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Abstract

Parabolic partial differential equations (PDEs) are widely used in the mathematical mod-
eling of natural phenomena and man made complex systems. In particular, parabolic PDEs
are a fundamental tool to determine fair prices of financial derivatives in the financial in-
dustry. The PDEs appearing in financial engineering applications are often nonlinear (e.g.
PDE models which take into account the possibility of a defaulting counterparty) and high
dimensional since the dimension typically corresponds to the number of considered finan-
cial assets. A major issue is that most approximation methods for nonlinear PDEs in the
literature suffer under the so-called curse of dimensionality in the sense that the computa-
tional effort to compute an approximation with a prescribed accuracy grows exponentially
in the dimension of the PDE or in the reciprocal of the prescribed approximation accuracy
and nearly all approximation methods have not been shown not to suffer under the curse
of dimensionality. Recently, a new class of approximation schemes for semilinear parabolic
PDEs, termed full history recursive multilevel Picard (MLP) algorithms, were introduced and
it was proven that MLP algorithms do overcome the curse of dimensionality for semilinear
heat equations. In this paper we extend those findings to a more general class of semilinear
PDEs including as special cases semilinear Black-Scholes equations used for the pricing of
financial derivatives with default risks. More specifically, we introduce an MLP algorithm for
the approximation of solutions of semilinear Black-Scholes equations and prove, under the
assumption that the nonlinearity is globally Lipschitz continuous, that the computational
effort of our method grows at most polynomially both in the dimension and the reciprocal
of the prescribed approximation accuracy. This is, to the best of our knowledge, the first
result showing that the approximation of solutions of semilinear Black-Scholes equations is
a polynomially tractable approximation problem.
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1 Introduction

Parabolic partial differential equations (PDEs) are widely used in the mathematical modeling
of natural phenomena and man made complex systems. In particular, parabolic PDEs are a
fundamental tool to determine fair prices of financial derivatives in the financial industry. The
use of PDEs for option pricing originated in the work of Black, Scholes, & Merton (see [9, 76])
which suggested that the price of a financial derivative satisfies a linear parabolic PDE, nowadays
known as Black-Scholes equation. The derivation of their theory is based on several assumption
which are not met in the financial practice and consequently various changes and extensions
to the original pricing model have been developed. One key modification of the initial Black-
Scholes model is to include the possibility of a defaulting counterparty (cf., e.g., Burgard & Kjaer
[14], Crepey et al. [24], Duffie et al. [33], and Henry-Labordere [53]). Such extended models
suggest that the price process of a financial derivative satisfies a certain semilinear PDE (cf. (1)
in Theorem 1.1 below and Subsections 4.2–4.3 below). Typically, such PDEs can not be solved
explicitly and it is therefore a very active topic of research to solve such PDEs approximatively;
cf., e.g., [30, 94, 95, 97] for deterministic approximation methods for PDEs, cf., e.g., [2, 6, 7, 10,
12, 13, 17, 18, 19, 20, 25, 26, 27, 28, 38, 39, 31, 32, 40, 41, 42, 43, 44, 45, 46, 57, 69, 70, 71, 72, 73,
74, 78, 79, 82, 83, 84, 85, 89, 90, 91, 96, 102, 103, 104] for probabilistic approximation methods for
PDEs using discretizations of the associated backward stochastic differential equations (BSDEs),
cf., e.g., [11, 21, 37, 49, 68, 105] for probabilistic approximation methods for PDEs using temporal
discretizations of the associated second-order BSDEs cf., e.g., [16, 53, 55, 56, 75, 88, 93, 98, 101]
for probabilistic approximation methods for PDEs using branching diffusions processes, cf., e.g.,
[99, 100] for probabilistic approximation methods for PDEs using nested Monte Carlo simulations,
cf., e.g., [35, 36, 59, 60] for full history recursive multilevel Picard (MLP) approximation methods
for PDEs, and cf., e.g., [3, 4, 8, 15, 34, 51, 52, 54, 58, 65, 80, 87, 92] for approximation methods
for PDEs which are based on reformulations of PDEs as a deep learning problems.
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The PDEs appearing in financial engineering applications are often high dimensional since the
dimension corresponds to the number of financial assets (such as stocks, commodities, interest
rates, or exchange rates) in the involved hedging portfolio. A major issue is that most approxi-
mation methods suffer under the so-called curse of dimensionality (see Bellman [5]) in the sense
that the computational effort to compute an approximation with a prescribed accuracy ε > 0
grows exponentially in the dimension d ∈ N of the PDE or in the reciprocal 1/ε of the prescribed
approximation accuracy (cf., e.g., E et al. [36, Section 4] for a discussion of the curse of dimen-
sionality in the PDE approximation literature) and nearly all approximation methods have not
been shown not to suffer under the curse of dimensionality. Recently, a new class of approxima-
tion schemes for semilinear parabolic PDEs, termed full history recursive multilevel Picard (MLP)
algorithms, were introduced in E et al. [35, 36] and it was proven, under restrictive assumptions
on the regularity of the solution of the PDE that they overcome the curse of dimensionality for
semilinear heat equations. Building on this work, [59] proposed for semilinear heat equations an
adaption of the original MLP scheme in [35, 36]. Under the assumption that the nonlinearity
in the PDE is globally Lipschitz continuous [59, Theorem 1.1] proves that the proposed scheme
does indeed overcome the curse of dimensionality in the sense that the computational effort to
compute an approximation with a prescribed accuracy ε > 0 grows at most polynomially in both
the dimension d ∈ N of the PDE and the reciprocal 1/ε of the prescribed approximation accuracy.

In this paper we generalize the MLP algorithm of [59] and the main result of this article,
Theorem 3.20 below, proves that the MLP algorithm proposed in this paper overcomes the curse
of dimensionality for a more general class of semilinear PDEs which includes as special cases the
important examples of semilinear Black-Scholes equations used for the pricing of financial deriva-
tives with default risks. In particular, we show for the first time that the solution of a semilinear
Black-Scholes PDE with a globally Lipschitz continuous nonlinearity can be approximated with
a computational effort which grows at most polynomially in both the dimension and the recip-
rocal of the prescribed approximation accuracy. Put differently, we show that the approximation
of solutions of such semilinear Black-Scholes equations is a polynomially tractable approxima-
tion problem (cf., e.g., Novak & Wozniakowski [81]). To illustrate the main result of this paper,
Theorem 3.20 below, we present in the following theorem, Theorem 1.1 below, a special case
of Theorem 3.20. Theorem 1.1 demonstrates that the MLP algorithm proposed in this article
overcomes the curse of dimensionality for the approximation of solutions of certain semilinear
Black-Scholes equations.

Theorem 1.1. Let T ∈ (0,∞), p,P, q ∈ [0,∞), α, β ∈ R, Θ = ∪∞
n=1Z

n, let f : R → R be
a Lipschitz continuous function, let ξd ∈ Rd, d ∈ N, and gd ∈ C2(Rd,R), d ∈ N, satisfy that

supd∈N,x∈Rd

( |gd(x)|
dP(1+‖x‖p

Rd
)
+

‖ξd‖Rd
dq

)

< ∞, let ud ∈ C1,2([0, T ]×Rd,R), d ∈ N, be polynomially growing

functions which satisfy for all d ∈ N, t ∈ (0, T ), x = (x1, x2, . . . , xd) ∈ Rd that ud(T, x) = gd(x)
and

(

∂ud

∂t

)

(t, x) +

[

d
∑

i=1

|β|2|xi|2
2

(

∂2ud

∂(xi)2

)

(t, x)

]

+

[

d
∑

i=1

αxi

(

∂ud

∂xi

)

(t, x)

]

+ f(ud(t, x)) = 0, (1)

let (Ω,F ,P) be a probability space, let Rθ : Ω → [0, 1], θ ∈ Θ, be independent U[0,1]-distributed
random variables, let Rθ = (Rθ

t )t∈[0,T ] : [0, T ]×Ω → [0, T ], θ ∈ Θ, be the stochastic processes which
satisfy for all t ∈ [0, T ], θ ∈ Θ that Rθ

t = t+ (T − t)Rθ, let W d,θ = (W d,θ,i)i∈{1,2,...,d} : [0, T ]×Ω →
Rd, θ ∈ Θ, d ∈ N, be independent standard Brownian motions, assume that (W d,θ)d∈N,θ∈Θ and
(Rθ)θ∈Θ are independent, for every d ∈ N, θ ∈ Θ, t ∈ [0, T ], s ∈ [t, T ], x = (x1, x2, . . . , xd) ∈ Rd

let Xd,θ,x
t,s = (Xd,θ,x,i

t,s )i∈{1,2,...,d} : Ω → Rd be the function which satisfies for all i ∈ {1, 2, . . . , d} that

Xd,θ,x,i
t,s = xi exp

((

α− β2

2

)

(s− t) + β
(

W d,θ,i
s −W d,θ,i

t

))

, (2)
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let V d,θ
M,n : [0, T ] × Rd × Ω → R, M,n ∈ Z, θ ∈ Θ, d ∈ N, be functions which satisfy for all

d,M, n ∈ N, θ ∈ Θ, t ∈ [0, T ], x ∈ Rd that V d,θ
M,−1(t, x) = V d,θ

M,0(t, x) = 0 and

V d,θ
M,n(t, x) =

n−1
∑

k=0

(T − t)

Mn−k

[

Mn−k
∑

m=1

f
(

V
d,(θ,k,m)
M,k

(

R
(θ,k,m)
t , X

d,(θ,k,m),x

t,R
(θ,k,m)
t

)

)

− 1N(k)f
(

V
d,(θ,k,−m)
M,k−1

(

R
(θ,k,m)
t , X

d,(θ,k,m),x

t,R
(θ,k,m)
t

)

)

]

+

[

Mn
∑

m=1

gd(X
d,(θ,n,−m),x
t,T )

Mn

]

,

(3)

and for every d, n,M ∈ N, t ∈ [0, T ], x ∈ Rd let Cd,M,n ∈ N0 be the number of realizations of

standard normal random variables which are used to compute one realization of V d,0
M,n(t, x) (see

(336) below for a precise definition). Then there exist functions N = (Nd,ε)d∈N,ε∈(0,1] : N× (0, 1] →
N and C = (Cδ)δ∈(0,∞) : (0,∞) → (0,∞) such that for all d ∈ N, ε ∈ (0, 1], δ ∈ (0,∞) it holds
that Cd,Nd,ε,Nd,ε

≤ Cδ d
1+(P+qp)(2+δ)ε−(2+δ) and

(

E
[

|ud(0, ξd)− V d,0
Nd,ε,Nd,ε

(0, ξd)|2
])1/2 ≤ ε. (4)

Theorem 1.1 is an immediate consequence of Theorem 4.4 below. Theorem 4.4 in turn is
a consequence of Theorem 3.20 below, the main result of this paper. We now provide some
explanations for Theorem 1.1. In Theorem 1.1 we present a stochastic approximation scheme
(cf. (V d,0

M,n)M,n,d∈N in Theorem 1.1 above) which is able to approximate in the strong L2-sense the
initial value ud(0, ξd) of the solution of an uncorrelated semilinear Black-Scholes equation (cf. (1)
in Theorem 1.1 above) with a computational effort which grows at most polynomially in both
the dimension d ∈ N and the reciprocal 1/ε of the prescribed approximation accuracy ε > 0. The
time horizon T ∈ (0,∞), the drift parameter α ∈ R, the diffusion parameter β ∈ R, as well
as the Lipschitz continuous nonlinearity f : R → R of the semilinear Black-Scholes equations in
Theorem 1.1 above (cf. (1) in Theorem 1.1 above) are fixed over all dimensions (cf. Theorem 4.3
for a more general result with dimension-dependent drift and diffusion coefficients and dimension-
dependent nonlinearities which may additionally depend on the time and the space variable). The
approximation points (ξd)d∈N and the terminal conditions (gd)d∈N of the PDE (1) in Theorem 1.1
above are both allowed to grow in a certain polynomial fashion determined by the constants
p,P, q ∈ [0,∞). The idea for the full history multilevel Picard scheme (cf. (V d,θ

M,n)M,d∈N,n∈N0,θ∈Θ in
Theorem 1.1 above) is based on a reformulation of the semilinear PDE in (1) as a stochastic fixed
point equation. For this we consider the independent solution fields (Xd,θ)d∈N,θ∈Θ of the stochastic
differential equation (SDE) associated to the PDE in (1) and for every t ∈ [0, T ] we consider
independent U[t,T ]-distributed random variables (Rθ

t )θ∈Θ. As a consequence of the Feynman-Kac
formula we obtain that (ud)d∈N are the unique at most polynomially growing functions which
satisfy for all d ∈ N, θ ∈ Θ, t ∈ [0, T ], x ∈ Rd that

ud(t, x) = E

[

g
(

Xd,θ,x
t,T

)

+ (T − t)f
(

ud(R
θ
t , X

d,θ,x

t,Rθ
t
)
)

]

. (5)

Note that for all d,M, n ∈ N, θ ∈ Θ, t ∈ [0, T ], x ∈ Rd it holds that

E
[

V d,θ
M,n(t, x)

]

=

n−1
∑

k=0

(T − t)E
[

f
(

V
d,(θ,1)
M,k

(

R
(θ,1)
t , X

d,(θ,1),x

t,R
(θ,1)
t

))

− 1N(k)f
(

V
d,(θ,−1)
M,k−1

(

R
(θ,1)
t , X

d,(θ,1),x

t,R
(θ,1)
t

))

]

+ E
[

gd(X
d,θ,x
t,T )

]

= E

[

gd(X
d,θ,x
t,T ) + (T − t)f

(

V d,θ
M,n−1

(

Rθ
t , X

d,θ,x

t,Rθ
t

))

]

.

(6)
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Thus for every d,M ∈ N, θ ∈ Θ the sequence of random fields (V d,θ
M,n)n∈N0 behave, in expectation,

like Picard iterations for the stochastic fixed point equation in (5) above. In each iteration in (3)
the expectation of the Picard iteration for the stochastic fixed point equation in (5) is approxi-
mated with a multilevel Monte Carlo approach on a telescope expansion over the full history of
the previous iterations. According to the multilevel Monte Carlo paradigm the number of samples
in each level is chosen such that computationally inexpensive summands (corresponding to small
k ∈ {0, 1, 2, . . . , n} in (6)) of the telescope expansion get sampled more often than computationally
expensive ones (corresponding to large k ∈ {0, 1, 2, . . . , n} in (6)). Roughly speaking, the conclu-
sion of Theorem 1.1 above states (cf. Theorem 1.1 above for the precise formulation) that for every
d ∈ N, ε ∈ (0, 1] there exists a natural number N ∈ N such that V d,0

N,N(0, ξd) approximates ud(0, ξd)

in the L2-sense with accuracy ε and such that the computational effort to compute V d,0
N,N(0, ξd) is

essentially of the order d1+2(P+pq)ε−2. Remarkably this is exactly the computational complexity
of the standard Monte Carlo approximation of the solution of the PDE (1) in the case that the
nonlinearity f vanishes (cf., e.g., Graham & Talay [47]).

The remainder of this paper is structured as follows. In Section 2 we prove a well-known
distributional flow property for the composition of independent solutions fields of a stochastic
differential equation (SDE) (see Lemma 2.19 below), which will be a key assumption in the abstract
treatment of stochastic fixed point equations in Section 3. Several auxiliary results which are
needed for the proof of the flow property (see Lemma 2.19 below) in Section 2 will be used again
in Section 3. Section 3 introduces the MLP algorithm, provides a complexity analysis in the setting
of stochastic fixed point equations in Subsections 3.1–3.5, and then carries over those results to
semilinear Kolmogorov PDEs in Subsection 3.6 leading to Theorem 3.20 below, the main result of
this article. In the last section, Section 4, we apply the result for general semilinear Kolmogorov
PDEs of Theorem 3.20 to semilinear heat equations (see Subsection 4.1) and semlinear Black-
Scholes equations (see Subsection 4.2 and Subsection 4.3) which are notably used to compute
prices for financial derivatives in the presence of counterparty credit risks (see Subsection 4.3).

2 On a distributional flow property for stochastic differ-

ential equations (SDEs)

In our analysis of the proposed MLP algorithm in Section 3 below, we will make use of random
fields which satisfy a certain flow-type condition (see (154) in Setting 3.1 below). The main intent
of this section is to establish that solution processes of SDEs enjoy, under suitable conditions (see
Lemma 2.19 below for details), this flow-type property. To rigorously prove this result we need
a series of elementary and well-known results, presented in Subsections 2.1–2.7 below, many of
which will be reused in Section 3.

2.1 Time-discrete Gronwall inequalities

In this subsection we present elementary and well-known Gronwall inequalities (cf., e.g., Agarwal
[1]).

Lemma 2.1. Let N ∈ N, α ∈ [0,∞), (βn)n∈{0,1,2,...,N−1} ⊆ [0,∞), (ǫn)n∈{0,1,2,...,N} ⊆ [0,∞] satisfy
for all n ∈ {0, 1, 2, . . . , N} that

ǫn ≤ α +

[

n−1
∑

k=0

βkǫk

]

. (7)

5



Then it holds for all n ∈ {0, 1, 2, . . . , N} that

ǫn ≤ α

[

n−1
∏

k=0

(1 + βk)

]

≤ α exp

(

n−1
∑

k=0

βk

)

< ∞. (8)

Proof of Lemma 2.1. Throughout this proof let (un)n∈{0,1,2,...,N} ⊆ [0,∞] be the extended real
numbers which satisfy for all n ∈ {0, 1, 2, . . . , N} that

un = α+

[

n−1
∑

k=0

βkuk

]

. (9)

We claim that for all n ∈ {0, 1, 2, . . . , N} it holds that

un = α

[

n−1
∏

k=0

(1 + βk)

]

. (10)

We now prove (10) by induction on n ∈ {0, 1, 2, . . . , N}. For the base case n = 0 observe that (9)
ensures that

u0 = α. (11)

This proves (10) in the base case n = 0. For the induction step {0, 1, 2, . . . , N−1} ∋ (n−1) → n ∈
{1, 2, . . . , N} observe that (9) implies that for all n ∈ {1, 2, . . . , N} with un−1 = α

[
∏n−2

k=0(1 + βk)
]

it holds that

un = α +

[

n−1
∑

k=0

βkuk

]

= α+

[

n−2
∑

k=0

βkuk

]

+ βn−1un−1

= un−1 + βn−1un−1 = (1 + βn−1)un−1 = α

[

n−1
∏

k=0

(1 + βk)

]

.

(12)

Induction thus establishes (10). Moreover, note that (7), (9), and induction prove that for all
n ∈ {0, 1, 2, . . . , N} it holds that

ǫn ≤ un. (13)

This and (10) establish that for all n ∈ {0, 1, 2, . . . , N} it holds that

ǫn ≤ α

[

n−1
∏

k=0

(1 + βk)

]

. (14)

The fact that for all x ∈ R it holds that (1 + x) ≤ exp(x) therefore ensures that for all n ∈
{0, 1, 2, . . . , N} it holds that

ǫn ≤ α

[

n−1
∏

k=0

(1 + βk)

]

≤ α

[

n−1
∏

k=0

exp(βk)

]

= α exp

(

n−1
∑

k=0

βk

)

. (15)

The proof of Lemma 2.1 is thus completed.

Corollary 2.2. Let N ∈ N ∪ {∞}, α, β ∈ [0,∞), (ǫn)n∈N0∩[0,N ] ⊆ [0,∞] satisfy for all n ∈
N0 ∩ [0, N ] that

ǫn ≤ α + β

[

n−1
∑

k=0

ǫk

]

. (16)

Then it holds for all n ∈ N0 ∩ [0, N ] that

ǫn ≤ α(1 + β)n ≤ α eβn < ∞. (17)

Proof of Corollary 2.2. Note that Lemma 2.1 establishes Corollary 2.2. The proof of Corollary 2.2
is thus completed.
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2.2 A priori moment bounds for solutions of SDEs

In this subsection we establish in the elementary result in Lemma 2.6 below for every p ∈ [0,∞)
a bound on the p-th absolute moment of the solution of an SDE with deterministic initial value, a
one-sided linear growth condition on the drift coefficient of the SDE, and a linear growth condition
on the diffusion coefficient of the SDE (cf. (43) in Lemma 2.6 below). Our proof of Lemma 2.6
employs standard Lyapunov-type techniques from the literature to establish the desired a priori
moment bound (cf., e.g., Cox et al. [22, Section 2.2]).

Lemma 2.3. Let d,m ∈ N, T, C1, C2 ∈ [0,∞), let 〈·, ·〉 : Rd × Rd → R be the Euclidean scalar
product on Rd, let ‖·‖ : Rd → [0,∞) be the Euclidean norm on Rd, let |||·||| : Rd×m → [0,∞)
be the Frobenius norm on Rd×m, and let µ : [0, T ] × Rd → Rd, σ : [0, T ] × Rd → Rd×m, and
Vp : R

d → (0,∞), p ∈ [2,∞), be functions which satisfy for all t ∈ [0, T ], x ∈ Rd, p ∈ [2,∞) that

max{〈x, µ(t, x)〉 , |||σ(t, x)|||2} ≤ C1 + C2 ‖x‖2 and Vp(x) = (1 + ‖x‖2)p/2. (18)

Then

(i) it holds for all p ∈ [2,∞) that Vp ∈ C∞(Rd, (0,∞)) and

(ii) it holds for all t ∈ [0, T ], x ∈ Rd, p ∈ [2,∞) that

1
2
Trace

(

σ(t, x)[σ(t, x)]∗(Hess Vp)(x)
)

+ 〈µ(t, x), (∇Vp)(x)〉
≤ p(p+1)

2

(

p−2
p

+ C2

)

Vp(x) + (p+ 1)|C1|p/2.
(19)

Proof of Lemma 2.3. Throughout this proof let σi,j : [0, T ] × Rd → R, i ∈ {1, 2, . . . , d}, j ∈
{1, 2, . . . , m}, be the functions which satisfy for all t ∈ [0, T ], x ∈ Rd that

σ(t, x) =











σ1,1(t, x) σ1,2(t, x) . . . σ1,m(t, x)
σ2,1(t, x) σ2,2(t, x) . . . σ2,m(t, x)

...
...

. . .
...

σd,1(t, x) σd,2(t, x) . . . σd,m(t, x)











∈ Rd×m. (20)

Note that the chain rule, the fact that the function Rd ∋ x 7→ 1+ ‖x‖2 ∈ (0,∞) is infinitely often
differentiable, and the fact that for every p ∈ [2,∞) the function (0,∞) ∋ s 7→ s

p
2 ∈ (0,∞) is

infinitely often differentiable establish item (i). It thus remains to prove item (ii). For this, observe
that the chain rule ensures that for all x = (x1, . . . , xd) ∈ Rd, i, j ∈ {1, 2, . . . , d}, p ∈ [2,∞) it
holds that

(∇Vp)(x) =
p
2

(

1 + ‖x‖2
)

p
2
−1 · (2x) = pVp(x)

[

1
1+‖x‖2

]

x (21)

and

( ∂2Vp

∂xi∂xj
)(x) = ∂

∂xi

[

p
(

1 + ‖x‖2
)

p
2
−1

xj

]

= p
[

∂
∂xi

(

1 + ‖x‖2
)

p
2
−1
]

xj + p
(

1 + ‖x‖2
)

p
2
−1
[

∂
∂xi

xj

]

= p(p
2
− 1)

(

1 + ‖x‖2
)

p
2
−2 · (2xi)xj + p

(

1 + ‖x‖2
)

p
2
−1
1{i}(j)

= p(p− 2)Vp(x)
xixj

(1+‖x‖2)2 + pVp(x)
1{i}(j)

1+‖x‖2

= pVp(x)
[

(p− 2)
xixj

(1+‖x‖2)2 +
1{i}(j)

1+‖x‖2
]

.

(22)
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This implies that for all t ∈ [0, T ], x = (x1, . . . , xd) ∈ Rd, p ∈ [2,∞) it holds that

1
2
Trace

(

σ(t, x)[σ(t, x)]∗(Hess Vp)(x)
)

+ 〈µ(t, x), (∇Vp)(x)〉

= 1
2

[

m
∑

k=1

d
∑

i,j=1

σi,k(t, x)σj,k(t, x)(
∂2Vp

∂xi∂xj
)(t, x)

]

+ 〈µ(t, x), (∇Vp)(x)〉

= pVp(x)
2

([

m
∑

k=1

d
∑

i,j=1

σi,k(t, x)σj,k(t, x)
(

(p− 2)
xixj

(1+‖x‖2)2 +
1{i}(j)

1+‖x‖2
)

]

+ 2〈µ(t,x),x〉
1+‖x‖2

)

= pVp(x)

2





(p−2)

(1+‖x‖2)2





m
∑

k=1

[

d
∑

i=1

σi,k(t, x)xi

]2


+ |||σ(t,x)|||2
1+‖x‖2 + 2〈µ(t,x),x〉

1+‖x‖2



 .

(23)

In addition, note that the Cauchy Schwarz inequality assures that for all t ∈ [0, T ], x = (x1, . . . , xd) ∈
Rd it holds that

m
∑

k=1

[

d
∑

i=1

σi,k(t, x)xi

]2

≤
m
∑

k=1

[

d
∑

i=1

|σi,k(t, x)|2
][

d
∑

i=1

|xi|2
]

= |||σ(t, x)|||2 ‖x‖2 ≤ |||σ(t, x)|||2(1 + ‖x‖2).
(24)

This, (18), and (23) demonstrate that for all t ∈ [0, T ], x ∈ Rd, p ∈ [2,∞) it holds that

1
2
Trace

(

σ(t, x)[σ(t, x)]∗(Hess Vp)(x)
)

+ 〈µ(t, x), (∇Vp)(x)〉
≤ p

2

[

(p−2)|||σ(t,x)|||2
1+‖x‖2 + |||σ(t,x)|||2

1+‖x‖2 + 2〈µ(t,x),x〉
1+‖x‖2

]

Vp(x)

≤ p
2
(p− 2 + 1 + 2) (C1+C2‖x‖2)

1+‖x‖2 Vp(x)

≤ p(p+1)
2

(

C1

[

Vp(x)

1+‖x‖2
]

+ C2Vp(x)
)

= p(p+1)
2

(

C1(1 + ‖x‖2)p/2−1 + C2Vp(x)
)

.

(25)

Young’s inequality (with p = p/2, q = p/(p−2) =
p/2

p/2−1
for p ∈ (2,∞) in the usual notation of Young’s

inequality) hence proves that for all t ∈ [0, T ], x ∈ Rd, p ∈ (2,∞) it holds that

1
2
Trace

(

σ(t, x)[σ(t, x)]∗(Hess Vp)(x)
)

+ 〈µ(t, x), (∇Vp)(x)〉

≤ p(p+1)
2

(

|C1|p/2
p/2

+

∣

∣(1 + ‖x‖2)p/2−1
∣

∣

p/(p−2)

p/(p−2)
+ C2Vp(x)

)

= (p+ 1)|C1|p/2 +
(

p(p+1)
2

(

p−2
p

+ C2

)

)

Vp(x).

(26)

Moreover, note that (25) ensures that for all t ∈ [0, T ], x ∈ Rd it holds that

1
2
Trace

(

σ(t, x)[σ(t, x)]∗(Hess V2)(x)
)

+ 〈µ(t, x), (∇V2)(x)〉 ≤ 3 (C1 + C2V2(x)) . (27)

Combining this and (26) establishes item (ii). The proof of Lemma 2.3 is thus completed.

Lemma 2.4. Let d,m ∈ N, T, ρ ∈ [0,∞), ξ ∈ Rd, let 〈·, ·〉 : Rd ×Rd → R be the Euclidean scalar
product on Rd, let µ ∈ C([0, T ] × Rd,Rd), σ ∈ C([0, T ] × Rd,Rd×m), V ∈ C2(Rd, (0,∞)) satisfy
for all t ∈ [0, T ], x ∈ Rd that

1
2
Trace

(

σ(t, x)[σ(t, x)]∗(Hess V )(x)
)

+ 〈µ(t, x), (∇V )(x)〉 ≤ ρ, (28)
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let (Ω,F ,P, (Ft)t∈[0,T ]) be a filtered probability space which satisfies the usual conditions, letW : [0, T ]×
Ω → Rm be a standard (Ω,F ,P, (Ft∈[0,T ]))-Brownian motion, and let X : [0, T ] × Ω → Rd be an
(Ft)t∈[0,T ]/B(Rd)-adapted stochastic process with continuous sample paths which satisfies that for
all t ∈ [0, T ] it holds P-a.s. that

Xt = ξ +

∫ t

0

µ(r,Xr)dr +

∫ t

0

σ(r,Xr)dWr. (29)

Then it holds for all t ∈ [0, T ] that

E[V (Xt)] ≤ V (ξ) + tρ. (30)

Proof of Lemma 2.4. Throughout this proof assume w.l.o.g. that T > 0 and let V : [0, T ]× Rd →
(0,∞) be the function which satisfies for all t ∈ [0, T ], x ∈ Rd that

V(t, x) = V (x)− tρ+ Tρ. (31)

Note that the fact that V ∈ C2(Rd, (0,∞)) ensures that for all t ∈ [0, T ], x ∈ Rd it holds that

(I) V ∈ C2([0, T ]× Rd, (0,∞)),

(II) (∂V
∂t
)(t, x) = −ρ,

(III) (∇xV)(t, x) = (∇V )(x), and

(IV) (HessxV)(t, x) = (HessV )(x).

