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QUASI-MONTE CARLO BAYESIAN ESTIMATION

UNDER BESOV PRIORS IN ELLIPTIC INVERSE PROBLEMS

LUKAS HERRMANN, MAGDALENA KELLER, AND CHRISTOPH SCHWAB

Abstract. We analyze rates of convergence for quasi-Monte Carlo (QMC)
integration for Bayesian inversion of linear, elliptic PDEs with uncertain in-
put from function spaces. Adopting a Riesz or Schauder basis representa-
tion of the uncertain inputs, function space priors are constructed as product
measures on spaces of (sequences of) coefficients in the basis representations.
The numerical approximation of the posterior expectation, given data, then
amounts to a high- or infinite-dimensional numerical integration problem. We
consider in particular so-called Besov priors on the admissible uncertain in-

puts. We extend the QMC convergence theory from the Gaussian case, and in
particular establish sufficient conditions on the uncertain inputs for achieving
dimension-independent convergence rates > 1/2 of QMC integration with ran-
domly shifted lattice rules. We apply the theory to a concrete class of linear,
2nd order elliptic boundary value problems with log-Besov uncertain diffusion
coefficient.

1. Introduction

The efficient computational Bayesian estimation of response functions of par-
tial differential equations (PDEs for short) with uncertain, and not or partially
observable inputs and subject to observation data corrupted by observation noise
has received substantial attention recently. One approach towards this problem
is the Bayesian approach. In the setting where the so-called forward model is a
PDE with uncertain input, sufficient abstract conditions for well-posedness of PDE
constrained Bayesian inverse problems (BIPs for short) have been recently given in
[35, 8, 9] and the references there. Within this analytic framework, new numerical
approaches to Bayesian PDE inversion subject to noisy data have evolved in recent
years. Traditionally Bayesian PDE inversion has been approached by sampling and
filtering methods, in particular Markov chain Monte Carlo (MCMC for short) and
ensemble Kalman filters and their variants. We refer to [13, 32] and the references
there. Being essentially (variations of) the Monte Carlo methods, these methods
afford only the root mean-square convergence rate 1/2 in terms of the number of
proposals.

In the context of PDE inversion, this rate is prohibitive due to the need of
one (numerical) PDE solve per sample. Therefore, in recent years higher order
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numerical methods for the computation of Bayesian estimates subject to PDE con-
strained forward problems with distributed uncertain inputs, i.e., inputs from func-
tion spaces, have been developed. Starting with [33] for so-called “uniform priors”
subsequent extensions addressed also Gaussian priors (see, e.g., [6] for Smolyak
based quadratures and [31] for multilevel Monte Carlo and quasi-Monte Carlo
(QMC for short) quadratures).

Higher order QMC quadratures adapted to smoothness and sparsity classes of
uncertain inputs from function spaces, again with a uniform prior, were developed
in [11]. The choice of a uniform prior on the coefficient sequences of the uncertain
inputs implies a strong regularizing effect, and facilitates significant simplifications
in the error analysis, as was noted in [11, 10].

The mathematical setting from [35, 9] accomodates more general prior measures
than uniform or Gaussian, however. Indeed, so-called Besov prior measures on
function space inputs have been proposed in [27]. MCMC methods for their efficient
numerical evaluation have been analyzed in [8, 9].

1.1. Our contributions. We generalize high-dimensional QMC integration for
unbounded integration domains by randomly shifted lattice rules from Gaussian
densities as considered in [29, 16] to the class of so-called p-exponential densities
for p ∈ [1, 2]. The case p = 2 is the density of the Gaussian distribution and the
case p = 1 is the density of the Laplace distribution. They were proposed recently
in the context of so-called function space priors of Besov type in Bayesian PDE
inversion in, e.g., [27, 8].

We obtain sufficient conditions on the prior models to ensure first order conver-
gence with dimension-independent rates of suitable QMC rules, which are adapted
to the structure of the Besov prior, thereby generalizing the error analysis in [11]
from the uniform prior and from the Gaussian priors in [31]. A key step in our
proofs is the parametric regularity of the integrands arising in the Bayesian esti-
mates. We prove bounds on the derivatives of the parametric posteriors which are
explicit in the parameter dimension, the differentiation order and in the sparsity
class of the function space prior. In doing so, we also analyse the regularity of
parametric PDE solution map. In particular, the presently developed regularity
theory for the parameter to solution map for the forward PDE (being a 2nd order,
linear elliptic PDE in divergence form) is novel and also covers forward UQ for the
considered elliptic PDEs under Besov priors.

To keep technicalities and notation at bay, we confine the present error analysis
to so-called single-level algorithms, where the forward PDE is discretized with one,
common Galerkin projection for all input samples. We hasten to add, however, that
the presently developed tools will cover also multilevel extensions of the present al-
gorithms in certain cases along the lines considered in [10, 23, 21] and the references
there. We also confine the regularity analysis to globally supported basis elements
in the parametrization of the uncertain function space inputs, as arise, e.g., in the
Karhunen–Loève expansion parametrization. Again, we add that locally supported
representation systems for the function space input may facilitate more efficient
QMC integration procedures (see, e.g., the analysis in [21, 24, 22]).

Nevertheless, the unbounded parameter domain in Besov- and Gaussian priors
does entail a number of additional technical issues as compared to the case of uni-
form priors. Among them is, for example, nonuniform (w.r. to the input samples)
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ellipticity of the forward PDE w.r. to the function space input. This, in turn, en-
tails numerical ill-conditioning of the discretized forward problem which cannot be
resolved by standard preconditioning techniques, and requires to resort to a proba-
bilistic error vs. work analysis [18]. The analysis in [18], is suitably extended in [19,
Chapter 5] to cover optimal preconditioning within multilevel QMC algorithms in
the forward PDE under Besov priors.

1.2. Outline. The structure of this article is as follows. In Section 2, we review the
mathematical framework on Bayesian PDE inversion, in the function space setting
as developed e.g. in [35, 8, 9] and the references there. Particular attention is paid
on the construction of function space priors of Besov type. Section 3 presents the
forward problem with uncertain input, its variational formulation, and also results
on the integrability w.r. to the p-exponential probability measure on the data.
It also presents the Finite Element (FE for short) discretization of the problem
and FE error bounds. Section 4 recapitulates Bayesian estimation accounting in
particular for the effects of s-term truncation of the (parametric) input data, and
of spatial approximation of the forward problem e.g. due to FE discretization,
on the Bayesian estimate. Section 5 extends the theory of QMC integration for
the presently considered Besov priors. Section 6 applies the QMC theory from
Section 5 to the integrals appearing in the Bayesian estimate. Section 7 verifies
the abstract regularity requirements for the QMC integration for the parametric
Bayesian posterior density. Section 8 presents several numerical experiments for
linear, elliptic model problems which exhibit QMC convergence rates that are in
agreement with the theory developed in the previous sections. They also indicate
that some of the assumptions in our theory could be weakened. Section 9 gives a
summary of the results and outlines several directions for generalizations.

We use standard notation for function spaces on a Euclidean domain D ⊂ Rd,
d ∈ N. For every r ∈ [1,∞), the space of r-integrable functions with respect
to the Lebesgue measure is denoted by Lr(D). The space of essentially bounded
functions on D is denoted by L∞(D). For every k ∈ N, the space of functions such
that their k-th order weak derivatives belong to L∞(D) is denoted by W k,∞(D).
The Sobolev–Slobodeckij spaces are denoted by Ht(D), t ∈ [0,∞).

2. Bayesian inverse problems

In the present section, we briefly review the Bayesian approach to the inversion
of linear, divergence form elliptic PDEs with uncertain inputs from a function space
X as laid out in [9, 8]. We detail a particular construction of prior measures on
the spaces of admissible inputs, the so-called Besov priors. They are built on a
Schauder basis Ψ = (ψj)j≥1 of (a separable subspace of) the input space X with
p-exponential distributions of random coordinates for some p ∈ [1, 2].

2.1. Abstract formulation. We review the formulation of BIP in function spaces,
as developed e.g. in [8, 9, Sec. 3.2].

To this end, we denote by X and Y separable Banach spaces of uncertain inputs
u and of observation data δ, respectively. In the examples considered below, Y
will be finite dimensional and w.l.o.g. we shall then assume Y = RK for some
K ∈ N. We endow both X and Y with the corresponding Borel σ-algebras B(X)
and B(Y ). Generally, the inputs u will belong to some separable subspace X+ ⊂ X
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of admissible data from which it can be sampled as an input for a PDE model
(referred to as the “forward model” in the following).

To develop the Bayesian approach, we assume given a prior probability measure
µ on (X,B(X)). The observation data δ ∈ Y results from a bounded linear (obser-
vation) functional O(·) on a response q ∈ X of the forward PDE with input u ∈ X+.
Denoting the input-to-solution map of the PDE by S(·) : X → X , we suppose the
observation data δ = (O ◦ S)(u). The observation data δ is further assumed to be
corrupted by additive, centered Gaussian observation noise η ∼ Q0 = N (0,Σ) on
Y , i.e.

(2.1) δ = (O ◦ S)(u) + η , η ∼ Q0 .

We assume that η and u are independent. Then the random variable δ|u ∼ Qu, the
translate of Q0 by (O ◦S)(u). We assume that Qu ≪ Q0 for µ-a.e. u ∈ X+. Then,
for some (Bayesian) potential Φ : X × Y → R, it holds

dQu
dQ0

= exp(−Φ(u, δ)) .

This implies that for fixed u ∈ X+, the map Φ(u, ·) : Y → R is measurable with
EQ0 [exp(−Φ(u, ·))] = 1. For every given data δ ∈ Y , the map −Φ(·; δ) is the log-
likelihood. Define the product measure ν0 = µ ⊗ Q0. Then, under the assumption
that Φ is ν0-measurable, (u, δ) ∈ X ×Y is a random variable with (u, δ) ∼ ν where
ν = µ⊗Qu, and

ν ≪ ν0 ,
dν

dν0
= exp (−Φ(u; δ)) , u ∈ X+ .

In this setting holds the following abstract version of Bayes’ theorem. A proof can
be found in [9, Section 3.2].

Theorem 2.1. Suppose µ(X) = 1. For Φ : X × Y → R that is ν0-measurable and
such that Z := exp(−Φ(u; δ)) satisfies

(2.2) Eµ(Z) =

∫

X

exp (−Φ(u; δ))µ(du) > 0

the distribution µδ of the random variable u|δ under ν exists. Furthermore, µδ ≪ µ
and for δ ∈ Y it holds ν-a.s.

dµδ

dµ
=

1

Eµ(Z)
exp (−Φ(u; δ)) .

