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Abstract

Over the last few years deep artificial neural networks (DNNs) have very
successfully been used in numerical simulations for a wide variety of com-
putational problems including computer vision, image classification, speech
recognition, natural language processing, as well as computational adver-
tisement. In addition, it has recently been proposed to approximate solu-
tions of partial differential equations (PDEs) by means of stochastic learning
problems involving DNNs. There are now also a few rigorous mathemati-
cal results in the scientific literature which provide error estimates for such
deep learning based approximation methods for PDEs. All of these articles
provide spatial error estimates for neural network approximations for PDEs
but do not provide error estimates for the entire space-time error for the



considered neural network approximations. It is the subject of the main
result of this article to provide space-time error estimates for DNN approxi-
mations of Euler approximations of certain perturbed differential equations.
Our proof of this result is based (i) on a certain artificial neural network
(ANN) calculus and (ii) on ANN approximation results for products of the
form [0,7] x R% 5 (¢,2) — tx € R? where T € (0,), d € N, which we both
develop within this article.
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1 Introduction

Over the last few years deep artificial neural networks (DNNs) have very suc-
cessfully been used in numerical simulations for a wide variety of computational
problems including computer vision, image classification, speech recognition, nat-
ural language processing, as well as computational advertisement (cf., e.g., the
references mentioned in [I4) [I7, 25]). In addition, the articles [9, 18] suggest to ap-
proximate solutions of partial differential equations (PDEs) by means of stochastic
learning problems involving DNNs. We also refer to [11, 2] 3], 4 [l [6, [8], 10}, 12, 13,
15, 191 20, 211, 241 28, 29, 30}, B3], 34, 36] for extensions and improvements of such
deep learning based approximation methods for PDEs. There are now also a few
rigorous mathematical results in the scientific literature which provide error esti-
mates for such deep learning based approximation methods for PDEs; see, e.g.,
[, 011, (16 19, 22, 25, 26, B5, B6]. The articles in this reference list all provide
spatial error estimates for neural network approximations for PDEs but do not
provide error estimates for the entire space-time error for the considered neural
network approximations. It is the subject of Theorem in this article, which is
the main result of this article, to provide space-time error estimates for DNN ap-
proximations of Euler approximations of certain perturbed differential equations.
To illustrate the findings of the main result of this article in more details, we now
formulate in Theorem [Tl below a special case of Theorem

Theorem 1.1. Let €, T,0 € (0,0), let Ay e C(R% RY), d e N, satisfy for alld e N,
v = (21,29,...,74) € R? that Ag(x) = (max{zy, 0}, max{wzy,0},..., max{ry,0}),
let N = ULeN U(lo,ll,...,lL)eNL+1 (Xﬁzl(leXlk*1 X le)), let R: N — Uk, leN C(Rk,Rl)
and P: N — N satisfy for all Le N, lo,ly,...,lp € N, ® € (xE_ (R#*l—1 x RiK)),
U = (W, By), Wa, By),...,(Wp,Byr)) € (xk_ | (RExl-1 x Ri)), x5 € Rlo, 2y €
R xpg € R withVk e N (0,L): x, = Ay (Wiag—y + By) that P(®) =
25:1 I(lh_1+1), R(T) € C(RY R, and (R(V))(xg) = Wrap_1+By, let &5 € N,
d € N, satisfy for all d € N, x € R? that R(®;) € C(RYRY), [(R(®y)) ()] <
C(1 + [z]), and P(®4) < €@, let YN = (V5 ) mejoryme: [0,T] x RY — RY,
N,d € N, be the functions which satisfy for all d, N € N, n € {0,1,...,N — 1},
te 2L, W], r e R that YOCf;CN =2 and

VY=Yt 4 (=) (R@2)(Y). (1)



Then there exist C € R and V.4 n € N, N,de N, ¢ € (0,1], such that
(i) it holds for all e € (0,1], d, N € N that R(¥. 4x) € C(R*1 RY),
(ii) it holds for all e € (0,1], d, N e N, t € [0,T], x € R? that

Y5 = (R(Pean))(t )| < CA™NPe(1 + |2f), (2)

(iii) it holds for all e € (0,1], d, N e N, t € [0,T], v € R? that
[(R(Team))(t )| < CdPN(L+ |a]?), (3)

and

(iv) it holds for all € € (0,1], d, N € N that

P(V.4n) < Cd16+8°N6[1 + |1n(€)|2]. (4)

Theorem [[Tlis an immediate consequence of Corollary B.13]in Subsection
below. Corollary B.I3] in turn, follows from Theorem in Subsection B.3.5]
which is the main result of this article. Our proof of Theorem [L.Il and Theo-
rem [B.12] respectively, is based on a certain artificial neural network (ANN) calcu-
lus, which we develop in Section[2l Section[2is in parts based on several well-known
concepts and results in the scientific literature (cf., e.g., [111, 25 B2, B7]). We re-
fer to the beginning of Section [2] for a more detailed comparison of the content
of Section ] with the material in related articles in the scientific literature. Our
proof of Theorem [[T] and Theorem BI2] respectively, is mainly inspired by [25],
[T1], Section 6], and [37, Section 3.2]. Theorem [LT and Theorem B12] respectively,
provide error estimates for rectified DNN approximations of Euler approximations
of certain perturbed differential equations. Many of the DNN approximation and
representation results of this work, however, apply to DNNs with more general
activation functions than only the rectifier function (cf., e.g., Li et al. [27], Sec-
tion 1] and Petersen et al. [31, Section 2] for further activation functions). The
error estimates for rectified DNN approximations of Euler approximations of per-
turbed differential equations, which we establish in Theorem [L.T]and Theorem B.12],
respectively, can then be used to establish space-time error estimates for DNN ap-
proximations for PDEs. This will be the subject of a future research article, which
will be based on this article.

The remainder of this article is organized as follows. In Section[2we develop the
above mentioned ANN calculus and, in particular, we establish in Subsection
ANN representation results for Euler approximations. In Subsection [3.1lwe develop
ANN approximation results for the square function R 3 z +— 2% € R. These ANN



approximation results for the square function are then used in Subsection to
develop ANN approximation results for products of the form [0, T] x R? 5 (¢, z)
tr € R? where T € (0,0), d € N. In Subsection we then combine the ANN
representation results in Subsection with the ANN approximation results for
products in Subsection to establish in Theorem the main result of this
article.

2 Artificial neural network (ANN) calculus

This section develops a certain calculus for ANNs. Some of the notions and re-
sults which we present here are rather elementary, but for convenience of the
reader we present here all details and we include the proof of every result. The
material in this section is also in parts based on several well-known concepts and
results in the scientific literature. In particular, Definition LIl Definition 2.2]
and Definition are slight reformulations of Petersen & Voigtlaender [32, Def-
inition 2.1]. Moreover, Lemma [2.4] is elementary and well-known in the scientific
literature. Furthermore, Definition is also a slight reformulation of Petersen
& Voigtlaender [32 Definition 2.2]. In addition, Proposition 2.6, Corollary 2.7,
and Lemma are elementary and essentially well-known in the scientific liter-
ature (cf., e.g., Petersen & Voigtlaender [32]). Moreover, Definition [ZI1] is an
extension of Elbrachter et al. [I1], Setting 5.2] and Proposition 210 is in parts an
extension of Elbrédchter et al. [I1, Lemma 5.3]. Furthermore, Definition 217 and
Definition 222 extend Elbréchter et al. [T1], Setting 5.2] (cf., e.g., Petersen & Voigt-
laender [32), Definition 2.7]). In addition, Proposition [225]is a reformulation of [25,
Lemma 5.1]. Moreover, Lemma 227 and Proposition 2.2 are significantly inspired
by [25, Proposition 5.3]. Furthermore, item (iv)) in Lemma and item () in
Proposition [Z28 respectively, improve the parameter estimates in [25, Proposi-
tion 5.3]. In addition, Corollary 2231l in Subsection below is also in parts
inspired by [25, Proposition 6.1].

2.1 Artificial neural networks (ANNs) and their realiza-
tions

Definition 2.1 (Artificial neural networks (ANNs)). We denote by N the set given
by

N = ULen Ui ,...,1 )eNi+1 (><£=1(]lexzk_1 x le)) (5)

and we denote by P,L,Z,0: N — N, H: N — Ny, and D: N — U¥_,NE the
functions which satisfy for all L e N, lo,ly,...,lp € N, ® € (xE_ | (RUExl-1 x RIx))



that P(®) = v Ll + 1), L(®) = L, Z(®) = Iy, O(®) = 11, H(P) = L — 1,
and D(®) = (lo, ly,...,11).

Definition 2.2 (Multidimensional versions). Let d € N and let ¢: R — R be a
function. Then we denote by M, q: R — R? the function which satisfies for all
= (21,...,74) € R? that

Mya(z) = (W(z1), ..., P(xa)). (6)

Definition 2.3 (Realizations associated to ANNs). Let a € C(R,R). Then we
denote by Ry: N — Up ey C(RFRY) the function which satisfies for all L € N,
lo, ll, RN ZL € N, P = ((Wl, Bl), (WQ, BQ), RN (WL, BL)) € (Xi;l(leXlk’l X le)),
roeRo zy e R .. xp e Rt withVke Nn(0,L): 2 = My, (Wiak—1 + By)
that

Ra(®) e C(R RE)  and (R (®))(wo) = Wrap 1 + By, (7)

(cf. Definition[Z2 and Definition [21]).
Lemma 2.4. Let ® € N (c¢f. Definition[21]). Then

(i) it holds that D(®) € NE(®)+1 gnd

(ii) it holds for all a € C(R,R) that Ry(®) e C(RI®) RO®)
(cf. Definition[2.3).

Proof of Lemmal[2.4. Note that the assumption that ® € N = UrenU g ;,.0, )jene+1
(xE_ (RW*l—1 x R)) ensures that there exist L € N, Iy, [y, ...,l; € N such that

D e (xp_q (R =1 5 R%)) (8)
Observe that () assures that
L®) =L, I(D)=lp,  OP) =1l (9)

and  D(®) = (lp, ly,...,1) € NFTL = NA@+L (10)

This establishes item ([l). Moreover, note that (@) and () show that R,(®P) €
C(RT® RO@)). This establishes item (f). The proof of Lemma 4] is thus com-
pleted. O



2.2 Compositions of ANNs
2.2.1 Standard compositions of ANNs

Definition 2.5 (Standard compositions of ANNs). We denote by (-) o (-): {(Py, Do)
€ N x N:Z(®1) = O(P3)} — N the function which satisfies for all L, £ € N,
lo, ll, ceey lL, [0, [1, ey [2 € N, (I)l = ((Wl, Bl)7 (WQ, Bz), ceey (WL, BL)) € <X£=1
(lexzk_l Xle)), b, = ((Wl, %1), (WQ, %2), ceey (WQ, %2)) € (X£=1(R[k><[k_l XR[k))
with lo = Z((I)l) = O((PQ) = [2 that

(I)l [ ] (I)Q =
( (W1, B1), Wa,Ba), ..., We-1,Be1), WilWe, Wi1Be + By), Io1-¢
(W27 BZ)) (W37 B3)7 ey (WLa BL))
< ((W1W17 Wl%l + Bl)7 (W27 BQ); (W37 B3)7 R (WL7 BL)) L>1=¢8
(W1, B1), W2, Ba), ..., W1, Bo), WiWe, WiBe + By)) :L=1<8
k(VV1VVl,VV1%1‘i‘Bl) L=1=¢
(11)

(cf. Definition [21]).

PI‘OpOSitiOH 2.6. Let (131, (132 € N, ZLQ, l171, cey llﬁ(‘bl)’ l270, l271, R l2,£(¢2) e N
satisfy for all k € {1,2} that Z($1) = O(Py) and D(Py) = (lko, lk,-- -, lkciop))
(cf. Definition[21). Then

(i) it holds that
D(Py 0 Dy) = (lao, 121, - lo@ay—1, L1, Lz - - lc(an))s (12)

(i1) it holds that
[L(D1 0 @y) — 1] = [L£(P1) — 1] + [£(P2) — 1], (13)

(1) it holds that
H((I)l ° (I)Q) = H(q)1> + H((I)Q), (14)
(iv) it holds that
P((I)l ° (132) = P(‘bl) + P((I)Q) + l171(l27£(<1>2)_1 + 1)

—lia(lio + 1) = lo @y (loc@y) -1 + 1) (15)
< P(D1) + P(P2) + lialo pan)-1,

and



(v) it holds for all a € C(R,R) that R,(®; e &) € C(RF®2) RO gnd

Ra(®Pr e @2) = [Ra(®1)] 0 [Ra(®2)] (16)

(cf. Definition[2.3 and Definition[2.3).

Proof of Proposition[2Z4. Throughout this proof let a € C(R,R), let Ly € N, k €
{1,2}, satisty for all k € {1,2} that Ly = L(®y), let (Wi, Be1), Wiz, Bia), - - -,
(WL Br,,)) € (xfjl(levinkJ’*l x Rlk3)), k € {1, 2}, satisfy for all k € {1,2} that

(I)k = ((Wk,la Bk,l)u (Wk,27 Bk,?)a seey (Wk,Lk7 Bk,Lk>)7 (17)

let Ly € N, l30,031,...,l30, € N, O3 = ((W3,1733,1)7 . "7(W3,L3783,L3>) € (XJLL
(Rlisgxlsi-1 x Rl.)) satisfy that 3 = @1 @ Oy, let 19 € R20 2y e R21 . 2p, €

R2.12-1 satisfy that
Vj eNNn (0, L2): .T}j = Sﬁa,l“ (Wg,jxj,l -+ Bg,j) (18)

(cf. Definition B.2)), let yo € R0,y € Rt .y, 1 € RiuLi-1 gatisfy that yy =
W r,2r,—1 + B, and

VjieNn(0,L1): y; = Moy, , (Wi y;-1 + Buiy), (19)
and let zg € RI30 2 e Rl ... 2. | € RisLs—1 gatisfy that 2y = 2y and
VJ eNNn (O, L3)2 Zj = fmam (W37j2j71 + Bg,j). (20)

Note that (III) ensures that

(I)g = (bl [ ] (I)Q =
( ((WQ,lu 82,1)7 (W2,27 82,2)7 tety (W2,L2717 B2,L271)7
(WiaWo g, Wi1Bo 1, + Bi1), Wia, Bia), L1 >1<1Ls
(Wl,?n Bl,3)a RN (Wl,Lla Bl,Ll))

((W1,1W2,1, Wi1Bs1 + Bi1), (Wi, By ),

. L1 >1= L2 (21)
\ (W1,3a Bl,3)a sy (Wl,Lla Bl,Ll)) .

((WZ,la BZ,l)a (WZ,Qa BZ,Q), ceey (WQ,L2—17 BQ,LQ—l)’
(Wi aWa e, Wi1Bo 1, + Bl,l))

(W11 Waa, Wi 1Bo1 + Bi) L =1= 1L,



Hence, we obtain that

[L(PreDy) — 1] =[(Lo—1)+1+ (L1 —1)]—1

Ly 1] (L 1] = (L) — 1]+ [£@) —1] 2D

and  D(Py e Py) = (loo,l21,-- - lomo-1: b1, 2y - Dy (23)
This establishes items ({l)—(fl). In addition, observe that (23] demonstrates that

L3
P(‘bl ° (132) = Z l37j(l37j_1 + 1)
=1

J
_Lg—l i L3
= | > Lillsjor+ 1) | + 30,3 0,-1 + 1) + > sl -1+ 1)
| =1 | j=La+1
[ 1,1 i Ls
= loj(lojr + 1) | +lia(lor,r + 1)+ | X lijryr(lij—z, +1)
[ J=1 | Jj=La+1
_Lg—l l L1
= loj(loj1 + 1) [+ | X bl + D) |+l (loze—1 + 1) (24)
j=1 j=2
[ Lo Ly
= | D billbja+ )+ | X b+ +hillep,—1+1)
=1 i=1

—lory(lopp—1 +1) = lia(lip+1)

= P(P1) + P(Ps) + lia(lopy—1+1) —lop,(lop,—1 +1)
—l1(lho+1)

< P(P1) + P(P2) + lialary—1-

This establishes item ([vl). Moreover, observe that (2I)) and the fact that a €
C(R,R) ensure that

Ra(®y e By) € C(R20 RIL1) = O(RE®2) RO®)), (25)

Next note that (22)) implies that L3 = L; + Ly — 1. This, (ZII), and (23) ensure
that

(I30, 83155 30y 1001) = (loos oty - s lozy- 1, li0s lios ooy liny),  (26)
[VieNn(0,Ly): (Way, Bs;) = (Way, By, (27)

(Ws.1,, Bs.r,) = WiaWa.p,, Wi B, + Bi1), (28)

and  [VjeNn (Ly, Ly + Lo): (Way, Bsj) = Wijsi-1y Bijei-1,)]. (29



This, ([I8), ([20), and induction imply that for all j € Ny n [0, L) it holds that
z; = ;. Combining this with ([28) and the fact that yo = Wy 21,1 + Bap,
ensures that
Wi r,20,-1+ Bsp, = W r,00,-1 + B3 1,
= Wi iWar,2p,—1 +Wi1Bar, + Bis (30)
= Wi 1(War,2r,—1 + Ba,r,) + Big = Wiayo + By 1.

Next we claim that for all j € N [Ls, L1 + L) it holds that
Wi jzj—1+ Bsj = Wi ji1-1,Yj—1, + Bijt1-Lo- (31)

We prove ([B1]) by induction on j € Nn[Ly, L1+ Ls). Note that ([B0) establishes (B31])
in the base case j = Ly. For the induction step note that the fact that Ly = L; +

Ly,—1, (19), @0), [2d), and @3) imply that for all j € Nn[Ly,00) N (0, L1+ Ly —1)
with
Wszj—1+ Bsj = Wi ji-1,Yj—1, + Bij+1-1. (32)

it holds that
Wsji12j + Bs e = Waju1Mag, ;(Waj2zj-1 + Bsj) + Bsjia
= Wijro- oMot jin 0, Wigei-ra¥j—ro + Brjii-r,) + Bujro i, (33)
= W17.]+27L2y_]+17[/2 + Bl7j+27L2.
Induction hence proves (BI). Next observe that (BI) and the fact that Ly =
L, + Ly — 1 assure that
Ws razia—1+ Bsy = Wa 4 o120 4 La-2+ Banysro-1 = Wiy, -1+ Big,. (34)

The fact that @3 = O e &y, (IX)), (I9), and (20) therefore prove that

[Ra(P1 0 2)](20) = [Ra(P3)](20) = [Ra(P3)](20) = Wi 152051 + Bs 14
=Winyri—1 + B, = [Ra(®1)](%0)
= [Ra(P1)] (Wz,inULQq + BQ,LQ)
= [Ra(®1)]([Ra(®2)](20)) = [(Ra(®1)) © (Ra(P2))](20)-

Combining this with (23]) establishes item (). The proof of Proposition 2.6lis thus
completed. O

(35)

Corollary 2.7. Let Ly, Lo, L3 € N, L1 0,111, liny, b0 b2y -5 lo s, 130,031, - - -
l3,L3 e N SdtiSfy that ll,O = l2’L2 and let (I)k = ((Wk,laBk,1)7<Wk,27Bk,2)7---7
(Wk,Lk,Bk,Lk)) € (xfjl(le’JXl’W—l x Rw3)), ke {1,2,3}, satisfy that 3 = O, e
(cf. Definition 21 and Definition[2.3). Then

10



(i) it holds that
L3 = E((I)g) = E((I)l) + E((I)Q) - 1 = L1 + L2 - 1 = maX{Ll, LQ}, (36)

(i) it holds for all j € Nn (0, Ly) that
(W5, Bsj) = (W, Bayj), (37)

(ii) it holds that
(W3 1,, Bs.r,) = WiaWs r,, Wi1Ba 1, + Bi1), (38)
and
(iv) it holds for all j € Nn (La, Ly + Ly) = N (Lg, ) n [1, L3] that
(W, Bsj) = (Wijrav1, Brj-r211)- (39)

Proof of Corollary[2.7]. Observe that item (i) in Proposition proves item ({).
Moreover, note that (1) establishes items ()—([v)). The proof of Corollary 21 is
thus completed. O

2.2.2 Associativity of standard compositions of ANNs

Lemma 2.8. Let &1, ®y, &3 € N satisfy that Z(P1) = O(Py) and Z(Dy) = O(P3)
(cf. Definition[Z1). Then it holds that

(P10 Dy) 0Dy =Dy 0 (DyeD3) (40)
(cf. Definition[2.3).

