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We consider the electric field integral equation (EFIE) modeling the scattering of time-
harmonic electromagnetic waves at a perfectly conducting screen. When discretizing the
EFIE by means of low-order Galerkin boundary methods (BEM), one obtains linear
systems that are ill-conditioned on fine meshes and for low wave numbers k. This makes
iterative solvers perform poorly and entails the use of preconditioning.

In order to construct optimal preconditioners for the EFIE on screens, the authors
recently derived compact equivalent inverses of the EFIE operator on simple Lipschitz
screens in [R. Hiptmair and C. Urzúa-Torres, Compact Equivalent Inverse of the

Electric Field Integral Operator on Screens, Report 2018-46, Seminar for Applied Math-
ematics, ETH Zürich, 2018]. This paper elaborates how to use this result to build an
optimal operator preconditioner for the EFIE on screens that can be discretized in a
stable fashion. Furthermore, the stability of the preconditioner relies only on the sta-
bility of the discrete L

2 duality pairing for scalar functions, instead of the vectorial
one. Therefore, this novel approach not only offers h-independent and k-robust condi-
tion numbers, but it is also easier to implement and accommodates non-uniform meshes
without additional computational effort.
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1. Introduction

We consider time-harmonic electromagnetic scattering at perfectly conducting elec-

trically conducting and infinitely thin bounded objects, so-called screens.

For a simple Lipschitz screen Γ ⊂ R
3 and a given wave number k > 0, the
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corresponding exterior boundary value problem is : Find Esc such that





curl curlEsc − k
2Esc = 0, in R \ Γ

n× (Esc × n) = −n× (Ein × n) on Γ

lim
|x|→∞

|x|
(
curlEsc(x)× x

|x| − ikEsc(x)
)
= 0

, (1.1)

where Esc denotes the scattered field and Ein the incident one.

This electromagnetic scattering problem can be modelled via the electric field

integral equation (EFIE)8

Ak ξ := Vk ξ +
1

k2
gradΓ Vk divΓ ξ = g. (1.2)

Here Vk is the weakly singular boundary integral operator belonging to the

Helmholtz equation ∆u + k
2u = 0, Vk its extension to surface vector fields, and

g = −n × (Ein × n)|Γ. The precise definition of simple Lipschitz screens and the

Sobolev spaces related to the EFIE will be introduced in Section 2.

Existence and uniqueness of solutions for the EFIE have been proved for closed

surfaces and on screens. Moreover, the sesqui-linear form arising from Ak is con-

tinuous and T-coercive, that is, it satisfies a generalized G̊arding inequality1,8,12.

Additionally, one can show that for sufficiently smooth screens Γ, solutions of (1.2)

blow-up like the reciprocal square-root of the distance to ∂Γ.

In order to solve the EFIE, we discretize it by means of low-order Galerkin

boundary element methods (BEM). This leads to linear systems that are ill-

conditioned on fine meshes. Moreover, the resulting Galerkin matrix Ak

h will also

suffer from the so-called low-frequency break-down. Indeed, its condition number is

bounded by3

κ(Ak

h) ≤
cA
h

(
1 +

1

hk2

)
, (1.3)

with cA > 0 a constant independent of h and k.

Therefore, these two effects make iterative solvers perform poorly and enforce

the use of preconditioning that is robust with respect to the meshwidth h and also

for k → 0.

Several preconditioning approaches have been proposed for the EFIE in the

literature, see for example Ref. 3 and the references therein. However, many of

these strategies do not work in the case of screens, and those that do, require spe-

cial treatment and do not achieve h-independent condition numbers when dealing

with screens. A popular technique on closed surfaces is the so-called Calderón pre-

conditioning, which builds on Calderón identities and leads to mesh independent

condition numbers2. Unfortunately, these identities do not hold on screens. Indeed,

when using them in the screen setting, we obtain condition numbers that still grow

like log(h), where h is the meshwidth. It is worth noting that this result is a con-

sequence of the operators’ mapping properties. Therefore, the construction of a
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suitable preconditioner for the EFIE on screens has to rely on different identities

that actually hold in the energy trace spaces involved.

Moreover, since in the screen setting the solution features edge singularities,

it is important that the preconditioner can also handle meshes refined towards

the boundary of the screen. This is another aspect that the usual Calderón

preconditioning2 cannot offer, as it requires a div-conforming dual finite element

space such that the Galerkin matrix of the duality pairing is well conditioned. The

existing technique resorts to so-called Buffa-Christiansen basis functions9, which en-

sure this property on uniform meshes. However, the resulting duality pairing matrix

becomes ill-conditioned as the ratio of largest and smallest element size hmax/hmin

increases, and demands additional diagonal scaling in order to handle non-uniform

meshes2.

In this article, drawing on Ref. 19, we construct a new operator preconditioner

for the EFIE on screens based a compact equivalent inverse of the EFIE operator,

see Section 3. In particular, in Section 4 we develop a stable boundary element

discretization. We rely on the same dual finite element space used in the case of the

Laplacian and avoid dual vectorial basis functions. The extensive numerical exper-

iments reported in Sections 5 and 6 provide ample evidence that our approach not

only ensures h-independent and k → 0-robust fast convergence of the GMRES iter-

ative solver, but it works for non-uniform meshes without additional computational

effort.

2. Preliminaries

2.1. Geometry

In this article, we call a (simple) Lipschitz screen a compact orientable two-

dimensional Lipschitz manifold Γ ⊂ R
3 with boundary ∂Γ, which is the image

of the unit disk D := {x ∈ R
3 : x3 = 0 and ‖x‖ < 1} under a bi-Lipschitz mapping

of R3. It is worth noting that Γ need not be smooth; shapes with corners and kinks

are admitted.

We point out that the simple Lipschitz screens under consideration are a special

case of the Lipschitz screens introduced in Ref. 8, and, of course, of the even more

general class of screens defined in Ref. 13.

2.2. Trace Operators and Trace Spaces

We adopt standard notations and definitions for the Sobolev spaces22 Hs(Γ) and

H̃s(Γ), −1 ≤ s ≤ 1, on the simple Lipschitz screen Γ. Bold font will mark corre-

sponding Sobolev spaces Hs(Γ) and H̃s(Γ) of vector fields on Γ. We point out that

in the case of screens the vector Sobolev spaces satisfy duality relations analogous

to the scalar case, i.e.

H̃−1/2(Γ) ≡
(
H1/2(Γ)

)′

and H−1/2(Γ) ≡
(
H̃1/2(Γ)

)′

, (2.1)
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with L2(Γ) as pivot space. In this paper, 〈· , ·〉Γ denotes both the sesqui-linear

duality pairing extending the L2(Γ)-inner product, and also the (vectorial) duality

pairing extending the L2(Γ) inner product.

