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Rima Alaifari, Ingrid Daubechies, Philipp Grohs, Rujie Yin

Abstract

The problem of phase retrieval is to determine a signal f ∈ H, with H a Hilbert space,
from intensity measurements |F (ω)|, where F (ω) := 〈f, ϕω〉 are measurements of f with
respect to a measurement system (ϕω)ω∈Ω ⊂ H.

Although phase retrieval is always stable in the finite dimensional setting whenever it is
possible (i.e. injectivity implies stability for the inverse problem), the situation is drastically
different if H is infinite-dimensional: in that case phase retrieval is never uniformly stable
[8, 4]; moreover the stability deteriorates severely in the dimension of the problem [8].

On the other hand, all empirically observed instabilities are of a certain type: they occur
whenever the function |F | of intensity measurements is concentrated on disjoint sets Dj ⊂ Ω,

i.e., when F =
∑k

j=1
Fj where each Fj is concentrated on Dj (and k ≥ 2).

Motivated by these considerations we propose a new paradigm for stable phase retrieval
by considering the problem of reconstructing F up to a phase factor that is not global, but
that can be different for each of the subsets Dj , i.e., recovering F up to the equivalence

F ∼
k∑

j=1

eiαjFj .

We present concrete applications (for example in audio processing) where this new notion
of stability is natural and meaningful and show that in this setting stable phase retrieval can
actually be achieved, for instance if the measurement system is a Gabor frame or a frame of
Cauchy wavelets.

1 Introduction

1.1 Problem Formulation

Suppose we are given a complex-valued function F : Ω → C on some (discrete or continuous)
domain Ω, and we can observe only its absolute values |F |. The problem of phase retrieval is
to reconstruct F from these measurements, up to a global phase (meaning that the functions F
and eiαF , α ∈ R, are not distinguished).

Such problems are encountered in a wide variety of applications, ranging from X-ray crys-
tallography and microscopy to audio processing and deep learning algorithms [32, 12, 23, 35];
accordingly, a large body of literature treating the mathematical and algorithmic solution of
phase retrieval problems exists, with new approaches emerging in recent years [36, 9, 6].

In these applications, the domain of definition Ω is a finite set, for example Ω = {1, . . . , N}
and the function F arises from a finite number of linear measurements

F (k) = 〈x, ak〉 :=
d∑

l=1

xl (ak)l, ak ∈ C
d, k = 1, . . . , N

of some signal x ∈ C
d which one seeks to recover. Such problems arise as finite approximations

to various real-world problems; in diffraction imaging, for instance, the setup can be interpreted
as measuring the diffraction pattern of x, modulated with a number of different filters.
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Classically, the numerical solution of phase retrieval problems is treated via alternating pro-
jection algorithms that are simple to implement but lack a theoretical understanding [14, 16].
More recent work [9] has introduced an algorithm named PhaseLift, based on a reformula-
tion of the N-dimensional phase retrieval problem as a semidefinite optimization problem in an
N2−dimensional space. As shown in [9], PhaseLift succeeds with high probability in recovering
the signal x, up to a global phase, in a randomized setting (meaning that the vectors a1, . . . , aN
are drawn at random); moreover, PhaseLift is stable if the measurements |〈x, an〉| are corrupted
by additive noise. More recently it has been shown that gradient descent algorithms, together
with a careful guess for their starting value, achieve the same theoretical guarantees while being
vastly more efficient [10].

1.2 Infinite-Dimensional Phase Retrieval

The vector x ∈ C
d typically arises as a digital representation of a physical quantity. For instance,

x could represent a finite-dimensional approximation of a continuous function describing an
infinite-dimensional object. This naturally leads one to consider the more general infinite-
dimensional phase retrieval problem, where one seeks to recover a signal f ∈ H, with H a
(possibly infinite-dimensional) Hilbert space, from the phaseless measurements |F (ω)|, with

F (ω) := 〈f, ϕω〉, ω ∈ Ω, (1.1)

and where (ϕω)ω∈Ω ⊂ H is a (possibly infinite) parameterized family of measurement functions,
typically normalized so that ‖ϕω‖ = 1 for all ω ∈ Ω.

We mention a few examples.

• Consider the classical n-dimensional phase retrieval problem of reconstructing a function
f from intensity measurements of its Fourier transform f̂ . For a compact subset D ⊂ R

n

let H = L2(D) and consider f ∈ H. Let F (ω) = f̂(ω), ω ∈ Ω, where Ω is either all of
R
n or a suitable discrete subset of Rn (since f has compact support, there exist ϕω ∈ H

such that F (ω) = 〈f, ϕω〉). Applications of this setup include coherent diffraction imaging,
X-ray crystallography and many more, in which one typically can measure only intensities,
corresponding to |〈f, ϕω〉|2. The classical phase retrieval problem is in general not uniquely
solvable [1]; recent work [30] has established the uniqueness of the solution, if the intensities
of the Fourier transforms of certain structured modulations of f are measured instead.

• Related to the previous example, the work [34] studies the reconstruction of a bandlimited
real-valued function f from unsigned samples (|f(ω)|)ω∈Ω with Ω a suitable (discrete)
sampling set; more general settings are considered in [2, 11]. Note that the real-valued
case (where only the sign ±1 is missing from each measurement) is qualitatively simpler
than the complex-valued case where each measurement lacks a phase factor eiα, α ∈ R.

• In order to overcome the problem of nonuniqueness of the classical phase retrieval problem
and to be able to apply techniques in diffraction imaging also to extended objects, one
often records local illuminations of different overlapping parts of the object, which math-
ematically amounts to a windowed (or short-time) Fourier transform (STFT) F = Vgf,
where for f ∈ L2(R)

Vgf(x, y) :=

∫

R

f(t)g(t− x)e−2πitydt (1.2)

is defined by the window g ∈ L2(R) and the parameters (x, y) may vary over a discrete
or continuous subset of R2. See [32] for an excellent survey on phase retrieval from STFT
measurements.
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• Another instance of phase retrieval from STFT measurements arises in audio processing
applications involving phase vocoders. A phase vocoder [15] is a tool that allows to modify
an audio signal f by transforming its STFT. Given f , a phase vocoder first calculates
Vgf(x, y) and then modifies it to some H(x, y) before it transforms back to the time
domain by taking the inverse (discrete) STFT of H. Typical modifications include time-
scaling and pitch shifting. In general, the modified H may not result in an STFT of any
signal. This leads to the so-called phase coherence problem [26] in which one aims to make
modifications such that the modified H is an approximate STFT. One possible approach
is to modify the amplitude |F (x, y)| only in a first step to obtain |H(x, y)| and to then
recover the phase of H(x, y) in a coherent way.

• More recent work [35] seeks to reconstruct a signal f ∈ L2(R) from the magnitudes
|F (x, 2j)| of semidiscrete wavelet measurements, where F (x, 2j) = |wψf(x, 2j)|, with j ∈ N,

x ∈ R and wψf(x, y) :=
∫
R
f(t)|y|1/2ψ(y(t− x))dt 1; the collection of these magnitudes is

sometimes called the scalogram. The corresponding phase retrieval problem arises in e.g.
the reconstruction of f from the output of its so-called scattering transform as defined in
[27].

In all these examples it is extremely challenging to establish whether f is uniquely deter-
mined, up to a global phase; the problem is still not well understood except in special cases.

1.3 (In-)stability of (In-)finite Dimensional Phase Retrieval

Even if the uniqueness problem was completely solved, this would however not yet be sufficient
for applications. Since physical measurements are always corrupted by noise and/or uncertainties
and numerical algorithms always introduce rounding errors, solving a real-world phase retrieval
problem mandates a reconstruction that is stable, meaning that there should exist a (moderate)
constant C > 0 such that

inf
α∈R

∥∥F − eiαG
∥∥
B ≤ C ‖|F | − |G|‖B′ , (1.3)

for B, B′ suitable Hilbert (or Banach) spaces.
For phase retrieval problems in spaces of finite (and fixed) dimensions, stability and unique-

ness typically go hand in hand [7, 9]. The situation changes drastically when we consider
infinite-dimensional spaces. A central finding of [4, 8] is that all infinite-dimensional phase re-
trieval problems are unstable and that the stability of finite-dimensional phase retrieval problems
deteriorates severely as the dimension grows.

