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Abstract

For a parameter dimension d ∈ N, we consider the approximation of many-parametric maps
u : [−1, 1]d → R by deep ReLU neural networks. The input dimension d may possibly be large,
and we assume quantitative control of the domain of holomorphy of u: i.e., u admits a holomor-
phic extension to a Bernstein polyellipse Eρ1 × ...×Eρd

⊂ C
d of semiaxis sums ρi > 1 containing

[−1, 1]d. We establish the exponential rate O(exp(−bN1/(d+1))) of expressive power in terms
of the total NN size N and of the input dimension d of the ReLU NN in W 1,∞([−1, 1]d). The
constant b > 0 depends on (ρj)

d
j=1 which characterizes the coordinate-wise sizes of the Bernstein-

ellipses for u. We prove exponential convergence in stronger norms for the approximation by
DNNs with more regular, so-called “rectified power unit” (RePU) activations.
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1 Introduction

In recent years, so-called deep artificial neural networks (‘DNNs’ for short) have seen a dramatic
development in applications from data science and machine learning.

Accordingly, after early results in the ’90s on genericity and universality of DNNs (see [22] for
a survey and references), in recent years the refined mathematical analysis of their approxima-
tion properties has received increasing attention. A particular class of many-parametric maps
whose DNN approximation needs to be considered in many applications are real-analytic and
holomorphic maps. Accordingly, the question of DNN expression rate bounds for such maps has
received some attention in the approximation theory literature [16, 17, 7].

It is well-known that multi-variate, holomorphic maps admit exponential expression rates
by multivariate polynomials. In particular, countably-parametric maps u : [−1, 1]∞ → R can
be represented under certain conditions by so-called generalized polynomial chaos expansions
which, in turn, can be N -term truncated with controlled approximation rate bounds in terms
of N . The polynomials which appear in such expansions can, in turn, be represented by DNNs,
either exactly for certain activation functions, or approximately for example for the so-called
rectified linear unit (“ReLU”) activation with exponentially small representation error [13, 26].

The purpose of the present paper is to establish corresponding DNN expression rate bounds in
Lipschitz-norm for high-dimensional, analytic maps u : [−1, 1]d → R. We focus on ReLU DNNs,
but comment in passing also on versions of our results for other DNN activation functions.
Next, we briefly discuss the relation of previous results to the present work and also outline the
structure of this paper.

1.1 Recent mathematical results on expressive power of DNNs

The survey [22] presented succinct proofs of genericity of shallow NNs in various function classes,
as shown originally e.g. in [11, 10, 15] and reviewed the state of mathematical theory of DNNs
up to that point. Moreover, exponential expression rate bounds for analytic functions by neural
networks had already been achieved in the ’90s. We mention in particular [17] where smooth,
nonpolynomial activation functions were considered.

More closely related to the present work are the references [7, 16]. In [16], approximation
rates for deep NN approximations of multivariate functions which are analytic have been inves-
tigated. Exponential rate bounds in terms of the total size of the NN have been obtained, for
sigmoidal activation functions. In [7], DNN approximation of certain functions u : [−1, 1]d → R

which admit holomorphic extensions to C
d by deep ReLU NNs has been considered. In partic-

ular, it was assumed that u admits a Taylor expansion about the origin of Cd which converges
absolutely and uniformly on [−1, 1]d. It is well-known that not every u which is real-analytic
in [−1, 1]d admits such an expansion. In the present paper, we prove sharper expression rate
bounds for both, the ReLU activation σ1 and RePU activations σr, for functions which merely
are assumed to be real-analytic in [−1, 1]d, in L∞([−1, 1]d) and in stronger norms thereby gen-
eralizing both [7] and [16].
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1.2 Contributions of the present paper