The Bayesian potential is, for additive, centered Gaussian observation noise η in
(2.1), given by

(u, δ) 7→ Φ(u; δ) :=
1

2
((O ◦ S)(u)− δ)⊤Σ−1((O ◦ S)(u)− δ).

For goal functionals G that are sometimes also referred to as quantities of interest
(QoI for short), we are interested in the expectation of (G ◦ S)(u) conditioned on
the data δ. Specifically, in the approximation of the following integral

Eµ
δ

((G ◦ S)(u)) = 1

Eµ(Z)
Eµ((G ◦ S)(u) exp(−Φ(u; δ)) =:

Eµ(Z ′)

Eµ(Z)
,

where Z ′ := (G ◦ S)(u) exp(−Φ(u; δ)).
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2.2. Besov priors. To consider uncertain input data u ∈ X where X is a Banach
space, a prior probability measure on X needs to be constructed. In view of the
ensuing QMC integration considered below, we outline a prior construction in sepa-
rable Banach spaces X which admit a Schauder basis Ψ = {ψ̃j}j≥1. Then, priors µ
take the form of countable product measures on coordinate sequences of uncertain
inputs u ∈ X which are represented in Ψ. We describe next a) the uncertainty
parametrization and b) the construction of the Besov prior probability measure
which charges a (separably valued subspace of) the input data space.

2.2.1. Representation Systems Ψ. We assume that there exists a countable repre-
sentation system Ψ = {ψ̃j}j≥1 ⊂ X such that its X-norm closure X+ ⊆ X. We
assume Ψ to be an unconditional Schauder basis of X (or of a norm-closed, separa-
ble subspace of X) or, in case that X is a Hilbert space, a Riesz basis. We illustrate
this by two prototypical examples, see also [3, Section 6] for the first example. Let
for ρ ∈ [0,∞) and a Euclidean domain D, the Hölder spaces be denoted by Cρ(D).

Example 2.2. Consider X = C0(D) with D = (0, 1)d and with Ψ denoting an

unconditional Schauder basis Ψ = {ψ̃λ}λ∈J of X which is indexed by a countable
set J of indices and which is dense w.r. to the uniform norm. Here, λ = (l, j) where
l := |λ| denotes a scaling factor and where j ∈ Jl denotes #(Jl) = O(2|λ|d) = O(2ld)

indices which describe localization of supp(ψ̃λ) in D. The system Ψ is assumed to
satisfy the following hypotheses:

• Ψ is a Schauder basis of C0(D), i.e. for every u ∈ C0(D) there exists a
unique sequence y = {yλ}λ∈J ∈ RN of coefficients such that

(2.3) u(x) =
∑

l≥0

∑

j∈Jl

yljψ̃lj(x) in C0(D) ,

where diam supp(ψ̃lj) ≤ C02
−l,

• there exists C1 > 0 such that for all λ ∈ J and for all x, x′ ∈ D

|ψ̃λ(x)− ψ̃λ(x
′)| ≤ C12

|λ|(ρ+d/2)|x− x′|ρ , 0 ≤ ρ ≤ ρ̄ ∧ 1 .

• there exists C2 > 0 such that
∥∥∥
∑

|λ|=l yλψ̃λ

∥∥∥
L∞(D)

≤ C22
dl/2 sup|λ|=l |yλ| .

• for 0 < ρ < ρ̄, ρ /∈ N, u ∈ Cρ(D) if and only if supl≥0,|λ|=l 2
l(d/2+ρ)|yλ| <∞.

Example 2.3. Consider the torus D = Td, and the Hilbert space X = L2(Td). A
Riesz basis of X is then given by the collection Ψ = {exp(im · x) : m ∈ Zd}. It
induces an isometry between X and ℓ2(N). Subspaces X+ ⊂ X of higher regularity
in Td are obtained by imposing stronger coefficient decay than mere 2-summability.

2.2.2. Prior Construction. Having at hand the Schauder basis Ψ, we construct
probability measures charging the space X+ through product measures on the space
RN of (sequences of) expansion coefficients of u ∈ X. To this end, we endow RN with
the product sigma algebra B(RN), which results in a measurable space (RN,B(RN)).
On (RN,B(RN)), we introduce so-called p-exponential probability measures.

Definition 2.4. [weighted p-exponential measure µβ] Let β = (βj)j≥1 ∈ (0,∞)N

denote a decreasing sequence of positive real numbers and let ξj , j ∈ N, denote
i.i.d. random variables in R with p-exponential probability density function φp(y) ≃
exp(−|y|p/p), y ∈ R, where p ∈ [1, 2] denotes a parameter. On (RN,B(RN)), we
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define the probability measure µβ to be the law of (βjξj)j≥1 and refer to this
measure as p-exponential measure with scaling sequence β = (βj)j≥1.

Having at hand µβ, a probability measure on X = C0(D) is obtained by ran-
domizing the coefficients {yλ}λ∈J in (2.3). To this end, we select

(2.4) yλ = βλξλ, ξλ
i.i.d.∼ φp, p ∈ [1, 2], βλ = 2−(d/2+α)|λ|, α > 0 .

For α and p as in (2.4), we refer to µβ as in Definition 2.4 as an α-regular, p-

exponential probability measure µβ on C0(D). The Schauder basis representation
(2.3) induces a prior probability measure on the space X of uncertain PDE inputs,
as pushforward of µβ on (RN,B(RN)). Specifically, the law of u as in (2.3) with

respect to µβ is a probability measure on C0(D).
We shall be interested in the case that X+ is a subspace of X which is norm

closed in X and which identifies elements of X with additional spatial regularity.
The weight sequence β concentrates i.i.d. samples under µβ in subspaces of RN.

Proposition 2.5 ([3, Proposition 6.1]). For the p-exponential measure µβ as spec-
ified in (2.4) with weight sequence β and for any p ∈ [1, 2] and α > 0, there holds
(µβ ◦ u−1)(Cρ(D)) = 1 for 0 ≤ ρ < min{α, 1}.

The case p = 2 is, therefore, set in a Hilbertian sequence space and for p = 2 a
random element in a separable Hilbert space X can be identified with a Gaussian
product measure, where the basis elements ψ̃j in the expansion [34] are (suitably
scaled) eigenfunctions of the covariance operator.

We illustrated the abstract concepts with several concrete constructions of Besov
priors; some of these shall be employed in the numerical experiments ahead. For
a more comprehensive presentation on Schauder bases and corresponding Banach
spaces we refer to [38]. In [38, Chapter 5], abstract constructions of representa-
tion systems with stability properties in scales of Besov spaces, in general Lipschitz
domains, are provided. Wavelet-type Riesz bases Ψ with locally supported ele-
ments in bounded, polygonal and polyhedral domains D with stability in scales of
Hilbertian Sobolev spaces have been constructed in [28, 30]. Function systems of
the type considered in Example 2.2 are also available in certain Lipschitz domains.
Specifically, Ψ may be chosen as a system of biorthogonal, piecewise polynomial
wavelet functions in the case that D is a polygon in R2, cf. [30]. More generally for
Lipschitz domains satisfying [38, Definition 3.4(iii)], by [38, Theorem 4.23] wavelet
systems exist that satisfy the conditions specified in Example 2.2.

3. Elliptic forward problem

For the ensuing presentation and analysis of QMC quadrature in UQ, we use the
notation for the p-exponential measure that

µp( dy) :=
⊗

j≥1

φp(yj) dyj ,

where we recall the p-exponential probability density φp(y) ≃ exp(−|y|p/p), y ∈ R,
p ∈ [1, 2]. Here, we have replaced the subscript of the weight sequence β by
the parameter p. It is costumary in QMC literature to study unweighted product
measures. The weight sequence β from Definition 2.4 will appear as a certain decay
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condition on the function system Ψ (see ahead (3.5)). On the countable product of
real lines

Ω := RN,

endowed with the sigma-algebra A generated by cylinders of Borel sets on R, the
product measure µp is a probability measure. Let us denote Lebesgue–Bochner
spaces by Lr(Ω, µp;E) for Banach spaces E and any r ∈ [1,∞). Elements of
Lr(Ω, µp;E) are strongly measurable maps from (Ω,A) such that the r-th power
of their E-norm is µp-integrable, see for example [39, Sections V.4 and V.5].

In the bounded Lipschitz domain D ⊂ Rd of dimension d ≥ 2, we consider
formally the elliptic PDE with uncertain coefficient u and given, deterministic right
hand side f :

(3.1) −∇ · ((a0 + exp(u))∇q) = f, q
∣∣∣
∂D

= 0.

We shall work with a standard, primal variational formulation of (3.1). Consider
a random coefficient u in (3.1) such that u : Ω → L∞(D) is strongly measurable
and there holds, µp-a.s., ‖u‖L∞(D) <∞. Assume furthermore given a deterministic
a0 ∈ L∞(D) such that ess infx∈D{a0(x)} ≥ 0. Then for a = a0+exp(u) it holds µp-
a.s. that ess infx∈D a(x, ω) ≥ exp(−‖u‖L∞(D)) > 0. By the Lax–Milgram lemma,
with µp probability one, for every deterministic, bounded linear functional f on
H1

0 (D), the variational form of (3.1): find q : Ω → H1
0 (D) such that

(3.2)

∫

D

(a0 + exp(u))∇q · ∇v dx = 〈f, v〉 ∀v ∈ H1
0 (D)

admits a unique solution q ∈ H1
0 (D).

Here X = L∞(D), and X = H1
0 (D) = {v ∈ H1(D) : v|∂D = 0} with dual space

X ∗. The dual pairing on X ∗ × X is denoted by 〈·, ·〉. For given, fixed f ∈ X ∗,
the data-to-solution map S, associates to each coefficient realization u ∈ X in (3.1)
the unique solution q ∈ X to (3.2). This allows to define sample-wise the random
solution [q : Ω → X : y 7→ S(u(y))]. The coefficient-to-solution map S : X → X is
locally Lipschitz continuous: for fixed f ∈ X ∗ and for any u1, u2 ∈ L∞(D) holds

(3.3)
‖S(u1)− S(u2)‖X ≤ ‖f‖X∗ exp(‖u1‖X + ‖u2‖X)‖ exp(u1)− exp(u2)‖X

≤ ‖f‖X∗ exp(2(‖u1‖X + ‖u2‖X))‖u1 − u2‖X .

This implies q = S(u) : Ω → X is strongly µp-measurable for 1 ≤ p ≤ 2 as a
composition of a strongly measurable and a continuous map, see [20, Lemma A.5].
The exponential growth of the map u 7→ exp(u) in the diffusion coefficient in (3.2)
naturally motivates distinguishing the case p = 1 and p ∈ (1, 2]. Analogous results
to the Gaussian case (p = 2) can be expected and will be proved for p ∈ (1, 2]. The
more delicate case p = 1 will require a smallness condition on u.