Example 1.1 (Stability deterioration as the dimension grows). We borrow the following example
from recent work [8] to which we refer for more detail. Consider the real-valued Paley-Wiener
space

PW = {f ∈ L2(R,R) : supp f̂ ⊆ [−π, π]},
and the measurement vectors {ϕn}n∈Z of elements ϕn := sinc(· − n

4 ). As shown in [34], each
f ∈ PW is uniquely determined by {|〈f, ϕn〉|}n∈Z, up to a global sign ±1 (note that this setup
is real-valued). More precisely, suppose that f, g ∈ PW with |〈f, ϕn〉| = |〈g, ϕn〉| for all n ∈ Z.
Then there exists σ ∈ {−1, 1} with f = σ · g.

Now we consider an approximate problem restricted to the finite-dimensional subspaces Vn ⊂
PW , defined as

Vn := span {ϕ4ℓ : ℓ ∈ [−n, n]}.
1Note that our wψf(x, y) corresponds to Wψf(x, 1/y) in the notation of [35].
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The space Vn consists of f ∈ PW for which f̂ is the restriction to [−π, π] of a trigonometric
polynomial of degree n. Then, [8] gives the explicit construction of fm, gm ∈ V2m such that, for
some m−independent constant c > 0,

min
τ∈{±1}

‖fm − τgm‖L2(R) > c(m+ 1)−123m ‖(|〈f, ϕn〉| − |〈g, ϕn〉|)n∈Z‖ℓ2(Z) , ∀m ∈ N. (1.4)

Comparing this with (1.3), we find that the corresponding Lipschitz constant C thus decays at
least exponentially fast as the dimension of the problem grows.
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Figure 1: Functions f5 and g5 satisfying (1.4)
and with supp f̂5 = supp ĝ5 = [−π, π]. While
supn∈Z

∣∣|f5(n4 )| − |g5(n4 )|
∣∣ is small, ‖f5−g5‖L2(R)

and ‖f5 + g5‖L2(R) are not.

Figure 1 shows the plot of the functions fn and gn for n = 5, illustrating that the two functions
have almost identical absolute value despite being significantly different from each other. Note
that the two functions in this example are large on two distant domains and small in between. It
turns out, as shown in [4], that in the real-valued setting this is the generic form of instabilities:
similar pairs of functions can be constructed in much more general settings, in particular for all
previously mentioned examples of phase retrieval problems. Consequently, stable phase retrieval
is not possible for infinite-dimensional problems, or even for their fine-grained (and thus finite-
but high-dimensional) approximations.

1.4 Three Observations and A New Paradigm

The instability for infinite-dimensional phase retrieval problems and for their high-resolution
approximations makes one wonder whether phase retrieval is even advisable in these situations.
It is instructive, however, to take a closer look at how this instability manifests itself in concrete
phase retrieval attempts. We offer the following three observations.

1. One way to construct phase retrieval problems leading to instabilities is to consider func-
tions F =

∑k
j=1 Fj with Fj concentrated on disjoint sets Dj that are far apart from each

other. In the sequel, we will occasionally refer to functions of this form as multi-component
functions. Clearly, any function of the form

G :=
k∑

j=1

eiαjFj (1.5)

for any α1, . . . , αk ∈ R, will result in an instability: the absolute values of F,G will be
very close, due to the fact that the Fj ’s are concentrated on well-separated disjoint sets,
but F − eiγG need not be small at all, even for the optimal choice of γ.

The functions constructed in Example 1.1 are of this form with k = 2. In fact, in the
general real-valued case it can be shown that all instabilities arise in this way [4]. In the
complex case, it is not known whether this is the case as well.
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2. One can investigate how existing concrete phase retrieval algorithms deal with finite-
dimensional approximations to the multi-component F introduced above, under item 1.
Figure 2 gives a typical albeit simplistic example. Consider an analytic2 signal f , e.g.
as in Figure 2a, whose Gabor transform F = Vϕf (as in Definition 1.2 with ϕ = e−πt

2
)

has two disconnected components F1, F2, s.t. F = F1 + F2, see Figure 2b. Given the
Gabor transform measurements |F | = |Vϕf |, a reconstruction f rec is obtained using the
phase retrieval algorithm in [35], and the corresponding code from http://www.di.ens.

fr/~waldspurger/wavelets_phase_retrieval.html
3. The relative error ‖f−f rec‖/‖f‖

in time domain is 8.61×10−1 whereas the relative error ‖|F | − |F rec|‖/‖F‖ in the Gabor
transform measurements is 1.27×10−5. The large difference in the time domain (the ratio
of the relative errors exceeds 5 × 104; see also Figure 2c), is due to a non-uniform but
piecewise constant phase shift in the time-frequency domain. Let F rec1 , F rec2 be the two
components of F rec corresponding to F1, F2. As shown in Figure 2d, F1 and F rec1 differ
by only a phase factor eiα1 ; similarly F2 and F rec2 differ by eiα2 ; however, α1 6= α2. So
although it is hopeless to expect that any numerical algorithm could stably distinguish
such a multi-component function from

∑k
j=1 e

iαjFj , algorithmic reconstruction up to the

equivalence
∑k

j=1 Fj ∼
∑k

j=1 e
iαjFj seems to work quite well.

3. Being able to reconstruct (if this is indeed feasible) multi-component functions of the type∑k
j=1 Fj up to the equivalence

∑k
j=1 Fj ∼

∑k
j=1 e

iαjFj is of interest only if this equivalence
is itself meaningful.

Our third observation is that this is indeed the case for some applications. We list two
examples here.
Our first example is concerned with coherent diffraction imaging. Measurements of X-
ray diffraction intensities by complicated objects allow reconstruction of the object under
certain constraints on the object; see, e.g. [25] for a mathematical uniqueness result, or
[28] for an algorithm effective for fine-grained reconstruction on physical data sets that are
supported in a finite volume, without the exact location of this support being known. In its
most stripped-down form, the problem consists in reconstruction of a function f supported
on a compact domain Ω from measurements of the magnitude of its Fourier transform,
|f̂(ξ)|. For the plain-vanilla scattering implementation, the physical object to be recon-
structed is illuminated by a plane wave. If the object is more extended, illumination by
more narrowly concentrated beams might be easier to achieve; one then acquires scatter-
ing intensity data for each of several different beam illuminations, which corresponds to
replacing the Fourier transform by an STFT. The methodology which we just described
is widely used; for example in Fourier Ptychography [22, 31, 38].

If the scene to be reconstructed consisted of several disjoint objects, separated by “empty”
space (the example in Figure 1 in [28] illustrates such an example), then reconstruction
of the individual objects might be numerically and mathematically much easier if it were
allowed to reconstruct each object up to a uniform phase (for complex f) or up to a
uniform sign (for real f). The simulation illustrated in Figure 2, for a 1-dimensional
Gabor transform, suggests as much.

Our second example is concerned with audio processing. It is well known that human audio
perception is insensitive to a “global phase change”. One way to show this is to start with

2i.e. f̂(ω) = 0, ∀ω < 0,
3The original algorithm works on magnitude measurements of wavelet transforms such as Morlet wavelets and

Cauchy wavelets. Here we apply it to dyadic Gabor wavelet, where the phenomenon of phase difference between
the initial and reconstructed signal persists.
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a (real-valued) audio signal f(t), with Fourier transform f̂(ξ), and carry out the following
operations: first, take its analytic representation fa by disrecarding its negative frequency
components: f̂a(ξ) := f̂(ξ)χξ>0; next multiply it by an arbitrary (but fixed) phase eiα,

f̂αa (ξ) := eiαf̂a(ξ). Finally we turn it back into the Fourier transform of a real-valued

function fα by “symmetrizing”, i.e. by setting f̂α(ξ) = eiαf̂(ξ)χξ>0 + e−iαf̂(−ξ)χξ<0

(note that f̂(−ξ) = f̂(ξ) because f is real-valued). Equivalently, fα can be expressed in
terms of the original signal f as fα(t) = cosα · f(t) + sinα · (Hf)(−t), where Hf is the
Hilbert transform of f . Then, even though the plot of f is typically very different from that
of fα (if α differs significantly from a multiple of 2π), the two sound the same to the human
ear, making them equivalent for most practical applications. Consider now an audio signal
f consisting of two “bursts” of sound, separated by a short stretch of silence, i.e. f(t) =
f1(t) + f2(t) , with supp f1 = [t1, T1] and supp f2 = [t2, T2] where t2−T1 > τ for some pre-
assigned positive τ (typically of the order of a few tenths of seconds). Figure 3a plots such
an example, for the utterance “cup, luck”, retrieved from the database at http://www.

antimoon.com/how/pronunc-soundsipa.htm, with “cup” corresponding to f1, “luck” to
f2. Because both f1 and f2 are highly oscillatory (as is customary for audio signals), Hf1
and Hf2 both have fast decay, and are negligibly small outside supp f1 = [t1, T1] and
supp f2 = [t2, T2], respectively. For such signals f , one can pick two different phases α1

and α2, and construct fα1,α2 = fα1
1 + fα2

2 ; the resulting audio signals again sound exactly
the same as the original f . On https://services.math.duke.edu/~rachel/research/

PhaseRetrieval/acoustic_result/acoustic_result.html, one can download and/or
listen to f and fα1,α2 .