Proof of LemmalZ.8. Throughout this proof let ®,, &5, g, P; € N satisfy that
Dy = Predy Py = Dye Py, Oy = P 0Dy, and P; = Py e Py, let Ly € N,
ke{l,2,...,7}, satisfy for all k € {1,2,...,7} that L, = L(®y), let o, k1, -,
lk,Lk € N, ke {1, 2, RN 7}, and let ((WkJ, Bk71), (Wkg, Bkg), ey (W]%Lk, Bk,Lk)) S
(x 3% (Rliks =1 x Ria)), ke {1,2,...,7}, satisfy for all ke {1,2,...,7} that

Oy = (Wi, Bea)s Wiz, Bea)s - .., Wiy, Biory))- (41)

Observe that item () in Proposition and the fact that for all k € {1,2,3} it
holds that £(®;) = Ly proves that

L(Bg) = L((B) 0 By) o y) = LD » ) + L(Ps) — 1
((131) + E(‘bg) + ,C((I)g) —2=L1+ Lo+ L3—2 (42)
((131) + E((PQ ° (I)g) —1= E(‘bl o ((132 o (I)g)) = ,C((I)7)

L
L

11



Next note that Corollary 2.7, (41l), and the fact that &, = ®; ¢ &, imply that
I:Vj eNN (0, LQ)Z (W47]’, B47j) = (WQ,ja BQJ)], (43)

(Wi, Bar,) = Wi aWo ,, Wi 1Bs 1, + Bi1), (44)
and [Vj € N (Lo, Ly + La): (Wyy, Byj) = (Wl,jJrlszaBl,jJrlsz)]- (45)

Hence, we obtain that

[VjENﬁ(Lg,—l,Lg‘i‘Lg—l)I
(W4,j+17L37 B4,j+17L3) = (W2,j+17L37 BQ,jJrlng)]? (46)
(Wyr,, Bar,) = WiaWar,, Wi1Bar, + Bi1), (47)

and

[VjENﬂ(LQ‘FL3—1,L1+L2+L3—1)2
(Wijr1-rg Bujei-1,) = Wijio 1014, Brjio—1,-15)]- (48)
In addition, observe that Corollary 27 (@Il), and the fact that &5 = ®y e O3
demonstrate that

I:VJ eNn (0, L3)I (W57j, B57j) = (W&j, B&j)], (49)

(W15, Bs,1y) = (W Ws 1., Wo 1 Bs 1, + Bay), (50)
and [V] € N M (Lg, L2 -+ Lg)Z (W57j, B57j) = (W27j+1_L3, Bg7j+1_L3)]. (51)

Moreover, note that Corollary 27 (1), and the fact that &5 = P, ¢ P35 ensure
that
I:Vj eNn (0, L3)I (W(;’j, B&j) = (W3,ja BgJ)], (52)

(We.15, Be,1s) = (Wy1Ws 1y, Wa1Bs 1, + Baa), (53)
and [V] e Nn (Lg, L4 + Lg)Z (W&j, B&j) = (W4,j+1—L37 B47]’+1_L3)]. (54)

Furthermore, observe that Corollary 27, (#Il), and the fact that ®; = O, e O
show that
[VjeNn(0,Ls): (Wry,Brj) = (Ws, Bs)], (55)

(Wi Ly, Brrs) = WiaWs 1, Wi Bs 1y + Bia), (56)

and  [VjeNn (Ls, Ly + Ls): (Wrj,Brj) = (Wijii-rs, Bijii-1,)]- (57)

This, the fact that Ly < Ly + Ly — 1 = Ls, (9), and (52) imply that for all
j € Nn (0, Ls) it holds that

(Wej, Bej) = (W3, Bs j) = (Wsj, Bs j) = (Wr;, Bz ;). (58)
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In addition, observe that ([43)), (@), [@9), (G0), (G3), [B3), (E), and the fact that

Ls = Ly + L3 — 1 demonstrate that

(We.s, Be,y) = (WaiWa Ly, Wa1Bsp, + Bya)
{(W21W3L37W2133L3+B21) Ly > 1

(Wi aWo W3 1, Wi 1 Wo 1B3.1, + Wi1Ba 1 + By 1) t Ly =1

(W2 W 1., Wa1Bs 1, + Bs 1) t Ly >1 (59)
(Wia(Wo Wi 1), W11(Wa1Bs py + Bay) + Bi1) Lo =1

(W5 Lss B5 L3) : L2 > 1

(W1 \Ws 1o, Wi1Bs 1, + By 1) c Ly =1

- (W7,L3 ) B7,L3)'

Next note that the fact that Ly = Lo+ L3 —1 < L1+ Lo+ L3 — 1 = L3 + Ly, (54,
@4), (BI), and (BH) ensure that for all j € N with Ly < j < Ls it holds that

(Wej, Bej) = Waji1-1s, Bajsi—1,) = Wajs1-1y. Bajr1-1,)

60
= (Ws, Bsj) = (Wr5, Br ;). (60)

Moreover, observe that the fact that Ly = Lo+ L3—1 < L1+ Lo+ L3—1 = L3+ Ly,

(G4), (B9), @), (BI), and (BE) prove that

(We.r., Bo.r,) = (W4,L5+1—L3,B4,L5+1_L3) Ly >1
i ’ (W&Laa BG,Lg) : LQ =1
(W4,L27 B4,L2) . L2 > 1
(W7,L37 B7,L3) Lo =1

(W1,1W2,L27 Wl,lBQ,L2 + Bl,l) : LQ > 1 (61)

(W7,L57 B7,L5) : LQ =1

(W1,1W5,L57 Wl,lBS,L5 + Blyl) : L2 > 1

(W7,L57 B7,L5) : LQ =1
- (W7,L57 B7,L5)-

Furthermore, note that (54)), [@8), (&), and the fact that Ls = Lo+ Ly — 1 = L3
assure that for all j € N with Ls < j < Lg it holds that

(W6,jaBG,j> = (W4,j+17L37B4,j+17L3) = (Wl,j+2fL27L37Bl,j+2fL27L3)

62
= (Wl,j+17L57Bl,j+lfL5) = (W7,j7 B?,j)' ( )
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Combining this with (@2]), (58)), (59), (€0), and (61l establishes that
(@1.@2).@3 2@40(1)3 :(I)6 :(1)7:@1.(1)5 :q)1.<(p2.q)3>. (63)
The proof of Lemma is thus completed. O

2.2.3 Compositions of ANNs and affine linear transformations

Corollary 2.9. Let ® € N (cf. Definition[21]). Then
(i) it holds for all A € N with L(A) =1 and Z(A) = O(®P) that

P(hed) < [max{l, %}] P(®) (64)

and

(i) it holds for all A € N with L(A) =1 and Z(®) = O(A) that

P(® o ) < [max{1, 28| P(0) (65)

(cf. Definition[Z1).

Proof of Corollary[2.9. Throughout this prooflet L € N, Iy, l1,...,l;, € N, A, Ay €
N satisfy that £L(A;) = L(Aq) = 1, Z(A,) = O(®), Z(P) = O(Ay), and D(P) =
(lo, 11, ...,11). Observe that item (iv)) in Proposition 2.6 the fact that O(®) = I,
the fact that Z(®) = [y, and the fact that for all k£ € {1, 2} it holds that D(Ay) =
(Z(Ay), O(Ay)) ensure that

m(ln1 + 1)] +[O(A)] (-1 + 1)

(
— _Lil Lin (L1 + 1)] + [ngl)] L(lp—1 +1)

< _max{l, OgAl) }]
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and

P(DeAy) = [i Lin(Ln—1 + )} + L[Z(As) + 1]

L
— | Y llley + 1 }Jr ;*11“ 11(z+1)

m=2

) (67)

I(AQ +1

S [maxq L, =0T

{ } lmi—2 bn{lm-1 + 1)} * [max{l, I(llii)jl}] L(lp+1)
-t 2] [ £ it 0] - [ g o

This establishes items (il)—(fl). The proof of Corollary 2.91is thus completed. O

2.2.4 Powers and extensions of ANNs

Definition 2.10. Let d € N. Then we denote by 1; € R¥? the identity matriz in
Rdxd.

Definition 2.11. We denote by (-)*": {& € N: Z(®) = O(P)} —» N, n € Ny, the
functions which satisfy for all n € Ng, ® € N with Z(®) = O(®) that

D o (P 1)) :neN (68)

. {(IO 1,(0,0,...,0)) € RO®XO®)  RO@) . —
(cf. Definition 2], Definition 23, and Definition[Z10).

Definition 2.12 (Extension of ANNs). Let L € N, U € N satisfy that Z(V) =
O(V). Then we denote by Epy: {P € N: (L(P) < L and O(®) = Z(V))} -» N
the function which satisfies for all ® € N with L(®) < L and O(P) = Z(V) that

Erw(®) = (TELD)) o @ (69)
(cf. Definition[21], Definition[2.3, and Definition [2.11]).

Lemma 2.13. Let d,i e N, U € N satisfy that D(V) = (d,1i,d) (cf. Definition[Z1).
Then

i) it holds for all n € Ny that L(¥*") = n + 1, D(¥*") e N**2, and
(1) : :

(d,d) :n =0

70
(d,i,i,...,i,d) :neN (70)

D) = {
and
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(ii) it holds for all ® € N, L € Nn[L(®), ) with O(®) = d that L(ELw(P)) = L

and

P(ELw(P))
_ ) P(@) L(D) = L (71)
T [(max{1, i P(®) + (L — L(®) -~ 1)i+d)(i+1)] :L(®) <L

(cf. Definition[Z11 and Definition [2.13).

Proof of LemmalZ13. Throughout this proof let ® € N, Iy, l1,. .., ;@) € N satisfy
that O(®) = d and D(®) = (lo,lr,...,le@) € NE T and let ary € N, k €
Non [0,L], L € Nn [L(D),00), satisfy for all L € Nn [L(D), ), k € Ngn [0, L]
that

Iy k<L(D)
arr =41 L(P)<k<L. (72)
d k=1L

We claim that for all n € Ny it holds that

(d,d) :n =10

. (73
(d,i,i,...,i,d) :neN (73)

LT*") =n+1 and N"*2 5 D(P¥*") = {

We now prove (Z3) by induction on n € Ny. Note that the fact that U0 = (I;,0) €
R4 x R? (cf. Definition 2ZI0) establishes (Z0) in the base case n = 0. For the
induction step Ny 3 n — n + 1 € N assume that there exists n € Ny such that

(d, d) ‘n=0

. (74
(d,i,i,...,i,d) :neN (74)

LU =n+1 and N'"253D") = {

Observe that Lemma 24 (68]), items ([{)-() in Proposition 2.6, (74), and the
hypothesis that D(V) = (d, 1, d) imply that
LOTHD) = £(Ve () = L(T) + LT —1=2+(n+1)—1=(n+1)+1
and  D(U*HD) = D(V e (U°*")) = (d,i,i,...,i,d) e N**3.
(75)
Induction thus proves ([73). Next note that (73)) establishes item (). In addition,

observe that items ({l)-(i) in Proposition [20] item (@), (69), and (72)) ensure that
for all L e N [L(®),00) it holds that

E((S'L,\I;((I))) = ,C((\I/.(L_E(CD))) ° CI)) = L(\I}'(L_E(CD))) + E((I)) -1

(L L@) + 1)+ L(®) —1=1L (76)
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and

D(gL,\If(‘I))) = D((\I’.(Liﬁ(q)))) ® (I)) = (aL,O, ar1,--- aaL,L)-

Combining this with (72]) demonstrates that
L(Ec@)u(P)) = L(P)
and

D(Eria),u(P)) = (ar@)0, Ac@)is-- - ar@).c(@))
= (lo, 1, ..., lL((I))) = D(®).

Hence, we obtain that

P(Ec@)u(®)) = P(D).

(77)

(78)

(79)

(80)

Next note that (72)), (Z7), and the fact that Iz = O(®) = d imply that for all
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L eNn (L(P),o0) it holds that

P(ELw(®)) = él arg(arg—1+1)

_L(<I>)—1 i L
=| X apxlappa+1)|+| X aprlapr—1+1)
| k=1 | k=L(®)
[ £(9)-1 [ ()
= Z lk(lkfl + 1) + Z aL,k(aLJg,l + 1)
| k=1 | k=L()
L
+ Z CLLJC(G,L,kfl + 1)
k=L(®)+1
L(®)—1
= U(le—1 + 1) | + ap c@)(ar,c@)—1 + 1)
k=1
L-1 L
+ Z CLLJC(G,L,kfl + 1) -+ |:Z aL,k(aL,k,l + 1)]
k=L(®)+1 k=L
[ £(2)-1 i
= Ui(le—1 + 1) | +illg@)y—1 + 1)
k=1
+(L—1—(L(®)+1)+1)ii+1) +arrlar—1 +1)
[ £(®)-1 1
= X Ll + 1) |+ 3@ (e@)—1 + 1)]
k=1
+(L—L(®)—1)i(i+1)+di+1)
L(D

)
lk(lkfl + 1)
1

< [max{1, 1}]

> ]+(L—£(<I>)—1)i(i+1)+d(i+1)

[max{1, 1}] P(®) + (L — L(®) — 1)i(i + 1) + d(i + 1).

Combining this with (80) establishes ([7T]). The proof of Lemma is thus com-

pleted.

O

Lemma 2.14. Let a € C(R,R), I € N satisfy for all x € R*® that Z(I) = O(I)

and (R.(I))(z) = x (c¢f. Definition[21 and Definition[2.3). Then
(i) it holds for all n € Ny, x € RTD that

R, (1) e C(RTD RIDY  and (R, (I*™)(x) = 2 (82)

and
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(i3) it holds for all ® € N, L € N n [L(®), x0), x € RE®) with O(®) = Z(I) that

Rao(Eri(P)) € C(RI® RO®)Y  gnd (RG(SLJ((I))))(ZL‘) = (Ra(d)))(xz%)

(¢f. Definition[ZI1 and Definition [2.13).

Proof of Lemma [2.14]. Throughout this proof let ® € N, L,d € N satisfy that
L(P) < L and Z(I) = O(P) = d. We claim that for all n € Ny it holds that

Ro(I°") € C(RY,RY) and  VzeR%: (R (I)(z) = 2. (84)

We now prove (84)) by induction on n € Ny. Note that (G8) and the fact that
O(I) = d demonstrate that R,(I*°) € C(R4 R?Y) and Vz € R?: (R,(I*?))(z) = .
This establishes (84]) in the base case n = 0. For the induction step observe that
for all n € Ny with R,(I*") € C(R% RY) and Vx € R¢: (R,(I*"))(x) = x it holds
that

Ro(I""*) = Ry (e (I') = (Ra(D)) © (Ra(I™)) € C(R%, RY) (85)

and
Vo e RY: (Ry(I0) (@) = ((Ra(D)] o [Ru(I)]) (2)
= (Ra(M) ((Ra(I*™)) (2)) = (Ra(D))(2) = 2.

Induction thus proves (84]). Next observe that (84]) establishes item (). Moreover,

note that (69), item (@) in Proposition [2.6] item (i), and the fact that Z(I) = O(®)
ensure that

(86)

Ra(EL1(®)) = Ra((I"F4)) 0 )

c C(RI(CD),RO(H)) — C(RI(@)’RI(]I)) _ C(RI(CI))’RO(CD)) (87)
and
Vo e RV (Ry(ELi(®)(2) = (RaIEON) (Ru®)@) o
= (Ra(®))(2)-
This establishes item (). The proof of Lemma T4 is thus completed. 0

2.2.5 Compositions of ANNs involving artificial identities

Definition 2.15 (Composition of ANNs involving artificial identities). Let ¥ € N.
Then we denote by

() Ou (): {(P1,P2) e N X N: Z(Py) = O(V) and O(Py) =Z(¥)} - N (89)
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the function which satisfies for all 1, Py € N with Z(Py) = O(V) and O(Py) =
Z(V) that

®1®@¢2=®10(\D.®2)=((I)l.\ll).q)g (90)
(cf. Definition[21], Definition[2.3, and Lemmal[Z.8).
PI'OpOSitiOIl 2.16. Let \I/, (I)h (I)Q € N, i, 11,07 l171, R ll,£(<1>1)7 l270, 12,1, ey l2’£(¢2) €
N satisfy for all k € {1,2} that D(¥) = (Z(¥),i,O(¥)), Z(®1) = O(V), O(P,) =
Z(¥), and D(Py) = (lko, le1s - - - lec@y)) (cf Definition[21). Then
(i) it holds that

D(®1 Op Do) = (a0, 121, - - loc@a)—1, bl lig,s - (@) (91)

(i1) it holds that
L(®) Og By) — L(By) + L(Dy), (92)

(1) it holds that
P(®1 Oy @) < |max{L, i, oty | (P(@1) + (@), (93)

and
(iv) it holds for all a € C(R,R) that R, (P Oy ®2) € C(RZ(*2) RO gnd

Ra(P1Op P2) = [Ra(P1)] 0 [Ra(W¥)] © [Ra(P2)] (94)

(¢f. Definition[Z3 and Definition [Z17).

Proof of Propositions[210. Throughout this proof let a € C'(R,R), Ly, Ly € N sat-
isfy that Ly = L£(®,) and Ly = L£(P2). Note that item (fl) in Proposition 2.0
the hypothesis that D(®y) = (l20,021,--.,l21,), the hypothesis that D(¥) =
(Z(V),i,0(V)), and the hypothesis that Z(¥) = O(®P,) show that

D(\If ° (I)Q) = (l270, l271, ey l27L2_1, i, O(\I/)) (95)

(cf. Definition 2.5)). Combining this with item (i) in Proposition 2.0, the hypothesis
that D(®1) = (lio,l11,---,01,,), and the hypothesis that Z(®,) = O(¥) proves
that

D(P1 Oy B2) = D (D1 0 (Vo Dy)) = (I0,lo1, - lopy—1, b, g, b, - lipy)-
(96)
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This establishes item (fl). Moreover, observe that item (i) in Proposition and
the fact that £(¥) = 2 ensure that

L((I)l @q; (132) = E((I)l L (\I/ [ ] (I)Q)) = L((I)l) + L(\I/ ® (132) —1

L(By) + L) 4 L(Bs) — 2 = £(By) + L(®y). D)

This establishes item (). In addition, observe that (@@]), the fact that Z(¥) =
O(®2) = Iz 1,, and the fact that O(¥) = Z(®1) = ;o demonstrate that

[Lo—1 Ly
PP 0w P2) = | X bmlloma+ 1)+ X2 bm(limer +1)
| m=1 B | m=2 B
+i(logy-1+1) +La(i+1)
[Lo—1 1 1L T
= 2 bmlloma +1) |+ | 2 bim(lime1 + 1)
| m=1 B | m=2 B
+ I(i\p) lory(lorp—1 + 1) + lm(ﬁ lio+1) (98)

< [max{l, m}] [721 lom (lom—1 + 1)]

o [mes{t e} [ £ttt 1)
< [max{l, ﬁ, O(iq,)}] (P(®1) + P(®)).

This establishes item (). Next note that item (@) in Proposition 28 implies that

Ra(P1 Op P2) = Ry (Pr 0 (Ve By))
= [Ra(®1)] © [Ra(T o ®y)] (99)
= ([Ra(®1)] o [Ra(¥)] 0 [Ra(P2)]) € C(RFP), RO,

This establishes item ([vl). The proof of Proposition is thus completed. O

2.3 Parallelizations of ANNs
2.3.1 Parallelizations of ANNs with the same length

Definition 2.17 (Parallelization of ANNs with the same length). Let n € N. Then
we denote by

P,: {(®1,Ps,...,D,) e N": L(D1) = L(D2) =...=L(P,)} > N (100)

the function which satisfies for all Le N, (Lo, li1, ..., l4.L), (oo, lo1, - lon), .-,
(ln,Oa ln,17 ey ln,L) € NLJrl; q)l = ((Wl,la Bl,l)a (Wl,Qa Bl,2)7 sy (Wl,La Bl,L)) € (Xé—l
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(Rhsxtiin  RU)) By = ((Wan, Ban), (Wan, Bas),. -, (War, Bar)) € (xhoy
(RZQ’kXZQ’k_I XRIQ’k>>7 ) (I)n = ((Wn,h Bn,1>7 (Wn,27 Bn72)7 SR (WML? Bn7L>> € (X£=1
(Rln,len,k—l X Rln,k>> that
Wl,l 0 0 to 0 Bl,l
0 W271 0 e 0 82,1
Pn<q)1, (I)Q, ceey (I)n) = 0 0 W3,1 e 0 s B371 ,
0 0 0 - Wy Bya
WLQ 0 0 o 0 Bl,2
O W272 0 e O BQ,Q
0 0 Wsp -~ 0 || Bs2 [|,..., (101)
0 0 0 - Wio B2
WI,L 0 0 0 Bl,L
0 W2 L 0 0 B2,L
0 0 Wg,L 0 , B3,L
0 0 0 Wit By

(cf. Definition[21).

