
(uℓj)

∣∣∣
2




1
2

,

as M(ℓ) ≤ |V |/2. Next, we will consider the sequences (uℓj)
M(ℓ)
j=1 ⊂ V and (σℓ

j)
M(ℓ)
j=1 ⊂ {±1}

a little bit more precisely. One can see that any ℓ′ ∈ V is realised at most |V |/2 times

as an element in a sequence (uℓj)
M(ℓ)
j=1 : Once when ℓ = ℓ′ in which case uℓ

′

M(ℓ′) = ℓ′ by the

construction of our sequence, and subsequently at most |V |/2−1 times when propagating
phase to vertices ℓ ∈ V that are on the other side of ℓ′ when viewed from ℓ0. Consider
subfigure 6d for a visualisation of this argument. Consequently, we might very crudely
estimate

∥∥∥∥
x

|x| − eiα
y

|y|

∥∥∥∥
ℓ2(V )

≤ |V |
δ20

·


 ∑

σ∈{±1}

∑

ℓ∈V

∣∣F−1
[(
x,Π(σ,·)[x]

)
−
(
y,Π(σ,·)[y]

)]
(ℓ)
∣∣2



1
2

.

Using Plancherel’s theorem yields

∥∥∥∥
x

|x| − eiα
y

|y|

∥∥∥∥
ℓ2(V )

≤ |V |
δ20

·


 ∑

σ∈{±1}

L−1∑

ℓ=0

∣∣(x,Π(σ,ℓ)[x]
)
−
(
y,Π(σ,ℓ)[y]

)∣∣2



1
2

. (7)

According to equation (2), we have

F [Mϕ[x]] (ℓ,−σ) =
(
x,Π(σ,ℓ)[x]

)
·
(
Π(σ,ℓ)[ϕ], ϕ

)

which suggests splitting the estimate (7) into a term where the ambiguity function of the
window (Π(σ,ℓ)[ϕ], ϕ) is lower bounded and one where it is upper bounded. The former
may then be estimated by

|V |
δ20δ1

·



∑

σ∈{±1}

L−1∑

ℓ=0
|(Π(σ,ℓ)[ϕ],ϕ)|>δ1

|F [Mϕ[x]−Mϕ[y]] (ℓ,−σ)|2




1
2

while the latter is upper bounded by |V |/δ20 · ε. The proof is finished after another crude
estimate and an application of Plancherel’s theorem. Namely,



∑

σ∈{±1}

L−1∑

ℓ=0
|(Π(σ,ℓ)[ϕ],ϕ)|>δ1

|F [Mϕ[x]−Mϕ[y]] (ℓ,−σ)|2




1
2

≤




L−1∑

ℓ,k=0

|F [Mϕ[x]−Mϕ[y]] (ℓ, k)|2



1
2

= ‖Mϕ[x]−Mϕ[y]‖F

yields

∥∥x− eiαy
∥∥
ℓ2(V )

≤ 1

δ0δ1
·
(
1

2
+

min{‖x‖∞, ‖y‖∞}
δ0

· |V |
)
· ‖Mϕ[x]−Mϕ[y]‖F

+
1

δ0
·
(
1

2
+

min{‖x‖∞, ‖y‖∞}
δ0

· |V |
)
· ε. �
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Proof of theorem 3.5 The proof is highly similar to the one of theorem 3.3. In par-
ticular, we can follow the proof of the latter (while replacing every mention of α and V
by αk and Vk, respectively, for a fixed k ∈ {1, . . . ,K}) up to the point where we find the

sequences (uℓj)
M(ℓ)
j=1 ⊂ V and (σℓ

j)
M(ℓ)
j=1 ⊂ {±1}. These must be replaced by appropriately

defined sequences (uℓj)
M(ℓ)
j=1 ⊂ V and (mℓ

j)
M(ℓ)
j=1 ⊂ {−∆time − 1, . . . ,∆time + 1} \ {0}. The

ensuing estimates work in the exact same way as the ones in the proof of theorem 3.3. �

Proof of theorem 3.6 The proof of this theorem is overwhelmingly similar to the proof
of theorem 3.5. Therefore, we will not present it in full but rather focus on the few
estimates were the two proofs differ. Replacing x by F [x] and y by F [y] in the opening
lines of the proof of lemma 3.1 allows us to deduce

