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Wedevise a hybrid method based on domain decomposition by proposing four ways to couple the Finite ElementMethod (FEM) and a Trefftzmethod

(Section 2). Specifically, we make use of the Trefftz method known asMultiple Multipole Program (MMP) – see Section 2.1.

Trefftz methods employ exact solutions of the homogeneous PDE as basis functions; hence, they can handle unbounded domains and, compared

to standard FEM, the FEM–Trefftz coupling will not need to artificially truncate the computational domain.

At the same time, Trefftz methods can only be applied to domains with constant material parameters. Here we consider them piecewise constant

in the Trefftz domain of approximation, which induces a partition: we assume that only one subdomain is unbounded, but the other bounded

subdomains can still be very large. By using a Trefftz method in this whole region, the meshed domain required by FEM can be made minimal1.

Several approaches to couple FEM and a Trefftz method for the Poisson’s equation in both 2D and 3D have been discussed by the authors

from the perspective of numerical analysis in [? ]. Existence, uniqueness, and stability of all coupling approaches is formally proven in that work,

which only deals with scalar unknown functions. We offered numerical evidence for the feasibility of the coupling for Maxwell’s equations (vector

unknown functions) in [? ? ], which illustrate numerical convergence results for the magnetostatic and eddy-current equations, respectively.

The work [? ] generalizes one of the coupling approaches, the Dirichlet-to-Neumann-based coupling (DtN-based coupling, Section 3.3.2), to any

numerical method based on volume meshes. The particular case of the coupling with the cell method, a technique based on both a primal and a dual

volume mesh [? ], is illustrated theoretically and through numerical experiments performed with iterative solvers applied to the Schur complement

of the coupling systems (Trefftz degrees of freedom are eliminated).

Finally, [? ] assumes that material parameters are piecewise constant in the Trefftz domain, similarly to what is done in this work, to solve the

2D Helmholtz equation. The approaches we propose here to realize the coupling between FEM and more than one Trefftz domain have been

described there for the first time.

To the best of our knowledge, apart from these papers, little research has been devoted to the investigation of strategies combining Trefftz

methods with conventional finite element methods.

As references for this line of research, we cite [? ? ? ]: in particular, the coupling proposed in [? , p. 672, Section III] is the same as the DtN-based

coupling of Section 3.3.2. It is also worth mentioning the infinite element method [? ], primarily used for exterior Helmholtz problems, which employs

standard FEM in a bounded domain and infinite elements [? , p. 100, (3.19)], akin to multipole expansions (Section 2.1), in the unbounded exterior.

The novelty of the present work lies in using FEM with more than one Trefftz domain to solve nontrivial problems involving time-harmonic

Maxwell’s equations, while [? ] is confined to 2D Helmholtz. This work also includes a numerical example involving infinite layered media [? ]

(Section 4.2.2).

✶✳✶ ❇♦✉♥❞❛r② ❱❛❧✉❡ Pr♦❜❧❡♠

We consider the following second-order vector boundary value problem:




∇×
[
M

−1
µ (x)∇× u

]
− ω2Mǫ(x)u+∇φ = j

∇ · u = 0

in R
3, (1a)

∇× u× x− ık‖x‖u = 0 for ‖x‖ → ∞ uniformly, (1b)

which models time-harmonic Maxwell’s equations (frequency-domain electromagnetic wave propagation) expressed in terms of a magnetic vector

potential subject to the Coulomb gauge.

• u : R3 → C3 represents the magnetic vector potential. The first line in (1a) comprisesMaxwell’s equations2, the second the Coulomb gauge.

• φ : R3 → C represents the electric scalar potential, which also acts as a Lagrange multiplier to impose the Coulomb gauge. φ must be

subject to a further constrain such that it is uniquely defined by (1a). In the scope of this work, we set
∫
R3 φ dx = 0.

0Abbreviations. FEM: Finite Element Method. MMP: Multiple Multipole Program. PDE: Partial Differential Equation. TPS: Triple-Point Singularity. DtN:

Dirichlet-to-Neumann. DG: Discontinuous Galerkin. DoF: Degree of Freedom. BEM: Boundary Element Method. Subscript f in formulas: FEM. Subscript m

in formulas: MMP. Superscript n in formulas: discrete.
1In particular, the mesh can be so small that it only surrounds points where the field is singular, like Triple-Point Singularities (TPS), which emerge at the

junction of three different materials [? ] (Section 4.2).
2The first equation of (1a) can be obtained by substitutingB = ∇×u, withB : R3

→ C
3 magnetic flux density, andE = −∇φ+ıωu, withE : R3

→ C
3

electric field, into Ampère’s law [? , p. 4, (1.4c)].
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(a) Physical domainsΩ⋆ ,Ω0 , andΩ1 , defined by different materials.
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(b) Partitioning of R3 underlying our method:Ωf ,Ω
0
m, andΩ1

m.

FIGURE 1 Physical domains (Figure 1a) do not necessarily correspond to computational domains (Figure 1b): Γf0,Γf1 can be artificial interfaces.

Different colors in the figure represent regions with different parameters µ, ǫ.

• Mµ,Mǫ : R3 → C3,3 are symmetric, bounded, uniformly positive-definite matrices that correspond to an inhomogeneous, anisotropic

permeability and permittivity, respectively. We assume that bothMµ(x) = µ I and Mǫ(x) = ǫ I ∀x ∈ R3 \ Ω⋆, given a bounded domain

Ω⋆ ⊂ R3, and µ, ǫ are piecewise constant in R3 \ Ω⋆.

• ω ∈ R is the angular frequency, while k := ω
√
µǫ the piecewise-constant wavenumber in R3 \ Ω⋆. It is implicitly assumed that k 6= 0;

otherwise, if, e.g., ω = 0, we would be in a magnetostatic regime. This case is discussed in [? ].

• j : R3 → R3, with∇ · j = 0, represents the stationary current that generates the electromagnetic field. j has compact support in Ω⋆.

• (1b) is the Silver-Müller radiation condition; please refer to [? , p. 195, Definition 6.6].

✶✳✷ ❉♦♠❛✐♥ ❉❡❝♦♠♣♦s✐t✐♦♥

Piecewise-constant µ, ǫ in R3 \ Ω⋆ induce a natural partition of R3 \ Ω⋆ intom + 1 subdomains Ωi, i = 0, . . . ,m, such that the pair (µ, ǫ) ∈ C2

(and therefore the wavenumber k) is constant in each Ωi. We denote the constant wavenumber for each subdomain with ki, i = 0, . . . ,m, and

assume that there is only one unbounded domain in this partition, which we refer to as Ω0.

To simplify the exposition and without loss of generality, from now on we assume thatm = 1, i.e. thatΩ0∪Ω1 = R3 \Ω⋆, with constant k0 ∈ C

in the unbounded domain Ω0 and constant k1 ∈ C in the bounded Ω1. Generalization tom > 1 is immediate.

However, instead of considering the physical domainsΩ⋆,Ω0,Ω1 (see Figure 1a), we take a different partition for computations (see Figure 1b):

R
3 = Ωf ∪ Ω0

m ∪ Ω1
m ∪ Γf0 ∪ Γf1 ∪ Γ01, (2)

with Γf0 := ∂Ωf ∩ ∂Ω0
m, Γf1 := ∂Ωf ∩ ∂Ω1

m, Γ01 := ∂Ω0
m ∩ ∂Ω1

m and Ωf ∩ Ω0
m = ∅, Ωf ∩ Ω1

m = ∅, Ω0
m ∩ Ω1

m = ∅. We also define Ωm := Ω0
m ∪ Ω1

m

and Γ := Γf0 ∪ Γf1 ∪ Γ01.

We demand Ω⋆ ⊆ Ωf, but not necessarily Ω⋆ = Ωf. If Ω⋆ 6= Ωf, Γf0 ∪ Γf1 = ∂Ωf is an artificial interface. Note that Ωf can be composed of

disjoint regions.

We also demand that Ω0
m,Ω

1
m include different values of the material parameters of (1a): Ωi

m ⊆ Ωi, i = 0, 1, i.e. constant wavenumbers k0, k1

for Ω0
m,Ω

1
m.

We call Ωf, a bounded Lipschitz domain, the FEM domain, whereas Ω0
m is the unbounded and Ω1

m the bounded Trefftz domain. The terminology

indicates the type of approximation of the unknown to be employed in each domain. Coupling between the FEM and Trefftz domains is done across

the (artificial) interfaces Γfi, i = 0, 1, while coupling between the two Trefftz domains occurs across the physical interface Γ01.

