
Harmonic Balance Techniques in

Cardiovascular Fluid Mechanics

T. S. Koltukluoglu

Research Report No. 2019-55
September 2019

Seminar für Angewandte Mathematik
Eidgenössische Technische Hochschule

CH-8092 Zürich
Switzerland

____________________________________________________________________________________________________



Harmonic Balance Techniques
in Cardiovascular Fluid Mechanics

Taha Sabri Koltukluoğlu1, Gregor Cvijetić2, and Ralf Hiptmair1
1 Seminar for Applied Mathematics, ETH, Zurich, CH

ktaha@ethz.ch2 Faculty of Mechanical Engineering and Naval Architecture, FSB, Zagreb, HR

Abstract. In cardiovascular luid mechanics, the typical low regime is
unsteady and periodic in nature as dictated by cardiac dynamics. Most
studies featuring computational simulations have approached the prob-
lem exploiting the traditional mathematical formulation in the time do-
main, an approach that incurs huge computational cost. This work ex-
plores the application of the harmonic balance method as an alternative
numerical modeling tool to resolve the dynamic nature of blood low.
The method takes advantage of the pulsatile regime to transform the
original problem into a family of equations in frequency space, while the
combination of the corresponding solutions yields the periodic solution
of the original problem. As a result of this study we conclude that only a
few harmonics are required for resolving the presented luid low problem
accurately and the method is worth of further investigation in this ield.

1 Introduction

In cardiac dynamics, blood low is heavily inluenced by the dynamic nature of
the heart beat, which results in an unsteady and periodic low. When performing
pulsatile low simulations, the classical approach relies on the traditional time-
stepping schemes, which require the deinition of boundary conditions (BCs) at
every time instant. In recent decades, phase-contrast magnetic resonance imaging
(4D low MRI) became relevant for data-based computational luid dynamics
(CFD) studies. Velocity components of blood low can be measured in-vivo and
non-invasively. In addition, three-directional low can be resolved with the ability
to measure the temporal evolution of blood low within a 3D volume [7]. In CFD
studies relying on 4D low MRI data, sparsely measured velocity proiles are
usually interpolated to generate velocity ields to be applied as dynamic BCs for
each time instant. Such studies simply apply either linear or spline interpolation
[11, 8] for transient CFD simulations. Most of these studies have approached the
transient problem exploiting the traditional mathematical formulation in the
time domain, an approach that incurs huge computational cost.

In this work, an alternative and efective approach is proposed for temporal
discretization. This method is known as the harmonic balance (HB) approach
[6], so far mostly reported with preliminary results using mostly 2D or ideal-
ized cylindrical geometries [10, 4, 3]. To the best of authors’ knowledge, the HB
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method is investigated in this work for the irst time in the ield of computational
hemodynamics. The method is based on Fourier decomposition of the velocity
ield in time and enables the evaluation of its derivative with respect to time
in frequency space. Furthermore, the HB discretization can easily be adapted
to the sampling rate of measurements in time. This eliminates the necessity for
completing the missing data for all time steps, as required in conventional meth-
ods. In 4D low MRI, the velocity components are usually obtained by periodic
averaging. The proposed method makes use of this information and proves to be
accurate and remarkably efective in terms of computational time.

2 Mathematical Model

Let Ω ⊂ ℝ3 be an open set with boundary �Ω = Γ� ∪ Γ� ∪ Γ�. See Figure 1a,
where Γ�, Γ� and Γ� represent the inlet, outlet and wall boundaries respectively.
An incompressible Newtonian luid is assumed to low through Ω in the time
interval � ∶= [0; � ], as the result of prescribed �-periodic inlow data at Γ�. The
velocity ield prescribed at the inlet is characterized by the T-periodic function�(�, �) = �(� + �� , �) ∶ � × Γ� → ℝ3 with � ∈ ℕ. The density and dynamic
viscosity of the luid are denoted as � and � respectively.

