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Coupling FEM

with a Multiple-Subdomain Trefftz Method

Daniele Casati · Ralf Hiptmair

Abstract We consider 2D electromagnetic scattering at bounded objects consist-
ing of different, possibly inhomogeneous materials. We propose and compare three
approaches to couple the Finite Element Method (FEM) in a meshed domain en-
compassing material inhomogeneities and the Multiple Multipole Program (MMP)
in the unbounded complement.

MMP is a Trefftz method, as it employs trial spaces composed of exact solutions
of the homogeneous problem. Each of these global basis functions is anchored at a
point that, if singular, is placed outside the respective domain of approximation.

In the MMP domain we assume that material parameters are piecewise con-
stant, which induces a partition: one unbounded subdomain and other bounded,
but possibly very large, subdomains, each requiring its own Trefftz trial space.

Coupling approaches arise from seeking stationary points of Lagrangian func-
tionals that both enforce the variational form of the equations in the FEM domain
and match the different trial functions across subdomain interfaces. Hence, on top
of the transmission conditions connecting the FEM and MMP domains, one also
has to impose transmission conditions between the MMP subdomains.

Specifically, we consider the following coupling approaches:

1. Least-squares-based coupling using techniques from PDE-constrained optimiza-
tion.

2. Multi-field variational formulation in the spirit of mortar finite element meth-
ods.

3. Discontinuous Galerkin coupling between the meshed FEM domain and the
single-entity MMP subdomains.
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We compare these approaches in a series of numerical experiments with differ-
ent geometries and material parameters, including examples that exhibit triple-
point singularities.
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multiple multipole program · wave scattering
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1 Introduction

We consider the following second-order scalar elliptic boundary value problem:

−∇ ·
[
M−1

ǫ (x)∇u
]
− ω2µ(x)u = f in R

2, (1a)

∇u · x− ık‖x‖u = 0 for ‖x‖ → ∞ uniformly, (1b)

which models the scattering of transverse-electric polarized z-invariant time-harmonic
electromagnetic waves at penetrable objects [24, p. 356, Section 8.2]. Here,

– u : R2 → C represents the longitudinal component of the magnetic field (usu-
ally denoted as Hz in electromagnetism).

– Mǫ : R2 → C
2,2 and µ : R2 → C are material parameters corresponding to

an inhomogeneous, anisotropic permittivity (Mǫ with nonzero determinant)
and an inhomogeneous, isotropic permeability, respectively. Given a bounded
domain Ω⋆ ⊂ R

2, we assume that, in R
2 \Ω⋆, Mǫ = ǫ I and ǫ, µ are piecewise

constant.
– ω ∈ R is the angular frequency, while k := ω

√
ǫµ the piecewise-constant

wavenumber in R
2 \Ω⋆.

– f : R2 → R represents the stationary current that generates the electromag-
netic field. f has compact support in Ω⋆.

– (1b) is the Sommerfeld radiation condition; please refer to [13, p. 19, Defini-
tion 2.4].

Piecewise-constant ǫ, µ in R
2 \ Ω⋆ induce a natural partition of R2 \ Ω⋆ into

m+ 1 subdomains Ωi, i = 0, . . . ,m, such that the pair (ǫ, µ) ∈ C
2 (and therefore

the wavenumber k) is constant in each Ωi. We denote the constant wavenumber
in each subdomain with ki, i = 0, . . . ,m, and assume that there is only one
unbounded domain in this partition, which we refer to as Ω0.

To simplify the exposition and without loss of generality, from now on we
assume that m = 1, i.e. that Ω0 ∪ Ω1 = R

2 \ Ω⋆, with constant k0 ∈ C in the
unbounded domain Ω0 and constant k1 ∈ C in the bounded Ω1. Generalization to
m > 1 is straightforward.

0 Abbreviations. MMP: Multiple Multipole Program. FEM: Finite Element Method. TPS:
Triple-Point Singularity. PDE: Partial Differential Equation. DoF: Degree of Freedom. DG:
Discontinuous Galerkin. BEM: Boundary Element Method. Subscript f in formulas: FEM.
Subscript m in formulas: MMP. Superscript n in formulas: discrete.
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In Ω0, the weak solution u ∈ H1
loc(R

2) of (1) belongs to the continuous Trefftz
space1

T (Ω0) :=
{
v ∈ H1

loc(Ω0) : ∇2v + k2
0 v = 0 , v satisfies radiation condition (1b)

}
;

(2a)

in Ω1, u belongs to

T (Ω1) :=
{
v ∈ H1(Ω1) : ∇2v + k2

1 v = 0
}
. (2b)

Trefftz methods seek to approximate the unknown in R
2 \Ω⋆ using some finite-

dimensional subspace of T (Ω0), T (Ω1). Our approach uses spaces spanned by mul-
tipole expansions centered in points outside each Ωi, i = 0, 1, which is being ap-
proximated. We refer to this discretization as the MMP approximation after the
Trefftz method known as Multiple Multipole Program; see Section 2 for details.

However, functions in Trefftz spaces cannot approximate the unknown in Ω⋆,
where Mǫ, µ may vary in space. There we employ a standard finite element space
to discretize the usual primal variational form of (1).

The main issue arising is how to impose the coupling between the domains of
MMP and the domain of the Finite Element Method (FEM). Several algorithms
are presented in Section 3 and their convergence is shown numerically in Section 4.

1.1 State of the Art

Several approaches to couple FEM and MMP for the Poisson’s equation in both
2D and 3D have been discussed by the authors from the perspective of numerical
analysis in [9]. Existence, uniqueness, and stability of all coupling approaches is
formally proven in that work, which only deals with scalar unknown functions. We
offered numerical evidence for the feasibility of the coupling for Maxwell’s equa-
tions (vector unknown functions) in [10,12], which illustrate numerical convergence
results for the magnetostatic and eddy-current equations, respectively.

[8] generalizes one of the coupling approaches, the Dirichlet-to-Neumann-based
coupling (DtN-based coupling) [9, p. 7, Section 3.2], to any numerical method
based on volume meshes. The particular case of the coupling with the cell method,
a technique based on both a primal and a dual volume mesh [36], is illustrated
theoretically and through numerical experiments performed with iterative solvers
applied to the Schur complement of the coupling systems (MMP degrees of freedom
are eliminated).

The approaches we propose here to realize the coupling between FEM and
more than one MMP domain have been described there for the first time.

The FEM–MMP coupling has also been addressed before in [33]. However,
a different methodology for the coupling is used in that work: FEM and MMP
field values, the Dirichlet data, are matched in selected points on the interface be-
tween their domains (collocation method), while the Neumann data enter through
a boundary term of the variational form. The resulting overdetermined system of
equations is solved in the least-squares sense.