The variational EFIE (2.13) is set in a jump trace space for H(curl,R3 \ Γ). In

this section we provide a very brief review of these traces spaces (for further details

refer to References 10, 11, 12, 8, 13). We begin by recalling the space of tangential

square-integrable vector fields on the simple Lipschitz screen Γ

L2
t (Γ) := {u ∈ L2(Γ) |u · n = 0 a.e. on Γ}, (2.2)

endowed with the L2(Γ)-inner product. We define the tangential trace γt as the

operator that suitably extends

γt(U) = n× (U|Γ × n), U ∈ (C∞
0 (R3))3. (2.3)

We consider the following tangential trace space

H
1/2
t (Γ) := γt(H

1(R3)), (2.4)

together with its dual space (relying on L2
t (Γ) as pivot space)

H̃
−1/2
t (Γ) := (H

1/2
t (Γ))

′
.

Finally, we introduce the space of divΓ-conforming tangential surface vector fields

with vanishing in-Γ normal component on ∂Γ defined in Ref 8 (there denoted as

X)

H̃−1/2(divΓ,Γ) :=
{
η ∈ H̃

−1/2
t (Γ) | divΓ η ∈ H̃−1/2(Γ) and

〈η , gradΓ v〉Γ + 〈divΓ η , v〉Γ = 0 ∀v ∈ C∞
0 (R3)|Γ

}
. (2.5)

2.3. Hodge Decomposition of H̃−1/2(divΓ,Γ)

We consider the Laplace-Beltrami operator with Neumann boundary conditions ∆N
Γ

in the variational sense and define the space

H(Γ) := {v ∈ H1
∗ (Γ) : ∆N

Γ v ∈ H̃−1/2(Γ)}, (2.6)

where H1
∗ (Γ) := {v ∈ H1(Γ) : 〈v , 1〉Γ = 0}.

Then, we introduce the Hodge decomposition10,11,12 as the following direct de-

composition of the trace space H̃−1/2(divΓ,Γ):

H̃−1/2(divΓ,Γ) = Xz(Γ)
⊕

X⊥(Γ), (2.7)

with closed subspaces

Xz(Γ) := {v ∈ H̃−1/2(divΓ,Γ) : divΓ v = 0} (2.8)

and

X⊥(Γ) := gradΓ H(Γ). (2.9)
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As a direct decomposition, the Hodge decomposition induces projections

Pz : H̃−1/2(divΓ,Γ) → Xz(Γ) , P⊥ : H̃−1/2(divΓ,Γ) → X⊥(Γ)

which satisfy Pz +P⊥ = Id and Pz P⊥ = 0.

Thanks to the trivial topology of Γ, we have the representation by scalar poten-

tials

Xz(Γ) = curlΓ(H̃
1/2(Γ)). (2.10)

Furthermore, the bijectivity of the mapping curlΓ : H̃1/2(Γ) → Xz(Γ) allows us to

view this formula as a parameterization of Xz(Γ) over H̃1/2(Γ). From Sect. 2.2 in

Ref. 19 we also know a parameterization of X⊥(Γ). In order to express it, we define

a divergence lifting L : H̃
−1/2
∗ (Γ) → X⊥(Γ) as a right inverse of divΓ in the sense

that divΓ ◦ L = Id, through

L := − gradΓ ◦(−∆N
Γ )

−1
, (2.11)

where (−∆N
Γ )

−1
: H̃−1/2(Γ) ⊂ H̃−1(Γ) → H(Γ) ⊂ H1(Γ) is to be understood in

variational sense. By means of the lifting operator L, we find the following repre-

sentation

X⊥(Γ) = − gradΓ H(Γ) = L

(
H̃

−1/2
∗ (Γ)

)
, (2.12)

where H̃
−1/2
∗ (Γ) := {ϕ ∈ H̃−1/2(Γ) : 〈ϕ , 1〉Γ = 0}.

2.4. Electric Field Integral Equation on Screens

For a simple Lipschitz screen Γ the Electric Field Integral Equation (EFIE) in

variational form reads: For fixed wave number k > 0 and given g ∈ (H̃−1/2(divΓ,Γ))
′

seek ξ ∈ H̃−1/2(divΓ,Γ) such that 8

ak(ξ,η) := 〈Vk ξ , η〉Γ −
1

k2
〈Vk divΓ ξ , divΓ η〉Γ = 〈g , η〉Γ , (2.13)

for all η ∈ H̃−1/2(divΓ,Γ).

As already mentioned in the introduction, Vk : H̃−1/2(Γ) → H1/2(Γ) is the

weakly singular boundary integral operator for the Helmholtz operator ∆+ k
2, and

Vk : H̃
−1/2(Γ) → H1/2(Γ) its extension to surface vector fields.

2.5. Compact Equivalent Inverse of the EFIE

Let V0 : H̃−1/2(Γ) → H1/2(Γ) and W0 : H̃1/2(Γ) → H−1/2(Γ) be the weakly and

hypersingular boundary integral operators on Γ spawned by the Laplacian −∆. In

Ref. 19 we introduced the following operators,

Bz := curlΓ ◦W
−1
0 ◦(curlΓ)

∗ : (H̃−1/2(divΓ,Γ))
′ → Xz(Γ), (2.14)
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and

B⊥ := L ◦V−1
0 ◦ L∗ : (H̃−1/2(divΓ,Γ))

′ → X⊥(Γ), (2.15)

and we defined for k > 0

Bk := Bz −k
2
B⊥ : (H̃−1/2(divΓ,Γ))

′ → H̃−1/2(divΓ,Γ). (2.16)

We are interested in this operator as it is a compact equivalent inverse of the EFIE

operator.

Theorem 2.1 (Theorem 3.2 in Ref. 19). For k > 0, the operator Bk from (2.16)

is continuous and satisfies

Bk Ak = Id+Ck : H̃−1/2(divΓ,Γ) → H̃−1/2(divΓ,Γ), (2.17)

with Ck a compact operator, uniformly bounded for k → 0.

The relationship (2.17) suggests that Bk is a promising preconditioner for Ak.

Remark 2.1. If one replaces W−1
0 and V

−1
0 in Bz and B⊥ by compact equivalent

inverses of W0 and V0, the resulting Bk still satisfies (2.17).