Observe that items (II)–(IV) and (28) show that for all t ∈ [0, T ], x ∈ Rd it holds that

(∂V
∂t
)(t, x) + 1

2
Trace

(

σ(t, x)[σ(t, x)]∗(HessxV)(t, x)
)

+ 〈µ(t, x), (∇xV)(t, x)〉
= −ρ+ 1

2
Trace

(

σ(t, x)[σ(t, x)]∗(Hess V )(x)
)

+ 〈µ(t, x), (∇V )(x)〉
≤ −ρ+ ρ = 0.

(32)

Combining this with Itô’s formula demonstrates that for all t ∈ [0, T ] it holds that

E[V(t, Xt)] ≤ E[V(0, X0)] = V (ξ) + Tρ. (33)

Therefore, we obtain that for all t ∈ [0, T ] it holds that

E[V (Xt)] = E[V (Xt)− tρ+ Tρ] + tρ− Tρ = E[V(t, Xt)] + tρ− Tρ

≤ V (ξ) + Tρ+ tρ− Tρ = V (ξ) + tρ.
(34)

The proof of Lemma 2.4 is thus completed.

Lemma 2.5. Let d,m ∈ N, T, ρ1, ρ2 ∈ [0,∞), ξ ∈ Rd, let 〈·, ·〉 : Rd × Rd → R be the Euclidean
scalar product on Rd, let µ ∈ C([0, T ] × Rd,Rd), σ ∈ C([0, T ] × Rd,Rd×m), V ∈ C2(Rd, (0,∞))
satisfy for all t ∈ [0, T ], x ∈ Rd that

1
2
Trace

(

σ(t, x)[σ(t, x)]∗(Hess V )(x)
)

+ 〈µ(t, x), (∇V )(x)〉 ≤ ρ1V (x) + ρ2, (35)

let (Ω,F ,P, (Ft)t∈[0,T ]) be a filtered probability space which satisfies the usual conditions, letW : [0, T ]×
Ω → Rm be a standard (Ω,F ,P, (Ft∈[0,T ]))-Brownian motion, and let X : [0, T ] × Ω → Rd be an
(Ft)t∈[0,T ]/B(Rd)-adapted stochastic process with continuous sample paths which satisfies that for
all t ∈ [0, T ] it holds P-a.s. that

Xt = ξ +

∫ t

0

µ(r,Xr)dr +

∫ t

0

σ(r,Xr)dWr. (36)

Then it holds for all t ∈ [0, T ] that

E[V (Xt)] ≤ eρ1t (V (ξ) + tρ2) . (37)
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Proof of Lemma 2.5. Throughout this proof assume w.l.o.g. that ρ1 > 0 (cf. Lemma 2.4) and that
T > 0 and let V : [0, T ]×Rd → (0,∞) be the function which satisfies for all t ∈ [0, T ], x ∈ Rd that

V(t, x) = e−ρ1t
(

V (x) + ρ2
ρ1

)

. (38)

Note that the fact that V ∈ C2(Rd, (0,∞)) ensures that for all t ∈ [0, T ], x ∈ Rd it holds that

(I) V ∈ C2([0, T ]× Rd, (0,∞)),

(II) (∂V
∂t
)(t, x) = −ρ1e

−ρ1t(V (x) + ρ2
ρ1
),

(III) (∇xV)(t, x) = e−ρ1t(∇V )(x), and

(IV) (HessxV)(t, x) = e−ρ1t(Hess V )(x).

Observe that items (II)–(IV) and (35) assure that for all t ∈ [0, T ], x ∈ Rd it holds that

(∂V
∂t
)(t, x) + 1

2
Trace

(

σ(t, x)[σ(t, x)]∗(Hessx V)(t, x)
)

+ 〈µ(t, x), (∇xV)(t, x)〉
= e−ρ1t

(

−ρ1
(

V (x) + ρ2
ρ1

)

+ 1
2
Trace

(

σ(t, x)[σ(t, x)]∗(Hess V )(x)
)

+ 〈µ(t, x), (∇V )(x)〉
)

≤ e−ρ1t (−ρ1V (x)− ρ2 + ρ1V (x) + ρ2) = 0.

(39)

Combining this with Itô’s formula demonstrates that for all t ∈ [0, T ] it holds that

E[V(t, Xt)] ≤ E[V(0, X0)] = V (ξ) + ρ2
ρ1
. (40)

Therefore, we obtain that for all t ∈ [0, T ] it holds that

E[V (Xt)] = E

[

eρ1t
(

e−ρ1t
[

V (Xt) +
ρ2
ρ1

]

)

− ρ2
ρ1

]

= eρ1t E[V(t, Xt)]− ρ2
ρ1

≤ eρ1t
[

V (ξ) + ρ2
ρ1

]

− ρ2
ρ1

= eρ1tV (ξ) +
(

eρ1t − 1
)

ρ2
ρ1
.

(41)

The fact that for all a ∈ R it holds that ea − 1 ≤ aea hence ensures that for all t ∈ [0, T ] it holds
that

E[V (Xt)] ≤ eρ1tV (ξ) + (ρ1te
ρ1t)ρ2

ρ1
= eρ1t (V (ξ) + tρ2) . (42)

The proof of Lemma 2.5 is thus completed.

Lemma 2.6. Let d,m ∈ N, T, C1, C2 ∈ [0,∞), ξ ∈ Rd, let 〈·, ·〉 : Rd × Rd → R be the Euclidean
scalar product on Rd, let ‖·‖ : Rd → [0,∞) be the Euclidean norm on Rd, let |||·||| : Rd×m → [0,∞)
be the Frobenius norm on Rd×m, let µ ∈ C([0, T ]× Rd,Rd), σ ∈ C([0, T ] × Rd,Rd×m) satisfy for
all t ∈ [0, T ], x ∈ Rd that

max{〈x, µ(t, x)〉 , |||σ(t, x)|||2} ≤ C1 + C2 ‖x‖2 , (43)

let (Ω,F ,P, (Ft)t∈[0,T ]) be a filtered probability space which satisfies the usual conditions, letW : [0, T ]×
Ω → Rm be a standard (Ω,F ,P, (Ft∈[0,T ]))-Brownian motion, and let X : [0, T ] × Ω → Rd be an
(Ft)t∈[0,T ]/B(Rd)-adapted stochastic process with continuous sample paths which satisfies that for
all t ∈ [0, T ] it holds P-a.s. that

Xt = ξ +

∫ t

0

µ(r,Xr)dr +

∫ t

0

σ(r,Xr)dWr. (44)

Then it holds for all p ∈ [0,∞), t ∈ [0, T ] that

E[‖Xt‖p] ≤
(

(1 + ‖ξ‖2)p/2 + tmin{p/2,1}(p+ 1)|C1|p/2
)

exp
(

p(p+3)
2

(

1(2,∞)(p) + C2

)

t
)

≤ max{T, 1}
(

(1 + ‖ξ‖2)p/2 + (p+ 1)|C1|p/2
)

exp
(

p(p+3)(1+C2)T
2

)

< ∞.
(45)
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Proof of Lemma 2.6. Throughout this proof let (ρ
(p)
1 )p∈[2,∞),(ρ

(p)
2 )p∈[2,∞) ⊆ [0,∞) satsify for all

p ∈ [2,∞) that

ρ
(p)
1 = p(p+1)

2

(

p−2
p

+ C2

)

and ρ
(p)
2 = (p+ 1)|C1|p/2 (46)

and let Vp : R
d → (0,∞), p ∈ [2,∞), be the functions which satisfy for all p ∈ [2,∞), x ∈ Rd that

Vp(x) = (1 + ‖x‖2)p/2. (47)

Observe that Lemma 2.3 and (43) assure that for all t ∈ [0, T ], x ∈ Rd, p ∈ [2,∞) it holds that
Vp ∈ C∞(Rd, (0,∞)) and

1
2
Trace

(

σ(t, x)[σ(t, x)]∗(Hess Vp)(x)
)

+ 〈µ(t, x), (∇Vp)(x)〉 ≤ ρ
(p)
1 Vp(x) + ρ

(p)
2 . (48)

Lemma 2.5 hence implies that for all t ∈ [0, T ], p ∈ [2,∞) it holds that

E[‖Xt‖p] ≤ E[Vp(Xt)] ≤ eρ
(p)
1 t
(

Vp(ξ) + tρ
(p)
2

)

=
(

(1 + ‖ξ‖2)p/2 + t(p+ 1)|C1|p/2
)

exp
(

p(p+1)
2

(

p−2
p

+ C2

)

t
)

≤
(

(1 + ‖ξ‖2)p/2 + tmin{p/2,1}(p+ 1)|C1|p/2
)

exp
(

p(p+3)
2

(

1(2,∞)(p) + C2

)

t
)

.

(49)

This, Jensen’s inequality, and the fact that for all p ∈ [0, 2] it holds that 3p/2 ≤ p + 1 assure that
for all t ∈ [0, T ], p ∈ [0, 2) it holds that

E[‖Xt‖p] = E

[

(

‖Xt‖2
)p/2
]

≤
(

E
[

‖Xt‖2
])p/2

≤
[

(

(1 + ‖ξ‖2) + t(2 + 1)|C1|
)

exp
(

2(2+1)
2

C2t
)]p/2

≤
(

(1 + ‖ξ‖2)p/2 + t
p/23

p/2|C1|p/2
)

exp
(

3p
2
C2t
)

≤
(

(1 + ‖ξ‖2)p/2 + tmin{p/2,1}(p+ 1)|C1|p/2
)

exp
(

(p+3)p
2

(

1(2,∞)(p) + C2

)

t
)

.

(50)

Combining this with (49) implies (45). The proof of Lemma 2.6 is thus completed.

2.3 Temporal regularity properties for solutions of SDEs

For the proof of our strong L2-error estimates for Euler-Maruyama approximations in Subsec-
tion 2.4 we need Corollary 2.8 below, which asserts that, under suitable conditions (see Corol-
lary 2.8 below for details), solutions of SDEs have a certain temporal regularity property. To prove
Corollary 2.8 we employ (without providing a proof) a well-known temporal regularity property
for solutions of SDEs from the literature stated in Lemma 2.7 below (cf., e.g., Da Prato et al. [29,
Proposition 3], Cox et al. [23, Corollary 3.8], and Jentzen et al. [63, Proposition 5.1]). Additionally,
we offer in Lemma 2.10 below a self contained proof of an explicit temporal regularity estimate
for solutions of SDEs with deterministic initial values which will be used in Subsection 2.8.

Lemma 2.7 (Temporal regularity of solutions of time-homogeneous SDEs). Let d,m ∈ N, T ∈
(0,∞), let ‖·‖ : Rd → [0,∞) be the Euclidean norm on Rd, let (Ω,F ,P, (Ft)t∈[0,T ]) be a filtered
probability space which satisfies the usual conditions, let W : [0, T ] × Ω → Rm be a standard
(Ω,F ,P, (Ft)t∈[0,T ])-Brownian motion, let µ : Rd → Rd, σ : Rd → Rd×m be globally Lipschitz con-
tinuous functions, and let X : [0, T ]×Ω → Rd be an (Ft)t∈[0,T ]/B(Rd)-adapted stochastic processes

with continuous sample paths which satisfies that E
[

‖X0‖2
]

< ∞ and which satisfies that for all
t ∈ [0, T ] it holds P-a.s. that

Xt = X0 +

∫ t

0

µ(Xs) ds+

∫ t

0

σ(Xs) dWs. (51)
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Then it holds that

sup

{

(E[‖Xt −Xs‖2])
1/2

|t− s|1/2 ∈ [0,∞] : t, s ∈ [0, T ], t 6= s

}

< ∞. (52)

Lemma 2.8 (Temporal regularity of solutions of time-inhomogeneous SDEs). Let d,m ∈ N,
T ∈ (0,∞), L ∈ [0,∞), let ‖·‖ : Rd → [0,∞) be the Euclidean norm on Rd, let (Ω,F ,P, (Ft)t∈[0,T ])
be a filtered probability space which satisfies the usual conditions, let W : [0, T ] × Ω → Rm be a
standard (Ω,F ,P, (Ft)t∈[0,T ])-Brownian motion, let µ : [0, T ]×Rd → Rd and σ : [0, T ]×Rd → Rd×m

be globally Lipschitz continuous functions, and let X : [0, T ] × Ω → Rd be an (Ft)t∈[0,T ]/B(Rd)-

adapted stochastic processes with continuous sample paths which satisfies that E
[

‖X0‖2
]

< ∞ and
which satisfies that for all t ∈ [0, T ] it holds P-a.s. that

Xt = X0 +

∫ t

0

µ(s,Xs) ds+

∫ t

0

σ(s,Xs) dWs. (53)

Then it holds that

sup

{

(E[‖Xt −Xs‖2])
1/2

|t− s|1/2 ∈ [0,∞] : t, s ∈ [0, T ], t 6= s

}

< ∞. (54)

Proof of Lemma 2.8. Throughout this proof let |||·||| : Rd+1 → [0,∞) be the Euclidean norm on
Rd+1, let Y : [0, T ]× Ω → Rd+1 be the stochastic process which satisfies for all t ∈ [0, T ] that

Yt =

(

t
Xt

)

, (55)

and let µ̃ : Rd+1 → Rd+1 and σ̃ : Rd+1 → R(d+1)×m be the functions which satisfy for all y =
(y1, y2, . . . , yd+1) ∈ Rd+1 that

µ̃(y) =

(

1
µ
(

min{max{y1, 0}, T}, (y2, . . . , yd+1)
)

)

∈ Rd+1 and (56)

σ̃(y) =

(

0
σ
(

min{max{y1, 0}, T}, (y2, . . . , yd+1)
)

)

∈ R(d+1)×m. (57)

Observe that the hypothesis that µ and σ are globally Lipschitz continuous functions and the fact
that R ∋ y 7→ min{max{y, 0}, T} ∈ R is a globally Lipschitz continuous function assure that µ̃
and σ̃ are globally Lipschitz continuous functions. Moreover, note that it holds for all t ∈ [0, T ],
x ∈ Rd that

µ̃((t, x)) =

(

1
µ(t, x)

)

and σ̃((t, x)) =

(

0
σ(t, x)

)

. (58)

This and (53) assure that for all t ∈ [0, T ] it holds P-a.s. that

Yt =

(

t
Xt

)

=

( ∫ t

0
1 ds

X0 +
∫ t

0
µ(s,Xs) ds+

∫ t

0
σ(s,Xs) dWs

)

=

(

0
X0

)

+

∫ t

0

(

1
µ(s,Xs)

)

ds+

∫ t

0

(

0
σ(s,Xs)

)

dWs = Y0 +

∫ t

0

µ̃(Ys)ds+

∫ t

0

σ̃(Ys)dWs.

(59)

The fact that µ̃ and σ̃ are globally Lipschitz continuous functions and Lemma 2.7 (with d = d+1,
m = m, T = T , µ = µ̃, σ = σ̃, X = Y in the notation of Lemma 2.7) hence prove that

sup
t,s∈[0,T ],t6=s

(

E[|||Yt − Ys|||2]
)1/2

|t− s|1/2 < ∞. (60)
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Hence, we obtain that

sup
t,s∈[0,T ],t6=s

(E[‖Xt −Xs‖2])
1/2

|t− s|1/2 ≤ sup
t,s∈[0,T ],t6=s

(E[|t− s|2 + ‖Xt −Xs‖2])
1/2

|t− s|1/2

= sup
t,s∈[0,T ],t6=s

(

E[|||Yt − Ys|||2]
)1/2

|t− s|1/2 < ∞.

(61)

The proof of Lemma 2.8 is thus completed.

The following very elementary and well-known result will be helpfull in the proof of Lemma 2.10
below and will be repeatedly used throughout this paper.

Lemma 2.9 (A consequence of Hölders inequality). Let (Ω,F , µ) be a measure space and let
f : Ω → [0,∞] be an F/B([0,∞])-measurable function. Then

[
∫

Ω

f(ω)µ(dω)

]2

≤ µ(Ω)

∫

Ω

|f(ω)|2 µ(dω). (62)

Proof of Lemma 2.9. Note that Hölders inequality demonstrates that

[
∫

Ω

f(ω)µ(dω)

]2

≤
[

(
∫

Ω

12 µ(dω)

)1/2(∫

Ω

|f(ω)|2 µ(dω)
)1/2
]2

= µ(Ω)

∫

Ω

|f(ω)|2 µ(dω).
(63)

The proof of Lemma 2.9 is thus completed.

Lemma 2.10 (Explicit temporal regularity for solutions of SDEs with deterministic initial values).
Let d,m ∈ N, T ∈ (0,∞), L ∈ [0,∞), ξ ∈ Rd, let ‖·‖ : Rd → [0,∞) be the Euclidean norm
on Rd, let |||·||| : Rd×m → [0,∞) be the Frobenius norm on Rd×m, let (Ω,F ,P, (Ft)t∈[0,T ]) be a
filtered probability space which satisfies the usual conditions, let W : [0, T ]×Ω → Rm be a standard
(Ω,F ,P, (Ft)t∈[0,T ])-Brownian motion, let µ : [0, T ]×Rd → Rd, σ : [0, T ]×Rd → Rd×m be functions
which satisfy for all t, s ∈ [0, T ], x, y ∈ Rd that

max
{

‖µ(t, x)− µ(s, y)‖ , |||σ(t, x)− σ(s, y)|||
}

≤ L
(

|t− s|+ ‖x− y‖
)

, (64)

and let X : [0, T ] × Ω → Rd be an (Ft)t∈[0,T ]/B(Rd)-adapted stochastic processes with continuous
sample paths which satisfies that for all t ∈ [0, T ] it holds P-a.s. that

Xt = ξ +

∫ t

0

µ(s,Xs) ds+

∫ t

0

σ(s,Xs) dWs. (65)

Then it holds that

sup

{

(E[‖Xt −Xs‖2])
1/2

|t− s|1/2 ∈ [0,∞] : t, s ∈ [0, T ], t 6= s

}

≤ (1 + ‖ξ‖) exp
(

10
(

max{‖µ(0, 0)‖ , |||σ(0, 0)|||, L, 1}+ LT
)2
(T + 1)(L+ 1)

)

< ∞.

(66)

Proof of Lemma 2.10. Throughout this proof let 〈·, ·〉 : Rd × Rd → R be the Euclidean scalar
product on Rd and let C ∈ (0,∞) be given by

C = 2
(

max{‖µ(0, 0)‖ , |||σ(0, 0)|||, L, 1}+ LT
)2
. (67)
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Note that (64) and the triangle inequality assure that for all t ∈ [0, T ], x ∈ Rd it holds that

‖µ(t, x)‖ ≤ ‖µ(0, 0)‖+ L
(

|t|+ ‖x‖
)

≤ C + L
(

|t|+ ‖x‖
)

and (68)

|||σ(t, x)||| ≤ |||σ(0, 0)|||+ L
(

|t|+ ‖x‖
)

≤ C + L
(

|t|+ ‖x‖
)

. (69)

This assures that for all t ∈ [0, T ], x ∈ Rd it holds that

〈x, µ(t, x)〉
≤ ‖x‖ ‖µ(t, x)‖ ≤ ‖x‖ (‖µ(0, 0)‖+ L(t + ‖x‖))
≤ ‖x‖max{‖µ(0, 0)‖+ LT, L}(1 + ‖x‖) ≤ 2max{‖µ(0, 0)‖+ LT, L}(1 + ‖x‖2)
≤ C(1 + ‖x‖2).

(70)

In addition, note that (69) implies that for all t ∈ [0, T ], x ∈ Rd it holds that

|||σ(t, x)|||2

≤ (|||σ(0, 0)|||+ L(t+ ‖x‖))2 ≤ (max{|||σ(0, 0)|||+ LT, L})2(1 + ‖x‖)2

≤ 2(max{|||σ(0, 0)|||+ LT, L})2(1 + ‖x‖2)
≤ C(1 + ‖x‖2).

(71)

Moreover, observe that (65), Lemma 2.9, Tonelli’s theorem, and Itô’s isometry demonstate that
for all t ∈ [0, T ], s ∈ [t, T ] it holds that

(

E[‖Xt −Xs‖2]
)1/2

=

(

E

[

∥

∥

∥

∥

∫ s

t

µ(r,Xr) dr +

∫ s

t

σ(r,Xr) dWr

∥

∥

∥

∥

2
])1/2

≤
(

E

[

∥

∥

∥

∥

∫ s

t

µ(r,Xr) dr

∥

∥

∥

∥

2
])1/2

+

(

E

[

∥

∥

∥

∥

∫ s

t

σ(r,Xr) dWr

∥

∥

∥

∥

2
])1/2

≤ |t− s|1/2
(
∫ s

t

E
[

‖µ(r,Xr)‖2
]

dr

)1/2

+

(
∫ s

t

E
[

‖σ(r,Xr)‖2
]

dr

)1/2

.

(72)

The triangle inequality, (68), and (69) therefore ensure that for all t ∈ [0, T ], s ∈ [t, T ] it holds
that

(

E[‖Xt −Xs‖2]
)1/2

≤ (|t− s|1/2 + 1)

(

|t− s|1/2C + L

(
∫ s

t

E
[

(|r|+ ‖Xr‖)2
]

dr

)1/2
)

≤ (|t− s|1/2 + 1)

(

|t− s|1/2C + L

[

(
∫ s

t

r2dr

)1/2

+

(
∫ s

t

E
[

‖Xr‖2
]

dr

)1/2
])

.

(73)

Furthermore, note that (70), (71), (65), and Lemma 2.6 (with d = d, m = m, T = T , C1 = C,
C2 = C, ξ = ξ, µ = µ, σ = σ, X = X in the notation of Lemma 2.6) assure that for all t ∈ [0, T ]
it holds that

E
[

‖Xt‖2
]

≤
(

(1 + ‖ξ‖2) + t3C
)

exp (5Ct) ≤
(

(1 + ‖ξ‖2) + 3CT
)

exp (5CT ) . (74)

This, (73), the fact that C ≥ 1, the fact that for all x ∈ [0,∞) it holds that max{x, 1 + x} ≤ ex,
and the fact that for all x, y ∈ [0,∞) it holds that

√
x+ y ≤ √

x +
√
y demonstrate that for all

14



t ∈ [0, T ], s ∈ [t, T ] it holds that

(

E[‖Xt −Xs‖2]
)1/2

≤ (T
1/2 + 1)

(

|t− s|1/2C + L|t− s|1/2
[

T +
[

((1 + ‖ξ‖2) + 3CT ) exp (5CT )
]1/2
])

≤ |t− s|1/2
[

1 + ‖ξ‖2
]1/2

exp(T
1/2 + C + L)

(

1 + T + [(1 + 3CT ) exp (5CT )]
1/2 )

≤ |t− s|1/2(1 + ‖ξ‖) exp(T 1/2 + C + L)2 exp (4CT )

≤ |t− s|1/2(1 + ‖ξ‖) exp
(

C(T
1/2 + 1 + L+ 1 + 4T

)

≤ |t− s|1/2(1 + ‖ξ‖) exp
(

5C(T + 1)(L+ 1)
)

.

(75)

This implies (66). The proof of Lemma 2.10 is thus completed.

2.4 Strong error estimates for Euler-Maruyama approximations

Our proof of the flow-type property of solutions of SDEs in Subsection 2.8 below makes use
of Euler-Maruyama approximations of solutions. For that reason we present in this subsection
explicit strong L2-error estimates for Euler-Maruyama approximations in Proposition 2.11 and
Corollary 2.12 below. The results in this subsection are essentially well-known (cf., e.g., Kloeden
& Platen [67, Chapter 10] and Milstein [77]).

Proposition 2.11 (Strong convergence of the Euler-Maruyama method). Let d,m,N ∈ N, T ∈
(0,∞), L ∈ [0,∞), let ‖·‖ : Rd → [0,∞) be the Euclidean norm on Rd, let |||·||| : Rd×m → [0,∞)
be the Frobenius norm on Rd×m, let (Ω,F ,P, (Ft)t∈[0,T ]) be a filtered probability space which sat-
isfies the usual conditions, let W : [0, T ] × Ω → Rm be a standard (Ω,F ,P, (Ft)t∈[0,T ])-Brownian

motion, let ζ : Ω → Rd be an F0/B(Rd)-measurable function which satisfies that E
[

‖ζ‖2
]

< ∞,
let µ : [0, T ] × Rd → Rd, σ : [0, T ] × Rd → Rd×m be functions which satisfy for all t, s ∈ [0, T ],
x, y ∈ Rd that

max
{

‖µ(t, x)− µ(s, y)‖ , |||σ(t, x)− σ(s, y)|||
}

≤ L
(

|t− s|+ ‖x− y‖
)

, (76)

let X : [0, T ]×Ω → Rd be an (Ft)t∈[0,T ]/B(Rd)-adapted stochastic processes with continuous sample

paths which satisfies that E
[

‖X0‖2
]

< ∞ and which satisfies that for all t ∈ [0, T ] it holds P-a.s.
that

Xt = X0 +

∫ t

0

µ(s,Xs) ds+

∫ t

0

σ(s,Xs) dWs, (77)

let t0, t1, . . . , tN ∈ [0, T ] satisfy that

0 = t0 ≤ t1 ≤ t2 ≤ . . . ≤ tN = T, (78)

and let X : {0, 1, . . . , N}×Ω → Rd be the stochastic process which satisfies for all n ∈ {1, 2, . . . , N}
that

X0 = ζ and Xn = Xn−1 + µ(tn−1,Xn−1)(tn − tn−1) + σ(tn−1,Xn−1)(Wtn −Wtn−1). (79)

Then it holds that

(

E
[

‖XT −XN‖2
])1/2 ≤

[

(

E
[

‖X0 − ζ‖2
])1/2

+ max
k∈{1,2,...,N}

|tk − tk−1|1/2
]

· exp
(

(1 + L)2(1 +
√
T )4
)

(

1 + sup
s,r∈[0,T ],s 6=r

(E[‖Xs−Xr‖2])1/2
|s−r|1/2

)

< ∞.

(80)
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Proof of Proposition 2.11. Throughout this proof assume w.l.o.g. that t0 < t1 < t2 < . . . < tN , let
(hn)n∈{1,2,...,N} ⊆ (0, T ], H ∈ (0, T ], K ∈ [0,∞] satisfy for all n ∈ {1, 2, . . . , N} that

hn = |tn − tn−1|, H = max
k∈{1,2,...,N}

|tk − tk−1|, and K = sup
s,r∈[0,T ],s 6=r

(E[‖Xs −Xr‖2])
1/2

|s− r|1/2 ,

(81)
let t : [0, T ] → {t0, t1, t2, . . . , tN} be the function which satisfies for all s ∈ [0, T ] that

t(s) = max ({t0, t1, . . . , tN} ∩ [0, s]) , (82)

and let n : [0, T ] → {0, 1, 2, . . . , N} be the function which satisfies for all s ∈ [0, T ] that

n(s) = max ({n ∈ {0, 1, 2, . . . , N} : tn ≤ s}) . (83)

Note that the hypothesis that E
[

‖X0‖2
]

< ∞, the fact that µ and σ are globally Lipschitz
continuous functions, (77), and Lemma 2.8 imply that K < ∞. Next observe that (79) and
induction assure that for all n ∈ {0, 1, 2, . . . , N} it holds P-a.s. that

Xn = X0 +

[

n
∑

k=1

µ(tk−1,Xk−1)(tk − tk−1)

]

+

[

n
∑

k=1

σ(tk−1,Xk−1)(Wtk −Wtk−1
)

]

= ζ +

∫ tn

0

µ
(

t(s),Xn(s)

)

ds+

∫ tn

0

σ
(

t(s),Xn(s)

)

dWs.

(84)

This and (77) imply that for all n ∈ {0, 1, 2, . . . , N} it holds P-a.s. that

Xtn −Xn = X0 − ζ +

∫ tn

0

µ
(

s,Xs

)

− µ
(

t(s),Xn(s)

)

ds+

∫ tn

0

σ
(

s,Xs

)

− σ
(

t(s),Xn(s)

)

dWs

= X0 − ζ +

∫ tn

0

µ
(

s,Xs

)

− µ
(

t(s), Xt(s)

)

ds+

∫ tn

0

σ
(

s,Xs

)

− σ
(

t(s), Xt(s)

)

dWs

+

∫ tn

0

µ
(

t(s), Xt(s)

)

− µ
(

t(s),Xn(s)

)

ds+

∫ tn

0

σ
(

t(s), Xt(s)

)

− σ
(

t(s),Xn(s)

)

dWs.