1 The subscript “loc” indicates that functions belong to the reported space after multipli-
cation with a compactly-supported smooth function.
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To the best of our knowledge, apart from these papers little research has been
devoted to the investigation of strategies combining Trefftz methods with conven-
tional finite element methods. We cite [20,29]: in particular, the coupling proposed
in [20, p. 672, Section III] is the same as the DtN-based coupling of [9, p. 7, Sec-
tion 3.2].

It is also worth mentioning the infinite element method [15], primarily used for
exterior Helmholtz problems, which employs standard FEM in a bounded domain
and infinite elements in the unbounded exterior. Given a spherical coordinate
system, the radial component of infinite elements is expressed by a multipole ex-
pansion, which can be used as Trefftz basis functions (see Section 2). Conversely,
the spherical component is approximated by standard polynomial finite element
shape functions.

The novelty of this work lies in using FEM with more than one MMP domain,
which allows to treat piecewise-constant material parameters on potentially very
large domains while keeping a minimal volume mesh for the FEM domain. This
mesh can be so small that it only surrounds points where the solution is singular,
like Triple-Point Singularities (TPS), which arise at the junction of three different
materials [18]. At the same time, one also needs to impose transmission condi-
tions between neighboring MMP domains, which requires a mesh on the interface
separating them.

Another new aspect of this work is the application of the FEM–MMP cou-
pling to scattering problems, for which low-order mesh-based methods like FEM
suffer from the well-known pollution effect [3]. MMP, on the other hand, uses os-
cillating basis functions (see Section 2.1) which may achieve better approximation
properties than the classical piecewise-polynomial spaces of FEM [23].

2 Multiple Multipole Program

The concept of the Multiple Multipole Program was proposed by Ch. Hafner in
his dissertation [21] based on the much older work of G. Mie and I.N. Vekua [26,
37]. Essentially, the Mie-Vekua approach expands some field in a 2D multiply-
connected domain by a multipole expansion supplemented with generalized har-
monic polynomials. Extending these ideas, MMP introduces more multipoles (mul-
tiple multipoles) than required according to Vekua’s theory [37].

2.1 Multipoles

Basis functions spanning the MMP Trefftz spaces (2) are the so-called multipoles,
potentials spawned by (anisotropic) point sources. Multipoles are exact solutions
of the homogeneous PDE (1a) that can be subject to the decay condition (1b),
depending on whether they are used to approximate the solution in Ω0.

A multipole can be written as v (x) := f (rxc) g (θxc) in a polar coordinate
system in R

2 (r ∈ [0,∞), θ ∈ [0, 2π)) with respect to its center c (x, c ∈ R
2 are

position vectors in Cartesian coordinates). Here, (rxc, θxc)
⊤ are polar coordinates

of the vector xc := x− c.
The radial dependence f (rxc) has a center that may present a singularity,

|f (r)| → ∞ for r → 0, and the desired decay condition at infinity. If there is a
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singularity, multipoles have to be centered outside the domain in which they are
used for approximation. On the other hand, the angular dependence g is usually
formulated in terms of trigonometric functions.

More specifically, the multipoles chosen for the numerical experiments of this
work have the forms

B0(krxc), B1(krxc) cos(θxc), B1(krxc) sin(θxc), . . . ,
Bℓ(krxc) cos(ℓ θxc), Bℓ(krxc) sin(ℓ θxc), . . .

(3)

Bℓ is a Hankel function of the first kind H
(1)
ℓ [25, p. 280] or a Bessel function of

the first kind Jℓ [25, p. 278, (9.7)], depending on whether the Trefftz space is for

Ω0 (2a) or Ω1 (2b). Indeed, multipoles with H
(1)
ℓ satisfy the decay condition (1b).

k := ω
√
ǫµ ∈ C is the wavenumber ki in Ωi, i = 0, 1.

Each multipole from (3) is characterized by a location, i.e. its center c, and the
parameter ℓ (its degree). When we place several multipoles at a given location up
to a certain order, which is the maximum degree of multipoles with that center, we
use the term multipole expansion. Summing the number of terms of all multipole
expansions used for approximation yields the total number of degrees of freedom
of the discretized Trefftz space.

2.2 Approximation Error

Let the solution u of the Helmholtz problem (1a) allow an analytic extension
beyond Ω0. Then, given a discrete subspace T n(Ω0) of T (Ω0), u can be approx-
imated by functions in T (Ω0) with an accuracy exponential in dim T n(Ω0) with
respect to the H1-seminorm. This paragraph still holds true if one replaces Ω0

with Ω1.

Both of these convergence results can be proven in the same way as [9, p. 4]
for the 2D Poisson’s equation, i.e. by relying on the fact that (generalized) har-
monic polynomials for approximation also achieve exponential convergence in Hi-
seminorms, i = 0, . . . , j, j ∈ N0, when solving 2D Helmholtz in a bounded domain
that satisfies certain assumptions [27, p. 61, Theorem 3.2.5].

To empirically show the typical convergence of a pure Trefftz discretization,
we consider, as in (1), the Helmholtz equation ∇2u + k2 u = 0 subject to the
Sommerfeld radiation condition (1b). The domain is R2 with a unit disk split into
two halves: we call these subdomains Ω0

m, Ω1
m, and Ω2

m (see Figure 1). In each of
them, the wavenumber k is referred to as k1 in one half of the disk (Ω1

m), k2 in
the other half (Ω2

m), and k0 in the complement (Ω0
m). In Ω0

m we also assume that
the solution u is decomposable as uincid + uscatt, with uincid := exp(ık0x) (with x
first Cartesian coordinate) a known plane wave that gives rise to the right-hand
side of the problem and uscatt to be determined (compare with (27)).

At the endpoints of the segment splitting the disk in two the solution has triple-
point singularities if k0, k1, k2 are all different. Hence, assuming piecewise-constant
k, we need to use different Trefftz spaces for each subdomain. Multipoles are then
chosen according to (3): Hankel functions are used on the unbounded domain Ω0

m,
Bessel functions on the bounded domains Ω1

m, Ω2
m.

We consider two configurations of multipoles:
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Ωm Ωm
2

Ωm
0

Γ12

Γ01 Γ02

1

Fig. 1: The geometry represents Ω0
m, Ω1

m, and Ω2
m, the three MMP subdomains

with different wavenumbers, and their shared boundaries Γ01, Γ02, and Γ12.

1. Multipole expansions up to a fixed order 1 uniformly located on a circle at the
center of each subdomain: (−0.5, 0) for Ω1

m, (0.5, 0) for Ω2
m, and the origin for

Ω0
m. Radii are 1.5, 1.5, and 0.5 for Ω1

m, Ω2
m, and Ω0

m, respectively. During the
convergence test we increase the number of expansions.

2. For each subdomain, one multipole expansion of a given order placed in the
origin. During the test we increase this order.