The operator Bk from (2.16) is invertible. To see this consider the continuous

sesqui-linear form on H̃−1/2(divΓ,Γ)

dk(ξ,η) := 〈V0 Pz ξ , Pz η〉Γ −
1

k2
〈V0 divΓ ξ , divΓ η〉Γ . (2.18)

Lemma 2.1. The sesqui-linear form dk satisfies the inf-sup condition

∃cD = cD(k) > 0 : sup
ξ∈H̃−1/2(divΓ,Γ)

|dk(ξ,η)|

‖ξ‖
H̃−1/2(divΓ,Γ)

≥ cD ‖η‖
H̃−1/2(divΓ,Γ)

(2.19)

for all η ∈ H̃−1/2(divΓ,Γ), and

dk(Bk g,η) = 〈g , η〉Γ , (2.20)

for all g ∈ (H̃−1/2(divΓ,Γ))
′, η ∈ H̃−1/2(divΓ,Γ).

Proof. For ξ ∈ H̃−1/2(divΓ,Γ), the inf-sup condition follows from choosing the

“candidate function” η = Pz ξ − k
2
P⊥ ξ.

To confirm the second assertion, we appeal to the identity

dk((Bz −k
2
B⊥)g,η) = 〈V0 Bz g , Pz η〉Γ +

〈
V0 divΓ LV

−1
0 L

′ g , divΓ P⊥ η
〉
Γ

=
〈
V0 curlΓ W

−1
0 curl′Γ g , Pz η

〉
Γ
+
〈
L
′ g , divΓ P⊥ η

〉
Γ
.

(Primes tag adjoint operators.) Now, using that Pz η = curlΓ ϕz for some ϕz ∈

H̃1/2(Γ) and the integration by parts formula for W0 from Ref. 25, Corollary 3.3.24,

we further get

dk((Bz −k
2
B⊥)g,η) =

〈
V0 curlΓ W

−1
0 curl∗Γ g , curlΓ ϕz

〉
Γ
+ 〈L∗ g , divΓ P⊥ η〉Γ

= 〈g , curlΓ ϕz〉Γ + 〈g , L divΓ P⊥ η〉Γ = 〈g , η〉Γ .
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Hence, the sesqui-linear form dk induces a bounded and invertible operator

H̃−1/2(divΓ,Γ) → (H̃−1/2(divΓ,Γ))
′, which is the inverse of Bk.

3. Compact Equivalent Inverse in Weak Form

We aim to use Bk to build a preconditioner for the boundary element Galerkin

matrix of Ak arising from low-order boundary element discretization of (2.13). We

remind that applying L and its adjoint L
′ involves solving variational problems.

These have to be set in low-regularity trace spaces in order to be amenable to

Galerkin discretization by means of boundary elements. To that end, in Ref. 19, we

resort to a mixed variational formulation for B⊥. To state it, let us define

H̃0,−1/2(divΓ,Γ) := H̃−1/2(divΓ,Γ) ∩ L2
t (Γ), (3.1)

and also introduce the space

H
1/2
∗ (Γ) := {g ∈ H1/2(Γ) | 〈g , 1〉Γ = 0}, , (3.2)

which is dual to H̃
−1/2
∗ (Γ), introduced in Section 2.3.

The main result of Ref. 19 is the following variational characterization of the pre-

conditioning operator Bk g = Bz g−k
2
B⊥ g, g ∈ (H̃−1/2(divΓ,Γ))

′, that exclusively

relies on low-regularity trace spaces.

➀ Bz g is obtained by finding u ∈ H̃1/2(Γ), λ ∈ H−1/2(Γ) such that
〈
W

−1
0 λ , φ

〉
Γ
+ 〈u , φ〉Γ = 0 ∀φ ∈ H−1/2(Γ),

〈λ , w〉Γ = −〈g , curlΓ w〉Γ ∀w ∈ H̃1/2(Γ).
(3.3)

and applying curlΓ: Bz g := curlΓ u.

➁ The computation of B⊥ g boils down to the following two steps:

(i) Seek µ ∈ H̃0,−1/2(divΓ,Γ), u ∈ H
1/2
∗ (Γ) such that

〈µ , j〉Γ + 〈u , divΓ j〉Γ = 〈g , j〉Γ ∀j ∈ H̃0,−1/2(divΓ,Γ),

〈divΓ µ , v〉Γ = 0 ∀v ∈ H
1/2
∗ (Γ).

(3.4)

(ii) Seek ξ⊥ ∈ H̃0,−1/2(divΓ,Γ), w ∈ H
1/2
∗ (Γ) such that:

〈ξ⊥ , q〉Γ + 〈w , divΓ q〉Γ = 0 ∀q ∈ H̃0,−1/2(divΓ,Γ),

〈divΓ ξ⊥ , v〉Γ =
〈
V
−1
0 u , v

〉
Γ

∀v ∈ H
1/2
∗ (Γ).

(3.5)

Then B⊥ g := ξ⊥ ∈ H̃0,−1/2(divΓ,Γ) ⊂ H̃−1/2(divΓ,Γ)

Since we cannot construct a boundary element space that fulfills the vanishing

mean condition of the space H
1/2
∗ (Γ), we reformulate the saddle point problems

from ➁ as the following equivalent augmented variational problems:
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(i) Seek µ ∈ H̃0,−1/2(divΓ,Γ), u ∈ H1/2(Γ), and α ∈ R such that

〈µ , j〉Γ + 〈u , divΓ j〉Γ = 〈g , j〉Γ ∀j ∈ H̃0,−1/2(divΓ,Γ),

〈divΓ µ , v〉Γ +α 〈1 , v〉Γ = 0 ∀v ∈ H1/2(Γ),

〈u , 1〉Γ = 0.

(3.6)

(ii) Seek ξ⊥ ∈ H̃0,−1/2(divΓ,Γ), w ∈ H1/2(Γ), and β ∈ R such that

〈ξ⊥ , q〉Γ + 〈w , divΓ q〉Γ = 0 ∀q ∈ H̃0,−1/2(divΓ,Γ),

〈divΓ ξ⊥ , v〉Γ +β 〈1 , v〉Γ =
〈
V
−1
0 u , v

〉
Γ

∀v ∈ H1/2(Γ),

〈w , 1〉Γ = 0.