3.1. Uncertainty parametrization. The uncertain input u is assumed to be
given by a series expansion

(3.4) u(y) =
∑

j≥1

yjψj ,
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where the elements of the sequence (ψj)j≥1 comprising the representation system
Ψ are assumed bounded measurable on D and such that

(3.5)
∑

j≥1

‖ψj‖tX <∞

for some t ∈ (0, 2]. The coefficients yj are assumed random, and i.i.d. with yj ∼ φp.
For parametric u as in (3.4), the space of admissible uncertain inputs X+ is the
closure of span{ψj : j ≥ 1} with respect to the X-norm. With these assumptions,
the uncertain PDE input a is for µp-a.e. y ∈ Ω given by

(3.6) a(y) = a0 + exp(u(y)),

where a0 ∈ X is such that ess infx∈D{a0(x)} ≥ 0. For every s ∈ N, define the
s-term truncations us and as of [y 7→ u(y)] and of [y 7→ a(y)] in (3.6) by

(3.7) us :=

s∑

j=1

yjψj and as := a0 + exp(us).

For t ∈ (0, 1] in (3.5), for every r ∈ [1,∞) and every s ∈ N holds, with Cr =
(
∫
R
|y|rφp(y) dy)1/r,

(3.8) ‖u− us‖Lr(Ω,µp;X) ≤ Cr
∑

j>s

‖ψj‖X → 0 as s→ ∞.

This can be seen by considering the partial sum of u, i.e., for every integer s′ > s,

by the triangle inequality, ‖us′ − us‖Lr(Ω,µp;X) ≤ Cr
∑s′

j=s+1 ‖ψj‖X . The limit

s′ → ∞ exists in Lr(Ω, µp;X), since this is a Banach space. It does not depend
on r ∈ [1,∞), because for every 1 ≤ r1 < r2, L

r2(Ω, µp;L
r2(D)) is continuously

embedded in Lr1(Ω, µp;L
r1(D)) by Hölder’s inequality. As a consequence of (3.8),

u : Ω → X is strongly measurable.
A more refined argument presented in the following proposition yields an ap-

proximation rate bound in the range t ∈ (0, 2] in (3.5).

Proposition 3.1. Let assumption (3.5) be satisfied for some t ∈ (0, 2]. Then,
for every r ∈ [1,∞), u ∈ Lr(Ω, µp;L

r(D)). Furthermore, there exists a positive
constant Cr such that for every s ∈ N

‖u− us‖Lr(Ω,µp;Lr(D)) ≤ C


∑

j>s

‖ψj‖2X




1/2

.

Proof. For every 1 ≤ r1 < r2, L
r2(Ω, µp;L

r2(D)) is continuously embedded in
Lr1(Ω, µp;L

r1(D)) by Hölder’s inequality. It is therefore sufficient to consider the
case r ∈ 2N. Let thus r = 2k for some k ∈ N. Then, Fubini’s theorem gives that
for any 1 ≤ s1 ≤ s2 <∞ holds

∥∥∥∥∥∥

s2∑

j=s1

yjψj

∥∥∥∥∥∥

2k

L2k(Ω,µp;L2k(D))

=

∫

D

∫

Ω




s2∑

j=s1

yjψj




2k

µp(dy) dx,

where |D| denotes the Lebesgue measure of D. Since the univariate density φp is an
even function with respect to y = 0, all odd order moments of φp vanish. Thus, the
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twofold application of the multinomial theorem implies with the Jensen inequality
that there exists a constant Ck, which only depends on k, such that
(3.9)

∫

D

∫

Ω




s2∑

j=s1

yjψj




2k

µp(dy) dx ≤ |D|
∫

R

|y|2kφp(y) dy
∑

|τ |=2k,τj is even

(
2k

τ

)
‖ψj‖τjX

≤ |D|
∫

R

|y|2kφp(y) dyCk




s2∑

j=s1

‖ψj‖2X



k

.

Taking the 2k-th root, implies that (us)s≥1 is a Cauchy sequence in the Banach
space L2k(Ω, µp;L

2k(D)). The completeness of L2k(Ω, µp;L
2k(D)), the sequence

of partial sums admits a unique limit in L2k(Ω, µp;L
2k(D)) which we denote by u.

Since Lr2(Ω, µp;L
r2(D)) is continuously embedded in Lr1(Ω, µp;L

r1(D)) for every
1 ≤ r1 < r2, the limit u does not depend on k. The asserted estimate follows by
choosing in (3.9) s1 = s+ 1 and by taking the limit s2 → ∞. �

Proposition 3.2. Suppose (3.5) holds with some t ∈ (0, 1]. Then, for every
(p, r) ∈ (1, 2]× [1,∞) or every (p, r) ∈ {1} × [1, infj≥1 ‖ψj‖−1

X ), a = a0 + exp(u) ∈
Lr(Ω, µp;X). Furthermore, there exists a constant Cr such that for every s ∈ N

‖as‖Lr(Ω,µp;X) ≤ Cr

and

(3.10) ‖a− as‖Lr(Ω,µp;Lr(D)) ≤ Cr


∑

j>s

‖ψj‖2X




1/2

.

Proof. We begin with the case p ∈ (1, 2]. The following elementary considerations
will be of use in the ensuing proof. For any x, y > 0 and θ ∈ (0, 1), Young’s
inequality implies that

xy = xθx1−θy ≤ 1

p′
xθp

′

+
1

p
x(1−θ)pyp,

where p′ = p/(p− 1) is the conjugate of p. The choice θ = p/(p′ + p) implies

(3.11) ∀x, y ≥ 0 : xy ≤ (p− 1)x

p
+
xyp

p
.

Since (‖ψj‖X)j≥1 ∈ ℓ1(N), there exists j0 ∈ N such that for every j > j0, r‖ψj‖X <
1. Thus,

(3.12)

‖ exp(u)‖rLr(Ω,µp;X) ≤
∏

j≥1

∫

R

er‖ψj‖X |yj |φp(yj) dyj

= Cj0
∏

j>j0

∫

R

er‖ψj‖X |yj |φp(yj) dyj ,

where Cj0 =
∏j0
j=1

∫
R
er‖ψj‖X |yj |φp(yj) dyj is finite. By (3.11) for j > j0,

(3.13)

∫

R

er‖ψj‖X |yj |φp(yj) dyj ≤ e(p−1)r‖ψj‖X/p

∫

R

er‖ψj‖X |yj |
p/pφp(yj) dyj

=
e(p−1)r‖ψj‖X/p

(1− r‖ψj‖X)1/p
,
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where we used the fact that for φp(y) = cpe
−|y|p/p and any θ > 0, cp

∫
R
e−θ|y|

p/p dy =

θ−1/p, which follows readily by the coordinate transformation y 7→ yθ1/p. The fact
that for any b ∈ [0, 1), 1/(1− b) = 1 + b/(1− b) ≤ exp(b/(1− b)) implies that

(3.14)
∏

j>j0

e(p−1)r‖ψj‖X/p

(1− r‖ψj‖X)1/p
≤ exp


∑

j>j0

(p− 1)r‖ψj‖X
p

+
1

p

r‖ψj‖X
1− r‖ψj‖X


 ,

where we use that the sequence (‖ψj‖X)j≥1 is summable. Thus, exp(u) ∈ Lr(Ω, µp;X).
Since j0 does not depend on s, the same proof also yields the second assertion.

In the case p = 1 and r supj≥1 ‖ψj‖X < 1 for r ≥ 1, by (3.12) (and as a special
case of (3.14) with j0 = 0)

‖ exp(u)‖rLr(Ω,µp;X) ≤ exp


∑

j≥1

r‖ψj‖X
1− r‖ψj‖X


 <∞.

By the same argument, there exists a constant Cr > 0 such that for every s ∈ N

holds ‖ exp(us)‖Lr(Ω,µp;X) ≤ Cr.

The fundamental theorem of calculus implies that for every t1, t2 ∈ R, |et2 −
et1 | ≤ (et2 + et1)|t2 − t1|. By the first assertion applied with r̄ > r (for p = 1,
1 ≤ r < r̄ < infj≥1 ‖ψj‖−1

X ), Proposition 3.1, and by the Hölder inequality,

‖a− as‖Lr(Ω,µp;Lr(D)) ≤ ‖a+ as‖Lr̄(Ω,µp;Lr̄(D))‖u− us‖Lrr̄/(r̄−r)(Ω,µp;Lrr̄/(r̄−r)(D))

≤ Cr̄


∑

j>s

‖ψj‖2X




1/2

,

where we use that the domain D is bounded. �

By Proposition 3.2, ess infx∈D{a(x)} > 0 µp-a.s. Therefore, the bilinear form
X × X ∋ (w, v) 7→

∫
R
a∇w · ∇v dx ∈ R is µp-a.s. continuous and coercive with

random continuity “constant” ‖a‖X and random coercivity “constant”

amin := ess infx∈D{a(x)}.

Since [X ∋ v 7→ ‖v‖X ] and [X ∋ v 7→ ess infx∈D{v(x)}] are continuous, ‖a‖X and
amin are µp-measurable and thus random variables. By the Lax–Milgram lemma,
the solution to (3.2) q : Ω → X exists and is unique. Moreover, by the Lax–Milgram
lemma and Proposition 3.2 for every r ∈ [1,∞) and every p ∈ (1, 2] holds

(3.15) ‖q‖Lr(Ω,µp;X ) ≤
∥∥∥∥

1

amin

∥∥∥∥
Lr(Ω,µp)

‖f‖X∗ <∞.

For p = 1 and for any r ∈ [1, infj≥1 ‖ψj‖−1
X ), the estimate (3.15) holds also by

Proposition 3.2.

Remark 3.3. Results corresponding to those in this section in the case of locally
supported function systems (ψj)j≥1 have been derived in [19, Chapter 1] and gen-
eralize the analysis in [24, 22] to the case of Besov priors.
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3.2. Dimension truncation. Let qs : Ω → X be the solution to (3.2) with respect
to the s-parametric random coefficient as for some s ∈ N, i.e., qs = S(us). For
s ∈ N, we define

asmin := ess infx∈D{as(x)} .
Since the mapping [v 7→ ess infx∈D{v(x)}] is continuous from X to R, asmin : Ω →
(0,∞) is µp-measurable, hence a random variable. Furthermore, for every s ∈ N

holds µp-a.s. the lower bound asmin ≥ exp(−‖us‖X).

Remark 3.4. The forward PDE solution qs : Ω → X for s-parametric input with
finite s ∈ N, may also be viewed as a conditional expectation

(3.16) qs = Eµp(q|As) with As := B(Rs)⊗


⊗

j>s

σ({yj = 0})


 .