We solve this problem by collocation, imposing transmission conditions be-
tween multipoles approximating subdomains with different k. Specifically, these
conditions are

ui
m

∣∣
Γij

= uj
m

∣∣
Γij

, (4a)

n · ∇ui
m

∣∣
Γij

= n · ∇uj
m

∣∣
Γij

, (4b)

with ui
m MMP solution in Ωi

m, i = 0, 1, 2; in Ω0
m, u0

m is shifted by the plane wave
exp(ık0x). Γij , i < j, j = 0, 1, 2, refers to the boundary Ωi

m ∩Ωj
m (Figure 1), with

n the normal vector. More details on transmission conditions like (4) are given in
the next section – see (9).

Matching points for collocation on Γij are found through the intersections of
conforming meshes on the disk Ω1

m∪Ω2
m: these meshes are more refined depending

on the number of degrees of freedom of T n(Ωi
m), i = 0, 1, 2, such that the number

of matching points is always larger than the sum of the dimensions of the discrete
Trefftz spaces (leading to overdetermined systems solved in a least-squares sense
by QR decomposition). We use volume meshes to identify matching points on
boundaries Γij because we also want to track a volume error; specifically, the
relative approximation error in H1(Ωi

m)-seminorm
∫

Ωi
m

∥∥∥∇
(
u− ui

m

)∥∥∥
2

ℓ2
dx (5)

on bounded domains Ω1
m, Ω2

m. (5) is approximated by a Gaussian quadrature rule
that is exact for polynomials of degree 2 (order 3). As benchmark u we rely on
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the numerical solution that MMP provides with a number of degrees of freedom
substantially higher than the highest number used in the convergence study.
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Fig. 2: p-refinement semi-log error plots for 2D Helmholtz equation without TPS
solved with three MMP domains (geometry in Figure 1): exponential conver-
gence in H1(Ωi)-seminorm, i = 1, 2. Parameters are k1 = k2 = 1.59 k0 and
k0 = 7.86 radm−1.

Firstly, we consider the case k1 = k2 = 1.59 k0 and k0 = 7.86 radm−1, i.e.
without TPS. Figure 2 shows the corresponding relative H1-errors: we can identify
exponential convergence, as expected by [9, p. 4], because in this example the
solution possesses analytic extensions beyond the interface.
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Fig. 3: p-refinement log-log error plots for 2D Helmholtz equation with TPS solved
with three MMP domains (geometry in Figure 1): algebraic convergence inH1(Ωi)-
seminorm, i = 1, 2. Parameters are k1 = 4 k0, k2 = 2 k0, and k0 = 7.86 radm−1.

Conversely, Figure 3 shows these errors for k1 = 4 k0, k2 = 2 k0, and k0 =
7.86 radm−1: here we can identify only algebraic convergence. In fact, exponen-
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Fig. 4: p-refinement log-log error plots for 2D Helmholtz equation with TPS solved
with three MMP domains (geometry in Figure 1): algebraic convergence inH1(Ωi)-
seminorm, i = 1, 2. Parameters are k1 = 100 k0, k2 = 10 k0, and k0 = 7.86 radm−1.

tial convergence is not preserved because the solution has a TPS [9, p. 4]. Fig-
ure 4 presents more pronounced TPS with k1 = 100 k0, k2 = 10 k0, and k0 =
7.86 radm−1: even algebraic convergence becomes difficult to recognize.

We observe that MMP without modifications cannot properly handle TPS or
other singularities. There are two ways to cope with these situations:

1. Augmenting the Trefftz spaces with basis functions that capture the singu-
larities [4]. However, explicit knowledge of the form of such singularities is
required.

2. Coupling MMP with a method based on volume meshes, like FEM, and apply-
ing the latter to a locally-refined mesh that encompasses both the singularities
and their immediate surrounding regions. By truncating the mesh at an aux-
iliary boundary that does not coincide with any physical discontinuity, MMP
can be applied to a region where the field is sufficiently easy to approximate
that heuristics on the placement of multipoles does not impact much on the
quality of the solution. This is the approach followed by this work (Section 4.2).

3 Coupling Strategies

We consider the partition (refer to Figure 5b)

R
2 = Ωf ∪Ω0

m ∪Ω1
m ∪ Γf0 ∪ Γf1 ∪ Γ01, (6)

with Γf0 := ∂Ωf ∩ ∂Ω0
m, Γf1 := ∂Ωf ∩ ∂Ω1

m, Γ01 := ∂Ω0
m ∩ ∂Ω1

m and Ωf ∩Ω0
m = ∅,

Ωf ∩ Ω1
m = ∅, Ω0

m ∩ Ω1
m = ∅. We also define Ωm := Ω0

m ∪ Ω1
m and the skeleton

Γ := Γf0 ∪ Γf1 ∪ Γ01.
We call Ωf, a bounded Lipschitz domain, the FEM domain, whereas Ω0

m is
the unbounded and Ω1

m the bounded MMP domain. The terminology indicates
the type of approximation to be employed in each domain. Coupling between the
FEM and MMP domains is done across the interfaces Γfi, i = 0, 1, while coupling
between the two MMP domains occurs across the interface Γ01.
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We demand Ω⋆ ⊂ Ωf, but not necessarily Ω⋆ = Ωf. If Ω⋆ 6= Ωf, Γf0 ∪ Γf1 =
∂Ωf is an artificial interface. Note that Ωf can be composed of disjoint regions
(Figure 15).

We also demand that in Ω0
m, Ω1

m the equation parameters of (1a) are constant:
Ωi

m ⊂ Ωi, i = 0, 1, given the partition introduced in Section 1, i.e. constant
wavenumbers k0, k1 for Ω0

m, Ω1
m. Hence, the Trefftz spaces T (Ω0

m), T (Ω1
m) are still

defined according to (2).

Ω
٭
= supp(µ(x)        )

 ∪ supp(ε(x)        )
 
 

 ∪ supp(f)

Ω
1

Ω
0

non
const

non
const

µ
1 
, ε
1

µ
0 
, ε
0

(a) Sample domains Ω⋆, Ω0, and Ω1 (Sec-
tion 1).

Ω
f

Γ
f0

Ω
٭
= supp(µ(x)        )

 ∪ supp(ε(x)        )
 
 

 ∪ supp(f)

Ω
m
1

Ω
m
0

Γ
f1

Γ
01

non
const

non
const

µ
1 
, ε
1

µ
0 
, ε
0

(b) Sample domains Ωf, Ω0
m, and Ω1

m (Sec-
tion 3).

Fig. 5: Physical domains (Figure 5a) do not necessarily correspond to computa-
tional domains (Figure 5b): Γf0, Γf1 can be artificial interfaces. Different colors in
the figure represent regions with different parameters ǫ, µ.

We now define the magnetic (“Neumann”) trace operator γ : H1
loc(∇2, Ω�) →

H̃−
1

2 (Γ�).

– Ω� ∈
{
Ωf, Ω

0
m, Ω1

m

}
and Γ� ∈ {Γf0, Γf1, Γ01}.

– H1
loc(∇2, Ω�) is the space of functions v ∈ H1

loc(Ω�) for which∇2v ∈ L2
loc(Ω�).