Lemma 2.18. Letn, L€ N, (luo, i, - lr), ooy Ity -3 lon)s ooy (loos bt -+ lnt) €
NLJrl, (1)1 = ((Wl,la Bl,l)a (WLQ, Bl’g), ceey (Wl,L7 Bl,L)) S (Xé':l(Rllkallvk*I XRll’k)),

@2 = ((WQJ, 3271), (W272, 3272), ey (WQ’L, BZL)) € (Xé':l(RlQ’leZk*I X RlQ’k)), ceey

D, = (Wn1,Bn1), Who,Bna),-.os Wapn, Bapr)) € (xE_ (Rinkxli-1 x RInk)),

Then it holds that

P, (B, ®y,....B,) € (Xézl (R(Z?:1lj,k)x(2?:1lj,k—l) % R(Z}Lllj,k)» (102)

(cf. Definition[Z-17).

Proof of LemmalZ18 Note that (I01]) establishes (I02). The proof of Lemmal[2Z1§
is thus completed. O

Proposition 2.19. Let a € C(R,R), n e N, & = (91, D,,...,P,) € N" satisfy
that L(P1) = L(Ps) = ... = L(D,) (¢f. Definition[Z1l). Then

(i) it holds that
Ro(P,(P)) € C(R[Z}Ll (%)) RIX5= 0(%‘)]) (103)

and
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(i1) it holds for all x; € RT(®V) 1y e RZ®2) 2. e RT(®) that

(Ra(Po(®))) (21, 29, . . ., )

. 104
= ((Ra(@1)(21), (Ra(®2))(2), - ., (Ra(@n)) () € RIZ=1 O] o

(cf. Definition[2.3 and Definition [2.17).

Proof of Proposition[2.19. Throughout this proof let L € N satisfy that L =
L(D1),let Lo, l1,.... L eN, je{l,2,...,n}, satisfy for all j € {1,2,...,n} that
D(®) = (Lo, by, - lin), let (Wya, Bja), Wiz, Bia), .- (Wjz, Bjr)) € (x5
(Rbwxlik=1 5 RE#)) 5 e {1,2,...,n}, satisfy for all j € {1,2,...,n} that

®; = (W1, Bjn), Wi, Bja), .., (WjL, Bi1)), (105)

let o €N, ke {0,1,..., L}, satisfy for all ke {0,1,..., L} that ay = D77 L, let
((A1,01), (A2, b), . (Ap,br)) € (x oy (RO 61 5 R™)) satisfy that

P (®) = (A, by), (Ag,ba), ..., (Ap, b)) (106)

(cf. Lemma 2IJ), let (zj0,2j1,...,250-1) € (RY0 x Rt x ... x Rlz-1) j €
{1,2,...,n}, satisfy for all j € {1,2,...,n}, ke Nn (0, L) that

Tjp = ma,lj’k(Wj,kl‘j7k_1 + Bj7k) (107)

(cf. Definition 22), and let rg € R*, 1y € R*, ... 1, 1 € R~ gatisfy for all k €
{0,1,..., L — 1} that rp = (z1 4, Tak, ..., Tnk). Observe that (I06) demonstrates
that Z(P,(®)) = ap and O(P,(®)) = «ar. Combining this with item (i) in
Lemma 24] the fact that for all £ € {0,1,..., L} it holds that oy = Z;‘L=1 lj 1, the
fact that for all j € {1,2,...,n} it holds that Z(®,) = [,, and the fact that for all
je{1,2,...,n} it holds that O(®;) = I, ensures that

Ra(Po(®)) € C(R™,R*) = C(RE= ol REzibad)

This proves item (). Moreover, observe that (I01]) and (I06) demonstrate that for
all ke {1,2,..., L} it holds that

Wix 0 0 - 0 Bk
0 Wy 0 - 0 By

A= 0 0 Wi, --- 0 and b, = | Bsx |. (109)
0 0 0 - Wy By i



Combining this with (@), (I07), and the fact that for all £ € N n [0, L) it holds
that rr, = (x1 4, Tog, - .., Tpnyx) implies that for all k € N (0, L) it holds that

Mg, Wiktie—1 + Big) Tk
Mo, (W o1+ Bag) Tk
Moy o, (Apli—1 + bi) = o : = .| = (110)
fD/tat,ln’k(I/Vn,l~<:xn,k:f1 + Bn,k) T,k
This, (), (I05), (I06), (T07), (I09), the fact that ro = (21,0, 20, - - -, Tno), and the
fact that r,—1 = (z1,,-1,%2.-1, ..., Tp—1) ensure that
(Ra (Pn(q))))(l‘l,Oa Z2.0,- -, :L‘n,O) = (Ra (Pn(q))))(;O)
Witz + Bir (Ra(®1))(21,0)
(Ra(®2))(220) (111)

Wa o -1+ Bay,
= Aprp1 +bp = .

Wn,an,L—l + Bn,L (Ra(q)n))(xn,O)
This establishes item (f). The proof of Proposition is thus completed. O

PI‘OpOSitiOH 2.20. Let n, Le N, P = ((131, (132, RN (I)n) € Nn, (ZL(), l171, RN ll,L)a
(l270, l271, e l27L), ey (lmo, ln,la RN ln,L) € NLJFI satisfy fO’f’ allj € {1, 2, . ,TL} that
D((I)j) = (ljp, lj71, ey lj,L) (Cf Deﬁmtwn M) Then

(i) it holds that
D(Pn(®)) = (X1 lios 25—y bty -5 25—y lix) (112)

and

(i1) it holds that
P(P,(®)) < 3[, P(@))] (113)

(cf. Definition[Z-17).

Proof of Proposition[2.200 Note that the hypothesis that Vj € {1,2,...,n}: D(®;) =
(l;0,0;1,-..,1;1) and Lemma assure that

D(Pn(®) = (X1 lios 25—1 bty -5 2001 Lin)- (114)
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This establishes item ([{l). Moreover, observe that (I14]) demonstrates that

S N (SR

k=1
n n L n n L
SDIDIPNTCTEERY ZZZ (L1 + 1
izlj:1k=1 i=1j=1kt=1 (115)
= Z 2 [Zi:l lz,k:l [ZKL:l(lj7g_1 + ]_)]
i=1j=1
<3 3| B dhalliacs + ][ B btz + 1]
i=1j=1
n n 9
= 22 5P@IP(@) = 3| T, P(@) |
i=1j=1
The proof of Proposition is thus completed. 0
Corollary 2.21. Letn € N, & = (&, ®,,...,D,) € N" satisfy that D(P,) =
D(®y) = ... = D(®,) (c¢f Definition Z1). Then it holds that P(P,(®)) <

2P(®y) (cf. Definition[2.17).

Proof of Corollary[2.21. Throughout this proof let L € N, Iy, 1y, ...,l; € N satisfy
that D(®1) = (lo,l1,...,[1). Note that item () in Proposition and the fact
that Vje {1,2,...,n}: D(®;) = (lo,ly,...,l;) demonstrate that

PP (D1, Dy,...,D,)) = i(nlj)((nlj,l) +1) < i(nlj)((nlj,l) +n)
a (116)
[Zl(a 1+ )} n*P(®y).

The proof of Corollary 22211 is thus completed. O

2.3.2 Parallelizations of ANNs with different lengths

Definition 2.22 (Parallelization of ANNs with different length). Let ne N, U =
(U, Wy, ..., ¥,) e N satisfy for all j € {1,2,...,n} that H(V;) =1 and Z(V,) =
O(Y;). Then we denote by

Poy: {(B),8y,...,8,) e N": (Vje{L,2,....n}: O®;) = T(¥,))} - N (117)
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the function which satisfies for all ® = (&1, Py, ..., D,) € N" with¥j e {1,2,...,n}:
O(®,) = Z(¥;) that

Pn,‘l’(@) = P, (gmaxke{l,Q AAAAA n}£(<1>k)7‘1’1((1>1)’ s ’gmaxke{l,2 AAAAA n} E(<1>k)7‘1’n(q>n)) (118)
(cf. Definition[21), Definition[212, Lemmal[213, and Definition[2.17).

Corollary 2.23. Let a € C(R,R), n e N, I = (I, 1,...,L,), & = (P, Po,...,
®,) € N" satisfy for all j € {1,2,...,n}, x € RO®) that H(L;) = 1, Z(;) =
O(L;) = O(®;), and (Ra(L;))(x) = x (cf. Definition[21 and Definition[2.3). Then

(i) it holds that
R, (Pn,ﬂ(q))) c C(]R[Zyzl (%)) RIxj= (9(4%)]) (119)
and

(ii) it holds for all x; € R 5y e RE(®2) g e RT(®) that

(Ra(PnJ((I))))(ZL'l, Lo, ... ,ZL‘n)

. 120
= ((Ra(®1))(21), (Ra(®2)) (w2), - . ., (Ra(®,)) () € RIZj=1 O(®5)] (120)

(cf. Definition[2.22).

Proof of Corollary[Z23. Throughout this proof let L € N satisfy that L = maxjeq1 2,....n}
L(®;). Note that item (i) in Lemma[2.T3] the hypothesis that for all j € {1,2,...,n}
it holds that H(I;) = 1, (69)), (I3), and item () in Lemma 2.14] demonstrate

(I) that forall j € {1,2,...,n}it holds that £(EL1,(®;)) = L and Ru(EL 1, (P;)) €
C(R¥(®3) RO®i)) and

(IT) that for all j € {1,2,...,n}, x € R*(®) it holds that
(RalE11,(®,))) (@) = (Ra(®;))(@) (121)
(cf. Definition 2Z12)). Items ({l)-() in Proposition therefore imply
(A) that

Re (Pn ((c;LJh(q)l)7 5L7H2(q)2)7 o 75L,Hn(q)n)) c C(R[Z;'l:l I@’j)]’ RZ5=1 O(cbj)])
(122)

and

26



(B) that for all z; € RZ®) 2y e RE®2) . e R¥(®) it holds that

(Ra (Pn(gL,Hl((bl)a €L7]12((I>2), e 75L,]In(q)n))))(l‘17 T, ... ,ZL‘n)
— <(Ra (£ (@0))) (1), (Ra(Ersy (@) (@2), -, (Ru (€15, (@) (xn))
— ((Ra(@))(@1), (Ra(®2))(22), . (Ra(®0)) ()
(123)

(cf. Definition2.17)). Combining this with (I18)) and the fact that L = maxjeq 2, n)
L(®;) ensures

(C) that
Ry (pn’ﬂ(@)) c C(R[Z;Ll (%)) RIXj= O@j)]) (124)

and
(D) that for all 2, € RZ(®) 2, e RE®2) 2, e RT(®%) it holds that
(Ra (an]l((b))) (l‘l, Lo, ... ,l‘n)
= (Ra (Pn (gL,]Il ((I)l), €L7]12((I)2), ey gL,Hn((I)n)))) (l‘l, To, ... ,l‘n) (125)
= (Rul®1))(1), (Ra(®2))(2), - (Ra(®,)) () )

This establishes items ({l)—(fl). The proof of Corollary is thus completed. [

Corollary 2.24. Let n,L € N, ij,iy,...,i, € N, U = (U, Uy, ... V,), d =
(D1, Do,...,D,) € N” satisfy for all j € {1,2,...,n} that D(¥;) = (O(P;)
ny L(®r) (cf. Definition[21). Then it holds that

i) Vs

O(®;)) and L = maxyeqio, .
P (Pou(®))
< 3([Z T (1, 55 P Lo (1]

n [ZL (L — L(®;) = 1)i; (i; + 1) + O(®;) (i; + 1)) Ti<c<<1>j>7oo>(L)]

[P )] )

(126)

(cf. Definition[2.22).
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Proof of Corollary[2.24 Observe that (I18)), item (i) in Proposition 220, and
item () in Lemma T3] assure that

P (Pyu(®))
=P (5[, \1/1 5L \Ilz((IDQ) ’gLv‘I’”((I)")))

(

<3 [Z P(rw,(® ))]2

< %([ [masc {1, 55} P®;) Tcga,) oo (L)] (127)
+

|33 (= £(95) = 1) (5 + 1) + O@;) (i + 1)) Liegayn (D)
[Z] L P(®)) Ligo )}(L)D2

(cf. Definition and Definition Z17). The proof of Corollary is thus com-
pleted. O

2.4 Sums of ANNs
2.4.1 Sums of ANNs with the same length

Proposition 2.25. Let a € C(R,R), M € N, hy,ho,....,hy € R, &y, Dy, ...,
Oy € N satisfy that D(®y) = D(®y) = ... = D(®y) (¢f. Definition[21). Then
there exists W € N such that

(i) it holds that P(¥) < M*P(®,),
(ii) it holds that R,(¥) e C(RT(®) RO®))  gnd
(iii) it holds for all x € RT(®V) that

(RuD)(&) = X o (Ra(2)() (125)

(cf. Definition [2.3).

Proof of Proposition[2.2]. Throughout this proof let d,d € N satisfy that Z(®;) =
dand O(®;) =0, let (A, b)) € RO*M) x R? (A, by) € RIMDxd x RMd gatisfy that

Ly
I

A= (L holy oo hyl), As= ||, b=0, and by=0 (129)
Ly
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(cf. Definition RI0I), let A;, Ay € N satisfy that A; = (Ay,b) and Ay = (Ag, be),
and let W € N satisfy that

U =A; o [Py(P1,Ps,...,P01)] 0 Ay (130)

(cf. Definition 25 Definition 217, Lemma [2Z.8 and Proposition 2.19). Note that
(I30) and items ({)— (i) in Corollary 2.9 demonstrate that

P(\I]) < [max{l, O(PM(Q?l(filg) Far) }] P([PM(q)h (I)Q, ce (I)M)] ° Ag)

.....

< [max{l, o<pM(q(>91(§12),...,cpM))}] [max{l, I(PM(q>Il(,§>22),.J.r.,1<I>M))+1}]
“P(Pu(®1, D, ..., Poy))

= [max{1, 35 }| [max{1, 325 }| P(Pu(®P1, @s, ..., Pur))

= P(Pu(®1, P,...,Pn)).

(131)

Corollary 222T] and the hypothesis that for all m € {1,2,..., M} it holds that
D(®,,) = D(Py) hence prove that

P(U) < P(Pur(Pr, Po,..., Por)) < M*P(D). (132)

Next note that (I29) and the fact that Ay = (A, by) prove that for all z € R? it
holds that R,(Az) € C(RY RM9) and (R,(As))(z) = (z,z,...,7) € RM9 Proposi-
tion and item (W) in Proposition therefore ensure that

Ra((Pa(®1, P2, ..., ) @ Ag) = (Ra(Par(P1, s, .., Par))) © (Ra(A2))

= C(Rd, R0(<1>1)+0(<1>2)+___+0(q,M)) (133)

= C(R%,R™)
and

(Par(@1, Doy, Par)) @ As))(2)
[Ru(Par(®1, ®s, ..., 04r))] 0 [Ru(A2)]) ()
O, Dy, .. .,@M)))(x,x, ce, )

)(@), (Ra(®2))(@), - ., (Ra(®r)) ().

Furthermore, observe that (I29) and the fact that A; = (Ay, b;) assure that for all
Y1, Y2, - - -, yar € R it holds that R,(A;) € C(RM® R?) and

(134)

(Ra(A0)) (W1, s - yar) = f_lhmym. (135)
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Combining this and item () in Proposition 2.6 with (I30), (I33)), and (I34) demon-
strates that for all x € R? it holds that R,(¥) € C(R?,R?) and

M

Ra())(2) = 2 hn(Ra(®m)) (). (136)
This and (I32)) establish items ({)—(l). The proof of Proposition is thus
completed. O

2.4.2 Sums of ANNs with different lengths

Proposition 2.26. Leta e C(R,R), M,d,0,i,L e N, hy,hy,...,hyy e R, I, &1, Do, ...

@) € N satisfy for allm e {1,2,..., M}, x € R® that D(I) = (,1,0), (R.(I))(z) =
z, Z(P,,) = d, O(®y,) =0, and L = maxyeqi o, vy L(Pr) (cf. Definition 21 and
Definition[2.3). Then there exists W € N such that

(i) it holds that R,(¥) € C(R?, R?),
(ii) it holds for all x € R? that

(Ru(0)(@) = 3 o (Ral®0))(0), (137)

and

(ii) it holds that

P(¥) < %( [Z%a [ max {1, ;}] P(®n) ﬂ(z:(cbm),oo)(L)]
+ [fozl (L= L(®p) - D)i(i+1)+02(i+1)) ]1<£<<1>m>,oo>(L)]

+ [Z%:I P(Prm) ]1{L<<I>m>}(L)] >2-
(138)

Proof of Proposition[Z.28. Throughout this proof let J = (J1,Js,...,Ty) € NM
satisfy for all m e {1,2,..., M} that J,, = I, let (A}, by) € R>*M2) x R? (A, by) €
RMd)xd o RMd gatisfy that

Ly
I

A= (L holy oo hul), As= ||, b=0, and by=0 (139
Ly
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(cf. Definition RI0I), let A;, Ay € N satisfy that A; = (Ay,b) and Ay = (Ag, be),
and let W € N satisfy that

\I’:Al. (PM’j((I)l,(I)Q,...,q)M))OAQ (140)

(cf. Definition 28] Definition 22221 Lemma 2.8, and Corollary 2.23]). Note that
(I40) and items ([{)—(@) in Corollary 29 demonstrate that

P(Y) < [max{l, 0(pM’j(g%3 ..... <1>M))}] [max{l, I(PM,3(<II>£1,&<}?3,—’._..17<I>M))+1}]
P (Pars(®1, Pa,..., Par)) (141)
= [max{l, Mia}] [max{l, Ajﬂl ] P(PM,g((I)l, Dy, ..., <I>M))
= P(Pars(®1, ®s, ..., Do)

Corollary hence proves that
P(V) < P(Pary(P1, P2, . .., Par))
< 3( [ [ (0,41 P0) Vet (1)

[ (L= £(@) = )i+ 1) + 0 (4 1) e (L)

* [Z%ﬂ P(®m) ]l{£(<1>m>}(L)] )2.

(142)

Next note that (I39) and the fact that Ay = (As, by) prove that R, (Ay) € C(RY, RM9)
and
VeeRY: (Ru(Ay)(2) = (z,z,...,7) e RM? (143)

Corollary 223 and item () in Proposition therefore ensure that

R, (PMJ((I)l, By . ‘PM) o Ag) c C(RI(AQ)’RO(PMJ(@h(I)g ..... <I>M))) (144)
= C (R4, RM?)
and
Ve R (Ra(Pua(®r, Do, D) @ As)) (2)
= ((Ra(®1))(@), (Ra(®2)) (), - ., (Ra(®ar)) ().