We prove exponential expression rate bounds of DNNs for d-variate, real-valued functions which
depend analytically on their d inputs. Specifically, for holomorphic mappings u : [−1, 1]d → R,
we prove expression error bounds in L∞([−1, 1]d) and in W k,∞([−1, 1]d), for k ∈ N (the precise
range of k depending on properties of the NN activation σ). We consider both, ReLU activation
σ1 : R → R+ : x 7→ x+ and RePU activations σr : R → R+ : x 7→ (x+)

r for some integer r ≥ 2.
Here, x+ = max{x, 0}. The expression error bounds with σ1 as activation are in W 1,∞([−1, 1]d)
and of the general type O(exp(−bN1/(d+1))) in terms of the NN size N and with a constant
b > 0 depending on the domain of analyticity, but independent of N (however, with the constant
implied in the Landau symbol O(·) depending exponentially on d, in general). With activation
σr for r ≥ 2, the bounds are in W k,∞([−1, 1]d) for arbitrary fixed k ∈ N and of the type
O(exp(−bN1/d)) in terms of the NN size N . For all r ∈ N, the parameters of the σr-neural
networks approximating u (so-called “weights” and “biases”) are continuous functions of u in
appropriate norms.

1.3 Outline

The structure of the paper is as follows. In Section 2, we present the definition of the DNN
architectures and fix notation and terminology. We also review in Section 2.2 a “ReLU DNN
calculus”, from recent work [21, 8], which will facilitate the ensuing DNN expression rate analy-
sis. A first set of key results are ReLU DNN expression rates in W 1,∞([−1, 1]d) for multivariate
Legendre polynomials, which are proved in Section 2.3. These novel expression rate bounds are
explicit in the W 1,∞-accuracy and in the polynomial degree. They are of independent interest
and remarkable in that the ReLU DNNs which emulate the polynomials at exponential rates,
as we prove, realize continuous, piecewise affine functions. They are based on [13, 26]. The
proofs, being constructive, shed a rather precise light on the architecture, in particular depth
and width of the ReLU DNNs, that is sufficient for polynomial emulation. In Section 2.4, we
briefly comment on corresponding results for RePU activations; as a rule, the same exponential
rates are achieved for slightly smaller NNs and in norms which are stronger than W 1,∞.

Section 3 then contains the main results of this note: exponential ReLU DNN expression
rate bounds for d-variate, holomorphic maps. They are based on a) polynomial approximation
of these maps and on b) ReLU DNN reapproximation of the approximating polynomials. These
are presented in Sections 3.1 and 3.2. Again we comment in Section 3.3 on modifications in
the results for RePU activations. Section 4 contains a brief indication of further directions and
open problems.

Acknowledgement: SNSF Early Postdoc.Mobility Fellowship 184530 to JZ. Research per-
formed in part during a visit to the CRM Montreal, Canada, of CS and JZ in May 2019.

1.4 Notation

We adopt standard notation consistent with our previous works [29, 30]: N = {1, 2, . . . } and
N0 := N∪{0}. We write R+ := {x ∈ R : x ≥ 0}. The symbol C will stand for a generic, positive
constant independent of any asymptotic quantities in an estimate, which may change its value
even within the same equation.

In statements about polynomial expansions we require multiindices ν = (νj)j=1,...,d ∈ N
d
0 for

d ∈ N. The total order of a multiindex ν is denoted by |ν|1 :=
∑d

j=1 νj . The notation suppν
stands for the support of the multiindex, i.e. suppν = {j ∈ {1, . . . , d} : νj 6= 0}. The size of the
support of ν ∈ N

d
0 is | suppν|; it will, subsequently, indicate the number of active coordinates

in the multivariate monomial term y
ν :=

∏d
j=1 y

νj

j .
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A subset Λ ⊆ N
d
0 is called downward closed1, if ν = (νj)

d
j=1 ∈ Λ implies µ = (µ)dj=1 ∈ Λ for

all µ ≤ ν. Here, the ordering “≤” on N
d
0 is defined as µj ≤ νj , for all j = 1, . . . , d. We write |Λ|

to denote the finite cardinality of a set Λ.
We write Bε := {z ∈ C : |z| < ε}. Elements of Cd will be denoted by boldface characters

such as y = (yj)
d
j=1 ∈ [−1, 1]d ⊂ C

d. For ν ∈ N
d
0, standard notations y

ν :=
∏d

j=1 y
νj

j and

ν! =
∏d

j=1 νj ! will be employed (with the conventions 0! := 1 and 00 := 1). For finite index sets

Λ ⊂ N
d
0 we denote PΛ := span{yν}ν∈Λ.

2 Deep neural network approximations

2.1 DNN architecture

We consider deep neural networks (DNNs for short) of feed forward type. Such a NN f can
mathematically be described as a repeated composition of linear transformations with a nonlin-
ear activation function.