– H̃−
1

2 (Γ�) is the dual space of H
1

2 (Γ�) [31, p. 59, (2.90)], to which the Dirichlet
traces v|Γ�

belong.

If we work with functions in H2
loc(Ω�), then the following expression holds [17,

p. 2884, Lemma 3.1]:

γv = n ·M−1
ǫ ∇v ∀v ∈ H2

loc(Ω�), (7)

where n is the normal vector on Γ�.
We also define

uf := u|Ωf
∈ H1(Ωf), u0

m := u|Ω0
m

∈ H1
loc(Ω

0
m), u1

m := u|Ω1
m

∈ H1(Ω1
m). (8)

Using this notation, we can write the transmission conditions that the solution
of (1) has to satisfy across Γfi, i = 0, 1 [28, p. 107, Lemma 5.3]:

uf

∣∣
Γfi

= ui
m

∣∣
Γfi

, (9a)

γuf

∣∣
Γfi

= γui
m

∣∣
Γfi

. (9b)
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The same conditions hold across Γ01.

Transmission conditions (9) on Γf0, Γf1, Γ01 and the weak form of (1a) in Ωf

are all the ingredients to obtain a FEM–MMP coupled solution of (1). By testing
the weak form of (1a) with suitable test functions, integrating by parts over Ωf,
and using the transmission condition (9b) on Γf0, Γf1, we obtain

∫
Ωf

[(
M−1

ǫ ∇uf

)
· ∇vf − ω2µuf vf

]
dx−

∫
Γf0

γu0
m vf dS −

∫
Γf1

γu1
m vf dS =

∫
Ωf

f vf dx

∀vf ∈ H1(Ωf).
(10)

We end up with different coupling approaches depending on how we impose the
additional transmission condition (9a) on Γf0, Γf1 and both transmission condi-
tions (9) on Γ01. These coupling approaches are discussed in the following sections
as stationary points for different Lagrangian functionals. The resulting linear vari-
ational saddle-point problems are also stated.

Discretization Throughout we use triangular meshes Mf on Ωf and simple polyg-
onal approximations of Γ01 for the sake of numerical integration.

We discretize uf ∈ H1(Ωf) with piecewise-linear Lagrangian finite elements,
i.e.

V n(Mf) = S0
1 (Mf) :=

{
vn ∈ C0(Ωf) : vn

∣∣
K
(x) = aK + bK · x,

aK ∈ R, bK ∈ R
2, x ∈ K ∀K ∈ Mf

}
.

(11)

For Ω0
m, Ω1

m we let a finite number of multipoles span the discrete Trefftz spaces
T n(Ωi

m) ⊂ T (Ωi
m), i = 0, 1. The dimension of each T n(Ωi

m) is determined by the
number of multipole expansions chosen for the approximation and their orders.

3.1 PDE-constrained Least-Squares Coupling

Taking the cue from (9a), we seek uf ∈ H1(Ωf), u
0
m ∈ T (Ω0

m), and u1
m ∈ T (Ω1

m)

1. minimizing

JΓ (uf, u
0
m, u1

m) :=
∥∥uf − u0

m

∥∥2
H

1

2 (Γf0)
+

∥∥uf − u1
m

∥∥2
H

1

2 (Γf1)
+

∥∥u0
m − u1

m

∥∥2
H

1

2 (Γ01)
+

∥∥γ
(
u0
m − u1

m

)∥∥2
H

− 1

2 (Γ01)

(12)

2. and satisfying the constraint (10).

These two conditions determine a quadratic minimization problem under a linear
variational constraint where we switch the usual meaning of these two components:
here the constraint is given by the variational form of the system of PDEs (1a)
in Ωf, while the functional JΓ to be minimized is composed of the transmission
conditions not imposed by the FEM variational form.



Coupling FEM with a Multiple-Subdomain Trefftz Method 11

This problem can be rephrased as seeking a saddle point of the following La-
grangian:

L(uf, u
0
m, u1

m, pf) :=
1

2
JΓ (uf, u

0
m, u1

m)+
∫

Ωf

[(
M−1

ǫ ∇uf

)
· ∇pf − ω2µuf pf

]
dx−

∫

Γf0

γu0
m pf dS −

∫

Γf1

γu1
m pf dS −

∫

Ωf

f pf dx,

(13)
where pf ∈ H1(Ωf) is the Lagrange multiplier imposing (10).

The norms ‖·‖
H

± 1

2 (Γ�)
for any Γf0, Γf1, Γ01 are nonlocal. Thus, for practical-

ity we replace them with the L2(Γ�)-norm in (12). Given this substitution, the
necessary and sufficient optimality conditions of (13) give rise to the saddle-point
problem

Seek uf ∈ H1(Ωf), u
0
m ∈ T (Ω0

m), u1
m ∈ T (Ω1

m), pf ∈ H1(Ωf) :



aLS[
(
uf, u

0
m, u1

m

)
,
(
vf, v

0
m, v1m

)
] + bLS[

(
vf, v

0
m, v1m

)
, pf] = 0

bLS[
(
uf, u

0
m, u1

m

)
, qf] =

∫
Ωf

f qf dx

∀vf ∈ H1(Ωf), ∀v0m ∈ T (Ω0
m), ∀v1m ∈ T (Ω1

m), ∀qf ∈ H1(Ωf),

(14)

where

aLS

[ (
uf, u

0
m, u1

m

)
,
(
vf, v

0
m, v1m

) ]
:=

∫

Γf0

(
uf − u0

m

) (
vf − v0m

)
dS +

∫

Γf1

(
uf − u1

m

) (
vf − v1m

)
dS+

∫

Γ01

[(
u0
m − u1

m

) (
v0m − v1m

)
+ γ

(
u0
m − u1

m

)
γ
(
v0m − v1m

)]
dS,

(15a)

bLS

[ (
uf, u

0
m, u1

m

)
, qf

]
:=

∫

Ωf

[(
M−1

ǫ ∇uf

)
· ∇qf − ω2µuf qf

]
dx+

∫

Γf0

γu0
m qf dS +

∫

Γf1

γu1
m qf dS.

(15b)

Discretization We propose the following discretization for (14):

– uf, vf, pf, qf ∈ V n(Mf) of (11),
– u0

m, v0m ∈ T n(Ω0
m), and

– u1
m, v1m ∈ T n(Ω1

m).

3.2 Multi-Field Coupling

The multi-field domain decomposition method allows to use FEM with noncon-
forming meshes on different neighboring domains for the same boundary value
problem [6]. This is well-suited for the coupling because one can think of MMP as
FEM with special trial and test functions used on a “mesh” with two entities: Ω0

m

and Ω1
m.

The multi-field approach imposes the continuity (9a) for any Γf0, Γf1, Γ01 in a
weak sense by means of Lagrange multipliers: λf0, λf1, λ01. Note that (9a) is an
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equation connecting traces in H
1

2 (Γ�), and therefore any λ� has to belong to the

dual space H̃−
1

2 (Γ�).