In addition, observe that (I39) and the fact that A; = (Ay, by) assure that R,(A;) €
C(RM? R?) and

(145)

M
Yy, Yo, - yn € R (Ra(AD) (Wi, Yoy - ynt) = O hnYm. (146)
m=1
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Combining this, (I44)), (I45)), and (I40) with item (@) in Proposition demon-
strates that

Rao(T) € C(RI((PJW,J(CDhCI:? ..... ‘:DJVI))'AQ)’RO(AI)) = C(Rd,RD) (147)

and y
VeeRY: (Ro(U)(2) = Y hp(Ra(P))(z). (148)

m=1
This and (I42)) establish items ({)—(l). The proof of Proposition is thus
completed. O

2.5 ANN representations for Euler approximations
2.5.1 ANN representations for one Euler step

Lemma 2.27. Let a € C(R,R), Ly € Nn [2,00), Ly € N, d,i,l10,l11,...,
Lz, loo, oty lor, € N, I,®, &y € N satisfy for all k € {1,2}, z € R? that
D) = (d,i,d), (Ro(I))(x) = z, Z(Pr) = O(Px) = d, and D(P) = (lko, lk1s- - -,
i) (cf Definition[21 and Definition[2.3). Then there exists ¥ e N such that

(i) it holds that R,(V) € C(R? R?),
(ii) it holds for all x € R? that
(Ra(¥))(2) = (Ra(®2))(2) + (Ra(®1)) © (Ra(®2)))(2), (149)

(1) it holds that

D(W) = (Lo lo, -+ oyt lia + s lio 1y dipyos +i,00g,), (150)

and

(iv) it holds that

P(U) =P(P1) +P(P2) + (i —d)(lopy—1 + 1) + li1(lo,p,—1 — d)

+ (L —2)i(i+1) + ilmLz;sz] + 1[?;_12[14 (151)

Proof of Lemma[2.27. Throughout this proof let A; € R™%4 A, € R?¥*4 p, e RY,
by € R?? satisfy that

A =(Ig L), A= (Id) ,  bi=0, and by =0 (152)
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(cf. Definition 2ZI0) and let A; € (R x R?) = N, A, € (R**? x R??) < N,
U e N satisfy that A; = (Ay,01), Ay = (Ag, by), and

U =A;o[Py(dr, 1" 71)] 0 Ay 0 D, (153)

(cf. Definition 2.5, Definition 211l Definition .17, Lemma 2.8 and item (i) in
Lemma 2T3). Observe that (I52) and the fact that Ay = (As, by) ensure that for
all x € R? it holds that

Ra(Ay) € C(R?, R and (Ra(Ag))(x) = (z,2). (154)

Item (@) in Proposition 2.6 item () in Lemma T4, and Proposition hence
imply that for all 2 € R? it holds that Ry ([P2(®1,I*F17Y)] e Ay) € C(R?, R?*?) and

(Ra([P2 (@1, 17" 1) ] 0 42)) (2) = (Ra (P2(@1, 17 71))) ()
= (Ra(®1))(2), (Ra(I"™7D))(2)) = ((Ra(®1))(2), ).
Item () in Proposition 26 therefore demonstrates that for all z € R? it holds that
Rao([Po (@1, I°E171)] 0 Ay 0 @y) € C(RY, R?*) and

(Ra([P2(@1, 14 7) ] 0 A 0 0)) (@) = ((Ra(®1))((Ra(@2)) (), (Ro(®2) () ).
(156)

(155)

In addition, note that (I52) and the fact that A; = (Ay,b1) ensure that for all
y = (y1,72) € R? x R? it holds that

Ra(A;) € O(R* RY) and (Ra(A)(y) = y1 + 92 (157)

Item (@) in Proposition 26, (I53), and ([I56) hence prove that for all z € R it
holds that R,(V¥) € C(R? R?) and

(Ra(¥))(2) = (Ra(®1)) (Ra(®2))(2)) + (Ra(®2))(2). (158)

Next note that item (i) in Lemma[2ZT3 and item (i) in Proposition 2.220ldemonstrate
that
D(Py(01, 1Y) = (2d,ly + i, hp + 1o g, +1,2d). (159)

Item (i) in Proposition [Z0] therefore ensures that
D(A; o [Po(®y, I V)] @ Ay) = (d,liy + i,lip + 1. liz1 + i,d). (160)

Combining this with item ({) in Proposition 2.6 (I53]), and the fact that O(®Ps) =
lo.1, = d shows that

DY) = (o, log, -y lopy—1, i1+, Lo+ 1, ..l -1 +1,d). (161)
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The fact that {, ,, = O(®;) = d hence ensures that

La—1

P(V) = [m; lo.m(lom—1 + 1)] + (l11 +1)(lap,—1 + 1)

Li1—1

+ [ D (b + 1)l 1+ 1)] +d(lyp,-1 +i+1)
m=2

. 162

= P((I)Q) — l27L2 (lg,[&fl + 1) + (ll,l + 1)([2@271 + 1) ( )

L1—1 Li1—1 L1—1
+i[ > ll,m] +i[ > ZI’MI] +[ D lim(limer + 1)]
m=2

m=2 m=2

+ (L1 —2)i(i+ 1)+l (lip,—1 + 1) + 1y,

This, the fact that Iy 7, = O(®2) = d, and the fact that |, o = Z(®;) = d demon-
strate that

PU)=P(Py) + (lh1—d+i)(lop,—1 +1)+ (L1 —2)i(i+ 1)

Ly
+ 1[ Z l17m] + 1[ Z le] + P(‘bl) — l171(l170 + 1)
m=2 m=1
= P(‘bl) + P((I)Q) + (1 - d)(l27L2_1 + ].) + ll,l(ZQ,Lg—l - d)

+ (L —2)i(i+1) + ilmLz;sz] 4 1[22__12 zl,m].

(163)

Combining this with (I58) and (I6I) establishes items ({)-(ix}). The proof of
Lemma is thus completed. O

Proposition 2.28. Let a € C(R,R), L; € Nn [2,0), Ly € N, [,®;, Py € N,
dyiyliosliay - linys ooy logs - - lon, € N satisfy for all k € {1,2}, x € R? that
2<i<2d, lyp, 1 <lip,—1+i, D) = (d,i,d), (R.(I))(x) = x, Z(Pr) = O(Py) =
d, and D(®y) = (lko,lkas-- - ler,) (cf Definition 21 and Definition[2.3). Then
there exists W € N such that

(i) it holds that R,(¥) € C'(RY, RY),
(ii) it holds for all x € R? that
(Ra(¥))(@) = (Ra(®2))(7) + (Ra(®1)) © (Ra(P2)))(2), (164)
(1) it holds that
DY) = (lao,logs -y lopy—1,lia +i o+, .oyl -1 + i, 0 n,),  (165)

and
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(iv) it holds that
P(V)

N

P(Ds) + P(P1)[2P(21) + P(I) — 1]
) (166)
< P(®o) + [2P@) + P(21)]

Proof of Proposition[2.28. Throughout this proof let ¥ € N satisfy that
(I) it holds that R,(¥) € C'(RY,RY),
(I) it holds for all x € R? that
(Ra(¥))(7) = (Ra(®2))() + ((Ra(®1)) © (Ra(P2))) (2), (167)
(III) it holds that
DY) = (o, log, -y lopy—1,lia + i o+, .ol -1 +1,00,),  (168)
and
(IV) it holds that
P(V) =P(P1) + P(P2) + (i —d)(lo,po1 + 1) + l11(l2 1,1 — d)

+ (L —2)i(i+ 1)+ ilmi zl,m] Ti ;Z_jllm] (169)

(cf. Lemma[2.27). Note that the fact that I, g = Z(®y) = d = O(Py) = [y 1, implies
that

i[mi zl,m] < gi[mizl,m(ll,ml + 1)] = 3i[P(®1) — l11(d + 1)] (170)

and
L1-2

m=1
= 3[P(®1) —d(lipy—1 + 1) = lipy 1l —2 + 1)
Combining this with (IV]) and the hypothesis that Iy, 1 <lj 1,1 + i ensures that
P(W) < [1+i]P(Py) + P(P2) + (i — d)(lo,r,1 + 1) + lia(l2,p,—1 — d)
+ (L —2)i(i+ 1) — 3ila(d+1)
—sid(lip, o1+ 1) =2l (b, 2+ 1)
< [1 + 1] P((I)l) + P((I)Q) + [max{i — d, O}](ll,Ll—l +1+ 1)
+ha|lip i +i—d—3i(d+1)]+ (L1 —2)i(i+ 1)
— %id(ll,Ll—l + 1) — %1 ll,Ll—l(ll,Ll—Q + 1)

(172)
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Moreover, observe that the hypothesis that 2 < i < 2d shows that
Lali—d—3i(d+1)] = 3id(l o1 + 1) — Sl g1 (lp,—2 + 1)
<ha[2d—d—(d+1)] = dily g, —ili,o0 < —3ili g,

This and (I72]) prove that

P(U) < [1+i]P(P1) + P(Ps) + [max{i — d,0}] 11,1
+ [max{i — d,0}] (i+ 1) + lialy, -1 — Silip, o1 + (L1 — 2)i(i+ 1)
< [1+i]P(P1) + P(P2) + [max{i — d,0}] 11,1
Fil+ 1) + bl + (L = 2)i(i+ 1) — 3l (174)
< [1+1]P(Py) + P(P2) + [max{i —d,0}] l1,0,—1 + lial10,1
+ (L = 1)i(i+ 1) — 3l
< [1+i]P(Py) + P(P2) + lyalip,—1 + (L1 — 1)i(i + 1).

(173)

Moreover, observe that

L1 Ll
Li—1< Ll —1<2 Lm(ime1+ 1] =1
! lmZ_l b } leZ_l L1 +1) (175)

< IP(@) — 1 < IP(dy).

Combining this and (I74) with the fact that Vk € N A [1, L] I < 20, (li g1 +
1) < 1P(®) demonstrates that

P(V) < [1+i]P(P1) + P(P2) + lialy,py—1 + SP(P1)i(i + 1)
= P(®s) + [1+1i+ 2i(i+ 1)|P(P1) + lialy,r, 1 (176)
< P(Py) + [L+1i+ 5i(i+ 1)]P(P1) + H[P(P1)]*
Furthermore, note that the hypothesis that 2 < i < 2d and the hypothesis that
D(I) = (d,i,d) prove that

i+dii+1)=P+i+di-d®<2dit+i+d—3i?

=i(d+1)+d(i+1)— =PI - 3> <P(I) - 2. (177)
Combining this and (I76) implies that
P(V) < P(0y) + [1+ P(I) — 2] P(®1) + §[P(®1)]
= P(®2) + [P (®1) + P(I) — 1]P(Py) 178)
< P(P2) + PN P(P1) + [P + [P(®1)]?
= P(®) + [LP(I) + P(Py)]"

This, (), (II), and () establish items ({)- (). The proof of Proposition 228 is
thus completed. O
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2.5.2 ANN representations for multiple nested Euler steps
Corollary 2.29. Let a € C(R,R), d,i,£ € N, ly,¢1,...,le € N, (Lp)pen, S

Nn[2,0), L, eN, (¢n)nen, S N, let l,, €N, ke {0,1,...,L,}, n € Ny, assume
fO’f’ all n € No, x € R? that 2 <1< 2d, fg_l < l07L0_1 + i, lan_l < ln+1,Ln+1—1;

D) = (d,i,d), (Ra(D))(x) = z, Z(¢n) = O¢n) = L(¢) = OW) = d, D(¢y) =
(lnoslnty -+ s lnr,), and D) = (bo, ..., Le), and let f,: RY — R n e Ny, be
the functions which satisfy for all n € Ny, x € R? that

fol@) = Ra(¥))(x)  and  fupa(z) = fulz) + ([Ra(én)] © fo) (@) (179)

(cf. Definition 21l and Definition [2.3). Then for every n € N there exists ¥ € N
such that

(i) it holds that R,(V) € C(R?Y R?),

(ii) it holds for all z € R% that (Rq(W))(x) = fu(z),
(iii) it holds that H(T) = H(p) + 30— H(ey),
(iv) it holds that

D(\I/) = (fo,gl, . ,fg_l, l071 + i, l072 + i, .. .,ZO7L0_1 + i,

Lg+ilia+i,.. b+l H i b+, L1 +1,d),
(180)

and
(v) it holds that P(U) < P() + Xi—s [3PI) + P(or)]”.

Proof of Corollary[2.29. We prove items ([)-(@) by induction on n € N. Note
that the hypothesis that D(¢) = (lo, (1, ..., Le), the fact that ly = Z(¢)) = lg =
O(¢) = d, the hypothesis that D(¢o) = (loo,loa,---,lo.L,), the hypothesis that
le_y < lop,—1 + 1, the hypothesis that Ly € N n [2,00), Proposition (with
(lza,,LlZLQ,LQZQ,HZH,(Pl=¢0,(I)2=@Z),d=d,i=i,l1ﬂ)=l07v,l2’w=€w
for v e {0,1,..., Lo}, w e {0,1,..., £} in the notation of Proposition 2.28]), and
(I79) imply that there exists T € N which satisfies that

(I) it holds that R,(T) € C(RY, RY),
(IT) it holds for all x € R? that



(III) it holds that
D(Y) = (o, lr,...,Lo—r,log + i, lop +1,.. ., loo—1 + 1, 0,10) (182)
and
(IV) it holds that P(Y) < P(¢) + [LP(I) + P(¢0)]".
Observe that ([II)) shows that £(Y) = £+ Ly — 1. Hence, we obtain that
H(Y) = £(T) —1 = (£~ 1) + (Lo — 1) = H(¢) + H(d).  (183)

Combining this with (Il)-([V]) establishes items ({l)-(W) in the base case n = 1. For
the induction step Nan — n+1 € Nn[2,00)letne N, ¥ e N, [y, [, ..., [2+ZZiS(Lk—1) €
N satisfy that B

a) it holds that R,(¥) € C(R%, RY),

(a)
(b) it holds for all x € R? that (R.(¥))(z) = fa(2),
(c) it holds that H(W) = H () + Yo H(dw),

)

(d) it holds that
D(W) = (lo, b1, ... Le—1,lo1 + i loo + 1, lorg—1 + i, li1 +1, Lo +1,
Sl o i s, 1 Fid) (184)
= (los liy oy Loyymmtgr, 1)
and
(e) it holds that P(T) < P(¢p) + Sp_y [AP(I) + P(m)]Q.

Observe that (d) and the hypothesis that V& € No: Iy 1,1 < lr41,0,,,—1 demon-
strate that

leqoy—1 = Lo yysrt-1) = ln1Ln 1 F 1< Do, 1+ (185)

The hypothesis that D(¢,) = (lno,lnis-- -, lnr,), (d), the hypothesis that L, €
N n[2,90), and Proposition (with a = a, Ly = Ly, Ly = £+ 3070 (Ly, — 1),
Hz]l,<1>1=¢>n,(I>2=\If,d=d,i=i,l17v=ln,v,lngszforve{o,l,.. L}
we{0,1,..., £+ 37" (L — 1)} in the notation of Proposition 2Z28) hence prove
that there exists ® € N which satisfies that

(A) it holds that R,(®) € C(RY, RY),

38



(B) it holds for all x € R? that

(C) it holds that
D(®) = (lo, b1, Lo, log +iloa + 1, lopg—1 + 1,01 +1, L0 +1,
Sl il H e i o i), (187)
and
(D) it holds that P(®) < P(¥) + [LP(I) + P(¢,)]".
Next note that () implies that £(®) = £+ >, _(Lx — 1). Hence, we obtain that
H(P) = L(P) =1 =(£—1) + 2ho(Ln — 1) = H(¥) + 2o Hidw).  (188)

Moreover, observe that (B), (I79), and (B) demonstrate that for all z € R? it holds
that

(Ra(®))(2) = (Ra(¥))(2) + ([Ra(dn)] © [Ra(¥)]) (x)

= @) + ([Ra6a)] 0 ) (@) = fosa(a). (189)
In addition, note that (D) and (@) ensure that
P(®) < P) + ["i[ (1) + P(ask)ﬂ [P + P(0)]
" (190)

0
Z [3P(D) + Pow)]"
This, (), (), [@8Y), and ([I89) prove items ({)-(@) in the case n + 1. Induction
thus establishes items (I)—(@). The proof of Corollary is thus completed. [

Proposition 2.30. Leta € C(R,R), d, L€ N, ly,l1,...,le € N, 1p € N, (dp)nen, S
N satisfy for all n € Ny that Z(¢,) = O(¢,) = Z(¢) = O(W) =d, L(¢n) = 1, and
D) = (b, l1,...,Le) and let f,: RS — R n e Ny, be the functions which satisfy
for alln e Ny, x € R? that

fol@) = Ra(¥))(x)  and  fupa(z) = fulz) + ([Ra(én)] o fo) (@) (191)

(cf. Definition 2] and Definition[2.3). Then for every n € Ny there exists ¥ € N
such that

(i) it holds that R,(V) € C(R? R?),
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(ii) it holds for all x € R? that (Rq(V))(x) = fu(x), and
(#i) it holds that D(V) = D(v).

Proof of Proposition[2.30. We prove items (i)—(il) by induction on n € Ny. Note
that (A1) and the fact that R,(¢) € C(R?, RY) establish items ({l)— (i) in the base
case n = 0. For the induction step Ny 2 n — n+ 1€ N let n e Ny, ¥ € N satisfy
that

(I) it holds that R,(¥) € C(RY, RY),
(IT) it holds for all x € R? that (R,(V))(x) = f.(z), and
(I11) it holds that D(¥) = D(x),

and let (A,0) € (R4 x RY) < N, A € (R™? x RY) < N, ® e N satisfy that
On = (A,0), A = (A+14,b), and & = A e U (cf. Definition 2.5 and Definition 2.10]).
Observe that item (@) in Proposition demonstrates that for all 2 € R? it holds
that R, (®) € C(R? R?) and

(Ra(®))(7) = (Ra(A)) ((Ra(¥))(2))
= (A + L)((Ra(@)) (@) + b o
= A((Ra(¥)) (@) + b+ (Ra(¥))(2)
= (Ra(6n)) (Ra(9))(2)) + (Ra(¥))()
Combining this with ([T and () proves that for all z € R? it holds that
(Ra(®))(@) = (Ra(¢n)) (fa(2)) + ful(@) = fasa(z). (193)

In addition, note that ([II}), the fact that ® = A e W, the fact that L(A) = 1,
the fact that Z(A) = O(A) = O(¥) = d, and item (i) in Proposition imply
that D(®) = D(¥) = D(¢)). Combining this and the fact that R,(®) € C'(R?, RY)
with (I93) proves items ({)-(fl) in the case n + 1. Induction thus establishes
items ({l)—(fd). The proof of Proposition is thus completed. O

Corollary 2.31. Let a € C(R,R), d,i,L,£ € N, {y,l1,...,0c € N, [, € N,
(Gn)neny S N, let 1, € N, k€ {0,1,...,L}, n € Ny, assume for all n € Ny,
x € R that 2 < i< 2d, Eg_l < lO,L—l + i, ln,L—l < ln—i—l,L—l; D(H) = (d, i, d),
(RGGI))(:U) =, I((bn) = O((bn) = I(w) = O(Q/J) =d, D((bn) = (ln,Ovln,b R ln,L)?
and D) = (bo, by, ..., Le), and let f,: RY — R? n e Ny, be the functions which
satisfy for all n € Ny, x € R? that

fol@) = Ra(¥))(x)  and  fupa(z) = fulz) + ([Ra(én)] o fo) (@) (194)

(cf. Definition 21 and Definition[2.3). Then for every n € Ny there exists Ve N
such that
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(i) it holds that R,(V) € C(R%,RY),

(ii) it holds for all z € R% that (Rq(W))(x) = fu(z),
(iii) it holds that H(W) = H() + 3= H(br) = H(w) +nH(de), and
(iv) it holds that P(¥) < P(¥) + Y0 [AP(I) + P(ér)]”.

Proof of Corollary[2.31. To prove items (i)—(iu]) we distinguish between the case
L =1 and the case L € Nn [2,00). We first prove items ([l)—(x)) in the case L = 1.
Observe that Proposition ensures that there exist ¥,, € N, n € Ny, which
satisfy that

(I) it holds for all n € Ny that R,(V,,) € C(R4, RY),
(IT) it holds for all n € Ny, z € R? that (R,(¥,))(z) = fu(x), and
(III) it holds for all n € Ny that D(¥,,) = D(¢).

Next note that the hypothesis that L. = 1 demonstrates that for all n € Ny it holds
that H(¢,) = 0. Combining this with ([II) implies that for all n € Ny it holds that

H(T,) = H(W) = H) + g Hidr) = H(W) + nH(do). (195)

In addition, observe that ([II)) shows that for all n € Ny it holds that

P(V,) = P(¢) < P() + S AP + P(on)]”. (196)

Combining this and (I95) with ([)—() establishes items ({l)—(ix)) in the case L =
1. We now prove items ({)—() in the case L € N n [2,00). Note that (I94),
the fact that R,(¢)) € C(R%R?), the fact that H(v) = H(p) + Yty H(dw) =

H(1) + 0 - H (), and the fact that P(y) = P(¥) + 3ylo [3P(D) + P(qbk)]z prove
that there exists W € N such that

(a) it holds that R,(¥) € C(R? RY),

(b) it holds for all z € R? that (R, (¥))(z) = fo(x),

(c) it holds that H(W) = H(¥) + Xt H(dw) = H() + 0 - H(e), and
(d) it holds that P(¥) < P() + Xty [AP(D) + P(ex)]™

Moreover, observe that Corollary and the fact that for all £ € Ny it holds that
H(pr) = L —1 = H(po) ensure that for every n € N there exists ¥ € N such that

(A) it holds that R,(¥) € C(R? R?),
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(B) it holds for all z € R? that (R.(¥))(z) = fa (),
(C) it holds that H (W) = H(v) + 34— H(br) = H(w) +nH (o), and
(D) it holds that P(¥) < P(¢) + 2t [AP(I) + Pen)]".