Given these computational domains and using f and m as subscripts for FEM and Trefftz methods, respectively, we can decompose u, φ as

uf := u|Ωf
∈ H(curl,Ωf), u0

m := u|Ω0
m
∈ Hloc(curl,Ω

0
m), u1

m := u|Ω1
m
∈ H(curl,Ω1

m), (3a)

φf := φ|Ωf
∈ H1

∗(Ωf), φ0m := φ|Ω0
m
∈ H1

∗,loc(Ω
0
m), φ1m := φ|Ω1

m
∈ H1

∗(Ω
1
m), (3b)
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withH1
∗(Ωf) :=

{
ϕ ∈ H1(Ωf) :

∫
Ωf
ϕ dx = 0

}
. The subscript “loc” indicates that functions belong to the reported space after multiplication with

a compactly-supported smooth function [? , p. 230].

✶✳✸ ❉✐s❝r❡t✐③❛t✐♦♥

By testing the integral form of (1a) on Ωf with suitable functions and integrating by parts, we obtain

Seek uf ∈ H(curl,Ωf), φf ∈ H1
∗(Ωf) :





∫
Ωf

[(
M

−1
µ ∇× uf

)
· (∇× vf)− ω2 (Mǫuf) · vf

]
dx+

∑
i=0,1

∫
Γfi

γui
f · vf dS +

∫
Ωf

∇φf · vf dx =
∫
Ωf

j · vf dx ∀vf ∈ H(curl,Ωf),

∫
Ωf

uf · ∇ψf dx−
∑

i=0,1

∫
Γfi

(
n · ui

f

)
ψf dS = 0 ∀ψf ∈ H1

∗(Ωf),

(4)

given the magnetic trace γ [? , p. 59, (3.51)]

γ :





Hloc(curl curl,Ω�) → H̃− 1
2 (divΓ�

,Γ�),

v 7→ n×
(
M

−1
µ ∇× v

)
.

(5)

We define the terms appearing in (5):

• Ω� ∈
{
Ωf,Ω

0
m,Ω

1
m

}
and Γ� ∈ {Γf0,Γf1,Γ01}.

• Hloc(curl curl,Ω�) is the space of functions v ∈ Hloc(curl,Ω�) for which∇× (∇× v) ∈ L2
loc(Ω�) :=

[
L2
loc(Ω)

]3
.

• H̃− 1
2 (divΓ�

,Γ�) [? , p. 59] is the dual space ofH− 1
2 (curlΓ�

,Γ�) [? , p. 59, (3.53)]. The tilde of H̃− 1
2 (divΓ�

,Γ�) takes into account that

Γ� is generally an open interface [? , p. 59, (2.90)].

• n is the normal vector on Γ�.

We use standard finite element spaces to discretize (4) in Ωf ⊇ Ω⋆, where Mµ,Mǫ may vary in space. These discrete spaces are built on

tetrahedral meshes Mf on Ωf. More specifically, we discretize uf ∈ H(curl,Ωf) with the lowest-order H(curl,Ωf)-conforming edge elements of

the first family due to Nédélec [? , p. 126, Section 5.5], i.e.

Vn(Mf) := R1(Mf) :=
{
vn ∈ H0(curl,Ωf) : v

n|K (x) = aK + bK × x, aK ,bK ∈ R
3, x ∈ K ∀K ∈ Mf

}
, (6a)

and φf ∈ H1
∗(Ωf) with piecewise-linear Lagrangian finite elements [? , p. 143, Section 5.6], i.e.

V n(Mf) := S0
1 (Mf) :=

{
vn ∈ C0(Ωf) : vn|K (x) = aK + bK · x, aK ∈ R, bK ∈ R

3, x ∈ K ∀K ∈ Mf

}
. (6b)

On each discrete function φnf ∈ H1
∗(Ωf) discretized by V

n(Mf) ⊂ H1(Ωf)we impose the condition
∫
Ωf
φnf dx = 0 by means of a scalar Lagrange

multiplier.

However, in the partition of R3 \Ωf, induced by piecewise-constant material parameters µ, ǫ and giving rise to the unbounded domain Ω0
m and

the (possibly very large) domain Ω1
m (Figure 1a), we do not intend to employ mesh-based basis functions, as required by Ω⋆. Indeed, given the

computational domains Ω0
m,Ω

1
m introduced in Section 1.2, the weak solution u0

m ∈ Hloc(curl,Ω
0
m) of (1) is sought in the continuous Trefftz space

T (Ω0
m) :=

{
v ∈ Hloc(curl,Ω

0
m) : ∇× (∇× v)− k20 u = 0 , k0 ∈ C , ∇ · v = 0 ,

v satisfies the radiation condition (1b)
}
, (7a)

which is composed of exact solutions of (1) in Ω0
m. Correspondingly, u

1
m ∈ H(curl,Ω1

m) is sought in

T (Ω1
m) :=

{
v ∈ H(curl,Ω1

m) : ∇× (∇× v)− k21 u = 0 , k1 ∈ C , ∇ · v = 0
}
. (7b)

Trefftz methods seek to approximate the unknown in Ω0
m,Ω

1
m using finite-dimensional (discrete) subspaces of T (Ω0

m),T (Ω1
m). While mesh-

basedmethods like FEM suffer from thewell-known pollution effect [? ] with time-harmonicMaxwell’s equations,T (Ω0
m),T (Ω1

m) contain oscillating

basis functions, which may achieve better approximation properties than the classical piecewise-polynomial spaces of FEM [? ]. Specifically, our

approach uses multipole expansions centered in points outside each Ωi, i = 0, 1, which is being approximated; see the next Section 2 for details.
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✷ ❚❘❊❋❋❚❩ ▼❊❚❍❖❉❙

Trefftz methods rely on Trefftz spaces spanned by functions that are exact solutions of the PDE of interest, not necessarily independent from each

other. Important choices of these Trefftz basis functions are

• plane waves and (generalized) harmonic polynomials [? ],

• fundamental solutions with singularities outside the domain of Trefftz approximation [? ], and

• fields spawned by point sources, also located outside the Trefftz domain (method of auxiliary sources3 [? ]).

In spite of this diversity, all Trefftz methods share a desirable feature and a drawback. The former is the exponential convergence of their

approximation error if the field is sufficiently smooth (see Section 2.2). The drawback is that, as exact solutions of a PDE are global functions and

simple choices for a basis of T (Ω0
m),T (Ω1

m) may be affected by near-linear dependence, Trefftz basis functions typically lead to ill-conditioned

dense matrices.

Thus, stability is an issue, even if mitigated by the few degrees of freedom of Trefftz methods, given their exponential convergence. Related is

the need of heuristic rules to build the discrete Trefftz spaces when the unknown is difficult to model, e.g., when close to singularities: instability

can have such a large impact that the numerical solution becomes useless.

The numerical examples of Section 4 show that coupling a Trefftz method with FEM can be a way to overcome this issue. There we use Trefftz

spaces spanned by multipoles and refer to this discretization as the MMP approximation after the Trefftz method known as Multiple Multipole

Program.

✷✳✶ ▼✉❧t✐♣❧❡ ▼✉❧t✐♣♦❧❡ Pr♦❣r❛♠

The concept of the Multiple Multipole Program was proposed by Ch. Hafner in his dissertation [? ] and popularized by his free code ❖♣❡♥▼❛❳✇❡❧❧

[? ] for 2D axisymmetric problems. Hafner’s MMP is in turn based on the much older work of G. Mie and I. N. Vekua [? ? ]. Essentially, the Mie-

Vekua approach expands some scalar field in a 2D multiply-connected domain by a multipole expansion supplemented with generalized harmonic

polynomials. Extending these ideas, MMP introduces more basis functions (multiple multipoles) than required according to Vekua’s theory [? ] to

span the MMP Trefftz spaces (7).

Multipoles are potentials spawned by (anisotropic) point sources. For this reason, MMP belongs to the class of methods of auxiliary sources.

These point sources are taken from the exact solutions of the homogeneous PDEs (1a) that can be subject to the decay condition (1b), depending

on whether they are used to approximate the solution in Ω0
m.

A multipole can generally be written as v (x) := f (rxc) g (θxc, ϕxc) in a spherical coordinate system in R3 (r ∈ [0,∞), θ ∈ [0, 2π), ϕ ∈ [0, π])

with respect to its center c ∈ R3 (x, c ∈ R3 are position vectors in Cartesian coordinates). Here, (rxc, θxc, ϕxc)
⊤ are spherical coordinates of the

vector xc := x− c.

The radial dependence f (rxc) may induce a central singularity, |f (r)| → ∞ for r → 0, and, when needed, the desired decay condition at

infinity. If they feature a singularity, multipoles are centered outside the domain in which they are used for approximation.

On the other hand, the spherical dependence g is usually formulated in terms of vector spherical harmonics [? , p. 289]. The additional constraint

of the Coulomb gauge in (1a) is taken into account by selecting a subset of vector spherical harmonics to express g.