(85)

The triangle inequality hence proves that for all n ∈ {0, 1, 2, . . . , N} it holds that

(

E
[

‖Xtn − Xn‖2
])1/2

≤
(

E
[

‖X0 − ζ‖2
])1/2

+

(

E

[

∥

∥

∥

∥

∫ tn

0

µ
(

s,Xs

)

− µ
(

t(s), Xt(s)

)

ds

∥

∥

∥

∥

2
])1/2

+

(

E

[

∥

∥

∥

∥

∫ tn

0

σ
(

s,Xs

)

− σ
(

t(s), Xt(s)

)

dWs

∥

∥

∥

∥

2
])1/2

+

(

E

[

∥

∥

∥

∥

∫ tn

0

µ
(

t(s), Xt(s)

)

− µ
(

t(s),Xn(s)

)

ds

∥

∥

∥

∥

2
])1/2

+

(

E

[

∥

∥

∥

∥

∫ tn

0

σ
(

t(s), Xt(s)

)

− σ
(

t(s),Xn(s)

)

dWs

∥

∥

∥

∥

2
])1/2

.

(86)

Lemma 2.9, Tonelli’s Theorem, and Itô’s isometry therefore imply that for all n ∈ {0, 1, 2, . . . , N}
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it holds that

(

E
[

‖Xtn − Xn‖2
])1/2

≤
(

E
[

‖X0 − ζ‖2
])1/2

+

(

T

∫ tn

0

E

[

∥

∥µ
(

s,Xs

)

− µ
(

t(s), Xt(s)

)∥

∥

2
]

ds

)1/2

+

(
∫ tn

0

E

[

∣

∣

∣

∣

∣

∣σ
(

s,Xs

)

− σ
(

t(s), Xt(s)

)∣

∣

∣

∣

∣

∣

2
]

ds

)1/2

+

(

T

∫ tn

0

E

[

∥

∥µ
(

t(s), Xt(s)

)

− µ
(

t(s),Xn(s)

)∥

∥

2
]

ds

)1/2

+

(
∫ tn

0

E

[

∣

∣

∣

∣

∣

∣σ
(

t(s), Xt(s)

)

− σ
(

t(s),Xn(s)

)∣

∣

∣

∣

∣

∣

2
]

ds

)1/2

.

(87)

This and (76) show that for all n ∈ {0, 1, 2, . . . , N} it holds that

(

E
[

‖Xtn − Xn‖2
])1/2

≤
(

E
[

‖X0 − ζ‖2
])1/2

+ L
√
T

( ∫ T

0

E

[

(

|s− t(s)|+
∥

∥Xs −Xt(s)

∥

∥

)2
]

ds

)1/2

+ L

(
∫ T

0

E

[

(

|s− t(s)|+
∥

∥Xs −Xt(s)

∥

∥

)2
]

ds

)1/2

+ L
√
T

(
∫ tn

0

E

[

∥

∥Xt(s) −Xn(s)

∥

∥

2
]

ds

)1/2

+ L

(
∫ tn

0

E

[

∥

∥Xt(s) −Xn(s)

∥

∥

2
]

ds

)1/2

.

(88)

This, the triangle inequality, and the fact that for all s ∈ [0, T ] it holds that |s− t(s)| ≤ H imply
that for all n ∈ {0, 1, 2, . . . , N} it holds that

(

E
[

‖Xtn −Xn‖2
])1/2

≤
(

E
[

‖X0 − ζ‖2
])1/2

+ L(1 +
√
T )

[

√
TH +

(
∫ T

0

E

[

∥

∥Xs −Xt(s)

∥

∥

2
]

ds

)1/2
]

+ L(1 +
√
T )

(

n
∑

k=1

hk E

[

∥

∥Xtk−1
− Xk−1

∥

∥

2
]

)1/2

.

(89)

The fact that for all x, y ∈ [0,∞) it holds that (x + y)2 ≤ 2x2 + 2y2 hence proves that for all
n ∈ {0, 1, 2, . . . , N} it holds that

E
[

‖Xtn −Xn‖2
]

≤ 2

(

(

E
[

‖X0 − ζ‖2
])1/2

+ L(1 +
√
T )

[

√
TH +

(∫ T

0

E

[

∥

∥Xs −Xt(s)

∥

∥

2
]

ds

)1/2
])2

+ 2L2(1 +
√
T )2

(

n
∑

k=1

hk E

[

∥

∥Xtk−1
−Xk−1

∥

∥

2
]

)

.

(90)

The discrete Gronwall-type inequality in Lemma 2.1 (with N = N , α = 2
(

(E[‖X0 − ζ‖2])1/2+L(1+√
T )[

√
TH+(

∫ T

0
E
[

‖Xs −Xt(s)‖2
]

ds)1/2]
)2
, (βn)n∈{0,1,2,...,N−1} = (2L2(1+

√
T )2hn+1)n∈{0,1,2,...,N−1},
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(ǫn)n∈{0,1,2,...,N} = (E
[

‖Xtn − Xn‖2
]

)n∈{0,1,2,...,N} in the notation of Lemma 2.1) and the fact that
∑N

k=1 hk = T therefore show that

E
[

‖XtN −XN‖2
]

≤ 2

(

(

E
[

‖X0 − ζ‖2
])1/2

+ L(1 +
√
T )

[

√
TH +

(
∫ T

0

E

[

∥

∥Xs −Xt(s)

∥

∥

2
]

ds

)1/2
])2

· exp
(

2L2(1 +
√
T )2T

)

.

(91)

This and the fact that for all s ∈ [0, T ] it holds that |s− t(s)| ≤ H imply that
(

E
[

‖XT − XN‖2
])1/2

≤
√
2
(

(

E
[

‖X0 − ζ‖2
])1/2

+ L(1 +
√
T )
[√

TH +
(

TK2H
)1/2
])

exp
(

L2(1 +
√
T )2T

)

.
(92)

The fact that H ≤
√
T
√
H hence assures that

(

E
[

‖XT −XN‖2
])1/2

≤
√
2
(

(

E
[

‖X0 − ζ‖2
])1/2

+ L(1 +
√
T )

√
T (

√
T + 1)

√
H(1 +K)

)

exp
(

L2(1 +
√
T )2T

)

≤
√
2
(

(

E
[

‖X0 − ζ‖2
])1/2

+
√
H exp

(

L(1 +
√
T )2

√
T
))

exp
(

L2(1 +
√
T )2T

)

(1 +K)

≤
(

(

E
[

‖X0 − ζ‖2
])1/2

+
√
H
)

exp
(

(1 + L)2(1 +
√
T )4
)

(1 +K).

(93)

This implies (80). The proof of Proposition 2.11 is thus completed.

Corollary 2.12. Let d,m,N ∈ N, T ∈ (0,∞), t ∈ [0, T ], s ∈ [t, T ], L ∈ [0,∞), let ‖·‖ : Rd →
[0,∞) be the Euclidean norm on Rd, let |||·||| : Rd×m → [0,∞) be the Frobenius norm on Rd×m, let
(Ω,F ,P, (Ft)t∈[0,T ]) be a filtered probability space which satisfies the usual conditions, letW : [0, T ]×
Ω → Rm be a standard (Ω,F ,P, (Ft)t∈[0,T ])-Brownian motion, let ζ : Ω → Rd be an Ft/B(Rd)-

measurable function with E
[

‖ζ‖2
]

< ∞, let µ : [0, T ] × Rd → Rd, σ : [0, T ] × Rd → Rd×m be
functions which satisfy for all r, h ∈ [0, T ], x, y ∈ Rd that

max
{

‖µ(r, x)− µ(h, y)‖ , |||σ(r, x)− σ(h, y)|||
}

≤ L
(

|r − h|+ ‖x− y‖
)

, (94)

let X : [t, s]×Ω → Rd be an (Fr)r∈[t,s]/B(Rd)-adapted stochastic processes with continuous sample

paths which satisfies that E
[

‖Xt‖2
]

< ∞ and which satisfies that for all r ∈ [t, s] it holds P-a.s.
that

Xr = Xt +

∫ r

t

µ(h,Xh) dh+

∫ r

t

σ(h,Xh) dWh, (95)

let r0, r1, . . . , rN ∈ [0, T ] satisfy that

t = r0 ≤ r1 ≤ r2 ≤ . . . ≤ rN = s, (96)

and let X : {0, 1, . . . , N}×Ω → Rd be the stochastic process which satisfies for all n ∈ {1, 2, . . . , N}
that

X0 = ζ and Xn = Xn−1 + µ(rn−1,Xn−1)(rn − rn−1) + σ(rn−1,Xn−1)(Wrn −Wrn−1). (97)

Then it holds that
(

E
[

‖Xs −XN‖2
])1/2

≤
[

(

E
[

‖Xt − ζ‖2
])1/2

+ max
k∈{1,2,...,N}

|rk − rk−1|1/2
]

exp
(

(1 + L)2(1 +
√
T )4
)

·
(

1 + sup
({

(E[‖Xr−Xh‖2])1/2
|r−h|1/2 ∈ [0,∞] : (r, h ∈ [t, s], r 6= h)

}

∪ {0}
))

< ∞.

(98)
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Proof of Corollary 2.12. Throughout this proof assume w.l.o.g. that s > t. Observe that Proposi-
tion 2.11 (with d = d,m = m, N = N , T = s−t, L = L, (Ω,F ,P, (Fr)r∈[0,T ]) = (Ω,F ,P, (Ft+r)r∈[0,s−t]),
(Wr)r∈[0,T ] = (Wt+r−Wt)r∈[0,s−t], ζ = ζ , (µ(r, x))r∈[0,T ],x∈Rd = (µ(t+r, x))r∈[0,s−t],x∈Rd, (σ(r, x))r∈[0,T ],x∈Rd =
(σ(t+r, x))r∈[0,s−t],x∈Rd, (Xr)r∈[0,T ] = (Xt+r)r∈[0,s−t], (tn)n∈{0,1,...,N} = (rn−t)n∈{0,1,...,N}, (Xn)n∈{0,1,...,N} =
(Xn)n∈{0,1,...,N} in the notation of Proposition 2.11) establishes that

(

E

[

∥

∥Xt+(s−t) −XN

∥

∥

2
])1/2

≤
[

(

E
[

‖Xt+0 − ζ‖2
])1/2

+ max
k∈{1,2,...,N}

|rk − t− (rk−1 − t)|1/2
]

· exp
(

(1 + L)2(1 +
√

|s− t|)4
)

(

1 + sup
r,h∈[0,s−t],r 6=h

(E[‖Xt+r−Xt+h‖2])1/2
|r−h|1/2

)

< ∞.

(99)

This implies (98). The proof of Corollary 2.12 is thus completed.

2.5 On identically distributed random variables

The next elementary and well-known result, Lemma 2.13 below, provides a sufficient condition for
two random variables to have the same distribution.

Lemma 2.13. Let (Ω,F ,P) be a probability space, let (E, d) be a metric space, let X, Y : Ω → E
be random variables which satisfy that for all globally bounded and Lipschitz continuous functions
g : E → R it holds that

E[g(X)] = E[g(Y )] . (100)

Then it holds that X and Y are identically distributed random variables.

Proof of Lemma 2.13. Throughout this proof for every n ∈ N let hn : [0,∞) → [0, 1] be the
function which satisfies for all r ∈ [0,∞) that

hn(r) = max{1− nr, 0}, (101)

for every closed and non-empty set A ⊆ E let DA : E → [0,∞) be the function which satisfies for
all e ∈ E that

DA(e) = inf
a∈A

d(e, a), (102)

and for every n ∈ N and every closed and non-empty set A ⊆ E let fA,n : E → [0, 1] be the
function which satisfies for all e ∈ E that

fA,n(e) = hn(DA(e)). (103)

Note that the triangle inequality assures that for all closed and non-empty sets A ⊆ E and all
e1, e2 ∈ E, a ∈ A, ε ∈ (0,∞) with DA(e1) ≥ DA(e2) and d(e2, a) ≤ DA(e2) + ε it holds that

|DA(e1)−DA(e2)| = DA(e1)−DA(e2) ≤ d(e1, a)− d(e2, a) + ε

≤ d(e1, e2) + d(e2, a)− d(e2, a) + ε = d(e1, e2) + ε.
(104)

The fact that for all closed and non-empty sets A ⊆ E and all e ∈ E, ε ∈ (0,∞) there exists
a ∈ A such that d(e, a) ≤ DA(e) + ε hence assures that for all closed and non-empty sets A ⊆ E
and all e1, e2 ∈ E it holds that

|DA(e1)−DA(e2)| ≤ d(e1, e2). (105)
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Moreover note that for all n ∈ N, r1, r2 ∈ [0,∞) with r1 ≤ r2 it holds that

|hn(r1)− hn(r2)| = |hn(r2)− hn(r1)| = hn(r1)− hn(r2)

= max{1− nr1, 0} −max{1− nr2, 0}
= max

{

1− nr1 −max{1− nr2, 0},−max{1− nr2, 0}
}

≤ max{1− nr1 − (1− nr2), 0} = max{n(r2 − r1), 0} = n|r1 − r2|.

(106)

Combining this with (105) establishes that for all closed and non-empty sets A ⊆ E and all n ∈ N,
e1, e2 ∈ E it holds that

|fA,n(e1)− fA,n(e2)| = |hn(DA(e1))− hn(DA(e2))| ≤ n|DA(e1)−DA(e2)| ≤ nd(e1, e2). (107)

This demonstrates that for every closed and non-empty set A ⊆ E and every n ∈ N it holds that
fA,n : E → [0, 1] is a globally bounded and Lipschitz continuous function. Next observe that the
fact that for all closed and non-empty sets A ⊆ E and all e ∈ A it holds that DA(e) = 0 assures
that for all closed and non-empty sets A ⊆ E and all n ∈ N, e ∈ A it holds that

fA,n(e) = hn(DA(e)) = hn(0) = 1. (108)

Moreover, note the fact that for all closed and non-empty sets A ⊆ E and all e ∈ E\A there exists
n ∈ N such that DA(e) >

1
n
and the fact that for all n ∈ N it holds that hn is a non-increasing

function assure that for all closed and non-empty sets A ⊆ E and all e ∈ E \A there exist n ∈ N

such that for all m ∈ {n, n + 1, . . .} it holds that

fA,m(e) = hm(DA(e)) ≤ hm(
1
n
) = max{1− m

n
, 0} = 0. (109)

Combining this and (108) establishes that for all closed and non-empty sets A ⊆ E and all e ∈ E
it holds that

lim
n→∞

fA,n(e) = 1A(e). (110)

The theorem of dominated convergence, the fact that for all closed and non-empty sets A ⊆ E and
all n ∈ N it holds that fA,n : E → [0, 1] is a globally bounded and Lipschitz continuous function,
and (100) therefore imply that for all closed and non-empty sets A ⊆ E it holds that

P(X ∈ A) = E[1A(X)] = lim
n→∞

E[fA,n(X)] = lim
n→∞

E[fA,n(Y )] = E[1A(Y )] = P(Y ∈ A). (111)

The fact that B(E) = S({A ⊆ E : A is closed}), the fact that {A ⊆ E : A is closed} is closed
under intersections, and the uniqueness theorem for measures (see, e.g., Klenke [66, Lemma 1.42])
hence assure that for all B ∈ B(E) it holds that

P(X ∈ B) = P(Y ∈ B). (112)

The proof of Lemma 2.13 is thus completed.

2.6 On random evaluations of random fields

This subsection collects elementary and well-known results about random variables originating
from evaluations of random fields at random indices.

Lemma 2.14. Let (Ω,F), (S,S), (E, E) be measurable spaces, let U = (U(s))s∈S = (U(s, ω))s∈S,ω∈Ω : S×
Ω → E be an (S ⊗F)/E-measurable function, and let X : Ω → S be an F/S-measurable function.
Then it holds that the function U(X) = (U(X(ω), ω))ω∈Ω : Ω → E is F/E-measurable.
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Proof of Lemma 2.14. Throughout this proof let X : Ω → S × Ω be the function which satisfies
for all ω ∈ Ω that

X (ω) = (X(ω), ω). (113)

Observe that the hypothesis that X : Ω → S is an F/S-measurable function assures that X : Ω →
S × Ω is an F/(S ⊗ F)-measurable function. Combining this with the fact that U : S × Ω → E
is an (S ⊗ F)/E-measurable function demonstrates that

U(X) = U ◦ X (114)

is an F/E-measurable function. The proof of Lemma 2.14 is thus completed.

A proof for the next two elementary and well-known results (see Lemma 2.15 and Lemma 2.16
below) can, e.g., be found in [59, Lemma 2.3 and Lemma 2.4].

Lemma 2.15. Let (Ω,F ,P) be a probability space, let (S, δ) be a separable metric space, let
U = (U(s))s∈S : S × Ω → [0,∞) be a continuous random field, let X : Ω → S be a random
variable, and assume that U and X are independent. Then it holds that

E[U(X)] =

∫

S

E[U(s)] (X(P)B(S))(ds). (115)

Lemma 2.16. Let (Ω,F ,P) be a probability space, let (S, δ) be a separable metric space, let
U = (U(s))s∈S : S × Ω → R be a continuous random field, let X : Ω → S be a random variable,
assume that U and X are independent, and assume that

∫

S
E[|U(s)|] (X(P)B(S))(ds) < ∞. Then

it holds that (X(P)B(S))({s ∈ S : E[|U(s)|] = ∞}) = 0, E[|U(X)|] < ∞, and

E[U(X)] =

∫

S

E[U(s)] (X(P)B(S))(ds). (116)

2.7 Brownian motions and right-continuous filtrations

The next result, Lemma 2.17 below, states that a Brownian motion with respect to a filtration
is also a Brownian motion with respect to the smallest right-continuous filtration containing the
original filtration (cf. (117)). Lemma 2.17 and its proof are very similar to Prévôt & Röckner [86,
Proposition 2.1.13].

Lemma 2.17. Let m ∈ N, T ∈ (0,∞), let (Ω,F ,P, (Ft)t∈[0,T ]) be a filtered probability space,
let W : [0, T ] × Ω → Rm be a standard (Ω,F ,P, (Ft)t∈[0,T ])-Brownian motion, and let Ht ⊆ F ,
t ∈ [0, T ], satisfy for all t ∈ [0, T ] that

Ht =

{

∩s∈(t,T ] Fs : t < T

FT : t = T.
(117)

Then it holds that W is a standard (Ω,F ,P, (Ht)t∈[0,T ])-Brownian motion.

Proof of Lemma 2.17. Throughout this proof let ‖·‖ : Rd → [0,∞) be the Euclidean norm on Rd,
for every n ∈ N let hn : [0,∞) → [0, 1] be the function which satisfies for all r ∈ [0,∞) that

hn(r) = max{1− nr, 0}, (118)

for every closed and non-empty set A ⊆ Rd let DA : R
d → [0,∞) be the function which satisfies

for all x ∈ Rd that
DA(x) = inf

a∈A
‖x− a‖ , (119)
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and for every n ∈ N and every closed and non-empty set A ⊆ Rd let fA,n : R
d → [0, 1] be the

function which satisfies for all x ∈ Rd that

fA,n(x) = hn(DA(x)). (120)

Observe that the fact thatW has continuous sample paths, the fact that for all t ∈ [0, T ), s ∈ (t, T ],
k ∈ N it holds that Ws −Wmin{t+1/k,s} and Ht are independent, Klenke [66, Theorem 5.4], and the
theorem of dominated convergence assure that for all t ∈ [0, T ), s ∈ (t, T ], B ∈ Ht and all globally
bounded and continuous functions g : Rd → R it holds that

E[g(Ws −Wt)1B] = E

[(

lim
k→∞

g(Ws −Wmin{t+1/k,s})
)

1B

]

= lim
k→∞

E
[

g(Ws −Wmin{t+1/k,s})1B

]

= lim
k→∞

E
[

g(Ws −Wmin{t+1/k,s})
]

E[1B]

= E

[

lim
k→∞

g(Ws −Wmin{t+1/k,s})
]

P(B) = E[g(Ws −Wt)]P(B).

(121)

Next note that the fact that closed and non-empty sets A ⊆ Rd and all x ∈ Rd it holds that
DA(x) = 0 ⇔ x ∈ A assures that for all closed and non-empty sets A ⊆ Rd and all x ∈ Rd it holds
that

lim
n→∞

fA,n(x) = 1A(x). (122)

Moreover, note that the fact that for every n ∈ N it holds that hn : [0,∞) → [0, 1] is a continuous
function and the fact that for every closed and non-empty set A ⊆ Rd it holds that DA : R

d →
[0,∞) is a continuous function assure that for every n ∈ N and every closed and non-empty set
A ⊆ Rd it holds that fA,n : R

d → [0, 1] is a continuous function. Combining this, (121), (122), and
the theorem of dominated convergence shows that for all t ∈ [0, T ), s ∈ (t, T ], B ∈ Ht and all
closed and non-empty sets A ⊆ Rd it holds that

P({Ws −Wt ∈ A} ∩ B) = E[1A(Ws −Wt)1B] = lim
n→∞

E[ fA,n(Ws −Wt)1B]

= lim
n→∞

(

E[ fA,n(Ws −Wt)]P(B)
)

= E[1A(Ws −Wt)]P(B)

= P({Ws −Wt ∈ A})P(B).

(123)

This proves that for all t ∈ [0, T ), s ∈ (t, T ], B ∈ Ht it holds that (1B)
−1({}, {0}, {1}, {0, 1}) and

(Ws−Wt)
−1({A ⊆ Rd : A is a closed set}) are independent. The fact that {A ⊆ Rd : A is a closed set}

is closed under intersections, the fact that S({A ⊆ Rd : A is a closed set}) = B(Rd), and Klenke
[66, Theorem 2.16] hence assure that for all t ∈ [0, T ), s ∈ (t, T ], B ∈ Ht it holds that Ws −Wt

and B are independent. This implies that for all t ∈ [0, T ], s ∈ [t, T ] it holds that Ws−Wt and Ht

are independent. Combining this with the hypothesis that W is a Brownian motion, and the fact
that W : [0, T ] × Ω → Rm is an (Ht)t∈[0,T ]/B(Rm)-adapted stochastic processes establishes that
W : [0, T ]×Ω → Rm is a standard (Ω,F ,P, (Ht)t∈[0,T ])-Brownian motion. The proof of Lemma 2.17
is thus completed.

2.8 On a distributional flow property for solutions of SDEs

In this subsection we prove a distributional flow property for solutions of SDEs in Lemma 2.19
below. The idea for the proof of Lemma 2.19 is based on the observation that if we replace solution
processes of SDEs by Euler-Maruyama approximations the flow-type condition trivially holds (cf.
the argument below (150) in the proof of Lemma 2.19 below). To prove Lemma 2.19 below we
also need, besides several auxiliary results of the previous subsections, the following well-known
statement (see Lemma 2.18 below).
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Lemma 2.18. Let d,m ∈ N, T ∈ (0,∞), t ∈ [0, T ], s ∈ [t, T ], let (Ω,F ,P, (Ft)t∈[0,T ]) be a
filtered probability space which satisfies the usual conditions, let W : [0, T ]×Ω → Rm be a standard
(Ω,F ,P, (Fr)r∈[0,T ])-Brownian motion, let µ : [0, T ] × Rd → Rd and σ : [0, T ] × Rd → Rd×m be
globally Lipschitz continuous functions, let X = (Xr(x))r∈[t,s],x∈Rd : [t, s] × Rd × Ω → Rd be a
continuous random field which satisfies for every x ∈ Rd that (Xr(x))r∈[t,s] : [t, s] × Ω → Rd is
an (Fr)r∈[t,s]/B(Rd)-adapted stochastic process and which satisfies that for all r ∈ [t, s], x ∈ Rd it
holds P-a.s. that

Xr(x) = x+

∫ r

t

µ(h,Xh(x)) dh+

∫ r

t

σ(h,Xh(x)) dWh, (124)

and let ξ : Ω → Rd be an Ft/B(Rd)-measurable function with E
[

‖ξ‖2
]

< ∞. Then for all r ∈ [t, s]
it holds P-a.s. that

Xr(ξ) = ξ +

∫ r

t

µ
(

h,Xh(ξ)
)

dh+

∫ r

t

σ
(

h,Xh(ξ)
)

dWh. (125)

Proof of Lemma 2.18. Throughout this proof assume w.l.o.g. that s > t, let (uN,r
n )n∈{0,1,2,...,N},N∈N,r∈(t,s] ⊆

[t, s] satisfy for all N ∈ N, n ∈ {0, 1, 2, . . . , N}, r ∈ (t, s] that uN,r
n = t + n(r−t)

N
, for every N ∈ N,

r ∈ (t, s] let XN,r = (XN,r
n (x))n∈{0,1,2,...,N},x∈Rd : {0, 1, 2, . . . , N} × Rd × Ω → Rd be the continuous

random field which satisfies for all n ∈ {1, 2, . . . , N}, x ∈ Rd that XN,r
0 (x) = x and

XN,r
n (x) = XN,r

n−1(x) + µ
(

uN,r
n−1,XN,r

n−1(x)
)

(r−t)
N

+ σ
(

uN,r
n−1,XN,r

n−1(x)
)

(WuN,r
n

−WuN,r
n−1

), (126)

let ‖·‖ : Rd → [0,∞) be the Euclidean norm on Rd, let |||·||| : Rd×m → [0,∞) be the Frobenius
norm on Rd×m, and let L ∈ [0,∞) satisfy for all r, h ∈ [0, T ], x, y ∈ Rd that

max
{

‖µ(r, x)− µ(h, y)‖ , |||σ(r, x)− σ(h, y)|||
}

≤ L
(

|r − h|+ ‖x− y‖
)

. (127)

Note that (124), (126), (127), Corollary 2.12 (with d = d, m = m, N = N , T = T , t = t, s = r,
L = L, (Ω,F ,P, (Fh)h∈[0,T ]) = (Ω,F ,P, (Fh)h∈[0,T ]), W = W , ζ = x, µ = µ, σ = σ, (Xh)h∈[t,s] =
(Xh)h∈[t,r], (rn)n∈{0,1,...,N} = (uN,r

n )n∈{0,1,...,N}, (Xn)n∈{0,1,...,N} = (XN,r
n (x))n∈{0,1,...,N} for N ∈ N,

x ∈ Rd, r ∈ (t, s] in the notation of Corollary 2.12), and Lemma 2.10 (with d = d,m = m, T = r−t,
ξ = x, L = L, (Ω,F ,P, (Fh)h∈[0,T ]) = (Ω,F ,P, (Ft+r)r∈[0,r−t]), (Wh)h∈[0,T ] = (Wt+h −Wt)h∈[0,r−t],
(µ(h, x))h∈[0,T ],x∈Rd = (µ(t + h, x))h∈[0,r−t],x∈Rd, (σ(h, x))h∈[0,T ],x∈Rd = (σ(t + h, x))h∈[0,r−t],x∈Rd,
(Xh)h∈[0,T ] = (Xt+h)h∈[0,r−t] for x ∈ Rd, r ∈ (t, s] in the notation of Lemma 2.10) assure that for
all x ∈ Rd, N ∈ N, r ∈ (t, s] it holds that

(

E

[

∥

∥Xr(x)− XN,r
N (x)

∥

∥

2
])1/2

≤
[

(

E
[

‖Xt(x)− x‖2
])1/2

+ max
k∈{1,2,...,N}

|uN,r
k − uN,r

k−1|
1/2

]

· exp
(

(1 + L)2(1 +
√
T )4
)

(

1 + sup
h,l∈[t,r],h 6=l

(E[‖Xh(x)−Xl(x)‖2])1/2
|h−l|1/2

)

≤
√

|r − t|√
N

exp
(

(1 + L)2(1 +
√
T )4
)

·
(

1 + (1 + ‖x‖) exp
(

10
(

max{‖µ(t, 0)‖ , |||σ(t, 0)|||, L, 1}+ LT
)2
(T + 1)(L+ 1)

))

≤ (1 + ‖x‖)√
N

exp
(

12
(

max{‖µ(t, 0)‖ , |||σ(t, 0)|||, L, 1}+ LT
)2
(1 + L)2(1 +

√
T )4
)

.