Combining this with (@)—(dl) proves items ()—(v) in the case L € N n[2,00). The
proof of Corollary 231]is thus completed. O

2.5.3 ANN representations for multiple perturbed nested Euler steps

Proposition 2.32. Letae C(R,R), N,d,ie N, ,® e N, A}, Ay,..., Ay € R4
satisfy for all x € RY that 2 < i < 2d, D(I) = (d,i,d), (R.(I))(z) = z, and
Z(®) = O(®@) = d and let Y, = (V7Y)(@yerix@ay : R x (RON — RY, n e

{0,1,..., N}, be the functions which satisfy for alln € {0,1,...,N — 1}, x € R¢,
v =(y1,v2, .., yn) € (ROY that Yy"¥ = x and
Yol =Y+ A (Ra(@) (YY) + Yo (197)

n

(cf. Definition[21 and Definition[2.3). Then there exists (Vy, ) (ny)ef0.1,.. . Nix®HN S
N such that

(i) it holds for allm e {0,1,...,N}, y € (RN that R,(¥,.,) € C(RY R?),

(ii) it holds for alln € {0,1,...,N}, y € (RH)N, x € R? that (Ru(V,,,))(z) =
Yo,

(iii) it holds for alln € {0,1,..., N}, y € (RH)N that
H(W,,) = H(I) +nH(P) = 1 +nH (D), (198)
(iv) it holds for alln e {0,1,..., N}, y € (RN that
P(V,,) < P(0) + n[iP(D) + P(@)], (199)
(v) it holds for allm e {0,1,..., N}, v € R? that
[(R)Y 2y = (Ra(¥ny))(z) € R] € C((R)™,RY), (200)
and

(vi) it holds for allm € {0,1,...,N}, me Non[0,n], z € RY, y = (y1, 2, ..., Yn),
z=(21,20,...,2y) € (RN with Vk e Nn [0,n]: yp = 2, that

(Ra(Umy)) (@) = (Ra(Vin.2)) (). (201)
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Proof of Proposition[2.32. Throughout this proof let ly,ly,...,lz@) € N satisfy
that D(®) = (lo,l1,...,le@)), let A,y € (R4 x RY) < N, n e {1,2,...,N},
b e R? satisfy for all n € {1,2,..., N}, b e R? that

App = (A, D) € (R x RY), (202)

let p,, € N, neN, ye (RHY, satisfy for all n € N, y = (y1,v9,...,yn) € (RH)Y
that
pnvy = Amin{nJv}vymin{n,N} ® (b (203)

(cf. Definition 23), and let Y, = (V2¥) 4 y)erax®ayy - RY x (RN — R? n e Ny,
be the functions which satisfy for all n € Ny, x € RY, y = (y1, 90, ..., yn) € (RHY
that V;"Y = = and

Vit = Vi + (Ralpns1)) (V) (204)

Observe that item (fl) in Proposition and the fact that for all m e {1,2,..., N},
v = (y1,y2,.-,yn) € (RHYY it holds that p,, = A,, e® prove that for all
n e {1,2,...,N}, y € (RY)Y it holds that D(p,,) = D(®) = (lo, 11, .-, le@))-
Corollary 23T (with @ = a, d = d, i =i, L = L(®), £ = 2, by = d, {; = i,
bo=dI=1Lv¢v=1 Ny>n—¢,eN)=(Ny>n— pyy1, € N), (Ny x
{0,1,...,L(®)} > (n, k) = L € N) = (Ng x {0,1,...,L(®)} 5 (n, k) — l; € N),
(Ngan— f, e C(RLRY)) = (Ng 5 n— (R 52— Y e RY e C(RY,RY))
for y € (RY)Y in the notation of Corollary 2.:31)) and the fact that for all z € RY,
y € (RYN it holds that (R,(I))(z) = x = Vg¥ = Y;"¥ hence prove that there exist
U, €N, (n,y)€{0,1,...,N} x (RY)N which satisfy that

(I) it holds for all n € {0,1,..., N}, y € (RY)N that R,(¥,,,) € C(RY RY),

(IT) it holds for all n € {0,1,...,N}, y € (R)Y, z € R? that (R.(¥,,))(z) =
pr =Yg,

(ITT) it holds for all n € {0,1,..., N}, y € (R)Y that

HW,) = HD) + S Hperny) = 1+ nH(®), (205)
and

(IV) it holds for all n € {0,1,..., N}, y € (RY)Y that

P(V,,) < P(H)+:§; [P +P(prs1y) [ = PO +n[LP@M)+P(®)]. (206)
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Next we claim that for all n € {0,1,..., N} it holds that
VaeRe: [((Rd)N Sy Yo eRY) € C((Rd)N,Rd)]. (207)

We now prove (207) by induction on n € {0,1,..., N}. Note that the fact that for
all x € R4, y e (RY)Y it holds that Yy = x proves ([207) in the base case n = 0.
For the induction step observe that (I97) and the fact that R,(®) € C(R? R?)
ensure that for all n € {0,1,..., N — 1} with

VzeRe: [((Rd)N Sy Yo eRY) € C((Rd)N,Rd)] (208)
it holds that
VaeRe: [((Rd)N 5y Y e RY) e O((RYY, Rd)]. (209)

Induction thus proves (207). In addition, observe that (207) and ([} imply that
for all ne {0,1,..., N}, x € R? it holds that

(RHN 3y > (Ra(Tny))(z) € RY) € C((RHN,RY). (210)

Next let ne {0,1,....,N}, v e R y = (y1, 92, ..., yn), 2 = (21, 22, ..., 2n) € (RHN
satisfy for all k € N n [0,n] that y, = 2. We claim that for all m € Ny n [0, n] it
holds that

Yoy = yoe, (211)
We now prove (2IT]) by induction on m € Ny n [0,n]. Note that the fact that
Y)Y = & = Yy"® implies (2I0) in the base case m = 0. For the induction step

observe that (I97) and the fact that for all k£ € N n [0,n] it holds that y, = 2z
ensure that for all m € Ny n (—o0,n) with Y,;7¥ = Y »* it holds that

Yty = Vi + At (Ra(@) (YY) + Y

= }/m7 + Am-‘rl((Ra(q)))(Ym’ )) + Zmy1 = Ym,Jrl

Induction thus proves ([2I0). Note that (2II) and (II) assure that for all n €
{0,1,....,N}, me Ny n [0,n], € RY y = (y1,92,...,Un), 2 = (21,20,...,2N) €
(RYN with Vk e N [0,n]: yx = 2 it holds that

(Ra(Umy)) (@) = (Ra(Vin.2)) (). (213)
Combining this with [ZI0) and ([)-([V]) establishes items (@)-([d). The proof of
Proposition is thus completed. O
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3 ANN approximation results

This section establishes in Theorem [B.12]in Subsection B3] below the main result of
this article. Some of the material presented in Subsection B.1] and Subsection
are well-known concepts and results in the scientific literature. In particular, the
material in Subsection B.IT.Tland Subsection consists mainly of reformulations
of concepts and results in Elbrachter et al. [I1, Appendix A.3 and Appendix A.4].
Moreover, our proof of Proposition in Subsection B.2.1] below is inspired by
Elbrachter et al. [I1, Section 6] and Yarotsky [37, Section 3.2]. Furthermore,
Lemma and Lemma are elementary and essentially well-known in the sci-
entific literature. In addition, our proof of Lemma [3.11] is based on a well-known
Gronwall argument.

3.1 ANN approximations for the square function
3.1.1 Explicit approximations for the square function on [0, 1]

Lemma 3.1. Let g,: R — [0,1], n € N, be the functions which satisfy for all
neN, x e R that

2z cxe(0,3)
gi(z) =42-2z :zeli 1] (214)
0 e R\[0, 1]

and g41(x) = g1(ga(x)). Then
(i) it holds for allne N, ke {0,1,...,2"7' — 1}, w € [ 525, 2] that

n k . k 2k
gula) = {20 -3 - ceely G (215)
S C PAE S S R ]

and
(i1) it holds for all n € N, xz € R\[0, 1] that g,(x) = 0.

Proof of Lemma (3.1 First, we claim that for all n € N it holds that

(W{;e 0,1,...,2" =1}z e [ 55, B

2" (z — 2&) we |2 2
gn(2) = { 2k+22 ) §k+122k+2] - (216)

on(2EE2 ) pe [2HL 2

45



We now prove (2I6]) by induction on n € N. Note that ([2I4)) establishes (216]) in
the base case n = 1. For the induction step Non — n+ 1€ Nn [2,00) assume
that there exists n € N such that for all k€ {0,1,...,2"7! — 1}, w € [55r, 24 ] it

holds that
Gn 2n(2];+2 ) . - [2];+n1’ 2];:2]

Observe that ([2I4) and ([2I7) imply that for all [ € {0,1,...,2" ' —1}, x €
[2 2l+(1/2)] it holds that

an ) 2n

gnr1(@) = g1(gn(2)) = (2" (@ = 1)) = 2[2"(z — 30) | = 2" (@ — ). (219)

In addition, note that [2I4) and (2IT) ensure that for all [ € {0,1,...,2" ! — 1},

v [212_(:/2)’ ZLEL it holds that

gnr1(2) = g1(ga(@)) = 1(2"(x = 37)) =2 - 2[2"(z — 37)]
=2 2"y 4 4] = 2"TI(AE2 _ ).

2n+1

(219)

Moreover, observe that (214]) and ([2I7) demonstrate that for alll € {0,1,...,2"71 — 1},
e [ZrL ORI it holds that

2n ) 2n
gnr1(2) = g1(gn(2)) = 1 (2" (352 — 7)) = 2 2[2"(3% — 0)]
=2—2(20+2) + 2"y =2y — 4] —2 (220)
= 2"z — 3.

Next note that [2I4) and IT) prove that for all [ € {0,1,...,2" ' —1}, = €
[21+(3/_2) 21_+2] it holds that

2n b 2n
gn+1(®) = g1(gn(@)) = 1 (2"(52 —2)) = 2[2"(B2 — o) | = 2" (B2 — ).
(221)
Moreover, observe that for all k€ {0,2,4,6,...} n[0,2" — 2] it holds that
[ 3] = [252, 200  [3e ge] = [ 2 | o)

and 2 € {0,1,...,2"' —1}. This, [2I8), and (2I9) demonstrate that for all
ke{0,2,4,6,...} n[0,2" — 2], z € [£, EH] it holds that

27’L ) 2TL

gntl(p — 20y [200) 20y (1/2)]
2n . 2n b) 27L
gn+1(x> =
2"“(4(;{2?2 _ x) e z(k/Q;:(1/2)7 2(k/222+1]
(223)
_ 2n+1(x - Qr%«]il) tre [2721«]317 %]
nl(E2 ) pe (2 22



In addition, observe that for all k € {1,3,5,7,...} n[1,2" — 1] it holds that

on+1y 9n+1 on 9 on Y

[, 2e1] = [2(<k—n/z>+1 2<<k—1)/z>+<3/z>]
(224)

[2k+1 2k+2] _ [2((&—1)/2)+(3/2) 2((k—1)/2)+2]
on+1y on+1 on Y n )
and (+=D/2 € {0,1,...,2""1 —1}. This, 220), and ([221)) demonstrate that for all
kef{l,3,5,7,...} n[1,2" = 1], z € [ £, EH] it holds that

27’L ) 2TL

grl(y — Ay [ 2 ) ()
gni1(2) = 2((k— 1)/22 . 2((&—21)/2)+(3/2) 2((&2—1)/2)+2
QRS ) e e , o
(225)
[ g e [ B
2”“(3’“12 —x) :xE€ [3’2111, 22k+1]

Combining this with (223) ensures that for all k€ {0,1,...,2" — 1}, z € [£, EHL]
it holds that

n .
2R gy e |2l 22

Induction thus proves (2I0). Observe that (2I6) establishes item ([l). Next we
claim that for all n € N it holds that

VaeR\[0,1]: gu(x) = 0. (227)

We now prove ([227) by induction on n € N. Note that ([2I4) establishes (227) in
the base case n = 1. For the induction step observe that (2I4]) ensures that for all
n € N with (Vz € R\[0,1]: g,(z) = 0) it holds that

(Vo e R\[0,1]: gns1(z) = g1(gn()) = 92(0) = 0). (228)
Induction thus proves (227)). Note that ([227) establishes item (). The proof of
Lemma [B.1] is thus completed. O

Lemma 3.2. Let g,: [0,1] — [0,1], n € N, be the functions which satisfy for all

neN, ze|0,1] that
2z cxe[0,3)
= 229
91(7) {2—233 cxe[L 1] (229)
and gn+1(z) = g1(gn(x)), and let f,: [0,1] — [0,1], n € Ny, be the functions which
satisfy for alln € No, ke {0,1,...,2" — 1}, z € [ﬁ EEL) that f,(1) =1 and

2ny  9n

falz) = [2H] o — G50, (230)

27’L
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Then it holds for all n € Ny, x € [0,1] that

fnlz) = [2 (2 mg (x))] and }xz — fn(x)‘ < 2722, (231)

Proof of LemmalZ2. Note that (230) proves that for alln € Ny, [ € {0,1,...,2" — 1}
it holds that

2 _ (]2 2
Fuh) = (3] & — b - S L [LPL (o3

The hypothesis that for all n € Ny it holds that f,,(1) = 1 hence ensures that for
all ne Ny, 1 €{0,1,...,2"} it holds that

fulg) =[] (233)

This and Lemma BJ] demonstrate that for all n € N, k € {0,1,...,2""!} it holds
that

Fot(Z) = fulZ) = fuoa(52) — ful(Z) = [525] - [ZT]
=0=2" 2ngn<2_n)-

In addition, note that (230) and ([233)) imply that foralln e N, k€ {0,1,...,2" "t — 1}
it holds that

fn 1(

) £ 1(k+n(,1/12)) _ [2k+1] [2k+1] _ (K*+k) (4k%+4k+1) (2k%+2k)

on—1 on 22(71,71) 22n—1 - 22n—1
_ 2k%42k41 _ 4K244Kk42 (235)
- 22n—1 - 22n
and
2
fn(zlgil) _ [2/;:1] _ 4]4?2;-2%1]4?-'1'1. (236)

Lemma 3] hence assures that for all n e N, ke {0,1,...,2""! — 1} it holds that

Faor(B) — f,(2tl) = W iihed) G AAel) _ g=2n — 972, (241) (237)
Combining this with ([234]) shows that for all n e N, [ € {0, 1,...,2"} it holds that

Fro(d) = Falgh) = 277ga(). (239)

Furthermore, observe that (233]) demonstrates that for all n € Ny, [ € {0,1,...,
2" — 1} it holds that

[M] [l+_1] (P4 (201+1)(14+1)—1(1+1) (1+1)? _ [l+_1]2 i fn(l+1)- (239)

on on 22n = 22n = 22n on
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Combining this with ([230) implies that for all n € Ny it holds that f,, € C([0, 1], R)
and

Vie{0,1,...,2" — 1}, we [&, 4] fn( ) =[] — G (240)

The fact that for all n € N, k € {0,1,...,2""! — 1} it holds that [2n <, 2’?11] =
[g—f, 2’;;”] U [2’;1, 2’;2] hence ensures that there exist (@, bpr, cox) € R k €

{0,1,...,277t — 1}, n € N, such that for all n € N, k € {0,1,...,2"! — 1},
z € [, £ it holds that

§ _(2k+1) tby _5 2 o
fo1(x) = fulx) = {Zn:((j_ (2k+1))) +b,r xE % ];n >22J]r ] .

Lemma 3] and (238)) therefore prove that for all n € N, k € {0,1,...,2" 1 — 1},
T € [ k ﬁ] it holds that

on—15 9gn—1

(241)

Foe1(x) = fulz) = 272" g0 (). (242)
Hence, we obtain that for all n € N, z € [0, 1] it holds that
Fa-1(z) = falz) = 272" g, (). (243)

Next note that (230) ensures that for all x € [0, 1] it holds that fy(z) = . Com-
bining this with ([243) implies that for all m € Ny, x € [0, 1] it holds that

fml) = folw) + [ 3 (fal@) = fus(@))]
et (244)

= 5o(@) = | S (fura(e) = )] =2 = | £ 279, (2)].

Moreover, observe that (240) demonstrates that for allm € Ny, 1 € {0,1,...,2™ — 1},

v € [55, L] it holds that

fnlw) = a® = [ ] = G — o =[G ] o + [ ] o — [57] [5] -«

— (1= ) (B —2) =0,

The fact that for alla € R, b € (a, ), r € [a, b] it holds that (r—a)(b— ) < 1(b—a)?
hence proves that for all me Ny, 1 € {0,1,...,2™ -1}, x € sl

(245)

2m
fmx_x2:fmx_x2 x_Lm H__ml_aj
‘ ) ‘ 1 E+i 1 )2 ( 1 21 )2(2 1 )1 1 —2m—2 (246)
<15 -7) =1() =2 (3) = mm= =2 :

Therefore, we obtain that for all m € Ny, 2 € [0, 1] it holds that
| fn(2) — 2?| < 272772 (247)
Combining this with (244]) establishes ([231). The proof of Lemma is thus
completed. O
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3.1.2 ANN approximations for the square function on [0, 1]

Proposition 3.3. Let € € (0,1], a € C(R,R) satisfy for all z € R that a(x) =
max{x,0}. Then there exists ® € N such that

(1) it holds that R.(®) € C(R,R),

(ii) it holds for all x € R\[0,1] that (Ru(®))(x) = a(x),
(iii) it holds for all x € [0,1] that |z* — (R.(®))(z)| < ¢,
(iv) it holds that P(®) < max{10log,(¢~') — 7,13}, and

(v) it holds that £(®) < max{3log,(™") + 1,2}
(cf. Definition 2] and Definition[23).

Proof of Proposition[3.3. Throughout this proof let M € N satisfy that
M = min(N A [2,0) A [Llogy(e7Y), oo)>, (248)

let g,: R — [0,1], n € N, be the functions which satisfy for all n € N, z € R that

2 cxe0,4)
gi()=42-20 :xelll] (249)
0 sz e R\[0,1]

and g,11(x) = g1(gn(x)), let f,: [0,1] — [0,1], n € Ny, be the functions which

satisfy for all n e No, k€ {0,1,...,2" — 1}, z € [2%, %) that f,(1) =1 and

folz) = [2H1] 2 — L0 (250)

27’L

let (Ag,by) € R x RY ke N [2,00), satisfy for all k e N~ [2,00) that

2 —4 2 0 0
_ _1

Ak = ; _i ; 8 and bk = _i s (251)
(_2)37214: 247214: (_2)37214: 1 0

let Ay e RV xR, ke N [2,00), satisfy for all k € N [2,00) that

Ay = (((=2)*7% 2072 (=2)*2F 1),0), (252)
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let ¢, € N, k € N [2,00), satisfy that

1 0
1 _1
¢2 = 1 ) _:2[ 7A2 (253)
1 0
and
1 0
1 _ 1
VkeNnNn [3,0@)2 gbk = 11 _i ,(Ag,bg),...,(Ak_l,bk_l),Ak s (254)
1 0

and let 7y = (71, Tk2, Th3, Tha) : R > R* k€ N, be the functions which satisfy for
all z € R, k € N that

ri(x) = (ria(z),re(z), r5(z), ria(z)) = 93%4(3:, T — %,x -1, SL’) (255)

and

a1 (2) = (Preg1,1 (), Trr1,2(2), Trs1,3(2), Ty 1.4(2)) = Mg (Aprare () + by )
(256)
(cf. Definition [Z2). Note that ([250), (@), (249), and the hypothesis that for all
x € R it holds that a(x) = max{z, 0} show that for all x € R it holds that

21y 1(z) —4rio(x) + 2r 3(2) = 2a(z) — 4a(z — %) + 2a(x — 1)

257
= 2max{z, 0} — 4max{z — 3,0} + 2max{z — 1,0} = gi(x). (257)

Furthermore, observe that (255), (@), the hypothesis that for all z € R it holds
that a(z) = max{x, 0}, and the fact that for all x € [0, 1] it holds that fy(z) = = =
max{x,0} imply that for all = € R it holds that

) —estey - R0 e
Next we claim that for all k£ € N it holds that

(Vo eR: 2rp(z) — 4rya(z) + 2rp5(2) = gi(z)) (259)
and

(voemno -l el ) e
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We now prove ([259)-(260) by induction on k € N. Note that (257) and (258)
prove (259)—(260) in the base case k = 1. For the induction step Nok — k + 1€

N N [2,0) assume that there exists k € N such that for all z € R it holds that
2rp1(x) — drga(x) + 21 3(2) = gi(2) (261)

_ : 0,1
and T’k4(l’)= fk 1(37) $E[ ) ] )
’ max{z,0} :zeR\[0,1]
Observe that (261)), [257), (251), (@), and (250]) ensure that for all € R it holds

that

(262)

Gie+1(2) = g1(g6(2)) = g1 (2re1(x) — drea(x) + 2ris())
= 2(1(27%,1( ) — 4rga(x) + 21y 5( ))
— 4(1(27“;@71( ) —Arga(x) + 21 3(x) — %) (263)
+ 2a(2rk71( ) —Arga(x) + 21 3(x) — 1)
= 2rp411(%) — 4Arpp12() + 2141 3(7).