The relation (3.16) states that the s-term truncation of the affine-parametric repre-
sentation (3.4) of the uncertain input u can be interpreted statistically as inclusion
of a-priori information on u into the prior expectation. Apart from facilitating
QMC integration (which is based on finite-dimensional integration domains, see
Section 5 ahead), s-term truncation also regularizes the Bayesian inverse problem.

Similarly to (3.15), as a consequence of Proposition 3.2, for every r ∈ [1,∞) and
p ∈ (1, 2] there exists a constant Cr such that for every s ∈ N holds

(3.17) ‖qs‖Lr(Ω,µp;X ) ≤
∥∥∥∥

1

asmin

∥∥∥∥
Lr(Ω,µp)

‖f‖X∗ ≤ Cr‖f‖X∗ .

For p = 1 and for any r ∈ [1, infj≥1 ‖ψj‖−1
X ), the estimate (3.17) holds also due to

Proposition 3.2.

Proposition 3.5. Suppose (3.5) holds for some t ∈ (0, 1] and let p ∈ (1, 2]. Assume
that there exists ε > 0 such that q ∈ Lr̂(Ω, µp;W

1,2+ε(D)) for every r̂ ∈ [1,∞).
Then, for every r ∈ [1,∞) there exists a constant Cr such that for every s ∈ N

‖q − qs‖Lr(Ω,µp;X ) ≤ Cr


∑

j>s

‖ψj‖2X




1/2

.

Proof. We observe that for every r′ ∈ [2,∞) and r′′ = 2r′/(r′ − 2)

(3.18) ‖q − qs‖X ≤
‖|∇q|‖Lr′ (D)

asmin

‖a− as‖Lr′′ (D).

The assertion follows by (3.10) in Proposition 3.2 and by the choice r′ = 2+ ε. �

If the assumption q ∈ Lr̂(Ω, µp;W
1,2+ε(D)) in Proposition 3.5 only holds with

ε = 0 as implied by (3.15), still an error estimate holds.

Proposition 3.6. Suppose (3.5) holds for some t ∈ (0, 1]. Let either p ∈ (1, 2] be
arbitrary and r ∈ [1,∞) or let p = 1 and r ∈ [1, infj≥1 ‖ψj‖−1

X /4).
Then, there exists a constant Cr such that for every s ∈ N

‖q − qs‖Lr(Ω,µp;X ) ≤ Cr
∑

j>s

‖ψj‖X .
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Proof. A twofold application of Hölder’s inequality implies with (3.18) and (3.3)
and Proposition 3.2

‖q − qs‖Lr(Ω,µp;X ) ≤ ‖f‖X∗‖ exp(2‖u‖X)‖L2r(1+ε)(Ω,µp)‖ exp(2‖us‖X)‖L2r(1+ε)(Ω,µp)

× ‖u− us‖Lr(1+ε)/ε(Ω,µp;X),

where ε > 0 satisfies r(1 + ε) < infj≥1 ‖ψj‖−1
X /4. The assertion follows by Propo-

sition 3.2 and (3.8). �

3.3. Spatial discretization. We discuss sufficent conditions on the function sys-
tem (ψj)j≥1 that imply error estimates of the spatial discretization.

3.3.1. Solution regularity. For the convergence rate analysis of the spatial approx-
imation by the Finite Element Method (FEM), we study the regularity of the
solution q with respect to the spatial coordinate x ∈ D. For conciseness of presen-
tation, we suppose that D is either a bounded polygon in R2 with straight sides or
D is a bounded polyhedron in R3 with plane faces.

Suppose that for some t̄ ∈ {1, 2},

(3.19) a0 ∈W 1,∞(D) and
∑

j>1

‖|∇ψj |‖t̄X <∞.

Lemma 3.7. In space dimension d = 2, let D be a bounded polygon with straight
sides. Let ω ∈ (0, 2π) denote the largest interior angle at a corner of D. Suppose
(ψj)j≥1 satisfies (3.5) and (3.19) with some t ∈ (0, 1] and some t̄ ∈ {1, 2}, respec-
tively. Let p ∈ (1, 2]. Assume furthermore that f ∈ L2(D) in (3.1). Then, for any
0 < τ < min{1, π/ω} and for every r ∈ [1,∞), there holds q ∈ Lr(Ω, µp;H

1+τ (D)).
Furthermore, for every r ∈ [1,∞) there exists a constant C > 0 such that for every
s ∈ N

‖qs‖Lr(Ω,µp;H1+τ (D)) ≤ C.

Proof. The proof of Proposition 3.1 is applicable and yields u ∈ Lr(Ω, µp;W
1,r(D))

for every r ∈ [1,∞). Thus, by the Sobolev embedding (see for example [37, Theo-
rem 1.107]) u ∈ Lr(Ω, µp;C

1−ε(D)) for every ε ∈ (0, 1) and every r ∈ [1,∞). Since

for every v ∈ Cρ(D) and every ρ ∈ [0, 1], ‖ exp(v)‖Cρ(D) ≤ ‖ exp(v)‖C0(D)(1 +

‖v‖Cρ(D)), we conclude with Proposition 3.2 by the Cauchy–Schwarz inequality that

[u 7→ exp(u)] ∈ Lr(Ω, µp;C
1−ε(D)) for every ε ∈ (0, 1) and for every r ∈ [1,∞).

The regularity estimate [36, Lemma 5.2] implies the first assertion with the Cauchy–
Schwarz inequality.

The uniformity with respect to s in the second assertion follows, since it is
provided by Propositions 3.1 and 3.2 that were used in this proof previously. �

Lemma 3.8. Let the assumptions of Lemma 3.7 be satisfied, but assume that p = 1,
t̄ = 1. Then, for any 0 < τ < min{1, π/ω} and for every r ∈ [1, infj≥1 ‖ψj‖−1

X ),

there holds q ∈ Lr(Ω, µp;H
1+τ (D)). Furthermore, for every r ∈ [1, infj≥1 ‖ψj‖−1

X )
there exists a constant C > 0 such that for every s ∈ N

‖qs‖Lr(Ω,µp;H1+τ (D)) ≤ C.

Proof. The same argument that results in (3.8) implies that u ∈ Lr
′

(Ω, µ1;W
1,∞(D))

for every r′ ∈ [1,∞). Moreover, for every r′ ∈ [1,∞), there exists a constant C > 0
such that for every s ∈ N, ‖us‖Lr′ (Ω,µ1;W 1,∞(D)) ≤ C.
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The forward problem (3.1) may be rewritten as −∆q = (∇a · ∇q + f)/a, where
∆ denotes the Dirichlet Laplacian. Using that a = a0 + exp(u),

‖∆q‖L2(D) ≤ ‖∇u · ∇q‖L2(D) +
‖∇a0 · ∇q‖L2(D) + ‖f‖L2(D)

amin
.

Note that by the Hölder inequality and by (3.15), for every ε > 0 such that r(1+ε) <
infj≥1 ‖ψj‖−1

X ,

‖∇u · ∇q‖Lr(Ω,µ1;L2(D)) ≤ ‖u‖Lr(1+ε)/ε(Ω,µ1;L2(D))‖f‖X∗‖a−1
min‖Lr(1+ε)(Ω,µ1;L2(D)).

Thus, ∆q ∈ Lr(Ω, µ1;L
2(D)). The first assertion of the lemma follows, since ∆ :

H1+τ (D) → L2(D) is boundedly invertible. The uniform estimate with respect to
the truncation s follows by (3.17). �

3.3.2. Finite element discretization. In the bounded Lipschitz polytope D ⊂ Rd,
d = 2, 3, consider families of quasiuniform, simplicial, shape regular, conforming
triangulations of D. These triangulations can be obtained, for example, by uniform
(so-called “red”) refinement of a regular, coarse simplicial partition T0 of the domain
D. As usual, the term “regular” indicates that any two (closed) distinct n-simplices
T, T ′ ∈ T0 either have empty intersection, or intersect in an entire n − k simplex
for some 1 ≤ k ≤ n.

On the sequence {Tℓ}ℓ≥0 of such regular, simplicial triangulations, we consider
continuous, piecewise linear Finite Element (FE) spaces

(3.20) Xℓ := {v ∈ X : v|K ∈ P1(K) ∀K ∈ Tℓ}, ℓ ≥ 0,

where P1(K) denotes the polynomials of degree 1. Let hℓ = max{diam(T ) : T ∈ Tℓ}
denote the meshwidth of Tℓ. For every s ∈ N, the random FE solution qs,hℓ : Ω →
Xℓ is the sample-wise unique solution which solves, µp-a.s., the variational form:
find qs,hℓ ∈ Xℓ such that

(3.21)

∫

D

as∇qs,hℓ · ∇v = 〈f, v〉 ∀v ∈ Xℓ.

The corresponding input-to-solution map is denoted by Shℓ
, i.e., qs,hℓ = Shℓ

(us).
As in (3.17), by Proposition 3.2 for every r ∈ [1,∞) and p ∈ (1, 2] or r ∈
[1, infj≥1 ‖ψj‖−1

X ) and p = 1, there exists a constant Cr > 0 such that for every
s ∈ N and hℓ > 0

(3.22) ‖qs,hℓ‖Lr(Ω,µp;X ) ≤
∥∥∥∥

1

asmin

∥∥∥∥
Lr(Ω,µp)

‖f‖X∗ ≤ Cr‖f‖X∗ .

By [24, Proposition 15] and its proof and Lemma 3.7 (and Lemma 3.8 in the case
p = 1), we obtain a version of [24, Proposition 15] in the case of p-exponential
densities.

Proposition 3.9. Let d = 2 and let ω ∈ (0, 2π) denote the largest interior angle at
a corner of the polygon D. Suppose that (3.5) holds for some t ∈ (0, 1] and (3.19)
holds for some t̄ ∈ {1, 2}. Assume either p ∈ (1, 2] and r ∈ [1,∞) or assume p = 1,
r ∈ [1, infj≥1 ‖ψj‖−1

X ), and additionally t̄ = 1. For τ, τ ′ ∈ [0,min{1, π/ω}) and for
every f ∈ H−1+τ (D), there exists a constant C > 0 independent of hℓ > 0 and
s ∈ N, such that

(3.23) ‖qs − qs,hℓ‖Lr(Ω,µp;H1−τ′ (D)) ≤ Chτ+τ
′

ℓ .
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3.4. Remarks on higher order FEM in D. The convergence bound (3.23) per-
tained to first order FEM on quasiuniform families of regular, simplicial triangula-
tions of D. There, the FE convergence rate is limited by the maximal regularity of
the solution in standard Sobolev spaces in D. As it is well-known, local regularity
of solutions in compact subsets of the polygon D is maximal, i.e., it is only limited
by the values of τ and τ ′ in Proposition 3.9, regardless of the values of the corner
angle π/ω. Near corners of D, loss of Sobolev regularity is quantified by so-called
corner-weighted spaces of Kondrat’ev type (see, e.g., [4, 17, 5] ).