More precisely: For an activation function σ : R → R, a fixed number of hidden layers
L ∈ N, numbers Nℓ ∈ N of computation nodes in layer ℓ ∈ {0, . . . , L}, f : RN0 → R

NL+1 is
realized by a feedforward neural network, if for certain weights wℓ

i,j ∈ R, and biases bℓj ∈ R it

holds for all x = (xi)
N0
i=1

z1j = σ

(
N0∑

i=1

w1
i,jxi + b1j

)
, j ∈ {1, . . . , N1} , (2.1)

and

zℓ+1
j = σ

(
Nℓ∑

i=1

wℓ+1
i,j zℓi + bℓ+1

j

)
, ℓ ∈ {1, . . . , L− 1}, j ∈ {1, . . . , Nℓ+1} , (2.2)

and finally

f(x) = (zL+1
j )

NL+1

j=1 =

(
NL∑

i=1

wL+1
i,j zLi + bL+1

j

)NL+1

j=1

. (2.3)

In this case n = N0 is the dimension of the input, and m = NL+1 is the dimension of the output.
Furthermore zℓj denotes the output of unit j in layer ℓ. The weight wℓ

i,j has the interpretation
of connecting the ith unit in layer ℓ− 1 with the jth unit in layer ℓ.

Except when explicitly stated, we will not distinguish between the network (which is defined
through σ, the wℓ

i,j and b
ℓ
j) and the function f : RN0 → R

NL+1 it realizes. We note in passing that
this relation is typically not one-to-one, i.e. different NNs may realize the same function as their
output. Let us also emphasize that we allow the weights wℓ

i,j and biases bℓj for ℓ ∈ {1, . . . , L+1},
i ∈ {1, . . . , Nℓ−1} and j ∈ {1, . . . , Nℓ} to take any value in R, i.e. we do not consider quantization
as e.g. in [1, 21].

As is customary in the theory of NNs, the number of hidden layers L of a NN is referred to
as depth2 and the total number of nonzero weights and biases as the size of the NN. Hence, for
a DNN f as in (2.1)-(2.3), we define

size(f) := |{(i, j, ℓ) : wℓ
i,j 6= 0}|+ |{(j, ℓ) : bℓj 6= 0}| and depth(f) := L.

1Index sets with the ”downward closed” property are also referred to in the literature [18] as lower sets.
2In other recent references (e.g. [19]), slightly different terminology for the number L of layers in the DNN differing

from the convention in the present paper by a constant factor, is used. This difference will be inconsequential for all
results that follow.
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In addition, sizein(f) := |{(i, j) : w1
i,j 6= 0}| + |{j : b1j 6= 0}| and sizeout(f) := |{(i, j) : wL+1

i,j 6=
0}| + |{j : bL+1

j 6= 0}|, which are the number of nonzero weights and biases in the input layer
of f and in the output layer, respectively.

The proofs of our main results Theorem 3.7 and Theorem 3.9 are constructive, in the sense
that we will explicitly construct NNs with the desired properties. We construct these NNs
by assembling smaller networks, using the operations of concatenation and parallelization, as
well as so-called “identity-networks” which realize the identity mapping. Below, we recall the
definitions. For these operations, we also provide bounds on the number of nonzero weights in
the input layer and the output layer of the corresponding network, which can be derived from
the definitions in [21].

2.2 DNN calculus

Throughout, as activation function σ we consider either the ReLU activation function

σ1(x) := max{0, x} x ∈ R (2.4)

or, as suggested in [16, 14, 12], for r ∈ N, r ≥ 2, the RePU activation function

σr(x) := max{0, x}r x ∈ R. (2.5)

If a NN uses σr as activation function, we refer to it as σr-NN. ReLU NNs are referred to as
σ1-NNs. We assume throughout that all activations in a DNN are of equal type.