‖|F [x]| − |F [y]|‖ℓ2(V ) ≤
1

2δ0
·
∥∥∥F
[
|F [x]|2

]
−F

[
|F [y]|2

]∥∥∥
2
. (8)

Here, we bring in equation (4) in the form of

F [Mϕ[x]] (0, ℓ) = F
[
|F [x]|2

]
(ℓ) · F

[
|F [ϕ]|2

]
(ℓ)

and split the right-hand side of inequality (8) into a region on which the autocorrelation
(divided by

√
L) of the window F [|F [ϕ]|2] = (ϕ ∗ ϕ#)/

√
L is smaller than the threshold

δ1 and one on which it is not. On the part, on which the autocorrelation of the window
falls below δ1, our right-hand side is certainly bounded by ε. On the other part, we may
use equation (4) in the above form to find that the right-hand side is bounded by

1

2δ0δ1
·




L−1∑

ℓ=0
|(ϕ∗ϕ#)(ℓ)|/

√
L≤δ1

|F [Mϕ[x]−Mϕ[y]](0, ℓ)|2




1
2

.

As in the proof of lemma 3.1, we deduce that

‖|F [x]| − |F [y]|‖ℓ2(V̂ ) ≤
1

2δ0δ1
· ‖Mϕ[x]−Mϕ[y]‖F +

1

2δ0
· ε.

Using proposition A.1, allows us to conclude that it remains to estimate
∥∥∥∥
F [x]

|F [x]| − eiαk
F [x]

|F [x]|

∥∥∥∥
ℓ2(V̂k)

,

for some αk ∈ (−π, π] and k ∈ {1, . . . ,K}. This estimate is obtained by employing
equation (4) with m ∈ {−∆freq − 1, . . . ,∆freq + 1} \ {0}. Considerations resembling the
one in the proof of theorem 3.5 lead us to the estimate

∥∥∥∥
F [x]

|F [x]| − eiαk
F [x]

|F [x]|

∥∥∥∥
ℓ2(V̂k)

≤ |V̂k|
δ20δ

1
· ‖Mϕ[x]−Mϕ[y]‖F +

|V̂k|
δ20

· ε

and thus to the result in theorem 3.6. �

Proof of theorem 4.1 We split the proof into a magnitude retrieval and a phase retrieval
estimate. For the magnitude retrieval, we obtain

‖|x| − |y|‖ℓ2(V ) ≤
1

2δ0δ1
· ‖Mϕ[x]−Mϕ[y]‖F +

1

2δ0
· ε

according to lemma 3.1. For the phase retrieval, we need to consider a new strategy based
on equation (1). According to proposition A.1, we have to deal with

(
∑

ℓ∈V
min{|y(ℓ)|, |x(ℓ)|}2 ·

∣∣∣∣
x(ℓ)

|x(ℓ)| − eiα
y(ℓ)

|y(ℓ)|

∣∣∣∣
2
) 1

2

,

17



where α ∈ R. Using Hölder’s inequality, this is easily estimated by

min{‖x‖∞, ‖y‖∞} ·
∥∥∥∥
x

|x| − eiα
y

|y|

∥∥∥∥
ℓ2(V )

.

It remains to estimate the ℓ2-norm of the phase difference on V . Let us start with a vertex
ℓ0 ∈ V that has graph distance at most |V |/2 from any other vertex in V . We pick α ∈ R

such that ∣∣∣∣
x(ℓ0)

|x(ℓ0)|
− eiα

y(ℓ0)

|y(ℓ0)|

∣∣∣∣ = 0.

Then, for any neighbour ℓ ∈ V of ℓ0, we have

∣∣∣∣
x(ℓ)

|x(ℓ)| − eiα
y(ℓ)

|y(ℓ)|

∣∣∣∣ ≤
2
∣∣∣x(ℓ)x(ℓ0)− y(ℓ)y(ℓ0)

∣∣∣
max{|x(ℓ)x(ℓ0)|, |y(ℓ)y(ℓ0)|}

≤ 2

δ20
·
∣∣∣x(ℓ)x(ℓ0)− y(ℓ)y(ℓ0)