Consider again a bounded polygon D ⊂ R2 with straight edges and assume that
τ ∈ N0. For t̄ = 1 in (3.19), one finds as in (3.8) and in the proof of Lemma 3.7 that
u ∈ Lr(Ω, µp;W

1,∞(D)) for every r ∈ [1,∞). This allows us conclude regularity
in Kondrat’ev spaces of the solution by using the regularity shifts of the Dirichlet
Laplacian from [4] and [5], see [22, Section 2] for details. For parametric solutions
taking values in weighted Kondrat’ev spaces, graded local mesh refinement towards
the vertices of D will restore maximal FE convergence rates. We refer to [2] and
the references there.

Specifically, for FE order k ∈ N, the spaces Xℓ of continuous, Lagrangean Finite
Elements of order k on regular, simplicial triangulations Tℓ of D in (3.20) are

(3.24) Xℓ := {v ∈ X : v|K ∈ Pk(K) ∀K ∈ Tℓ}, ℓ ≥ 0,

where Pk(K) denotes the space of polynomials of total degree k. For optimal
convergence rates of FEM of order k > 1, we assume in (3.6) that a0 is W k,∞-
regular and positive1, i.e.

(3.25) a0 ∈W k,∞(D), ess inf
x∈D

a0(x) ≥ 0 .

For integer k > 1, the summability condition (3.19) is strengthened. Let us assume
there exists t̄ ∈ {1, 2} such that

(3.26)
∑

j>1

‖ψj‖t̄Wk,∞(D) <∞.

Under conditions (3.5) with t ∈ (0, 1], (3.25) and (3.26) with t̄ = 1, for every
τ, τ ′ > 0, 1 < p ≤ 2 and for every f ∈ H−1+τ (D), and for families {Tℓ}ℓ≥0 of
properly graded, regular triangular meshes in D (with mesh-grading depending on
k and on τ, τ ′ ≥ 0, see [2]), one obtains in place of (3.23) that for every r ∈ [1,∞)
there exists a constant C > 0 independent of s and of ℓ such that there holds the
bound

(3.27) ‖qs − qs,hℓ‖Lr(Ω,µp;H1−τ′ (D)) ≤ Ch
min{k,τ}+min{k,τ ′}
ℓ .

Here, for τ ′ > 1, H1−τ ′

(D) is the dual space of X ∩H−1+τ ′

(D).
We outline the argument for the proof of (3.27). Due to Céa’s lemma and suitable

approximation properties of Xℓ from, e.g., [2], it is sufficient that the (k+1)-th order
Kondrat’ev space norm of qs may be bounded uniformly with respect to truncation
dimension s. For k = 1, regularity of the solution in 2nd order Kondrat’ev spaces
follows by [22, Equation (15)] and the regularity shift of the Dirichlet Laplacian.
Higher order regularity in Kondrat’ev spaces follows by the bootstrap argument as
in the proof of [24, Proposition 15]. For t̄ = 2 in the condition (3.26), Proposition 3.9
(here with uniform refinement) holds also with the bound (3.27) provided that

1This can be weakened by introducing the weighted spaces Wk,∞(D) of [5]; see also [19]
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τ, τ ′ ∈ [0,min{k, π/ω}). These assertions are proved in a slightly more general
setting in [19, Proposition 1.1.12 and Theorem 1.4.3].

4. Dimension truncation and spatial approximation in Bayesian

estimation

The approximation properties by truncating the parameter dimension to s and
the spatial approximation error by FEM in the forward map translate directly to
corresponding approximation errors of the BIP. For a finite truncation dimension
s ∈ N of the parametric expansions (3.7) in the forward models, define random
variables in the corresponding Bayesian inverse estimate according to Section 2.1

Z ′
s := (G ◦ S)(us) exp(−Φ(us; δ)), Zs := exp(−Φ(us; δ))

and

(4.1) Z ′
s,hℓ

:= (G ◦ Shℓ
)(us) exp(−Φh(u

s; δ)), Zs,hℓ
:= exp(−Φh(u

s; δ)),

where

u 7→ Φh(u; δ) :=
1

2
((O ◦ Shℓ

)(u)− δ)⊤Σ−1((O ◦ Shℓ
)(u)− δ).

Note that under the assumptions of Proposition 3.2, it follows by Proposition 3.2
that µp(X+) = 1. Since X+ is separable by construction, Theorem 2.1 is applicable.

Proposition 4.1. Let the assumptions of Propositions 3.5 and 3.9 be satisfied. If
p = 1, assume additionally supj≥1 ‖ψj‖X < 1/4. Then, there exists a constant
C > 0 (which does not depend on s and hℓ), such that

∣∣∣∣
Eµp(Z ′)

Eµp(Z)
−

Eµp(Z ′
s,hℓ

)

Eµp(Zs,hℓ
)

∣∣∣∣ ≤ C


∑

j>s

‖ψj‖ιX




1/ι

+ Chτ+τ
′

,

where ι = 2 for p ∈ (1, 2] and ι = 1 for p = 1.

Proof. By elementary manipulations, it holds µp-a.s.

|Z − Zs,hℓ
| = | exp(−‖O(q)− δ‖2Σ−1/2)− exp(−‖O(qs,hℓ

)− δ‖2Σ−1/2)|
≤ |‖O(q)− δ‖2Σ−1 − ‖O(qs,hℓ

)− δ‖2Σ−1 |
≤ (|‖O(q)− δ‖Σ−1 |+ ‖O(qs,hℓ

)− δ‖Σ−1 ||)|O(q − qs,hℓ
)|,

where ‖ξ‖2Σ−1 := ξ⊤Σ−1ξ, ξ ∈ RK . Thus, by the Cauchy–Schwarz inequality,
Proposition 3.5 (and Remark 3.6 in the case p = 1) and Proposition 3.9,

(4.2) |Eµp(Z − Zs,hℓ
)| ≤ Eµp(|Z − Zs,hℓ

|) ≤ C


∑

j>s

‖ψj‖ιX




1/ι

+ Chτ+τ
′

,

where ι = 2 for p ∈ (1, 2] and ι = 1 for p = 1. By a similar argument |Eµp(Z ′ −
Z ′
s,hℓ

)| is also upper bounded by the right hand side of (4.2) with possibly a different

constant. Since Eµp(Z) > 0 by Theorem 2.1, we conclude that there exist C > 0,
ℓ0 ≥ 0, s0 ∈ N such that for any s ≥ s0 and hℓ < hℓ0 ,

(4.3) Eµp(Zs,hℓ
) ≥ C > 0.

The assertion is then implied by the following observation
∣∣∣∣
Eµp(Z ′)

Eµp(Z)
−

Eµp(Z ′
s,hℓ

)

Eµp(Zs,hℓ
)

∣∣∣∣ ≤
|Eµp(Z ′)||Eµp(Z ′ − Z ′

s,hℓ
)|

Eµp(Z)Eµp(Zs,hℓ
)

+
|Eµp(Z − Zs,hℓ

)|
Eµp(Zs,hℓ

)
,
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where |Eµp(Z ′)| <∞ by (3.15). �

We remark that the constant C > 0 in the error bound strongly depends on the
observation noise covariance Σ > 0 in the model (2.1). In general, C ∼ exp(bσ̃−1)
for some b > 0, where σ̃ > 0 is the smallest eigenvalue of the matrix Σ.

5. Quasi-Monte Carlo integration with Besov priors

QMC integration by randomly shifted lattice rules is applicable to high dimen-
sional integrals with respect to certain measures with unbounded support in Rs.
The dimension s ∈ N is an explicit discretization parameter. QMC error estimates
and convergence rates will be uniform with respect to the integration dimension s,
which is achieved by a suitable weighting of the coordinates in the basis representa-
tion (3.4) of the uncertain inputs. Specifically, this is encoded in the following norm
of parametric integrands F : Rs → R. For arbitrary, finite integration dimension
s ∈ N, it is given by
(5.1)

‖F‖γ,s =




∑

u⊂{1:s}

γ−1
u

∫

R|u|

∣∣∣∣∣∣

∫

Rs−|u|

∂uyF (y)
∏

j /∈u

φp(yj) dyj

∣∣∣∣∣∣

2
∏

j∈u

w
2(yj) dyj




1/2

,

where ∂uy = ∂|u|
∏

j∈u
∂yj

. Let Wγ,s be the closure of {F ∈ C∞(Rs) : ‖F‖γ,s < ∞}
with respect to the norm in (5.1). Here, the QMC weights γ = (γu)u⊂{1:s} are
a collection of positive numbers and {1 : s} := {1, . . . , s}. In (5.1), the weight
function w is yet to be specified. In the present work, we choose, for 1 ≤ p ≤ 2,
the p-exponential probability density given by

φp(y) =
1

2p1/2Γ(1/p)
e−

|y|p

p , y ∈ R,

where Γ(·) denotes the gamma function. We select the QMC weight function w in
(5.1) as exponentially decaying with parameter α > 0

(5.2) w
2(y) := e−α|y|, y ∈ R.

We consider QMC integration by so-called randomly shifted lattice rules, where
the QMC points are given by [12, 25, 26]

(5.3) y(i) = Φ−1
s

({
(i+ 1)z

N
+∆

})
, i = 0, . . . , N − 1,

where the generating vector z ∈ {1, . . . , N − 1}s is such that every entry zj and N
are coprime. The random shift∆ has independent and uniformly distributed entries
in [0, 1]. The expectation with respect to ∆ will be denoted by E∆. In (5.3), Φs
denote the coordinate marginal distribution function corresponding to the density
φp. For any truncation dimension s ∈ N, denote µsp( dy) :=

⊗s
j=1 φp(yj) dyj .

Concrete choices of QMC weights γ in (5.1) and of the weight function w
2 in (5.2)

are an input for the so-called fast component-by-component (CBC) algorithm for
the effiicent computation of the QMC generating vector z, cf. [29, Section 5.2]. The
equal weight QMC quadrature with random shift ∆ and generating vector z is then
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given by

Q∆

s,N (F ) =
1

N

N−1∑

i=0

F (y(i)) ≈
∫

Rs

F (y)µsp( dy) = Eµ
s
p(F ).