More specifically, the multipoles chosen for the numerical experiments of Section 4 have the forms

(r, θ, ϕ) 7→





bℓ(krxc)Φℓm(θxc, ϕxc),

ℓ(ℓ+ 1)
bℓ(krxc)

krxc
Yℓm(θxc, ϕxc) +

[
b′ℓ(krxc) +

bℓ(krxc)

krxc

]
Ψℓm(θxc, ϕxc),

ℓ = 1, . . . ,∞, m = −l, . . . , l,

(8)

given vector spherical harmonics defined as

Yℓm(θ, ϕ) := er Yℓm(θ, ϕ), er=(1, 0, 0)⊤, (9a)

Φℓm(θ, ϕ) := r×∇sphYℓm(θ, ϕ), r =(r, 0, 0)⊤, (9b)

Ψℓm(θ, ϕ) := r∇sphYℓm(θ, ϕ), (9c)

here with spherical components.

3A special method of auxiliary sources is theMultiple Multipole Program, which employs multipole expansions – see Section 2.1.
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• bℓ is a spherical Hankel function of the first kind h
(1)
ℓ

[? , p. 281] or a spherical Bessel function of the first kind jℓ [? , p. 279], depending on

whether the Trefftz space is subject to the Silver-Müller radiation condition (1b).

• k := ω
√
µǫ ∈ C is the piecewise-constant wavenumber: k = ki in Ωi

m, i = 0, 1.

• ∇sph denotes the gradient in spherical coordinates and Ylm(θ, ϕ) the spherical harmonics [? , p. 250]. It can be shown that Φℓm,Ψℓm do

not depend on r despite its presence in their definitions (9b) and (9c).

Each multipole from (8) is characterized by a location, i.e. its center c, and parameters ℓ (degree) and m (subdegree). When we place several

multipoles at a given location up to a certain order, which is themaximumdegree ofmultipoleswith that center, we use the termmultipole expansion.

Summing the number of terms of all multipole expansions used for approximation yields the total number of degrees of freedom of the discretized

Trefftz space T n(Ωi
m) ⊂ T (Ωi

m) of (7), i = 0, 1.

✷✳✷ ❆♣♣r♦①✐♠❛t✐♦♥ ❊rr♦r

For the Poisson’s equation in an unbounded domain R2 \ Ω⋆, with Ω⋆ bounded domain, it can be proven that the approximation error in theH1-

norm decreases exponentially with respect to the number of degrees of freedom of the correspondingMMPTrefftz space if the unknown possesses

an analytic extension beyond the Trefftz domain [? , p. 3, Proposition 1]. The proof relies on the fact that (generalized) harmonic polynomials also

achieve exponential convergence in Hi-seminorms, i = 0, . . . , j, j ∈ N0, when solving 2D Poisson in a bounded domain that satisfies certain

assumptions [? , p. 61, Theorem 3.2.5].

A corresponding result for R3 remains elusive, even if [? , p. 261, Section 5.1] provides estimates for Trefftz approximations of functions with

limited smoothness.

However, MMP without modifications cannot properly handle problems without an analytic extension, such as those with triple-point

singularities (Section 4.2), and preserve its exponential behavior. There are two ways to cope with these situations:

1. Augmenting the Trefftz spaces with basis functions that capture the singularities [? ]. However, explicit knowledge of the form of such

singularities is required.

2. Coupling MMP with a method based on volume meshes, like FEM, and applying the latter to a locally-refined mesh that encompasses both

the singularities and their immediate surrounding regions. By truncating the mesh at an auxiliary boundary that does not coincide with any

physical discontinuity, MMP can be applied to a region where the field is sufficiently easy to approximate that heuristics on the placement

of multipoles does not impact much on the quality of the solution. This is the approach followed by this work.

✸ ❈❖❯P▲■◆● ❙❚❘❆❚❊●■❊❙

Relying on the formalism introduced in Sections 1.2 and 1.3, we can write the transmission conditions that the restrictions of the solution of (1)

have to satisfy across Γfi, i = 0, 1 [? , p. 107, Lemma 5.3]:

n× uf

∣∣
Γfi

= n× ui
m

∣∣
Γfi
, (10a)

γuf

∣∣
Γfi

= γui
m

∣∣
Γfi
, (10b)

n · uf

∣∣
Γfi

= n · ui
m

∣∣
Γfi
. (10c)

(10a) and (10b) stem from the first line of (1a), (10c) from the second line (Coulomb gauge).4 Analogous conditions also have to hold across Γ01.

transmission conditions (10) on Γf0,Γf1,Γ01 and the weak form (4) of (1a) in Ωf are all the ingredients to obtain a FEM–Trefftz coupled solution

of (1). By inserting (10b) and (10c) on Γf0,Γf1 into the boundary integrals of (4), we obtain

Seek uf ∈ HΓ(curl,Ωf), u
0
m ∈ T (Ω0

m), u
1
m ∈ T (Ω1

m), φf ∈ H1
∗(Ωf) :





∫
Ωf

[(
M

−1
µ ∇× uf

)
· (∇× vf)− ω2 (Mǫuf) · vf

]
dx+

∑
i=0,1

∫
Γfi

γui
m · vf dS +

∫
Ωf

∇φf · vf dx =
∫
Ωf

j · vf dx ∀vf ∈ H(curl,Ωf),

∫
Ωf

uf · ∇ψf dx−
∑

i=0,1

∫
Γfi

(
n · ui

m

)
ψf dS = 0 ∀ψf ∈ H1

∗(Ωf).

(11)

4At first sight, one could think of combining (10a) and (10c) and impose the continuity uf

∣∣
Γfi

= u
i
m

∣∣
Γfi

, i = 0, 1. However, this would only hold if each

restriction of u lay in H
1(Ω�) :=

[
H1(Ω�)

]3
.
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In Ωf, imposing the Coulomb gauge via the Lagrange multiplier φf ∈ H1
∗(Ωf) allows (10c) to hold through the boundary integrals of the second

line of (11): if we set φf ∈ H1
0 (Ωf), such boundary integrals would in fact disappear. Conversely, the Coulomb gauge is already taken into account

strongly for functions ui
m ∈ T (Ωi

m), i = 0, 1.

We end up with four different coupling approaches depending on how we impose the additional transmission condition (10a) on Γf0,Γf1 and

all transmission conditions (10) on Γ01. These coupling approaches in the continuous and discrete cases are discussed in the following sections as

stationary problems for different Lagrangian functionals. The resulting linear variational saddle-point problems are also stated.

✸✳✶ P❉❊✲❝♦♥str❛✐♥❡❞ ▲❡❛st✲❙q✉❛r❡s ❈♦✉♣❧✐♥❣

We determine a quadratic minimization problem under a linear variational constraint by seeking uf ∈ H(curl,Ωf), u
0
m ∈ T (Ω0

m), and u1
m ∈ T (Ω1

m)

that

1. minimize the mismatch in the transmission conditions

JΓ(uf,u
0
m,u

1
m) :=

∥∥n×
(
uf − u0

m

)∥∥2
H

−
1
2 (divΓf0

,Γf0)
+
∥∥n×

(
uf − u1

m

)∥∥2
H

−
1
2 (divΓf1

,Γf1)
+

∥∥n×
(
u0
m − u1

m

)∥∥2
H

−
1
2 (divΓ01

,Γ01)
+

∥∥γ
(
u0
m − u1

m

)∥∥2
H

−
1
2 (divΓ01

,Γ01)
+
∥∥n ·

(
u0
m − u1

m

)∥∥2
H

−
1
2 (Γ01)

(12)

2. and satisfy the PDE-constraint (11).

Note that here the constraint is given by the variational form of the system of PDEs (1a) inΩf, while the functional JΓ to be minimized is based on

the transmission conditions not imposed by the variational form (11).

This problem can be rephrased as seeking a saddle point of the following Lagrangian:

L(uf,u
0
m,u

1
m, φf,pf, ξf) :=

1

2
JΓ(uf,u

0
m,u

1
m)+

∫

Ωf

[(
M−1

µ ∇× uf

)
· (∇× pf)− ω2 (Mǫuf) · pf

]
dx+

∑

i=0,1

∫

Γfi

γui
m · pf dS+

∫

Ωf

∇φf · pf dx−
∫

Ωf

j · pf +

∫

Ωf

uf · ∇ξf dx−
∑

i=0,1

∫

Γfi

(
n · ui

m

)
ξf dS.

(13)

• φf ∈ H1
∗(Ωf), as discussed in Section 1.2.

• pf ∈ H(curl,Ωf) is the Lagrange multiplier imposing the first line of (11).

• ξf ∈ H1
∗(Ωf) is the Lagrange multiplier imposing the second line of (11).

