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Abstract. Most data assimilation studies, incorporating observations
into computational blood low simulations, have approached the problem
exploiting the traditional mathematical formulation in the time domain,
an approach that incurs huge computational cost. In this work, a new
method is introduced to perform variational adjoint-based dynamic data
assimilation. The work aims to combine the superiority of computational
luid dynamics with the advantages of phase-contrast magnetic resonance
imaging and simultaneously taking into account the dynamic nature of
the heart beat. In contrast to the traditional time-stepping schemes, the
novel approach relies on the harmonically balanced momentum equations
expressed in the frequency domain, while the combination of the corre-
sponding solutions yields the periodic solution of the original problem.
This work enables accurate characterization of the dynamic low ield in
quite feasible and practicable wall clock times, which are otherwise dii-
cult to be achieved using currently available dynamic data assimilation
strategies.

1 Introduction

In time dependent adjoint-based inverse problems, all trajectories of the state
variables from the original problem must be solved and stored in the memory,
in order to solve the adjoint equations. The space needed for the memory is
proportional to the run-time of the forward solution. In spite of ever increasing
memory capabilities of large clusters, the practical application of the traditional
adjoint formulation is quite limited. Certain algorithms, known as checkpointing,
have been proposed to manage the diiculties with the storage requirements [3,
8, 1]. When using such algorithms, however, the direct problem must be solved
several times in order to evaluate the adjoint problem. This process must then
be repeated at each single iteration of the optimization process.

There has been an attempt to perform variational adjoint-based dynamic
data assimilation (DA) in computational hemodynamics [2]. However, the au-
thors were forced to extremely reduce the size of the problem (in such a way,
that no checkpointing algorithms were required) by considering a coarse mesh
and a time step of 0.004625 s. Using such time steps, however, accurate low sim-
ulations cannot be expected at the aortic root and the ascending aorta, where
the Reynolds numbers grow large. In addition, iner mesh sizes are required
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for reasonable evaluation of clinically relevant parameters such as the wall shear
stresses (WSSs). The size-related limitations were also mentioned by the authors
in their work. Especially for convection dominated problems with large Reynolds
numbers, using the traditional time-stepping schemes to perform dynamic DA
is absolutely impracticable and nearly impossible or diicult to be achieved.

In this work, a new method is proposed to perform variational adjoint-based
dynamic data assimilation. In contrast to the traditional time-stepping schemes,
the novel approach relies on the harmonically balanced momentum equations
(see [6]) for the time discretization, which are expressed in the frequency domain.
The combination of the corresponding solutions in the frequency domain yields
the periodic solution of the original problem. Hereinafter, the new method will be
referred as the Fourier spectral dynamic data assimilation (FS-DDA). This work
enables accurate characterization of the dynamic low ield in quite feasible and
practicable wall clock times (WCT), which are otherwise diicult or impossible
to be achieved using currently available DA strategies. The method naturally
avoids storage related problems, and hence, the application of additional algo-
rithms (such as checkpointing) are not required. Further, the work addresses the
limited resolution of MR velocity encoding in shear layers and aims to interlace
phase-contrast magnetic resonance imaging (4D low MRI) with computational
luid dynamics (CFD) to enable the evaluation of clinically relevant parameters.
Compared to the raw measurements, the proposed approach signiicantly im-
proves the reconstructed low ield at the aortic root, which is one of the most
important clinically relevant locations where low disturbances can easily lead
to pathological modiications of the arterial wall. Thus the new method has a
great potential for revealing clinically relevant hemodynamic phenomena.

2 Mathematical Optimization

An unsteady incompressible low of a Newtonian luid is considered in the time
interval � ∶= [0; � ] through an open set Ω with boundary �Ω = Γ� ∪ Γ� ∪ Γ�.
Let Ω ⊃ Ω� ∶= { � ∈ Ω ∣ ‖� − �‖≥ � (mm) ∀� ∈ Γ� } be a contracted subdomain
with boundary �Ω� = Γ�� ∪ Γ�� ∪ Γ��, where Γ�� ⊂ Γ� and Γ�� ⊂ Γ� (see Figure
1). The luid low is stimulated by some �-periodic inlow data prescribed at Γ�,
which is characterized by the �-periodic function �(�, �) = �(�+�� , �) ∶ �×Γ� →ℝ3 with � ∈ ℕ. Let �1(Ω) be the space of square integrable vector functions
with irst derivatives also square integrable in Ω, whereas �2(Ω) is the space
of square integrable scalar functions in Ω. The blood low velocity � ∈ � with� = { � ∈ �1(Ω) ∣ �|Γ� = � } is a solution of the incompressible Navier-Stokes
equations, which can be expressed in the Euler-Lagrangian formulation as a set
of equations for momentum � [ ��� + (∇�)� ] − �Δ� + ∇� = � and continuitydiv � = 0 in � × Ω (along with inlow � = � on � × Γ�), where � ∈ �2(Ω) and(�, �) are the density and dynamic viscosity of the luid.