Hence, the multi-field coupling can be expressed by the following Lagrangian:

L(uf, u
0
m, u1

m, λf0, λf1, λ01) := JΩf
(uf) + JΩm

(u0
m, u1

m)+
∫

Γf0

(
uf − u0

m

)
λf0 dS +

∫

Γf1

(
uf − u1

m

)
λf1 dS +

∫

Γ01

(
u0
m − u1

m

)
λ01 dS, (16)

where λf0, λf1, λ01 belong to H̃−
1

2 (Γf0), H̃
−

1

2 (Γf1), H̃
−

1

2 (Γ01), respectively.

The functional JΩf
expresses the saddle-point problem that satisfies (1a) in Ωf:

JΩf
(uf) :=

1

2

∫

Ωf

[(
M−1

ǫ ∇uf

)
· ∇uf − ω2µ

∣∣uf

∣∣2
]
dx−

∫

Ωf

f uf dx. (17a)

The functional JΩm
for u0

m, u1
m has a similar formulation, but for homogeneous

problems:

JΩm
(u0

m, u1
m) :=

1

2

∫

Ω0
m

(
ǫ−1
0

∥∥∇u0
m

∥∥2
ℓ2

− ω2µ0

∣∣u0
m

∣∣2
)
dx+

1

2

∫

Ω1
m

(
ǫ−1
1

∥∥∇u1
m

∥∥2
ℓ2

− ω2µ1

∣∣u1
m

∣∣2
)
dx. (17b)

Because ui
m ∈ T (Ωi

m), i = 0, 1, one can rewrite the volume integrals in (17b) as
boundary integrals:

1

2

∫

Ωi
m

(
ǫ−1
i

∥∥∇ui
m

∥∥2
ℓ2

− ω2µi

∣∣ui
m

∣∣2
)
dx =

1

2

∫

∂Ωi
m

γui
m ui

m dS.

(17c)

The signs of the boundary integrals in (17c) are set by choosing n pointing out-
wards from Ωi

m, i = 0, 1.

We finally obtain the following saddle-point problem:

Seek uf ∈ H1(Ωf), u
0
m ∈ T (Ω0

m), u1
m ∈ T (Ω1

m),

λf0 ∈ H̃−
1

2 (Γf0), λf1 ∈ H̃−
1

2 (Γf1), λ01 ∈ H̃−
1

2 (Γ01) :



aMF[(uf, u
0
m, u1

m), (vf, v
0
m, v1m)] + bMF[(vf, v

0
m, v1m), (λf0, λf1, λ01)] =

∫
Ωf

f vf dx

bMF[(uf, u
0
m, u1

m), (χf0, χf1, χ01)] = 0

∀vf ∈ H1(Ωf), ∀v0m ∈ T (Ω0
m), ∀v1m ∈ T (Ω1

m),

∀χf0 ∈ H̃−
1

2 (Γf0), ∀χf1 ∈ H̃−
1

2 (Γf1), ∀χ01 ∈ H̃−
1

2 (Γ01),
(18)
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where

aMF

[(
uf, u

0
m, u1

m

)
,
(
vf, v

0
m, v1m

)]
:=

∫

Ωf

[(
M−1

ǫ ∇uf

)
· ∇vf − ω2µuf vf

]
dx

+

∫

∂Ω0
m

γu0
m v0m dS +

∫

∂Ω1
m

γu1
m v1m dS,

(19a)

bMF

[(
uf, u

0
m, u1

m

)
,
(
χf0, χf1, χ01

)]
:=

∫

Γf0

(
uf − u0

m

)
χf0 dS +

∫

Γf1

(
uf − u1

m

)
χf1 dS

+

∫

Γ01

(
u0
m − u1

m

)
χ01 dS. (19b)

Discretization For the discretization of (18), we suggest uf, vf ∈ V n(Mf) of (11),
u0
m, v0m ∈ T n(Ω0

m), and u1
m, v1m ∈ T n(Ω1

m).

The discretization of λf0, λf1, λ01 ∈ H̃−
1

2 (Γ�) is a topic debated in the lit-
erature [30, Section 4]. In the spirit of mortar element methods, we opt for the
Dirichlet traces on each Γ� of the trial space used to discretize one of the neigh-
boring domains [30, p. B426]:

– for λfi, i = 0, 1, the Dirichlet traces on each Γfi of the elements in the piecewise-
linear space V n(Mf) ⊂ H1(Ωf);

– for λ01, the Dirichlet traces on Γ01 of the multipoles in either T n(Ω0
m) or

T n(Ω1
m).

3.3 Discontinuous Galerkin

As for the multi-field coupling (Section 3.2), we again treat each MMP discretiza-
tion as a finite element method with special functions. Here we exploit the other
main approach for imposing weak continuity on nonconforming meshes, which is
the Discontinuous Galerkin (DG) method [2].

Following this idea, the coupling can be expressed as a discrete stationary
problem for the following Lagrangian:

L(un
f , u

n,0
m , un,1

m ) := JΩf
(un

f ) + JΩm
(un,0

m , un,1
m ) +

∫

Γf0

(
un
f − un,0

m

)
Pn(un

f , u
n,0
m ) dS

+

∫

Γf1

(
un
f − un,1

m

)
Pn(un

f , u
n,1
m ) dS +

∫

Γ01

(
un,0
m − un,1

m

)
Pn(un,0

m , un,1
m ) dS,

(20)
where JΩf

and JΩm
are the same as in (17a) and (17b). un

f ∈ V n(Mf) of (11),
un,0
m ∈ T n(Ω0

m), and un,1
m ∈ T n(Ω1

m).

Depending on the choice of the operator Pn : H
1

2 (Γ�)×H
1

2 (Γ�) → H̃−
1

2 (Γ�),
we obtain different DG approaches. We follow the (symmetric) Interior Penalty
DG method [34]:

Pn(u, v) := −n · ǫ−1∇ (u+ v) + η ǫ−1 (u− v) . (21)
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– ǫ(x) : R
2 → C is the mean of material parameters ǫ in Ωf and Ωi

m when
integrating on each Γfi, i = 0, 1:

ǫ(x) :=
ǫ(x) + ǫi

2
∀x ∈ Γfi, (22)

and of ǫ in Ω0
m and Ω1

m when integrating on Γ01:

ǫ(x) :=
ǫ0 + ǫ1

2
∀x ∈ Γ01. (23)

It is implicitly assumed that Mǫ(x) = ǫ I on Γfi from the side of Ωf.
– η ∈ R is a penalty parameter that needs to be assigned heuristically. On any

Γfi, i = 0, 1, η should be proportional to N i
m/h, where N i

m is the number of
degrees of freedom of T n(Ωi

m) and h ∈ R the meshwidth of Mf restricted to
Γfi. On Γ01, η should be proportional to N0

mN1
m. Both choices are inspired by

η ∼ p2/h, setting used in case of polynomial DG-FEM [35, p. 229] (with p ∈ N
∗

polynomial degree).