❙❛❞❞❧❡✲P♦✐♥t Pr♦❜❧❡♠

The trace norms ‖·‖
H

−
1
2 (divΓ�

,Γ�)
, ‖·‖

H
−

1
2 (Γ�)

are nonlocal. Thus, for practicality we replace themwith theL2(Γ�) andL2(Γ�)-norms in (12),

respectively, and seek uf ∈ H∂Ωf
(curl,Ωf) :=

{
v ∈ H(curl,Ωf) : n× v|∂Ωf

∈ L2
t (∂Ωf)

}
. Given this substitution, the necessary and sufficient

optimality conditions of (13) give rise to the saddle-point problem

Seek uf ∈ H∂Ωf
(curl,Ωf), u

0
m ∈ T (Ω0

m), u
1
m ∈ T (Ω1

m), φf ∈ H1
∗(Ωf), pf ∈ H(curl,Ωf), ξf ∈ H1

∗(Ωf) :




aLS[
(
uf,u

0
m,u

1
m

)
,
(
vf,v

0
m,v

1
m

)
] + bLS[

(
vf,v

0
m,v

1
m, ψf

)
, (pf, ξf)] = 0

bLS[
(
uf,u

0
m,u

1
m, φf

)
, (qf, ζf)] =

∫
Ωf

j · qf dx

∀vf ∈ H∂Ωf
(curl,Ωf), ∀v0

m ∈ T (Ω0
m), ∀v1

m ∈ T (Ω1
m), ∀ψf ∈ H1

∗(Ωf), ∀qf ∈ H(curl,Ωf), ∀ζf ∈ H1
∗(Ωf),

(14)

where

aLS
[(
uf,u

0
m,u

1
m

)
,
(
vf,v

0
m,v

1
m

)]
:=

∫

Γf0

[
n×

(
uf − u0

m

)]
·
[
n×

(
vf − v0

m

)]
dS +

∫

Γf1

[
n×

(
uf − u1

m

)]
·
[
n×

(
vf − v1

m

)]
dS+

∫

Γ01

{ [
n×

(
u0
m − u1

m

)]
·
[
n×

(
v0
m − v1

m

)]
+

[
γ
(
u0
m − u1

m

)]
·
[
γ
(
v0
m − v1

m

)]
+

[
n ·

(
u0
m − u1

m

)]
·
[
n ·

(
v0
m − v1

m

)] }
dS,

(15)

bLS
[ (

uf,u
0
m,u

1
m, φf

)
, (qf, ζf)

]
:=

∫

Ωf

[(
M−1

µ ∇× uf

)
· (∇× qf)− ω2 (Mǫuf) · qf

]
dx+

∑

i=0,1

∫

Γfi

γui
m · qf dS+

∫

Ωf

∇φf · qf +

∫

Ωf

uf · ∇ζf dx−
∑

i=0,1

∫

Γfi

(
n · ui

m

)
ζf dS.

(16)

We propose the following discretization for (14):
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• uf,vf,pf,qf ∈ Vn(Mf), see (6a),

• φf, ψf, ξf, ζf ∈ V n(Mf), see (6b),

• u0
m,v

0
m ∈ T n(Ω0

m), and

• u1
m,v

1
m ∈ T n(Ω1

m).

✸✳✷ ❉✐s❝♦♥t✐♥✉♦✉s ●❛❧❡r❦✐♥

Discontinuous Galerkin (DG) methods allow to use FEMwith nonconforming meshes on different neighboring domains for the same boundary value

problem [? ]. This is well-suited for the coupling because one can think of MMP as FEM with special trial and test functions used on a “mesh” with

two entities: Ω0
m and Ω1

m. More specifically, we want to impose weak continuity of the tangential traces (10a) by a DG method [? ].

Following this idea, the coupling can be expressed as a discrete stationary problem for the following Lagrangian:

L(un
f ,u

n,0
m ,un,1

m , φnf , φ
n,0
m , φn,1

m ) := JΩf
(un

f , φ
n
f ) + JΩm

(un,0
m ,un,1

m , φn,0
m , φn,1

m )+

∑

i=0,1

∫

Γfi

[
n×

(
un
f − u

n,i
m

)]
·Pn(un

f ,u
n,i
m ) dS+

∫

Γ01

[
n×

(
u
n,0
m − u

n,1
m

)]
·Pn(un,0

m ,un,1
m ) dS.

(17)

We propose un
f ∈ Vn(Mf) (6a), u

n,0
m ∈ T n(Ω0

m), u
n,1
m ∈ T n(Ω1

m), and φ
n
f ∈ V n(Mf) (6b). However, to discretize φn,0

m , φn,1
m , we first need to

discuss functionals JΩf
, JΩm

in the continuous case; the discrete operator Pn is discussed at a later stage.

❋✉♥❝t✐♦♥❛❧s JΩ❢ , JΩ♠

JΩf
expresses the saddle-point problem that corresponds to (1a) in Ωf:

JΩf
(uf, φf) :=

1

2

∫

Ωf

[(
M−1

µ ∇× uf

)
· (∇× uf)− ω2 (Mǫuf) · uf

]
dx+

∫

Ωf

uf · ∇φf dx−
∫

Ωf

j · uf dx. (18a)

JΩm
for u0

m,u
1
m has a similar formulation, but for constant scalar coefficients and no sources:

JΩm
(u0

m,u
1
m, φ

0
m, φ

1
m) :=

1

2

∑

i=0,1

∫

Ωi
m

(
µ−1
i ‖∇ × ui

m‖2ℓ2 − ω2ǫi ‖ui
m‖2ℓ2

)
dx+

∑

i=0,1

∫

Ωi
m

ui
m · ∇φim dx. (18b)

Because ui
m ∈ T (Ωi

m), i = 0, 1, one can rewrite the volume integrals in (18b) as boundary integrals:

1

2

∫

Ωi
m

(
µ−1
i ‖∇ × ui

m‖2ℓ2 − ω2ǫi ‖ui
m‖2ℓ2

)
dx = −1

2

∫

∂Ωi
m

γui
m · ui

m dS, (19a)

∫

Ωi
m

ui
m · ∇φim dx =

∫

∂Ωi
m

(
n · ui

m

)
φim dS. (19b)

◆♦r♠❛❧ ❈♦♥t✐♥✉✐t②

From (19b), by considering only the integrals on eachΓfi := ∂Ωf∩∂Ωi
m, i = 0, 1, takingn always pointing fromΩf toΩ

i
m, and setting φ

i
m

∣∣
Γfi

= φf|Γfi
,

from (19b) one can extract the terms

−
∑

i=0,1

∫

Γfi

(
n · ui

m

)
φf dS, (20a)

which is like imposing (10c) on each Γfi by inserting5 the MMP ansatz in the boundary terms of the second line of the variational form (4),

as done in (11). Furthermore, by considering only the integrals on Γ01 := ∂Ω0
m ∩ ∂Ω1

m, taking the same n on both sides of Γ01, and defining

φ01m := φ0m
∣∣
Γ01

= φ1m
∣∣
Γ01

, from (19b) one can also extract

∫

Γ01

(
n · u0

m − n · ui
m

)
φ01m dS, (20b)

which is like imposing (10c) on Γ01 by means of a Lagrange multiplier φ01m ∈ H
1
2 (Γ01). Thus, we can rewrite (19b) as

∑

i=0,1

∫

∂Ωi
m

(
n · ui

m

)
φim dS = −

∑

i=0,1

∫

Γfi

(
n · ui

m

)
φf dS +

∫

Γ01

(
n · u0

m − n · u1
m

)
φ01m dS. (21)

5The minus sign is due to flipping the direction of n, which now points from Ωf to Ωi
m, i = 0, 1, for this integral.



❉✳ ❈❆❙❆❚■ ❡t ❛❧ ✾

To discretize φ01m ∈ H
1
2 (Γ01), we use Dirichlet traces of n · vm on Γ01, given vm ∈ T n(Ω0

m) or T
n(Ω1

m), and define this discrete trace space

as T n(Γ01). This choice of T n(Γ01) is consistent with:

• The PDE-constrained least-squares coupling approach of Section 3.1: the same test functions in T n(Γ01) are chosen to impose (10c) on

Γ01 through (12) – see (15).

• Mortar element methods (Section 3.3.1). In fact, these methods impose weak continuity between nonconforming meshes by a Lagrange

multiplier discretized by traces of functions belonging to one of the discretization spaces of the neighboring domains, here Ω0
m or Ω1

m [? ,

p. 100, Remark].