Theorem 5.1. Let p ∈ [1, 2]. Suppose that the generating vector z in (5.3) is
obtained by the CBC algorithm with respect to QMC weights γ. For every λ ∈
(1/(2r), 1] and for integrands F ∈ Wγ,s,

√
E∆(|Eµs

p(F )−Q∆

s,N (F )|2) ≤


 1

ϕ(N)

∑

∅6=u⊂{1:s}

γλuC
|u|




1/(2λ)

‖F‖γ,s,

where ϕ(·) denotes Euler’s totient function. For p ∈ (1, 2]

C =

[
2p1/pΓ(1/p)

π2rr(1− r)
exp

((
αp

2(1− r)

)1/(p−1)

(1− p−1)

)]λ
ζ(2rλ),

where r ∈ (1/2, 1) is arbitrary and where ζ(·) denotes Riemann’s zeta function. For
p = 1 additionally suppose α ∈ (0, 1). Then

C =

(
2πα

(2− α)α

)λ
ζ(2rλ) and r = 1− α

2
.

Proof. The assertion will follow by [29, Theorem 8], once we estimated a certain

function θ̂, which is defined below in (5.5). We shall verify that

(5.4) exp

( |Φ−1(t)|p
p

)
≤ 1

t
, ∀t ∈ (0, 1/2).

Along the lines of the equivalences in [26, Equation (26)], for every t ∈ (0, 1/2),

exp

( |Φ−1(t)|p
p

)
≤ 1

t
⇔ Φ−1(t) ≥ −(−p log(t))1/p ⇔ t ≥ Φ(−(−p log(t))1/p).

The first derivative of f(t) := t − Φ(−(−p log(t))1/p), t ∈ (0, 1/2), is given by
f ′(t) := 1 − 1/(2Γ(1/p)(− log(t))1−1/p). It holds that f ′(t) ≥ 0, t ∈ (0, 1/2) if
t ≤ exp(−(2Γ(1/p))p/(1−p)), t ∈ (0, 1/2). The latter estimate follows, since

0.5685 ≤ exp(−(2Γmin)
−1) ≤ exp(−(2Γ(1/p))p/(1−p)),

where Γmin = minx∈(0,∞){Γ(x)} ≥ 0.8856. We thus conlude the claim in (5.4).
Let us consider the case p ∈ (1, 2] first. We observe that (5.4) implies for arbitrary

h ≥ 1

(5.5)

θ̂(h) :=
2

π2h2

∫ 1/2

0

sin(πht)

w
2(Φ−1(t))φ(Φ−1(t))

dt

=
p1/pΓ(1/p)

π2h2

∫ 1/2

0

sin(πht) exp
(
p−1|Φ−1(t)|p − αΦ−1(t)

)
dt

≤ p1/pΓ(1/p)

π2h2

∫ 1/2

0

sin(πht)

t
exp

(
α(−p log(t))1/p

)
dt.
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For any σ > 0, the function [1,∞) ∋ y 7→ exp(ν(log(y))1/p)/yσ attains its maximum

(5.6) exp

(
ν

(
ν

pσ

)1/(p−1)

− σ

(
ν

pσ

)p/(p−1)
)

at y0 = exp((ν/(pσ))p/(p−1)), which can be verified by elementary manipulations.
Thus, choosing ν = αp1/p and σ = 2(1 − r) =: 2δ in (5.6), (5.5) implies with [26,
Lemma 3]

θ̂(h) ≤ 2p1/pΓ(1/p)

π2−2δ(1− δ)δ
exp

((
αp

2δ

)1/(p−1)

(1− p−1)

)
h−2(1−δ).

Thus, the assumption of [29, Theorem 8], i.e., [29, Equation (42)], is satisfied with
r = (1− δ) and the assertion follows for p ∈ (1, 2].

For p = 1, we can directly estimate (5.5) and obtain with [26, Lemma 3]

θ̂(h) =
1

π2h2

∫ 1/2

0

sin(πht)

t1+α
dt ≤ 2πα

(2− α)α
h−2+α

and conclude the assertion with [29, Theorem 8]. �

Remark 5.2. A convergence rate bound of QMC with randomly shifted lattice rules
and Besov-type QMC weight functions has been obtained in [19, Chapter 2].

6. Quasi-Monte Carlo Bayesian estimation

We begin by a novel convergence estimate of QMC with Besov priors for a
class of generic integrands F , which will be used in the following discussion of the
approximation properties of QMC by randomly shifted lattice rules for BIP under
Besov priors.

Theorem 6.1. Let p ∈ [1, 2]. Suppose that integrands F satisfy the bound

(6.1) |∂uyF (y)| ≤ C1 exp


∑

j≥1

|yj |bj


 (|u|!)̺C |u|

2

∏

j∈u

bj

for some ̺ ≥ 1 and for some (bj)j≥1 ∈ (0,∞)N ∩ ℓt(N) for some t ∈ (0, 1/̺) and
(bj)j≥1 ∈ (0,∞)N ∩ ℓ1(N). Let α > 0 in (5.2) satisfy α > 2 supj≥1{bj}. If p = 1,
additionally assume that α < 1. Define product and order dependent QMC weights
by γ∅ = 1 and

(6.2) γu = (|u|!)2̺/(1+λ)
∏

j∈u

(
2C2

2b
2
j

(α− 2bj)C

)1/(1+λ)

, u ⊂ N, 1 ≤ |u| <∞,

where C is specified in Theorem 5.1, and

λ =

{
t/(2− t) if ̺ < 3/2, t ∈ (2/3, 1/̺),

1/(2− 2ε) if t ∈ (0, 2/3], t < 1/̺,

and some ε ∈ (0, 1/2). Furthermore for p = 1, λ > 1/(2−α). Let s,N ∈ N. Then,
there exist a constant C ′ > 0′ (independent of s,N) and a QMC randomly shifted
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lattice rule given by a generating vector constructed by the fast CBC algorithm [29,
Section 5.2] such that

√
E∆(|Eµs

p(F )−Q∆

s,N (F )|2) ≤ C ′

{
ϕ(N)−min{1/t−1/2,1−ε} if p ∈ (1, 2],

ϕ(N)−min{1/t−1/2,1−α/2−ε} if p = 1.

Proof. The proof consists of two steps. Firstly, the Wγ,s-norm of the integrand F is
bounded. Secondly, the choice of weights is justified to ensure convergence bounds
that do not depend on the integration dimension s.

Since (bj)j≥1 ∈ ℓ1(N), there exists j0 ∈ N0 such that 2bj < 1 for every j > j0.
By [16, Equations (4.14) and (4.16)] and by (3.13) and (3.14),
(6.3)
‖F‖2γ,s

≤ Cj0C
2
1

∑

u⊂{1:s}

γ−1
u (|u|!)2̺

∏

j∈u

(
2C2

2b
2
j

α− 2bj

)
∏

j∈{1:s}\(u∪{1:j0}

(
e2(p−1)bj/p

(1− 2bj)1/p

)

≤ Cj0C
2
1 exp


∑

j>j0

2(p− 1)bj
p

+
1

p

2bj
1− 2bj


 ∑

u⊂{1:s}

γ−1
u (|u|!)2̺

∏

j∈u

(
2C2

2b
2
j

α− 2bj

)
,

where the constant Cj0 =
∏j0
j=1

∫
R
e2bj |yj |φp(yj) dyj is finite. For p = 1, j0 = 0 and

Cj0 = 1 by the convention that empty products are equal to one.
The choice of the QMC weights in (6.2) is a consequence of the optimization

procedure of the expression (6.3) and
∑

u⊂N γ
λ
uC

|u| from Theorem 5.1, see the proof
of [16, Theorem 20]. Inserting the QMC weights, we obtain
(6.4)

∑

u⊂{1:s}

γ−1
u (|u|!)2̺

∏

j∈u

(
2C2

2b
2
j

α− 2bj

)
=

∑

u⊂{1:s}

(|u|!)2̺λ/(1+λ)
∏

j∈u

(
2C2

2b
2
jC

1/λ

α− 2bj

)λ/(1+λ)
.

The right hand side of (6.4) also equals the expression
∑

u⊂N γ
λ
uC

|u| from The-
orem 5.1. We differentiate two regimes of the value of ̺. For ̺ < 3/2, λ ∈
(1/2, 1/(2̺− 1)) is admissible and we obtain by Hölder’s inequality with conjugate
exponents (1 + λ)/2λ̺ > 1 and (1 + λ)/(1− λ(2̺− 1)) > 1,

(6.5)

∑

u⊂{1:s}

(|u|!)2̺λ/(1+λ)
∏

j∈u

(
2C2

2b
2
jC

1/λ

α− 2bj

)λ/(1+λ)

≤


 ∑

u⊂{1:s}

|u|!
∏

j∈u

Aj




2̺λ/(1+λ)

×


 ∑

u⊂{1:s}

∏

j∈u

(
2C2

2b
2
jC

1/λ

(α− 2bj)A
2̺
j

)λ/(1−λ(2̺−1))



(1−λ(2̺−1))/(1+λ)

≤
(

1

1−∑j≥1Aj

)2̺λ/(1+λ)

exp


C̃

∑

j≥1

(
b2j

A2̺
j

)λ/(1−λ(2̺−1))

 ,
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where

C̃ =
1− λ(2̺− 1)

1 + λ

(
2C2

2C
1/λ

α− 2 supj>1{bj}

)λ/(1−λ(2̺−1))

and (Aj)j≥1 ∈ (0,∞)N is such that
∑
j≥1Aj < 1. We choose (Aj)j≥1 as

Aj :=
btj∑

j′≥1 b
t
j′ + ε′

, j ≥ 1,

for some ε′ > 0. There holds
∑
j≥1(b

2
j/A

2̺
j )λ/(1−λ(2̺−1)) <∞ if

(1− ̺t)
2λ

1− λ(2̺− 1)
≥ t ⇔ λ ≥ t

2− t
,

where the latter is satisfied for λ = t/(2− t) for t ∈ (2/3, 1/̺) and λ = 1/(2− 2ε)
for t ∈ (0, 2/3] and for some ε ∈ (0, 1/2). Thus, the assertion follows in the regime
̺ < 3/2 by Theorem 5.1.

For ̺ ≥ 3/2, we prove boundedness of the expression on the left hand side
of (6.5) by the simple fact that for any positive sequence (au)u⊂{1:s} and any ρ < 1,∑

u⊂{1:s} au ≤ (
∑

u⊂{1:s} a
ρ
u)

1/ρ. Specifically, for some c ∈ [1/̺, 3/(2̺)), ˜̺ := ̺c ∈
[1, 3/2), b̃j := bcj , j ≥ 1, and

∑

u⊂{1:s}

(|u|!)2̺λ/(1+λ)
∏

j∈u

(
2C2

2b
2
jC

1/λ

α− 2bj

)λ/(1+λ)

≤


 ∑

u⊂{1:s}

(|u|!)2˜̺λ/(1+λ)
(
2C2

2C
1/λ

α− 2bj

)|u|cλ/(1+λ)∏

j∈u

b̃
2λ/(1+λ)
j




1/c

.