In [6], the harmonic balance (HB) approach has been employed for an approx-
imation of the velocity ield in time, which relies on the degree-� Fourier poly-
nomial � ≈ �̃(�, �) = �̂�0(�) + ∑��=1 [�̂��(�) cos(���) + �̂��(�) sin(���)], where



Fourier Spectral Dynamic Data Assimilation 3�̂�� for � = 0 ⋯ � and �̂�� for � = 1 ⋯ � form the discrete spectrum of �̃ and� = 2�� is the angular frequency. Let �̃ � ∶= �̃(��, �) and �� ∶= �(��, �). Inserting
the approximation �̃ into the momentum equation and employing a collocation
approach using equidistant time instants �� ∶= � �� for � = 1, ⋯ , � = 2� + 1
results in the following harmonically balanced momentum equations,�[ �∑�=1 �̃ ���� + (∇�̃ �)�̃ �] − �Δ�̃ � + ∇�� = � , � = 1, 2, ⋯ , �. (1)

The expression ��� = 2�� ∑��=1 � sin(��(�� − ��)) follows from the application of
cosine and sine transforms (DFT) for the discrete spectrum. Equations in (1) are
expressed in the frequency domain in terms of the time domain state variables�̃ � and �� at each time ��. Detailed derivations can be found in [6].

In this work, a new method is introduced by incorporating the harmonically
balanced momentum equations (1) into an optimal boundary control study and
performing a variational adjoint-based data assimilation using 4D low MRI data.
As such, let us irst express the harmonically balanced incompressible Navier-
Stokes equations in the variational formulation as follows: Find (�, �, �) ∈ � ×�2(Ω) × �− 12 (Γ�) such that ∀ (�̂�, ̂��, ̂��) ∈ � × �2(Ω) × �− 12 (Γ�) it holds∫Ω [�( �∑�=1 �̃ ���� + (∇��)��) ⋅ �̂� + 2�∇��� ⋅ ∇��̂� − �� div �̂� − ̂�� div ��]�Ω= ∫Γ� ̂�� ⋅ (�� − ��) �Γ + ∫Γ�(�� ⋅ �̂�) �Γ , � = 1, 2, ⋯ , � , (2)

where ∇�(⋅) = [∇(⋅) + (∇(⋅))�]/2 is the strain rate tensor and �− 12 (Γ�) is the
dual space of � 1200(Γ�) = { � ∈ � 12 (Γ�) ∣ �|�� = 0 }.

Assuming that some �-periodic observations ����� ∈ Ω are available at equidis-
tantly spaced discrete time instants ��. The optimal control problem aims at
inding the velocity ields ��, such that the sum of the misits between each �����
and �� is minimized based on some cost function OΩ. At the same time, the prob-
lem is constrained such that �� are solutions of equation (2). Let � and �1 be
arbitrary parameters for a Tikhonov regularization, whereas ∇� denotes the sur-
face gradient and � is a positive real number. The low-matching problem reads
OΩ(�(�), �, ����) = �2 ∑� (∫Ω� |��(�) − �����|2 �Ω + ∫Γ��∪Γ�� |��(�) − �����|2 �Γ) +∑� ( �2 ∫Γ� |��|2 �Γ + �12 ∫Γ� |∇� ��|2 �Γ), where Ω�, Γ�� and Γ�� are the trust re-
gions of experimental observations (see Figure 1). The terms with the regulariza-
tion parameters prevent the control function to grow unboundedly and enforce
a certain regularity over the control. The choices of these terms were also moti-
vated in [5]. Further, the choices of the terms for performing the low-matching
both in a part of the domain (in Ω�) and in parts over the boundaries (on Γ��
and Γ��) has been investigated in [7]. Regarding the low-matching problem, the
existence of optimal boundary control has been provided in [4].
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The constrained optimization can be cast as a saddle point problem by in-
troducing a Lagrangian functional: LΩ(�, �, �, �, ��, ��, ��) = OΩ(�, �, ����) −∑� ∫Γ� ��� ⋅ (�� − ��) �Γ − ∑� ∫Γ� �� ⋅ ��� �Γ + ∑� ∫Ω [�( ∑��=1 ����� + (∇��)��) ⋅ ��� +2�∇��� ⋅ ∇���� − �� div ��� − ��� div ��] �Ω. The necessary condition for having
a minimum at � is provided by the Gâteaux derivative of OΩ with respect to
perturbation in �. This information is contained in the critical points of the
Lagrangian LΩ, expressed in variational formulation for � = 1 ⋯ � as follows:
Direct Problem P