(3.7)

Remark 3.1. There are closed-form integral operator formulas for the inverses

of the weakly and hypersingular operators on the unit disk D. Indeed, they are

introduced in Ref. 20 as W = V
−1
0 and V = W

−1
0 , and their associated symmetric

sesqui-linear forms are:

a
V
(υ, φ) :=

2

π2

∫

D

∫

D

υ(y)φ(x)
S(x,y)

‖x− y‖
dD(y)dD(x), ∀υ, φ ∈ H−1/2(D), (3.8)

a
W
(u, v) :=

2

π2

∫

D

∫

D

S(x,y)

‖x− y‖
curlD,x u(x) · curlD,y v(y)dD(x)dD(y)

+
2

π2

∫

D

∫

D

u(x)v(y)

ω(x)ω(y)
dD(x)dD(y), ∀u, v ∈ H1/2(D), (3.9)

with ω(x) :=
√
1− ‖x‖

2
, for x ∈ D, and S ∈ L∞(D× D) given by

S(x,y) := tan−1

(
ω(x)ω(y)

‖x− y‖

)
, x 6= y.

4. Boundary Element Galerkin Discretization of Bk Ak

4.1. Boundary Element Spaces

In order to have a stable discretization of Bk Ak, we consider a primal mesh Γh
and a (barycentric) dual mesh Γ̌h of Γ as defined in Ref. 21 (see Figure 1 for an

illustration).

Then, we introduce the following boundary element spaces:

S−1,0(Γh) ⊂ H̃−1/2(Γ) =̂ piecewise constants on primal mesh

S0,1
0 (Γh) ⊂ H̃1/2(Γ) =̂ piecewise linear continuous functions on primal mesh

vanishing on ∂Γ

E0(Γh) ⊂ H̃−1/2(divΓ,Γ) =̂ rotated surface edge elements on primal mesh, with

zero tangential components on ∂Γ

S−1,0(Γ̌h) ⊂ H−1/2(Γ) =̂ piecewise constants on dual mesh

S0,1(Γ̌h) ⊂ H1/2(Γ) =̂ piecewise linear continuous functions on dual mesh
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Fig. 1: Primal and (barycentric) dual mesh: triangles of the primal mesh Γh
are shown with black lines, while cells of the dual mesh Γ̌h are depicted with blue

lines.

The following rule guides the Galerkin approximation of (3.3), (3.6), and (3.7):

We approximate functions in ”tilde“-spaces in boundary element spaces on the

primal mesh Γh, and functions in spaces ”without boundary conditions“ in boundary

element spaces on the dual mesh Γ̌h.

4.2. Stable and k → 0-Robust Discretization of Bk Ak

We prove that the chosen Galerkin discretization of Bk Ak is stable for both mesh-

width and wave number tending to zero. This boils down to proving it for the

building blocks Bz Ak and k
2
B⊥ Ak.

The underlying variational problems (3.3), (3.6), and (3.7) all have saddle-point

structure. The analysis of their Galerkin discretization amounts to the verification

of the two famous Ladyzhenskaya–Babuška–Brezzi (LBB) conditions also known as

“ellipticity on the kernel” and “inf-sup condition for the multiplier”, refer to Section

III.4 in Ref. 7. Without further mention we appeal to this theory below.

The following result on stable “primal-dual L2(Γ)-pairings” from Ref. 26 plays

a key role.

Lemma 4.1 (Theorem 3.3.6 in Ref. 26). Let the family of meshes {Γh}h∈H, h >

0 of Γ be uniformly shape-regular and locally quasi-uniform. Then, under certain

(mild) local mesh conditions (Assumption 3.3.3 in Ref. 26 ), the following inf-sup
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conditions hold

sup
vh∈S0,1(Γ̌h)

|〈ϕh , vh〉|

‖vh‖H1/2(Γ)

≥
1

c1
‖ϕh‖H̃−1/2(Γ) , ∀ ϕh ∈ S−1,0(Γh), (4.1)

sup
ψh∈S−1,0(Γ̌h)

|〈wh , ψh〉|

‖ψh‖H−1/2(Γ)

≥
1

c2
‖wh‖H̃1/2(Γ) , ∀ wh ∈ S0,1

0 (Γh), (4.2)

with constants c1, c2 > 0 independent of h.

The next auxiliary result confirms the existence of a uniformly continuous dis-

crete right inverse of the surface divergence.

Lemma 4.2. The restricted divergence operator

divΓ : E0(Γh) ⊂ H̃0,−1/2(divΓ,Γ) → S−1,0(Γh) ∩ H̃
−1/2
∗ (Γ) ⊂ H̃−1/2(Γ)

satisfies

∀ϕh ∈ S−1,0(Γh) ∩ H̃
−1/2
∗ (Γ) : ∃νh ∈ E0(Γh) : divΓ νh = ϕh

‖νh‖H̃0,−1/2(divΓ,Γ)
≤ C ‖ϕh‖H̃−1/2(Γ) , (4.3)

with C > 0 independent of h.

Proof. Let us introduce the edge interpolation operator Πh onto E0(Γh) and the

L2-orthogonal projection Qh onto S−1,0(Γh) (see for example Sect. 5 in Ref. 18 or

Sect. 5 in Ref. 6). Note that ν := Lϕh ∈ gradΓ H(Γ) and that νh := Πhν = Πh Lϕh
is well-defined. Next we have

divΓ νh : = divΓ Πh Lϕh = Qh divΓ Lϕh = ϕh, (4.4)

where we have used the commuting diagram properties of Qh and Πh (c.f. Eq. (5.5)

in Ref. 6). The interpolation estimate for Πh of Lemma 5.1 in that reference finishes

the proof.

4.2.1. Discrete Stability of k2 B⊥ Ak

In order to prove the stability of the boundary element discretization of B⊥ Ak, we

need to show the stability of the discretized saddle point problems (3.6) and (3.7).

Let us begin by studying the stability of the discrete version of the first (aug-

mented) saddle point problem (3.6) with right-hand-side g := k
2
Ak ηh, ηh ∈ E0(Γh):

Seek µh ∈ E0(Γh), uh ∈ S0,1(Γ̌h) such that

〈µh , jh〉Γ + 〈uh , divΓ jh〉Γ = k
2
ak(ηh, jh)

= k
2 〈Vk ηh , jh〉Γ − 〈Vk divΓ ηh , divΓ jh〉Γ ∀jh ∈ E0(Γh)

〈divΓ µh , wh〉Γ + α 〈1 , wh〉Γ = 0 ∀wh ∈ S0,1(Γ̌h)

〈uh , 1〉Γ = 0.

(4.5)

In this case the first LBB-condition reads, with α > 0 independent of h,

|〈νh , νh〉Γ| ≥ α ‖νh‖
2
H̃0,−1/2(divΓ,Γ)

, ∀νh ∈ Vh, (4.6)
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where

Vh := {νh ∈ E0(Γh) : 〈divΓ νh , wh〉Γ = 0, ∀wh ∈ S0,1(Γ̌h) with 〈1 , wh〉Γ = 0}.