Considering the strain rate tensor ∇�(⋅) = [∇(⋅) + (∇(⋅))�]/2 and setting� = { � ∈ �1(Ω) ∣ �|Γ� = � }, the Navier-Stokes equations read: for � ∈ �,
given the initial guess �(0, �) = �(�){0}, ind (�, �) ∈ � × �2(Ω), such that� [ ��� + (∇�)� ] − �Δ� + ∇� = � in � × Ω , (1)div � = 0 in � × Ω , (2)� = � on � × Γ� , (3)(−�� + 2�∇��)� = � on � × Γ� . (4)

(a) Flow Domain and Experimental Setup
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Fig. 1. Experimental setup (a) and low rate waveform (b) obtained from 4D low MRI
acquisition in low domain Ω with boundaries Γ� ∶ inlet, Γ� ∶ outlet and Γ� ∶ wall.
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2.1 Harmonic Balance
In what follows, we will consider a time discretization of the momentum equation
(1), which can be expressed in the following compact form��� = �(�), (5)

where �(�) ≔ −[(∇�)�−�Δ�+ ∇�� ] (with � ∶= �� being the kinematic viscosity),
which encompasses the convective and difusive terms along with the force term
caused by the pressure. Equation (5) is an evolution equation. Further, � →�(�, �) is periodic in time with known period �. Therefore, we approximate � ≈�̃(�, �) = ∑2�+1�=1 ��(�)��(�) with the temporal expansion functions �� taken from
the set� ∶= { 1, cos(��), sin(��), cos(2��), sin(2��), ⋯ , cos(���), sin(���) }, (6)

where � represents a complete �2-orthogonal system on � and � = 2�� is the
angular frequency. This gives rise to a Fourier spectral method [1] for approxi-
mation in time, which relies on the degree-� Fourier polynomial�̃(�, �) = �̂�0(�)2 + �∑�=1 [�̂��(�) cos(���) + �̂��(�) sin(���)], (7)

where �̂�� for � = 0 ⋯ � and �̂�� for � = 1 ⋯ � form the discrete spectrum of �̃.
In order to obtain a system of equations for the discrete spectrum, we demand

that equation (5) be satisied for 2� + 1 time instants denoted as ��. We employ
a collocation approach and opt for equidistant collocation points�� ∶= � �2� + 1, � = 1, 2, ⋯ , 2� + 1. (8)

The number of collocation points is equal to the number of terms in the Fourier
polynomial (7). Finally, inserting (7) into (5), applying the derivative and de-
manding that (5) be satisied at each ��, the following 2� + 1 equations are
obtained in the frequency domain�∑�=1 [�̂���� cos(����) − �̂���� sin(����)] = �(��, �̃(��, �)), � = 1 ⋯ 2� + 1. (9)

Let �̃ � ∶= �̃(��, �) be the approximated velocity ield at time instant ��.
The DFT of �̃� is given by the discrete cosine and sine transforms �̂�� =22�+1 ∑2�+1�=1 �̃ � cos(����) and �̂�� = 22�+1 ∑2�+1�=1 �̃ � sin(����). Inserting the dis-
crete spectrum into the equations in (9) and using the trigonometric identities,sin(�±�) = sin(�) cos(�)±cos(�) sin(�), results in the following approximation,�∑�=1 [ 2��2� + 1 2�+1∑�=1 �̃ �( sin(����) cos(����) − cos(����) sin(����)) ] = �(�, �̃)⇒ 2�2� + 1 2�+1∑�=1 �∑�=1 ��̃ � sin(��(�� − ��)) = �(�, �̃) . (10)
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Setting � = 2�+1 and deining ��� = 2�� ∑��=1 � sin(��(�� −��)) for �, � = 1 ⋯ �,
we inally obtain from (10) the harmonically balanced momentum equations

�∑�=1 �̃ ���� + (∇�̃ �)�̃ � − �Δ�̃ � + ∇��� = � , � = 1, 2, ⋯ , �. (11)

The frequency domain equations are now expressed in terms of the time
domain state variables �̃ � at each time instant �� = � �2�+1 . The original problem
has been cast into the form of a set of coupled luid low problems, which yield
the periodic solution of the original problem.