(128)

This ensures that for all r ∈ [t, s], x ∈ Rd it holds that lim supN→∞ E[‖Xr(x)−XN,r
N (x)‖2] = 0. This

and the fact that for all r ∈ [t, s], x ∈ Rd, N ∈ N it holds that XN,r
N (x) : Ω → Rd isS(Wh−Wt : h ∈
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[t, r])/B(Rd)-measurable imply that for all r ∈ [t, s], x ∈ Rd it holds that Xr(x) : Ω → Rd is
S(S(Wh − Wt : h ∈ [t, r]) ∪ {A ∈ F : P(A) = 0})/B(Rd)-measurable. Combining this with the
fact that ξ : Ω → Rd is an Ft/B(Rd)-measurable function and the fact that W : [0, T ]× Ω → Rm

is a standard (Ω,F ,P, (Fr)r∈[0,T ])-Brownian motion demonstrates for all r ∈ [t, s], N ∈ N it holds

that (Xr(x)− XN,r
N (x))x∈Rd and ξ are independent. Lemma 2.15 and (128) hence assure that for

all N ∈ N, r ∈ (t, s] it holds that

E

[

∥

∥Xr(ξ)− XN,r
N (ξ)

∥

∥

2
]

=

∫

Rd

E

[

∥

∥Xr(x)−XN,r
N (x)

∥

∥

2
]

(ξ(P)B(Rd))(dx)

≤
∫

Rd

[

exp(12(max{‖µ(0,0)‖,|||σ(0,0)|||,L,1}+LT )2(1+L)2(1+
√
T )4)√

N
(1 + ‖x‖)

]2

(ξ(P)B(Rd))(dx)

≤
[

exp(24(max{‖µ(t,0)‖,|||σ(t,0)|||,L,1}+LT )2(1+L)2(1+
√
T )4)

N

]

2
(

1 + E
[

‖ξ‖2
])

.

(129)

Next observe that the hypothesis that µ and σ are globally Lipschitz continuous functions, the
hypothesis that E

[

‖ξ‖2
]

< ∞, and the existence theorem for the solutions of SDEs (see, e.g.,
Karatzas & Shreve [64, Proposition 5.2.9]) prove that there exists an (Fr)r∈[t,s]/B(Rd)-adapted
stochastic process Y : [t, s] × Ω → Rd with continuous sample paths which satisfies that for all
r ∈ [t, s] it holds P-a.s. that

Yr = ξ +

∫ r

t

µ(h, Yh) dr +

∫ r

t

σ(h, Yh) dWh. (130)

Moreover, observe that (126) ensures that for all N ∈ N, n ∈ {1, 2, . . . , N}, r ∈ (t, s] and all
functions ζ : Ω → Rd it holds that XN,r

0 (ζ) = ζ and

XN,r
n (ζ) = XN,r

n−1(ζ) + µ
(

uN,r
n−1,XN,r

n−1(ζ)
) (r−t)

N
+ σ
(

uN,r
n−1,XN,r

n−1(ζ)
)

(WuN,r
n

−WuN,r
n−1

). (131)

Combining this, (127), the fact that E
[

‖Yt‖2
]

= E
[

‖ξ‖2
]

< ∞, and (130) with Corollary 2.12 (with
d = d, m = m, N = N , T = T , t = t, s = r, L = L, (Ω,F ,P, (Fh)h∈[0,T ]) = (Ω,F ,P, (Fh)h∈[0,T ]),
W = W , ζ = ξ, µ = µ, σ = σ, (Xh)h∈[t,s] = (Yh)h∈[t,r], (rn)n∈{0,1,...,N} = (uN,r

n )n∈{0,1,...,N},
(Xn)n∈{0,1,...,N} = (XN,r

n (ξ))n∈{0,1,...,N} for N ∈ N, r ∈ (t, s] in the notation of Corollary 2.12)
demonstrates that for all N ∈ N, r ∈ (t, s] it holds that

(

E

[

∥

∥Yr − XN,r
N (ξ)

∥

∥

2
])1/2

≤
[

(

E
[

‖Yt − ξ‖2
])1/2

+ max
k∈{1,2,...,N}

|uN,r
k − uN,r

k−1|
1/2

]

· exp
(

(1 + L)2(1 +
√
T )4
)

(

1 + sup
h,l∈[t,r],h 6=l

(E[‖Yh−Yl‖2])1/2
|h−l|1/2

)

=

√
|r−t| exp((1+L)2(1+

√
T )4)√

N

(

1 + sup
h,l∈[t,r],h 6=l

(E[‖Yh−Yl‖2])1/2
|h−l|1/2

)

< ∞.

(132)

The triangle inequality and (129) hence show that for all r ∈ (t, s] it holds that
(

E

[

∥

∥Xr(ξ)− Yr

∥

∥

2
])1/2

≤ lim sup
N→∞

[

(

E

[

∥

∥Xr(ξ)− XN,r
N (ξ)

∥

∥

2
])1/2

+
(

E

[

∥

∥XN,r
N (ξ)− Yr

∥

∥

2
])1/2

]

≤
[

lim sup
N→∞

(

E

[

∥

∥Xr(ξ)− XN,r
N (ξ)

∥

∥

2
])1/2

]

+

[

lim sup
N→∞

(

E

[

∥

∥XN,r
N (ξ)− Yr

∥

∥

2
])1/2

]

= 0.

(133)
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Combining this with the fact that (Xr(ξ))r∈[t,s] and (Yr)r∈[t,s] are continuous random fields demon-
strates that

P
(

∀ r ∈ [t, s] : Xr(ξ) = Yr

)

= P
(

∀ r ∈ (t, s] ∩Q : Xr(ξ) = Yr

)

= 1. (134)

This and (130) prove that for all r ∈ [t, s] it holds P-a.s. that

Xr(ξ) = ξ +

∫ r

t

µ
(

h,Xh(ξ)
)

dh+

∫ r

t

σ
(

h,Xh(ξ)
)

dWh. (135)

The proof of Lemma 2.18 is thus completed.

Lemma 2.19. Let d,m ∈ N, T ∈ (0,∞), let µ : [0, T ]× Rd → Rd and σ : [0, T ]× Rd → Rd×m be
globally Lipschitz continuous functions, let (Ω,F ,P) be a complete probability space, let (F1

t )t∈[0,T ]

and (F2
t )t∈[0,T ] be filtrations on (Ω,F ,P) which satisfy the usual conditions, assume that F1

T and F2
T

are independent, for every i ∈ {1, 2} let W i : [0, T ]× Ω → Rm be a standard (Ω,F ,P, (Fi
t)t∈[0,T ])-

Brownian motion, and for every i ∈ {1, 2} let X i = (X i
t,s(x))s∈[t,T ],t∈[0,T ],x∈Rd : {(t, s) ∈ [0, T ]2 : t ≤

s} × Rd × Ω → Rd be a continuous random field which satisfies for every t ∈ [0, T ], x ∈ Rd

that (X i
t,s(x))s∈[t,T ] : [t, T ] × Ω → Rd is an (Fi

s)s∈[t,T ]/B(Rd)-adapted stochastic process and which
satisfies that for all t ∈ [0, T ], s ∈ [t, T ], x ∈ Rd it holds P-a.s. that

X i
t,s(x) = x+

∫ s

t

µ
(

r,X i
t,r(x)

)

dr +

∫ s

t

σ
(

r,X i
t,r(x)

)

dW i
r . (136)

Then it holds for all r, s, t ∈ [0, T ], x ∈ Rd, B ∈ B(Rd) with t ≤ s ≤ r that P(X1
t,t(x) = x) = 1 and

P
(

X1
s,r(X

2
t,s(x)) ∈ B

)

= P
(

X1
t,r(x) ∈ B

)

. (137)

Proof of Lemma 2.19. Throughout this proof let r, s, t ∈ [0, T ], x ∈ Rd satisfy that t ≤ s ≤ r, let
(uN

n )n∈{0,1,2,...,N},N∈N ⊆ [t, s], (vNn )n∈{0,1,2,...,N},N∈N ⊆ [s, r] satisfy for all N ∈ N, n ∈ {0, 1, 2, . . . , N}
that uN

n = t + n(s−t)
N

and vNn = s + n(r−s)
N

, for every N ∈ N let XN : {0, 1, 2, . . . , 2N} × Ω → Rd

and YN ,ZN : {0, 1, 2, . . . , N} × Ω → Rd be the stochastic processes which satisfy for all n ∈
{1, 2, . . . , N} that

XN
0 = x, XN

n = XN
n−1 + µ(uN

n−1,XN
n−1)

(s−t)
N

+ σ(uN
n−1,XN

n−1)(W
1
uN
n
−W 1

uN
n−1

), (138)

XN
N+n = XN

N+n−1 + µ(vNn−1,XN
n−1)

(r−s)
N

+ σ(vNn−1,XN
N+n−1)(W

1
vNn

−W 1
vNn−1

), (139)

YN
0 = x, YN

n = YN
n−1 + µ(uN

n−1,YN
n−1)

(s−t)
N

+ σ(uN
n−1,YN

n−1)(W
2
uN
n
−W 2

uN
n−1

), (140)

ZN
0 = YN

N , and ZN
n = ZN

n−1 + µ(vNn−1,ZN
n−1)

(r−s)
N

+ σ(vNn−1,ZN
n−1)(W

1
vNn

−W 1
vNn−1

), (141)

let Gh ⊆ F , h ∈ [0, T ], and Hh ⊆ F , h ∈ [0, T ], be the sigma-algebras which satisfy for all
h ∈ [0, T ] that

Gh = S(F1
h ∪ F2

h) and Hh =

{

∩l∈(h,T ]Gl : h < T

GT : h = T,
(142)

let 〈·, ·〉 : Rd × Rd → R be the Euclidean scalar product on Rd, let ‖·‖ : Rd → [0,∞) be the
Euclidean norm on Rd, and let |||·||| : Rd×m → [0,∞) be the Frobenius norm on Rd×m. Note that
the hypothesis that (F1

t )t∈[0,T ] and (F2
t )t∈[0,T ] are filtrations on (Ω,F ,P) which satisfy the usual

conditions and (142) imply that (Ht)t∈[0,T ] is a filtration on (Ω,F ,P) which satisfies the usual
conditions. Moreover, observe that (136) assures that

P(X1
t,t(x) = x) = 1. (143)
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Furthermore, note that the hypothesis that µ and σ are globally Lipschitz continuous, (136), (138),
(139), (140), and Corollary 2.12 demonstrate that there exists a real number C ∈ (0,∞) which
satisfies that for all N ∈ N it holds that

(

E

[

∥

∥X1
t,r(x)−XN

2N

∥

∥

2
])1/2

≤ C√
N

and
(

E

[

∥

∥X2
t,s(x)− YN

N

∥

∥

2
])1/2

≤ C√
N
. (144)

This implies that

lim sup
N→∞

(

E

[

∥

∥X1
t,r(x)− XN

2N

∥

∥

2
])1/2

≤ lim sup
N→∞

C√
N

= 0. (145)

Moreover, observe that the hypothesis that µ and σ are globally Lipschitz continuous implies that

sup
h∈[0,T ],y∈Rd

〈y, µ(h, y)〉+ |||σ(h, y)|||2

1 + ‖y‖2
< ∞. (146)

Lemma 2.6 therefore demonstrates that

E

[

∥

∥X2
t,s(x)

∥

∥

2
]

< ∞. (147)

Next note that the fact that for all h ∈ [0, T ], l ∈ [h, T ] it holds that W 1
l −W 1

h , F
1
h, and F2

h are
independent assures that for all h ∈ [0, T ], l ∈ [h, T ] it holds thatW 1

l −W 1
h andGh are independent.

This, the fact that W 1 : [0, T ] × Ω → Rd is a Brownian motion, and the fact that W 1 : [0, T ] ×
Ω → Rd is an (Gh)h∈[0,T ]/B(Rd)-adapted stochastic process imply that W 1 : [0, T ] × Ω → Rd

is a standard (Ω,F ,P, (Gh)h∈[0,T ])-Brownian motion. Lemma 2.17 and (142) hence ensure that
W 1 : [0, T ] × Ω → Rd is a standard (Ω,F ,P, (Hh)h∈[0,T ])-Brownian motion. Combining this, the
fact that (Ω,F ,P, (Hh)h∈[0,T ]) is a filtered probability space which satisfies the usual conditions, the
fact that for all y ∈ Rd it holds that (X1

s,h(y))h∈[s,r] : [s, r]×Ω → Rd is an (Hh)h∈[s,r]/B(Rd)-adapted

stochastic process, (136), the fact that X2
t,s(x) : Ω → Rd is Hs/B(Rd)-measurable, and (147) with

Lemma 2.18 (with d = d,m = m, T = T , t = s, s = r, (Ω,F ,P, (Fh)h∈[0,T ]) = (Ω,F ,P, (Hh)h∈[0,T ]),
W = W 1, µ = µ, σ = σ, (Xh(y))h∈[t,s],y∈Rd = (X1

s,h(y))h∈[s,r],y∈Rd, ξ = X2
t,s(x) in the notation of

Lemma 2.18) proves that for all h ∈ [s, r] it holds P-a.s. that

X1
s,h(X

2
t,s(x)) = X2

t,s(x) +

∫ h

s

µ
(

l, X1
s,l(X

2
t,s(x))

)

dl +

∫ h

s

σ
(

l, X1
s,l(X

2
t,s(x))

)

dW 1
l . (148)

The fact that (Ω,F ,P, (Hh)h∈[0,T ]) is a filtered probability space which satisfies the usual condi-
tions, the fact that W 1 : [0, T ]×Ω → Rd is a standard (Ω,F ,P, (Hh)h∈[0,T ])-Brownian motion, the
fact that YN

N : Ω → Rd is Hs/B(Rd)-measurable, the hypothesis that µ and σ are globally Lipschitz
continuous functions, the fact that (X1

s,h(X
2
t,s(x)))h∈[s,r] : [s, r] × Ω → Rd is an (Hh)h∈[s,r]/B(Rd)-

adapted stochastic process with continuous sample paths, (147), (141), and Corollary 2.12 (with

d = d,m = m, N = N , T = T , t = s, s = r, L = suph,l∈[0,T ],y,z∈Rd : (h,y)6=(l,z)
‖µ(h,y)−µ(l,z)‖+|||σ(h,y)−σ(l,z)|||

|h−l|+‖y−z‖ ,

(Ω,F ,P, (Fh)h∈[0,T ]) = (Ω,F ,P, (Hh)h∈[0,T ]), W = W 1, ζ = YN
N , µ = µ, σ = σ, (Xh)h∈[t,s] =

(X1
s,h(X

2
t,s(x)))h∈[s,r], (rn)n∈{0,1,...,N} = (vNn )n∈{0,1,...,N}, (Xn)n∈{0,1,...,N} = (ZN

n )n∈{0,1,...,N} for N ∈ N

in the notation of Corollary 2.12) hence demonstrate that there exists a real number K ∈ (0,∞)
which satisfies that for all N ∈ N it holds that

(

E

[

∥

∥X1
s,r(X

2
t,s(x))−ZN

N

∥

∥

2
])1/2

≤ K

[

(

E

[

∥

∥X2
t,s(x)−YN

N

∥

∥

2
])1/2

+
1√
N

]

. (149)

This and (144) imply that

lim sup
N→∞

(

E

[

∥

∥X1
s,r(X

2
t,s(x))− ZN

N

∥

∥

2
])1/2

≤ lim sup
N→∞

K

[

C√
N

+
1√
N

]

= 0. (150)
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Furthermore, observe that (138)–(141) assure that for all N ∈ N it holds that XN
2N and ZN

N have
the same distribution. This, (145), and (150) imply that for all globally bounded and Lipschitz
continuous functions g : Rd → R it holds that

E
[

g(X1
s,r(X

2
t,s(x)))

]

= lim
N→∞

E
[

g(ZN
N )
]

= lim
N→∞

E
[

g(XN
2N)
]

= E
[

g(X1
t,r(x))

]

. (151)

Lemma 2.13 hence assures that X1
s,r(X

2
t,s(x)) and X1

t,r(x) are identically distributed. Combining
this with (143) completes the proof of Lemma 2.19.

3 Full history recursive multilevel Picard (MLP) approx-

imation algorithms

In this section we present the proposed MLP scheme and perform a rigorous complexity analysis.
First, we introduce our MLP scheme (cf. (156) in Subsection 3.1 below) as an approximation
algorithm for a solution (cf. u in Setting 3.1 in Subsection 3.1 below) of certain type of stochastic
fixed point equation (cf. (155) in Subsection 3.1 below) in Subsection 3.1. Subsequently, the goal
of Subsections 3.2–3.4 is to obtain an estimate for the L2-error between the MLP scheme and the
solution of the stochastic fixed point equation. This results in Proposition 3.15 and Corollary 3.16
in Subsection 3.4 below. In Subsection 3.5 we estimate the computational effort needed to simulate
realizations of the MLP scheme and combine this with the L2-error estimate in Corollary 3.16 to
obtain a computational complexity analysis for the MLP algorithm in Proposition 3.18. Finally,
in Subsection 3.6, we exploit a connection between stochastic fixed point equations and viscosity
solutions of semilinear Kolmogorov PDEs to carry over the complexity analysis of Subsection 3.5
to semilinear Kolmogorov PDEs (cf. (300) in Theorem 3.20 below) demonstrating that our pro-
posed MLP algorithm overcomes the curse of dimensionality in the approximation of semilinear
Kolmogorov PDEs in Theorem 3.20, the main result of this paper.

3.1 Stochastic fixed point equations and MLP approximations

Setting 3.1. Let d ∈ N, T ∈ (0,∞), L ∈ [0,∞), Θ = ∪∞
n=1Z

n, u ∈ C([0, T ] × Rd,R), g ∈
C(Rd,R), f ∈ C([0, T ]× Rd × R,R) satisfy for all t ∈ [0, T ], x ∈ Rd, v, w ∈ R that

|f(t, x, v)− f(t, x, w)| ≤ L|v − w|, (152)

let (Ω,F ,P) be a probability space, let Rθ : Ω → [0, 1], θ ∈ Θ, be independent U[0,1]-distributed
random variables, let Rθ = (Rθ

t )t∈[0,T ] : [0, T ]×Ω → [0, T ], θ ∈ Θ, be the stochastic processes which
satisfy for all t ∈ [0, T ], θ ∈ Θ that

Rθ
t = t + (T − t)Rθ, (153)

let Xθ = (Xθ
t,s(x))s∈[t,T ],t∈[0,T ],x∈Rd : {(t, s) ∈ [0, T ]2 : t ≤ s} ×Rd ×Ω → Rd, θ ∈ Θ, be independent

continuous random fields which satisfy for all r, s, t ∈ [0, T ], x ∈ Rd, θ, ϑ ∈ Θ, B ∈ B(Rd) with
t ≤ s ≤ r and θ 6= ϑ that P(Xθ

t,t(x) = x) = 1 and

P
(

Xθ
s,r(X

ϑ
t,s(x)) ∈ B

)

= P
(

Xθ
t,r(x) ∈ B

)

, (154)

assume that (Xθ)θ∈Θ and (Rθ)θ∈Θ are independent, assume for all t ∈ [0, T ], x ∈ Rd that

E
[

|g(X0
t,T (x))|+

∫ T

t
|f(r,X0

t,r(x), u(r,X
0
t,r(x)))| dr

]

< ∞ and

u(t, x) = E

[

g
(

X0
t,T (x)

)

+

∫ T

t

f
(

r,X0
t,r(x), u(r,X

0
t,r(x))

)

dr

]

, (155)
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and let V θ
M,n : [0, T ]× Rd × Ω → R, M,n ∈ Z, θ ∈ Θ, be functions which satisfy for all M,n ∈ N,

θ ∈ Θ, t ∈ [0, T ], x ∈ Rd that V θ
M,−1(t, x) = V θ

M,0(t, x) = 0 and

V θ
M,n(t, x) =

1

Mn

[

Mn
∑

m=1

g
(

X
(θ,n,−m)
t,T (x)

)

]

+

n−1
∑

k=0

(T − t)

Mn−k

[

Mn−k
∑

m=1

f
(

R
(θ,k,m)
t , X

(θ,k,m)

t,R
(θ,k,m)
t

(x), V
(θ,k,m)
M,k

(

R
(θ,k,m)
t , X

(θ,k,m)

t,R
(θ,k,m)
t

(x)
)

)

− 1N(k)f
(

R
(θ,k,m)
t , X

(θ,k,m)

t,R
(θ,k,m)
t

(x), V
(θ,k,−m)
M,k−1

(

R
(θ,k,m)
t , X

(θ,k,m)

t,R
(θ,k,m)
t

(x)
)

)

]

.

(156)

3.2 A priori bounds for solutions of stochastic fixed point equations

In our L2-error analysis (see Subsection 3.4 below) of the MLP scheme introduced in Setting 3.1 we
need to estimate expectations involving the solution of the stochastic fixed point equation. This
estimate is carried out in Lemma 3.3 below. In order to prove Lemma 3.3 we need the elementary
and well known time reversed Gronwall inequality in Lemma 3.2.

Lemma 3.2 (Time reversed time-continuous Gronwall inequality). Let T, α, β ∈ [0,∞) and let
ǫ : [0, T ] → [0,∞] be a B([0, T ])/B([0,∞])-measurable function which satisfies for all t ∈ [0, T ]

that
∫ T

0
ǫ(r) dr < ∞ and ǫ(t) ≤ α + β

∫ T

t
ǫ(r) dr. Then

(i) it holds for all t ∈ [0, T ] that ǫ(t) ≤ α exp(β(T − t)) and

(ii) it holds that supt∈[0,T ] ǫ(t) ≤ α exp(βT ) < ∞.

Proof of Lemma 3.2. Throughout this proof let Φ: [0, T ] → [0, T ] and ε : [0, T ] → [0,∞] be the
functions which satisfy for all t ∈ [0, T ] that

Φ(t) = T − t and ε(t) = ǫ(Φ(t)) = ǫ(T − t). (157)

Observe that the integral transformation theorem (see, e.g., Klenke [66, Theorem 4.10]) implies
that for all t ∈ [0, T ] it holds that

∫ t

0

ε(r) dr =

∫

[0,t]

ǫ(Φ(r)) Borel[0,t](dr) =

∫

Φ([0,t])

ǫ(s) Φ(Borel[0,t])B(Φ([0,t]))(ds)

=

∫

[T−t,T ]

ǫ(s) Borel[T−t,T ](ds) =

∫ T

T−t

ǫ(s) ds.

(158)

Hence, we obtain that
∫ T

0

ε(r) dr =

∫ T

0

ǫ(r) dr < ∞ (159)

Moreover, observe that (157), (158), and the hypothesis that for all t ∈ [0, T ] it holds that

ǫ(t) ≤ α + β
∫ T

t
ǫ(r) dr assure that for all t ∈ [0, T ] it holds that

ε(t) = ǫ(T − t) ≤ α + β

∫ T

T−t

ǫ(r) dr = α+ β

∫ t

0

ε(r) dr. (160)

Combining this and (159) with Gronwall’s integral inequality (cf, e.g., Grohs et al. [48, Lemma
2.11]) demonstrates that for all t ∈ [0, T ] it holds that

ε(t) ≤ α exp(βt). (161)
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Hence, we obtain that for all t ∈ [0, T ] it holds that

ǫ(t) = ǫ(T − (T − t)) = ε(T − t) ≤ α exp(β(T − t)) ≤ α exp(βT ). (162)

This establishes items (i)–(ii). The proof of Lemma 3.2 is thus completed.

Lemma 3.3. Assume Setting 3.1, let ξ ∈ Rd, C ∈ [0,∞] satisfy that

C =
(

E
[

|g(X0
0,T (ξ))|2

])1/2
+
√
T

(
∫ T

0

E
[

|f(t, X0
0,t(ξ), 0)|2

]

dt

)1/2

, (163)

and assume that
∫ T

0

(

E
[

|u(t, X0
0,t(ξ))|2

])1/2
dt < ∞. Then

(i) it holds for all t ∈ [0, T ] that
(

E
[

|u(t, X0
0,t(ξ))|2

])1/2 ≤ C exp(L(T − t)) and

(ii) it holds that supt∈[0,T ]

(

E
[

|u(t, X0
0,t(ξ))|2

])1/2 ≤ C exp(LT ).

Proof of Lemma 3.3. Throughout this proof assume w.l.o.g. that C < ∞ and let µt : B(Rd) →
[0, 1], t ∈ [0, T ], be the probability measures which satisfy for all t ∈ [0, T ], B ∈ B(Rd) that

µt(B) = P(X0
0,t(ξ) ∈ B) = P(X1

0,t(ξ) ∈ B) =
(

(X1
0,t(ξ))(P)B(Rd)

)

(B) (164)

(cf. item (iv) in Lemma 3.6). Note that (155) and the triangle inequality ensure that for all
t ∈ [0, T ] it holds that

(

E
[

|u(t, X0
0,t(ξ))|2

])1/2
=

(
∫

Rd

|u(t, z)|2 µt(dz)

)1/2

=

(
∫

Rd

∣

∣

∣
E

[

g
(

X0
t,T (z)

)

+
∫ T

t
f
(

r,X0
t,r(z), u(r,X

0
t,r(z))

)

dr
]∣

∣

∣

2

µt(dz)

)1/2

≤
(
∫

Rd

∣

∣E
[

g
(

X0
t,T (z)

)]∣

∣

2
µt(dz)

)1/2

+

(
∫

Rd

∣

∣

∣
E

[

∫ T

t
f
(

r,X0
t,r(z), u(r,X

0
t,r(z))

)

dr
]∣

∣

∣

2

µt(dz)

)1/2

.

(165)

Jensen’s inequality hence assures that for all t ∈ [0, T ] it holds that

(

E
[

|u(t, X0
0,t(ξ))|2

])1/2 ≤
(
∫

Rd

E

[

∣

∣g
(

X0
t,T (z)

)∣

∣

2
]

µt(dz)

)1/2

+

(
∫

Rd

E

[

(

∫ T

t

∣

∣f
(

r,X0
t,r(z), u(r,X

0
t,r(z))

)∣

∣ dr
)2
]

µt(dz)

)1/2

.

(166)

Furthermore, observe that (164), the fact that X0 and X1 are independent and continuous random
fields, (154), and Lemma 2.15 demonstrate that for all t ∈ [0, T ] it holds that

(
∫

Rd

E

[

∣

∣g
(

X0
t,T (z)

)∣

∣

2
]

µt(dz)

)1/2

=
(

E

[

∣

∣g
(

X0
t,T (X

1
0,t(ξ))

)∣

∣

2
])1/2

=
(

E

[

∣

∣g
(

X0
0,T (ξ)

)∣

∣

2
])1/2

. (167)

In addition, note that Minkowski’s integral inequality (cf., e.g., Jentzen & Kloeden [61, Proposition
8 in Appendix A.1]), (164), the fact thatX0 andX1 are independent and continuous random fields,
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(154), and Lemma 2.15 imply that for all t ∈ [0, T ] it holds that

(
∫

Rd

E

[

(

∫ T

t

∣

∣f
(

r,X0
t,r(z), u(r,X

0
t,r(z))

)∣

∣ dr
)2
]

µt(dz)

)1/2

≤
∫ T

t

(
∫

Rd

E

[

∣

∣f
(

r,X0
t,r(z), u(r,X

0
t,r(z))

)∣

∣

2
]

µt(dz)

)1/2

dr

=

∫ T

t

(

E

[

∣

∣f
(

r,X0
t,r(X

1
0,t(ξ)), u(r,X

0
t,r(X

1
0,t(ξ)))

)∣

∣

2
])1/2

dr

=

∫ T

t

(

E

[

∣

∣f
(

r,X0
0,r(ξ), u(r,X

0
0,r(ξ))

)∣

∣

2
])1/2

dr.

(168)

Moreover, observe that (152) ensures that for all t ∈ [0, T ], x ∈ Rd, v ∈ R it holds that

|f(t, x, v)| ≤ |f(t, x, 0)|+ |f(t, x, v)− f(t, x, 0)| ≤ |f(t, x, 0)|+ L|v|. (169)

This, (168), and the triangle inequality imply that for all t ∈ [0, T ] it holds that

(
∫

Rd

E

[

(

∫ T

t

∣

∣f
(

r,X0
t,r(z), u(r,X

0
t,r(z))

)∣

∣ dr
)2
]

µt(dz)

)1/2

≤
∫ T

t

(

E

[

∣

∣f
(

r,X0
0,r(ξ), 0

)∣

∣

2
])1/2

dr + L

∫ T

t

(

E
[

|u(r,X0
0,r(ξ))|2

])1/2
dr.

(170)

Furthermore, note that Lemma 2.9 assures that for all t ∈ [0, T ] it holds that

∫ T

t

(

E

[

∣

∣f
(

r,X0
0,r(ξ), 0

)∣

∣

2
])1/2

dr =

(

[
∫ T

t

(

E

[

∣

∣f
(

r,X0
0,r(ξ), 0

)∣

∣

2
])1/2

dr

]2
)1/2

≤
(

(T − t)

∫ T

t

E

[

∣

∣f
(

r,X0
0,r(ξ), 0

)∣

∣

2
]

dr

)1/2

≤
√
T

(∫ T

0

E

[

∣

∣f
(

r,X0
0,r(ξ), 0

)∣

∣

2
]

dr

)1/2

.

(171)

Combining this with (163), (166), (167), and (170) implies that for all t ∈ [0, T ] it holds that

(

E
[

|u(t, X0
0,t(ξ))|2

])1/2

≤
(

E

[

∣

∣g
(

X0
0,T (ξ)

)∣

∣

2
])1/2

+
√
T

(
∫ T

0

E

[

∣

∣f
(

r,X0
0,r(ξ), 0

)∣

∣

2
]

dr

)1/2

+ L

∫ T

t

(

E
[

|u(r,X0
0,r(ξ))|2

])1/2
dr.