We further note that signals remain undistinguishable to the human ear under a more
general class of transformations: even for signals f =

∑J
j=1 fj with J > 2 components,

in which the fj correspond to components Fj that are separated in the time-frequency
domain (but not necessarily in time, or in frequency) replacing each Fj by eiαjFj results
in a signal that sounds exactly like the original signal f (see Figure 4 for an example of
such a signal and its Gabor transform; on https://services.math.duke.edu/~rachel/

research/PhaseRetrieval/acoustic_result/acoustic_result.html one can listen to
this example and component-wise phase-shifted versions).

If one seeks to reconstruct f only within the equivalence class of audio signals that are
indistinguishable from f by human perception, then it is thus natural to treat all the
functions of type (1.5) as equivalent, for all choices of αj .

These observations suggest a new paradigm for stable phase retrieval: rather than aiming for
bounds of the form (1.3) (which we know do not exist), we investigate a weaker form of stability
that would be sufficient for this type of application: we study the stability of phase retrieval
subject to the equivalence

∑k
j=1 Fj ∼

∑k
j=1 e

iαjFj , that is, bounds of the form

inf
α1,...,αk∈R

k∑

j=1

∥∥Fj − eiαjGj
∥∥
B ≤ C ‖|F | − |G|‖B′ , (1.6)

where B, B′ are suitable Hilbert (or Banach) spaces and Fj , Gj any pairs of functions which
have their essential support contained in sets Dj .

The question of whether bounds of the form (1.6) can actually be established for examples
of practical interest will be the main subject of this article.
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(a) real(f) in time domain (b) |Vϕf | in time-frequency (TF) domain of Ga-
bor transform

(c) real(f − frec) in time domain (d) arg(Vϕf/Vϕf
rec) in TF domain

Figure 2: Phase retrieval on the Gabor measurements |Vϕf | of an analytic function f ; note
that in (2d), arg(Vϕf/Vϕf

rec) = αj , on the domain where Fj is large, j = 1, 2. The Gabor
measurements |Vϕf | consist of two components that are localized and well-separated in time,
as illustrated by (2a) and (2b). On the measurements of |Vϕf | shown in (2b) we applied the
algorithm in [35] to reconstruct a candidate f rec, which is markedly different from f , as shown
by (2c). However, a careful analysis of each of the components separately shows that the only
difference lies in a different phase factor (see (2d)): f rec = eiγ1f1 + eiγ2f2 for some γ1 6= γ2,
whereas f = f1 + f2.

1.5 Stability for Atoll Functions

To study this question mathematically, we first need to make it more precise. Figure 4 sug-
gests that a realistic model for Gabor transform measurements on acoustic signals are functions∑k

j=1 Fj where each Fj is “large” on a domain Dj , which we shall interpret as a strictly positive
lower bound on |Fj |. In practice, we expect that Fj may still have zeroes within Dj , which
means that there could be ”holes” in Dj (reasonably small neighborhoods of these zeroes) on
which |Fj | could not be bounded below away from zero. This motivates the following definition:

Definition 1.2 (Atoll domains). Let D ⊂ C be a domain. A domain D0 ⊂ D is called a hole
of D if D0 is simply connected and D0 ⊂ D. By definition, D is called a domain with disjoint
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(a) Audio signal f in time domain. (b) Time-frequency plot of the magnitude |F |
of the Gabor representation of f , with one sep-
arated component highlighted.

Figure 3: Audio signal “cup luck” and its Gabor measurements; both in the time domain and
in the time-frequency plane the two components are well-separated.

(a) Audio signal f in time domain. (b) Time-frequency plot of the magnitude |F |
of the Gabor representation of f , with one sep-
arated component highlighted.

Figure 4: Audio signal of a sound mixture of thunder, a bird call and a baby crying, together
with its Gabor measurements; although in this example there is no clear separation in either
time or frequency, one can carve out separated components in the time-frequency plane (one of
them is highlighted here).
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holes (Di
0)
l
i=1 if Di

0 is a hole of D for all i = 1, . . . , l and the sets Di
0, i = 1, . . . , l are pairwise

disjoint. For a set D with disjoint holes (Di
0)
l
i=1 we call D+ := D \ (⋃l

i=1D
i
0) an atoll domain.

The holes (Di
0)
l
i=1 are called lagoons of the atoll domain.

A prototypical domain with one hole is an annulus. More precisely, if for z ∈ C and s > r > 0
we denote by Br,s(z) the annulus

Br,s(z) := {w ∈ C : r < |w − z| < s},

then Br,s(z) is an atoll domain with one hole. (We shall use the notation Br(z) for the open
disc with radius r and center z.) Associated with a domain with holes we define the following
class of functions which will act as our model for the functions Fj mentioned in Section 1.4.

Definition 1.3. Suppose that D is a bounded atoll domain with disjoint lagoons (Di
0)
l
i=1 and let

∆ ≥ δ > 0. Then we define the function class H(D, (Di
0)
l
i=1, δ,∆) of atoll functions associated

with D and (Di
0)
l
i=1 as follows:

H(D, (Di
0)
l
i=1, δ,∆) :=

{
F ∈ C1(D) : max{|F (z)|, |∇|F |(z)|} ≤ ∆ for all z ∈ D, |F (z)| ≥ δ for all z ∈ D+

}
. (1.7)

The interpretation of Definition 1.3 is straightforward. It consists of functions on D which
are large on an atoll D+ and possibly small on a number of lagoons Di

0 which are encircled by
an atoll D+. See Figure 5 for an illustration.

D
0

3

D
0

1

D
0

2

D

+D

Figure 5: Left: An atoll domain with three lagoons: D is the open domain enclosed by the
outer curve, D1

0, D
2
0 and D3

0 are the three “holes” or lagoons, and D+, the shaded area, is the
atoll domain. Right: although most atoll islands (in their standard geographic meaning) are
sickle-shaped, with lagoons in the shape of large bays, narrowly connected with the sea or ocean
surrounding the island, some are indeed similar to the figure on the left; given here is the shape
of Teeraina island, a coral atoll that is part of Kirabati, at about 4.71◦ North latitude and
160.76◦ West longitude.

The functions we want to consider for phase retrieval (and for which we will show that phase
retrieval is uniformly stable) will correspond to a linear combination of atoll functions, each
supported on different atolls. Furthermore, as proposed in Section 1.4, the reconstruction will
be allowed to assign different phases to components supported on different atolls.

The present paper establishes such results; as an appetizer we mention the following stability
result which applies to the reconstruction of a function f ∈ L2(R) from measuring absolute values
of its Gabor transform Vϕf as defined in (1.2), with window function ϕ(t) := e−πt

2
.
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Let us suppose that we know a priori that the function f to be recovered can be written
as a sum f =

∑k
j=1 fj with functions fj each having time-frequency (TF) concentration in an

annulus or a disc, i.e.,

Vϕfj ∈ H(Dj , D0,j , δj ,∆j), for j = 1, . . . , k, (1.8)

where the Dj are (possibly disjoint) discs Dj := Bsj (zj), each with one hole, D0,j := Brj (zj) for
0 ≤ rj < sj and zj ∈ C for j = 1, . . . , k. In audio processing, each of the fj ’s may be interpreted
as different tones and in different periods of time, each having its TF concentration on the set
Dj in the following sense.

Definition 1.4. For B ⊂ R
2 and ε > 0 we say that f ∈ L2(R) is ε-concentrated in B, if

∫

R2\B
|Vϕf(x, y)|2dxdy ≤ ε2.

We use the notation W 1,p(D) for the Sobolev space with norm

‖F‖W 1,p(D) = ‖F‖Lp(D) + ‖∇F‖Lp(D) .