This is immediate from

Vh = {νh ∈ E0(Γh) : divΓ νh = 0},

which is a consequence of divΓ E0(Γh) ⊂ S−1,0(Γh) and Lemma 4.1.

The other LBB-condition amounts to the two inequalities

sup
νh∈E0(Γh)

|〈divΓ νh , wh〉Γ|

‖νh‖H̃0,−1/2(divΓ,Γ)

≥ β1 ‖wh‖H1/2
∗

(Γ)
∀wh ∈ S0,1(Γ̌h), (4.7)

sup
uh∈S0,1(Γ̌h)

|〈uh , 1〉Γ|

‖uh‖H1/2(Γ)

≥ β2 ‖1‖H̃−1/2(Γ) , (4.8)

with β1, β2 > 0 independent of h. The latter estimate immediately follows from

Lemma 4.1, since 1 ∈ S0,1(Γ̌h), whereas (4.7) is a consequence of Lemma 4.2 and

Lemma 4.1 (under the mesh assumptions stipulated there).

We summarize the consequences of the fulfilled LBB-conditions:

Corollary 4.1. Let µh ∈ E0(Γh) and uh ∈ S0,1(Γ̌h) be solutions of the discrete

saddle point problem (4.5). If the mesh assumptions from Lemma 4.1 are satisfied,

then

‖µh‖H̃0,−1/2(divΓ,Γ)
+ ‖uh‖H1/2(Γ) ≤ C(k) ‖ηh‖H̃−1/2(divΓ,Γ)

(4.9)

with C(k) > 0 independent of h and a continuous function of k ≥ 0.

Now we study the discrete version of the second (augmented) saddle point prob-

lem (3.7): Seek ξ⊥,h ∈ E0(Γh), vh ∈ S0,1(Γ̌h) such that

〈
ξ⊥,h , qh

〉
Γ
+ 〈vh , divΓ qh〉Γ = 0 ∀qh ∈ E0(Γh)

〈
divΓ ξ⊥,h , wh

〉
Γ
+ β 〈1 , wh〉Γ =

〈
V
−1
0 uh , wh

〉
Γ

∀wh ∈ S0,1(Γ̌h) (4.10)

〈vh , 1〉Γ = 0.

Except for the right-hand-side, (4.10) agrees with (4.5). Thus, from the conti-

nuity of V−1 : H1/2(Γ) → H̃−1/2(Γ) we infer the following stability result.

Corollary 4.2. Let ξ⊥,h ∈ E0(Γh) and vh ∈ S0,1(Γ̌h) be solutions of the discrete

saddle point problem (4.10).

If the mesh assumptions from Lemma 4.1 are satisfied, then:
∥∥ξ⊥,h

∥∥
H̃0,−1/2(divΓ,Γ)

+ ‖vh‖H1/2(Γ) ≤ C̃ ‖uh‖H1/2(Γ) (4.11)

with C̃ independent of h and k.

Finally, we combine all these estimates.
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Lemma 4.3. Under the mesh assumptions from Lemma 4.1, the operator

B⊥,h Ak,h : E0(Γh) → E0(Γh) arising from the boundary element Galerkin discretiza-

tion of of B⊥ Ak is stable and satisfies

‖B⊥,h Ak,h ηh‖H̃−1/2(divΓ,Γ)
≤ C⊥(k) ‖ηh‖H̃−1/2(divΓ,Γ)

, ∀ηh ∈ H̃−1/2(divΓ,Γ),

with an h-independent continuous function k → C⊥(k) on ∈ [0,∞[.

4.2.2. Discrete stability of Bz Ak

The action of the discrete counterpart Bz,h Ak,h of Bz Ak on ηh ∈ E0(Γh) is defined

as Bz,h Ak,h := curlΓ uh, where uh ∈ S0,1
0 (Γh) and λh ∈ S−1,0(Γ̌h) solve

〈
W

−1
0 λh , φh

〉
Γ
+ 〈uh , φh〉Γ = 0 ∀φh ∈ S−1,0(Γ̌h),

〈λh , wh〉Γ = −〈Vk ηh , curlΓ wh〉Γ ∀wh ∈ S0,1
0 (Γh).

(4.12)

The first LBB-condition for the discrete saddle-point problem (4.12) demands the

existence of α2 > 0 independent of h such that
∣∣〈W−1

0 ϕh , ϕh
〉
Γ

∣∣ ≥ α2 ‖ϕh‖
2
H−1/2(Γ) , ∀ϕh ∈ Θh, (4.13)

with

Θh := {ϕh ∈ S−1,0(Γ̌h) : 〈ϕh , wh〉Γ = 0, ∀wh ∈ S0,1
0 (Γh)}.

First note that, by Lemma 4.1, Θh := {0}. This and the fact that W−1
0 is elliptic on

the whole space H−1/2(Γ), immediately yield (4.13). The h-uniform second LBB-

condition is a direct consequence of Lemma 4.1. Finally, by the very definition of

the norms

curlΓ : S0,1
0 (Γh) ⊂ H̃1/2(Γ) → E0(Γh) ⊂ H̃−1/2(divΓ,Γ)

is continuous. Consequently, we obtain the following result:

Lemma 4.4. Under the mesh assumptions from Lemma 4.1, the operator

Bz,h Ak,h : E0(Γh) → E0(Γh) spawned by our boundary element Galerkin discretiza-

tion of Bz Ak satisfies

‖Bz,h Ak,h ηh‖H̃−1/2(divΓ,Γ)
≤ Cz(k) ‖ηh‖H̃−1/2(divΓ,Γ)

, ∀ηh ∈ E0(Γh), (4.14)

with Cz(k) continuous on [0,∞[ and independent of h.

Finally, we combine Lemmas 4.3 and 4.4 into the main result of this section.

Theorem 4.1. Under the mesh assumptions from Lemma 4.1, the operator

Bk,h Ak,h := (Bz,h−k
2
B⊥,h)Ak,h : E0(Γh) → E0(Γh) satisfies

‖Bk,h Ak,h ηh‖H̃−1/2(divΓ,Γ)
≤ C(k) ‖ηh‖H̃−1/2(divΓ,Γ)

, ∀ηh ∈ E0(Γh), (4.15)

with k 7→ C(k) independently of h and continuous on [0,∞[.
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Remark 4.1. It is worth mentioning that other stable discretizations of Bk are pos-

sible. Indeed, one may pursue alternative discretizations for H1/2(Γ) and H−1/2(Γ),

and, as long as the inf-sup conditions corresponding to the scalar L2(Γ) duality pair-

ing are fulfilled by those choices, the analysis derived here will carry out with minor

changes. Although out of the scope of this paper, we mention the construction

proposed in Ref. 24.