Remark 2.1 (Historical note on rectified power units). “Rectified power unit” (RePU) activa-
tion functions are particular cases of so-called sigmoidal functions of order k ∈ N for k ≥ 2,

i.e. limx→∞
σ(x)
xk = 1, limx→−∞

σ(x)
xk = 0 and |σ(x)| ≤ K(1 + |x|)k for x ∈ R. The use of NNs

with such activation functions for function approximation dates back to the early 1990’s, cf. e.g.
[16, 14]. In fact, proofs in [16, Section 3] proceed in three steps. First, a given function f was
approximated by a polynomial, then this polynomial was expressed as a linear combination of
powers of a RePU, and finally it was shown that for r ≥ 2 and arbitrary A > 0 the RePU σr
can be approximated on [−A,A] with arbitrary small L∞([−A,A])-precision ε by a NN with a
sigmoidal activation function of order k ≥ r, which has depth 1 and fixed network size ([16,
Lemma 3.6]).

The exact realization of polynomials by σr-networks for r ≥ 2 was observed in the proof of
[16, Theorem 3.3], based on ideas in the proof of [3, Theorem 3.1]. The same result was recently
rediscovered in [12, Theorem 6], whose authors were apparently not aware of [3, 16].

We now indicate several fundamental operations on NNs which will be used in the following.
These operations have been frequently used in recent works [21, 19, 8].

2.2.1 Parallelization

We now recall the parallelization of two networks f and g, which in parallel emulates f and g. We
first describe the parallelization of networks with the same inputs as in [21], the parallelization
of networks with different inputs is similar and introduced directly afterwards.

Let f and g be two NNs with the same depth L ∈ N0 and the same input dimension n ∈ N.
Denote by mf the output dimension of f and by mg the output dimension of g. Then there
exists a neural network (f, g), called parallelization of f and g, which in parallel emulates f and
g, i.e.

(f, g) : Rn → R
mf × R

mg : x 7→ (f(x), g(x)).

It holds that depth((f, g)) = L and that size((f, g)) = size(f)+size(g), sizein((f, g)) = sizein(f)+
sizein(g) and sizeout((f, g)) = sizeout(f) + sizeout(g).
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We next recall the parallelization of networks with inputs of possibly different dimension
as in [8]. To this end, we let f and g be two NNs with the same depth L ∈ N0 whose input
dimensions nf and ng may be different, and whose output dimensions we will denote by mf and
mg, respectively.

Then there exists a neural network (f, g)d, called full parallelization of networks with distinct
inputs of f and g, which in parallel emulates f and g, i.e.

(f, g)d : Rnf × R
ng → R

mf × R
mg : (x, x̃) 7→ (f(x), g(x̃)).

It holds that depth((f, g)d) = L and that size((f, g)d) = size(f) + size(g), sizein((f, g)d) =
sizein(f) + sizein(g) and sizeout((f, g)d) = sizeout(f) + sizeout(g).

Parallelizations of networks with possibly different inputs can be used consecutively to em-
ulate multiple networks in parallel.

2.2.2 Identity networks

We now recall identity networks ([21, Lemma 2.3]), which emulate the identity map.
For all n ∈ N and L ∈ N0 there exists a σ1-identity network IdRn of depth L which emulates

the identity map IdRn : Rn → R
n : x 7→ x. It holds that

size(IdRn) ≤ 2n(depth(IdRn) + 1), sizein(IdRn) ≤ 2n, sizeout(IdRn) ≤ 2n.

Analogously, for r ≥ 2 there exist σr-identity networks. To construct them, we use the
concatenation f • g of two NNs f and g as introduced in [21, Definition 2.2]. As we shall make
use of it subsequently in Propositions 2.3 and 2.4, we recall its definition here for convenience
of the reader.

Definition 2.2 ([21, Definition 2.2]). Let f, g be such that the output dimension of g equals the
input dimension of f , which we denote by k. Denote the weights and biases of f by {uℓi,j}i,j,ℓ and
{aℓj}j,ℓ and those of g by {vℓi,j}i,j,ℓ and {cℓj}j,ℓ. Then, the NN f • g emulates the composition
x 7→ f(g(x)) and satisfies depth(f • g) = depth(f) + depth(g). Its weights and biases, for
ℓ = 1, . . . , depth(f) + depth(g), are given by

wℓ
i,j =





vℓi,j ℓ ≤ depth(g),∑k
q=1 v

ℓ
i,qu

1
q,j ℓ = depth(g) + 1,

u
ℓ−depth(g)
i,j ℓ > depth(g) + 1,

bℓj =





cℓi,j ℓ ≤ depth(g),∑k
q=1 c

ℓ
qu

1
q,j + a1j ℓ = depth(g) + 1,

a
ℓ−depth(g)
j ℓ > depth(g) + 1.