Now the same argument as above can be applied with ˜̺= ̺c, (̃bj = bcj)j≥1 ∈ ℓt̃(N)

for t̃ = t/c in the latter case t̃ ∈ (0, 2/3]. Particularly, the choice c = (3/2)t
is admissible, where we may assume w.l.o.g. that (3/2)t ≥ 1/̺. This shows the
assertion also in the regime 0 < t < 1/̺ ≤ 2/3. �

Remark 6.2. For every linear functional G ∈ X ∗, the assumption (6.1) in Theo-
rem 6.1 is satisfied for [y → G(q(y))] with bj = bj = ‖ψj‖X , j ≥ 1, and ̺ = 1
by [16, Theorem 14]. This enables QMC with dimension-independent convergence
rates to approximate the prior expectation of G(q).

Recall from Section 4, the dimensionally truncated and FE discretized integrands
that are part of the BIP. Specifically, Z ′(y) = G(q(y)) exp(−Φ(u(y); δ) and Z(y) =
exp(−Φ(u(y); δ) and the respective versions after dimension truncation and FE
discretization, denoted by Z ′

s,hℓ
and Zs,hℓ

, were introduced in (4.1).

Proposition 6.3. Let p ∈ [1, 2]. Suppose that the observation functional O and the
parametric posterior [y 7→ u(y)] are such that (6.1) is satisfied by [y 7→ Zs,hℓ

(y)]
for some ̺ ≥ 1 and sequences (bj)j≥1, (bj)j≥1 with constants that neither depend on
s ∈ N nor on hℓ > 0. Let α be as in the assumptions of Theorem 6.1. For p ∈ (1, 2],
let ε > 0 be arbitrary and for p = 1, let ε > 0 satisfy ε > 2 supj≥1 ‖ψj‖X/(1 −
2 supj≥1 ‖ψj‖X). Then, there exists a constant Cε > 0 that neither depends on s
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nor on hℓ such that
√√√√√E∆



∣∣∣∣∣
Eµp(Z ′

s,hℓ
)

Eµp(Zs,hℓ
)
−
Q∆

s,N (Z ′
s,hℓ

)

Q∆

s,N (Zs,hℓ
)

∣∣∣∣∣

2

 ≤ CεN

−χ+ε,

where, for any 0 < t < 1/̺ ≤ 1,

(6.6) χ =

{
min{1/t− 1/2, 1} if p ∈ (1, 2],

min{1/t− 1/2, 1− α/2} if p = 1.

Proof. It holds that
(6.7)∣∣∣∣∣
Eµp(Z ′

s,hℓ
)

Eµp(Zs,hℓ
)
−
Q∆

s,N (Z ′
s,hℓ

)

Q∆

s,N (Zs,hℓ
)

∣∣∣∣∣

2

≤ 2

Eµp(Zs,hℓ
)2

[
|Eµp(Z ′

s,hℓ
)−Q∆

s,N (Z ′
s,hℓ

)|2

+
|Q∆

s,N (Z ′
s,hℓ

)|2
Q∆

s,N (Zs,hℓ
)2

|Eµp(Zs,hℓ
)−Q∆

s,N (Zs,hℓ
)|2
]
.

The previous estimate is to be understood in a.s. sense with respect to the random
shift ∆. Since Eµp(Zs,hℓ

) ≥ C > 0 for some C that does not depend s, h, see (4.3),
the QMC convergence rate bound of the first summand Eµp(Z ′

s,hℓ
) − Q∆

s,N (Z ′
s,hℓ

)

in (6.7) follows by Theorem 6.1. The map [y 7→ Z ′(y)] also satisfies (6.3). This
follows, for example, by [14, Proposition 3.4].

By the proof of [31, Lemma 5.3], the random quantity |Q∆

s,N (Z ′
s,hℓ

)|/Q∆

s,N (Zs,hℓ
)

satisfies that for every r, r̄ ∈ [1,∞) such that r ≤ r̄,

(
E∆

((
|Q∆

s,N (Z ′
s,hℓ

)|
Q∆

s,N (Zs,hℓ
)

)r))1/r

≤ ‖O(qs,hℓ
)‖Lr̄(Ω,µp;X )N

1/r̄.

For every ε > 0 by Hölder’s inequality

E∆

(
|Q∆

s,N (Z ′
s,hℓ

)|2
Q∆

s,N (Zs,hℓ
)2

|Eµp(Zs,hℓ
)−Q∆

s,N (Zs,hℓ
)|2
)

≤ E∆

(
|Q∆

s,N (Z ′
s,hℓ

)|2(1+ε)/ε
Q∆

s,N (Zs,hℓ
)2(1+ε)/ε

)ε/(1+ε)

E∆(|Eµp(Zs,hℓ
)−Q∆

s,N (Zs,hℓ
)|2(1+ε))1/(1+ε)

.

Since ‖O(qs,hℓ
)‖Lr̄(Ω,µp;X ) may be bounded uniformly with respect to s, hℓ for r̄ ∈

[1,∞) by (3.22), the previous two estimates imply

E∆

(
|Q∆

s,N (Z ′
s,hℓ

)|2
Q∆

s,N (Zs,hℓ
)2

|Eµp(Zs,hℓ
)−Q∆

s,N (Zs,hℓ
)|2
)

≤ Cε̄N
ε̄E∆(|Eµp(Zs,hℓ

)−Q∆

s,N (Zs,hℓ
)|2(1+ε))1/(1+ε)

where the constant Cε̄ > 0 depends on 0 < ε̄ ≤ ε/(1 + ε), but is independent of
s and of hℓ. For p ∈ (1, 2], ε may be chosen to be arbitrarily small. However, for
p = 1, we require supj≥1 ‖ψj‖X < ε/(2(1+ε)) for (3.22) to hold. This is equivalent
to

2 supj≥1 ‖ψj‖X
1− 2 supj≥1 ‖ψj‖X

< ε
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and results in the particular reduced convergence rate for p = 1.
The QMC points in (5.3) are randomized by the random shift ∆ and are dis-

tributed according to µsp. By the triangle inequality, the QMC quadrature is stable,
i.e., for every r ∈ [1,∞]

E∆
(
|Q∆

s,N (Zs,hℓ
)|r
)1/r ≤ ‖Zs,hℓ

‖Lr(Ω,µp) ≤ 1.

Note that in general, r = ∞ is excluded. However, here Zs,hℓ
≤ 1. By the real

method of interpolation of the linear operator F 7→ Eµp(F )−Q∆

s,N (F ) with inter-

polation couple (L2
∆
([0, 1]s), L∞

∆
([0, 1]s)), Theorem 6.1 implies with the previously

derived estimates that for every 1/2ε > 0 there exists Cε > 0 (independent of s, hℓ)
such that

√√√√E∆

(
|Q∆

s,N (Z ′
s,hℓ

)|2
Q∆

s,N (Zs,hℓ
)2

|Eµp(Zs,hℓ
)−Q∆

s,N (Zs,hℓ
)|2
)

≤ CεN
−χ+ε.

Note that Euler’s totient function satisfies that ϕ(N)−1 < N−1[eγ̃ log(log(N)) +
3 log(log(N))−1] for anyN ≥ 3, where γ̃ ≈ 0.5772 is the Euler–Mascheroni constant.
Hence, for every ε̃ > 0, there exists Cε̃ > 0 such that ϕ(N)−1 ≤ Cε̃N

−1+ε̃. Thus,
the proposition is proven. �

We summarize the error bounds of dimension truncation, FEM, and QMC quad-
rature and state an overall error estimate in the following corollary.

Corollary 6.4. Let the assumptions of Propositions 6.3 and 4.1 be satisfied. Sup-
pose that the sequence (‖ψj‖L∞(D))j≥1 ∈ ℓt(N) is decreasing. For p ∈ (1, 2], let
ε > 0 be arbitrary. For p = 1, assume that ε > 2‖ψ1‖X/(1 − 2‖ψ1‖X). Then,
there exists a constant C > 0 (independent of s, hℓ, and N) such that for any
0 < ε≪ 1/2,

√√√√√E∆



∣∣∣∣∣
Eµp(Z ′)

Eµp(Z)
−
Q∆

s,N (Z ′
s,hℓ

)

Q∆

s,N (Zs,hℓ
)

∣∣∣∣∣

2

 ≤ C

(
‖ψs‖1−t/ιL∞(D) + hτ+τ

′

ℓ +N−χ+ε
)
,

where χ is specified in (6.6). For p ∈ (1, 2], ι = 2, and for p = 1, ι = 1.

Proof. Since the sequence (‖ψj‖L∞(D))j≥1 is decreasing, it holds that

∑

j>s

‖ψj‖ιL∞(D) ≤ ‖ψs‖ι−tL∞(D)

∑

j>s

‖ψj‖tL∞(D) ≤ ‖ψs‖ι−tL∞(D)

∑

j≥1

‖ψj‖tL∞(D) <∞.

The assertion follows now by Propositions 6.3 and 4.1. �

7. Parametric regularity of the posterior

In this section, we investigate parametric regularity of the mappings [y 7→ Z(y)]
and [y 7→ Z ′(y)] in certain cases. Up to this point a0 ≡ 0 in (3.6) was admissible. In
the ensuing analysis of parametric regularity of the posterior density, the stronger
assumption ess infx∈D{a0(x)} > 0 is required as stated in the following proposition.
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Proposition 7.1. Suppose that O ∈ X ∗. Assume that ā := ess infx∈D{a0(x)} > 0.
Then, with a constant C0 ≤ 1.1 for any δ ∈ R and every u ⊂ N such that |u| <∞,

∣∣∣∣∂
u

y exp

(
−|δ −O(q(y))|2

2

)∣∣∣∣

≤ C0
(|u|!)3/2
(log(2))|u|

max

{‖O‖X∗‖f‖X∗

ā
, 1

}|u|

exp

(
π

√
2|u|
3

)
∏

j∈u

bj .

Proof. We use multi-index notation: for every u ⊂ N with |u| < ∞, there exists
τ ∈ {0, 1}N with |τ | =∑j≥1 τj <∞ such that j ∈ u ⇔ τj = 1. Define the Hermite
polynomials by H0 ≡ 1 and

Hn(ξ) := (−1)neξ
2/2 dn

dξn
e−ξ

2/2, n ∈ N, ξ ∈ R.

Cramér’s inequality (see e.g. [1, Equations (22.5.18) and (22.14.17)]) states

|Hn(ξ)| ≤ C0e
ξ2/4

√
n! ∀n ∈ N, ∀ξ ∈ R,

where C0 ≤ 1.0866. Thus,

(7.1)

∣∣∣∣
dn

dξn
e−ξ

2/2

∣∣∣∣ ≤ C0e
−ξ2/4

√
n! ∀n ∈ N, ∀ξ ∈ R.