∣∣∣

according to proposition A.2 and the definition of the vertex set. By the definition of the
edge set, we find that ℓ = ℓ0 + ℓϕ or ℓ = ℓ0 − ℓϕ holds modulo L. In the former case, it
follows from equation (1) that

F−1 [Mϕ[x](ℓ0 − n0, ·)] (ℓϕ) =
1√
L

· x(ℓ)x(ℓ0)ϕ(n0)ϕ(n0 + ℓϕ),

due to the support properties of the window ϕ and ℓϕ < L/2. In the latter case, we need
to switch the sign of ℓϕ in the formula above to obtain

F−1 [Mϕ[x](ℓ0 − n0, ·)] (−ℓϕ) =
1√
L

· x(ℓ0)x(ℓ)ϕ(n0 + ℓϕ)ϕ(n0).

Iteratively, one might show that for any ℓ ∈ V \ {ℓ0}, there exist sequences (uℓj)
M(ℓ)
j=1 ⊂ V

and (σℓ
j)

M(ℓ)
j=1 ⊂ {±1}, j = 1, . . . ,M(ℓ), where M(ℓ) ≤ |V |/2, such that

∣∣∣∣
x(ℓ)

|x(ℓ)| − eiα
y(ℓ)

|y(ℓ)|

∣∣∣∣ ≤
2 · L 1

2

δ20 |ϕ(n0)ϕ(n0 + ℓϕ)|

·
M(ℓ)∑

j=1

∣∣∣F−1
[
Mϕ[x](u

ℓ
j − n0, ·)−Mϕ[y](u

ℓ
j − n0, ·)

]
(σℓ

jℓϕ)
∣∣∣.

Much like in the proof of theorem 3.3, squaring, summing over ℓ, applying Jensen’s in-
equality and analysing the structure of the graph such that we see that each vertex of G

comes up at most |V | − 1 times as part of a sequence (uℓj)
M(ℓ)
j=1 yields an upper bound for

the phase differences in terms of

|V |
2

1
2

·




L−1∑

ℓ,k=0

∣∣F−1 [Mϕ[x](ℓ, ·)−Mϕ[y](ℓ, ·)] (k)
∣∣2



1
2

=
|V |
2

1
2

· ‖Mϕ[x]−Mϕ[y]‖F,

where the equality comes straight from Plancherel’s theorem. Putting the thus obtained
phase estimate and the magnitude estimate together yields the statement. �

A Pointwise estimates for the stability results

Let us start by the typical splitting of signal differences into phase and magnitude part.
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Proposition A.1 Let x, y ∈ C
L. Then, we have for all α ∈ R that

|x(ℓ)− eiαy(ℓ)| ≤ ||x(ℓ)| − |y(ℓ)|| +min{|y(ℓ)|, |x(ℓ)|} ·
∣∣∣∣
x(ℓ)

|x(ℓ)| − eiα
y(ℓ)

|y(ℓ)|

∣∣∣∣

holds for all ℓ ∈ {0, . . . , L− 1} such that x(ℓ) 6= 0 and y(ℓ) 6= 0, and that

|x(ℓ)− eiαy(ℓ)| = ||x(ℓ)| − |y(ℓ)||

holds for all ℓ ∈ {0, . . . , L− 1} such that x(ℓ) = 0 or y(ℓ) = 0.

Proof Let α ∈ R and ℓ ∈ {0, . . . , L− 1} such that x(ℓ) 6= 0 and y(ℓ) 6= 0. Then,

|x(ℓ)− eiαy(ℓ)| =
∣∣∣∣|x(ℓ)| ·

x(ℓ)

|x(ℓ)| − eiα|y(ℓ)| · y(ℓ)

|y(ℓ)|

∣∣∣∣

=

∣∣∣∣(|x(ℓ)| − |y(ℓ)|) · x(ℓ)

|x(ℓ)| +
(

x(ℓ)

|x(ℓ)| − eiα
y(ℓ)

|y(ℓ)|

)
· |y(ℓ)|

∣∣∣∣

≤ ||x(ℓ)| − |y(ℓ)||+ |y(ℓ)| ·
∣∣∣∣
x(ℓ)

|x(ℓ)| − eiα
y(ℓ)

|y(ℓ)|

∣∣∣∣.

If x(ℓ) = 0, then

|x(ℓ)− eiαy(ℓ)| = |y(ℓ)| = ||x(ℓ)| − |y(ℓ)||. �

In addition, a result about phase propagation will be handy.