�
sta(��, ��) ∶ For �� ∈ � 1200(Γ�) and �� ∈ �, where � = 1, ⋯ , �

with � ≠ �, determine (��, ��, ��) ∈ � × �2(Ω) × �− 12 (Γ�) such that

⟨�LΩ���� , �̂��⟩ = ∫Ω [�( �∑�=1 ����� + (∇��)��) ⋅ �̂�� + 2�∇��� ⋅ ∇��̂�� − �� div �̂��] �Ω− ∫Γ� �� ⋅ �̂�� �Γ = 0 ∀ �̂�� ∈ � , (3)⟨�LΩ���� , �̂��⟩ = − ∫Ω �̂�� div �� �Ω = 0 ∀ �̂�� ∈ �2(Ω) , (4)⟨�LΩ���� , �̂��⟩ = − ∫Γ� �̂�� ⋅ (�� − ��) �Γ = 0 ∀ �̂�� ∈ �− 12 (Γ�) . (5)

Adjoint Problem P
�
adj(��, �����) ∶ For ��, solution of (3)–(5), and �����, deter-

mine (���, ���, ���) ∈ � × �2(Ω) × �− 12 (Γ�) such that⟨�LΩ��� , �̂�⟩ = ∫Γ�∪Γ� [� (�Γ�� + �Γ��)(�� − �����) ⋅ �̂�] �Γ − ∫Γ� (��� ⋅ �̂�) �Γ+ ∫Ω [� �Ω�(�� − �����) ⋅ �̂� + �( �∑�=1 ����̂� + (∇�̂�)�� + (∇��)�̂�) ⋅ ���++ 2�∇��̂� ⋅ ∇���� − ��� div �̂�] �Ω = 0 ∀ �̂� ∈ � , (6)⟨�LΩ��� , ̂��⟩ = − ∫Ω ̂�� div ��� �Ω = 0 ∀ ̂�� ∈ �2(Ω) , (7)⟨�LΩ��� , ̂��⟩ = − ∫Γ� ̂�� ⋅ ��� �Γ = 0 ∀ ̂�� ∈ �− 12 (Γ�) , (8)

where �Ω� , �Γ�� and �Γ�� are the characteristic functions.
Optimality Condition P

�
opt(���) ∶ For ���, solution of (6)–(8), determine �� ∈� 1200(Γ�) such that ∀ ̂�� ∈ � 12 (Γ�) it holds⟨�LΩ��� , ̂��⟩ = ∫Γ� [��� ⋅ ̂�� + �1∇��� ⋅ ∇� ̂�� + ��� ⋅ ̂��] �Γ = 0 . (9)
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2.1 Gradient Descent Algorithm for Dynamic Data Assimilation

A descent-like iterative algorithm was employed to iteratively solve the nonlinear
system of coupled variational equations P

�
sta, P

�
adj and P

�
opt. This procedure is

described in algorithm 1. The ields (⋅){�} correspond to the ields (⋅) at the �-th
iteration. The parameters ��, being adjusted dynamically, represent the step sizes
for the �-th HB iteration of each optimization procedure. A tolerance parameter� is prescribed to test for convergence and exit the algorithm, if necessary. Spatial
discretization of the equations described in the present section and the numerical
methods applied to solve the aforementioned problems are as presented in [6].