By Faa di Bruno’s formula (e.g. [7, Corollary 2.10]), for any multi-index τ ∈ {0, 1}N
such that |τ | <∞,

∂τy exp

(
−|δ −O(q(y))|2

2

)
=

|τ |∑

r=1

dr

dξr
e−ξ

2/2

∣∣∣∣∣
ξ=δ−O(q(y))

∑

P (r,τ )

r∏

i=1

∂ν
(i)

y O(q(y)),

where

P (r, τ ) :=

{
ν(1), . . . ,ν(r) ∈ {0, 1}N : 0 ≺ ν(1) ≺ . . . ≺ ν(r) and

r∑

i=1

ν(i) = τ

}
.

The linear order “≺” is defined on [7, p. 505]. By [16, Theorem 14], (7.1), and the
fact that a(y)−1 ≤ ā−1 <∞ by assumption,
∣∣∣∣∂

τ
y exp

(
−|δ −O(q(y))|2

2

)∣∣∣∣

≤ C0e
−|δ−O(q(y))|2/4

|τ |∑

r=1

√
r!

(‖O‖X∗‖f‖X∗

ā

)r ∑

P (r,τ )

r∏

i=1


 |ν(i)|!
(log(2))|ν(i)|

∏

j≥1

b
ν

(i)
j

j




≤ C0C
|τ |
1 e−|δ−O(q(y))|2/4

√
|τ |!

(log(2))|τ |

∏

j≥1

b
τ j

j

|τ |∑

r=1

∑

P (r,τ )

r∏

i=1

|ν(i)|!,

where C1 := max{‖O‖X∗‖f‖X∗/ā, 1}. The quantity
∑|τ |
r=1

∑
P (r,τ )

∏r
i=1 |ν(i)|! is

estimated on [31, p. 516]. There, it is shown as the last display equation on [31,
p. 516] that

|τ |∑

r=1

∑

P (r,τ )

r∏

i=1

|ν(i)|! ≤ exp

(
π

√
2|τ |
3

)
|τ |!,

which implies the assertion of this proposition. �
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The parametric regularity estimate in Proposition 7.1 is a version of [31, As-
sumption A4]. The proof follows the exposition in [31, Appendix A]. Detail to a
certain extent is provided, since a different bound for Hermite polynomials is used
compared to [31, Equation (A.1)].

Lemma 7.2. Under the assumptions of Proposition 7.1. Suppose that G ∈ X ∗.
Then, there exist constants C1, C2 > 0 (depending on ū f , O, and δ) such that for
any u ⊂ N with |u| <∞,

∣∣∣∣∂
u

yG(q(y)) exp
(
−|δ −O(q(y))|2

2

)∣∣∣∣ ≤ C1(|u|!)3/2C |u|
2

∏

j∈u

bj .

Proof. This follows by Proposition 7.1 and the proof of [14, Proposition 3.4]. �

Remark 7.3. In the setting of Lemma 7.2, the assumptions of Proposition 6.3 are
satisfied with (bj)j≥1 ≡ 0. Then, for p = 1 in Proposition 6.3 and in Corollary 6.4,
also every ε > 0 is admissible, which results in a dimension-independent QMC
convergence rate of essentially χ, where χ is specified in (6.6).

8. Numerical experiments

We study numerically the convergence of QMC under a Besov prior for a BIP.
Therefore, we fix a truncation dimension s ∈ N and a FE mesh width h and vary the
number of QMC pointsN . In our numerical tests, D = (0, 1)2. We subdivideD into
four squaresDi, i = 1, . . . , 4, whereD1 = (0, 1/2)×(0, 1/2), D2 = (1/2, 1)×(0, 1/2),

D3 = (1/2, 1) × (1/2, 1), and D4 = (0, 1/2) × (1/2, 1). Thus, D =
⋃4
i=1Di. The

observation functional O is given by a vector O = (O1,O2,O3) such that Oi ∈ X ∗,
i = 1, 2, 3, is the average over a subdomain of D, i.e., for i = 1, 2, 3,

Oi(v) =
1

|Di|

∫

Di

v dx, v ∈ X ,

where |Di| denotes the area of Di. The function system (ψj)j≥1 is chosen to be

(8.1) ψj(k1,k2)(x1, x2) = σ
κβ−1

(k21 + k22 + κ2)β/2
sin(πk1x1) sin(πk2x2), k1, k2 ∈ N,

for some κ ≥ 1, σ > 0, η > 1 (which are specified below), where the index mapping
j : N2 → N is such that (‖ψj‖L∞(D))j≥1 is monotonically decreasing. This particu-
lar decay in (8.1) is inspired by so-called Matérn random fields, see for example [11,
Section 6.7]. The QoI G ∈ X ∗ is given by

G(v) = 1

|D4|

∫

D4

v dx, v ∈ X .

We consider the input-to-solution forward map S, which maps the uncertain coeffi-
cient u to the solution q to (3.2); here with right hand side function f(x1, x2) = x1.
These are approximated by Sh and qs,h = Sh(us) with fixed s ∈ N and h > 0 as
mentioned above. The function a0 in (3.6) is assumed to be constant. For a0 > 0,
Theorem 6.1 with (bj)j≥1 ≡ 0, Propositions 6.3 and 7.1, and Lemma 7.2 imply
dimension-independent convergence rates of QMC with QMC weights

(8.2) γu =


(|u|!)̺

∏

j∈u

c‖ψj‖X




2/(1+λ)

, u ⊂ {1 : s},
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for ̺ = 3/2, and some λ ∈ (1/2, 1], with some c > 0 to be specified, see also the
discussion on [16, p. 359] on the “alternative choice of weights”. The idea to scale
the weight sequence by a positive constant to obtain numerically more suitable
generating vectors was proposed in [15].

Here, ̺ = 3/2 is the borderline case in Theorem 6.1. We compute the generating
vectors using product and order dependent (POD for short) QMC weights (8.2)
by the fast CBC algorithm with parameters c = 0.1, λ = 0.55, and QMC weight
function parameter α = (2.1)−1. We use first order FEM on a uniform mesh of
axiparallel squares with h = 2−7 and truncate the the affine-parametric input u
in (3.4) to s = 400 terms, which subsequently is the integration dimension in the
Bayesian inversion. The occurring linear systems are solved by a sparse direct
solver. We note that for large scale problems fast iterative solver are admissible
also in the cases of unbounded priors, cf. [18]. The error vs. work analysis has
been extended to multilevel QMC under Besov priors with fast iterative solvers for
the discretized forward PDE in [19, Chapter 5]. There, numerical experiments are
reported which are in agreement with the theoretical error bounds.

We suppose that the additive Gaussian noise η in (2.1) is uncorrelated with co-
variance Σ = σ2

noiseId for σ2
noise > 0 to be specified. In Figures 1(a) and 1(b), we

compare the approximation by QMC under Besov priors for different noise levels
σ2
noise > 0 and in the cases ess infx∈D{a0} > 0 and ess infx∈D{a0} = 0. The follow-

ing numbers of QMC pointsN ∈ {31, 61, 127, 251, 509, 1021, 2039, 4093, 8191, 16381}
are used. The root-mean-square error (RMSE for short) has been approximated by
20 independent random shifts, where the reference value has been computed as the
average over 20 independent random shifts with Nref = 32761 many QMC points.
In the case that ess infx∈D{a0} > 0, Propositions 6.3 and 7.1 imply a convergence
rate of essentially first order and with chosen value of λ = 0.55 a convergence rate
independent of the dimension of ≈ 0.91. The data δi = (Oi◦Sh)(us(y0)), i = 1, 2, 3,
has been synthetically generated by a fixed y0 ∈ Rs drawn from the Besov prior
defined by (3.4) and (8.1) with p = 1.5, s = 400, h = 2−7. Recall that qs,h = Sh(us)
has been introduced in (3.21).

We observe that QMC also seems applicable to this BIP in the case that a0 ≡ 0.
However, the dependence on the additive Gaussian noise seems more sensitive for
small variances σ2

noise > 0 and larger number of QMC points. As indicated at the
end of Section 4, the constants in the error estimates depend expontially on σ−2

noise.

9. Conclusions

We established the first dimension-independent convergence rate bounds for
quasi-Monte Carlo integration for Bayesian inverse problems for second order, linear
elliptic divergence-form PDEs with uncertain coefficients that have a distribution
with unbounded support. We admitted Besov priors µp in the regime p ∈ [1, 2].
In particular, in the case p = 1, which corresponds to the Laplace distribution,
a smallness assumption on the function system Ψ representing the uncertain log-
diffusion coefficient was required in the theoretical analysis in order for log-Besov
coefficients in the elliptic PDE (3.1) to be admissible.

Forward UQ under the presently considered Besov function space prior µp with
QMC quadratures has been analyzed in [19]. In particular in [19] it was shown in
[19] that representation systems Ψ with locally supported functions allow for QMC
integration rules with so-called product weights. This allows fast CBC algorithms
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(a) a0 ≡ 0.5
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(b) a0 ≡ 0

Figure 1. Convergence of QMC: comparison of a0 ≡ 0.5 with
a0 ≡ 0 for p = 1.5, σ = 0.5, β = 3, κ = 5

with computational cost that scales linear with respect to the integration dimension
s. The QMC POD weights used in this work allow generally for fast CBC algorithms
with computational cost that is quadratic with respect to s. Due to the appearance
of the particular order dependent term while differentiating Hermite polynomials
(see (7.1)) in the estimates of parametric regularity of the posterior density, locally
supported ψj in the affine-parametric representation (3.4) are not straightforwardly
giving rise to QMC product weights in the context of Bayesian estimation by QMC.
Locally supported representation systems for the function space input may facilitate
more efficient QMC integration procedures (see, e.g., the analysis in [21, 24, 22]).

We also explained (Remark 3.4) the connection between s-term truncation of
the parametric uncertain function space input u(y) in (3.4) and the corresponding
stochastic interpretation in connection with Bayesian prior modelling.

The present, single-level QMC-FE algorithms naturally can be generalized in
several directions. In particular, multilevel QMC methods could be considered,
e.g., for ess infx∈D{a0(x)} > 0, along the lines of the analysis in [10] for uniform
priors. Rather than the model linear, elliptic divergence-form PDE (3.1), Bayesian
inverse problems for more general forward models, such as anisotropic diffusion or
linearized elastostatics, with distributed, parametric inputs (2.2) could be treated
in exactly the same fashion.
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[4] I. Babuška and B. Q. Guo. Regularity of the solution of elliptic problems with piecewise
analytic data. I. Boundary value problems for linear elliptic equation of second order. SIAM
J. Math. Anal., 19(1):172–203, 1988.
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