With these definitions and notation, we can now formulate the following theorem that states
one of our stability results:

Theorem 1.5. Suppose that f =
∑k

j=1 fj ∈ L2(R) such that ( 1.8) holds true with each fj

εj-concentrated in Dj. Suppose that g ∈ L2(R) can likewise be written as g =
∑k

j=1 gj with each
gj εj-concentrated in Dj. Then there exists a continuous function ρ : [0, 1) → R+ and a uniform
constant c > 0 so that the following estimate holds:

inf
α1,...,αk∈R

k∑

j=1

∥∥fj − eiαjgj
∥∥
L2(R)

≤ c ·
k∑

j=1

∆2
j

δ2j
(1 + ρ(rj/sj) · sj)·

(
1 + (rj/sj)

1/2 · ρ(rj/sj) · (sj + 1) · er2jπ/2
)
· ‖|Vϕf | − |Vϕg|‖W 1,2((Dj)+) +

k∑

j=1

εj .

The theorem states that a function that is the sum of components, each of which has a
Gabor transform of type (1.8), can be stably reconstructed from the absolute values of its
Gabor transform, whenever its Gabor transform is concentrated on a number of atolls with
lagoons that are not too large.

Note that as the lagoons get large, more precisely, if we let rj grow while keeping the ratios
rj/sj fixed, the stability of reconstruction degenerates at most exponentially in their area. This
is completely in line with the results of [8], and in particular with the example mentioned in
Section 1.3 for which the stability of the reconstruction degenerates at least exponentially in the
size of its corresponding lagoon. Therefore, we believe that such a decay is not a proof artifact
but a fundamental barrier to stable phase retrieval, related to the TF-localization properties of
the window ϕ, see also Remark 3.10 in Section 3.4.

One can construct an example of phase retrieval from Gabor measurements in the spirit
of Example 1.1 of real-valued measurements in 1D: In [3] some of the authors construct two
functions f+a , f−a , for which the (Gabor transform) measurements are close to each other in
absolute value but such that ‖f+a − eiαf−a ‖L2(R) is not small for any phase factor eiα, α ∈ R.
The functions f+a , f−a are constructed such that their Gabor transforms are concentrated on
two separated discs Br0((−a, 0)) and Br0((a, 0)), so that they can be viewed as atoll functions.
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Applying Theorem 1.5 to this example gives stability of the phase retrieval problem with a
stability constant that is independent of a. In contrast, in the classical sense (i.e. when Vϕf

+
a ,

Vϕf
−
a are not treated as atoll functions), phase retrieval is unstable in this example with the

stability constant deteriorating exponentially in a2. We note however, that the stability constant
from Theorem 1.5 is not independent of the size of atolls, i.e. of the radius r0. In fact, it grows
exponentially in r20. Recent work [20] by one of the authors has developed improved results that
overcome this growth of the stability constant in the size of the atolls.

Theorem 1.5 is a special case of our much more general Theorem 3.1, proved in Section
3.3 below. Theorem 3.1 however applies to a much wider class of measurement scenarios. An-
other application, discussed in Section 3.4, concerns the phase retrieval problem from measuring
absolute values of the Cauchy wavelet transform of a signal.

1.6 Proof Strategy

We briefly describe the underlying mechanism in the proof of the above-mentioned stability
theorem.

• At the backbone of Theorem 1.5 lies the well-known fact that the Gabor transform
F (x, y) := Vϕf(x,−y) is a holomorphic function, up to normalization. More precisely,
there exists a function η such that the product η · F is holomorphic, see Theorem 3.6. In
fact, in Theorem 3.1, we establish a general stability result for atoll functions which are,
up to normalization, holomorphic.

• A key insight leading to this result is the observation that, for a holomorphic function F
the rate of change of F is dominated by the rate of change of |F |. This fact, which is
Lemma 4.1, follows directly from the Cauchy-Riemann equations.

• Lemma 4.1 then allows us to prove a stability result for atoll functions, restricted to the
atoll D+ on which a lower bound on their absolute value holds true.

• In order to also establish a stability bound on the lagoons (Di
0)
l
i=1 we use a version of

the maximum principle and a trace theorem for Sobolev functions to prove that the re-
construction error on the lagoons (Di

0)
l
i=1 can be dominated by the approximation error

on the atoll D+ which has been controlled in the previous step. These two steps are car-
ried out in Section 4. The proof turns out to be involved and dependent on a number of
preparatory results which are summarized in Section 2.

Our main result is Theorem 3.1 which establishes a stability result for arbitrary atoll functions
that arise from holomorphic measurements (up to normalization). Theorem 1.5 then comes as a
corollary, but the machinery of Theorem 3.1 allows to deduce stability of phase retrieval for any
type of measurements which depend holomorphically on its parameters. As a further example
we mention Cauchy wavelets which have been treated previously in [35].

1.7 Outline

The article is structured as follows. Section 2 provides a package of all the preparatory tools that
will be needed later. In particular, we describe analytic Poincaré inequalities and the relation
of the analytic Poincaré constant to the classical Poincaré constant in Section 2.1. Sections 2.2
and 2.3 outline the results that are needed to control the reconstruction error on the lagoons
(Di

0)
l
i=1. Stable point evaluations and the simultaneous control of two different constants that

will appear in the main result of this paper are treated in Section 2.4.
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Section 3 features our main result (Theorem 3.1) and gives its illustration for two concrete
examples: the case of the domain D = D+ being a disc (Section 3.1) and the case of D+ being an
annulus (Section 3.2). In the remainder of this section, the cases of magnitude measurements of
the Gabor transform (Section 3.3) and of the Cauchy wavelet transform (Section 3.4) are studied
and the stability constants are quantified. We give the proof of the main theorem (Theorem
3.1) in Section 4.

2 Preparatory Results

In the course of our work we will use several auxiliary results that are summarized in this section.
For an overview of the main results of this paper, the reader may want to visit Section 3 directly.
We consider a path-connected domain D ⊂ C which is sufficiently nice (e.g. Lipschitz domain)
and let O(D) denote the space of holomorphic functions from D to C.

We will always write z = x + iy ∈ C and F (z) = u(x, y) + iv(x, y). We denote F ′(z) =
ux(x, y) + ivx(x, y), and ∇F (z) = (∇u(x, y),∇v(x, y)) ∈ R

2×2.
Any F ∈ O(D) satisfies the Cauchy-Riemann equations

ux = vy and uy = −vx. (2.1)

A key object of our study is the absolute value |F | : D → R and its gradient∇|F | = (|F |x, |F |y)T .
For a subset B ⊂ C we denote by |B| its area and by χB its indicator function. We write

R+ = {x ∈ R : x > 0}

and
C+ = {z = x+ iy : x ∈ R, y ∈ R+}.

2.1 Analytic Poincaré Inequalities

We shall rely several times on the validity of an analytic Poincaré inequality. A domain D is said
to be an analytic p-Poincaré domain if for z0 ∈ D, there exists a constant Capoinc(p,D, z0) > 0
such that

‖F − F (z0)‖Lp(D) ≤ Capoinc(p,D, z0)
∥∥F ′∥∥

Lp(D)
(2.2)

for all F ∈ O(D), and 1 ≤ p ≤ ∞.
Such inequalities are studied in [33]. Although (2.2) features the point z0 ∈ D, it turns

out that whether or not the domain D is an analytic Poincaré domain is independent of z0.
However [33], the best-possible constant Capoinc(p,D, z0) depends on the choice of z0. Denote by
Cpoinc(p,D) the usual Poincaré constant of the domain D, i.e. the optimal constant C such that

‖F − FD‖Lp(D) ≤ C ‖∇F‖Lp(D) ,

where FD := 1
|D|
∫
D F (z)dz. Then we have the following estimate for Capoinc(p,D, z0):

Lemma 2.1.

Capoinc(p,D, z0) ≤ Cpoinc(p,D) ·
(
1 +

( |D|
π dist (z0, ∂D)2

)1/p
)
.
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Proof. In [33, p. 365] the case p = 1 is shown; the general case can be done analogously. Let
r := dist (z0, ∂D) and consider the ball B = Br(z0). By the mean-value property it holds that
F (z0) = FB. Therefore we have

‖F − F (z0)‖Lp(D) = ‖F − FB‖Lp(D) .

With this, the triangle inequality yields

‖F − F (z0)‖Lp(D) ≤ ‖F − FD‖Lp(D) + ‖FD − FB‖Lp(D) .

Now we observe that

|FB − FD| ≤
1

|B|

∫

B
|F (z)− FD|dz ≤

1

|B| |B|1−1/p ‖F − FD‖Lp(B) ,

where the last inequality follows from Hölder’s inequality. Now it remains to observe that
‖F − FD‖Lp(B) ≤ ‖F − FD‖Lp(D) and |B| = π dist (z0, ∂D)2 to arrive at the desired result.