Algorithm 1 Multiple steepest descent optimization with dynamic step sizes����� ∶ �, �, �1 > 0, � ▷ Optimization parameters and harmonics �(��){0}, (��){0}, (��){0}, ����� ▷ Initial guesses (⋅){0} and target ields������ ∶ (��){�}, (��){�} ▷ Flow ields at last iteration �
1: procedure DynamicDataAssimilation(�{0}, �{0}, ����, �)
2: � ← 10−8, � ← 0 and �� ← 1 for � = 1, 2, ⋯ , �
3: for � ← 1, � do
4: ((��){�}, ⋅, ⋅) ← P

�
sta-lin((��){0}, (��){0}, ��) ▷ Evaluate (3)–(5)

5: update �� using new (��){�} for � = �
6: ����{�} ← OΩ(�{�}, �{0}, ����) ▷ Evaluate cost function OΩ
7: for � ← 1, ∞ do
8: ��������� ← true
9: for � ← 1, � do

10: (⋅, ⋅, (���){�}) ← P
�
adj((��){�−1}, �����) ▷ Evaluate (6)–(8)

11: (��){�} ← �1△�(��){�−1} − �(��){�−1} − (���){�} ▷ Steepest descent
12: repeat
13: (��){�} ← (��){�−1} + ��(��){�} ▷ Update control using ��
14: ((��){�}, ⋅, ⋅) ← P

�
sta-lin((��){�−1}, (��){�}, ��)

15: ����{�} ← O�(�{�}, �{�}, ����)
16: if ����{�} ≥ ����{�−1} then �� ← 0.5��
17: until ����{�} < ����{�−1}
18: if (∣����{�} − ����{�−1}∣)/(����{�}) > � then
19: �� ← 1.5�� & ��������� ← false
20: update �� using new (��){�} for � = �
21: if (���������) then return (��){�}, (��){�} for � = 1 ⋯ �
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3 Validation

Numerical computations are performed using computational mesh geometries
denoted as ��, �� and �� , with diferent numbers of cells, 215 000, 440 000
and 750 000 respectively. The mesh �� will be referred to as the world domain,
whereas the meshes �� and �� represent the MRI and CFD domains respec-
tively. In the present section, a reference solution was numerically generated in
the world domain ��, as described in [6], to serve as the ground truth for val-
idation purposes. To test the proposed FS-DDA approach, � = 12 number of
modes were considered, at which the HB treatment has proven to be satisfacto-
rily accurate [6]. First, the reference solution in the world domain (mesh ��)
was sampled at � = 2�+1 = 25 equidistantly placed time instants and the sam-
ples were mapped into the MRI domain (mesh ��) using linear interpolation.
Second, an artiicial noise with an isotropic VENC of 0.75 m/s and an SNR of
10 (see [7] for more details) was added to the low ields in the MRI domain and
the noisy samples were then mapped from �� into the CFD domain ��, where
the computational simulations were performed. Figure 1 illustrates these steps.

Fig. 1. Preparations for the validation of the proposed approach

Let ���� denote the noisy ield in ��. For FS-DDA, Algorithm 1 was executed
with input parameters (�{0} = ����, �{0} = ���� on Γ�, ���� = ����, � = 25)
resulting in the low ield ������ (adopting HB into optimization). Flow match-
ing was performed in Ω2, a contracted domain at a distance of at least 2 mm
from Γ�. Optimization parameters �, � and �1 were set to 1, 10−5 and 10−8
respectively. In addition, the HB method was employed as a forward simula-
tion without adopting the assimilation process, resulting in the low ield ���.
Both computed ields are compared with a reference solution (ground truth
data ��) in terms of normalized root mean square error nRMSE�(��, ��) =( 100

avr�,�|��| ) √ 1��⋅� ∫� ∫� |�� − ��|2 �� ��, where � is a domain with volume ��,

and the low direction error FDE�(��, ��) = √ 1��⋅� ∫� ∫� (1 − ��⋅��|��||��| )2 ���� .
For the clinically relevant parameters, we are interested in the performance of

the solvers at near-wall locations and in the close proximity of the inlet. Hence,
for the evaluation of the errors nRMSE� and FDE�, we deine the domain� = �42 ⊂ Ω, which is within 4cm proximity of the inlet and within a distance
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of 2mm from the wall boundary. In addition, the errors were also evaluated inΩ. Under these conditions, the numerical results are as follows:(�, �) nRMSE�42 (�, �) FDE�42 (�, �) nRMSEΩ(�, �) FDEΩ(�, �)(����, ��) 16.76% 0.367 6.90% 0.166(���, ��) 3.75% 0.095 1.66% 0.042(������ , ��) 2.39% 0.055 1.59% 0.027
It can be observed that, compared with the results obtained from the HB

method as a forward simulation, there is a signiicant improvement in the out-
come provided by FS-DDA in the close proximity of the inlet. This is a remark-
able inding for the improvement of the low ield, especially at the aortic root.
The optimization process lasted for 54 iterations and the WCT was 943 seconds.