Finding the stationary point of (20) leads to the discrete problem

Seek un
f ∈ V n(Mf), u

n,0
m ∈ T n(Ω0

m), un,1
m ∈ T n(Ω1

m) :

anDG

[ (
un
f , u

n,0
m , un,1

m

)
,
(
vnf , v

n,0
m , vn,1

m

) ]
=

∫

Ωf

f vnf dx

∀vnf ∈ V n(Mf), ∀vn,0
m ∈ T n(Ω0

m), ∀vn,1
m ∈ T n(Ω1

m),

(24)

where we define the symmetric bilinear form anDG(·, ·) as

anDG

[ (
un
f , u

n,0
m , un,1

m

)
,
(
vnf , v

n,0
m , vn,1

m

) ]
:=

∫

Ωf

[(
M−1

ǫ ∇un
f

)
· ∇vnf − ω2µun

f vnf

]
dx−

∑

i=0,1

∫

Γfi

{[
γ
(
un
f + un,i

m

)] (
vnf − vn,i

m

)
+

(
un
f − un,i

m

) [
γ
(
vnf + vn,i

m

)]}
dS+

∑

i=0,1

∫

Γfi

2 η
(
un
f − un,i

m

) (
vnf − vn,i

m

)
dS +

∑

i=0,1

∫

∂Ωi
m

γui
m vim dS−

∫

Γ01

{[
γ
(
un,0
m + un,1

m

)] (
vn,0
m − vn,1

m

)
+

(
un,0
m − un,1

m

) [
γ
(
vn,0
m + vn,1

m

)]}
dS+

∫

Γ01

2 η
(
un,0
m − un,1

m

)(
vn,0
m − vn,1

m

)
dS.

(25)

4 Numerical Results

Throughout we use piecewise-linear Lagrangian finite elements, i.e. V n(Mf) =
S0
1 (Mf) of (11), on triangular meshes Mf of Ωf. To study the convergence we

employ uniform h-refinement of Mf and p-refinement of the Trefftz approxima-
tions, in the sense that we increase the number of multipoles. The p-refinement
of the multipoles forming T n(Ωi

m), i = 0, 1, is linked to the h-refinement of Mf;
specifically, to the logarithm of the number of intersections of the mesh entities of
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Mf on Γfi. This choice is motivated by the exponential convergence of the MMP
approximation error (see Section 2.2).

We monitor the following errors:

– The volume errors in the bounded domains Ωf, Ω
1
m. These are the relative

L2(Ωf)- and L2(Ω1
m)-errors of the FEM and MMP (in Ω1

m) approximations
compared to the reference solution u, i.e.

∥∥∥∥∥∥
u−

Nf∑

j=1

αj
f v

j
f (x)

∥∥∥∥∥∥
L2(Ωf)

/
‖u‖L2(Ωf) and

∥∥∥∥∥∥
u−

N1

m∑

j=1

αj,1
m vj,1m (x)

∥∥∥∥∥∥

2

L2(Ω1
m
)

/
‖u‖L2(Ω1

m
) ,

(26)

with αj
f , α

j,1
m ∈ C, vjf ∈ V n(Mf), vj,1m ∈ T n(Ω1

m), and Nf, N
1
m numbers of

degrees of freedom of the discrete spaces V n(Mf) and T n(Ω1
m), respectively.

On the bounded MMP domain Ω1
m we define an auxiliary volume mesh for the

numerical quadrature of the error (26). However, on top of Mf, only a mesh
on the 1-dimensional hypersurface Γ01 is really necessary for the coupling, in
order to compute the numerical integrals on that interface.

– The boundary error on ∂Ω0
m = Γf0 ∪ Γ01, union of the (bounded) interfaces

between the unbounded domain Ω0
m and the other (bounded) domains Ωf, Ω

1
m.

This is the relative L2(∂Ω0
m)-error of the MMP approximation in Ω0

m compared
to the reference solution.

The sum of the relative L2(Ωf)- and L2(Ω1
m)-errors and the relative L2(∂Ω0

m)-error
is the total relative error of the coupling.

We can ignore the impact of numerical integration for FEM because we use a
local Gaussian quadrature rule that is exact for polynomials of degree 2 (order 3).

Implementation Meshes were generated using Gmsh v4.4.1 [16]. Our code is written
in C++14, using C++11 multithreading for parallelization. We use Eigen v3.3.7 [19]
for linear algebra and HyDi [7] for the FEM component. The PARDISO v6.0 solver
[32] provides the sparse LU decomposition to solve the systems of the coupling,
characterized by nontrivial sparsity patterns.

4.1 2D Scattering Problem with Exact Solution

We solve ∇·
(
ǫ−1∇u

)
+ω2µu = 0 in R

2 subject to the Sommerfeld radiation con-
dition (1b) with piecewise-constant permittivity ǫ = 100 ǫ0 in a unit disk centered
in the origin, which we dub Ω•, and ǫ = ǫ0 = 8.85 · 10−12 Fm−1 (permittivity
of free space) elsewhere. µ and ω are everywhere equal to µ0 = 4π · 10−7 Hs−1

(permeability of free space) and 23.56 · 107 rad s−1, respectively. Wavenumbers are
therefore k• = 10 k0 in Ω• and k0 = 0.79 radm−1 elsewhere.

We assume that u is subject to an excitation by an incident plane wave prop-
agating along the x-axis outside Ω•, i.e.

u = uincid + uscatt in R
2 \Ω•, uincid := exp(ık0x), (27)



16 Daniele Casati, Ralf Hiptmair

where uscatt represents the unknown scattered potential and x in uincid the first
Cartesian coordinate. This problem has an exact solution that can be derived using
Mie theory [5, Chapter 4, pp. 82–101] in 2D:

u = uincid + uscatt =
∞∑

ℓ=−∞

ıℓJℓ(k0r)e
ıℓθ +

∞∑
ℓ=−∞

AℓH
(1)
ℓ (k0r)e

ıℓθ in R
2 \Ω•,

u = urefr =
∞∑

ℓ=−∞

BℓJℓ(k•r)e
ıℓθ in Ω•.

(28)
Here uincid is the Jacobi–Anger expansion of the exciting plane wave [13, p. 33,

(2.46)], given Jℓ and H
(1)
ℓ Bessel and Hankel functions of the first kind and r ∈

[0,∞), θ ∈ [0, 2π) canonical polar coordinate system in R
2 (see Section 2.1). urefr

is the unknown refracted potential.
Coefficients Aℓ, Bℓ in (28) are

Aℓ = ıℓ
ǫ−1
• k•Jℓ(k0r•)J

′

ℓ(k•r•)− ǫ−1
0 k0Jℓ(k•r•)J

′

ℓ(k0r•)

ǫ−1
0 k0H

′(1)
ℓ (k0r•)Jℓ(k•r•)− ǫ−1

• k•H
(1)
ℓ (k0r•)J ′

ℓ(k•r•)
,

Bℓ =
AℓH

(1)
ℓ (k0r•) + ıℓJℓ(k0r•)

Jℓ(k•r•)
.