= C + L

∫ T

t

(

E
[

|u(r,X0
0,r(ξ))|2

])1/2
dr.

(172)

The hypothesis that
∫ T

0

(

E
[

|u(t, X0
0,t(ξ))|2

])1/2
dt < ∞ and Lemma 3.2 (with T = T , α = C,

β = L, (ǫ(t))t∈[0,T ] =
(

(E[|u(t, X0
0,t(ξ))|2])1/2

)

t∈[0,T ]
in the notation of Lemma 3.2) hence establish

items (i)–(ii). The proof of Lemma 3.3 is thus completed.
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3.3 Properties of MLP approximations

In this subsection we establish in Lemma 3.6 below some elementary properties of the MLP
approximations (cf. (156) in Setting 3.1 above) introduced in Setting 3.1 above. For this we need
two elementary and well known results on identically distributed random variables (see Lemma 3.4
and Lemma 3.5 below).

Lemma 3.4. Let d,N ∈ N, let (Ω,F ,P) be a probability space, let Xk : Ω → Rd, k ∈ {1, 2, . . . , N},
be independent random variables, let Yk : Ω → Rd, k ∈ {1, 2, . . . , N}, be independent random
variables, and assume for every k ∈ {1, 2, . . . , N} that Xk and Yk are identically distributed. Then
it holds that

(
∑N

k=1Xk

)

: Ω → Rd and
(
∑N

k=1 Yk

)

: Ω → Rd are identically distributed random
variables.

Proof of Lemma 3.4. Throughout this proof let X,Y : Ω → RNd be the random variables which
satisfy that

X = (X1, . . . , XN) and Y = (Y1, . . . , YN) (173)

and let f ∈ C(RNd,Rd) be the function which satisfies for all v1, v2, . . . , vN ∈ Rd that f(v1, v2, . . . , vN) =
∑N

k=1 vk. Observe that the hypothesis that (Xk)k∈{1,2,...,N} are independent, the hypothesis that
(Yk)k∈{1,2,...,N} are independent, and the hypothesis that for every k ∈ {1, 2, . . . , N} it holds that
Xk and Yk are identically distributed random variables assure that for all (Bk)k∈{1,2,...,N} ⊆ B(Rd)
it holds that

P
(

X ∈ (B1 ×B2 × . . .× BN)
)

= P(∀ k ∈ {1, 2, . . . , N} : Xk ∈ Bk)

=

N
∏

k=1

P(Xk ∈ Bk) =

N
∏

k=1

P(Yk ∈ Bk)

= P(∀ k ∈ {1, 2, . . . , N} : Yk ∈ Bk)

= P
(

Y ∈ (B1 × B2 × . . .×BN )
)

.

(174)

This, the fact that

B(RNd) = S
(

(B1 × B2 × . . .×BN) ∈ P(RLNd) :
(

∀ k ∈ {1, 2, . . . , N} : Bk ∈ B(Rd)
)

)

, (175)

and the uniqueness theorem for measures (see, e.g., Klenke [66, Lemma 1.42]) imply that it holds
for all B ∈ B(RNd) that

P
(

X ∈ B
)

= P
(

Y ∈ B
)

. (176)

Hence, we obtain that for all B ∈ B(Rd) it holds that

P

(

∑N
k=1Xk ∈ B

)

= P (f(X) ∈ B) = P
(

X ∈ f−1(B)
)

= P
(

Y ∈ f−1(B)
)

= P (f(Y) ∈ B) = P

(

∑N
k=1Yk ∈ B

)

.
(177)

This shows that
(
∑N

k=1Xk

)

: Ω → Rd and
(
∑N

k=1 Yk

)

: Ω → Rd are identically distributed random
variables. The proof of Lemma 3.4 is thus completed.

Lemma 3.5. Let (Ω,F ,P) be a probability space, let (S, δ) be a separable metric space, let (E, δ)
be a metric space, let U, V : S × Ω → E be continuous random fields, let X, Y : Ω → S be
random variables, assume that U and X are independent, assume that V and Y are indepen-
dent, assume for all s ∈ S that U(s) and V (s) are identically distributed, and assume that X
and Y are identically distributed. Then it holds that U(X) = (U(X(ω), ω))ω∈Ω : Ω → E and
V (Y ) = (V (Y (ω), ω))ω∈Ω : Ω → E are identically distributed random variables.
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Proof of Lemma 3.5. First, note that Grohs et al. [3, Lemma 2.4], the fact that U and V are
continuous random fields, and Lemma 2.14 ensure that U(X) and V (Y ) are random variables.
Next observe the hypothesis that U and X are independent, the hypothesis that V and Y are
independent, the hypothesis that for all s ∈ S it holds that U(s) and V (s) are identically dis-
tributed, the hypothesis that X and Y are identically distributed and Lemma 2.16 demonstrate
that for all globally bounded and Lipschitz continuous functions g : E → R it holds that

E[g(U(X))] =

∫

S

E[g(U(s))] (X(P)B(S))(ds) =

∫

S

E[g(V (s))] (Y (P)B(S))(ds) = E[g(V (Y ))] .

(178)

Combining this with Lemma 2.13 assures that U(X) and V (Y ) are identically distributed. The
proof of Lemma 3.5 is thus completed.

Lemma 3.6 (Properties of MLP approximations). Assume Setting 3.1 and let M ∈ N. Then

(i) for all θ ∈ Θ, n ∈ N0 it holds that V θ
M,n : [0, T ]× Rd × Ω → R is a continuous random field,

(ii) for all θ ∈ Θ, n ∈ N0 it holds that V
θ
M,n is

(

B([0, T ]× Rd)⊗S((R(θ,ϑ))ϑ∈Θ, (X
(θ,ϑ))ϑ∈Θ)

)

/B(R)-
measurable,

(iii) for all θ ∈ Θ, n ∈ N0, t ∈ [0, T ], x ∈ Rd it holds that

(

(N ∩ [0, n])× N
)

∋ (k,m) 7→






















g(X
(θ,n,−m)
t,T (x)) : k = n

[

f
(

R
(θ,k,m)
t , X

(θ,k,m)

t,R
(θ,k,m)
t

(x), V
(θ,k,m)
M,k

(

R
(θ,k,m)
t , X

(θ,k,m)

t,R
(θ,k,m)
t

(x)
))

− 1N(k)f
(

R
(θ,k,m)
t , X

(θ,k,m)

t,R
(θ,k,m)
t

(x), V
(θ,k,−m)
M,k−1

(

R
(θ,k,m)
t , X

(θ,k,m)

t,R
(θ,k,m)
t

(x)
))

] : k < n

(179)

is an independent family of random variables,

(iv) for all t ∈ [0, T ], s ∈ [t, T ], x ∈ Rd it holds that Xθ
t,s(x) : Ω → Rd, θ ∈ Θ, are identically

distributed random variables, and

(v) for all n ∈ N0, t ∈ [0, T ], x ∈ Rd it holds that V θ
M,n(t, x) : Ω → Rd, θ ∈ Θ, are identically

distributed random variables.

Proof of Lemma 3.6. We first prove item (i) by induction on n ∈ N0. For the base case n = 0
observe that the hypothesis that for all θ ∈ Θ it holds that V θ

M,0 = 0 demonstrates that for all
θ ∈ Θ it holds that V θ

M,0 : [0, T ] × Rd × Ω → Rd is a continuous random field. This establishes
item (i) in the base case n = 0. For the induction step N0 ∋ (n−1) → n ∈ N let n ∈ N and assume
that for every k ∈ N0∩[0, n), θ ∈ Θ it holds that V θ

M,k : [0, T ]×Rd×Ω → Rd is a continuous random
field. Combining this, the hypothesis that g and f are continuous functions, and the fact that for
all θ ∈ Θ it holds that Rθ : [0, T ]×Ω → [0, T ] and Xθ : {(t, s) ∈ [0, T ]2 : t ≤ s}×Rd×Ω → Rd are
continuous random fields with (156), Grohs et al. [3, Lemma 2.4], and Lemma 2.14 proves that
for all θ ∈ Θ it holds that V θ

M,n : [0, T ] × Rd × Ω → Rd is a continuous random field. Induction
thus establishes item (i). Next we prove item (ii) by induction on n ∈ N0. For the base case n = 0
observe that the hypothesis that for all θ ∈ Θ it holds that V θ

M,0 = 0 demonstrates that for all θ ∈ Θ

it holds that V θ
M,0 : [0, T ] × Rd × Ω → R is

(

B([0, T ]× Rd)⊗S((R(θ,ϑ))ϑ∈Θ, (X
(θ,ϑ))ϑ∈Θ)

)

/B(R)-
measurable. This implies item (ii) in the base case n = 0. For the induction step N0 ∋ (n −
1) → n ∈ N let n ∈ N and assume that for all k ∈ N0 ∩ [0, n), θ ∈ Θ it holds that V θ

M,k is
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(

B([0, T ]× Rd)⊗S((R(θ,ϑ))ϑ∈Θ, (X
(θ,ϑ))ϑ∈Θ)

)

/B(R)-measurable. Combining this, the fact that f
and g are Borel measurable, and the fact that for all θ ∈ Θ it holds that Xθ : {(t, s) ∈ [0, T ]2 : t ≤
s} × Rd × Ω → Rd is a continuous random field with (156) and Lemma 2.14 proves that for all
θ ∈ Θ, t ∈ [0, T ], x ∈ Rd it holds that

S(V θ
M,n(t, x))

⊆ S
(

(X
(θ,n,−m)
t,T (x))m∈{1,2,...,Mn}, (R

(θ,k,m)
t )m∈{1,2,...,Mn−k},k∈N0∩[0,n),

(X
(θ,k,m)

t,R
(θ,k,m)
t

(x))m∈{1,2,...,Mn−k},k∈N0∩[0,n), (X
(θ,k,m,ϑ))m∈{1,2,...,Mn−k},k∈N0∩[0,n),ϑ∈Θ,

(R(θ,k,m,ϑ))m∈{1,2,...,Mn−k},k∈N0∩[0,n),ϑ∈Θ, (X
(θ,k,−m,ϑ))m∈{1,2,...,Mn−k},k∈N∩[0,n),ϑ∈Θ,

(R(θ,k,−m,ϑ))m∈{1,2,...,Mn−k},k∈N∩[0,n),ϑ∈Θ

)

⊆ S
(

(R(θ,ϑ))ϑ∈Θ, (X
(θ,ϑ))ϑ∈Θ

)

.

(180)

Moreover, observe that item (i) and Grohs et al. [3, Lemma 2.4] ensure that for all θ ∈ Θ it holds
that V θ

M,n is
(

B([0, T ]× Rd)⊗S(V θ
M,n)

)

/B(R)-measurable. Combining this with (180) demon-

strates that for all θ ∈ Θ it holds that V θ
M,n is

(

B([0, T ]× Rd)⊗S((R(θ,ϑ))ϑ∈Θ, (X
(θ,ϑ))ϑ∈Θ)

)

/B(R)-
measurable. Induction thus establishes item (ii). Furthermore, observe that item (ii), the hypoth-
esis that (Xθ)θ∈Θ are independent, the hypothesis that (Rθ)θ∈Θ are independent, the hypothesis
that (Xθ)θ∈Θ and (Rθ)θ∈Θ are independent, and Lemma 2.14 prove item (iii). Next observe that
(154), the hypothesis that (Xθ)θ∈Θ are independent, Lemma 2.16 (with S = Rd, U = g(Xθ

s,s(·)),
X = Xϑ

t,s(x) for g ∈ C(Rd,R), t ∈ [0, T ], s ∈ [t, T ], x ∈ Rd, θ, ϑ ∈ Θ in the notation of
Lemma 2.16), and the fact that for all t ∈ [0, T ], x ∈ Rd, θ ∈ Θ it holds that P(Xθ

t,t(x) = x) = 1
assure that for all t ∈ [0, T ], s ∈ [t, T ], x ∈ Rd, θ, ϑ ∈ Θ with θ 6= ϑ and all globally bounded and
continuous functions g : Rd → R it holds that

E
[

g(Xθ
t,s(x))

]

= E
[

g(Xθ
s,s(X

ϑ
t,s(x)))

]

=

∫

Rd

E
[

g(Xθ
s,s(z))

]

((Xϑ
t,s(x))(P)B(Rd))(dz)

=

∫

Rd

g(z)((Xϑ
t,s(x))(P)B(Rd))(dz) = E

[

g(Xϑ
t,s(x))

]

.

(181)

Combining this with Lemma 2.13 demonstrates that for all t ∈ [0, T ], s ∈ [t, T ], x ∈ Rd, θ, ϑ ∈ Θ
it holds that Xθ

t,s(x) : Ω → Rd and Xϑ
t,s(x) : Ω → Rd are identically distributed random variables.

This establishes item (iv). Next we prove item (v) by induction on n ∈ N0. For the base case
n = 0 observe that the hypothesis that for all θ ∈ Θ it holds that V θ

M,0 = 0 demonstrates that
for all t ∈ [0, T ], x ∈ Rd it holds that V θ

M,0(t, x) : Ω → Rd, θ ∈ Θ, are identically distributed
random variables. This establishes item (v) in the base case n = 0. For the induction step
N0 ∋ (n − 1) → n ∈ N let n ∈ N and assume that for all k ∈ N0 ∩ [0, n), t ∈ [0, T ], x ∈ Rd

it holds that V θ
M,k(t, x) : Ω → Rd, θ ∈ Θ, are identically distributed random variables. This,

the hypothesis that (Xθ)θ∈Θ are independent, the hypothesis that (Rθ)θ∈Θ are independent, the
hypothesis that (Xθ)θ∈Θ and (Rθ)θ∈Θ are independent, item (ii), Lemma 3.4, and Lemma 3.5

(with S = [0, T ]×Rd, E = R, U =
(

f(s, y, V
(θ,k,m)
M,k (s, y))−1N(k)f(s, y, V

(θ,k,−m)
M,k−1 (s, y))

)

(s,y)∈[0,T ]×Rd,

V =
(

f(s, y, V
(ϑ,k,m)
M,k (s, y))−1N(k)f(s, y, V

(ϑ,k,−m)
M,k−1 (s, y))

)

(s,y)∈[0,T ]×Rd, X = (R
(θ,k,m)
t , X

(θ,k,m)

t,R
(θ,k,m)
t

(x)),

Y = (R
(ϑ,k,m)
t , X

(ϑ,k,m)

t,R
(ϑ,k,m)
t

(x)) for θ, ϑ ∈ Θ, t ∈ [0, T ], x ∈ Rd, k ∈ N0 ∩ [0, n), m ∈ N with θ 6= ϑ in

the notation of Lemma 3.5) assure that for all t ∈ [0, T ], x ∈ Rd, k ∈ N0 ∩ [0, n), m ∈ N it holds
that

(

f
(

R
(θ,k,m)
t , X

(θ,k,m)

t,R
(θ,k,m)
t

(x), V
(θ,k,m)
M,k

(

R
(θ,k,m)
t , X

(θ,k,m)

t,R
(θ,k,m)
t

(x)
))

− 1N(k)f
(

R
(θ,k,m)
t , X

(θ,k,m)

t,R
(θ,k,m)
t

(x), V
(θ,k,−m)
M,k−1

(

R
(θ,k,m)
t , X

(θ,k,m)

t,R
(θ,k,m)
t

(x)
))

)

θ∈Θ

(182)
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are identically distributed random variables. Items (iii)–(iv), (156), and Lemma 3.4 therefore
ensure that for all t ∈ [0, T ], x ∈ Rd it holds that V θ

M,n(t, x) : Ω → Rd, θ ∈ Θ, are identically
distributed random variables. Induction thus establishes item (v). The proof of Lemma 3.6 is
thus completed.

3.4 Analysis of approximation errors of MLP approximations

Proposition 3.15, resp. Corollary 3.16, in Subsection 3.4.5 below presents estimates for the L2-
approximation error of the MLP scheme (cf. (156) in Setting 3.1 above) introduced in Setting 3.1
with respect to the solution of the stochastic fixed point equation (cf. (155) in Setting 3.1 above)
for every iteration (cf. n ∈ N in (156) in Subsection 3.1 above) and every Monte Carlo accuracy
(cf. M ∈ N in (156) in Subsection 3.1 above) of the MLP scheme. The essential idea for the
proof of those statements is to decompose the L2-approximation error into a bias and a variance
part and to analyze them separately (see Subsections 3.4.1–3.4.3). This approach leads to a
recursive inequality (cf. (240) in the proof of Proposition 3.15 below) which can be treated using
an elementary Gronwall inequality, proven in Subsection 3.4.4 (see Lemma 3.12). For the proofs of
the statements in this subsection we need some elementary and well-known results (see Lemma 3.7,
Lemma 3.10, and Lemma 3.14) which we state and prove where they are used.

3.4.1 Expectations of MLP approximations

Lemma 3.7. Assume Setting 3.1, let θ ∈ Θ, t ∈ [0, T ], let U1 : [t, T ]×Ω → [0,∞] and U2 : [t, T ]×
Ω → R be continuous random fields which satisfy for all i ∈ {1, 2} that Ui and Rθ are independent

and
∫ T

t
E[|U2(r)|] dr < ∞. Then it holds for all i ∈ {1, 2} that Borel[t,T ]({r ∈ [t, T ] : E[|U2(r)|] =

∞}) = 0, E
[

|U2(R
θ
t )|
]

< ∞, and

(T − t)E
[

Ui(R
θ
t )
]

=

∫ T

t

E[Ui(r)] dr. (183)

Proof of Lemma 3.7. Throughout this proof assume w.l.o.g. that t < T . Observe that (153)
implies that Rθ

t is U[t,T ]-distributed. Combining this with the fact that U1 is continuous, the fact
that U1 and Rθ

t are independent, and Lemma 2.15 assures that

(T − t)E
[

U1(R
θ
t )
]

= (T − t)

∫

[t,T ]

E[U1(r)] (R
θ
t (P)B([t,T ]))(dr)

= (T − t)

∫

[t,T ]

E[U1(r)] (U[t,T ])(dr)

=
(T − t)

(T − t)

∫ T

t

E[U1(r)] dr =

∫ T

t

E[U1(r)] dr.

(184)

In addition, note that the fact that Rθ
t is U[t,T ]-distributed, the fact that U2 is continuous, the

fact that U2 and Rθ
t are independent, the hypothesis that

∫ T

t
E[|U2(r)|] dr < ∞, and Lemma 2.16

ensure that Borel[t,T ]({r ∈ [t, T ] : E[|U2(r)|] = ∞}) = 0, E
[

|U2(R
θ
t )|
]

< ∞, and

(T − t)E
[

U2(R
θ
t )
]

= (T − t)

∫

[t,T ]

E[U2(r)] (R
θ
t (P)B([t,T ]))(dr)

= (T − t)

∫

[t,T ]

E[U2(r)] (U[t,T ])(dr)

=
(T − t)

(T − t)

∫ T

t

E[U2(r)] dr =

∫ T

t

E[U2(r)] dr.

(185)
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Combining this with (184) establishes (183). The proof of Lemma 3.7 is thus completed.

Lemma 3.8 (Expectations of MLP approximations). Assume Setting 3.1 and assume for all

t ∈ [0, T ], x ∈ Rd that
∫ T

t
E
[

|f(r,X0
t,r(x), 0)|

]

dr < ∞. Then

(i) for all M ∈ N, n ∈ N0, t ∈ [0, T ], s ∈ [t, T ], x ∈ Rd it holds that

E
[

|V 0
M,n(s,X

0
t,s(x))|

]

+ (T − t)E
[

|V 0
M,n(R

0
t , X

0
t,R0

t
(x))|

]

+ (T − t)E
[

|f
(

R0
t , X

0
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and

(ii) for all M,n ∈ N, t ∈ [0, T ], x ∈ Rd it holds that
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Proof of Lemma 3.8. Throughout this proof let M ∈ N, x ∈ Rd. Observe that Lemma 3.7,
items (i)–(ii) in Lemma 3.6, and the fact that for all n ∈ N it holds that V 0

M,n, X
0, and R0 are

independent demonstrate that for all n ∈ N0, t ∈ [0, T ] it holds that
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Next we claim that for all n ∈ N0, t ∈ [0, T ], s ∈ [t, T ] it holds that
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(189)

We now prove (189) by induction on n ∈ N0. For the base case n = 0 observe that the hypothesis

that V 0
M,0 = 0 and the hypothesis that for all t ∈ [0, T ] it holds that

∫ T

t
E
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imply that for all t ∈ [0, T ], s ∈ [t, T ] it holds that
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This establishes (189) in the case n = 0. For the induction step N0 ∋ (n− 1) → n ∈ N let n ∈ N

and assume that for all k ∈ N0 ∩ [0, n), t ∈ [0, T ], s ∈ [t, T ] it holds that
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Note that (156) and the triangle inequality ensure that for all t ∈ [0, T ], s ∈ [t, T ] it holds that
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(192)

Furthermore, observe that (154), (155), and item (iv) in Lemma 3.6 assure that for all m ∈ Z,
t ∈ [0, T ], s ∈ [t, T ] it holds that
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Moreover, note that Lemma 3.7, the hypothesis that (Xθ)θ∈Θ are independent, the hypothesis that
(Rθ)θ∈Θ are independent, the hypothesis that (Xθ)θ∈Θ and (Rθ)θ∈Θ are independent, items (i)–
(ii) & (iv)–(v) in Lemma 3.6, (154), and Lemma 2.15 demonstrate that for all i, j, l,m ∈ Z, k ∈ N0,
t ∈ [0, T ], s ∈ [t, T ] it holds that
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Combining this with (191), (192), and (193) establishes that for all t ∈ [0, T ], s ∈ [t, T ] it holds
that
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Hence, we obtain that for all t ∈ [0, T ] it holds that
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The hypothesis that for all t ∈ [0, T ] it holds that
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dr < ∞ and the fact
that for all t ∈ [0, T ], x ∈ Rd, v ∈ R it holds that |f(t, x, v)| ≤ |f(t, x, 0)|+ L|v| therefore assure
that for all t ∈ [0, T ] it holds that
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This, (195), and (196) establish that for all t ∈ [0, T ], s ∈ [t, T ] it holds that
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Induction thus proves (189). Combining (188) and (189) establishes item (i). Next observe that
(156), (189), items (i)–(ii) & (iv)–(v) in Lemma 3.6, the hypothesis that (Xθ)θ∈Θ are indepen-
dent, the hypothesis that (Rθ)θ∈Θ are independent, the hypothesis that (Xθ)θ∈Θ and (Rθ)θ∈Θ are
independent, and Lemma 3.5 ensure that for all n ∈ N, t ∈ [0, T ] it holds that
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Lemma 3.7, items (i)–(ii) in Lemma 3.6, the fact that for all n ∈ N0 it holds that V 0
M,n, X

0, and
R0 are independent, (189), and Fubini’s theorem therefore imply that for all n ∈ N, t ∈ [0, T ] it
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holds that
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This establishes item (ii). The proof of Lemma 3.8 is thus completed.

3.4.2 Biases of MLP approximations

Lemma 3.9 (Biases of MLP approximations). Assume Setting 3.1 and assume for all t ∈ [0, T ],

x ∈ Rd that
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Proof of Lemma 3.9. Note that Lemma 3.8, the hypothesis that for all t ∈ [0, T ], x ∈ Rd it holds

that
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dr < ∞, (152), (155), and Tonelli’s theorem demonstrate that for all
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Lemma 2.9 and Jensen’s inequality hence show that for all M,n ∈ N, t ∈ [0, T ], x ∈ Rd it holds
that
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The proof of Lemma 3.9 is thus completed.
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3.4.3 Estimates for the variances of MLP approximations

Lemma 3.10. Let n ∈ N, let (Ω,F ,P) be a probability space, and let X1, X2, . . . , Xn : Ω → R be
independent random variables which satisfy for all i ∈ {1, 2, . . . , n} that E[|Xi|] < ∞. Then it
holds that
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Proof of Lemma 3.10. Note that the fact that for all independent random variables Y, Z : Ω → R

with E[|Y | + |Z|] < ∞ it holds that E[|Y Z|] < ∞ and E[Y Z] = E[Y ]E[Z] (cf., e.g., Klenke [66,
Theorem 5.4]) and the hypothesis that Xi : Ω → R, i ∈ {1, 2, . . . , n}, are independent random
variables assure that
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The proof of Lemma 3.10 is thus completed.

Lemma 3.11 (Estimates for the variances of MLP approximations). Assume Setting 3.1 and

assume for all t ∈ [0, T ], x ∈ Rd that
∫ T

t
E
[

|f(r,X0
t,r(x), 0)|

]

dr < ∞. Then it holds for all
M,n ∈ N, t ∈ [0, T ], x ∈ Rd that

E

[

∣

∣V 0
M,n(t, x)− E

[

V 0
M,n(t, x)

]∣

∣

2
]

≤ 1
Mn

(

E
[

|g(X0
t,T (x))|2

]

+ T

∫ T

t

E
[

|f(r,X0
t,r(x), 0)|2

]

dr
)

+
n−1
∑

k=1

2L2T
Mn−k

(
∫ T

t

E

[

∣

∣u(r,X0
t,r(x))− V 0

M,k(r,X
0
t,r(x))

∣

∣

2
]

dr

+

∫ T

t

E

[

∣

∣u(r,X0
t,r(x))− V 0

M,k−1(r,X
0
t,r(x))

∣

∣

2
]

dr

)

.

(206)

Proof of Lemma 3.11. Throughout this proof let M,n ∈ N, t ∈ [0, T ], x ∈ Rd. Observe that
Lemma 3.10, item (i) in Lemma 3.8, the fact that for all θ ∈ Θ it holds that E

[

|g(X0
t,T (x))|

]

< ∞,
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item (iii) in Lemma 3.6, and (156) imply that

E

[

∣

∣V 0
M,n(t, x)− E
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V 0
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]∣

∣

2
]

= Var(V 0
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=
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]

+
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∑
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)

]

)

.

(207)

Moreover, note that item (iv) in Lemma 3.6 and the fact that for all Z ∈ L1(P,R) it holds that
Var(Z) ≤ E[|Z|2] ensure that

Mn
∑

m=1

Var
(

1
Mng

(

X
(0,n,−m)
t,T (x)

)

)

= Mn Var
(

1
Mng(X

0
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)

= Mn

M2n Var
(

g(X0
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)

≤ 1
Mn

(

E
[

|g(X0
t,T (x))|2

] )

.

(208)

In addition, note that items (i)–(ii) & (iv)–(v) in Lemma 3.6, the hypothesis that (Xθ)θ∈Θ are
independent, the hypothesis that (Rθ)θ∈Θ are independent, the hypothesis that (Xθ)θ∈Θ and
(Rθ)θ∈Θ are independent, the fact that for all Z ∈ L1(P,R) it holds that Var(Z) ≤ E[|Z|2], and
Lemma 3.5 show that for all k ∈ N0 ∩ [0, n) it holds that
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.

(209)

Lemma 3.7, the fact that X0 and R0 are independent, and the hypothesis that for all θ ∈ Θ it
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holds that V θ
M,0 = 0 therefore demonstrate that
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(210)

In addition, observe that (152), (209), the fact that for all x, y ∈ [0,∞) it holds that |x + y|2 ≤
2(|x|2+ |y|2), items (i)–(ii) & (v) in Lemma 3.6, the hypothesis that (Xθ)θ∈Θ are independent, the
hypothesis that (Rθ)θ∈Θ are independent, the hypothesis that (Xθ)θ∈Θ and (Rθ)θ∈Θ are indepen-
dent, and Lemma 3.5 assure that for all k ∈ N ∩ [1, n) it holds that
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(211)

Lemma 3.7, items (i)–(ii) in Lemma 3.6, the hypothesis that (Xθ)θ∈Θ are independent, the hypoth-
esis that (Rθ)θ∈Θ are independent, and the hypothesis that (Xθ)θ∈Θ and (Rθ)θ∈Θ are independent
hence ensure that for all k ∈ N ∩ [1, n) it holds that

Mn−k
∑

m=1

Var

(

(T−t)
Mn−k

[

f
(

R
(0,k,m)
t , X

(0,k,m)

t,R
(0,k,m)
t

(x), V
(0,k,m)
M,k

(

R
(0,k,m)
t , X

(0,k,m)

t,R
(0,k,m)
t

(x)
)

)

− f
(

R
(0,k,m)
t , X

(0,k,m)

t,R
(0,k,m)
t

(x), V
(0,k,−m)
M,k−1

(

R
(0,k,m)
t , X

(0,k,m)

t,R
(0,k,m)
t

(x)
)

)

]

)

≤ 2L2(T−t)
Mn−k

(

∫ T

t

E

[

∣

∣V 0
M,k

(

r,X0
t,r(x)

)

− u
(

r,X0
t,r(x)

)∣

∣

2
]

dr

+

∫ T

t

E

[

∣

∣V 0
M,k−1

(

r,X0
t,r(x)

)

− u
(

r,X0
t,r(x)

)∣

∣

2
]

dr

)

.