4.2.3. Linear Algebra Perspective

Let us illustrate how the implementation of Bk as preconditioner is done on the

level of linear algebra. We equip all finite element spaces with (the customary)

bases consisting of locally supported functions and define the following matrices

and vectors:

Ch =̂matrix representation of curlΓ : S0,1
0 (Γh) → E0(Γh),

Dh =̂matrix representation of divΓ : E0(Γh) → S−1,0(Γh),

Mh =̂Galerkin matrix for the L2
t (Γ)-inner product on E0(Γh) (mass ma-

trix),

Tz,h =̂Galerkin matrix for the L2(Γ)-inner product with (primal) trial

space S0,1
0 (Γh) and (dual) test space S−1,0(Γ̌h),

T⊥,h=̂Galerkin matrix for the L2(Γ)-inner product for (primal) trial space

S−1,0(Γh) and (dual) test space S0,1(Γ̌h),

Vh =̂Galerkin matrix for W−1
0 on S−1,0(Γ̌h),

Wh =̂Galerkin matrix for V−1
0 on S0,1(Γ̌h).

~1h =̂coefficient vector for constant function x 7→ 1 in S−1,0(Γ̌h).

Only the matrices Vh and Wh will generically be dense, while all others are sparse.

Let ~g be the coefficient vector of a functional g ∈ (H̃−1/2(divΓ,Γ))
′, which in the

context of preconditioning will correspond to the residual vector. Then, computing

the action of Bk

h involves the following steps:

➀ Applying Bz,h to g amounts to computing

~ξz = ChT
−1
z,hVhT

−T
z,hC

T
h~g. (4.16)

➁ Applying B⊥,h to g can be realized through the following two steps:

(i) First solve a sparse algebraic saddle point problem: Find ~µ and ~u such

that

Mh~µ+DT
hT

T
⊥,h~u = ~g (4.17)

T⊥,hDh~µ+ αT⊥,h
~1h = 0

(T⊥,h~1h)
T~u = 0.

Here ~u is the coefficient vector of a function u ∈ S0,1(Γ̌h) and ~µ the

coefficient vector of the function µ ∈ E0(Γh).
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(ii) Then solve another sparse algebraic saddle point problem: Find ~ξ⊥
such that

Mh
~ξ⊥ +DT

hT
T
⊥,h ~w = 0 (4.18)

T⊥,hDh
~ξ⊥ + βT⊥,h

~1h = Wh~u

(T⊥,h
~1h)

T ~w = 0,

where ~u is obtained from (i), ~w corresponds to w ∈ S0,1(Γ̌h), and ~ξ⊥
to ξ⊥ ∈ E0(Γh).

Then we get ~ξ = ~ξz−k
2~ξ⊥, which corresponds to the function ξh = Bk,h g ∈ E0(Γh).

Remark 4.2. It would be desirable to predict the asymptotic convergence of the

widely used GMRES Krylov iterative solver based on Theorems 2.1 and 4.1. If we

could define Bk,h Ak,h : E0(Γh) → E0(Γh) by

dk(Bk,h Ak,h ηh,νh) = ak(ηh,νh) ∀νh ∈ E0(Γh),

the abstract GMRES convergence theory developed in Refs. 23 and 4, Section 2,

would yield superlinear convergence, if the GMRES algorithm was based on the

inner product of H̃−1/2(divΓ,Γ).

Unfortunately, the several levels of Galerkin discretization required by the

saddle-point variational formulation amount to a perturbation of dk that fails to

tend to zero uniformly as h → 0. This situation is outside the scope of current

convergence theory for GMRES.

5. Numerical Results on Disks

In this section, we numerically demonstrate the performance of the proposed pre-

conditioner Bk for the EFIE operator Ak. For this, we make use of the closed-form

formulas for the inverse operators V
−1
0 and W

−1
0 , whose associated sesqui-linear

forms where introduced in (3.8) and (3.9).

All numerical experiments were implemented using BETL215. Boundary ele-

ment Galerkin matrices were computed with 12 quadrature points and regularizing

transformations25. We employed ACA as local low-rank compression of the BE

matrices for fine meshes. This is provided in BETL2 by AHMED5. The ACA

parameters used for these experiments were a tolerance of 10−5 and admissibility

η = 0.9. Finally, meshes were generated with Gmsh
14 using polygonal approximation

of the boundaries. In all experiments, we use GMRES based on the Euclidean inner

product, with a tolerance of 10−5 for the relative residual norm, initial guess equal

to zero and, and as right hand side, we considered a vector that had entries +1 in

its upper half, −1 for the remaining components.

We rely on the boundary element spaces specified in Section 4.1. We compare

the following preconditining strategies:
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Ak

h =̂ GMRES applied to the raw Galerkin matrix for the EFIE variational

problem (2.13),

D−1
h Ak

h =̂ GMRES preconditioned with the diagonal of the Galerkin matrix,

Bk

hA
k

h =̂ GMRES with the preconditioner proposed in Section 4.

We employ ACA local low-rank compression for all dense matrices. We present

results obtained on quasi-uniform meshes and also on non-quasi-uniform meshes

(see Figure 2).

Tables 1 and 2 report the GMRES iteration counts for six different wave numbers

(using ACA-compressed matrices). We see that the number of iterations it takes

GMRES to converge for Ak

h increases like the meshwidth, while it remains almost

constant for Bk

hA
k

h. The preconditioner works equally well on quasi-uniform and

locally refined meshes. We also observe that GMRES convergence improves for Ak

h

for larger wave number k. Conversely, the performance of our preconditioner declines

when k increases, which again makes sense, as it was constructed for the static case

k = 0.

Fig. 2: Left: second coarsest “quasi-uniform” mesh, right: second coarsest “non-

quasi-uniform” mesh. The quasi-uniform meshes were obtained by standard uni-

form refinement in Gmsh, while the locally refined meshes were constructed with

the functions Attraction and Matheval in Gmsh, where the evaluated function was

the continuous distance to the boundary of the disk plus a parameter h∗ > 0. The

subsequent meshes were obtained by halving h∗ and thus the minimum meshwidth

on the boundary.