For the set of HB momentum equations (11), the SIMPLE algorithm [9] was
employed to deal with the pressure-velocity coupling at each time instant ��,
separately. The temporal inluence from neighbouring time instants is accounted
for by the summation term ∑��=1 �̃ ����. The numerical solution of the HB cou-
pling is obtained using a block-Gauss-Seidel iterative algorithm. The spatial dis-
cretization of the corresponding equations was achieved using the inite volume
method. Algorithm 1 describes the HB method in terms of a pseudo-code. The
ields (⋅){�} will represent the ields (⋅) at �-th iteration of SIMPLE. Moreover,
the equation residuals of the equations in (11) will be denoted by R�((��)∗) for
each �, where (��)∗ is the corresponding approximation of the solver. The calcu-
lation is considered converged when each of the N equation sets are converged.

Algorithm 1 SIMPLE & Block-Gauss-Seidel Algorithm for Harmonic Balance����� ∶ (��){0}, (��){0}, � ▷ Initial guesses (⋅){0} and harmonics������ ∶ (��){�}, (��){�} ▷ Flow ields at last iteration �
1: procedure HarmonicBalanceLoop(�{0}, �{0}, � = 2� + 1)
2: �� ← (��){0} on Γ� for � = 1 ⋯ �, � ← Number of HB iterations
3: for � ← 1, � do ▷ HB iterations
4: for � ← 1, � do ▷ Solve one SIMPLE iteration at each ��
5: (��){�} ← Given ∑��=1 �̃ ����, ��, (��){�−1} solve equation (11)
6: (��){�} ← Given (��){�} solve for (��){�}
7: Correct (��){�} using (��){�} and update HB coupling ∑��=1 �̃ ����
8: if each |R�((��){�})| ≪ 1 then ▷ Convergence criterion
9: return (��){�}, (��){�} for � = 1 ⋯ �
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3 Experimental Setup for 4D low MRI

A time-dependent experiment was performed using a glass replica of human
aorta, which was placed in a 3T MRI scanner. The rigid geometry consists of
aortic root, ascending aorta, aortic arch without branches and descending aorta
as illustrated in Figure 1a. Detailed explanation of the experimental setup is
provided in [5] (Section 5.1). The acquired voxel size was 1.5 mm3 isotropic,
along with a time resolution of 33 ms. The period of one heart cycle was 0.825
seconds and 25 data were acquired per cardiac cycle. Controlling the low rates,
a Reynolds number of at most 1100 was achieved. The low model in this work
does not account for turbulence, which is a matter of current research. Finally,
the obtained volumetric low rate resulted in a wave containing two peaks of
diferent magnitudes as shown in Figure 1b. The observed low rates are merely
an approximation to the physiological low rates and were dictated by limitations
of the experimental setup.

The connection was made with a PVC tubing of total length 20 m with an
inner diameter of 19 mm. The inlet and outlet of the pipe were connected to a
reservoir in the control room creating an open circuit. A ball bearing valve was
placed 1.5 m downstream the tube and was used to control the low rate. Figure
1a illustrates the experimental setup.

Obtained raw measurements underwent a set of preprocessing tasks includ-
ing denoising of the low ield, segmentation of the aorta, its smoothing and
registration with the exact geometry and a divergence-free projection of the
reconstructed low ield, which have all been comprehensively described in [5]
(Sections 3 and 5.3). Further, three computational meshes, denoted as ��, ��
and ��, were generated using the exact geometry of the aortic replica, with
diferent numbers of cells, 215 000, 440 000 and 750 000 respectively.