(212)
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Combining this with (207), (208), and (210) establishes that
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∣
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(213)

The proof of Lemma 3.11 is thus completed.

3.4.4 On a geometric time-discrete Gronwall inequality

Lemma 3.12. Let α, β ∈ [0,∞), M ∈ (0,∞), (ǫn,q)n,q∈N0 ⊆ [0,∞] satisfy for all n, q ∈ N0 that

ǫn,q ≤
α

Mn+q
+ β

[

n−1
∑

k=0

ǫk,q+1

Mn−(k+1)

]

. (214)

Then it holds for all n, q ∈ N0 that

ǫn,q ≤
α(1 + β)n

Mn+q
< ∞. (215)

Proof of Lemma 3.12. Throughout this proof assume w.l.o.g. that β > 0. We prove (215) by
induction on n ∈ N0. For the base case n = 0 observe that (214) assures that for all q ∈ N0 it
holds that

ǫ0,q ≤
α

M0+q
=

α

M0+q
(1 + β)0 < ∞. (216)

This proves (215) in the base case n = 0. For the induction step N0 ∋ (n − 1) → n ∈ N observe

that (214) ensures that for all n ∈ N, q ∈ N0 with ∀ k ∈ N0 ∩ [0, n), p ∈ N0 : ǫk,p ≤ α (1+β)k

Mk+p it holds
that

ǫn,q ≤
α

Mn+q
+ β

[

n−1
∑

k=0

ǫk,q+1

Mn−(k+1)

]

≤ α

Mn+q
+ β

[

n−1
∑

k=0

α (1+β)k

Mk+q+1

Mn−(k+1)

]

=
α

Mn+q
+ β

[

n−1
∑

k=0

α(1 + β)k

Mn−(k+1)+(k+q+1)

]

=
α

Mn+q
+ β

[

n−1
∑

k=0

α(1 + β)k

Mn+q

]

=
α

Mn+q

(

1 + β

[

n−1
∑

k=0

(1 + β)k

])

=
α

Mn+q

(

1 + β
(1 + β)n − 1

(1 + β)− 1

)

=
α

Mn+q
(1 + β)n.

(217)

Induction hence establishes (215). The proof of Lemma 3.12 is thus completed.
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3.4.5 Error estimates for MLP approximations

Corollary 3.13. Assume Setting 3.1 and assume for all t ∈ [0, T ], x ∈ Rd that
∫ T

t
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(218)

Proof of Corollary 3.13. Throughout this proof let M,n ∈ N, t ∈ [0, T ], x ∈ Rd, C ∈ [0,∞],
(ek)k∈N0∩[0,n) ⊆ [0,∞] satisfy that for all k ∈ N0 ∩ [0, n) that

C = E
[

|g(X0
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]
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∫ T

t

E
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and

ek =
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∣

2
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dr. (220)

Note that item (i) in Lemma 3.8, the bias variance decomposition of the mean square error (cf.,
e.g., Jentzen & von Wurstemberger [62, Lemma 2.2]), the hypothesis that for all s ∈ [0, T ], z ∈ Rd

it holds that
∫ T

s
E
[

|f(r,X0
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]

dr < ∞, Lemma 3.9, and Lemma 3.11 demonstrate that
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(221)

The proof of Corollary 3.13 is thus completed.

Lemma 3.14. Let T ∈ [0,∞), q ∈ N and let U : [0, T ] → [0,∞] be a B([0, T ])/B([0,∞])-
measurable function. Then

∫ T

0

tq−1

(q − 1)!

∫ T

t

U(r) dr dt =

∫ T

0

tq

q!
U(t) dt. (222)

Proof of Lemma 3.14. Observe that Tonelli’s theorem assures that
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(223)

The proof of Lemma 3.14 is thus completed.

43



Proposition 3.15. Assume Setting 3.1, let ξ ∈ Rd, C ∈ [0,∞] satisfy that

C =

[

(

E
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and assume for all t ∈ [0, T ], x ∈ Rd that
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2
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. (225)

Proof of Proposition 3.15. Throughout this proof assume w.l.o.g. that C < ∞, let M ∈ N, let
ǫn,q ∈ [0,∞], n, q ∈ N0, be the extended real numbers which satisfy for all n, q ∈ N0 that

ǫn,0 = E
[

|u(0, ξ)− V 0
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]

and (226)
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and let µt : B(Rd) → [0, 1], t ∈ [0, T ], be the probability measures which satisfy for all t ∈ [0, T ],
B ∈ B(Rd) that

µt(B) = P(X0
0,t(ξ) ∈ B) = P(X1

0,t(ξ) ∈ B) =
(

(X1
0,t(ξ))(P)B(Rd)

)

(B) (228)

(cf. item (iv) in Lemma 3.6). Note that the fact that for all x, y ∈ [0,∞) it holds that (x+ y)2 ≥
x2 + y2 assures that
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Next observe that items (i)–(ii) in Lemma 3.6, the hypothesis that (Xθ)θ∈Θ are independent, the
hypothesis that (Rθ)θ∈Θ are independent, the hypothesis that (Xθ)θ∈Θ and (Rθ)θ∈Θ are indepen-
dent, Tonelli’s theorem, Corollary 3.13, and Lemma 2.15 ensure that for all n ∈ N, t ∈ [0, T ] it
holds that
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Moreover, observe that (228), (229), the fact that X0 and X1 are independent and continuous
random fields, (154), and Lemma 2.15 imply that for all t ∈ [0, T ] it holds that
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In addition, note that (228), items (i)–(ii) in Lemma 3.6, the hypothesis that (Xθ)θ∈Θ are in-
dependent, the hypothesis that (Rθ)θ∈Θ are independent, and the hypothesis that (Xθ)θ∈Θ and
(Rθ)θ∈Θ are independent, (154), Lemma 2.15, and Lemma 3.5 assure that for all n ∈ N0, t ∈ [0, T ],
r ∈ [t, T ] it holds that
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0
t,r(z))

∣

∣

2
]

µt(dz)

= E

[

∣

∣u(r,X0
t,r(X

1
0,t(ξ)))− V 0

M,n(r,X
0
t,r(X

1
0,t(ξ)))

∣

∣

2
]

= E

[

∣

∣u(r,X0
0,r(ξ))− V 0

M,n(r,X
0
0,r(ξ))

∣

∣

2
]

.

(232)

Combining this with (230) and (231) ensures that for all n ∈ N, t ∈ [0, T ] it holds that

E
[

|u(t, X0
0,t(ξ))− V 0

M,n(t, X
0
0,t(ξ))|2

]

≤ C2

Mn
+

n−1
∑

k=0

4L2T
Mn−(k+1)

∫ T

t

E

[

∣

∣u(r,X0
0,r(ξ))− V 0

M,k(r,X
0
0,r(ξ))

∣

∣

2
]

dr.
(233)

The fact that P(X0
0,0(ξ) = ξ) = 1, the fact that for all n ∈ N it holds that V 0

M,n, X
0, and R0 are

independent, Lemma 3.5, and (226) hence imply that for all n ∈ N it holds that

ǫn,0 = E
[

|u(0, X0
0,0(ξ))− V 0

M,n(0, X
0
0,0(ξ))|2

]

≤ C2

Mn
+

n−1
∑

k=0

4L2T 2

Mn−(k+1)T

∫ T

0

E

[

∣

∣u(r,X0
0,r(ξ))− V 0

M,k(r,X
0
0,r(ξ))

∣

∣

2
]

dr

=
C2

Mn(0!)
+ 4L2T 2

[

n−1
∑

k=0

ǫk,1
Mn−(k+1)

]

.

(234)

Moreover, observe that Lemma 3.14 (with T = T , q = q, (U(r))r∈[0,T ] = (E[|u(r,X0
0,r(ξ)) −

V 0
M,n(r,X

0
0,r(ξ))|2])r∈[0,T ] for n ∈ N0, q ∈ N in the notation of Lemma 3.14) demonstrates that for

all n ∈ N0, q ∈ N it holds that

1

T q

(∫ T

0

tq−1

(q − 1)!

∫ T

t

E
[∣

∣u(r,X0
0,r(ξ))− V 0

M,n(r,X
0
0,r(ξ))

∣

∣

2]
dr dt

)

=
T

T q+1

(
∫ T

0

tq

q!
E
[∣

∣u(t, X0
0,t(ξ))− V 0

M,n(t, X
0
0,t(ξ))

∣

∣

2]
dt

)

= Tǫn,q+1.

(235)
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This and (233) imply that for all n, q ∈ N it holds that

ǫn,q =
1

T q

(
∫ T

0

tq−1

(q − 1)!
E
[

|u(t, X0
0,t(ξ))− V 0

M,n(t, X
0
0,t(ξ))|2

]

dt

)

≤ C2

T qMn

(∫ T

0

tq−1

(q − 1)!
dt

)

+
n−1
∑

k=0

4L2T
Mn−(k+1)T q

(
∫ T

0

tq−1

(q − 1)!

∫ T

t

E

[

∣

∣u(r,X0
0,r(ξ))− V 0

M,k(r,X
0
0,r(ξ))

∣

∣

2
]

dr dt

)

=
C2

T qMn

T q

q!
+ 4L2T

[

n−1
∑

k=0

Tǫk,q+1

Mn−(k+1)

]

=
C2

Mn(q!)
+ 4L2T 2

[

n−1
∑

k=0

ǫk,q+1

Mn−(k+1)

]

.

(236)

Furthermore, note the fact that
∫ T

0

(

E
[

|u(r,X0
0,r(ξ))|2

])1/2
dr < ∞ and Lemma 3.3 prove that

sup
t∈[0,T ]

E
[

|u(t, X0
0,t(ξ))|2

]

≤ C2. (237)

The fact that P(X0
0,0(ξ) = ξ) = 1 and the fact that V 0

M,0 = 0 hence assure that

ǫ0,0 = |u(0, ξ)|2 = E
[

|u(0, X0
0,0(ξ))|2

]

≤ C2 =
C2

M00!
. (238)

Moreover, observe that (237) and the fact that V 0
M,0 = 0 ensure that for all q ∈ N it holds that

ǫ0,q =
1

T q

∫ T

0

tq−1

(q − 1)!
E
[

|u(t, X0
0,t(ξ))|2

]

dt ≤ C2

T q

∫ T

0

tq−1

(q − 1)!
dt =

C2

T q

T q

q!
=

C2

M0(q!)
. (239)

Combining this, (234), (236), and (238) demonstrates that for all n, q ∈ N0 it holds that

ǫn,q ≤
C2

Mn(q)!
+ 4L2T 2

[

n−1
∑

k=0

ǫk,q+1

Mn−(k+1)

]

=
C2M q

Mn+q(q)!
+ 4L2T 2

[

n−1
∑

k=0

ǫk,q+1

Mn−(k+1)

]

≤ C2 exp(M)

Mn+q
+ 4L2T 2

[

n−1
∑

k=0

ǫk,q+1

Mn−(k+1)

]

.

(240)

Lemma 3.12 (with α = C2 exp(M), β = 4L2T 2, M = M , (ǫn,q)n,q∈N0 = (ǫn,q)n,q∈N0 in the notation
of Lemma 3.12) therefore proves that for all n, q ∈ N0 it holds that

ǫn,q ≤
C2 exp(M)(1 + 4L2T 2)n

Mn+q
. (241)

This implies that for all n ∈ N0 it hold that

E
[

|u(0, ξ)− V 0
M,n(0, ξ)|2

]

= ǫn,0 ≤
C2(1 + 4L2T 2)n exp(M)

Mn
. (242)

The fact that for all x, y ∈ [0,∞) it holds that
√
x+ y ≤ √

x +
√
y hence demonstrates that for

all n ∈ N0 it holds that

(

E
[

|u(0, ξ)− V 0
M,n(0, ξ)|2

])1/2 ≤ C(
√
1 + 4L2T 2)n exp(M

2
)

Mn/2
≤ C(1 + 2LT )n exp(M

2
)

Mn/2
. (243)

The proof of Proposition 3.15 is thus completed.
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Corollary 3.16. Assume Setting 3.1, let ξ ∈ Rd, C ∈ [0,∞] satisfy that

C =

[

(

E
[

|g(X0
0,T (ξ))|2

])1/2
+
√
T

(
∫ T

0

E
[

|f(t, X0
0,t(ξ), 0)|2

]

dt

)1/2
]

exp(LT ), (244)

and assume for all t ∈ [0, T ], x ∈ Rd that
∫ T

0

(

E
[

|u(r,X0
0,r(ξ))|2

])1/2
dr+

∫ T

t
E
[

|f(r,X0
t,r(x), 0)|

]

dr <
∞. Then it holds for all N ∈ N that

(

E
[

|u(0, ξ)− V 0
N,N(0, ξ)|2

])1/2 ≤ C

[√
e(1 + 2LT )√

N

]N

. (245)

Proof of Corollary 3.16. Proposition 3.15 establishes Corollary 3.16. The proof of Corollary 3.16
is thus completed.

3.5 Complexity analysis for MLP approximation algorithms

In this subsection we consider the computational effort of the MLP scheme (cf. (156) in Setting 3.1
above) introduced in Setting 3.1 and combine it with the L2-error estimate in Corollary 3.16 to
obtain a complexity analysis for the MLP scheme in Proposition 3.18 below. In Lemma 3.17 we
think for all M,n ∈ N of CM,n as the number of realizations of 1-dimensional random variables
needed to simulate one realization of V θ

M,n(t, x) for any θ ∈ Θ, t ∈ [0, T ], x ∈ Rd. The recursive
inequality in (246) in Lemma 3.17 is based on (156) and the assumption that the number of
realizations of 1-dimensional random variables needed to simulate Xθ

t,r(x) for any θ ∈ Θ, t ∈ [0, T ],
r ∈ [t, T ], x ∈ Rd is bounded by αd.

Lemma 3.17. Let d ∈ N, α ∈ [1,∞), (CM,n)M,n∈Z ⊆ [0,∞) satisfy for all n,M ∈ N that CM,0 = 0
and

CM,n ≤ αdMn +
n−1
∑

k=0

[

M (n−k)(αd+ 1 + CM,k + 1N(k)CM,k−1)
]

. (246)

Then it holds for all n,M ∈ N that Cn,M ≤ αd (5M)n.

Proof of Lemma 3.17. First, observe that (246) and the hypothesis that for all M ∈ N it holds
that CM,0 = 0 imply that for all n ∈ N, M ∈ N ∩ [2,∞) it holds that

(M−nCM,n) ≤ αd+

n−1
∑

k=0

[

M−k(αd+ 1 + CM,k + 1N(k)CM,k−1)
]

≤ αd+ (αd+ 1)

[

n−1
∑

k=0

M−k

]

+

[

n−1
∑

k=0

M−kCM,k

]

+

[

n−2
∑

k=0

M−(k+1)CM,k

]

= αd+ (αd+ 1) (1−M−n)
(1−M−1)

+

[

n−1
∑

k=0

M−kCM,k

]

+
1

M

[

n−2
∑

k=0

M−kCM,k

]

≤ αd+ (αd+ 1) 1
(1− 1

2
)
+
(

1 + 1
M

)

[

n−1
∑

k=0

M−kCM,k

]

= 3αd+ 2 +
(

1 + 1
M

)

[

n−1
∑

k=1

M−kCM,k

]

.

(247)
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The discrete Gronwall inequality in Corollary 2.2 (with N = ∞, α = 3αd + 2, β =
(

1 + 1
M

)

,

(ǫn)n∈N0 = (M−(n+1)CM,(n+1))n∈N0 in the notation of Corollary 2.2) hence ensures that for all
n ∈ N0, M ∈ N ∩ [2,∞) it holds that

(M−(n+1)CM,n+1) ≤ (3αd+ 2)
(

2 + 1
M

)n
. (248)

This establishes that for all n ∈ N, M ∈ N ∩ [2,∞) it holds that

CM,n ≤ (3αd+ 2)
(

2 + 1
M

)n−1
Mn ≤ (5αd)3n−1Mn ≤ αd(5M)n. (249)

Moreover, observe that the fact that C1,0 = 0 and (246) demonstrate that for all n ∈ N it holds
that

C1,n ≤ αd+

n−1
∑

k=0

(αd+ 1 + C1,k + 1N(k)C1,k−1) ≤ αd+ n(αd+ 1) + 2

n−1
∑

k=1

C1,k. (250)

Hence, we obtain for all n ∈ N, k ∈ N ∩ (0, n] that

C1,k ≤ αd+ k(αd+ 1) + 2

k−1
∑

l=1

C1,l ≤ αd+ n(αd+ 1) + 2

k−1
∑

l=1

C1,l. (251)

Combining this with the discrete Gronwall inequality in Corollary 2.2 (with N = n − 1, α =
αd + n(αd + 1), β = 2, (ǫk)k∈N0∩[0,N ] = (C1,k+1)k∈N0∩[0,n) in the notation of Corollary 2.2) proves
that for all n ∈ N, k ∈ N0 ∩ [0, n) it holds that

C1,k+1 ≤ (αd+ n(αd+ 1))3k. (252)

The fact that for all n ∈ N it holds that (1+ 2n)3n−1 ≤ 5n hence shows that for all n ∈ N it holds
that

C1,n ≤ (αd+ n(αd+ 1))3n−1 = αd
(

1 + n
(

1 + 1
αd

))

3n−1 ≤ αd (1 + 2n)3n−1 ≤ αd 5n. (253)

Combining this with (249) completes the proof of Lemma 3.17.

Proposition 3.18. Assume Setting 3.1, let ξ ∈ Rd, C ∈ [0,∞), α ∈ [1,∞), (CM,n)M,n∈Z ⊆ N0

satisfy for all n,M ∈ N that

CM,0 = 0, CM,n ≤ αdMn +
n−1
∑

k=0

[

M (n−k)(αd+ 1 + CM,k + 1N(k)CM,k−1)
]

, (254)

and C =

[

(

E
[

|g(X0
0,T (ξ))|2

])1/2
+
√
T

(
∫ T

0

E
[

|f(t, X0
0,t(ξ), 0)|2

]

dt

)1/2
]

exp(LT ), (255)

and assume for all t ∈ [0, T ], x ∈ Rd that
∫ T

0

(

E
[

|u(r,X0
0,r(ξ))|2

])1/2
dr+

∫ T

t
E
[

|f(r,X0
t,r(x), 0)|

]

dr <
∞. Then there exists a function N : (0,∞) → N such that for all ε, δ ∈ (0,∞) it holds that

(

E
[

|u(0, ξ)− V 0
Nε,Nε

(0, ξ)|2
])1/2 ≤ ε and (256)

CNε,Nε ≤ α d max{1, C2+δ}
[

sup
n∈N

(4+8LT )(3+δ)(n+1)

n(nδ/2)

]

(min{1, ε})−(2+δ) < ∞. (257)
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Proof of Proposition 3.18. Throughout this proof let κ ∈ (0,∞) be given by

κ =
√
e(1 + 2LT ), (258)

let N : (0,∞) → N be the function which satisfies for all ε ∈ (0,∞) that

Nε = min

{

n ∈ N : C

[

κ√
n

]n

≤ ε

}

, (259)

and let δ ∈ (0,∞). Note that (259) and Corollary 3.16 assure that for all ε ∈ (0,∞) it holds that

(

E
[

|u(0, ξ)− V 0
Nε,Nε

(0, ξ)|2
])1/2 ≤ C

[

κ√
Nε

]Nε

≤ ε. (260)

Moreover, observe that (259) ensures that for all ε ∈ (0,∞) with Nε ≥ 2 it holds that

C

[

κ√
Nε − 1

]Nε−1

> ε. (261)

Lemma 3.17 and (254) hence show that for all ε ∈ (0,∞) with Nε ≥ 2 it holds that

CNε,Nε ≤ α d (5Nε)
Nε ≤ α d (5Nε)

Nε

[

C

[

κ√
Nε − 1

]Nε−1

ε−1

]2+δ

= α dC2+δε−(2+δ)

[

(5Nε)
Nεκ(Nε−1)(2+δ)

(Nε − 1)(Nε−1)(1+δ/2)

]

≤ α dC2+δε−(2+δ) sup
n∈N∩[2,∞)

[

(5n)nκ(n−1)(2+δ)

(n− 1)(n−1)(1+δ/2)

]

.

(262)

Next note that for all n ∈ N ∩ [2,∞) it holds that

nn

(n− 1)(n−1)
=

(

n

n− 1

)n−1

n =

(

1 +
1

n− 1

)n−1

n ≤ e n. (263)

Furthermore, observe that the fact that κ ≥ √
e and the fact that

√
5e ≤ 4 imply that for all

n ∈ N ∩ [2,∞) it holds that

5n e κ(n−1)(2+δ) ≤ (
√
5)n(2+δ) (

√
e)2+δ κ(n−1)(2+δ)

≤ (
√
5)n(2+δ) κ2+δ κ(n−1)(2+δ)

= (
√
5κ)n(2+δ)

= (
√
5e(1 + 2LT ))n(2+δ)

≤ (4(1 + 2LT ))n(2+δ) = (4 + 8LT )n(2+δ).

(264)

Combining this, (263), and the fact that for all n ∈ N it holds that n ≤ (4 + 8LT )n demonstrates
that

sup
n∈N∩[2,∞)

[

(5n)nκ(n−1)(2+δ)

(n− 1)(n−1)(1+δ/2)

]

= sup
n∈N∩[2,∞)

[

nn

(n− 1)(n−1)

5nκ(n−1)(2+δ)

(n− 1)((n−1)δ)/2

]

≤ sup
n∈N∩[2,∞)

[

e n 5nκ(n−1)(2+δ)

(n− 1)((n−1)δ)/2

]

≤ sup
n∈N∩[2,∞)

[

n(4 + 8LT )n(2+δ)

(n− 1)((n−1)δ)/2

]

≤ sup
n∈N∩[2,∞)

[

(4 + 8LT )n(3+δ)

(n− 1)((n−1)δ)/2

]

.

(265)
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In addition, observe that

sup
n∈N∩[2,∞)

[

(4 + 8LT )n(3+δ)

(n− 1)((n−1)δ)/2

]

= (4 + 8LT )3+δ sup
n∈N

[

(4 + 8LT )n(3+δ)

n(nδ)/2

]

= (4 + 8LT )3+δ sup
n∈N

[

(4 + 8LT )(3+δ)

nδ/2

]n

< ∞.

(266)

This, (262), and (265) prove that for all ε ∈ (0,∞) with Nε ≥ 2 it holds that

CNε,Nε ≤ α dC2+δε−(2+δ) sup
n∈N

[

(4 + 8LT )(n+1)(3+δ)

n(nδ)/2

]

< ∞. (267)

Next note that the hypothesis that C1,0 = 0, (254), and the fact that 3 ≤ supn∈N

[

(4+8LT )(n+1)(3+δ)

n(nδ)/2

]

<

∞ assure that for all ε ∈ (0,∞) with Nε = 1 it holds that

CNε,Nε = C1,1 ≤ 2αd+ 1 ≤ 3αd

≤ α d max{1, C2+δ}
[

sup
n∈N

(4 + 8LT )(n+1)(3+δ)

n(nδ)/2

]

(min{1, ε})−(2+δ) < ∞.
(268)

This and (267) demonstrate that for all ε ∈ (0,∞) it holds that

CNε,Nε ≤ α d max{1, C2+δ}
[

sup
n∈N

(4 + 8LT )(n+1)(3+δ)

n(nδ)/2

]

(min{1, ε})−(2+δ) < ∞. (269)

Combining this with (260) completes the proof of Proposition 3.18.

3.6 MLP approximations for semilinear partial differential equations
(PDEs)

Thanks to an equivalence between semilinear Kolmogorov PDEs and stochastic fixed points equa-
tions we can carry over the complexity analysis of Subsection 3.5 for the approximation of solutions
of stochastic fixed points equations to our proposed MLP scheme for the approximation of solutions
of semilinear Kolmogorov PDEs (cf. (275) in Subsection 3.6.1 below) resulting in Proposition 3.19.
Considering this complexity analysis over variable dimensions shows that our proposed MLP algo-
rithm overcomes the curse of dimensionality in the approximation of solutions of certain semilinear
Kolmogorov PDEs (see Theorem 3.20 in Subsection 3.6.2 below, the main result of this paper, for
details).

3.6.1 MLP approximations in fixed space dimensions

Proposition 3.19. Let d,m ∈ N, T ∈ (0,∞), L,K, p, C1, C2,C ∈ [0,∞), α ∈ [1,∞), ξ ∈ Rd,
Θ = ∪∞

n=1Z
n, let 〈·, ·〉 : Rd ×Rd → R be the Euclidean scalar product on Rd, let ‖·‖ : Rd → [0,∞)

be the Euclidean norm on Rd, let |||·||| : Rd×m → [0,∞) be the Frobenius norm on Rd×m, assume
that

C = 4KeT (L+2+p(p+2)(C2+1))
(

(1 + ‖ξ‖2)p/2 + (2p+ 1)|C1|p/2
)

, (270)

let g ∈ C(Rd,R), f ∈ C([0, T ]× Rd × R,R) satisfy for all t ∈ [0, T ], x ∈ Rd, v, w ∈ R that

max{|g(x)|, |f(t, x, 0)|} ≤ K(1 + ‖x‖p) and |f(t, x, v)− f(t, x, w)| ≤ L|v − w|, (271)
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let µ : [0, T ] × Rd → Rd and σ : [0, T ] × Rd → Rd×m be globally Lipschitz continuous functions
which satisfy for all t ∈ [0, T ], x ∈ Rd that

max{〈x, µ(t, x)〉 , |||σ(t, x)|||2} ≤ C1 + C2 ‖x‖2 , (272)

let (Ω,F ,P) be a complete probability space, let Rθ : Ω → [0, 1], θ ∈ Θ, be independent U[0,1]-
distributed random variables, let Rθ = (Rθ

t )t∈[0,T ] : [0, T ] × Ω → [0, T ], θ ∈ Θ, be the stochastic
processes which satisfy for all t ∈ [0, T ], θ ∈ Θ that

Rθ
t = t + (T − t)Rθ, (273)

let (Fθ
t )t∈[0,T ], θ ∈ Θ, be filtrations on (Ω,F ,P) which satisfy the usual conditions, assume that

(Fθ
T )θ∈Θ is an independent family of sigma-algebras, assume that (Fθ

T )θ∈Θ and
(

Rθ
)

θ∈Θ are indepen-

dent, for every θ ∈ Θ let W θ : [0, T ]×Ω → Rm be a standard (Ω,F ,P, (Fθ
t )t∈[0,T ])-Brownian motion,

for every θ ∈ Θ let Xθ = (Xθ
t,s(x))s∈[t,T ],t∈[0,T ],x∈Rd : {(t, s) ∈ [0, T ]2 : t ≤ s}×Rd×Ω → Rd be a con-

tinuous random field which satisfies for every t ∈ [0, T ], x ∈ Rd that (Xθ
t,s(x))s∈[t,T ] : [t, T ]× Ω →

Rd is an (Fθ
s)s∈[t,T ]/B(Rd)-adapted stochastic process and which satisfies that for all t ∈ [0, T ],

s ∈ [t, T ], x ∈ Rd it holds P-a.s. that

Xθ
t,s(x) = x+

∫ s

t

µ
(

r,Xθ
t,r(x)

)

dr +

∫ s

t

σ
(

r,Xθ
t,r(x)

)

dW θ
r , (274)

let V θ
M,n : [0, T ] × Rd × Ω → R, M,n ∈ Z, θ ∈ Θ, be functions which satisfy for all M,n ∈ N,

θ ∈ Θ, t ∈ [0, T ], x ∈ Rd that V θ
M,−1(t, x) = V θ

M,0(t, x) = 0 and

V θ
M,n(t, x) =

1

Mn

[

Mn
∑

m=1

g
(

X
(θ,n,−m)
t,T (x)

)

]

+
n−1
∑

k=0

(T − t)

Mn−k

[

Mn−k
∑

m=1

f
(

R
(θ,k,m)
t , X

(θ,k,m)

t,R
(θ,k,m)
t

(x), V
(θ,k,m)
M,k

(

R
(θ,k,m)
t , X

(θ,k,m)

t,R
(θ,k,m)
t

(x)
)

)

− 1N(k)f
(

R
(θ,k,m)
t , X

(θ,k,m)

t,R
(θ,k,m)
t

(x), V
(θ,k,−m)
M,k−1

(

R
(θ,k,m)
t , X

(θ,k,m)

t,R
(θ,k,m)
t

(x)
)

)

]

,

(275)

and let (CM,n)M,n∈Z ⊆ N0 satisfy for all n,M ∈ N that CM,0 = 0 and

CM,n ≤ αdMn +

n−1
∑

k=0

[

M (n−k)(αd+ 1 + CM,k + 1N(k)CM,k−1)
]

. (276)