Essentially, Lemma 2.1 states that whenever z0 lies in a central location of D (i.e. not too
close to ∂D), the constant Capoinc(p,D, z0) can be controlled by the classical Poincaré constant
Cpoinc(p,D) which is well-studied. For instance the following result is known [29].

Theorem 2.2. Suppose that D ⊂ C is a bounded, convex domain with Lipschitz boundary. Then

Cpoinc(2, D) ≤ diam(D)

π
.

For non-convex domains the determination of the optimal Poincaré constant is more difficult.
For the annulus Br,s(z) the following result is known.

Theorem 2.3. Suppose that D = Br,s(z). Then there exists a uniform constant c > 0 such that

Cpoinc(2, D) ≤ c · s.

Proof. By a scaling argument it is easily seen that

Cpoinc(2, Br,s(z)) = s · Cpoinc(2, Br/s,1(0)).

The function h : τ 7→ Cpoinc(2, Bτ,1(0)) is continuous on (0, 1) because the Poincaré constant
depends continuously on the domain [18]. In [17] it is shown that the function h extends contin-
uously to the endpoint τ = 1 and in [21] it is shown that the function h extends continuously to
the endpoint τ = 0. Therefore, h is continuous on the closed interval [0, 1], and hence bounded,
which proves the statement.

For more general domains which arise as a diffeomorphic image of a convex domain or an
annulus, one can obtain estimates on the Poincaré constant by studying the Jacobian of the
diffeomorphism but in the present paper we are content with knowing the Poincaré constant on
convex domains and on annuli.
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2.2 Sobolev Trace Inequalities

In what follows, we will consider inequalities involving the Lp-norm of functions on the piecewise
smooth boundary of a bounded domain D ⊂ C. We define it as

‖F‖Lp(∂D) :=
(∫ b

a
|F (γ(t))|p |γ′(t)|dt

)1/p
,

where γ : [a, b) → ∂D can be any bijective parameterization of ∂D.
The Sobolev trace inequality [13] provides an upper bound for this norm, which will be

important for our purposes:

Theorem 2.4. Suppose that D ⊂ C is a bounded domain with Lipschitz boundary ∂D. Then
there exists a constant Ctrace(p,D) with

‖F‖Lp(∂D) ≤ Ctrace(p,D) ‖F‖W 1,p(D) .

The next result provides concrete estimates of the trace constant for discs and annuli. It
says that the trace constant behaves nicely for annuli that are not too thin.

Theorem 2.5. There exists a continuous function ρ : [0, 1) → R with limτ→1− ρ(τ) = ∞ such
that

Ctrace(2, Br,s(z)) ≤ ρ(r/s) · (s1/2 + s−1/2).

Proof. By a scaling argument, one can verify that

Ctrace(2, Br,s(z)) ≤ s1/2 · Ctrace(2, Br/s,1(z)), for s ≥ 1,

Ctrace(2, Br,s(z)) ≤ s−1/2 · Ctrace(2, Br/s,1(z)), for s < 1.

The statement then follows by noting that Ctrace(2, Bτ,1(z)) <∞ for τ ∈ [0, 1).

2.3 Boundary Values of Holomorphic Functions

Another key fact we shall use is that the Lp-norm of a holomorphic function on a simply con-
nected domain is dominated by its Lp-norm on the boundary.

Theorem 2.6. Suppose that F ∈ O(D), where D ⊂ C is a bounded and simply connected
domain with smooth boundary. Then there exists a constant Cbound(p,D) > 0 such that

‖F‖Lp(D) ≤ Cbound(p,D) ‖F‖Lp(∂D)

for all bounded functions F ∈ O(D).

Proof. We assume without loss of generality that D = B1(0). The general case can be handled
using the Riemann mapping theorem. We shall make use of the Hardy space Hp, consisting of
all functions F ∈ O(B1(0)) with finite Hp-norm, defined by

‖F‖pHp := sup
0<r<1

1

2π

∫ 2π

0
|F (r · eiϕ)|pdϕ.

It is well-known (see for instance [24]) that any F ∈ Hp can be extended to the boundary ∂B1(0)
and that

2π‖F‖pHp = ‖F‖pLp(∂D). (2.3)
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We further note that

1

2π
‖F‖pLp(B1(0))

=
1

2π

∫ 1

0

∫ 2π

0
|F (r · eiϕ)|prdrdϕ ≤ ‖F‖pHp .

Combining this result with (2.3) yields the desired result.

For discs Br(z) a simple scaling argument leads to the following result.

Theorem 2.7. For all r > 0, z ∈ C and D = Br(z) we have Cbound(p,D) ≤ r1/p.

For more general simply connected domains the constant Cbound(p,D) depends on upper and
lower bounds on the Jacobian of the Riemann mapping from D to B1(0).

2.4 Stable Point Evaluations

Given a function G ∈ Lp(D), the proof of our main result will require us to pick a point z ∈ D
with a small sampling constant which is defined as follows.

Definition 2.8. Let D be a domain and G ∈ Lp(D). Then we define, for z0 ∈ D and 1 ≤ p ≤ ∞
the sampling constant

Csamp(p,D, z0, G) := inf{C > 0 : ‖G(z0)‖Lp(D) ≤ C ‖G‖Lp(D)}.

To control the constant C(z0, p,D+, (D
i
0)
l
i=1) in our main result Theorem 3.1, it is necessary

to control Csamp(p,D+, z0, |F2| − |F1|) and Capoinc(p,D+, z0) simultaneously.
The purpose of this subsection is to show that this can indeed be achieved for general domains

D and functions G ∈ Lp(D).
We start with the following lemma which shows that there exist “many” points with a given

sampling constant.

Lemma 2.9. Suppose that D ⊂ C is a domain and let G ∈ Lp(D) for 1 ≤ p ≤ ∞. For C > 1
we denote

DC(G) :=
{
z0 ∈ D : |G(z0)||D|1/p ≤ C ‖G‖Lp(D)

}
.

Then

|DC(G)| ≥ |D| ·
(
1− 1

Cp

)
.

Proof. We compute
∫

D\DC(G)
|G(x)|pdx+

∫

DC(G)
|G(x)|pdx = ‖G‖pLp(D)

By the definition of DC(G) we have that

|G(x)|p > Cp

|D| ‖G‖
p
Lp(D) for all x ∈ D \DC(G),

and this implies that

|D \DC(G)|
Cp

|D| ‖G‖
p
Lp(D) +

∫

DC(G)
|G(x)|pdx ≤ ‖G‖pLp(D) .

Consequently,

(|D| − |DC(G)|)
Cp

|D| ≤ 1

and this yields the statement.
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Lemma 2.9 implies that if we define C(t) := 1
(1−t)1/p , then for any 0 < t < 1 and G ∈ Lp(D)

we have
|DC(t)(G)| ≥ t|D|.

Next, we define (cf. Figure 6)

st(D) := inf
S⊂D, |S|=t|D|

sup
z∈S

dist (z, ∂D). (2.4)

For “nice” domains, the quantity st(D) can be controlled easily. We mention the following

z

S

dist (z, ∂D)

D

Figure 6: A domain D, a subset S and an element z ∈ S that maximizes dist (z, ∂D). The value
of st(D) is then obtained by taking the infimum of these quantities over all S ⊂ D with the
same area |S| = t|D|, i.e., st(D) = inf

S⊂D, |S|=t|D|
sup
z∈S

dist (z, ∂D).

result; the proof is an elementary calculus computation.

Lemma 2.10. For all s > r > 0 and z ∈ C we have the estimate

s1/2(Br(z)) ≥ c · r and s1/2(Br,s(z)) ≥ c · (s− r),

with c = 1− 1√
2
.

z

S

s1/2(D)
D = Br(z)

Figure 7: For D = Br(z), s1/2Br(z) is attained by the subset S = Br0,r(z) with r0 =
1√
2
r.

Control of st lets us gain control over both the sampling constant and the analytic Poincaré
constant. As an immediate consequence of Lemma 2.9 we have the following result.
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Lemma 2.11. Let 0 < t < 1, let D ⊂ C be a domain and G ∈ Lp(D). There exists z0 ∈ D with

Csamp(p,D, z0, G) ≤
1

(1− t)1/p
,

and

Capoinc(p,D, z0) ≤ Cpoinc(p,D)

(
1 +

( |D|
πst(D)2

)1/p
)
.