❖♣❡r❛t♦r Pn

Let us now go back to the Lagrangian functional (17). Depending on the choice of its discrete operator

Pn :
(
Vn(Mf) + T

n(Ωi
m)

)
×

(
Vn(Mf) + T

n(Ωi
m)

)
→

(
Vn(Mf) + T

n(Ωi
m)

)
, (22a)

i = 1, 2, we obtain different DG approaches. We follow the (symmetric) Interior Penalty DG method [? ]:

Pn(un,vn) := M
−1
µ [∇× (un + vn)] + η M

−1
µ [n× (un − vn)]. (22b)

• Mµ(x) : R3 → C3,3 is the mean of material parametersMµ in Ωf and Ωi
m when integrating on each Γfi, i = 0, 1:

Mµ(x) :=
Mµ(x) + µi I

2
∀x ∈ Γfi, (23)

and ofMµ in Ω0
m and Ω1

m when integrating on Γ01:

Mµ(x) :=
µ0 + µ1

2
I ∀x ∈ Γ01. (24)

• η ∈ R is a penalty parameter that needs to be assigned heuristically. On any Γfi, i = 0, 1, η should be proportional to N i
m/h, where N

i
m

is the number of degrees of freedom of T n(Ωi
m) and h ∈ R the meshwidth of Mf restricted to Γfi. On Γ01, η should be proportional to

N0
m +N1

m. Both choices are inspired by η ∼ p/h, used in case of polynomial DG–FEM [? , p. 229] (with p ∈ N∗ the polynomial degree).

❙❛❞❞❧❡✲P♦✐♥t Pr♦❜❧❡♠

Finding the stationary point of (17) leads to the discrete saddle-point problem

Seek un
f ∈ Vn(Mf), u

n,0
m ∈ T

n(Ω0
m), u

n,1
m ∈ T

n(Ω1
m), φ

n
f ∈ V n(Mf), φ

n,01
m ∈ T n(Γ01) :





anDG[
(
un
f ,u

n,0
m ,un,1

m

)
,
(
vn
f ,v

n,0
m ,vn,1

m

)
] + bnDG[

(
vn
f ,v

n,0
m ,vn,1

m

)
,
(
φnf , φ

n,01
m

)
] =

∫
Ωf

j · vn
f dx

bnDG[
(
un
f ,u

n,0
m ,un,1

m

)
,
(
ψn
f , ψ

n,01
m

)
] = 0

∀vn
f ∈ Vn(Mf), ∀vn,0

m ∈ T
n(Ω0

m), ∀vn,1
m ∈ T

n(Ω1
m), ∀ψn

f ∈ V n(Mf), ∀ψn,01
m ∈ T n(Γ01),

(25)

where we define the symmetric bilinear form anDG(·, ·) and linear form bnDG(·, ·) as

anDG
[ (

un
f ,u

n,0
m ,un,1

m

)
,
(
vn
f ,v

n,0
m ,vn,1

m

) ]
:=

∫

Ωf

[(
M−1

µ ∇× un
f

)
· (∇× vn

f )− ω2 (Mǫu
n
f ) · vn

f

]
dx+

∑

i=0,1

∫

Γfi

{[
M

−1
µ ∇×

(
un
f + u

n,i
m

)]
·
[
n×

(
vn
f − v

n,i
m

)]
+

[
n×

(
un
f − u

n,i
m

)]
·
[
M

−1
µ ∇×

(
vn
f + v

n,i
m

)]}
dS+

∑

i=0,1

∫

Γfi

2 η
[
M

−1
µ n×

(
un
f − u

n,i
m

)]
·
[
n×

(
vn
f − v

n,i
m

)]
dS −

∑

i=0,1

∫

∂Ωi
m

γu
n,i
m · vn,i

m dS+

∫

Γ01

{[
M

−1
µ ∇×

(
u
n,0
m + u

n,1
m

)]
·
[
n×

(
v
n,0
m − v

n,1
m

)]
+

[
n×

(
u
n,0
m − u

n,1
m

)]
·
[
M

−1
µ ∇×

(
v
n,0
m + v

n,1
m

)]}
dS+

∫

Γ01

2 η
[
M

−1
µ n×

(
u
n,0
m − u

n,1
m

)]
·
[
n×

(
v
n,0
m − v

n,1
m

)]
dS,

(26)

bnDG
[ (

un
f ,u

n,0
m ,un,1

m

)
,
(
ψn
f , ψ

n,01
m

) ]
:=

∫

Ωf

un
f · ∇ψn

f dx−
∫

Γf0

(
n · un,0

m

)
ψn
f dS −

∫

Γf1

(
n · un,1

m

)
ψn
f dS+

∫

Γ01

(
n · un,0

m − n · un,1
m

)
ψn,01
m dS.

(27)
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✸✳✸ ❈♦✉♣❧✐♥❣ ❜② ❚❛♥❣❡♥t✐❛❧ ❈♦♠♣♦♥❡♥ts ❚r❛❝❡s

The two coupling approaches we describe now can only be used in the case ofm = 0, i.e. a single (unbounded) Trefftz domain Ω0
m, which we refer

to as Ωm. This also results in having a single interface Γ ≡ Γf0 = ∂Ωf = ∂Ωm.

Moreover, both these methods

1. impose the continuity of the tangential components trace for Maxwell’s equations (1), i.e.

n×
(
n× uf

)∣∣
Γ
= n×

(
n× um

)∣∣
Γ
, (28)

instead of the continuity between tangential traces stated in (10a), and

2. enforce (28) weakly through test functions γv, given v ∈ Hloc(curl,Ω�), Ω� ∈ {Ωf,Ωm}.

✸✳✸✳✶ ▼✉❧t✐✲❋✐❡❧❞ ❈♦✉♣❧✐♥❣

As for the DG-based coupling (Section 3.2), we treat the (here single) MMP discretization as a finite element with special functions. However, now

we rely on the other main approach for imposing weak continuity on nonconforming meshes, which is themulti-field domain decomposition method

[? ].

For Maxwell’s equations, the multi-field method aims at imposing the continuity of the tangential components trace (28) in a weak sense by

means of a Lagrange multiplier

λ := γv, v ∈ Hloc(curl,Ω), Ω ⊆ R
3. (29)

From (29) one can see that λ belongs to the dual spaceH− 1
2 (divΓ,Γ), which is consistent with (28) connecting traces inH− 1

2 (curlΓ,Γ).

The rationale behind the multi-field method becomes clear if one applies the generalized Stokes’ theorem in H(curl curl,Ω) to the weak form

of (1a) in Ωf, which then leads to the boundary integral
∫

Γ

γuf · [n× (n× vf)] dS. (30)

Substituting (28) into (30), we can understand the reason for (29). Then, relying on the definition of γ (5), (30) can be simplified as the boundary

integrals of the first line of (11).

Hence, the multi-field coupling can be expressed by the following Lagrangian:

L(uf,um, φf, φm,λ) := JΩf
(uf, φf) + JΩm

(um, φm) +

∫

Γ

{n× [n× (uf − um)]} · λ dS, (31)

where JΩf
and JΩm

are the same as in (18a) and (18b). In the same way as (19), we can also rewrite the volume integrals of JΩm
as boundary

integrals on the single interface Γ and then, as in (20a), rename φm|Γ as φf|Γ.

❙❛❞❞❧❡✲P♦✐♥t Pr♦❜❧❡♠

We obtain the following saddle-point problem:

Seek uf ∈ H(curl,Ωf), um ∈ T (Ωm), φf ∈ H1
∗(Ωf), λ ∈ H̃− 1

2 (divΓ,Γ):




aMF[(uf,um) , (vf,vm)] + bMF[(vf,vm) , (φf,λ)] =
∫
Ωf

j · vf dx

bMF[(uf,um) , (ψf,χ)] = 0

∀vf ∈ H(curl,Ωf), ∀vm ∈ T (Ωm), ∀ψf ∈ H1
∗(Ωf), ∀χ ∈ H̃− 1

2 (divΓ,Γ),

(32)

where

aMF[(uf,um) , (vf,vm)] :=

∫

Ωf

[(
M−1

µ ∇× uf

)
· (∇× vf)− ω2 (Mǫuf) · vf

]
dx−

∫

Γ

γum · vm dS, (33a)

bMF[(uf,um) , (ψf,χ)] :=

∫

Ωf

uf · ∇ψf dx−
∫

Γ

(n · um) ψf dS +

∫

Γ

{n× [n× (uf − um)]} · χ dS. (33b)

For the discretization of (32), we suggest uf,vf ∈ Vn(Mf) of (6a), φf, ψf ∈ V n(Mf) of (6b), and um,vm ∈ T n(Ωm), as in Sections 3.1 and 3.2.