Proposition A.2 Let x, y ∈ C
L and α ∈ R. Then, we have that

∣∣∣∣
x(k)

|x(k)| − eiα
y(k)

|y(k)|

∣∣∣∣ ≤
∣∣∣∣
x(ℓ)

|x(ℓ)| − eiα
y(ℓ)

|y(ℓ)|

∣∣∣∣+
2
∣∣∣x(k)x(ℓ)− y(k)y(ℓ)

∣∣∣
max{|x(k)x(ℓ)|, |y(k)y(ℓ)|}

holds, for all ℓ, k ∈ {0, . . . , L− 1} such that x(k), x(ℓ), y(k), y(ℓ) 6= 0.

Proof We compute

∣∣∣∣
x(k)

|x(k)| − eiα
y(k)

|y(k)|

∣∣∣∣ =
∣∣∣∣∣
x(k)x(ℓ)x(ℓ)

|x(k)||x(ℓ)|2 − eiα
y(k)y(ℓ)y(ℓ)

|y(k)||y(ℓ)|2

∣∣∣∣∣

=

∣∣∣∣∣

(
x(ℓ)

|x(ℓ)| − eiα
y(ℓ)

|y(ℓ)|

)
x(k)x(ℓ)

|x(k)x(ℓ)| + eiα
y(ℓ)

|y(ℓ)|

(
x(k)x(ℓ)

|x(k)x(ℓ)| −
y(k)y(ℓ)

|y(k)y(ℓ)|

)∣∣∣∣∣

≤
∣∣∣∣
x(ℓ)

|x(ℓ)| − eiα
y(ℓ)

|y(ℓ)|

∣∣∣∣+
∣∣∣∣∣
x(k)x(ℓ)

|x(k)x(ℓ)| −
y(k)y(ℓ)

|y(k)y(ℓ)|

∣∣∣∣∣.

Then, we make use of the well-known trick

∣∣∣∣
z0
|z0|

− z1
|z1|

∣∣∣∣ =
|z0|z1| − |z0|z1|

|z0z1|
≤ |z0 − z1|+ ||z0| − |z1||

|z0|
≤ 2|z0 − z1|

|z0|

and its symmetry in z0 and z1. �

B Proofs of the most fundamental formulae

For convenience of the reader, we want to present the proofs of the two formulae presented
in section 2. We want to stress that these formulae are well-known in the literature and
have repeatedly been used to prove uniqueness results in recent years [6, 12, 18, 20]. We
start with lemma 2.1.
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Proof of lemma 2.1 We consider

Mϕ[x](m,n) = |F [xm](n)|2 = F [xm](n) · F [xm](n) = F [xm](n) · F [x#m](n)

=
1√
L

· F [xm ∗ x#m](n),

where we used the definitions xm(ℓ) = x(ℓ)ϕ(ℓ −m) and x#m(ℓ) = xm(−ℓ) together with
the well-known convolution theorem for the DFT. Applying the inverse Fourier transform
concludes the proof. �

Next, we prove lemma 2.2.

Proof of lemma 2.2 According to lemma 2.1, we have

F−1 [Mϕ[x](m, ·)] (n) = 1√
L

·
L−1∑

ℓ=0

x(ℓ)x(ℓ− n)ϕ(ℓ− n−m)ϕ(ℓ−m)

and therefore

F [Mϕ[x](m, ·)] (n) = 1√
L

·
L−1∑

ℓ=0

x(ℓ)x(ℓ+ n)ϕ(ℓ+ n−m)ϕ(ℓ−m)

holds. Taking the DFT in m yields

F [Mϕ[x]] (m,n) =
1

L
·
L−1∑

ℓ,k=0

x(ℓ)x(ℓ+ n)ϕ(ℓ+ n− k)ϕ(ℓ − k)e−2πi km
L

=
1

L
·
L−1∑

ℓ=0

x(ℓ)x(ℓ+ n)e−2πi ℓm
L ·

L−1∑

k=0

ϕ(ℓ+ n− k)ϕ(ℓ− k)e2πi
(ℓ−k)m

L

=
(
x,Π(−n,m)[x]

)
·
(
Π(−n,m)[ϕ], ϕ

)
. �
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