Proof. Picking C(t) = 1
(1−t)1/p we get that |DC(t)(G)| ≥ t|D| by Lemma 2.9. Therefore

sup
z∈DC(t)(G)

dist (z, ∂D) ≥ st(D)

and thus there exists z0 ∈ DC(t)(G) with

dist (z0, ∂D) ≥ st(D).

Lemma 2.1 now immediately implies the claimed bound for Capoinc(p,D, z0).
On the other hand, by the definition of C(t) and the fact that z0 ∈ DC(t)(G), we get the

desired bound on the sampling constant which proves the statement.

In order to make use of Lemma 2.11 to estimate the constants Csamp(p,D, z0, G) and
Capoinc(p,D, z0) we need to control only the quantity st(D). For “nice” domains D we expect that

st(D) behaves like the diameter diam(D) and also that diam(D)2 behaves like |D|; hence the

quotient |D|
πst(D)2

would be uniformly bounded which implies that, for a suitable choice of z0 ∈ D,

the constant Capoinc(p,D, z0) is comparable to the classical Poincaré constant Cpoinc(p,D), while
Csamp(p,D, z0, G) is bounded by a fixed constant. These considerations will give us full control
of all underlying constants for sufficiently nice domains, needed in the estimates in the next
section.

3 Stability of Phase Reconstruction from Holomorphic Mea-
surements

The purpose of this section is to formulate the following fundamental result and discuss some
of its implications.

Theorem 3.1. Suppose that F1 belongs to a class of atoll functions as in Definition 1.3, i.e.,
F1 ∈ H(D, (Di

0)
l
i=1, δ,∆). Assume further that F2 ∈ C1(D) such that there exists a continuous

function η : D → C for which both functions η · F1, η · F2 ∈ O(D). Suppose that 1 ≤ p ≤ ∞.
Pick z0 ∈ D+. We denote Csamp := Csamp(p,D+, z0, |F1| − |F2|) meaning that

‖|F1(z0)| − |F2(z0)|‖Lp(D+) ≤ Csamp · ‖|F1| − |F2|‖Lp(D+). (3.1)

Then the following estimate holds:

inf
α∈R

∥∥F1 − eiαF2

∥∥
Lp(D)

≤ C(z0, p,D+, (D
i
0)
l
i=1)

∆2

δ2
‖|F1| − |F2|‖W 1,p(D+) , (3.2)
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where for the constant C(z0, p,D+, (D
i
0)
l
i=1) we may choose (with a suitably large but uniform

constant c > 0):

C(z0, p,D+, (D
i
0)
l
i=1) = c · (Capoinc(D+) + Csamp

+

l∑

i=1

Cbound(D
i
0) · var(η,Di

0) · Ctrace(D+)(C
a
poinc(D+) + Csamp)), (3.3)

where we have omitted the dependence of the various constants on p, z0 and denote

var(η,Di
0) :=

maxz∈∂Di0 |η(z)|
minz∈Di0 |η(z)|

, i = 1, . . . , l.

Remark 3.2. By Lemma 2.11, the two constants Csamp and C
a
poinc(D+) depending on z0 can be

controlled simultaneously. To achieve the best possible C(z0, p,D+(D
i
0)
l
i=1), z0 should be picked

s.t. dist (z0, ∂D+) is large and ‖|F1(z0)| − |F2(z0)|‖ is small.

Remark 3.3. In Theorem 3.1, we assume that there exists a normalization function η, s.t.
η ·F1, η ·F2 ∈ O(D). In Sections 3.3 and 3.4, we show for F in the image domain of the Gabor
or Cauchy wavelet transform, respectively, the existence of explicit functions η such that η · F
is holomorphic on the entire parameter domain. On the other hand, for more general measure-
ments, such global η may not exist and for F ∈ H(D,D0, δ,∆), there might be accumulated zeros
in D0. In this case, if the accumulated zero set DO := {z; F1(z)F2(z) = 0}◦ ⊂ D0 is simply
connected with smooth boundary, then the bound (3.2) in Theorem 3.1 still holds with the domain
of the Lp-norm on the right hand side changing from D+ to D 4.

Before we provide the lengthy proof of Theorem 3.1 in Section 4, we pause and provide some
special examples which might be illuminating. To give two simple examples, in Section 3.1 we
shall see how to gain explicit estimates for the quantity C(z0, p,D+, D0) for D = D+ a disc (i.e.,
D0 = ∅) and in Section 3.2 for D+ an annulus.

These examples should make clear that similar results also hold for more general domains.

3.1 Example I: A Disc

In this subsection we shall treat the caseD = D+ = Br(z) andD0 = ∅. The classH(D+, D0, δ,∆)
now consists of functions which are bounded from below by δ and which (together with their
gradient) are bounded from above by ∆ on all of Br(z). We have the following result.

Theorem 3.4. Suppose that F1 ∈ H(Br(z), ∅, δ,∆) for some r > 0 and z ∈ C. We further
assume that F2 ∈ C1(Br(z)) such that there exists a continuous function η : Br(z) → C for
which both functions η · F1, η · F2 ∈ O(Br(z)).

Then there exists a uniform constant c > 0 such that the following estimate holds.

inf
α∈R

∥∥F1 − eiαF2

∥∥
L2(Br(z))

≤ c · (1 + r) · ∆
2

δ2
· ‖|F1| − |F2|‖W 1,2(Br(z))

. (3.4)

Proof. We let uniform constants c vary from line to line. First we note that, by Lemma 2.10,
there exists a uniform constant c > 0 such that s1/2(Br(z)) ≥ c · r with st(Br(z)) defined as in

4This extension requires a generalized version of Theorem 2.6 for the annulus, which can be shown following
the same idea of proof of the disc case but considering the Hardy space defined on an annulus instead, see Theorem
3 in [37]
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(2.4). It follows from Lemma 2.11 that there exists a uniform constant c > 0 and z0 ∈ Br(z)
with

Csamp(p,D+, z0, G) ≤ c and Capoinc(p,Br(z), z0) ≤ c · Cpoinc(p,Br(z)),
where we have put G := |F2| − |F1|.

Now it remains to employ Theorem 2.2 to get a suitable estimate on the quantity (3.3) for
p = 2 which, together with Theorem 3.1 yields the desired result.

More general results can be obtained for domains D which are diffeomorphic to Br(z) in an
obvious way. The resulting bounds will depend on upper and lower bounds of the Jacobian of
the mapping which maps D to Br(z).

A similar result can also be established for general convex domains D where r in the theorem
above may be replaced by diam(D) and the constant c may depend on the geometry of D.

We omit the details.

3.2 Example II: An Annulus

To make the general result of Theorem 3.1 more accessible and to give an idea of the quantitative
nature of the stability constant C(z0, p,D+, D0) we treat here the case of an annulus D+ =
Br,s(z) and D0 = Br(z) for s > r > 0 and some z ∈ C. It is interesting to observe the
dependence of the stability constant on the size of the “lagoon” D0 on which the phaseless
measurements are allowed to be arbitrarily small. We have the following result.

Theorem 3.5. Suppose that F1 ∈ H(Bs(z), Br(z), δ,∆) for s > r > 0. Furthermore, let
F2 ∈ C1(Bs(z)) be such that there exists a continuous function η : Bs(z) → C for which both
functions η · F1, η · F2 ∈ O(Bs(z)).

Then there exist a continuous function ρ : [0, 1) → R+ with limρ→1− = ∞ and a uniform
constant c > 0 such that the following estimate holds.

inf
α∈R

∥∥F1 − eiαF2

∥∥
L2(Bs(z))

≤

c·(1+ρ(r/s)·s)·
(
1 + r1/2 · ρ(r/s) · (s1/2j + s

−1/2
j ) · var(η,Br(z))

)
·∆

2

δ2
‖|F1| − |F2|‖W 1,2(Br,s(z))

.

(3.5)

Proof. We first observe the elementary fact that D+ = Br,s(z) and that, by Lemma 2.10, there
exists a uniform constant c > 0 with

s1/2(Br,s(z)) ≥ c(s− r).

Using Lemma 2.11 and setting G := |F1| − |F2| this implies the existence of z0 ∈ Br,s(z) and a
uniform constant c with

Csamp(p,D+, z0, G) ≤ c and Capoinc(p,Br,s(z), z0) ≤ c · 1

(1− r/s)1/p
Cpoinc(p,Br,s(z)).