Conversely, the discretization of λ ∈ H̃− 1
2 (divΓ,Γ) is a topic debated in the literature [? , Section 4]. In the spirit of mortar element methods,

we opt for the tangential traces on Γ of the trial space used to discretize one of the neighboring domains [? , p. B426], specifically the Nédélec’s

spaceVn(Mf), given its higher number of degrees of freedom than T n(Ωm).
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Note that this choice, while being the most common discretization strategy [? , Section 4.1], ignores the duality of λ. This nonconforming

discretization then prevents us from extending the multi-field coupling approach to the case with multiple MMP domains. As a matter of fact,

a Lagrange multiplier λ01 ∈ H̃− 1
2 (divΓ01

,Γ01), which would impose continuity of tangential components traces between the MMP domains

Ω0
m,Ω

1
m, would have to be discretized by the tangential traces of either T n(Ω0

m) or T
n(Ω1

m), the neighboring volume discretization spaces. While

on Γf0 and Γf1 the Nédélec’s space is the obvious natural decision, no easy choice exists on Γ01.

This is a similar issue that afflicts the discretization of ψn,01
m for the DG-based coupling (Section 3.2). However, in that case only the normal

continuity (10c) between MMP domains is affected, which is of lesser importance because it comes from a Gauge condition (second line of (1a)).

On the other hand, the tangential continuity (10a) comes from the physically more relevant Maxwell’s equations (first line of (1a)).

✸✳✸✳✷ ❉✐r✐❝❤❧❡t✲t♦✲◆❡✉♠❛♥♥✲❜❛s❡❞ ❈♦✉♣❧✐♥❣

This coupling approach is a special case of the Trefftz co-chain calculus presented in [? ], where Trefftz methods are coupled with any numerical

method based on volume meshes that fits the framework of co-chain calculus. Obviously, the numerical method here is FEM.

As mentioned in Section 3.3, instead of the continuity between tangential traces implied by (10a), we take into account the continuity of

the tangential components trace. (28) is then imposed in weak form by testing it with γvm, given vm ∈ T (Ωm) (compare with (29) and (30) in

Section 3.3.1): ∫

Γ

{[n× (n× uf)]− [n× (n× um)]} · γvm dS = 0 =⇒
∫

Γ

(uf − um) · γvm dS = 0 ∀vm ∈ T (Ωm), (34)

which holds because of the definition of γ (5).

❙❛❞❞❧❡✲P♦✐♥t Pr♦❜❧❡♠

Combining (34) with the (symmetrized) variational form (11), we end up with the following system:

Seek uf ∈ H(curl,Ωf), um ∈ T (Ωm), φf ∈ H1
∗(Ωf) :





aDtN[(uf,um) , (vf,vm)] + bDtN[(vf,vm) , φf] =
∫
Ωf

j · vf dx

bDtN[(uf,um) , ψf] = 0

∀vf ∈ H(curl,Ωf), ∀vm ∈ T (Ωm), ∀ψf ∈ H1
∗(Ωf),

(35)

where

aDtN[(uf,um) , (vf,vm)] :=

∫

Ωf

[(
M−1

µ ∇× uf

)
· (∇× vf)− ω2 (Mǫuf) · vf

]
dx+

∫

Γ

uf · γvm dS +

∫

Γ

γum · vf dS −
∫

Γ

γum · vm dS, (36a)

bDtN[(uf,um) , ψf] :=

∫

Ωf

uf · ∇ψf dx−
∫

Γ

(n · um) ψf dS. (36b)

The Galerkin discretization of (35) is straightforward: as done before, we replace H(curl,Ωf) with Vn(Mf) of (6a), H
1(Ωf) with V

n(Mf) of

(6b), and T (Ωm) with a finite-dimensional subspace T n(Ωm).

Note that (35) can also be derived by finding a stationary point of the functional

L(uf,um, φf, φm) := JΩf
(uf, φf) + JΩm

(um, φm) +

∫

Γ

uf · γum dS, (37)

where JΩf
and JΩm

are the same as in (18a) and (18b) and φm disappears by setting φm|Γ = φf|Γ as in (20a).

✹ ◆❯▼❊❘■❈❆▲ ❘❊❙❯▲❚❙

Throughout we use lowest-order H(curl,Ωf)-conforming edge elements of the first family due to Nédélec for vector variables, i.e. Vn(Mf) =

R1(Mf) from (6a), and piecewise-linear Lagrangian finite elements for scalar variables, i.e. V n(Mf) = S0
1 (Mf) from (6b). Unstructured meshes

Mf of Ωf are composed of tetrahedra.

To study the convergence we employ uniform h-refinement ofMf and p-refinement of the Trefftz (MMP) approximations, in the sense that we

increase the number of multipoles. The p-refinement of the multipoles forming T n(Ωi
m), i = 0, 1, is linked to the h-refinement ofMf; specifically,

to the logarithm of the number of intersections of the mesh entities ofMf on Γfi. This choice is motivated by the exponential convergence of the

MMP approximation error (see Section 2.2). Hence, in the next pages (log-log) plots of the results will show the algebraic convergence characteristic

of h-FEM: rates are fitted with the ♣♦❧②❢✐t function of ▼❆❚▲❆❇ (degree 1) applied to log-transformed data.
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We monitor the following errors:

• The volume error in the bounded domains Ωf,Ω
1
m. These are the relative L2(Ωf)- and L2(Ω1

m)-errors of the FEM and MMP (in Ω1
m)

approximations compared to the reference solution u, i.e.

∥∥∥∥∥∥
u−

Nf∑

j=1

αj
f
v
j
f
(x)

∥∥∥∥∥∥
L2(Ωf)

/
‖u‖

L2(Ωf)
and

∥∥∥∥∥∥∥
u−

N1
m∑

j=1

αj,1
m v

j,1
m (x)

∥∥∥∥∥∥∥

2

L2(Ω1
m
)

/
‖u‖

L2(Ω1
m
) , (38)

with αj
f
, αj,1

m ∈ C, v
j
f

∈ Vn(Mf), v
j,1
m ∈ T n(Ω1

m), and Nf, N
1
m numbers of degrees of freedom of the discrete spaces Vn(Mf) and

T n(Ω1
m), respectively.

On the bounded MMP domain Ω1
m we define an auxiliary volume mesh for the numerical quadrature of the error (38). However, on top of

Mf, only a mesh on the 2-dimensional hypersurface Γ01 is really necessary for the coupling, in order to compute the numerical integrals on

that interface. Specifically, throughout we mesh Γ01 (and any curved surface) by simple polyhedral approximations. Of course, if only one

(unbounded) MMP domain Ωm is considered, then only the meshMf is needed (and no other volume error than L2(Ωf) is computed).

• The boundary error on ∂Ω0
m = Γf0 ∪ Γ01, union of the interfaces between the unbounded domain Ω0

m and the other (bounded) domains

Ωf,Ω
1
m. This is the relative L2(∂Ω0

m)-error of the MMP solution in Ω0
m compared to the reference solution.

We can ignore the impact of numerical integration for FEM because we use a local Gaussian quadrature rule that is exact for polynomials of degree

2 (order 3).

✹✳✵✳✶ ■♠♣❧❡♠❡♥t❛t✐♦♥

Meshes were generated using ❈❖▼❙❖▲ v5.3a.

Our code is written in ❈✰✰. We use ❊✐❣❡♥ v3.3.7 for linear algebra and ❍②❉✐ for the FEM component. ❍②❉✐, which can handle ❍②brid nonconform-

ing meshes and ❉✐scontinuous finite elements, is a template-based ❈✰✰✶✹ library, parallelized with ❈✰✰✶✶ multithreading, that is used as in-house

simulation software at the multinational ABB [? , p. 147, Chapter 6].

Finally, the P❆❘❉■❙❖ v6.0 solver provides the sparse LU decomposition to solve the systems of the FEM–MMP coupling, characterized by

nontrivial sparsity patterns.

✹✳✶ ❊❧❡❝tr♦♠❛❣♥❡t✐❝ ❲❛✈❡ Pr♦♣❛❣❛t✐♦♥ ✇✐t❤ ❊①❛❝t ❙♦❧✉t✐♦♥

We solve∇×
(
µ−1∇× u

)
−ω2ǫu = 0, ∇·u = 0 inR3 subject to the Silver-Müller radiation condition (1b) with piecewise-constant permeability

µ = 2.5281µ0 in a unit ball centered in the origin, which we dub Ω•, and µ = µ0 = 4π · 10−7 Hs−1 (permeability of free space) elsewhere. ǫ and

ω are everywhere equal to ǫ0 = 8.85 · 10−12 Fm−1 (permittivity of free space) and 23.56 · 108 rad s−1, respectively. Wavenumbers are therefore

k• = 1.59 k0 in Ω• and k0 = 7.86 radm−1 elsewhere.