Moreover, we plot the convergence history of GMRES on quasi-uniform meshes,

see Fig. 3 and also render eigenvalue distributions for that case, see Fig. 5.
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Table 1: GMRES iterations for (indefinite) EFIE and different wave numbers k over

quasi-uniform mesh, plotted in Figure 2, left.

k = 0.01 k = 0.1 k = 0.5

N Ak

h D−1
h Ak

h Bk

hA
k

h Ak

h D−1
h Ak

h Bk

hA
k

h Ak

h D−1
h Ak

h Bk

hA
k

h

64 75 74 4 73 73 5 65 60 7
256 184 180 5 148 145 5 119 117 6
1024 369 356 5 282 277 5 229 228 6
4096 664 650 5 524 509 5 417 406 6
16384 1206 1163 5 968 922 5 737 737 6

k = 1 k = 2 k = 4

N Ak

h D−1
h Ak

h Bk

hA
k

h Ak

h D−1
h Ak

h Bk

hA
k

h Ak

h D−1
h Ak

h Bk

hA
k

h

64 61 54 9 58 55 15 66 65 26
256 111 105 7 104 101 12 115 105 23
1024 206 204 7 195 188 10 196 190 22
4096 374 372 7 347 338 10 346 329 21
16384 697 662 7 628 594 9 604 575 20

Table 2: GMRES iterations for (indefinite) EFIE and different wave numbers k over

locally refined mesh, shown in Figure 2, right.

k = 0.01 k = 0.1 k = 0.5

N Ak

h D−1
h Ak

h Bk

hA
k

h Ak

h D−1
h Ak

h Bk

hA
k

h Ak

h D−1
h Ak

h Bk

hA
k

h

162 164 173 5 136 138 5 108 109 6
506 412 386 4 332 305 4 272 238 5
1052 716 651 5 581 514 5 461 408 5
2150 1295 1109 4 1061 884 4 860 708 5
4260 2206 1852 5 1823 1480 5 1495 1173 5
8398 3777 2984 5 3138 2382 5 2585 1885 5
16546 6398 4772 5 5369 3792 5 4488 2982 5

k = 1 k = 2 k = 4

N Ak

h D−1
h Ak

h Bk

hA
k

h Ak

h D−1
h Ak

h Bk

hA
k

h Ak

h D−1
h Ak

h Bk

hA
k

h

162 101 105 8 97 96 13 105 107 25
506 237 216 7 220 196 10 231 192 21
1052 421 360 7 382 310 10 381 286 21
2150 772 623 6 703 535 9 670 467 19
4260 1342 1024 6 1202 871 9 1128 726 18
8398 2330 1636 5 2093 1384 8 1963 1137 16
16546 4097 2594 5 3711 2193 6 3392 1787 15
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Fig. 3: Decay of the relative Euclidean norm of the residual in the course of the

GMRES iterations for different wave numbers. We observe that, on the one hand

that, our preconditioner massively accelerates convergence for small wave numbers

and that, on the other hand, for larger k GMRES takes longer to reach the final

phase of fast convergence. The downward bending curves in the doubly logarithmic

plots hint at asymptotic super-algebraic convergence, cf. Remark 4.2.
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Fig. 4: GMRES iteration counts for no preconditioning (blue line)/our new precon-

ditioner (red line) on the quasi-uniform mesh with N = 1024 elements and different

values of k. This plot was generated with resolution ∆k = 0.1 and 0.1 ≤ k ≤ 6.

We see that GMRES without preconditioning needs considerably more iterations to

solve the discretized EFIE when k is smaller. This reflects the so-called low-frequency

break-down, i.e. the condition number of the EFIE operator increases when k de-

creases. The data also show the remarkable robustness of our preconditioner in the

”low-frequency limit“ k → 0, preventing the low-frequency break-down.
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Fig. 5: Eigenvalues of the EFIE Galerkin matrix Ak

h operator and of its precondi-

tioned version Bk

hA
k

h for three different levels of refinement and wave numbers in

Figure 5. We can clearly see how the cluster of eigenvalues of the original operator

grows when increasing the mesh refinement but shrinks for larger k, which is con-

sistent with the GMRES results we get for Ak. On the other hand, we see how for

the preconditioned eigenvalues cluster around one almost perfectly for k = 0.1 and

begin spreading when increasing the wave number k. This matches the observations

made from Tables 1 and 2.
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6. Preconditioning on More General Screens

6.1. Mapped Preconditioner

At the time of writing this article, closed-form formulas for W−1
0 and V

−1
0 , or com-

pact equivalent inverses of V0 and W0 (see Remark 2.1), remained unknown for

screens except disks.

Nevertheless, taking the cue from Section 5 of Ref. 21 we extend the proposed

operator preconditioning strategy for the EFIE to more general screens Γ ⊂ R
3,

for which there is a bijective Lipschitz-continuous piecewise C1-mapping φ : D →

Γ, whose inverse is also Lipschitz continuous. We remark that this requirement

guarantees that Γ is a topologically trivial orientable piecewise two-dimensional

C1-manifold with boundary ∂Γ = φ(∂D).

For the co-variant divΓ-compatible pullback of tangential vectorfields we write

φ∗ : H̃−1/2(divΓ,Γ) → H̃−1/2(divD,D). (6.1)

Under our assumptions on φ this pullback mapping is an isomorphism. By duality,

the adjoint opeator

(φ∗)′ : (H̃−1/2(divD,D))
′ → (H̃−1/2(divΓ,Γ))

′ (6.2)

is also an isomorphism.

Let Bk,D stand for the preconditioning operator from (2.16) on the disk employ-

ing the operators W = V
−1
0 and V = W

−1
0 mentioned in Remark 3.1. Then, the

pushed-forward preconditioning operator

Bk,Γ :=
(
φ∗

)−1
◦ Bk,D ◦

(
(φ∗)′

)−1
, (6.3)

will still render Bk,Γ Ak : H̃
−1/2(divΓ,Γ) → H̃−1/2(divΓ,Γ) an isomorphism, though

Bk,Γ will no longer be a compactly equivalent inverse of the EFIE operator Ak, cf.

Theorem 2.1. Moreover, Bk,Γ Ak will also be bounded uniformly for k → 0.

Let the mesh Γh be obtained by mapping a mesh Dh of D to Γ using φ. We also

assume that the bases of the boundary element spaces E0(Γh) ⊂ H̃−1/2(divΓ,Γ) and

E0(Dh) ⊂ H̃−1/2(divD,D) are mapped onto each other via the pullback φ∗, which

is ensured by the customary mapping-based construction of boundary elements, see

Section 4.1 of Ref. 25. In this case operator preconditioning of Ak by Bk on the

discrete level just boils down to the matrix product Bk

hA
k

h, where B
k

h is the matrix

arising from the boundary element Galerkin discretization of the mixed variational

form of Bk,D as explained in Section 4.2. We used this approach to obtain the

numerical results reported in the next section.