Dynamic Data Assimilation using 4D Flow MRI Acquisition For the
optimal control problem, the proposed approach was tested in a realistic scenario
using low data gathered from real 4D low MRI scans, as described in [6]. It is
worth mentioning that the preprocessing steps detailed in [7], were also applied
in the present section. This includes a projection of the observed low ield over
a divergence-free space, which is useful in two ways. First, it recovers back the
solenoidal property of the low ield, which is usually lost after the application of
both the outlier detection scheme and the immediate mapping of the observations
from MRI domain into the computational mesh domain (see [7]). Secondly, it
allows to start the computations with a solenoidal initial guess.

Flow patterns obtained from both methods, FS-DDA and HB, were irst com-
pared with the MRI data by visual inspection. Figure 2 shows the magnitudes of
the velocity ields, obtained from the noisy MRI measurements (in the middle)
and from the computations using both the FS-DDA method (on the left) and
the HB method (on the right) respectively. The presented slices correspond to
the time instant at peak systole. One slice was placed at the aortic root and was
oriented such that the velocity proiles in the close proximity of the inlet are
clearly visible. Another slice was placed at the aortic arch to additionally illus-
trate the obtained low patterns at a moderate distance from the inlet. It can be
observed that the noise-free low ield obtained from the assimilation process is
fairly close to the noisy low ield measured with 4D low MRI, whereas the low
ield obtained from a conventional forward simulation (without the optimization
of the velocity components), is largely diferent compared to the measurements.

Since the observations are obtained from real 4D low MRI acquisition, the
obtained noisy low ield cannot be regarded as the ground truth. Therefore,
the low ields obtained from both methods were quantitatively compared with
each other to demonstrate the extent of their diference from each other. In the
whole domain, Ω, evaluation of the errors yielded nRMSEΩ(���, ������ ) = 21.66%
and FDEΩ(���, ������ ) = 0.229, whereas in the close proximity of the inlet and
at near-wall locations, the errors were nRMSE�42 (���, ������ ) = 30.08% and
FDE�42 (���, ������ ) = 0.314. Notably, the better qualitative agreement between



8 T. S. Koltukluoğlu

the observations and the optimized solution, along with the quantitatively sig-
niicant diferences between the optimized solution and the predictions from
conventional forwards CFD simulation, support the fact that the optimization
delivers a better solution when compared with the conventional CFD approach.

Fig. 2. Slices for the magnitudes of diferent velocity ields at the aortic root and arch.

4 Conclusion

This work has introduced the Fourier spectral dynamic data assimilation ap-
proach as a new method for an inverse problem to perform variational adjoint-
based assimilation for pulsatile blood low simulations. The method is being re-
ported for the irst time in computational hemodynamics and brings remarkable
improvement in terms of computational efort without exhibiting deterioration
of the approximate solution. This work enables accurate characterization of the
dynamic low ield in quite feasible and practicable wall clock times, which are
otherwise diicult or impossible to be achieved using currently available dynamic
data assimilation strategies relying on traditional time-stepping schemes.

The proposed algorithm was examined in detail to estimate the eiciency of
the methodology for reconstructing the blood low at the aortic root and in near-
wall regions. The new method proved to deliver physically consistent low ields,
with substantial reduction of noise present in the 4D low MRI measurements,
outperforming the predictive capabilities of conventional CFD approaches. The
low ield is considerably improved at the aortic root, which is one of the most
important clinically relevant locations for the development of pathological alter-
ations of the anatomical structures underlying the arterial wall.

This work does not include the deformation of the arterial walls but is a start-
ing point for the adaptation of contact modelling approaches for luid-structure
interaction studies. Hence, this investigation is the irst of a series that will ad-
dress the deformation and dynamic response of the arterial walls. The novel
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approach provides a systematic strategy to improve the model predictions re-
garding clinically relevant hemodynamic data, such as the wall shear stresses,
and reveals a great potential for clinical applicability.
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