We assume that u is subject to an excitation by an incident plane wave propagating along the z-axis outside Ω•, i.e.

u = uinc + uref in R
3 \ Ω•, uinc := exp(ık0z) (0, 1, 0)

⊤, (39)

where uref represents the unknown reflected potential and z in uinc the third Cartesian coordinate. This problem has an exact solution coming

from Mie theory [? , Chapter 4, pp. 82–101], where the plane wave is expanded into vector spherical harmonics and coefficients are derived for

the corresponding terms of the expansions of the reflected and transmitted potentials.

For our numerical tests, we consider the terms in the expansions of Mie theory for ℓ = 1, . . . , 5 (35 terms), identify Ω• with Ωf and R3 \ Ω•

with a single MMP domain Ωm, and therefore set Γ := ∂Ωf ∩ ∂Ωm on the physical boundary of the ball. Given that we use tetrahedral meshes, Γ

is actually a polyhedral approximation of a sphere.

Note that in this setting um has an analytic extension beyondΩm, and hence fulfills the requirements for exponential convergence (Section 2.2).

T n(Ωm) is then generated by a single multipole expansion centered in the origin.

◆✉♠❡r✐❝❛❧ ❘❡s✉❧ts ✭❖♥❡ ❚r❡✛t③ ❉♦♠❛✐♥✮

Figure 2 exemplifies the performance of FEM–MMP by visualizing the magnitude of u in the case of the DtN-based coupling (Section 3.3.2)

compared to the exact solution. The other coupling schemes return comparable images.

For a quantitative convergence test, see Figure 3, which shows h-refinement convergence plots for all coupling approaches, which yield very

similar results. We can clearly see algebraic convergence of the FEM and MMP errors.



❉✳ ❈❆❙❆❚■ ❡t ❛❧ ✶✸

(a) Numerical solution obtained with the DtN-based coupling. (b) Exact solution given by Mie theory.

FIGURE 2Magnitude of the real component of u along theXZ-plane for µ• = 2.5281µ0 and ω = 23.56 · 108 rad s−1. The excitation is given by

the expansion of a plane wave in terms of vector spherical harmonics (for ℓ = 1, . . . , 5) propagating along the z-axis. Artifacts in Figure 2a are due

to the numerical solution being linked to a mesh.
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FIGURE 3 h-refinement log-log error plots for time-harmonic Maxwell’s equations with exact solution. Parameters are µ• = 2.5281µ0 and ω =

23.56 · 108 rad s−1.

Figure 4 shows surface plots of the total relative L2-error for all coupling approaches. The error decreases with h (algebraic convergence) and

is generally independent from the number of multipoles: the FEM error dominates. This is a consequence of the exponential convergence of MMP

(Section 2.2): the exact solution is so easy to approximate in the MMP domain that it can already be represented by a multipole expansion of the

lowest considered order, which is 8, leading to 160 terms of the expansion – see (8).

However, the error also increases when switching to coarser meshes and larger numbers of multipoles, when the coupling is mostly difficult due

to a disproportionately high number of degrees of freedom for MMP (dense blocks of the coupling matrices) with respect to FEM (sparse blocks).
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FIGURE 4Meshwidth h vs. MMP degrees of freedom for time-harmonic Maxwell’s equations with exact solution: total relative error. Parameters

are µ• = 2.5281µ0 and ω = 23.56 · 108 rad s−1.

In these cases, our conjecture is that it becomes difficult for a direct solver to properly solve such an ill-conditioned system, and the MMP error

dominates.

Moreover, we do not have datapoints for the PDE-constrained coupling with the most refined meshes and highest numbers of multipoles: the

resulting linear systems are too large to be solved by an LU decomposition due to memory constraints.

✹✳✶✳✶ ❚✇♦ ❚r❡✛t③ ❉♦♠❛✐♥s

Parameters are still µ• = 2.5281µ0, ǫ• = ǫ0, and ω = 23.56 · 108 rad s−1. We split the unit ball Ω• into two halves, one modeled by FEM (Ωf), the

other by MMP (Ω1
m): the coupling interface Γf1 is therefore artificial. MMP also models the complement R3 \Ω• (Ω0

m): the coupling boundaries Γf0

and Γ01, on the two halves of the sphere, correspond to the physical discontinuity of µ.

As excitation, we consider terms for ℓ = 1, . . . , 5 from the expansion of a plane wave given by Mie theory.

In this setting u0
m and u1

m again have analytic extensions beyond Ω0
m and Ω1

m, and hence fulfill the requirements for exponential convergence

(Section 2.2). To approximate in Ω1
m, a single multipole expansion with spherical Bessel functions as radial dependence is centered in the origin:

Bessel functions of the first kind have no singularities in that point, which lies on ∂Ω1
m. To approximate in Ω0

m, a single multipole expansion with

spherical Hankel functions as radial dependence is also centered in the origin.

Figure 5 shows h-refinement convergence plots for all coupling approaches that work with multiple MMP domains (Sections 3.1 and 3.2). We

can see algebraic convergence of the FEM and MMP errors, which is of rate ∼ 1 for FEM.

✹✳✷ ❊❧❡❝tr♦♠❛❣♥❡t✐❝ ❲❛✈❡ Pr♦♣❛❣❛t✐♦♥ ✇✐t❤ ❚r✐♣❧❡✲P♦✐♥t ❙✐♥❣✉❧❛r✐t✐❡s

The problem is the same as in Section 4.1, but now we consider different values of µ in each half of the ball Ω•. Specifically, we take µ+ = 4µ0 in

one half of Ω• and µ− = 2.5281µ0 in the other half. ω is still = 23.56 · 108 rad s−1: wavenumbers are k+ = 2 k0 and k− = 1.59 k0. Hence, on

the circumference that delimits the surface splitting Ω• we have triple-point singularities.

We fully surround the circumference with TPS by a mesh, and therefore also model with FEM a small region on the other side of the physical

discontinuity of Ω• and an “airbox” in R3 \ Ω•. The coupling interfaces Γf0 and Γf1 are therefore auxiliary; only the interface Γ01 is physical. The

FEM mesh is also locally refined towards the points with TPS. A sample mesh is shown in Figure 6.

The excitation is still given by a plane wave uinc := exp(ık0z) (0, 1, 0)
⊤ that shifts the MMP ansatz in Ω0

m. However, given the TPS, there is

no exact solution: as reference we rely on the numerical solution provided by a mesh substantially more refined than the finest mesh used in the

convergence study.

To approximate inΩ1
m, a single multipole expansion with spherical Bessel functions as radial dependence is centered in the origin. To approximate

in Ω0
m, a single multipole expansion with spherical Hankel functions as radial dependence is also centered in the origin.
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FIGURE 5 h-refinement semi-log error plots (y-axis) for time-harmonic Maxwell’s equations with exact solution solved with two MMP domains.

Parameters are µ• = 2.5281µ0 and ω = 23.56 · 108 rad s−1.

◆✉♠❡r✐❝❛❧ ❘❡s✉❧ts

Figure 7 shows DoF-refinement convergence plots for all coupling approaches that work with multiple MMP domains. We can clearly see algebraic

convergence of the FEM and MMP errors, even if the relative errors of the DG-based coupling are higher than those of the PDE-constrained

approach.

We have also considered material parameters where the frequency ω is lower, and therefore FEM suffers less from the pollution effect, but the

difference between µ+, µ−, and µ0 is higher and the TPS more pronounced. Specifically, µ+ = 10µ0, µ− = 4µ0, and ω = 23.56 · 107 rad s−1.

Figure 8 shows DoF-refinement convergence plots for all coupling approaches that work with multiple MMP domains. Again, we can clearly see

algebraic convergence of the FEM andMMP errors and the errors of the DG-based coupling are higher. However, while the convergence rate does

not improve with respect to the plots of Figure 7, the values of the relative errors are much lower than before, given the easier-to-handle frequency.

✹✳✷✳✶ ▼✐♥✐♠❛❧ ❋❊▼ ▼❡s❤

We repeat these experiments with the meshes shown in Figure 9, where only the points with TPS and their immediate surrounding regions are

modeled with FEM, so to minimize the meshed region. Hence, here we have three MMP domains: bounded Ω1
m,Ω

2
m (µ+, µ−) and unbounded Ω0

m

(µ0).

To approximate in Ω1
m and Ω2

m, two multipole expansions with spherical Bessel functions as radial dependence are centered in the origin. To

approximate in Ω0
m, a multipole expansion with spherical Hankel functions as radial dependence is also centered in the origin.

Figure 10 shows DoF-refinement convergence plots for the PDE-constrained coupling, given

• µ+ = 4µ0, µ− = 2.5281µ0, and ω = 23.56 · 108 rad s−1 in Figure 10a, and

• µ+ = 10µ0, µ− = 4µ0, and ω = 23.56 · 107 rad s−1 in Figure 10b.