Proposition 2.3. For all r ≥ 2, n ∈ N and L ∈ N0 there exists a σr-NN IdRn of depth L which
emulates the identity function IdRn : Rn → R

n : x 7→ x. It holds that

size(IdRn) ≤ nL(4r2 + 2r), sizein(IdRn) ≤ 4nr, sizeout(IdRn) ≤ n(2r + 1).

Proof. We proceed in two steps: first we discuss L = 1, then L > 1.
Step 1. It was shown in [12, Theorem 5] that there exist (ak)

r
k=0 ∈ R

r+1 and (bk)
r
k=1 ∈ R

r

such that for all x ∈ R

x = a0 +
r∑

k=1

ak(x+ bk)
r = a0 +

r∑

k=1

akσr(x+ bk) +
r∑

k=1

ak(−1)rσr(−x− bk).

This shows the existence of a network IdR1 : R → R of depth 1 realizing the identity on R.
The network employs 2r weights and 2r biases in the first layer, and 2r weights and one bias
(namely a0) in the output layer. Its size is thus 6r + 1.

Step 2. For L > 1, we consider the L-fold concatenation IdR1 • · · · • IdR1 of the identity
network IdR1 from Step 1. The resulting network has depth L, input dimension 1 and output
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dimension 1. The number of weights and the number of biases in the first layer both equal 2r,
the number of weights in the output layer equals 2r, and the number of biases 1. In each of the
L− 1 other hidden layers, the number of weights is 4r2, and the number of biases 2r. In total,
the network has size at most 4r+ (L− 1)(4r2 +2r) + 2r+1 ≤ L(4r2 +2r), where we used that
r ≥ 2.

Identity networks with input size n ∈ N are obtained as the parallelization with distinct
inputs of n identity networks with input size 1.

2.2.3 Sparse concatenation

The sparse concatenation of two σ1-NNs f and g was introduced in [21].
Let f and g be σ1-NNs, such that the number of nodes in the output layer of g equals the

number of nodes in the input layer of f . Denote by n the number of nodes in the input layer of
g, and by m the number of nodes in the output layer of f . Then, with “•” as in Definition 2.2,
the sparse concatenation of the NNs f and g is defined as the network

f ◦ g := f • IdRk •g, (2.6)

where IdRk is the σ1-identity network of depth 1. The network f ◦ g realizes the function

f ◦ g : Rn → R
m : x 7→ (f(g(x)), (2.7)

i.e., by abuse of notation, the symbol “◦” has two meanings here, depending on whether we
interpret f ◦ g as a function or as a network. This will not be the cause of confusion however.
It holds depth(f ◦ g) = depth(f) + 1 + depth(g),

size(f ◦ g) = size(f) + sizein(f) + sizeout(g) + size(g) ≤ 2 size(f) + 2 size(g) (2.8)

and

sizein(f ◦ g) =
{
sizein(g) depth(g) ≥ 1,

2 sizein(g) depth(g) = 0,
sizeout(f ◦ g) =

{
sizeout(f) depth(f) ≥ 1,

2 sizeout(f) depth(f) = 0.

For a proof, we refer to [21].
A similar result holds for σr-NNs. In this case we define the sparse concatenation f ◦ g as in

(2.6), but with IdRk now denoting the σr-identity network of depth 1 from Proposition 2.3.

Proposition 2.4. For r ≥ 2 let f, g be two σr-NNs such that the output dimension of g, which
we denote by k ∈ N, equals the input dimension of f , and suppose that sizein(f), sizeout(g) ≥ k.
Denote by f ◦ g the σr-network obtained by the σr-sparse concatenation.

Then depth(f ◦ g) = depth(f) + 1 + depth(g) and

size(f ◦ g) ≤ size(f) + (2r − 1) sizein(f) + (2r + 1)k + (2r − 1) sizeout(g) + size(g)

≤ size(f) + 2r sizein(f) + (4r − 1) sizeout(g) + size(g)

≤ (2r + 1) size(f) + 4r size(g).