Then

(i) there exists a unique at most polynomially growing function u ∈ C([0, T ] × Rd,R) which
satisfies that u|(0,T )×Rd : (0, T )× Rd → R is a viscosity solution of

(∂u
∂t
)(t, x) + 1

2
Trace

(

σ(t, x)[σ(t, x)]∗(Hessx u)(t, x)
)

+ 〈µ(t, x), (∇xu)(t, x)〉Rd + f(t, x, u(t, x)) = 0 (277)

for (t, x) ∈ (0, T )× Rd and which satisfies for all x ∈ Rd that u(T, x) = g(x),

(ii) it holds for all M ∈ N, n ∈ N0 that

(

E
[

|u(0, ξ)− V 0
M,n(0, ξ)|2

])1/2 ≤ C(1 + 2LT )n exp(M
2
)

Mn/2
< ∞, (278)

and
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(iii) there exists a function N : (0,∞) → N such that for all ε, δ ∈ (0,∞) it holds that

(

E
[

|u(0, ξ)− V 0
Nε,Nε

(0, ξ)|2
])1/2 ≤ ε and (279)

CNε,Nε ≤ α d max{1,C2+δ}
[

sup
n∈N

(4+8LT )(3+δ)(n+1)

n(nδ/2)

]

(min{1, ε})−(2+δ) < ∞. (280)

Proof of Proposition 3.19. Throughout this proof let (ρ
(q)
1 )q∈[0,∞),(ρ

(q)
2 )q∈[0,∞) ⊆ (0,∞), C ∈ [0,∞]

satisfy for all q ∈ [0,∞) that

ρ
(q)
1 = q(q+3)(C2+1)

2
, ρ

(q)
2 = (q + 1)|C1|q/2, and (281)

C =

[

(

E
[

|g(X0
0,T (ξ))|2

])1/2
+
√
T

(
∫ T

0

E
[

|f(t, X0
0,t(ξ), 0)|2

]

dt

)1/2
]

eLT . (282)

Observe that the fact that µ and σ are globally Lipschitz continuous functions and (271) assure
that there exists a unique at most polynomially growing function u ∈ C([0, T ] × Rd,R) which
satisfies that u|(0,T )×Rd : (0, T )× Rd → R is a viscosity solution of

(∂u
∂t
)(t, x) + 1

2
Trace

(

σ(t, x)[σ(t, x)]∗(Hessx u)(t, x)
)

+ 〈µ(t, x), (∇xu)(t, x)〉Rd + f(t, x, u(t, x)) = 0 (283)

for (t, x) ∈ (0, T ) × Rd and which satisfies for all x ∈ Rd that u(T, x) = g(x) (cf., e.g., Hairer et
al. [50, Section 4]). This proves item (i). In addition, note that the fact that µ and σ are globally
Lipschitz continuous functions, (271), (274), and the Feynman-Kac formula assure that for all
t ∈ [0, T ], x ∈ Rd it holds that

u(t, x) = E

[

g
(

X0
t,T (x)

)

+

∫ T

t

f
(

r,X0
t,r(x), u(r,X

0
t,r(x))

)

dr

]

(284)

(cf., e.g., Hairer et al. [50, Section 4]). Moreover, observe that the hypothesis that µ and σ are
globally Lipschitz continuous functions, the fact that for all θ, ϑ ∈ Θ with θ 6= ϑ it holds that
Fθ
T and Fϑ

T are independent, (274), and Lemma 2.19 assure that for all θ, ϑ ∈ Θ, r, s, t ∈ [0, T ],
x ∈ Rd, B ∈ B(Rd) with t ≤ s ≤ r and θ 6= ϑ it holds that P(Xθ

t,t(x) = x) = 1 and

P
(

Xθ
s,r(X

ϑ
t,s(x)) ∈ B

)

= P
(

Xθ
t,r(x) ∈ B

)

. (285)

Next note that the hypothesis that µ and σ are globally Lipschitz continuous functions, (272),
(274), and Lemma 2.6 (with d = d, m = m, T = T − t, C1 = C1, C2 = C2, ξ = x,
(µ(r, y))r∈[0,T ],y∈Rd = (µ(t + r, y))r∈[0,T−t],y∈Rd, (σ(r, y))r∈[0,T ],y∈Rd = (σ(t + r, y))r∈[0,T−t],y∈Rd,
(Ω,F ,P, (Fr)r∈[0,T ]) = (Ω,F ,P, (Ft+r)r∈[0,T−t]), (Wr)r∈[0,T ] = (W 0

t+r − W 0
t )r∈[0,T−t], (Xr)r∈[0,T ] =

(X0
t,t+r(x))r∈[0,T−t] for t ∈ [0, T ], x ∈ Rd in the notation of Lemma 2.6) assure that for all x ∈ Rd,

t ∈ [0, T ], s ∈ [t, T ], q ∈ [0,∞) it holds that

E
[∥

∥X0
t,s(x)

∥

∥

q] ≤ max{T, 1}
(

(1 + ‖x‖2)q/2 + ρ
(q)
2

)

eρ
(q)
1 T . (286)

For the next step let K, p ∈ [0,∞) satisfy for all t ∈ [0, T ], x ∈ Rd that

|u(t, x)| ≤ K(1 + ‖x‖p). (287)
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This, Tonelli’s theorem, and (271) assure that for all t ∈ [0, T ], x ∈ Rd it holds that

E

[

∣

∣g(X0
t,T (x))

∣

∣+

∫ T

t

∣

∣f(r,X0
t,r(x), u(r,X

0
t,r(x)))

∣

∣ dr

]

≤ E
[

K
(

1 + ‖X0
t,T (x))‖p

)]

+

∫ T

t

E
[

K
(

1 + ‖X0
t,r(x)‖p

)

+ L
∣

∣u(r,X0
t,r(x))

∣

∣

]

dr

≤ K
(

1 + E
[

‖X0
t,T (x))‖p

])

+

∫ T

t

K
(

1 + E
[

‖X0
t,r(x)‖p

])

+ LK
(

1 + E
[

‖X0
t,r(x)‖p

])

dr

≤ (1 + (T − t))K
(

1 + max{T, 1}
(

(1 + ‖x‖2)p/2 + ρ
(p)
2

)

eρ
(p)
1 T
)

+ (T − t)LK
(

1 + max{T, 1}
(

(1 + ‖x‖2)p/2 + ρ
(p)
2

)

eρ
(p)
1 T
)

< ∞.

(288)

Moreover, observe that (271), (286), (287), and the triangle inequality demonstrate that for all
t ∈ [0, T ], x ∈ Rd it holds that

∫ T

0

(

E
[

|u(r,X0
0,r(ξ))|2

])1/2
dr +

∫ T

t

E
[

|f(r,X0
t,r(x), 0)|

]

dr

≤
∫ T

0
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E

[

∣

∣K(1 + ‖X0
0,r(ξ)‖p)

∣

∣

2
])1/2

dr +

∫ T

t

E
[

K(1 + ‖X0
t,r(x)‖p)

]

dr

≤
∫ T

0

K
(

1 +
(

E
[

‖X0
0,r(ξ)‖2p

])1/2 )
dr +

∫ T

t

K
(

1 + E
[

‖X0
t,r(x)‖p

] )

dr

≤ TK

(

1 +
[

max{T, 1}
(

(1 + ‖ξ‖2)p + ρ
(2p)
2

)

eρ
(2p)
1 T

]1/2
)

+ (T − t)K
(

1 + max{T, 1}
(

(1 + ‖x‖2)p/2 + ρ
(p)
2

)

eρ
(p)
1 T
)

< ∞.

(289)

Combining this, (271), (275), (284), (285), (288), the fact that (Xθ)θ∈Θ are independent, and the
fact that (Xθ)θ∈Θ and (Rθ)θ∈Θ are independent with Proposition 3.15 (with d = d, T = T , L = L,
u = u, g = g, f = f , Rθ = Rθ, Xθ = Xθ, V θ

M,n = V θ
M,n, ξ = ξ, C = C for M,n ∈ Z, θ ∈ Θ in the

notation of Proposition 3.15) proves that for all M ∈ N, n ∈ N0 it holds that

(

E
[

|u(0, ξ)− V 0
M,n(0, ξ)|2

])1/2 ≤ C(1 + 2LT )n exp(M
2
)

Mn/2
. (290)

Next observe that (271), (286), and the triangle inequality imply that

(

E
[

|g(X0
0,T (ξ))|2

])1/2 ≤
(

E

[

∣

∣K(1 + ‖X0
0,T (ξ)‖p)

∣

∣

2
])1/2

≤ K
(

1 +
(

E
[

‖X0
0,T (ξ)‖2p

])1/2
)

≤ K

(

1 +
[

max{T, 1}
(

(1 + ‖ξ‖2)p + ρ
(2p)
2

)

eρ
(2p)
1 T

]1/2
)

.

(291)

In addition note that (271), (286), and the triangle inequality imply that
(
∫ T

0

E
[

|f(t, X0
0,t(ξ), 0)|2

]

dt

)1/2

≤
(
∫ T

0

E

[

∣

∣K(1 + ‖X0
0,t(ξ)‖p)

∣

∣

2
]

dt

)1/2

≤ K

(

√
T +

(
∫ T

0

E
[

‖X0
0,t(ξ)‖2p

]

dt

)1/2
)

≤ K
√
T

(

1 +
[

max{T, 1}
(

(1 + ‖ξ‖2)p + ρ
(2p)
2

)

eρ
(2p)
1 T

]1/2
)

.

(292)
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Combining this and (291) with (281) and (282) demonstrates that

C ≤ 2Kmax{T, 1}
(

1 +
[

max{T, 1}
(

(1 + ‖ξ‖2)p + ρ
(2p)
2

)

eρ
(2p)
1 T

]1/2
)

eLT

≤ 2K(max{T, 1})3/2
(

1 +

[

(

(1 + ‖ξ‖2)p + (2p+ 1)|C1|p
)

e
2p(2p+3)(C2+1)

2
T

]1/2
)

eLT

≤ 2Ke
3T/2
(

1 +
(

(1 + ‖ξ‖2)p/2 +
√

(2p+ 1)|C1|p/2
)

ep(p+
3/2)(C2+1)T

)

eLT

≤ 4KeT (L+2+p(p+2)(C2+1))
(

(1 + ‖ξ‖2)p/2 + (2p+ 1)|C1|p/2
)

≤ C < ∞.

(293)

This and (290) establish item (ii). In addition, observe that (271), (275), (276), (284), (285), (288)
(289), the fact that (Xθ)θ∈Θ are independent, the fact that (Xθ)θ∈Θ and (Rθ)θ∈Θ are independent,
(293), and Proposition 3.18 (with d = d, T = T , L = L, u = u, g = g, f = f , Xθ = Xθ,
V θ
M,n = V θ

M,n, ξ = ξ, C = C, α = α, CM,n = CM,n for M,n ∈ Z, θ ∈ Θ in the notation of
Proposition 3.15) prove that there exists a function N : (0,∞) → N such that for all ε, δ ∈ (0,∞)
it holds that

(

E
[

|u(0, ξ)− V 0
Nε,Nε

(0, ξ)|2
])1/2 ≤ ε and (294)

CNε,Nε ≤ α d max{1, C2+δ}
[

sup
n∈N

(4+8LT )(3+δ)(n+1)

n(nδ/2)

]

(min{1, ε})−(2+δ)

≤ α d max{1,C2+δ}
[

sup
n∈N

(4+8LT )(3+δ)(n+1)

n(nδ/2)

]

(min{1, ε})−(2+δ) < ∞.

(295)

This establishes item (iii). The proof of Proposition 3.19 is thus completed.

3.6.2 MLP approximations in variable space dimensions

Theorem 3.20. Let T ∈ (0,∞), α, c,K ∈ [1,∞), L, p, P,P, q, C1, C2 ∈ [0,∞), for every d ∈ N

let ‖·‖Rd : Rd → [0,∞) be the Euclidean norm on Rd, let 〈·, ·〉Rd : Rd × Rd → R be the Euclidean
scalar product on Rd, and let |||·|||d : Rd×d → [0,∞) be the Frobenius norm on Rd×d, for every d ∈ N

let ξd ∈ Rd satisfy that ‖ξd‖Rd ≤ cdq, for every d ∈ N let gd ∈ C(Rd,R), fd ∈ C([0, T ]×Rd×R,R)
satisfy for all t ∈ [0, T ], x ∈ Rd, v, w ∈ R that

max{|gd(x)|, |fd(t, x, 0)|} ≤ KdP(1 + ‖x‖p
Rd) and |fd(t, x, v)− fd(t, x, w)| ≤ L|v − w|,

(296)
for every d ∈ N let µd : [0, T ]×Rd → Rd and σd : [0, T ]×Rd → Rd×d be globally Lipschitz continuous
functions which satisfy for all t ∈ [0, T ], x ∈ Rd that

max{〈x, µd(t, x)〉Rd , |||σd(t, x)|||d} ≤ C1d
P + C2 ‖x‖2Rd , (297)

let (Ω,F ,P) be a complete probability space, let Rθ : Ω → [0, 1], θ ∈ Θ, be independent U[0,1]-
distributed random variables, let Rθ = (Rθ

t )t∈[0,T ] : [0, T ] × Ω → [0, T ], θ ∈ Θ, be the stochastic
processes which satisfy for all t ∈ [0, T ], θ ∈ Θ that

Rθ
t = t + (T − t)Rθ, (298)

let (Fd,θ
t )t∈[0,T ], d ∈ N, θ ∈ Θ, be filtrations on (Ω,F ,P) which satisfy the usual conditions, as-

sume for every d ∈ N that (Fd,θ
T )θ∈Θ is an independent family of sigma-algebras, assume that

(Fd,θ
T )d∈N,θ∈Θ and

(

Rθ
)

θ∈Θ are independent, for every d ∈ N, θ ∈ Θ let W d,θ : [0, T ] × Ω →
Rd be a standard (Ω,F ,P, (Fd,θ

t )t∈[0,T ])-Brownian motion, for every d ∈ N, θ ∈ Θ let Xd,θ =

(Xd,θ
t,s (x))s∈[t,T ],t∈[0,T ],x∈Rd : {(t, s) ∈ [0, T ]2 : t ≤ s} × Rd × Ω → Rd be a continuous random
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field which satisfies for every t ∈ [0, T ], x ∈ Rd that (Xd,θ
t,s (x))s∈[t,T ] : [t, T ] × Ω → Rd is an

(Fd,θ
s )s∈[t,T ]/B(Rd)-adapted stochastic process and which satisfies that for all t ∈ [0, T ], s ∈ [t, T ],

x ∈ Rd it holds P-a.s. that

Xd,θ
t,s (x) = x+

∫ s

t

µd

(

r,Xd,θ
t,r (x)

)

dr +

∫ s

t

σd

(

r,Xd,θ
t,r (x)

)

dW d,θ
r , (299)

let V d,θ
M,n : [0, T ] × Rd × Ω → R, M,n ∈ Z, θ ∈ Θ, d ∈ N, be functions which satisfy for all

d,M, n ∈ N, θ ∈ Θ, t ∈ [0, T ], x ∈ Rd that V d,θ
M,−1(t, x) = V d,θ

M,0(t, x) = 0 and

V d,θ
M,n(t, x) =

1

Mn

[

Mn
∑

m=1

gd
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X
d,(θ,n,−m)
t,T (x)

)

]

+

n−1
∑

k=0

(T − t)

Mn−k

[
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∑

m=1
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R
(θ,k,m)
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d,(θ,k,m)

t,R
(θ,k,m)
t

(x), V
d,(θ,k,m)
M,k

(

R
(θ,k,m)
t , X

d,(θ,k,m)

t,R
(θ,k,m)
t

(x)
)

)

− 1N(k)fd

(

R
(θ,k,m)
t , X

d,(θ,k,m)

t,R
(θ,k,m)
t

(x), V
d,(θ,k,−m)
M,k−1

(

R
(θ,k,m)
t , X

d,(θ,k,m)

t,R
(θ,k,m)
t

(x)
)

)

]

,

(300)

and let (Cd,M,n)M,n∈Z,d∈N ⊆ N0 satisfy for all d, n,M ∈ N that Cd,M,0 = 0 and

Cd,M,n ≤ αdMn +

n−1
∑

k=0

[

M (n−k)(αd+ 1 + Cd,M,k + 1N(k)Cd,M,k−1)
]

. (301)

Then

(i) for every d ∈ N there exists a unique at most polynomially growing function ud ∈ C([0, T ]×
Rd,R) which satisfies that ud|(0,T )×Rd : (0, T )× Rd → R is a viscosity solution of

(∂ud

∂t
)(t, x) + 1

2
Trace

(

σd(t, x)[σd(t, x)]
∗(Hessx ud)(t, x)

)

+ 〈µd(t, x), (∇xud)(t, x)〉Rd + fd(t, x, ud(t, x)) = 0 (302)

for (t, x) ∈ (0, T )× Rd and which satisfies for all x ∈ Rd that ud(T, x) = gd(x) and

(ii) there exists a function N = (Nd,ε)d∈N,ε∈(0,∞) : N × (0,∞) → N such that for all d ∈ N,
ε, δ ∈ (0,∞) it holds that

(

E
[

|ud(0, ξd)− V d,0
Nd,ε,Nd,ε

(0, ξd)|2
])1/2 ≤ ε and (303)

Cd,Nd,ε,Nd,ε
≤ α

[

4p+2KeT (L+2+p(p+2)(C2+1))
(

cp + |C1|p/2
)](2+δ)

[

sup
n∈N

(4+8LT )(3+δ)(n+1)

n(nδ/2)

]

· d1+(P+max{pq,(Pp)/2})(2+δ)(min{1, ε})−(2+δ) < ∞.

(304)

Proof of Theorem 3.20. Throughout this proof let (βδ)δ∈(0,∞) ⊆ (0,∞), (Cd)d∈N ⊆ [0,∞) satisfy

for all δ ∈ (0,∞), d ∈ N that βδ =
[

supn∈N
(4+8LT )(3+δ)(n+1)

n(nδ/2)

]

and

Cd = 4KdPeT (L+2+p(p+2)(C2+1))
(

(1 + ‖ξd‖2)p/2 + (2p+ 1)|C1d
P |p/2

)

. (305)

Observe that Proposition 3.19 (with d = d, m = d, T = T , L = L, K = KdP, p = p, C1 = C1d
P ,

C2 = C2, α = α, ξ = ξd, g = gd, f = fd, µ = µd, σ = σd, Rθ = Rθ, Fθ = Fd,θ, W θ = W d,θ, Xθ =
Xd,θ, V θ

M,n = V d,θ
M,n, CM,n = Cd,M,n for d ∈ N, M,n ∈ Z, θ ∈ Θ in the notation of Proposition 3.19)

proves that for every d ∈ N
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(I) there exists a unique at most polynomially growing function ud ∈ C([0, T ]× Rd,R) which
satisfies that ud|(0,T )×Rd : (0, T )× Rd → R is a viscosity solution of

(∂ud

∂t
)(t, x) + 1

2
Trace

(

σd(t, x)[σd(t, x)]
∗(Hessx ud)(t, x)

)

+ 〈µd(t, x), (∇xud)(t, x)〉Rd + fd(t, x, ud(t, x)) = 0 (306)

for (t, x) ∈ (0, T )× Rd and which satisfies for all x ∈ Rd that ud(T, x) = gd(x) and

(II) there exists a function Nd = (Nd,ε)ε∈(0,∞) : (0,∞) → N such that for all ε, δ ∈ (0,∞) it
holds that

(

E

[

|ud(0, ξd)− V d,0
Nd,ε,Nd,ε

(0, ξd)|2
])1/2

≤ ε and (307)

Cd,Nd,ε,Nd,ε
≤ α d max{1,C2+δ

d }βδ(min{1, ε})−(2+δ) < ∞. (308)

Observe that item (I) proves item (i). Moreover, note that the hypothesis that for all d ∈ N it
holds that ‖ξd‖Rd ≤ cdq and the fact that (2p+ 1) ≤ 4p+1 imply that for all d ∈ N it holds that

Cd ≤ 4KdPeT (L+2+p(p+2)(C2+1))
(

(1 + |cdq|2)p/2 + (2p+ 1)|C1d
P |p/2

)

≤ 4KdPeT (L+2+p(p+2)(C2+1))
(

dpq(1 + c2)
p/2 + d

(Pp)/2(2p+ 1)|C1|p/2
)

≤ dP+max{pq,(Pp)/2}4KeT (L+2+p(p+2)(C2+1))
(

2
p/2cp + 4p+1|C1|p/2

)

≤ dP+max{pq,(Pp)/2}4p+2KeT (L+2+p(p+2)(C2+1))
(

cp + |C1|p/2
)

≥ 1.

(309)

This and (308) demonstrate that for all d ∈ N, δ, ε ∈ (0,∞) it holds that

Cd,Nd,ε,Nd,ε
≤ α

[

4p+2KeT (L+2+p(p+2)(C2+1))
(

cp + |C1|p/2
)](2+δ)

· d1+(P+max{pq,(Pp)/2})(2+δ)βδ(min{1, ε})−(2+δ) < ∞.
(310)

Combining this and (307) establishes item (ii). The proof of Theorem 3.20 is thus completed.

4 MLP approximations for PDE models

The MLP scheme for semilinear Kolmogorov PDEs (cf. (300) in Theorem 3.20 above) proposed
in Subsection 3.6 can only be implemented for semilinear Kolmogorov PDEs for which an explicit
solution of the corresponding SDE is known. In this section, we consider the MLP algorithm for
two examples of such semilinear Kolmogorov PDEs, semilinear heat equations (see Subsection 4.1
below) and semilinear Black-Scholes equations (see Subsections 4.2–4.3 below). Apart from speci-
fying the linear part of the PDE we also choose a particular nonlinearity (cf. (357) in Corollary 4.5
below) in Subsection 4.3 to obtain a PDE, which is used in the pricing of financial derivatives
with default risk (cf., e.g., Han et al. [51, (10)] and Duffie et al. [33]).

4.1 MLP approximations for semilinear heat equations

Theorem 4.1. Let T ∈ (0,∞), κ, p,P, q ∈ [0,∞), Θ = ∪∞
n=1Z

n, for every d ∈ N let ‖·‖Rd : Rd →
[0,∞) be the Euclidean norm on Rd, for every d ∈ N let ξd ∈ Rd satisfy that ‖ξd‖Rd ≤ κdq, for
every d ∈ N let gd ∈ C(Rd,R), fd ∈ C([0, T ]×Rd×R,R) satisfy for all t ∈ [0, T ], x ∈ Rd, v, w ∈ R

that

max{|gd(x)|, |fd(t, x, 0)|} ≤ κdP(1+‖x‖p
Rd) and |fd(t, x, v)−fd(t, x, w)| ≤ κ|v−w|, (311)
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let (Ω,F ,P) be a probability space, let Rθ : Ω → [0, 1], θ ∈ Θ, be independent U[0,1]-distributed
random variables, let Rθ = (Rθ

t )t∈[0,T ] : [0, T ]×Ω → [0, T ], θ ∈ Θ, be the stochastic processes which
satisfy for all t ∈ [0, T ], θ ∈ Θ that

Rθ
t = t + (T − t)Rθ, (312)

for every d ∈ N let W d,θ : [0, T ] × Ω → Rd, θ ∈ Θ, be independent standard Brownian motions,
assume that

(

W d,θ
)

d∈N,θ∈Θ and
(

Rθ
)

θ∈Θ are independent, for every d ∈ N, θ ∈ Θ let Xd,θ =

(Xd,θ
t,s (x))s∈[t,T ],t∈[0,T ],x∈Rd : {(t, s) ∈ [0, T ]2 : t ≤ s} × Rd × Ω → Rd be the function which satisfies

for all t ∈ [0, T ], s ∈ [t, T ], x ∈ Rd that

Xd,θ
t,s (x) = x+W d,θ

s −W d,θ
t , (313)

let V d,θ
M,n : [0, T ] × Rd × Ω → R, M,n ∈ Z, θ ∈ Θ, d ∈ N, be functions which satisfy for all

d,M, n ∈ N, θ ∈ Θ, t ∈ [0, T ], x ∈ Rd that V d,θ
M,−1(t, x) = V d,θ

M,0(t, x) = 0 and

V d,θ
M,n(t, x) =

1

Mn

[

Mn
∑

m=1

gd
(

X
d,(θ,n,−m)
t,T (x)

)

]

+

n−1
∑

k=0

(T − t)

Mn−k

[

Mn−k
∑

m=1

fd

(

R
(θ,k,m)
t , X

d,(θ,k,m)

t,R
(θ,k,m)
t

(x), V
d,(θ,k,m)
M,k

(

R
(θ,k,m)
t , X

d,(θ,k,m)

t,R
(θ,k,m)
t

(x)
)

)

− 1N(k)fd

(

R
(θ,k,m)
t , X

d,(θ,k,m)

t,R
(θ,k,m)
t

(x), V
d,(θ,k,−m)
M,k−1

(

R
(θ,k,m)
t , X

d,(θ,k,m)

t,R
(θ,k,m)
t

(x)
)

)

]

,

(314)

and let (Cd,M,n)M,n∈Z,d∈N ⊆ N0 satisfy for all d, n,M ∈ N that Cd,M,0 = 0 and

Cd,M,n ≤ dMn +

n−1
∑

k=0

[

M (n−k)(d+ 1 + Cd,M,k + 1N(k)Cd,M,k−1)
]

. (315)

Then

(i) for every d ∈ N there exists a unique at most polynomially growing function ud ∈ C([0, T ]×
Rd,R) which satisfies that ud|(0,T )×Rd : (0, T )× Rd → R is a viscosity solution of

(∂ud

∂t
)(t, x) + 1

2
(∆xud)(t, x) + fd(t, x, ud(t, x)) = 0 (316)

for (t, x) ∈ (0, T )× Rd and which satisfies for all x ∈ Rd that ud(T, x) = gd(x) and

(ii) there exist functions N = (Nd,ε)d∈N,ε∈(0,∞) : N× (0,∞) → N and C = (Cδ)δ∈(0,∞) : (0,∞) →
(0,∞) such that for all d ∈ N, ε, δ ∈ (0,∞) it holds that

(

E
[

|ud(0, ξd)− V d,0
Nd,ε,Nd,ε

(0, ξd)|2
])1/2 ≤ ε and (317)

Cd,Nd,ε,Nd,ε
≤ Cδ d

1+(P+max{pq,p/2})(2+δ)(min{1, ε})−(2+δ). (318)

Proof of Theorem 4.1. Throughout this proof assume w.l.o.g. that κ ≥ 1, assume w.l.o.g. that
(Ω,F ,P) is a complete probability space, for every d ∈ N let 〈·, ·〉Rd : Rd × Rd → R be the
Euclidean scalar product on Rd and let |||·|||d : Rd×d → [0,∞) be the Frobenius norm on Rd×d,
let µd ∈ C([0, T ] × Rd,Rd), d ∈ N, and σd ∈ C([0, T ] × Rd,Rd×d), d ∈ N, satisfy for all d ∈ N,
t ∈ [0, T ], x ∈ Rd that

µd(t, x) = 0 and σd(t, x) = IRd , (319)
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and for every d ∈ N, θ ∈ Θ, t ∈ [0, T ] let Fd,θ
t ⊆ F be the sigma-algebra which satisfies that

F
d,θ
t =







⋂

s∈(t,T ]S
(

S(W d,θ
r : r ∈ [0, t]) ∪ {A ∈ F : P(A) = 0}

)

: t < T

S
(

S(W d,θ
r : r ∈ [0, T ]) ∪ {A ∈ F : P(A) = 0}

)

: t = T.
(320)

Note that (320) implies that for every d ∈ N, θ ∈ Θ it holds that (Fd,θ
t )t∈[0,T ] is a filtration on

(Ω,F ,P) which satisfies the usual conditions. Moreover, observe that (320) and Lemma 2.17
demonstrate that for every d ∈ N, θ ∈ Θ it holds that W d,θ : [0, T ] × Ω → Rd is a standard
(Ω,F ,P, (Fd,θ

t )t∈[0,T ])-Brownian motion. Next note that (313) and (319) assure that for every
d ∈ N, θ ∈ Θ it holds that Xd,θ is continuous random field which satisfies for every t ∈ [0, T ],
x ∈ Rd that (Xd,θ

t,s (x))s∈[t,T ] : [t, T ] × Ω → Rd is an (Fd,θ
s )s∈[t,T ]/B(Rd)-adapted stochastic process

and which satisfies that for all t ∈ [0, T ], s ∈ [t, T ], x ∈ Rd it holds P-a.s. that

x+

∫ s

t

µd

(

r,Xd,θ
t,r (x)

)

dr +

∫ s

t

σd

(

r,Xd,θ
t,r (x)

)

dW d,θ
r = x+W d,θ

s −W d,θ
t = Xd,θ

t,s (x). (321)

In addition, note that for all d ∈ N, t ∈ [0, T ], x ∈ Rd it holds that

max{〈x, µd(t, x)〉Rd , |||σd(t, x)|||2d} = max{0, d} = d. (322)

This, (311), (312), (314), (315), (319), (321), and Theorem 3.20 (with T = T , α = 1, c = κ,
K = κ, L = κ, p = p, P = 1, P = P, q = q, C1 = 1, C2 = 0, ξd = ξd, gd = gd, fd = fd, µd = µd,
σd = σd, Rθ = Rθ, Fd,θ = Fd,θ, W d,θ = W d,θ, Xd,θ = Xd,θ, V d,θ

M,n = V d,θ
M,n, Cd,M,n = Cd,M,n for d ∈ N,

M,n ∈ Z, θ ∈ Θ in the notation of Theorem 3.20) establish that

(I) for every d ∈ N there exists a unique at most polynomially growing function ud ∈ C([0, T ]×
Rd,R) which satisfies that ud|(0,T )×Rd : (0, T )× Rd → R is a viscosity solution of

(∂ud

∂t
)(t, x) + 1

2
Trace

(

IRd[IRd ]∗(Hessx ud)(t, x)
)

+ 〈0, (∇xud)(t, x)〉Rd + fd(t, x, ud(t, x)) = 0 (323)

for (t, x) ∈ (0, T )× Rd and which satisfies for all x ∈ Rd that ud(T, x) = gd(x) and

(II) there exists a function N = (Nd,ε)d∈N,ε∈(0,∞) : N × (0,∞) → N such that for all d ∈ N,
ε, δ ∈ (0,∞) it holds that

(

E
[

|ud(0, ξd)− V d,0
Nd,ε,Nd,ε

(0, ξd)|2
])1/2 ≤ ε and (324)

Cd,Nd,ε,Nd,ε
≤
[

4p+2κeT (κ+2+p(p+2)) (κp + 1)
](2+δ)

[

sup
n∈N

(4+8κT )(3+δ)(n+1)

n(nδ/2)

]

· d1+(P+max{pq,p/2})(2+δ)(min{1, ε})−(2+δ) < ∞.