In addition, observe that (@), (251)), (250]), and (261]) demonstrate that for all x € R
it holds that

’f’k+1,4(37)

_a((_2)3—2(k+1)rk (z )+24—2(k+1) o) + (22250 g 5(2) + 1)
( —2)" 2k, (z) + 2°72 Tkg(l‘) (—2)~ Qkag(fL') +rk74(x))

=a(2 2k[—2rk1 T) + 2%rpo(x) = 2rps(@)] + rea())

= a( — [27%][2rr(x) — drea(z) + 2rs(2)] + rea(z))

= a( = [27*]gr(@) + rra(@)).

Combining this with (262), Lemma [3.2] the hypothesis that for all = € R it holds
that a(z) = max{z, 0}, and the fact that for all = € [0, 1] it holds that fi(z) =0
shows that for all z € [0, 1] it holds that

rre1a(z) = a — [27%%( )] + fe1(x))

o~ @)+ - [ 3 (27%0,@))) (265)
— o= [ 3 2¥0@)]) - alhio) - hie)

Next note that ([264), [262)), item (i) in Lemma B}, and the hypothesis that for
all € R it holds that a(z) = max{z, 0} prove that for all z € R\[0, 1] it holds that

Te1a(T) = a< — (2’2kgk(:c)) + 'r’k,4(:v)) = a(max{z,0}) = max{z, 0}. (266)

=a

(264)

7j=1
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Combining (263) and (265]) hence proves ([259)—-(260) in the case k + 1. Induction

thus establishes (259)—(260). Next note that (), @51), 252), 259), 53), 254),
([259), and (256) assure that for all m € N n [2,00), x € R it holds that R,(¢,,) €

C(R,R) and
(Ra(¢m))(x)
= (—2)3_2m7“m_171(l’) + 24_2m7'm_172($’) + (—2)3_2m7“m_173(l') + ’I"m_174(l‘)

_ (_2)4—2m<[rm—1,1(213():r27’)m_1,3(m)] + Tm—l,z(l')) 4 ’I“m_174(ZL‘)

= 24_2m([rm_l’l(z()j;)m_l’g(z)] + Tm—l,z(x)) + rm-14(2) (267)

= 227 (A7 o (@) — 2P 11 (@) — 2rm_13(3)) + Tre1a(2)
= —[2’2(’”’1)] [2rm-11(2) — 4rp_12(2) + 271 5(2) | + Pie1a(2)
= —[Q_Z(m_l)]gm_l(x) + rm—1,4().
Combining this with (260) and Lemma shows that for all m € N n [2,0),
x € [0, 1] it holds that
(Ro(0m)(w) = ~(2%" Y gy 1(2) + fon-ofa)

— (2720 g, (@) o - | X 20|

o [mg:ll 2,2jgj(;p)] = fm_l(l‘).

J

Lemma [B.2] therefore implies that for all m e N n [2,00), z € [0, 1] it holds that
[0 = (Ra(dm))(2)] < 272077072 = 272, (269)
Next note that (248]) assures that
M = min(N N [max{2,1log,(e7 ")}, oo))
> min([max{Q, 1logy(e7h)}, oo)) (270)
= max{2, 1 log,(¢7")} = Llog,(s7").
This and (269) demonstrate that for all x € [0, 1] it holds that
2 = (Ra(fn))(@)] < 2724 < 210w — ¢ (271)

Moreover, observe that item () in Lemma BJ] (260), and (267) ensure that for
all me N n [2,00), z € R\[0,1] it holds that

(Ra(dm)) (@) = =272 Vgp_1(2) + 1in1,4(2)

= "m_14(z) = max{z, 0} = a(x). (272)
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Furthermore, observe that ([248), (253), and ([254) assure that

L(¢n) = M < max{ilog,(7") +1,2}. (273)

This, (248)), [253), and ([254]) show that

Plom) =41+ 1) + [MZI4(4 + 1)] +(4+1)

(274)
=8+ 20(M —2) + 5 < 20max{3 log,(c™") — 1,0} + 13

= max{10log,(¢ ) — 20,0} + 13 = max{10log,(c ') — 7,13}.

Combining 271)), 273)), (272), and the fact that R,(¢n) € C(R,R) hence estab-
lishes items ([{l)—(@). The proof of Proposition B.3] is thus completed. O

3.1.3 ANN approximations for the square function on R

Proposition 3.4. Let ¢ € (0,1], g € (2,20), a € C(R,R) satisfy for all x € R that
a(z) = max{z,0}. Then there exists & € N such that

(i) it holds that R.(®P) € C(R,R),
(ii) it holds that (R.(®))(0) = 0,
(iii) it holds for all x € R that 0 < (Rq(®))(x) < & + |x]?,

(i) it holds for all x € R that |2* — (Ro(®)) ()| < e max{1, |z|?},

(v) it holds that P(®) < max{[ L] log,(e71) +

(a—2)

Eg) — 28,52}, and

(q

(vi) it holds that L(P) < max{ﬁ log,(e71) + (qi2) +1,2}
(cf. Definition 21 and Definition[2.3).

Proof of Proposition[3.). Throughout this proof let ¢ € (0,1] satisfy that § =
2 =22 et A} € (R?>*! x R?) € N, Ay € (RV2? x R) < N satisfy that

£\Y(a-2)
A = <<_((2§))1/(q_2)> ) (8)) and A, = (((%)—2/@—2) (%)—2/@—2)) 70)’ (275)

let ¥ € N satisfy that
(I) it holds that R,(V) € C(R,R),
(IT) it holds for all x € R\[0, 1] that (R.(¥))(z) = a(x),
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(ITT) it holds for all x € [0, 1] that |z* — (R.(¥))(x)| < 4,
(IV) it holds that P(¥) < max{10log,(6~') — 7,13}, and
(V) it holds that £(¥) < max{3log,(6~ ') + 1,2}
(cf. Proposition B.3), and let ® € N satisfy that
O = Ay o [Py(T,T)] 0 A, (276)

(cf. Definition 25 Definition 217, and Lemma [Z8]). Note that Proposition 219
and item (@) in Proposition 6] ensure that for all = € R it holds that

(Ra((Pa(¥, 0)) @ 42)) (@) = (Ra(Po(¥, 1)) ((Ra() ()
= (Ra(Po(%, ) ((5)" 2, ~(5))
- ( (Ru(@)((5)") )

(Ra(®)) (= (5)" )

Item (W) in Proposition and (276]) therefore demonstrate that for all = € R it
holds that

(Ra(®))(2) = (Ra(A2)) (Ra([P2(¥, ¥)] o Ay)(z)
(V)]

= ((%)7%—2) (%)72/@—2)) <[

(277)

(278)

(5)"x) )

Ra(D)]( = (5)7 )

0)(- (5)/2x)).
This, (), (), and the hypothesis that for all € R it holds that a(z) = max{z, 0}
imply that

(279)

Moreover, observe that () and (II) ensure that for all z € R\[—1,1] it holds that

[Ro(W)](2) + [Ro(P)](—2) = a(x) + a(—z) = max{z, 0} + max{—=z, 0}

= max{z,0} — min{z, 0} = |z|.

(280)
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Furthermore, note that ([Il) and ([II) show that

sup [o? — ([Ra(¥)](2) + [Ra(P)](—2))|

ze[—1,1]

— max{ GS[E?O] ‘xQ — (a(x) + [Ra(\lf)](—x)) ’xil[épu }xz — ([Ra(\lf)](:p) + a(—x))} }
= maX{ s (=) = (Ra())(—2))| s |27 — (Ro(1))(2)] }

- iﬁ)pu ‘x2 — (Ra(\ll))(a:)\ < 0.

(281)

Next observe that (278) and (280) prove that for all x € R\[—(g/2) "2, (¢/2)~Va=2]
it holds that

0 < [Ra(®)](x)
= (O ([R5 ) + [Ra(W)]( = () 7a)) (282)
= (&) YD \(%)1/@ 2| — %)_1/(q—2)|x| < |zl

The triangle inequality therefore ensures that for all z € R\[—(/2)~ V@2 (g/2)¥=2)]
it holds that

|27 = (Ra(@)) ()] = [2% = (5)"V Jal| < (Jaf* + (5)"a])

™ DM

= (|z|9)2| (¢=2) 4 (%)—1/@—2)|x|q|x|—(q—1)) (283
< (|x| (%)@ 2/(a~2) +(£)” Vg~ 2z]9(5 )q Dfta~ 2))
= (£ +%)|z]? = e|z|? < emax{1, |2|*}.

Next note that 278), (281]), and the fact that § = 27%(2%=? demonstrate that
for all x € [—(g/2)7"2 (¢/2)~"@2] it holds that

2 — (Ru(®)) (@)
= G779 0)" — ([Ra((5) ) + [Ra(W)(— (5)07) )|

<@7| s = (Ra(0) + [RoD) )|

< (%)72/@—2)5 — (%)72/(q—2>272/(q—2>€<1/(q—2> —e< emax{l, |x|q}.
(284)
Combining this and (283)) implies that for all € R it holds that
|2 = (Ra(®))(z)| < emax{1, |z]7} <e(1+ [z]). (285)
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In addition, note that (284) ensures that for all z € [—(g/2)" V@2 (g/2)~ 2] it
holds that
(Ra(®))(2)] < |27 = (Ra(®)) ()| + |2* < & + |2]*. (286)

This and (282) show for all z € R that
(Ra(@)) ()] < & + |2 (287)

Furthermore, observe that the fact that § = 277292 ensures that
log,(871) = logy(27 =02 — 2t [0 T logy (7). (288)

Next note that Corollary 22Tl implies that P (Py(¥, ¥)) < 4P(¥). Corollary 2.,
[276), (IV), and (288)) hence ensure that

P(P) < [max{l, %}] [max{l, %}] P(Py(T, 0))
= [max{1, 1}] [max{1, 2}] P(P2(¥, V))
= P(P»(¥, \p)) 4P(V) < 4max{10log,(6~") — 7,13} (289)
= max{40[ 25| + 40[ ;% ]log2( ') — 28,52}
= max{ [ﬁ] log,(e71) + (q72) — 28, 52}.

In addition, observe that item () in Proposition 2.6 (276), ([V]), and (288) demon-
strate that

L(D) = L(P-(V, \1:)) = L(V) < max {1 log, (67 ") + 1,2}
—max{[ ]logQ( )+(q+2+1,2}.

Combining this with 279), [282), (287), [283), [289) establishes items (i) (Eﬂ)

The proof of Proposition [3.4]is thus completed.

(290)

3.2 ANN approximations for products
3.2.1 ANN approximations for one-dimensional products

Proposition 3.5. Let € € (0,1], g € (2,20), a € C(R,R) satisfy for all x € R that
a(x) = max{z,0}. Then there exists & € N such that

(i) it holds that Ra(®) € C(R2,R),
(ii) it holds for all z € R that (Ra(®))(z,0) = (Ra(®))(0,z) = 0,
(iii) it holds for all x,y € R that
|2y — (Ra(®))(z, y)| < e max{1, |2]%, y[*}, (291)
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(iv)

(v)

(vi)

it holds for all x,y € R that
(Ra(®))(z,y)| < 2(5+2° + %) <1+ 22 + 24, (292)

it holds that

P(P) < 3602q [1()%2(871) +log, (2771 + 1)] T (qi2) — 252
293
< 0% [logy(c~) 4 g+ 1] - 252, .

and

it holds that

L(®) < 35 loga(e™") + logy(277" + 1)] + (=
(q 2) [10g2< ) + QJ

(294)

N

(cf. Definition 21 and Definition[2Z.3).

Proof of Proposition (33, Throughout this proof let ¢ € (0,1] satisfy that § =
(27 + 1)1 let A; € (R¥*2 x R?) = N, A,y € (R? x R) = N satisfy that

1 1\ /0
Ai=([10],{0 and Ay =((3 —3 —3).0), (295)
01/ \0

let ¥ € N satisfy that

(I) it holds that R,(V) € C(R,R),

(IT) it holds that [R,(¥)](0) = 0,

it holds for all z € R that 0 < [R,(¥)](z) < d + |z|%,

(IV) it holds for all z € R that |22 — [R,(V)](z)| < 6 max{1, |z|*},

)
)
(111)
)
)

(VI) it holds that £(¥) < max{[ )] logy(671) +

(V) it holds that P(¥) < max{[ 404 ]log2(5 D+ % — 28,52}, and

(q;) +1,2}

(cf. Proposition 3.4]), and let ® € N satisfy that

O = Ay o [Ps(T, T, 0)] e 4, (296)
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(cf. Definition 5] Definition 217 and Lemma [2.8). Note that item (@) in
Proposition and Proposition ensure that for all z,y € R it holds that
Ra([P3(¥, U, ¥)] e Ay) € C(R%, R?) and

[Rao([Ps(W, ¥, 0)] 0 Ay)](z,y) = [Ra(P3(¥, ¥, 1))

[Ra(¥)](z +y)
[Ra(Pg(\I’,\If,\II))](x+y,x,y)( [Ra(¥)](x) ) (297)

Item (@) in Proposition and (296]) therefore demonstrate that for all z,y € R
it holds that R,(®) € C(R?* R) and

[Ra(q))](xv y) = (Ra (AZ hd [P3(\I/7 v, \I/)] ® Al)) (l‘, y)
= [Ra(82)] (Ra ([Ps (T, ¥, ¥)] ¢ A1) (z,1))

[Ra(¥)](z +y)

(5 ;>( R(V](0) ) -
[Ra(¥)](y)

= YR ()](x + y) — 3[Ra(¥)](z) — L[Ra(¥)](y).

The fact that for all a, 8 € R it holds that a8 = | + 8> — $|a|* — $|B[%, the
triangle inequality, and ([V]) hence ensure that for all z,y € R it holds that

[Ra(‘b)](fﬂa y) — x|

= [3[[Ra(W)](z +y) — |z + yI?] - %[[Ra(‘l’)](ﬂf) — |2I*] = 5[[Ra(®)](y) — |yI*]]
<3|[R 37+y)—|5€+y|2}+%\ (0)](2) = [2*] + 3 [[Ra()](y) — [y
< g[max{l |z + y|} + max{1, |z|? }+max{1 ly|?}].

(209)

This, the fact that for all a, 3 € R, p € [1,0) it holds that |a + S|P < 2P~ (|al? +
|8]P), and the fact that 6 = (297! + 1)~! establish that for all z,y € R it holds
that

—

Ra(®)](z,y) — zyl

[ max{1, 297 || + 277 [y|*} + max{1, |z|*} + max{L, [y|*}]
[ max{1,277"|z|9} + 297 |y|* + max{1, |z|?} + max{1, |y|*}]
[27 + 2] max{1, |2|%, |y|"} = e max{1, |2[7, [y[}.

(300)

NN N

Moreover, observe that ([IIl), (298]), the triangle inequality, the fact that for all
a, 3 € R it holds that |a + 8|> < 2(Ja]? +|8]?), and the fact that § = (2971 + 1)1
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prove that for all z,y € R it holds that

[Ra(@)](z, )] < 3I[Ra(W)](z + 1)| + 5/[Ra(W)] ()] + 5I[Ra(¥)] ()]

<350+ lz+yl?) + 306+ |z) + 500+ [y
<83+ ) = (S22 2 )
= %[(gqul) +|2* + y*] < 3[5 + [ + lyl*].
Next note that ([l) and [298) prove that for all 2,y € R it holds that
[Ra(®)](x,0) = 5[Ra(¥)] () = 5[Ra(V)](x) — 3[Ra(¥)](0) = 0
= 3[Ra()](¥) = 5[Ra(¥)](0) = 5[Ra(¥)](y) = [Ra(®)](0, Zé)- |
302

Furthermore, observe that the fact that § = £(297! 4 1)~! shows that

-1 —1/6g—1
= 2(q—q_2) [10g2<571) +logy (2771 + 1)] + (qu) (303)
- [2(qq,2)] IOgQ(E ) + [g(qq,g)] 10g2(2q + 1) + (qu)-

Moreover, observe that Corollary 2] implies that P(P3(¥, ¥, ¥)) < 9P(P).
Items (I)—(@) in Corollary 229 (W), 296), and ([B03) hence ensure that

P(P) < [max{l, %}] [max{l, %}] P(Pg(\II,\II,\I/))

= [max{1, 1}] [max{1,3}| P(P5(V, ¥, ¥)) = P(P5(V, ¥, ¥))

<9P(V) < 9max{[255]loga(071) + %5 — 28,52}

= max{720([ 555 ] log2(07") + 2 2)) 252,468}

= max{720([ 355 | loga (e ™) + [g53] 10g2 (277" + 1) + 15) — 252,468}

= max{ %5 (1og2( ") + log, (29~ ! +1)) + 225 — 252,468}

(304)

Next note that the fact that for all r € (—oo, 4] it holds that r > 2r —4 = 2(r — 2)

ensures that for all r € (2,4] it holds that 7'(7,72)) > (r72) > 2. This and the fact

that for all r € [3,00) it holds that T( )) r — 1= 2 imply that for all r € (2, 00)

it holds that r((::;)) > 2. Hence, we obtaln that for all r € (2, 00) it holds that

[ 2555 ] loga (2771 + 1) — 252 > [ 2% | log,(2"™") — 252

(r=2)
_ 36(():(7"2)1) — 252 > 720 — 252 = 468.

(305)
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Combining this with ([B04) shows that

P(®) < 5% (loga(e™) +logy (2971 + 1)) + (255 — 252, (306)

The fact that
10g2(2q*1 + 1) = 10g2(2‘1*1 + 1) . 1Og2(2q) t+q= log (2q 1+1) +g
= log, () + ¢ = 10g2( )—2+4q

hence proves that

P(®) < (75 (loga(e7") +1ogy (2771 + 1)) + (2255 — 252
< (o (loga(e71) + g + logy(3) = 2) + 255 — 252 (308)
~ 2% (logy(e1) + g + logy(3) — 2+ 2) — 252
< o= (loga(e™") + ¢ + logy(3) — 1) — 252.

In addition, observe that item () in Proposition 2.6, [296), ([VI), the fact that
§=¢e(2971 +1)7!, and ([B03) demonstrate that

L(D) = L(P3(V, T, V) = L(T)
< max{[ ]log2(5 D+ ﬁ + 1,2} (309)

< maux{2 )[logQ( ') +logy (297" + 1)] + EZ ;; 2}

r(r—1)
=) > 2 assures

Furthermore, note that the fact for all r € (2,00) it holds that
that

B _ —1
ﬁ[logg(g 1) + log (2q ! + 1)] + EZ—Z; (310)

1
> [5tg ] loga (27 + 1= L + 1> 2,

Combining this with (309]) proves that

I~

L(D)

A

i [10ga(e7") + logy (297! + 1)] + =)

-1 -1 -1
< gy | logale ™) Hlogy (277 + 207 | + (311)
lo -1 -1
= (qq2)[ R 1] < ﬁ[lo%ﬁ(é )+ 4 +4]

= (q 2) [logQ( )+Q]-

This, the fact that R,(®) € C(R* R), 300), B0I), B02), and [B0K) establish

items ({)—([dl). The proof of Proposition B3 is thus completed. O
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3.2.2 ANN approximations for multi-dimensional products

Definition 3.6 (The Euclidean norm). We denote by |-| : (UgenR?) — [0, 0) the
function which satisfies for alld e N, x = (x1,...,z4) € R? that

| = [ 22, J5]2] ™. (312)

Proposition 3.7. Let € € (0,1], ¢ € (2,0), d € N, a € C(R,R) satisfy for all
x € R that a(z) = max{x,0}. Then there exists ® € N such that

(i) it holds that R,(®) € C(R RY),
(ii) it holds for allt € R, x € R? that (R.(®))(t,0) = (Ra(®))(0,2) = 0,
i) it holds for allt € R, x € RY that
(ii1)
[tz — (Ra(®))(t, )| < e(Vd [max{1,[t]}] + [[), (313)
) it holds for all t € R, x € R? that
(iv)

[(Ra(®))(t, )] < V(1 +26%) + 2|a?, (314)

(v) it holds that P(®) < d?| 3604 [ logy(e™) + g + 1] — 252d?, and

(¢—2)

(vi) it holds that L(®) < L5 [logy(e™") + ]

(cf. Definition[21], Definition[Z.3, and Definition[3.4).