(29)

r• is the radius of the disk Ω•, here = 1m.
For our numerical tests, we consider the terms in the expansions of (28) for

ℓ = 0, . . . , 20, identify Ω• with Ωf and R
2 \ Ω• with a single MMP domain Ωm,

and therefore set Γ := ∂Ωf ∩ ∂Ωm on the physical boundary of the disk. Given
that we use triangular meshes, Γ is actually a polygonal approximation of a circle.
T n(Ωm) is generated by a single multipole expansion centered in the origin.
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Fig. 6: h-refinement log-log error plots for 2D Helmholtz equation with exact
solution. Parameters are ǫ• = 100 ǫ0 and ω = 23.56 · 107 rad s−1.

Figure 6 shows h-refinement convergence plots for all coupling approaches,
which yield very similar results. We can clearly see algebraic convergence of the
FEM and MMP errors with rate 2.
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Fig. 7: Meshwidth h vs. MMP degrees of freedom for 2D Helmholtz equation with
exact solution: total relative error. The h- and error-dimensions are in logarithmic
scale. Parameters are ǫ• = 100 ǫ0 and ω = 23.56 · 107 rad s−1.

Figure 7 shows surface plots of the total relative L2-error for all coupling
approaches. The error decreases with h (algebraic convergence) and is generally
independent from the number of multipoles: the FEM error dominates. This is
a consequence of the exponential convergence of MMP (Section 2.2): the exact
solution is so easy to approximate in the MMP domain that it can already be
represented by a multipole expansion of the lowest considered order, which is 8,
leading to 17 terms of the expansion – see (3).

We have also considered different material parameters, leading to similar con-
vergence rates. For example, Figure 8 shows h-refinement convergence plots for
ǫ• = 2.5281 ǫ0 and ω = 23.56 · 108 rad s−1, which entails k• = 1.59 k0 and k0 =
7.86 radm−1. Datapoints are slightly noisier than before because we consider a
higher value for the frequency ω, which causes the pollution effect for FEM. How-
ever, with these parameters one can observe an interesting physical phenomenon.
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Fig. 8: h-refinement log-log error plots for 2D Helmholtz equation with exact
solution. Parameters are ǫ• = 100 ǫ0 and ω = 23.56 · 108 rad s−1.
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Fig. 9: Magnitude of the Poynting vector for ǫ• = 2.5281 ǫ0 and ω =
23.56 · 108 rad s−1. The beam on the circumference of the disk is the photonic
nanojet.
Numerical solution obtained with the PDE-constrained least-squares coupling.

4.1.1 Photonic Nanojet

Parameters r• = 1m, ǫ• = 2.5281 ǫ0, µ• = µ0, and ω = 23.56 · 108 rad s−1 permit
to observe a photonic nanojet [22, p. 1985, Fig. 4.a] if one considers the full plane
wave as excitation. This can be seen in Figure 9, which illustrates the magnitude of
the Poynting vector [24, p. 259, (6.109)] for a simulation with the PDE-constrained
least-squares coupling. The other coupling schemes yield comparable results.

4.1.2 Two MMP Domains

Parameters are still r• = 1m, ǫ• = 2.5281 ǫ0, µ• = µ0, and ω = 23.56 ·108 rad s−1.
Similarly to the numerical example of Section 2.2, we split the disk Ω• into two
halves, one modeled by FEM (Ωf), the other by MMP (Ω1

m): the coupling interface
Γf1 is therefore artificial. MMP also models the complement R

2 \ Ω• (Ω0
m): the

coupling boundaries Γf0 and Γ01, on the two halves of the circle, correspond to the
physical discontinuity of ǫ. The geometry is shown in Figure 10a, with a sample
mesh in Figure 10b.

As excitation we consider terms for ℓ = 0, . . . , 20 from the expansion of a plane
wave given by (28).
To approximate in Ω1

m, a single multipole expansion with Bessel functions as
radial dependence is centered in the origin (Bessel functions of the first kind have
no singularities in that point, which lies on ∂Ω1

m). To approximate in Ω0
m, a single

multipole expansion with Hankel functions as radial dependence is also centered
in the origin.
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(a) The geometry represents Ωf, Ω
0
m, and

Ω1
m. The disk of radius 1 is Ω•, the area

where ǫ 6= ǫ0. The vertical segment split-
ting the disk in half represents the artifi-
cial coupling interface Γf1, while the two
halves of the circle represent the physical
coupling interfaces Γf0 and Γ01.

(b) 2D mesh of Ωf and Ω1
m (the latter

meshed for numerical quadrature of the er-
ror). The blue mesh covers Ωf, the purple
mesh Ω1

m.

Fig. 10: Geometry and sample mesh of the FEM domain Ωf and the MMP domains
Ω0

m, Ω1
m for simulations with exact solution.
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Fig. 11: h-refinement log-log error plots for 2D Helmholtz equation with exact
solution solved with two MMP domains. A single multipole expansion is used for
each MMP domain. Parameters are ǫ• = 2.5281 ǫ0 and ω = 23.56 · 108 rad s−1.

Figure 11 shows h-refinement convergence plots for all coupling approaches,
which yield very similar results except for the multi-field coupling with λn

01 dis-
cretized by T n(Ω0

m): there is no convergence for the most refined mesh. This is
because the number of degrees of freedom of T n(Ω0

m) for that mesh is not large
enough to properly impose the continuity between Ω0

m and Ω1
m.
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In all the other plots we can clearly see algebraic convergence of the FEM and
MMP errors with rate ∼ 1.7.

We have also considered a different configuration of multipoles. To approximate
inΩ1

m, multipole expansions of order 1 are uniformly positioned on a circle of radius
1.5 centered in (0.5, 0)⊤. To approximate in Ω0

m, multipole expansions of order 1
are uniformly positioned on a circle of radius 0.5 centered in the origin.
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Fig. 12: h-refinement log-log error plots for 2D Helmholtz equation with exact solu-
tion solved with two MMP domains. Many multipole expansions on circles are used
for each MMP domain. Parameters are ǫ• = 2.5281 ǫ0 and ω = 23.56 · 108 rad s−1.

Figure 12 shows the corresponding h-refinement convergence plots, which look
almost the same as Figure 11 but without any problem with the multi-field coupling
for λn

01 ∈ T n(Ω0
m).

4.2 2D Scattering Problem with Triple-Point Singularities

We consider different values of ǫ in each half of the disk Ω•. Specifically, we take
ǫ+ = 4 ǫ0 in the left side of Ω• and ǫ− = 2.5281 ǫ0 in the right side. ω is still
= 23.56 · 108 rad s−1: wavenumbers are k+ = 2 k0 and k− = 1.59 k0. Hence, at the
extremes of the segment splitting Ω• we have triple-point singularities.