(2.9)

Furthermore,

sizein(f ◦ g) ≤
{
sizein(g) depth(g) ≥ 1,

2r sizein(g) + 2rk ≤ 4r sizein(g) depth(g) = 0,

sizeout(f ◦ g) ≤
{
sizeout(f) depth(f) ≥ 1,

2r sizeout(f) + k ≤ (2r + 1) sizeout(f) depth(f) = 0.

7



Proof. It follows directly from Definition 2.2 and Proposition 2.3 that depth(f ◦g) = depth(f)+
1+depth(g). To bound the size of the network, note that the weights in layers ℓ = 1, . . . , depth(g)
equal those in the first depth(g) layers of g. Those in layers ℓ = depth(g)+2, . . . , depth(g)+2+
depth(f) equal those in the last depth(f) layers of f . Layer ℓ = depth(g) + 1 has 2r sizeout(g)
weights and 2rk biases, whereas layer ℓ = depth(g) + 2 has 2r sizein(f) weights and k biases.
This shows Equation (2.9) and the bound on sizein(f ◦ g) and sizeout(f ◦ g).

Identity networks are often used in combination with parallelizations. In order to parallelize
two networks f and g with depth(f) < depth(g), the network f can be concatenated with an
identity network, resulting in a network whose depth equals depth(g) and which emulates the
same function as f .

2.3 ReLU DNN approximation of polynomials

2.3.1 Basic results

In [13] it was shown that deep networks employing both ReL and BiS (“binary step”) units
are capable of approximating the product of two numbers with a network whose size and depth
increase merely logarithmically in the accuracy. In other words, certain neural networks achieve
uniform exponential convergence of the operation of multiplication (of two numbers in a bounded
interval) w.r.t. the network size. Independently, a similar result for ReLU networks was obtained
in [26]. Here, we shall use the latter result in the following slightly more general form shown in
[25]. Contrary to [26], it provides a bound of the error in the W 1,∞([−1, 1]) norm (instead of
the L∞([−1, 1]) norm).

Proposition 2.5. For any δ ∈ (0, 1) and M ≥ 1 there exists a σ1-NN ×̃δ,M : [−M,M ]2 → R

such that

sup
|a|,|b|≤M

|ab− ×̃δ,M (a, b)| ≤ δ, ess sup
|a|,|b|≤M

max

{∣∣∣∣b−
∂

∂a
×̃δ,M (a, b)

∣∣∣∣ ,
∣∣∣∣a−

∂

∂b
×̃δ,M (a, b)

∣∣∣∣
}

≤ δ,

(2.10)
where ∂

∂a ×̃δ,M (a, b) and ∂
∂b ×̃δ,M (a, b) denote weak derivatives. There exists a constant C > 0

independent of δ ∈ (0, 1) and M ≥ 1 such that sizein(×̃δ,M ) ≤ C, sizeout(×̃δ,M ) ≤ C,

depth(×̃δ,M ) ≤ C(1 + log2(M/δ)), size(×̃δ,M ) ≤ C(1 + log2(M/δ)).

Moreover, for every a ∈ [−M,M ], there exists a finite set Na ⊆ [−M,M ] such that b 7→
×̃δ,M (a, b) is strongly differentiable at all b ∈ (−M,M)\Na.

It is immediate, that Proposition 2.5 implies the existence of networks approximating the
multiplication of n different numbers. We now show such a result, generalizing [25, Proposition
3.3] in that we consider the error again in the W 1,∞ norm (instead of the L∞ norm).

Proposition 2.6. For any δ ∈ (0, 1), n ∈ N and M ≥ 1 there exists a σ1-NN
∏̃

δ,M :
[−M,M ]n → R such that

sup
(xi)ni=1∈[−M,M ]n

∣∣∣∣∣∣

n∏

j=1

xj −
∏̃

δ,M
(x1, . . . , xn)

∣∣∣∣∣∣
≤ δ, (2.11a)

ess sup
(xi)ni=1∈[−M,M ]n

sup
i=1,...,n

∣∣∣∣∣∣
∂

∂xi

n∏

j=1

xj −
∂

∂xi

∏̃
δ,M

(x1, . . . , xn)

∣∣∣∣∣∣
≤ δ, (2.11b)

where ∂
∂xi

denotes a weak derivative.
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There exists a constant C independent of δ ∈ (0, 1), n ∈ N and M ≥ 1 such that

size(
∏̃

δ,M
) ≤ C(1+n log(nMn/δ)) and depth(

∏̃
δ,M

) ≤ C(1+log(n) log(nMn/δ)). (2.12)

Proof. We proceed analogous to the proof of [25, Proposition 3.3], and construct
∏̃

δ,1 as a

binary tree of ×̃·,·-networks from Proposition 2.5 with appropriately chosen parameters for the
accuracy and the maximum input size.