All further constants may be estimated from Theorems 2.3, 2.7 and 2.5 which, together with
Theorem 3.1 yield the desired result.

Theorem 3.5 shows that stability can still be retained, even if the function F1 is allowed
to be small on a large set. Again, more general results can be derived for domains which are
diffeomorphic to an annulus.
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3.3 Phase Retrieval from Gabor Measurements

For a window g ∈ L2(R) define the windowed Fourier transform of f ∈ L2(R) as

Vgf(x, y) :=

∫

R

f(t)g(t− x)e−2πitydt. (3.6)

The Gabor transform is defined as the windowed Fourier transform with window ϕ(t) := e−πt
2
.

The following result is well-known [19].

Theorem 3.6. For z0 = x0+iy0 ∈ C and with ηz0(z) := eπ(|z−z0|
2/2−i·(x+x0)·(y−y0)), the function

F (z) := Vϕf(x,−y) where z = x+ iy

satisfies that ηz0 · F ∈ O(C).

Now consider the problem of stably reconstructing a function from the absolute values of its
Gabor transform. By Theorem 3.6 we are in a position to apply Theorem 3.1 directly.

Theorem 3.7. Suppose that f ∈ L2(R). Suppose that Vϕf is an atoll function associated with
Dj := Bsj (zj) and D0,j := Brj (zj) for 0 ≤ rj < sj and zj ∈ C for j = 1, . . . , k, meaning that

(Vϕf)
∣∣∣
Dj

∈ H(Dj , D0,j , δj ,∆j) ∀j ∈ {1, . . . , k}.

Then there exists a continuous function ρ : [0, 1) → R+ and a constant c > 0 so that for all
g ∈ L2(R) the following estimate holds:

inf
α1,...,αk∈R

k∑

j=1

∥∥Vϕf − eiαjVϕg
∥∥
L2(Dj)

≤ c ·
(

k∑

j=1

∆2
j

δ2j
(1 + ρ(rj/sj) · sj)·

(
1 + r

1/2
j · ρ(rj/sj) · (s1/2j + s

−1/2
j ) · er2jπ/2

))
· ‖|Vϕf | − |Vϕg|‖W 1,2(

⋃k
j=1(Dj)+)

.

Proof. The proof follows directly from Theorem 3.5 together with observing that

var(ηzj , Brj (zj)) ≤ c · er2jπ/2 for a uniform constant c > 0.

We are now ready to conclude the proof of Theorem 1.5, as announced in Section 1.5.

Proof of Theorem 1.5. It is well-known that the Gabor transform Vϕ : L2(R) → L2(R2) is an
isometry on its range, see [19]. By assumption, the functions fj , gj are εj-concentrated in Dj

(see Definition 1.8). Therefore,
∥∥fj − eiαjgj

∥∥
L2(R)

≤
∥∥Vϕf − eiαjVϕg

∥∥
L2(Dj)

+ εj .

Now, the statement of Theorem 1.5 is a direct consequence of Theorem 3.7.

3.4 Phase Retrieval from Cauchy Wavelet Measurements

For g ∈ L2(R) define the wavelet transform of f ∈ L2(R) as

Wgf(x, y) :=
1

|y|1/2
∫

R

f(t)g((t− x)/y)dt. (3.7)

Define the Cauchy wavelet of order s ∈ N via its Fourier transform ψ̂(ω) = ωse−2πωχω>0(ω).
The following result is well-known [5].
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Theorem 3.8. For η(z) := |1/y|s+1/2 and any f ∈ L2(R) with supp f̂ ⊂ R+, the function

F (z) :=Wψf(x, y) where z = x+ iy

satisfies that η · F ∈ O(C+), where C+ := {x+ iy; y ≥ 0}.

Proof. For the convenience of the reader we provide a proof. It is easy to check that, for f with
supp f̂ ⊂ R+, the function

G(z) :=

∫

R+

ωsf̂(ω)e−2πyωe2πixωdω, for z = x+ iy ∈ C+

is holomorphic on C+. In fact, it is the holomorphic extension of the s-th derivative of f , if the
former exists.

Now note that
Wψf(x, y) = f ∗ ψy(x),

where

ψy(t) =
1

|y|1/2ψ(−t/y).

The Fourier transform of ψy is given as

ψ̂y(ω) = |y|1/2ψ̂(y · ω) = |y|s+1/2ωse−2πyωχR+(ω).

It follows that
G(z) = |y|−s−1/2 ·Wψf(x, y)

which proves the statement.

Using Theorem 3.1, the statement of Theorem 3.8 immediately implies the following result
related to the stability of phase retrieval from Cauchy wavelet measurements.

Theorem 3.9. Suppose that f ∈ L2(R) with supp f̂ ⊂ R+. Suppose that Wψf is an atoll
function associated with Dj := Bsj (zj) and D0,j := Brj (zj) for 0 ≤ rj < sj and zj = xj + iyj ∈
C+ for j = 1, . . . , k, meaning that

(Wψf)
∣∣∣
Dj

∈ H(Dj , D0,j , δj ,∆j) ∀j ∈ {1, . . . , k}.

Then, for g ∈ L2(R) arbitrary with supp ĝ ⊂ R+, the following estimate holds for a continuous
function ρ : [0, 1) → R+ and a constant c > 0 that are both uniform.

inf
α1,...,αk∈R

k∑

j=1

∥∥Wψf − eiαjWψg
∥∥
L2(Dj)

≤

≤ c ·




k∑

j=1

∆2
j

δ2j
(1 + ρ(rj/sj) · sj) ·

(
1 + r

1/2
j · ρ(rj/sj) · (s1/2j + s

−1/2
j ) ·

∣∣∣∣
1

1− rj/yj

∣∣∣∣
s+1/2

)
 ·

‖|Wψf | − |Wψg|‖W 1,2(
⋃k
j=1(Dj)+)

.

Proof. We have that var(η,Brj (zj)) ≤ c · |1− rj/yj |−s−1/2 for a uniform constant c > 0, so that
the statement is a direct consequence of Theorem 3.5.
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Remark 3.10. It is interesting to observe how the stability bounds in Theorem 3.7 and 3.9
deteriorate as the size of the lagoons grows, that is, as the parameter rj grows. In the case of

Gabor measurements this growth is of order er
2
jπ/2, while in the case of Cauchy wavelets with

s vanishing moments, the growth is of order ( 1
1−rj/yj )

s+1/2, becoming worse as the number of

vanishing moments increases.
Interpreting these quantities in geometric terms we note that the area of a lagoon in the

parameter space of the Gabor transform is of order r2jπ, that is, the stability decays exponentially
in the area of the lagoon.

For the wavelet transform the natural notion of area in the upper half-plane is given by the
Poincaré metric, i.e., by

areaC+(B) :=

∫

B

dxdy

y2

and a simple calculation gives

areaC+(Brj (zj)) =

∫ 2π

0

∫ rj

0

1

(yj + ρ sinφ)2
ρ dρ dφ = 2π


 1√

1− r2j/y
2
j

− 1


 ,

so that
π√
2

(
1√

1− rj/yj
− 1

)
≤ areaC+(Brj (zj)) ≤ 2π

(
1√

1− rj/yj
− 1

)
.

This shows that the stability of the phase retrieval from Cauchy wavelet measurements decays
only polynomially in the area of the lagoon.

This behavior is most likely related to the fact that Gabor systems are much more well-
localized in the time-frequency plane than Cauchy wavelets and that the localization properties
of Cauchy wavelets increase as the number s of vanishing moments increases.

It is known that strong localization properties of the measurement system are an obstruction
to stable phase retrieval [7] and in light of this the stability behavior of Theorems 3.7 and 3.9 is
not really surprising.

4 Proof of Theorem 3.1

This section is devoted to prove Theorem 3.1 which is the main result of this paper. The proof
follows several steps and relies on the following key lemma.

Lemma 4.1. Suppose that F ∈ O(D), then

|F ′(z)| =
∣∣∇|F |(x, y)

∣∣ ∀ z = x+ iy ∈ D.

Proof. Let u and v denote the real and imaginary part of F , respectively, i.e., F (x, y) = u(x, y)+
iv(x, y). Then,

∂x |F | = ∂x(
√
u2 + v2)

=
1

2
· 1√

u2 + v2
· (2u · ux + 2v · vx)

=
u · ux + v · vx

|F | .
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Similarly,

∂y|F | =
uuy + vvy

|F | =
−uvx + vux

|F | ,

where the last equality follows from Cauchy-Riemann equations. Therefore,

∣∣∇|F |
∣∣2 = (∂x|F |)2 + (∂y|F |)2 =

(uux + vvx)
2 + (−uvx + vux)

2

|F |2

=
(u2 + v2)(u2x + v2x)

|F |2 = u2x + v2x = |F ′(z)|2.