In addition to the low acquisition, reference low solutions were numerically
generated to serve as the ground truth for validation purposes. To achieve this,
irst an inlow boundary proile was reconstructed from a single steady-state low
MRI acquisition and the obtained low ield was smoothed using low-pass iltering
(in order to reduce the measurement noise). Second, the acquired steady low
proile was dynamically adjusted over time and then applied as BC at the inlet
for twenty periods to achieve a transient low simulation with a periodic state
of equilibrium. This was performed by multiplying each velocity component at
the inlet with an appropriately chosen analytical periodic function of period 0.8
s and base frequency of 1.25 Hz. The function was chosen such that it contains
two peaks of diferent magnitudes in one cycle, similar to the low rates obtained
from the dynamic experiments.
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4 Numerical Experiments

Computed low ields �� and reference low ields �� were quantitatively compared
using the following normalized root-mean square error integrated over time

nRMSE(��, ��) = ⎛⎜⎝ 100
avr�,Ω|��|⎞⎟⎠ √ 1�Ω ⋅ � ∫� ∫Ω |�� − ��|2 �Ω ��. (12)

Validation with a Single Mesh Geometry As a irst step, mesh �� was
employed to generate both the numerical reference solution, denoted by ����,
as well as the solutions based on the HB method, denoted by ���� with � ={2, 5, 8, 10, 12} number of harmonics. For this purpose, the reference low solution
was sparsely sampled multiple times at 2�+1 equidistantly placed time instants
for each HB simulation, resulting in 5, 11, 17, 21 and 25 data points (samples)
per cycle respectively. The samples were then used as the observational boundary
data for the HB solver, which was run for 1 000 Gauss-Seidel iterations on mesh�� using 48 processors. Quantitatively, the solutions ���� were compared with
the reference solution ���� in terms of nRMSE(����, ����), resulting in 13.22%,2.18%, 0.75%, 0.43% and 0.29% respectively. These results are summarized in
Table 1 along with the corresponding wall clock times.

Table 1. Root mean square errors nRMSE(����, ����) evaluated against the ground
truth ���� and the corresponding wall clock times (WCT) in seconds.�� �2�� �5�� �8�� �10�� �12��

nRMSE(��, ����) 13.22% 2.18% 0.75% 0.43% 0.29%
WCT in seconds 217 s 458 s 788 s 960 s 1 190 s

We observed that at least 8 harmonics are needed for the HB method to
recover the velocity ield with nRMSE below 1%. Considering the number of
harmonics from 2 to 12, the errors dropped rapidly (from 13.22% to 0.29%),
whereas further increase in the number of harmonics over 12 did not drastically
improve the low ield. Finally, we conclude that the use of a moderate number
of harmonics, e.g. between 8 and 12, is enough to reconstruct the low ield
with an acceptable accuracy (errors below 1%). Hereafter, we make use of the
HB method set with 12 harmonics. The corresponding HB solution is simply
referred to as ��� (instead of �12��).

Sensitivity to the Mesh Size Parameter To further verify the processes, a
much iner mesh, denoted by ��, was used to generate the numerical reference
solution, denoted by ���� and sampled at 25 time instants. The reference solution
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was then mapped to the meshes �� and �� using a cell volume weighted
interpolation method [2] and resulting in reference low ields denoted by �2��� and�4��� respectively. As such, there is now a source of error in terms of interpolation.
In mesh ��, nRMSE(���, �2���) was 2.93%, whereas, in mesh ��, the same
metric evaluated against �4��� was 1.51%.

4.1 Comparison with a Classical Data-based CFD Method

As additional validation of the HB method, we have considered a classical CFD
approach based on traditional time-stepping schemes for comparison purposes.
Instead of using a simple linear interpolation, we consider an inverse problem
based on penalized regression spline (PRS) to reconstruct the inlow BCs at
all time instants present in the traditional time discretization, for which the
observations are not available. The regression model functions are of class �2
and correspond to cubic splines with uniformly distributed nodes. For the PRS
method, the momentum equation was discretized in time using backward dif-
ferentiation, an implicit scheme of second order accuracy. The time steps were
chosen such that the Courant number was below 0.3.