We fully surround the points with TPS by a mesh, and therefore also model
with FEM a small region on the other side of the physical discontinuity of Ω• and
an “airbox” in R

2 \Ω•. The coupling interfaces Γf0 and Γf1 are therefore auxiliary;
only the interface Γ01 is physical. The FEM mesh is also locally refined towards
the points with TPS: the meshwidth goes like h0+ r3 (algebraically-graded mesh),
with h0 minimum meshwidth and r distance from the closest triple point. The
geometry is shown in Figure 13a, with a sample mesh in Figure 13b.

Given the TPS, there is no exact solution: as reference we rely on the numerical
solution provided by a mesh substantially more refined than the finest mesh used
in the convergence study.
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(a) The geometry represents Ωf, Ω
0
m, and

Ω1
m. The disk of radius 1 is Ω•: in one half,

ǫ = ǫ+; in the other, = ǫ−. In the rectangle
outside the disk, ǫ = ǫ0.

(b) 2D mesh of Ωf and Ω1
m (the latter

meshed for numerical quadrature of the
error). The blue, pink, and green meshes
cover Ωf and are characterized by parame-
ters ǫ+, ǫ−, and ǫ0, respectively. The pur-
ple mesh covers Ω1

m and is characterized
by ǫ−.

Fig. 13: Geometry and sample mesh of the FEM domain Ωf and the MMP domains
Ω0

m, Ω1
m for simulations with triple-point singularities.

To approximate in Ω1
m, multipole expansions of order 1 with Bessel functions as

radial dependence are uniformly positioned on a circle of radius 1.5 centered in
(0.5, 0)⊤. To approximate in Ω0

m, multipole expansions of order 1 with Hankel
functions as radial dependence are uniformly positioned on a circle of radius 0.5
centered in the origin.

Figure 14 shows DoF-refinement convergence plots for all coupling approaches.
The PDE-constrained and DG-based coupling approaches have similar algebraic
convergence patterns, but the datapoints of the multi-field coupling with multiplier
λn
01 ∈ T n(Ω0

m) or T n(Ω1
m), while they converge, are more irregular.

We repeat this experiment with the geometry shown in Figure 15a, where only
the points with TPS and their immediate surrounding regions are modeled with
FEM, so to minimize the meshed region. A sample mesh is shown in Figure 15b.

To approximate in Ω1
m and Ω2

m, multipole expansions of order 1 are uniformly
positioned on two circles of radius 1.5 centered in (−0.5, 0)⊤ and (0.5, 0)⊤, re-
spectively. To approximate in Ω0

m, multipole expansions of order 1 are uniformly
positioned on a circle of radius 0.5 centered in the origin.

Figure 16 shows DoF-refinement convergence plots for the PDE-constrained
and DG-based coupling approaches: we can still guess algebraic convergence.
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Fig. 14: DoF-refinement log-log error plots for 2D Helmholtz equation with TPS
solved with two MMP domains (geometry in Figure 13a). Parameters are ǫ+ = 4 ǫ0,
ǫ− = 2.5281 ǫ0, and ω = 23.56 · 108 rad s−1.

4.3 Conclusions

Compared to other hybrid methods, such as FEM coupled with the Boundary
Element Method (BEM), MMP presents the advantages of

– a simpler assembly process, as there are no singular integrals, and
– an exponentially-convergent approximation error given loose requirements on

the positions of the multipoles, which can be proven rigorously for 2D Helmholtz
(Section 2.2). As long as the coupling boundaries are far from sources and field
singularities of the problem, the FEM–MMP coupling is also indifferent to-
wards where the multipoles are placed, and the exponential convergence of the
MMP approximation error is preserved.

– Furthermore, the locally-supported piecewise-polynomial basis functions of
boundary element methods [31, p. 183, Chapter 4] do not work well for high-
frequency scattering problems due to the pollution effect, which is not a prob-
lem for the oscillating multipoles of MMP (even if, in the coupling, the FEM
approximation would still be affected by pollution).
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(a) The geometry represents Ωf, Ω
1
m, and

Ω2
m. The disk of radius 1 is Ω•: in one half,

ǫ = ǫ+; in the other, = ǫ−. In the small
squares outside the disk, ǫ = ǫ0.

(b) 2D mesh of Ωf, Ω
1
m, and Ω2

m (the last
two meshed for numerical quadrature of
the error). The light blue, pink, and green
meshes cover Ωf and are characterized by
parameters ǫ+, ǫ−, and ǫ0, respectively.
The blue mesh covers Ω1

m and is charac-
terized by ǫ+, the purple mesh covers Ω2

m
and is characterized by ǫ−.

Fig. 15: Geometry and sample mesh of the FEM domain Ωf and the (bounded)
MMP domains Ω1

m and Ω2
m for simulations with triple-point singularities.
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Fig. 16: DoF-refinement log-log error plots for 2D Helmholtz equation with TPS
solved with three MMP domains (geometry in Figure 15a). Parameters are ǫ+ =
4 ǫ0, ǫ− = 2.5281 ǫ0, and ω = 23.56 · 108 rad s−1.

At the same time, similarly to BEM [14], MMP typically leads to ill-conditioned
dense blocks in the coupling matrices, as multipoles can be affected by near-linear
dependence. Stability may then be an issue.

To overcome the near-linear interdependence, multipoles can be made orthog-
onal by a change of basis [1]. However, we point out that, in any case, the impact
of this ill-conditioning of the MMP contribution to the final linear system is man-
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ageable due to the low number of degrees of freedom required for MMP, given its
exponential convergence. This is seen in Section 2.2 when comparing convergence
results achieved with two configurations of multipoles.

Another issue with MMP is the choice of the discrete Trefftz space; in partic-
ular, the placement of multipoles. When the unknown is difficult to approximate,
e.g., when close to singularities, low-dimensional Trefftz spaces may be hard to
find.

Coupling MMP with FEM is then a way to overcome this issue. As a matter of
fact, by truncating the mesh at an artificial boundary that does not coincide with
any physical discontinuity, MMP can be applied to a region where the unknown
is sufficiently easy to approximate (more formally, where it has an analytic exten-
sion) that heuristics does not have much impact and exponential convergence is
preserved. Results in Section 4.2, where the p-refinement of MMP is linked to the
logarithm of the h-refinement of FEM, aim to convey this point.

Among the three coupling approaches employed there (Sections 3.1 to 3.3),
we recommend the DG-based coupling thanks to its reliability and lower number
of degrees of freedom compared to the PDE-constrained coupling. The multi-field
coupling has a similar amount of degrees of freedom to the DG-based one, but can
have stability issues caused by the nonconforming discretization of its Lagrange
multipliers.

A future paper [11] will present the FEM–MMP coupling with multiple MMP
domains applied to vector scattering problems in R

3 (time-harmonic Maxwell’s
equations).
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