(325)

Note that item (I) establishes item (i). Moreover, observe that item (II) establishes item (ii). The
proof of Theorem 4.1 is thus completed.

4.2 MLP approximations for semilinear Black-Scholes equations

Lemma 4.2. Let d ∈ N, T ∈ (0,∞), (αi)i∈{1,2,...,d}, (βi)i∈{1,2,...,d} ⊆ R, let 〈·, ·〉 : Rd × Rd → R be
the Euclidean scalar product on Rd, let Σ = (ζ1, . . . , ζd) ∈ Rd×d satisfy for all i ∈ {1, 2, . . . , d} that
〈ζi, ζi〉 = 1, let (Ω,F ,P) be a complete probability space, let W : [0, T ]×Ω → Rd be a d-dimensional
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standard Brownian motion, and let X = (X
(i)
t,s (x))s∈[t,T ],t∈[0,T ],x∈Rd,i∈{1,2,...,d} : {(t, s) ∈ [0, T ]2 : t ≤

s} × Rd × Ω → Rd be the function which satisfies for all i ∈ {1, 2, . . . , d}, t ∈ [0, T ], s ∈ [t, T ],
x = (x1, x2, . . . , xd) ∈ Rd that

X
(i)
t,s (x) = xi exp

(

(

αi − |βi|2
2

)

(s− t) + βi〈ζi,Ws −Wt〉
)

. (326)

Then it holds that X is a continuous random field which satisfies that for all t ∈ [0, T ], s ∈ [t, T ],
x ∈ Rd it holds P-a.s. that

Xt,s(x) = x+

∫ s

t







α1X
(1)
t,r (x)
...

αdX
(d)
t,r (x)






dr +

∫ s

t

diag
(

β1X
(1)
t,r (x), . . . , βdX

(d)
t,r (x)

)

Σ∗ dWr. (327)

Proof of Lemma 4.2. Throughout this proof let t ∈ [0, T ], s ∈ (0, T ], x = (x1, x2, . . . , xd) ∈ Rd,
let fi : [0, T ] × Rd → R, i ∈ {1, 2, . . . , d}, be the functions which satisfy for all i ∈ {1, 2, . . . , d},
r ∈ [0, T ], w ∈ Rd that

fi(r, w) = xi exp
(

(αi − |βi|2
2
)r + βi 〈ζi, w〉

)

, (328)

let B = (B(i))i∈{1,2,...,d} : [0, s−t]×Ω → Rd satisfy for all r ∈ [0, s−t] that Br = Wt+r−Wt, and let

ζ
(j)
i ∈ R, i, j ∈ {1, 2, . . . , d}, satisfy for all i ∈ {1, 2, . . . , d} that ζi = (ζ

(j)
i )j∈{1,2,...,d}. Observe that

Itô’s formula (cf., e.g., Karatzas & Shreve [64, Theorem 3.3.6]) assures that for all i ∈ {1, 2, . . . , d}
it holds P-a.s. that

X
(i)
t,s (x) = fi(s− t,Ws −Wt) = fi(s− t, Bs−t)

= fi(0, B0) +

∫ s−t

0

(

∂fi
∂r

)

(r, Br) dr +

d
∑

j=1

∫ s−t

0

(

∂fi
∂wj

)

(r, Br) dB
(j)
r

+
1

2

d
∑

j=1

∫ s−t

0

(

∂2fi
∂w2

j

)

(r, Br) dr

= fi(0, B0) +

∫ s−t

0

(αi − |βi|2
2
)fi(r, Br) dr +

d
∑

j=1

∫ s−t

0

βiζ
(j)
i fi(r, Br) dB

(j)
r

+
1

2

d
∑

j=1

∫ s−t

0

|βi|2
∣

∣ζ
(j)
i

∣

∣

2
fi(r, Br) dr.

(329)

The fact that for all i ∈ {1, 2, . . . , d} it holds that
∑d

j=1

∣

∣ζ
(j)
i

∣

∣

2
= 〈ζi, ζi〉 = 1 and the fact that

for all i ∈ {1, 2, . . . , d}, r ∈ [0, s − t] it holds that fi(r, Br) = X
(i)
t,t+r(x) hence assure that for all

i ∈ {1, 2, . . . , d} it holds P-a.s. that

X
(i)
t,s (x) = xi +

∫ s−t

0

(

(

αi − |βi|2
2

)

+ 1
2
|βi|2

[

d
∑

j=1

∣

∣ζ
(j)
i

∣

∣

2

])

X
(i)
t,t+r(x) dr

+

∫ s−t

0

βiX
(i)
t,t+r(x)(ζi)

∗dBr

= xi +

∫ s−t

0

αiX
(i)
t,t+r(x) dr +

∫ s−t

0

βiX
(i)
t,t+r(x)(ζi)

∗dBr

= xi +

∫ s

t

αiX
(i)
t,r (x) dr +

∫ s

t

βiX
(i)
t,r (x)(ζi)

∗dWr.

(330)

This implies (327). The proof of Lemma 4.2 is thus completed.
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Theorem 4.3. Let T ∈ (0,∞), κ, p,P, q ∈ [0,∞), (αd,i)i∈{1,2,...,d},d∈N, (βd,i)i∈{1,2,...,d},d∈N ⊆ R,
Θ = ∪∞

n=1Z
n satisfy that supd∈N,i∈{1,2,...,d}max{|αd,i|, |βd,i|2} ≤ κ, for every d ∈ N let 〈·, ·〉

Rd : Rd ×
Rd → R be the Euclidean scalar product on Rd and let ‖·‖Rd : Rd → [0,∞) be the Euclidean norm
on Rd, for every d ∈ N let ξd ∈ Rd, Σd = (ζd,1, . . . , ζd,d) ∈ Rd×d satisfy for all i ∈ {1, 2, . . . , d} that
‖ξd‖Rd ≤ κdq and ‖ζd,i‖Rd = 1, for every d ∈ N let µd : [0, T ]×Rd → Rd and σd : [0, T ]×Rd → Rd×d

be the functions which satisfy for all t ∈ [0, T ], x = (x1, x2, . . . , xd) ∈ Rd that

µd(t, x) = (αd,1x1, . . . , αd,dxd) and σd(t, x) = diag(βd,1x1, . . . , βd,dxd)Σ
∗
d, (331)

for every d ∈ N let gd ∈ C(Rd,R), fd ∈ C([0, T ] × Rd × R,R) satisfy for all t ∈ [0, T ], x ∈ Rd,
v, w ∈ R that

max{|gd(x)|, |fd(t, x, 0)|} ≤ κdP(1+‖x‖p
Rd) and |fd(t, x, v)−fd(t, x, w)| ≤ κ|v−w|, (332)

let (Ω,F ,P) be a probability space, let Rθ : Ω → [0, 1], θ ∈ Θ, be independent U[0,1]-distributed
random variables, let Rθ = (Rθ

t )t∈[0,T ] : [0, T ]×Ω → [0, T ], θ ∈ Θ, be the stochastic processes which
satisfy for all t ∈ [0, T ], θ ∈ Θ that

Rθ
t = t + (T − t)Rθ, (333)

for every d ∈ N let W d,θ : [0, T ] × Ω → Rd, θ ∈ Θ, be independent standard Brownian motions,
assume that

(

W d,θ
)

d∈N,θ∈Θ and
(

Rθ
)

θ∈Θ are independent, for every d ∈ N, θ ∈ Θ let Xd,θ =

(Xd,θ,i
t,s (x))s∈[t,T ],t∈[0,T ],x∈Rd,i∈{1,2,...,d} : {(t, s) ∈ [0, T ]2 : t ≤ s} × Rd × Ω → Rd be the function which

satisfies for all t ∈ [0, T ], s ∈ [t, T ], x = (x1, x2, . . . , xd) ∈ Rd, i ∈ {1, 2, . . . , d} that

Xd,θ,i
t,s (x) = xi exp

(

(

αd,i − |βd,i|2
2

)

(s− t) + βd,i〈ζd,i,W d,θ
s −W d,θ

t 〉Rd

)

, (334)

let V d,θ
M,n : [0, T ] × Rd × Ω → R, M,n ∈ Z, θ ∈ Θ, d ∈ N, be functions which satisfy for all

d,M, n ∈ N, θ ∈ Θ, t ∈ [0, T ], x ∈ Rd that V d,θ
M,−1(t, x) = V d,θ

M,0(t, x) = 0 and

V d,θ
M,n(t, x) =

1

Mn

[

Mn
∑

m=1

gd
(

X
d,(θ,n,−m)
t,T (x)

)

]

+
n−1
∑

k=0

(T − t)

Mn−k

[

Mn−k
∑

m=1

fd

(

R
(θ,k,m)
t , X

d,(θ,k,m)

t,R
(θ,k,m)
t

(x), V
d,(θ,k,m)
M,k

(

R
(θ,k,m)
t , X

d,(θ,k,m)

t,R
(θ,k,m)
t

(x)
)

)

− 1N(k)fd

(

R
(θ,k,m)
t , X

d,(θ,k,m)

t,R
(θ,k,m)
t

(x), V
d,(θ,k,−m)
M,k−1

(

R
(θ,k,m)
t , X

d,(θ,k,m)

t,R
(θ,k,m)
t

(x)
)

)

]

,

(335)

and let (Cd,M,n)M,n∈Z,d∈N ⊆ N0 satisfy for all d, n,M ∈ N that Cd,M,0 = 0 and

Cd,M,n ≤ dMn +
n−1
∑

k=0

[

M (n−k)(d+ 1 + Cd,M,k + 1N(k)Cd,M,k−1)
]

. (336)

Then

(i) for every d ∈ N there exists a unique at most polynomially growing function ud ∈ C([0, T ]×
Rd,R) which satisfies that ud|(0,T )×Rd : (0, T )× Rd → R is a viscosity solution of

(∂ud

∂t
)(t, x) + 1

2
Trace

(

σd(t, x)[σd(t, x)]
∗(Hessx ud)(t, x)

)

+ 〈µd(t, x), (∇xud)(t, x)〉Rd + fd(t, x, ud(t, x)) = 0 (337)

for (t, x) ∈ (0, T )× Rd and which satisfies for all x ∈ Rd that ud(T, x) = gd(x) and
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(ii) there exist functions N = (Nd,ε)d∈N,ε∈(0,∞) : N× (0,∞) → N and C = (Cδ)δ∈(0,∞) : (0,∞) →
(0,∞) such that for all d ∈ N, ε, δ ∈ (0,∞) it holds that

(

E
[

|ud(0, ξd)− V d,0
Nd,ε,Nd,ε

(0, ξd)|2
])1/2 ≤ ε and (338)

Cd,Nd,ε,Nd,ε
≤ Cδ d

1+(P+pq)(2+δ)(min{1, ε})−(2+δ). (339)

Proof of Theorem 4.3. Throughout this proof assume w.l.o.g. that κ ≥ 1, assume w.l.o.g. that
(Ω,F ,P) is a complete probability space, for every d ∈ N let |||·|||d : Rd×d → [0,∞) be the Frobenius

norm on Rd×d, for every d ∈ N, i ∈ {1, 2, . . . , d} let ζ
(j)
d,i ∈ R, j ∈ {1, 2, . . . , d}, satisfy that

ζd,i = (ζ
(j)
d,i )j∈{1,2,...,d}, and for every d ∈ N, θ ∈ Θ, t ∈ [0, T ] let F

d,θ
t ⊆ F be the sigma-algebra

which satisfies that

F
d,θ
t =







⋂

s∈(t,T ]S
(

S(W d,θ
r : r ∈ [0, t]) ∪ {A ∈ F : P(A) = 0}

)

: t < T

S
(

S(W d,θ
r : r ∈ [0, T ]) ∪ {A ∈ F : P(A) = 0}

)

: t = T.
(340)

Note that (340) implies that for every d ∈ N, θ ∈ Θ it holds that (Fd,θ
t )t∈[0,T ] is a filtration on

(Ω,F ,P) which satisfies the usual conditions. Moreover, observe that (340) and Lemma 2.17
demonstrate that for every d ∈ N, θ ∈ Θ it holds that W d,θ : [0, T ] × Ω → Rd is a stan-
dard (Ω,F ,P, (Fd,θ

t )t∈[0,T ])-Brownian motion. In addition, note that (331) and the fact that
supd∈N,i∈{1,2,...,d} |αd,i| ≤ κ imply that for all d ∈ N, t ∈ [0, T ], x = (x1, x2, . . . , xd) ∈ Rd it
holds that

〈x, µd(t, x)〉Rd =

d
∑

i=1

xiαd,ixi ≤
d
∑

i=1

|xi|2|αd,i| ≤ κ ‖x‖2Rd . (341)

Furthermore, observe that (331), the fact that supd∈N,i∈{1,2,...,d} |βd,i|2 ≤ κ, and the hypothesis that
for all d ∈ N, i ∈ {1, 2, . . . , d} it holds that ‖ζd,i‖Rd = 1 assure that for all d ∈ N, t ∈ [0, T ],
x = (x1, x2, . . . , xd) ∈ Rd it holds that

|||σd(t, x)|||2d =
d
∑

i,j=1

∣

∣βd,ixiζ
(j)
d,i

∣

∣

2
=

d
∑

i=1

[

|βd,i|2|xi|2
d
∑

j=1

∣

∣ζ
(j)
d,i

∣

∣

2

]

≤
d
∑

i=1

κ |xi|2 ‖ζd,i‖2Rd = κ ‖x‖2
Rd .

(342)

This and (341) ensure that for all d ∈ N, t ∈ [0, T ], x ∈ Rd it holds that

max{〈x, µd(t, x)〉Rd , |||σd(t, x)|||2d} = κ ‖x‖2Rd . (343)

Next note that (331), (334), and Lemma 4.2 (with d = d, T = T , (αi)i∈{1,...,d} = (αd,i)i∈{1,...,d},
(βi)i∈{1,...,d} = (βd,i)i∈{1,...,d}, Σ = Σd, W = W d,θ, X = Xd,θ for θ ∈ Θ, d ∈ N in the notation
of Lemma 4.2) demonstrate that for all d ∈ N, θ ∈ Θ it holds that Xd,θ is continuous random
field which satisfies for every t ∈ [0, T ], x ∈ Rd that (Xd,θ

t,s (x))s∈[t,T ] : [t, T ] × Ω → Rd is an
(Fd,θ

s )s∈[t,T ]/B(Rd)-adapted stochastic process and which satisfies that for all t ∈ [0, T ], s ∈ [t, T ],
x ∈ Rd it holds P-a.s. that

Xd,θ
t,s (x) = x+

∫ s

t

µd

(

r,Xd,θ
t,r (x)

)

dr +

∫ s

t

σd

(

r,Xd,θ
t,r (x)

)

dW d,θ
r . (344)

Combining this, (332), the fact that for all d ∈ N it holds that µd and σd are globally Lipschitz
continuous functions, and (343) with Theorem 3.20 (with T = T , α = 1, c = κ, K = κ, L = κ,
p = p, P = 0, P = P, q = q, C1 = 0, C2 = κ, ξd = ξd, gd = gd, fd = fd, µd = µd, σd = σd,
Rθ = Rθ, Fd,θ = Fd,θ, W d,θ = W d,θ, Xd,θ = Xd,θ, V d,θ

M,n = V d,θ
M,n, Cd,M,n = Cd,M,n for d ∈ N, θ ∈ Θ,

M,n ∈ Z, in the notation of Theorem 3.20) establishes that
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(I) for every d ∈ N there exists a unique at most polynomially growing function ud ∈ C([0, T ]×
Rd,R) which satisfies that ud|(0,T )×Rd : (0, T )× Rd → R is a viscosity solution of

(∂ud

∂t
)(t, x) + 1

2
Trace

(

σd(t, x)[σd(t, x)]
∗(Hessx ud)(t, x)

)

+ 〈µd(t, x), (∇xud)(t, x)〉Rd + fd(t, x, ud(t, x)) = 0 (345)

for (t, x) ∈ (0, T )× Rd and which satisfies for all x ∈ Rd that ud(T, x) = gd(x) and

(II) there exists a function N = (Nd,ε)ε∈(0,∞) : N× (0,∞) → N such that for all ε, δ ∈ (0,∞) it
holds that

(

E
[

|ud(0, ξd)− V d,0
Nd,ε,Nd,ε

(0, ξd)|2
])1/2 ≤ ε and (346)

Cd,Nd,ε,Nd,ε
≤
[

4p+2κeT (κ+2+p(p+2)(κ+1))κp
](2+δ)

[

sup
n∈N

(4+8κT )(3+δ)(n+1)

n(nδ/2)

]

· d1+(P+pq)(2+δ)(min{1, ε})−(2+δ) < ∞.

(347)

Observe that item (I) proves item (i). Furthermore, note that item (II) establishes item (ii). The
proof of Theorem 4.3 is thus completed.

Theorem 4.4. Let T ∈ (0,∞), κ, p,P, q ∈ [0,∞), (αd,i)i∈{1,2,...,d},d∈N, (βd,i)i∈{1,2,...,d},d∈N ⊆ R,
Θ = ∪∞

n=1Z
n satisfy that supd∈N,i∈{1,2,...,d}max{|αd,i|, |βd,i|2} ≤ κ, for every d ∈ N let 〈·, ·〉Rd : Rd ×

Rd → R be the Euclidean scalar product on Rd and let ‖·‖Rd : Rd → [0,∞) be the Euclidean norm
on Rd, for every d ∈ N let ξd ∈ Rd, Σd = (ζd,1, . . . , ζd,d) ∈ Rd×d satisfy for all i ∈ {1, 2, . . . , d} that
‖ξd‖Rd ≤ κdq and ‖ζd,i‖Rd = 1, for every d ∈ N let µd : [0, T ]×Rd → Rd and σd : [0, T ]×Rd → Rd×d

be the functions which satisfy for all t ∈ [0, T ], x = (x1, x2, . . . , xd) ∈ Rd that

µd(t, x) = (αd,1x1, . . . , αd,dxd) and σd(t, x) = diag(βd,1x1, . . . , βd,dxd)Σ
∗
d, (348)

let f : R → R be a Lipschitz continuous function, for every d ∈ N let gd ∈ C(Rd,R) satisfy for all
t ∈ [0, T ], x ∈ Rd that

|gd(x)| ≤ κdP(1 + ‖x‖p
Rd), (349)

let (Ω,F ,P) be a probability space, let Rθ : Ω → [0, 1], θ ∈ Θ, be independent U[0,1]-distributed
random variables, let Rθ = (Rθ

t )t∈[0,T ] : [0, T ]×Ω → [0, T ], θ ∈ Θ, be the stochastic processes which
satisfy for all t ∈ [0, T ], θ ∈ Θ that

Rθ
t = t + (T − t)Rθ, (350)

for every d ∈ N let W d,θ : [0, T ] × Ω → Rd, θ ∈ Θ, be independent standard Brownian motions,
assume that

(

W d,θ
)

d∈N,θ∈Θ and
(

Rθ
)

θ∈Θ are independent, for every d ∈ N, θ ∈ Θ let Xd,θ =

(Xd,θ,i
t,s (x))s∈[t,T ],t∈[0,T ],x∈Rd,i∈{1,2,...,d} : {(t, s) ∈ [0, T ]2 : t ≤ s} × Rd × Ω → Rd be the function which

satisfies for all t ∈ [0, T ], s ∈ [t, T ], x = (x1, x2, . . . , xd) ∈ Rd, i ∈ {1, 2, . . . , d} that

Xd,θ,i
t,s (x) = xi exp

(

(

αd,i − |βd,i|2
2

)

(s− t) + βd,i〈ζd,i,W d,θ
s −W d,θ

t 〉Rd

)

, (351)

let V d,θ
M,n : [0, T ] × Rd × Ω → R, M,n ∈ Z, θ ∈ Θ, d ∈ N, be functions which satisfy for all

d,M, n ∈ N, θ ∈ Θ, t ∈ [0, T ], x ∈ Rd that V d,θ
M,−1(t, x) = V d,θ

M,0(t, x) = 0 and

V d,θ
M,n(t, x) =

n−1
∑

k=0

(T − t)

Mn−k

[

Mn−k
∑

m=1

f
(

V
d,(θ,k,m)
M,k

(

R
(θ,k,m)
t , X

d,(θ,k,m)

t,R
(θ,k,m)
t

(x)
)

)

− 1N(k)f
(

V
d,(θ,k,−m)
M,k−1

(

R
(θ,k,m)
t , X

d,(θ,k,m)

t,R
(θ,k,m)
t

(x)
)

)

]

+

[

Mn
∑

m=1

gd(X
d,(θ,n,−m)
t,T (x))

Mn

]

,

(352)
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and let (Cd,M,n)M,n∈Z,d∈N ⊆ N0 satisfy for all d, n,M ∈ N that Cd,M,0 = 0 and

Cd,M,n ≤ dMn +

n−1
∑

k=0

[

M (n−k)(d+ 1 + Cd,M,k + 1N(k)Cd,M,k−1)
]

. (353)

Then

(i) for every d ∈ N there exists a unique at most polynomially growing function ud ∈ C([0, T ]×
Rd,R) which satisfies that ud|(0,T )×Rd : (0, T )× Rd → R is a viscosity solution of

(∂ud

∂t
)(t, x)+

[

d
∑

i,j=1

βd,iβd,jxixj〈ζd,i,ζd,j〉Rd
2

(

∂2ud

∂xi∂xj

)

(t, x)

]

+

[

d
∑

i=1

αd,ixi

(

∂ud

∂xi

)

(t, x)

]

+f(ud(t, x)) = 0

(354)

for (t, x) ∈ (0, T )× Rd and which satisfies for all x ∈ Rd that ud(T, x) = gd(x) and

(ii) there exist functions N = (Nd,ε)d∈N,ε∈(0,∞) : N× (0,∞) → N and C = (Cδ)δ∈(0,∞) : (0,∞) →
(0,∞) such that for all d ∈ N, ε, δ ∈ (0,∞) it holds that

(

E
[

|ud(0, ξd)− V d,0
Nd,ε,Nd,ε

(0, ξd)|2
])1/2 ≤ ε and (355)

Cd,Nd,ε,Nd,ε
≤ Cδ d

1+(P+pq)(2+δ)(min{1, ε})−(2+δ). (356)

4.3 MLP approximations for the pricing of financial derivatives with

default risks

Corollary 4.5. Let T,R, γl, γh, vl, vh ∈ (0,∞), p, q ∈ [0,∞), ǫ ∈ [0, 1), α, β ∈ R, f ∈ C(R,R),
Θ = ∪∞

n=1Z
n satisfy for all u ∈ R that γl < γh, vl > vh, and

f(u) = −Ru− (1− ǫ)
[

min
{

γh,max
{

γl,
(γh−γl)
(vh−vl)

(u− vh) + γh

}}]

u, (357)

let ξd ∈ Rd, d ∈ N satisfy that supd∈N
‖ξd‖Rd

dq
< ∞, let gd ∈ C(Rd,R), d ∈ N, satisfy that

supd∈N,x∈Rd
|gd(x)||
1+‖x‖p

Rd
< ∞, let (Ω,F ,P) be a probability space, let Rθ : Ω → [0, 1], θ ∈ Θ, be

independent U[0,1]-distributed random variables, let Rθ = (Rθ
t )t∈[0,T ] : [0, T ]×Ω → [0, T ], θ ∈ Θ, be

the stochastic processes which satisfy for all t ∈ [0, T ], θ ∈ Θ that Rθ
t = t + (T − t)Rθ, for every

d ∈ N let W d,θ = (W d,θ,i)i∈{1,2,...,d} : [0, T ] × Ω → Rd, θ ∈ Θ, be independent standard Brownian
motions, assume that

(

W d,θ
)

d∈N,θ∈Θ and
(

Rθ
)

θ∈Θ are independent, for every d ∈ N, θ ∈ Θ let

Xd,θ = (Xd,θ,i
t,s (x))s∈[t,T ],t∈[0,T ],x∈Rd,i∈{1,2,...,d} : {(t, s) ∈ [0, T ]2 : t ≤ s}×Rd×Ω → Rd be the function

which satisfies for all i ∈ {1, 2, . . . , d}, t ∈ [0, T ], s ∈ [t, T ], x = (x1, x2, . . . , xd) ∈ Rd that

Xd,θ,i
t,s (x) = xi exp

(

(

α− β2

2

)

(s− t) + β
(

W d,θ,i
s −W d,θ,i

t

)

)

, (358)

let V d,θ
M,n : [0, T ] × Rd × Ω → R, M,n ∈ Z, θ ∈ Θ, d ∈ N, be functions which satisfy for all

d,M, n ∈ N, θ ∈ Θ, t ∈ [0, T ], x ∈ Rd that V d,θ
M,−1(t, x) = V d,θ

M,0(t, x) = 0 and

V d,θ
M,n(t, x) =

n−1
∑

k=0

(T − t)

Mn−k

[

Mn−k
∑

m=1

f
(

V
d,(θ,k,m)
M,k

(

R
(θ,k,m)
t , X

d,(θ,k,m)

t,R
(θ,k,m)
t

(x)
)

)

− 1N(k)f
(

V
d,(θ,k,−m)
M,k−1

(

R
(θ,k,m)
t , X

d,(θ,k,m)

t,R
(θ,k,m)
t

(x)
)

)

]

+

[

Mn
∑

m=1

gd(X
d,(θ,n,−m)
t,T (x))

Mn

]

,

(359)
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and let (Cd,M,n)M,n∈Z,d∈N ⊆ N0 satisfy for all d, n,M ∈ N that Cd,M,0 = 0 and

Cd,M,n ≤ dMn +
n−1
∑

k=0

[

M (n−k)(d+ 1 + Cd,M,k + 1N(k)Cd,M,k−1)
]

. (360)

Then

(i) for every d ∈ N there exists a unique at most polynomially growing function ud ∈ C([0, T ]×
Rd,R) which satisfies that ud|(0,T )×Rd : (0, T )× Rd → R is a viscosity solution of

(∂ud

∂t
)(t, x) +

[

d
∑

i=1

|β|2|xi|2
2

(

∂2ud

∂(xi)2

)

(t, x) + αxi

(

∂ud

∂xi

)

(t, x)

]

− Rud(t, x)

− (1− ǫ)
[

min
{

γh,max
{

γl,
(γh−γl)
(vh−vl)

(ud(t, x)− vh) + γh

}}]

ud(t, x) = 0 (361)

for (t, x) = (t, (x1, x2, . . . , xd)) ∈ (0, T )×Rd and which satisfies for all x ∈ Rd that ud(T, x) =
gd(x) and

(ii) there exist functions N = (Nd,ε)d∈N,ε∈(0,1] : N × (0, 1] → N and C = (Cδ)δ∈(0,∞) : (0,∞) →
(0,∞) such that for all d ∈ N, ε ∈ (0, 1], δ ∈ (0,∞) it holds that Cd,Nd,ε,Nd,ε

≤ Cδ d
1+qp(2+δ)ε−(2+δ)

and
(

E
[

|ud(0, ξd)− V d,0
Nd,ε,Nd,ε

(0, ξd)|2
])1/2 ≤ ε. (362)
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