Having Lemma 4.1 at hand we may now proceed to the proof of Theorem 3.1, which we
restate here for convenience of the reader.

Theorem 3.1. Suppose that F1 belongs to a class of atoll functions as in Definition 1.3, i.e.,
F1 ∈ H(D, (Di

0)
l
i=1, δ,∆). Assume further that F2 ∈ C1(D) such that there exists a continuous

function η : D → C for which both functions η · F1, η · F2 ∈ O(D). Suppose that 1 ≤ p ≤ ∞.
Pick z0 ∈ D+. We denote Csamp := Csamp(p,D+, z0, |F1| − |F2|) meaning that

‖|F1(z0)| − |F2(z0)|‖Lp(D+) ≤ Csamp · ‖|F1| − |F2|‖Lp(D+). (4.1)

Then the following estimate holds:

inf
α∈R

∥∥F1 − eiαF2

∥∥
Lp(D)

≤ C(z0, p,D+, (D
i
0)
l
i=1)

∆2

δ2
‖|F1| − |F2|‖W 1,p(D+) . (4.2)

We recall that for the constant C(z0, p,D+, (D
i
0)
l
i=1) one may choose (with a suitably large

but uniform constant c > 0):

C(z0, p,D+, (D
i
0)
l
i=1) = c · (Capoinc(D+) + Csamp

+

l∑

i=1

Cbound(D
i
0) · var(η,Di

0) · Ctrace(D+)(C
a
poinc(D+) + Csamp)), (4.3)

where we have omitted the dependence of the various constants on p, z0 and denote

var(η,Di
0) :=

maxz∈∂Di0 |η(z)|
minz∈Di0 |η(z)|

, i = 1, . . . , l.

Proof of Theorem 3.1. Without loss of generality we let l = 1 and put D0 := D1
0 (the general

case being not more difficult). We need to bound the quantity
∥∥F2(z)− eiαF1(z)

∥∥
Lp(D)

≤
∥∥F2(z)− eiαF1(z)

∥∥
Lp(D+)

+
∥∥F2(z)− eiαF1(z)

∥∥
Lp(D0)

(4.4)

for suitable α ∈ R and we will develop separate arguments for the two terms on the RHS of the
above.

Step 1. As a first step we start by developing a basic estimate. Consider

F := F2/F1.

By assumption we have that η · F1, η · F2 ∈ O(D) and |F1(z)| ≥ δ for z ∈ D+. Consequently,
F ∈ O(D+). Pick α ∈ R such that

|F2(z0)− eiαF1(z0)| = ||F2(z0)| − |F1(z0)||. (4.5)
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Now consider for z ∈ D arbitrary

|F2(z)− eiαF1(z)| = |F1(z)||F (z)− eiα|
≤ |F1(z)|

(
|F (z)− F (z0)|+ |F (z0)− eiα|

)

= |F1(z)|
(
|F (z)− F (z0)|+

1

|F1(z0)|
|F2(z0)− eiαF1(z0)|

)

= |F1(z)|
(
|F (z)− F (z0)|+

1

|F1(z0)|
||F2(z0)| − |F1(z0)||

)

≤ ∆

(
|F (z)− F (z0)|+

1

δ
||F2(z0)| − |F1(z0)||

)
(4.6)

Step 2. In this step we focus on the second term of (4.4) and show that it can actually be
absorbed by an estimate on D+. By the analyticity of η · F1 and η · F2 on D, we can apply
Theorem 2.6 to obtain

‖η · (F2(z)− eiαF1(z))‖Lp(D0) ≤ Cbound(p,D0)‖η · (F2(z)− eiαF1(z))‖Lp(∂D0)

and therefore we get
∥∥F2(z)− eiαF1(z)

∥∥
Lp(D0)

≤ Cbound(p,D0) · var(η,D0) ·
∥∥F2(z)− eiαF1(z)

∥∥
Lp(∂D0)

.

We may now estimate further, using (4.6), that

∥∥F2(z)− eiαF1(z)
∥∥
Lp(D0)

≤ Cbound(p,D0) · var(η,D0)·
(
∆ ‖F (z)− F (z0)‖Lp(∂D+) +

∆

δ
‖|F1(z0)| − |F2(z0)|‖Lp(∂D+)

)
.

Applying the Trace theorem (Theorem 2.4) we further get that

∥∥F2(z)− eiαF1(z)
∥∥
Lp(D0)

≤ Cbound(p,D0) · var(η,D0) · Ctrace(p,D+)·
(
∆ ‖F (z)− F (z0)‖W 1,p(D+) +

∆

δ
‖|F1(z0)| − |F2(z0)|‖Lp(D+)

)
,

where we have used that ‖|F1(z0)| − |F2(z0)|‖W 1,p(D+) = ‖|F1(z0)| − |F2(z0)|‖Lp(D+) because the
function is constant. With the assumption in (4.1) we further get

∥∥F2(z)− eiαF1(z)
∥∥
Lp(D0)

≤ Cbound(p,D0) · var(η,D0) · Ctrace(p,D+)·
(
∆ ‖F (z)− F (z0)‖W 1,p(D+) +

∆

δ
Csamp ‖|F1| − |F2|‖Lp(D+)

)
.

Lastly we apply the analytic Poincaré inequality (2.2) and obtain the estimate

∥∥F2(z)− eiαF1(z)
∥∥
Lp(D0)

≤ Cbound(p,D0) · var(η,D0) · Ctrace(p,D+)·
(
∆(Capoinc(p,D+, z0))

∥∥F ′∥∥
Lp(D+)

+
∆

δ
Csamp ‖|F1| − |F2|‖Lp(D+)

)
. (4.7)

Step 3. In this step we focus on an estimate for the first term in (4.4). Using (4.6) we see
that

∥∥F2(z)− eiαF1(z)
∥∥
Lp(D+)

≤ ∆ ‖F (z)− F (z0)‖Lp(D+) +
∆

δ
Csamp ‖|F1| − |F2|‖Lp(D+) .
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Yet another application of the analytic Poincaré inequality yields

∥∥F2(z)− eiαF1(z)
∥∥
Lp(D+)

≤

∆Capoinc(p,D+, z0)
∥∥F ′∥∥

Lp(D+)
+

∆

δ
Csamp ‖|F1| − |F2|‖Lp(D+) . (4.8)

Step 4. In equations (4.7) and (4.8) we now have achieved estimates of both terms in (4.4). A
close look at these estimates reveals that we only need to get a bound on ‖F ′‖Lp(D+) in terms
of ‖|F1| − |F2|‖W 1,p(D) to finish the proof. This is where our key lemma, Lemma 4.1 comes into
play, stating that ∥∥F ′∥∥

Lp(D+)
= ‖∇|F |‖Lp(D+) .

It thus remains to achieve a bound for ‖∇|F |‖Lp(D+). To this end we consider

∂

∂x
|F | =

|F1| ∂∂x |F2| − |F2| ∂∂x |F1|
|F1|2

=
∂
∂x |F1|(|F1| − |F2|) + |F1|( ∂∂x |F2| − ∂

∂x |F1|)
|F1|2

,

and hence, ∣∣∣∣
∂

∂x
|F |
∣∣∣∣ ≤

∆

δ2

(
||F1| − |F2||+ | ∂

∂x
|F2| −

∂

∂x
|F1||

)
,

valid uniformly on D+. A similar estimate holds for
∣∣∣ ∂∂y |F |

∣∣∣ and thus there exists a universal

constant c > 0 with ∥∥F ′∥∥
Lp(D+)

≤ c · ∆
δ2

‖|F1| − |F2|‖W 1,p(D+) . (4.9)

Step 5. We finish the proof by substituting the estimate (4.9) into equations (4.7) and (4.8)
(and noting that ∆

δ ≥ 1), then use Lemma 2.11 to remove the dependency on z0, which gives
the desired result.
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ities for planar domains. Pacific Journal of Mathematics, 178(2):363–375, 1997.

[34] G. Thakur. Reconstruction of bandlimited functions from unsigned samples. Journal of
Fourier Analysis and Applications, 17(4):720–732, 2011.

[35] I. Waldspurger. Wavelet transform modulus: phase retrieval and scattering. PhD thesis,
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