Proof of Proposition[3.7. Throughout this proof let v,w € R**!/ b e R* A €

REDx(+1) gatisfy that
0 1
v = (1) , w = <0> , b=0, (315)

and
w v 0 0 0
w 0 v 0 -+ 0
A=|lw 0 0 v --- 0 ’ (316)
w 0 0 0 )

let U € N satisfy that

(I) it holds that R,(¥) € C(R? R),
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(II
(II) it holds for all z,y € R that |zy — [R.(¥)](z,y)| < e max{1, |z, |y|?},

it holds for all z € R that [R,(¥)](z,0) = [R.(V)](0,z) = 0,

)
)

(IV) it holds for all z,y € R that |[R.(¥)](z,y)| < 1 + 222 + 292,
)

(V) it holds that P(V) < (?;603) [logy(e7!) + ¢ + 1] — 252, and

(VI) it holds that L(¥) < %

2) [lOgQ (571) + Q]
(cf. Proposition B3), and let A e (R?*(@+1) » R?4) < N, & € N satisfy that
A=(Ab) and @ =[Py (0,0, .. T)]eA (317)

(cf. Definition 2.5 and Definition R.17]). Observe that (B15) and (B16) ensure that
for all y = (y1, 2, .- -, var1) € R¥L it holds that

Y1
YW + Yo 92
Y1w + Yysv o
Ay = ] = Yys 1. (318)
YW + Ydg4+1V y.1
Yd+1

Combining this with ([BI7) proves that for all t € R, z = (21, 29,...,24) € R? it
holds that

Raq(A) € C(R*™ R*) and (Ro(A)(t,z) = (t, x4, t, 20, ..., t,zq).  (319)

Proposition 219, ([BI7), and item (@) in Proposition hence demonstrate that
forall t e R, & = (z1,79,...,24) € R? it holds that R,(®) € C(R¥*! R?) and

(Ra(@))(t.2) = ([Ra(Pa(¥, V..., ¥))] o [Ra(A)]) (£ 2)
= [Ra(Pa(¥, W, ..., 0))|(t, 21, t,20,. .., t,2q) (320)

)
= ((Ra(¥))(t, 21), (Ra(D))(t, 72), ., (Ra(¥)) (¢, 24)).-

Combining this with ([Il) proves that for all ¢ € R it holds that

(Ra(®))(t,0,0,...,0) = (Ra(¥))(t,0), (Ra())(£,0), . .., (Ra(¥))(t, 0))

= (0,0,...,0) = 0. (321)
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Next note that ([I) and ([B20) imply that for all z = (21, 2o, ..., 24) € R? it holds
that

(Ra(®))(0,2) = (( ( (0, 21), (Ra(¥))(0,22), . .., (Ra(¥))(0, 24))

~ (0.0.....0) =

In addition, observe that the triangle inequality and the fact that for all r € [1, o0),
(21, 22,...,24) € R it holds that

(322)

.O

12 /2
| S b < | 2 b (323)

prove that for all be R, x = (2, 1,...,24) € RY r e [1,00) it holds that

[Z?zl (1] + |:13j|7")2]1/2 < [Zle 52]1/2 + [Z?—l |$j|2r]1/2 (324
< v+ [ Sy 2] = v

This, ([II), and (B20) assure that for all t € R, & = (21, 73,...,24) € R? it holds
that

fta — (Ru(@)(2)] = [ S, 2, — (Ru(@))(t.2)2]
<[5, femas{rfn o )] < <[ L, {7} + [aypr)?] G2
< e(Vd [max{1, t|7}] + 2|?).

Furthermore, observe that ([V]), (820), and (324]) show that for all ¢t € R, = =
(w1, 29, ..., 2q) € R it holds that

N

(Ral@))(t,2)] = [ Sy (R0 1 2)2]

d 2 2\2 /2
< | S (U 20 + 2l

(326)
[ (2 Ve ]
< ﬁ(l +20t2) + V2P = V(1 + 20t]?) + 2|2
In addition, note that Corollary 22Tl implies that
P(Pa(0, 0, ..., ) < d®>P(V). (327)
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Item () in Corollary 29 ([V]), and (BI7) hence ensure that

P(®) < [max{l, I(Pd(é(ﬁl)jj\lf))+l }] P(Pu(¥,9,...,7))
= [max{1, Z2}| P(Py(¥, U,..., V) = P(Py(V,V,...,0))  (328)
< P(V) < &[5 ][ loga(e ™) + g + 1] — 2524°.

Next note that item () in Proposition 2.6, (VI)), and (3I7) demonstrate that
L(D) = L(Py(¥,T,..., V) = L(V) < Ly[logy(e™") + ). (329)

This, the fact that R,(®) e C(R¥ RY), @2I), B22), B25), [B26), and GBEI)
establish items ({l)—(dl). The proof of Proposition B.7is thus completed.

3.3 Space-time ANN approximations for Euler approxima-
tions

3.3.1 Space-time representations for Euler approximations

Lemma 3.8. Let N,d € N, JURs C(Rd,Rd), T e (O, OO), (tn)ne{—l,o,l,...,N+1} c R
satisfy that t_1 < 0 =ty < t; < ... <ty =T < tysq, let f,: R > R, n e
{0,1,..., N}, be the functions which satisfy for alln e {0,1,..., N}, t € R that

t—tn_ tns1—t
Fal®) = |25 | s @) + [ 2255 Lt (), (330)
and let Y = (YY) waeiorxrix @iy : [0,T] x RT x (RN — R be the func-
tion which satisfies for all n € {0,1,...,N — 1}, t € [t,,ths1], v € RY, y =
(Y1, 92, -, yn) € (RN that VY =z and
Vo = Yot s (o — ) p(YE5Y) + ] (331)
(cf. Definition[Z1 and Definition[2.3). Then
(i) it holds that

([0, 7] x R x (RHYN 5 (t,2,y) — V" e RY)
e C([0,T] x R? x (RHN RY) (332)
and
(ii) it holds for all t € [0,T], x € R, y € (RH)N that
N
Vi = 0 ful) Vi, (333)

n=0
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Proof of Lemma[3.8. Observe that ([B31]) ensures that for all n e {0,1,..., N —1},
te [ty tns1], 7€ R y = (y1, 40, ..., yn) € (RY)Y it holds that

Vi () + Y ()

tni1—tn tnt1 \Epp1—tn
=Y (L= 5 Y ()
= Vi (1- o 5) (334)
(VI 2 [ — ) p(YY) + 9] ) (2500
= Yol 4 [t — ta) n(Ye)?) + v ] (552) = V7

Hence, we obtain that for all ¢ € [0,T], z € R, y € (RY)Y it holds that
V=Y L () + 2 (V" Lt (1))

= Y L (1) + 2 (st + v () | L)
(335)

Y (0 + [ 5V () L)
J vay t—tn—1 1
+ 2—31 o (=) L) (D) | -
Combining this with ([B330) implies that for all t € [0, T], x € R?, y € (RY)Y it holds
that
}/t$7y = }/t?y 1{250}(15) + }/t?y(ti:ttll) ]l(to,tﬂ( ) + }/tfvy( e ) ]l(tN—l,tN] (t)

tN—tN-1

N—-1
£ 31 [ (52 Lt + (55 e sl 0]

.y .y & y (336)
=Yy (t1 to) 1[t(wfl](t) + Vi fn(t) + 2—11 fu(t) Y,
N X
— Z_jo fu(t) Y5V
Next we claim that for all n € {0,1,..., N} it holds that
(R x (RN)N 3 (z,y) — V2 e RY) € C(R? x (R)N,RY). (337)

We now prove (B37) by induction on n € {0,1,..., N}. Note that the fact that
for all z € RY, y € (RY)™ it holds that V¥ =YY = z proves (B31) in the base
case n = 0. For the induction step assume there exists n € {0,1,..., N — 1} which
satisfies that

(R x (RN 5 (z,y) — V2% e RY) € C(R? x (RH)N,RY). (338)
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Observe that (B31]) ensures that for all z € RY, y € (RY)Y it holds that

VU =Y (tngr — ) 0(Y0Y) + Ynga (339)

tn+1

Combining this with (B38) and the hypothesis that g € C(RY R?) demonstrates
that
(RY x (RH)N 5 (2,y) — V7Y e RY) e C(R? x (RN, RY). (340)

tnt+1

Induction thus proves ([B3T). Next observe that ([836), (837), and the fact that for
all ne {0,1,..., N} it holds that f,, € C(R,R) show that

([0,7] x R* x (RHYN > (¢, z,y) — V" e RY)
e C([0,T] x R? x (RHN RY). (341)

Combining this with (B36]) establishes items ([{l)—(). The proof of Lemma [B.§] is
thus completed. O

3.3.2 ANN representations for hat functions

Lemma 3.9. Let a € C(R,R) satisfy for all x € R that a(x) = max{z,0}, let
a, B,7,h € R satisfy that o < < 7, let Wy e R¥, By e R*, Wo e RV, By e R
satisfy that

1 @
(B—0) (B—a)
1 __B
Wl _ (BIOJ) ; Bl — (5;04) 7 (342)
(v=8) - (-8
1 7
(v=8) (v=8)
Wo=(h —h —h h), By =0, (343)

and let ® € (R x RY) x (R x R) = N satisfy that ® = (Wy, By), (W, By))
(cf. Definition[21]). Then

(i) it holds that R,(®) € C(R,R) and
(i1) it holds for all t € R that

(Ra(@)(1) = [ G2 | Lwin® + [ 5 | 15 (®)

0 te (-, a]u|y,0) (344)
= ((tﬁ__og? te (Oé, 6]




(cf. Definition[2.3).
Proof of Lemmal3.9. Observe that for all ¢ € R it holds that R,(®) € C(R,R) and

(Ra(®@))(t) = Wa (Mo (Wit + By)) + By

(t—a) _ (@=B) _ ({t=B)
+h [(ﬁ—a) =) (=B T 0] Lig (1)
(t—a) _ (@=B) _ ({t=B) (t—)
h [(ﬁ—a) G-a) B T (v—ﬁ)] Lo (1)
t—a t—p
= [((/3 a))] Lap(t) +h [1 - ((Ha)) Lg(t)

(345)

(cf. Definition [Z2). The proof of Lemma B9 is thus completed. O

3.3.3 A posteriori error estimates for space-time ANN approximations

Proposition 3.10. Let N,d € N, a € C(R,R) satisfy for all x € R that a(z) =
max{z,0}, let T € (0,0), (tn)nefon,..Ny S R satisfy for all n € {0,1,..., N} that
bty =" let D e [1,00), € (0,1], g € (2,0) satisfy that

D = [ ][logy(e™") + g + 1] — 504, (346)

(a—2)

let ® € N satisfy that Z(®) = O(®) = d, and let Y = (V") 1 2 1)e[0,1] xR x (RN
[0, T] xR x (RY)N — R? be the function which satisfies for alln € {0,1,..., N—1},
te [ty tns1], T € RY y = (y1,y2, ..., yn) € (RYY that Y3 =z and

Y = Vg () [Z(Ru(®)) (V) + o] (347)

(¢f. Definition[21 and Definition[2.3). Then there exist ¥, € N, y € (RY)N, such
that

i) it holds for all y € (RN that R,(¥,) € C(R¥HL RY),
y
(ii) it holds for allne {0,1,...,N — 1}, t € [tn, tns1], z € RY, y € (RN that
[V = (Ra(W)) (¢, 2)| < eV + Y227 + Y2 ]7), (348

tnt+1
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(iii) it holds for alln e {0,1,...,N — 1}, t € [tp, tns1], z € RY, y e (RN that

[(Ra(@)(t )| < 6Vd + 2|V + Vi, ), (349)
(iv) it holds for all y € (RY)N that

P(¥,) < %[6d2N2H(<I>)

) (350)
+3N[dD + (23 + 6NH(D) + Td? + N[ + P(@)]Q)QH ,
(v) it holds for all t € [0,T], x € R? that
[(RYN 3y — (Ra(T,))(t,2) € RY] € C((R)Y,RY), (351)

and

(vi) it holds for all n € {0,1,...,N}, t € [0,t,], z € RY, y = (y1, 90, .,Yn),
z=(21,20,...,2y) € (RN with Vk e Nn [0,n]: yp = 2, that

(Ra(y)) (¢, 7) = (Ra(V2))(Z, ) (352)

(cf. Definition[3.4).

Proof of Proposition[Z10. Throughout this proof let t, € R, n € {—1, N + 1},
satisfy for all n € {—1, N + 1} that t,, = %, let (Ip)oeny € N satisfy for all 0 € N,
x € R? that R, (L) € C(R*,R?), D(I,) = (,20,0), and

(Ra(lo))(x) = = (353)

(cf., e.g., 25, Lemma 5.4]), let (I,)neq01,...ny S N satisfy for all n e {0,1,..., N},
t € R that Z(IL,) = O(IL,) = 1, H(IL,) = 1, P(IL,) = 13, and

(Ra())(1) = | 32520 | 1,0+ [ 2255 | () (354)

(tn—tn—1) (tn+1—tn)
(cf. Lemma B.I), let (Z,y)my)e0.1,.. . Nx@iyy S N satisfy that
(I) it holds for all n € {0,1,..., N}, y € (RH)N that R,(Z,,) € C(R?, RY),

(IT) it holds for all n € {0,1,...,N}, y € (R)N, z € R? that (Ru(Z,.,))(x)
— Y

tn

(ITI) it holds for all n € {0,1,..., N}, y € (RN that H(Z,,) = 1 + nH(P),
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(IV) it holds for all n € {0,1,..., N}, y € (RY)Y that
P(Eny) < P(Ly) + n[3P(L) + P(@)], (355)

(V) it holds for all n € {0,1,..., N}, z € R? that
[(RY)Y 25— (Ra(Eny))(2) € R] € C(RY)Y, RY), (356)
and

(VI) it holds for all m € {0,1,..., N}, me Ngn[0,n], 2 € R, y = (y1, 92, ..., yn),
z=(21,29,...,2y) € (RN with Vk e N [0,n]: yp = 2 that

(Ra(Emy))(2) = (Ra(Em.2)) (@) (357)
(cf. Proposition 2Z32), let T € N satisfy that
(a) it holds that R,(I") € C(R41 RY),
(b) it holds for all t € R, 2 € R that (R.(T"))(t,0) = (R.(I"))(0,2) = 0,
(c) it holds for all ¢ € R, z € R? that

Jtz — (Ru(D)(t.2)] < (v [max{1, [(11}] + |27),  (358)

(d) it holds for all t € R, x € R? that

[(Ra(D)(t,2)] < V(1 + 2£%) + 2, (359)
(e) it holds that P(I') < d”[ 255 ][ loga(e™") + ¢ + 1] — 252d%, and
(f) it holds that L(I') < % [log,(e™1) + ¢]

(cf. Proposition37), let (W, ) (ny)ef0.1,... N1 x@eyy & N satisfy foralln € {0,1,..., N},
ye ROV that Z(¥,,) = d + 1, O(T,,,) = d, and

Wy =T Orgy [PZ(HLHUZ)(HW En,y)] (360)
(cf. Definition 215, Definition 222 Proposition .16, and Corollary 2.23)), let

L,eN, ye (RN satisty for all y € (R")Y that L, = maxue,1,..ny L£(U,,), and
let (®y)yerayy S N satisfy that

(A) it holds for all y € (R))Y that R,(®,) € C(RI! RY),
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(B) it holds for all y € (R, z € R4 that

(Ra(®y))(2) = 2, (Ra(Wny))(2), (361)

S
L=

and

(C) it holds for all y € (R%)" that

P, < 3| [S0 2P0 Lo L)

|20 (Ly = £(0ny) = 1) 2d(2d + 1) + d(2d + 1) Lz, )0 (L)

+ |20 P e (L) ] (362)

(cf. Proposition [220]). Note that ([II) and the fact that for all n € {0,1,..., N} it
holds that H(II,,) = 1 ensure that for all n € {0,1,..., N}, y € (RY)" it holds that
L(Z,,) =2+nH(P) =2, L(II,) =2, and

max{L(1l,,), L(Z,,)} = max{2,2 + nH(P)} = 2+ nH(p) = L(E,,).  (363)

Corollary 2241 (with a = a, n = 2, L = max{L(IL,,)), L(Z,,)}, i1 = 2, iy = 2d,
U = (I,1,), ® = (II,,=,,) for n € {0,1,...,N}, y € (R)" in the notation of
Corollary 2Z24]), ([V]), and the fact that for all n € {0,1,..., N} it holds that
P(I1,,) = 13 hence prove that for all n € {0,1,..., N}, y € (R)¥ it holds that

P(Pa 5 (M Zny)) < H2PTL) + 6(£(Zn,) = 3) + 3 + P(En,)
— L1 4+ 6L(E0,) + P(Eny))

(11 +6(2 + nH(®)) + P(Iy) +n[1P1y) + P(@)[)’

(23 + 6nH (D) + P(Iy) + n[LP(Ly) + P(®)[ ).

(364)
<

N[—= N

Moreover, observe that ([346) and (@) imply that 2P(T') < d*®. Combining this
with Proposition 216] ([B64), and the fact that P(I;) = 4d* + 3d < 4(d?* + d)
ensures that for all n € {0,1,..., N}, y € (R9)" it holds that

P(Tny) = P(T Ouyyy (P2, (M Zny)])
< max{1, 225} (P() + P (P11, (T, Zn)
< D + (23 + 6nH (D) + P(1,) + n[3P(1y) + P(®)])
< D + (23 + 6nH (D) + 4d® + 3d + n[2(d® + d) + P(®)[').

(365)

2
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Next note that ([II)), (363), ([G9), (I18), (I0I), item (@) in Proposition 216, and

item () in Lemma demonstrate that for all n € {0,1,..., N}, y € (R)V it
holds that

L(\I’n,y) = E(F) + £(P?,(Hl Hd)(an Eny))
= L(T) + L(Pa(Emaxte(11),£En)1 1 (M), Emax o). £En 100 (Eny)))
= L(T) + L(P2(Ec@nyn (M), Eczny)ia(Eny)))
= L(T) + L(E2z0)14(Eny))
=L(T) + E(((Hd '0) o En,y)
= L)+ L(Iy)?°) + L(E,,) — 1
— L(T) 4 L£(En,) = L) + H(E,) + 1
= L)+ 2+ nH(P)
(366)
Therefore, we obtain that for all n.e {0,1,..., N}, y € (RY)¥ it holds that
LOUny)—L(V,,) —1= (L) +2+NH(P)) — (L) +2+nH(P)) — 1 (367)

= (N —n)H(®) — 1.

In addition, note that (B6G) proves that for all y € (R?)Y it holds that L, =
L(Vy,) = L(Wyo) = Lo. The fact that 3 (N —n) = > m = IN(N + 1),
[B62), and (B6T) hence assure that for all y € (R?)Y it holds that

P(Py)
< %[[ZnN_ol (QP(\IIM/)
+max{(L(VUn,) — L(¥,,) — 1)2d(2d + 1) + d(2d + 1), 0})] + 7?(\I'N,y)]2

l [ij;; (2P(D,.,,) + max{(N — n)H(®)2d(2d + 1) — d(2d + 1), 0})]

1

2
2

+ P(\Dva)}

< %[(2]\7 + 1)73(\IIN,y)

n=0

+ max{H (®)2d(2d + 1)[ SNV - n)] ~ Nd(2d + 1), o}]2

= %[(QN + 1)P(¥y,y) + max{H(®)d(2d + 1)N(N + 1) — Nd(2d + 1), o}r.
(368)
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This and (B65) imply that for all y € (R?)" it holds that
P(®,) < %[(2N+ 1)[d2© + (23 + 6NH(®) + 4d? + 3d + N[2(d” + d) +7D(q>)]2)2]
2
+ max{H(®)d(2d + 1)N(N + 1) — Nd(2d + 1), 0}} . (369)

Therefore, we obtain that for all y € (R?)Y it holds that
P(Py)

= %l(m +1)| D + (234 6NH(®) + 7d* + N[4a® + P(@)[)']

+ max{’H(CI))d(Zd + 1)N(N + 1) — Nd(2d + 1), O}T

2

< %[SN[dQ”D + (23 + GNH(®) + Td® + N[4d® + P(<1>>]2)2] +6d°N 2"’“@)] :
(370)

In addition, note that (854)), ([Il), and LemmaB8 (with N = N, d = d, u = R4(P),
T=T{-101,...,N+1}sn—t,eR) = ({-1,0,1,...,N+1} a3 n —t, e R),
({0,1,...,N} > n— f, e C(R,R)) = ({0,1,...,N} 3 n — R,(1,) € C(R,R)),
Y = Y in the notation of Lemma B.8) ensure that for all t € [0,T], z € RY,
y € (RY)Y it holds that

Y = S[RNONG = S (RO RaEn) ). 67

Moreover, observe that ([B60), (B61]), item ([vl) in Proposition R.T6] (with W = I,
Oy =T, &y =Py g, 1)1y, Epy), i =2(d+1) for n e {0,1,..., N}, y € (RY)" in the
notation of Proposition 2I6), and Corollary (with @ = a, n =2, 1= (I},1),
¢ = (I1,,E,,) for n € {0,1,..., N}, y € (R)Y in the notation of Corollary 2Z23))
demonstrate that for all ¢t € [0, 7], z € R?, y € (RN it holds that

N

(Ra(@))(t,2) = X (Ra(1)) (Ra(I1) (1), (Ra(Eny)) (). (372)

n=0

Next note that ([854]) shows that for all k € {0,1,..., N}, t € R\(¢tx_1,tx+1) it holds
that
(Ra(Ilk))(t) = 0. (373)
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Combining this, (371]), and B72) with (b)) proves that for all k € {0, 1,.. ., N —1},
t € [te,tes1], v € R y e (RY)YN it holds that

V= S (R ()] [(Ra(Eny) ()]

= (374)
= [(R(T) (O] [(Ra(Ee)) (@] + [(Ra(Tar )] [(Ra(Ersr) ()]
and
(Ru(®,))(t, ) = nﬁoma(r))(( <n>><t>,<Ra<En,y>><x>)
Ru(D)((R (Ro(Ey) (@) (375)
R a<r>>(< <Hk+1>><> (Ra(Ers1))(x).