We can still see algebraic convergence of the FEM and MMP errors. Moreover, the values of the relative MMP errors in Figure 10b are again much

lower than Figure 10a, given the lower frequency.

We do not report results for DG-based coupling because we would have to choose 6 penalty parameters η for Γfj ,Γij , i < j, j = 0, 1, 2, and 3

discretization spaces T n(Γij) to impose normal continuity between Ωi
m,Ω

j
m (see Section 3.2).

✹✳✷✳✷ ▼✐♥✐♠❛❧ ❋❊▼ ▼❡s❤ ❛♥❞ ▲❛②❡r❡❞ ▼❡❞✐✉♠

We consider a similar setting to Figure 9, where the FEM mesh only surrounds the TPS, and further introduce a substrate with permeability µ−

that occupies half of R3 (with negative z-axis). Hence, the ball Ω• becomes a half-ball with permeability µ+ and there is a physical discontinuity

between µ− and µ0 on the wholeXY -plane: see a sample mesh in Figure 11.
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FIGURE 6 Cross-section of the 3D model (and a mesh) of Ωf and Ω1
m along the XZ-plane. In the right figure, the blue, pink, and green meshes

cover Ωf and have parameters µ+, µ−, and µ0, respectively. The purple mesh covers Ω1
m (µ−) and is used for numerical quadrature of the error.

For better visualization, this mesh is not locally refined at the points with TPS (circumference touching the blue, pink, and green meshes).

To approximate in the half-ball Ω1
m, multipole expansions with spherical Bessel functions as radial dependence are uniformly positioned on a

rectangular prism that lies completely outside Ω1
m. However, to approximate in Ω0

m, which contains an infinite physical discontinuity,6 we cannot

make use of the standard multipoles from Section 2.

We therefore use layered dipoles [? , p. 128, Section 6.3.2], which rely on the layered-media Green’s functions reported in [? ]. Their implementation

includes Sommerfeld integrals, which present singularities that require integration over complex contours. Layered dipoles in Ω0
m are also shifted

by plane waves

uinc + uref with z ≥ 0,

uinc := exp(ık0 z ) (0, 1, 0)
⊤ , uref := exp(−ık0z) (0, 1, 0)⊤ Aref,

utrs := exp(ık−z) (0, 1, 0)
⊤ Atrs with z < 0,

(40)

where Aref =
√

µ0−
√

µ
−√

µ0+
√

µ
−

, Atrs =
2
√

µ
−√

µ0+
√

µ
−

, and z+, z− are halves of R3 with positive/negative z-axis. (40) can be derived from standard results

of reflection and transmission of plane waves with normal incidence.

Figures 12 and 13 shows DoF-refinement convergence plots for both the PDE-constrained and DG-based coupling approaches and both sets of

parameters used in the previous experiments. We can see algebraic convergence of the FEM and MMP errors: in particular, the FEM convergence

rates of both approaches are very similar to each other.

At the same time, plots for the higher frequency ω = 23.56 · 108 rad s−1 (Figure 12) look more irregular because of the FEM pollution effect,

especially the one obtained with the DG-based coupling, where the relative errors are quite high (like in the previous experiments). With a lower

frequency (Figure 13), while the relative errors of the DG-based coupling are still higher than the PDE-constrained coupling, they are at most 0.3

even for the coarsest mesh employed, and all datapoints are aligned very closely to the fitted lines.

6Here, Ω0
m does not fit into the partition of Section 1.2, where we require that (µ, ǫ) ∈ C

2 is constant in Ω0
m.
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FIGURE 7 DoF-refinement log-log error plots for time-harmonic Maxwell’s equations with TPS solved with two MMP domains (sample mesh in

Figure 6). Parameters are µ+ = 4µ0, µ− = 2.5281µ0, and ω = 23.56 · 108 rad s−1.
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FIGURE 8 DoF-refinement log-log error plots for time-harmonic Maxwell’s equations with TPS solved with two MMP domains (sample mesh in

Figure 6). Parameters are µ+ = 10µ0, µ− = 4µ0, and ω = 23.56 · 107 rad s−1.

✺ ❈❖◆❈▲❯❙■❖◆❙

The numerical experiments in Section 4 show the accuracy of the FEM–MMP coupling on smaller meshes than what FEM alone would require,

given its artificial truncation of the computational domain. More applications of this coupling with relevance in engineering can be found in [? ,

p. 10, Section 4.2] (magnetostatic inductor) and [? ] (conductor with a hole).

Compared to other hybrid methods, such as FEM coupled with the Boundary Element Method (BEM), MMP presents the advantages of

• a simpler assembly process, as there are no singular integrals, and

• an exponentially-convergent approximation error, given loose requirements on the positions of the multipoles (Section 2.2). As long as the

coupling boundaries are far from sources and field singularities of the problem, the FEM–MMP coupling is also indifferent towards where

the multipoles are placed, and the exponential convergence of the MMP approximation error is preserved.
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FIGURE 9 Cross-section of the 3D model (and a mesh) ofΩf, Ω
1
m, and Ω2

m along theXZ-plane. In the right figure, the blue, pink, and green meshes

coverΩf and have parameters µ+, µ−, and µ0, respectively. The purple and orangemeshes coverΩ1
m (µ+) andΩ2

m (µ−). They are used for numerical

quadrature of the errors.
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(a) Parameters are µ+ = 4µ0 , µ−
= 2.5281µ0 , andω = 23.56 · 108 rad s−1 .
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(b) Parameters areµ+ = 10µ0 , µ−
= 4µ0 , andω = 23.56 · 107 rad s−1 .

FIGURE 10DoF-refinement log-log error plots for time-harmonic Maxwell’s equations with TPS solved with three MMP domains (sample mesh in

Figure 9) using the PDE-constrained coupling.
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FIGURE 11 Cross-section of the 3D model (and a mesh) of Ωf, Ω
1
m, and a part of Ω0

m along the XZ-plane. In the right figure, the blue, pink, and

green meshes cover Ωf and have parameters µ+, µ−, and µ0, respectively. The purple and orange meshes cover Ω1
m (µ+) and a part of Ω0

m (µ−).

The mesh of Ω1
m is used for numerical quadrature of the error, while the mesh of Ω0

m only serve a graphical purpose.

• Furthermore, for high-frequency scattering problems, the locally-supported piecewise-polynomial basis functions of boundary element

methods [? , p. 183, Chapter 4] may suffer from the pollution effect like FEM, which is not a problem for the oscillating multipoles.

At the same time, similarly to BEM [? ], MMP also suffers from ill-conditioning. However, its impact is still more limited than BEM due to the low

number of degrees of freedom required for MMP, given its exponential convergence: the dense MMP blocks in the coupling matrices are therefore

small.

Between the two coupling approaches that work with multiple Trefftz domains (Sections 3.1 and 3.2), we recommend the PDE-constrained

coupling thanks to its reliability, especially when the FEM mesh only surrounds field singularities. Even though this coupling requires the highest

number of degrees of freedom due to its Lagrange multipliers on the FEM mesh7, this number is still low in absolute terms when such mesh is

minimal. The DG-based coupling is less expensive, as it relies on fewer variables, but requires the additional user input of appropriate penalty

parameters.

Conversely, among all coupling strategies, methods based on the tangential components trace stand out (Sections 3.3.1 and 3.3.2): both the

multi-field and DtN-based approaches combine a sensibly lower number of degrees of freedom than the PDE-constrained coupling without the

penalty parameters of the DG-based one. In particular, the DtN-based coupling is the easiest to implement: MMP degrees of freedom can even

be eliminated by a Schur complement approach, paving the way for an iterative solver [? ].

7Hence, the PDE-constrained coupling doubles the number of FEM degrees of freedom. Conversely, the number of degrees of freedom of all the other

coupling approaches is approximately the same as standard FEM. Indeed, the other degrees of freedom, coming from MMP or other Lagrange multipliers,

are comparatively a negligible quantity: the former because of the exponential convergence of MMP, the latter because those degrees of freedom are linked

to MMP itself or the FEM discretization restricted to the mesh boundary.
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FIGURE 12 DoF-refinement log-log error plots for time-harmonic Maxwell’s equations with TPS solved with two MMP domains (sample mesh in

Figure 11) and layered dipoles. Parameters are µ+ = 4µ0, µ− = 2.5281µ0, and ω = 23.56 · 108 rad s−1.
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FIGURE 13 DoF-refinement log-log error plots for time-harmonic Maxwell’s equations with TPS solved with two MMP domains (sample mesh in

Figure 11) and layered dipoles. Parameters are µ+ = 10µ0, µ− = 4µ0, and ω = 23.56 · 107 rad s−1.
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