The simulations with the HB and PRS methods were run in computational
meshes �� and ��, using 48 and 96 processors respectively. The PRS simulation
was run for 12 periods, where a periodic state of equilibrium was reached. The
velocity ields ��� and ����, numerically obtained from HB and PRS methods
respectively, were compared with the exact solution. The results are summarized
in Table 2. Remarkably, the HB method yields almost the same accuracy as the

Table 2. Root mean square errors (nRMSE(���, �����) and nRMSE(����, �����) for
HB and PRS methods, evaluated against the reference solutions �2��� and �4��� mapped
onto meshes �� and �� respectively. In addition, the corresponding wall clock times
(WCT) in seconds is provided for each simulation (with 96 processors) on ��.�� nRMSE(��, �2���) on �� nRMSE(��, �4���) on �� WCT for �� on ����� 2.93% 1.51% 1 512 s���� 2.88% 1.47% 23 052 s

PRS method, when compared with a reference solution. Furthermore, the error
nRMSE(���, ����) between these solutions was 0.39% in �� and 0.36% in ��.
Finally, the WCT in �� were 23 052 s for the PRS method and 1 512 s for the
HB method, the latter being ≈ 15 times faster than the former. In total, the
PRS method needed ≈ 6.4 hours, whereas the HB method with � = 12 needed≈ 25 minutes. This is a tremendous saving in terms of computational efort.
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4.2 Simulations with Boundary Data from 4-D Flow MRI

The performance and feasibility of both the HB and PRS methods was studied
on �� to reconstruct the velocity ields obtained from 4D low MRI experiment.
Computed low patterns were irst qualitatively compared by visual inspection.
The HB method proved to be able to reproduce the velocity ield delivered by
the PRS method without an appreciable diference. Finally, since no ground
truth is available, the velocity ields obtained from HB and PRS methods were
quantitatively compared, resulting in a metric nRMSE(���,����) of 8.56%.

5 Conclusions

This work has investigated the harmonic balance method as a novel approach
to perform pulsatile luid low simulations in computational hemodynamics, fa-
cilitating the combination of CFD with data obtained from 4D low MRI. The
method is being reported for the irst time in a study combining CFD with 4D
low MRI and it shows a signiicant improvement regarding the trade-of between
computational cost and accuracy.

Comparison has been performed against a classical CFD method based on
a traditional time discretization scheme. The classical approach proves to be a
time consuming process. In contrast, the harmonic balance method relies on a
frequency-based temporal discretization scheme. Thereby, the velocity ield is
decomposed into its Fourier series and the method operates in the frequency
domain. Based on our experiments, the harmonic balance method was about 15
times faster compared to the conventional transient simulations.

Our experience indicates that only a moderate number of harmonics is re-
quired to accurately resolve the periodic luid low problem. This makes the
method extremely useful, for example, in data assimilation procedures based
on 4D low MRI acquisitions, where the luid low problem has to be solved
many times. Regarding the number of time instants at which data is acquired
per cardiac cycle, the method can be easily adjusted such that the discretized
momentum equations are temporally registered with the measurements. In the
case of 4D low MRI, our experience indicates that it requires observational data
at a number of time instants between 17 and 25. This corresponds to a number
of harmonics of at least 8, which is a region in which the method has proved to
be satisfactorily accurate.

This work does not include the mechanical models of the vessel walls but is
a starting point for the adaptation of luid-structure interaction studies. Hence,
this investigation is the irst of a series that will most likely address the defor-
mation and dynamic response of the arterial walls.

Based on these results, we conclude that the HB numerical scheme reveals
itself as a method with a tremendous potential in computational hemodynamics.
The proposed approach enables pulsatile luid low simulations at a signiicantly
smaller cost when compared with traditional methods, without exhibiting dete-
rioration of the approximate solution.
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