The triangle inequality, (@), and (d]) hence establish that for all k € {0, 1, ..., N—1},
t € [tu,tes1], ¥ € R y e (RY)YN it holds that

[Y:™ = (Ra(®y))(, )

< 2[R )O] [(Ra(Z00)) @)] = (Ra(D) (RalTl))1): (RalEn,)) (@)
< 3 eV [max{1| ] + IRuEn @)
(376)
and
[(Ru(@,)) (1 2)] < 3 [(RalD) (RalTL))(D). (Ra(E0,)) ()]
o (377)
< 3 (V{1 + 2ARa(T)OF) + 2(Ro(E0))(2) ).

Next note that (854]) ensures that for all n € {0,1,..., N}, t € R it holds that
0 < (Ru(I1,))(t) < 1. Combining this with 370), (B77), and ([I) demonstrates
that for all k€ {0,1,..., N — 1}, t € [tg, tps1], x € RE y e (R)Y it holds that

[ = (Ra(®y)) (¢, )] < kf (Ve + [(Ra(Eny)) (2)])

(W Ve + e+ yer 6™
-(2vd

lkt1

+ VI + 1Y 1)

k+1
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and

R@)(E.2)] < 3 (v + 2(RuEn)()])
= 3Vd + 2| YY) + 3vd + 2|V

lkt1

= 6Vd + 2(JY;)2 + [voh ).

Furthermore, observe that (B72), (V), and (@) ensure that for all ¢ € [0, T], x € R?
it holds that

HQ (379)

[RYN 5y — (Ra(®y))(t,2) € RY] € C((RHN,RY). (380)

In addition, observe that (0, (372) and ([B73) demonstrate that for alln € {0,1,..., N},
€ [0,t,], z € RY, y e (RH)N it holds that

(Ra(®y))(t, ) = éo(Ra(F))((Ra(Hk))(t% (Ra(Eky))(@)). (381)

This and (VI) show that for all n € {0,1,...,N}, t € [0,t,], * € R% y =
(y1,Y2,---,yn), 2 = (21,22,...,2N) € (]Rd)N with Yk € N n [0,n]: yp = 2z it
holds that

(Ra(®y))(t, ) =

= (Ra(®2))(t, @),
Combining this with (Al), (BZ]I) B78), B79), and (B80) establishes items ({)— (Ei])

The proof of Proposition [3.10] is thus completed.

3.3.4 A priori estimates for Euler approximations

Lemma 3.11. Let N,de N, ¢,C € [0,0), Ay, Ay, ..., Ay € R Jet || : R —
[0,00) be a norm on RY, let |||-||: R¥? — [0, 00) be the function which satisfies for
all A € R that || Al = supguega. joy<ny 1Az, let p: R — R? be a function which
satisfies for all v € R that

|u(@)] < € + ]z, (383)
and let Y, = (YY) (g4 erdx ()N : R? x (RHN — R n e {0,1,...,N}, be the
functions which satisfy for alln e {0,1,... . N —1}, z e RY, y = (y1,v,...,yn) €
(RHYN that Yy¥ =z and

VIR = VU4 Ay p (YY) + g (384)
Then

1)



(i) it holds for alln € {0,1,...,N}, v e RY, y = (y1, 90, ...,,yn) € (R that

n—1
Viv=a+ 3 [Aper p(V5) + yYora ] (385)
k=0

and

(ii) it holds for alln € {0,1,...,N}, e R, y = (y1, 92, ..., yn) € (RO that

) exp <c LZ: |||Ak|||]> . (386)

Proof of Lemma[311. We claim that for all n € {0,1,..., N}, x € RY y = (y1, 90,
o yn) € (RYN it holds that

1Yl

< (1t | Smad] + o

me{0,1,...,n}

Z Yk
k=1

n—1
ViV =z + 3 [Ape (V) + yesa] - (387)

k=0
We now prove ([B87) by induction onn € {0, 1, ..., N}. Observe that the hypothesis
that for all z € RY y € (RY)Y it holds that Y;"¥ = x proves (B87) in the base

case n = 0. For the induction step note that (B84]) implies that for all n €
{0717"'7N_ 1}7 T e Rd7 Yy = (y17y27"'7yN) € (Rd)N with

—1

Vil =a+ kZ [Akr (YY) + ] (388)

it holds that

Vil = Y0 4 A p(VEY) + g

n—1
o [ e OE) )|+ (ross02) ) g
k=0

- [z (A 1 (Y7) + ykﬂ)] |
k=0

Induction thus proves ([B8T). Observe that ([B87) establishes item ({). In addition,
note that ([B87), the triangle inequality, and the fact that for all A € R4 x e R?
it holds that |Ax| < ||A|||z| demonstrate that for all m € {0,1,..., N}, z € R,
v=(y1,y2,...,yn) € (RHYN it holds that

m—1 m—1
el < b+ | Bt e+ ] o)
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Combining this with ([B83)) ensures that for all n € {0,1,..., N}, me {0,1,...,n},
reRY y = (y1,v0,...,yx) € (RY)N it holds that

m—1 m
et < Bt + | Bl (€ = D | +] S

“ e+ 0| & | +

m—1
e[S nacanye] (301)

n m—1
<+ 0| S an]+| o |8 u]|+ e S nacan]

me{0,1,...,n}

The time-discrete Gronwall inequality (cf., e.g., Hutzenthaler et al. [23) Lemma
21] (with N = n, = (Jol + O Sy IAl] + matueon, oy |20 ). o =
Al 81 = elldsll,. ., Bus = clidnll 0 = IV Ler = VPV en = YY)
forn e {1,2,..., N} in the notation of Hutzenthaler et al. [23] Lemma 2.1])) hence
implies that for all n € {1,2,..., N}, 2 € R y = (y1,v2,...,yn) € (RDYN it holds
that

m n—1
et (let s o S|+ max |8 o) (oS vl )
€{0,1,..., k=1 k=0
(392)
The hypothesis that for all z € R? y € (RY)" it holds that Yy = x therefore

assures that for all n € {0,1,..., N}, z € R% y = (y1,92, ..., yn) € (RY)Y it holds
that

et (et s o Shad |+ max | Eul) (e S ad]). @)

e{0,1,...,

This establishes item (). The proof of Lemma B.I1is thus completed. O

3.3.5 A priori error estimates for space-time ANN approximations

Theorem 3.12. Let N,d e N, € € [0,0), a € C(R,R) satisfy for all x € R that
a(x) = max{x 0}, let T € (0,00), (tn)nefoa,..ny S R satisfy for alln € {0,1,..., N}
that t, = %L, let D € [1,0), e € (0,1], g € (2 ) satisfy that

0
D = [55][loga(e™) + g + 1] — 504, (394)

let ® € N satisfy for all v € RY that Z(®) = O(®) = d and |[(R.(P))(x)| <
C(l + HxH), let Y = (}/txy)(t’x’y)e[o’ff]XRdX(Rd)N: [0, 7] x RY x (RN — R? be the
function which satisfies for all n € {0,1,....N — 1}, t € [tp,tn1], v € R, y =
(Y1, 92, -, yn) € (RHN that V¥ =z and

ViV = VP 4 () [Z(Ra(®)) (YY) + Y], (395)

T N
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and let g,: R? x (RN — [0,0), n € {0,1,..., N}, be the functions which satisfy
forallme{0,1,...,N}, e R, y = (y1, 90, ..., yn) € (ROY that

gn(z,y) = (\x\ +¢t, + max 121 ka) exp(€t,) (396)

me{0,1,...,n}

(cf. Definition (21, Definition[2.3, and Definition[3.4). Then there exist ¥, € N,
ye (RHYN | such that

(i) it holds for all y € (RN that R,(V,) € C(RITRY),
(ii) it holds for allne {0,1,...,N — 1}, t € [tn, tus1], z € RY, y € (RHN that
[V = (Ra(®))(t,2)| < e(2Vd + (9a(2,9))* + (gasa (. 9))7),  (397)
(iii) it holds for alln e {0,1,...,N — 1}, t € [tp, tas1], z € RY, y e (RN that
[(Ra(Wy))(t,2)]| < 6vVd + 2((gn(@,9))* + (gns1 (2, 9))?), (398)
(iv) it holds for all y € (RN that

P(W,) < § N°d[20(D) + D + (30 + 6H(®) + [4+ P(@)]Q)Q]z, (399)

(v) it holds for all t € [0,T], x € R? that
[RHYY 5y > (Ro(T,))(t, z) € RY] € C((RY)N,R?), (400)
and

(vi) it holds for all n € {0,1,...,N}, t € [0,t,], v € R, vy = (y1,92, ..., Yn),
z=(21,20,...,2y) € (RN withVk e N [0,n]: yp = 2 that

(Ra(Wy)) (¢ 7) = (Ra(¥2))(, ). (401)
Proof of Theorem[Z13. Throughout this proof let ¥, € N, y € (R?)" satisfy that
(I) it holds for all y € (RY)Y that R,(¥,) € C(RI*! RY),
(IT) it holds for all n € {0,1,..., N — 1}, t € [tn, tns1], 7 € RY, y e (RN that

[V = (Ra(W)) (8, 2)| < e(2Vd + Vi |7 + Yo, [9), (402)

tny1
(IIT) it holds for all n € {0,1,..., N — 1}, t € [ty tns1], v € RY y € (RHN that

[(Ra(,))(t )| < 6Vd + 2(v5 "> + [V, ). (403)

lnt1
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(IV) it holds for all y € (R%)" that

P(¥,) < %[6d2N2’H(cI>)

+ 3N[d2© + (23 4+ 6NH(®) + 7d* + N[4d® + P(@)]Q)QHZ, (404)
(V) it holds for all ¢ € [0, T], x € R? that
[RYY 2y — (Ru(L,))(t, z) € RY] € C((R)N,RY), (405)
and

(VI) it holds for all n € {0,1,...,N}, t € [0,t,], z € R, y = (y1,92,...,Un),
z=(21,20,...,2y) € (RN with Vk e N [0,n]: yp = 2 that

(Ra(Wy))(t, ) = (Ra(V2)) (¢ 7) (406)

(cf. Proposition BI0). Note that (IV)) ensures for all y € (RY)Y that

P(W,)

< %l@‘d?zv?%(cb) +3N[d*D + (23 + ONH(P) + 7d® + Nd'[4 + 7’(‘1’)]2)2]]

[6d2N2’H,((I>) + 3N|d*D + N2d*(30 + GH(®) + [4 + P(<I>)]2)2]]2.

<4
(407)
Hence, we obtain that for all y € (R%)" it holds that
2
P(v,) <1 l6d2N27—l(cI>) + 3N3d® [@ + (30 + 6H(D) + [4 + 73(@)]2)2”
(408)

< 9 N6 [2%(@) + D+ (30 + 6H(D) + [4+ 7>(<1>)]2)2]2.

In addition, observe that LemmaBITland the hypothesis that for alln € {0,1,..., N}
it holds that ¢, = % demonstrate that for all n € {0,1,...,N}, z € RY y =
(Y1, 92, - . ., yn) € (RY)Y it holds that

||

|| exwtet) = e,

, enT
R

(409)

2 Uk
k=1
= ||x| + €t, + max Yk
[' H me{0,1,...,n} 1;1
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Combining this with ([I) and ([II) ensures that for all n € {0,1,..., N — 1},
t € [tn,tns1], 7€ RY y e (RY)N it holds that

VI = (Ra(@) (1, 2)| < (VA + Y| + V)

tn+1

410
<e(2Vd + (ga(,9)* + (gni1(2,1))?) o

and
[(Ra(W))(t,2)| < 6Vd + 2(|V2)7 + [V ) (411)

< 6vVd + 2((ga(,9)* + (gusi(,))?).

This, (M), (V)), (VI), and ([F08)) establish items ({l)—(Ld)). The proof of Theorem B.12]
is thus completed. O

Corollary 3.13. Let €, 7,0 € (0,0), a € C(R,R) satisfy for all x € R that
a(z) = max{x,0}, let ®; € N, d € N, satisfy for all d € N, x € R? that
L(®q) = O(2q) = d. H( (02)(@)] < €1 + ), and P(®g) < €, let Y —
(thy)(my)e[OT]de ([0, T] x R x (RN — R N, d € N, be the functions
which satisfy for all d NeN ne{0l,...,.N—-1}, t e [%, ("JJF\;)T], r € R,
v=(y1,y2...,yn) € (RHON that Yodxy =z and

Yoy =Ya,  + (F =) [F(Ra(@)) Vi, ) + ] (412)

(cf. Definition 2], Definition [2.3, and Definition[3.8). Then there exist C' € R
and V. gn, €N, ye (RN, N, deN, €€ (0,1], such that

(i) it holds for alle € (0,1],d, N € N, y € (R)Y that R, (V. qn,) € C(RITLRY),

(ii) it holds for alle € (0,1], d,Ne N, t e [0,T], x e R?, y € (RYN that
1Y% = (Ra(Weany)) (8, 2)]| < CAPNTe(1+ |2]* + y)*), (413)
(iii) it holds for alle € (0,1], d, N e N, te€ [0,T], x e R?, y € (RYN that
[(Ra(Weany))(t,2)| < CAPN(L+ [z]* + y|*), (414)
(iv) it holds for all e € (0,1], d, N e N, y € (RY)" that
P(Vean,y) < Cd' T NO[1 + |In(e)[?], (415)
(v) it holds for all e € (0,1], d, N e N, t € [0,T], x € R? that
[(R)Y 2y = (Ra(Pegn,y))(t,2) € R € C((R)Y,RY), (416)

and
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(vi) it holds for all £ € (0,1], d,N € N, n € {0,1,...,N}, t € [0,%L], = € R?,
y=(y, Y. ., yn), 2 = (21,20, ..., 2x5) € (RN withVk e Nn[0,n]: yp = 2
that

(Ra(Veany))(t,z) = (Ra(Vean:))(t, @), (417)

Proof of Corollary[3.13. Throughout this proof let ©., € [1,0), ¢ € (2,0), ¢ €
(0, 1], satisfy for all € € (0, 1], ¢ € (2,00) that

| 720q op (o1 B
D.y= l(q — 2>] [logy(e7") + ¢ + 1] — 504, (418)

let ¢ = max{exp(€T),D; 3,62 + 6€(€ + 1)}, and let g>V: R? x (RH)Y — [0, 0),
n € {0,1,...,N}, N,d € N, be the functions which satisfy for all d, N € N,
ne {0’17""]\[}7 I‘ERd, Y= (ylay27"'ayN)€ (Rd)N that

= Eul)eoh. @)

d,N _
5w = (el + S+ e |
Note that Theorem BI2 (with N =N, d=d, € =€, a=a,T=T,t, = %, D =
Degye=¢6,q=3, 0=, Y =Y g, =g for N.de N, ne{0,1,...,N},
e € (0,1] in the notation of Theorem BI2) implies that there exist W, 4n, € N,
ye (RHYN N, deN, ¢ e (0,1], which satisfy that

(I) it holds for alle € (0,1],d, N € N,y € (RY)" that R,(V. 4n,) € C(R¥! RY),

(1) it holds for all £ € (0,1], d,N € N, n e {0,1,...,N — 1}, t e [2L DT
re R4 ye (RYHN that

Yy = (Ra(Peany)(t,2)| < e(2Vd+ (g™ (2,9))° + (g1 (2. 9))°), (420)

(IT1) it holds for all £ € (0,1], d,N € N, n € {0,1,...,N — 1}, t e [2L U]
re R ye (RYHY that

[(Ra(Wean))(t,2)| < 6vVd + 2((g0™ (2,9) + (931 (2. 9))%),  (421)
(IV) it holds for all € € (0,1], d, N € N, y € (R?)" that
P(\Ils,d,N,y)

2 (422
< § NOQ | 2H(®q) + D + (30 + 6H (@) + [4 + P(@) ] 2

(V) it holds for all e € (0,1], d, N e N, t € [0,T], x € R that
[(RD)Y 2y = (Ra(Teany))(t,2) € R € C(RY)Y,RY), (423)

and
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(VI) it holds for all e € (0,1], d, N e N, ne {0,1,...., N}, t € [0,2L], z e RY, y =
(Y1, Y2, -, UN), 2 = (21, 20,...,2n) € (RN with VE e NN [0,n]: yp = 2
it holds that

(Ra(Yeany))(t, 2) = (Ra(Pean,:))(L, 7). (424)
Observe that Jensen’s inequality implies that for alln € N, p € [1,00), (21, 2, ..., T,) €
R"™ it holds that
2y 4 A 2P <Pz P A+ |2a]P). (425)

Moreover, note that Holder’s inequality shows that for all N € N,y = (y1,y2,...,yn) €
(RHYN it holds that

el = 3 (tuel) < 3 ( 3 1nl?) " = ) (426)
Combining ([@23)), (), and [@I9) therefore ensures that for all € € (0,1], d, N € N,
ne{0,1,...,N -1}, te [T DT 2 e R y = (41,95, ..., yn) € (R)N it holds

that
1V55 = (Ra(Weany)(t, )] < 2d7e(1 + (93" (2, 9))?)

3
_ 2d1/25<1 T <]:c] LeT + e{%lffim H g H) exp(3€T>)
<oae(1o(lop+ 0+ (£ ul)’)e)
(427)
<2d7e(1+9(|=* + ¢ + NS/QH?JH c)
< 25PN (1 4+ 9(| P + 1+ [y)?))
= 25" N7 (10 + 9| z* + 9]|y|*)

< 208N e (1 + ||z|* + [y]®).

Next note that ([II)), (@19), [@25), and [@26) imply that for all € € (0,1], d, N € N,
ne{0,1,...,N -1}, te [ DT 4 e R y = (41,95, ..., yn) € (RYN it holds
that

[(Ra(Weavy))(t, 2)| < 6V + 4(gy" (2, 9))
= 6Vd + 4<|:p| + ¢T + peihax (H Z ykD exp(2€T)

.....

<ovas 2(lafP + &+ (3 ul) ) (425)

< 6Vd + 12(|z]? + & + Ny[*)
< 18¢WAN(1 + || + |y [?).
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Furthermore, observe that ({I8) shows that for all € € (0,1] it holds that

(D:5)? = (BBIn(e™) +D15)° < (D15)2(In(e™") + 1)°
< A1 —In(e)]* < 2¢*(1 + [In(e) [?).

(429)

This, ([[V]), the hypothesis that for all d € N it holds that P(®,;) < €d°, and (425)
assure that for all € € (0,1], d, N € N, y € (R?)Y it holds that

P(Voan,) < SNOL [ZQdD + D5+ (30 + 6 + [4 + €] 2)2]

< ZNOQO[ A€ + (D) + (30 + 6€d® + 2[16 + €2a]) |

< ZNOq' :4Qi2d2° +2¢%(1 + [In(e)]?) + (62 + 6€d° + 2¢2d2°)4]

< ZN°G' e +2¢*(1 4 |In(e)[?) + (62 + 6¢(€ + 1)d2°)4] (430)

< IN°A[ed® + 262(1 + (o)) + (cd®)]

< 2TNSd"[2(1 + [In(e) ) + (cd2°)4]
< 54C4N6d16+8°[1 + |ln(8)|2].

Combining (), @27), E23), @30), V), and (V) establishes items ({)-(d). The

proof of Corollary is thus completed. O
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