6.2. Numerical Results for EFIE on Mapped Screens

In order to explore the behaviour of our preconditioner in the presence of corners

and also its applicability to non-flat screens, we will consider these two examples of

mapped screens:
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• Example 1: The unit square [−1, 1]
2
(see Eq. (3.50) in Ref. 26 for the

corresponding transformation φ).

• Example 2: If f ∈ C1(D,R) and

φ̃




x1
x2
x3



 =




x1
x2

x3 + f(x1, x2)



 , x1, x2, x3 ∈ R,

then Γ := φ(D) yields the graph of f over D.

We show numerical results for six different wave numbers and three different

shapes: The first data are listed in Table 3 and correspond to the square screen

from Example 1. The other two shapes fit Example 2 with different functions f

and the corresponding results are shown in Tables 4–5. For all studied mapped

screens we considered the usual family of quasi-uniform triangular meshes Dhof D.

ACA-compression was applied to all dense Galerkin matrices.

In all these cases we see that the preconditioner reduces significantly the numbers

of GMRES iterations and that those do not increase significantly on fine meshes.

Iteration counts are small also for k → 0. By and large, in all respects the results are

qualitatively similar to those achieved for the EFIE on the unit disk (see Table 1).

Table 3: GMRES iterations for EFIE and different wave numbers k on mapped

square.

k = 0.01 k = 0.1 k = 0.5

N Ak

h D−1
h Ak

h Bk

hA
k

h Ak

h D−1
h Ak

h Bk

hA
k

h Ak

h D−1
h Ak

h Bk

hA
k

h

64 75 75 6 74 74 7 65 59 9
256 196 195 7 151 147 7 119 119 8
1024 374 358 8 289 289 8 232 225 9
4096 672 678 8 538 534 8 426 428 10
16384 1270 1253 9 1003 989 9 790 793 10

k = 1 k = 2 k = 4

N Ak

h D−1
h Ak

h Bk

hA
k

h Ak

h D−1
h Ak

h Bk

hA
k

h Ak

h D−1
h Ak

h Bk

hA
k

h

64 62 59 13 60 60 19 72 70 34
256 112 109 11 105 103 18 118 115 33
1024 209 202 12 195 189 18 212 204 30
4096 388 384 12 356 351 19 367 362 31
16384 714 707 12 645 644 17 643 641 30
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Table 4: GMRES iterations for EFIE and different wave numbers k on mapped

screens φ(x) = (x1, x2, x1 + x2)
T .

k = 0.01 k = 0.1 k = 0.5

N Ak

h D−1
h Ak

h Bk

hA
k

h Ak

h D−1
h Ak

h Bk

hA
k

h Ak

h D−1
h Ak

h Bk

hA
k

h

64 74 74 6 73 73 8 62 63 11
256 204 191 7 160 141 7 127 112 10
1024 392 369 7 301 286 7 239 228 9
4096 708 687 7 552 524 7 437 418 9
16384 1306 1242 7 1016 970 7 813 769 9

k = 1 k = 2 k = 4

N Ak

h D−1
h Ak

h Bk

hA
k

h Ak

h D−1
h Ak

h Bk

hA
k

h Ak

h D−1
h Ak

h Bk

hA
k

h

64 62 55 16 64 65 24 72 77 42
256 115 106 15 113 109 22 135 131 40
1024 211 207 14 208 194 21 236 222 40
4096 393 378 14 374 359 21 403 380 39
16384 728 689 13 667 631 19 687 649 36

Table 5: GMRES iterations for EFIE and different wave numbers k on mapped

screens φ(x) = (x1, x2, x
2
1 + x22)

T .

k = 0.01 k = 0.1 k = 0.5

N Ak

h D−1
h Ak

h Bk

hA
k

h Ak

h D−1
h Ak

h Bk

hA
k

h Ak

h D−1
h Ak

h Bk

hA
k

h

64 73 74 8 73 73 9 67 64 11
256 203 191 8 158 147 8 125 118 10
1024 395 377 9 304 295 9 239 231 10
4096 727 707 8 565 554 8 452 441 10
16384 1352 1344 8 1063 1052 8 845 832 10

k = 1 k = 2 k = 4

N Ak

h D−1
h Ak

h Bk

hA
k

h Ak

h D−1
h Ak

h Bk

hA
k

h Ak

h D−1
h Ak

h Bk

hA
k

h

64 65 64 14 74 65 22 80 79 43
256 121 111 13 122 114 19 143 138 37
1024 220 214 12 218 206 17 251 232 34
4096 407 399 12 388 372 18 428 401 34
16384 761 755 12 707 693 16 742 706 32
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7. Conclusion

We developed an operator preconditioner for the EFIE on three-dimensional screens

using a compact-equivalence inverse operator on disks. Applying the preconditioner

considerably curbs GMRES iteration counts considerably both on disks and mapped

screens. Although its performance slightly deteriorates for increasing wavenumbers

k, it is robust with as k → 0 and, thus, cures the so-called low-frequency break-down.

We have devised a stable low-order boundary element discretization for the pro-

posed preconditioner. It relies on dual barycentric meshes for scalar-valued bound-

ary element spaces and dispenses with vector basis functions on the dual barycentric

mesh, which facilitates implementation compared to the popular Calderón precon-

ditioners. Moreover, the new preconditioner is stable also on a large class of non-

uniform meshes.

What remains open is a rigorous prediction of the acceleration of GMRES

achieved by the new preconditioner both on disks and on mapped screens.
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13. X. Claeys and R. Hiptmair, Integral equations for electromagnetic scattering at multi-
screens, Integral Equations Operator Theory, 84 (2016) 33–68.

14. C. Geuzaine and J.-F. Remacle, Gmsh: A 3-D finite element mesh generator with built-
in pre- and post-processing facilities, International Journal for Numerical Methods in
Engineering, 79, 1309–1331.

15. R. Hiptmair and L. Kielhorn, BETL - A generic boundary element template library,
Technical Report 2012-36, Seminar for Applied Mathematics, ETH Zürich, 2012.

16. R. Hiptmair, Finite elements in computational electromagnetism, Acta Numerica, 11
(2002) 237–339.

17. R. Hiptmair, Operator preconditioning, Computers and Mathematics with Applica-
tions, 52 (2006) 699–706.

18. , R. Hiptmair and Ch. Schwab, Natural boundary element methods for the electric
field integral equation on polyhedra, SIAM J. Numer. Anal. 40 (2002) 66–86.
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