We define ñ := min{2k : k ∈ N, 2k ≥ n}, and consider the product of ñ numbers x1, . . . , xñ ∈
[−M,M ]. In case n < ñ, we define xn+1, . . . , xñ := 1, which can be implemented by a bias in
the first layer. Because ñ < 2n, the bounds on network size and depth in terms of ñ also hold
in terms of n, possibly with a larger constant.

It suffices to show the result for M = 1, since for M > 1, the network defined through∏̃
δ,M (x1, . . . , xn) := Mn

∏̃
δ/Mn,1(x1/M, . . . , xn/M) for all (xi)

n
i=1 ∈ [−M,M ]n achieves the

desired bounds as is easily verified. Therefore, wlog M = 1 throughout the rest of this proof.
Equation (2.11a) follows by the argument given in the proof of [25, Proposition 3.3], we

recall it here for completeness. By abuse of notation, for every even k ∈ N let a (k-dependent)
mapping R = R1 be defined via

R(y1, . . . , yk) :=
(
×̃δ/ñ2,2(y1, y2), . . . , ×̃δ/ñ2,2(yk−1, yk)

)
∈ R

k/2 (2.13)

and for ℓ ≥ 2 set Rℓ := R ◦ Rℓ−1. That is, for each product network ×̃δ/ñ2;2 as in Proposition

2.5 we choose maximum input size “M = 2” and accuracy “δ/ñ2”. Hence Rℓ can be interpreted

as a mapping from R
2ℓ → R. We now define

∏̃
δ,1 : [−1, 1]n → R via

∏̃
δ,1

(x1, . . . , xn) := Rlog2(ñ)(x1, . . . , xñ)

and next show the error bounds in (2.11) (recall that by definition xn+1 = · · · = xñ = 1 in case
ñ > n).

First, by induction we show that for ℓ ∈ {1, . . . , log2(ñ)} and for all x1, . . . , x2ℓ ∈ [−1, 1]

∣∣∣∣∣∣

2ℓ∏

j=1

xj −Rℓ(x1, . . . , x2ℓ)

∣∣∣∣∣∣
≤ δ

22ℓ

ñ2
. (2.14)

For ℓ = 1 it holds that R(x1, x2) = ×̃δ/ñ2,2(x1, x2), hence (2.14) follows directly from the
choice for the accuracy of ×̃δ/ñ2,2, which is δ/ñ2. For ℓ ∈ {2, . . . , log2(ñ)}, we assume that

Equation (2.14) holds for ℓ − 1. With |∏2(ℓ−1)

j=1 xj | ≤ 1 and 22(ℓ−1)

ñ2 δ < 1, it follows that∣∣Rℓ−1(x1, . . . , x2(ℓ−1))
∣∣ < 2, hence Rℓ−1(x1, . . . , x2(ℓ−1)) may be used as input of ×̃δ/ñ2,2. We
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find∣∣∣∣∣∣

2ℓ∏

j=1

xj −Rℓ(x1, . . . , x2ℓ)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣

2ℓ−1∏

j=1

xj −Rℓ−1(x1, . . . , x2ℓ−1)

∣∣∣∣∣∣
·

∣∣∣∣∣∣

2ℓ∏

j=2ℓ−1+1

xj

∣∣∣∣∣∣

+
∣∣Rℓ−1(x1, . . . , x2ℓ−1)

∣∣ ·

∣∣∣∣∣∣

2ℓ∏

j=2ℓ−1+1

xj −Rℓ−1(x2ℓ−1+1, . . . , x2ℓ)

∣∣∣∣∣∣

+
∣∣∣Rℓ−1(x1, . . . , x2ℓ−1)Rℓ−1(x2ℓ−1+1, . . . , x2ℓ)

− ×̃δ/ñ2,2

(
Rℓ−1(x1, . . . , x2ℓ−1), Rℓ−1(x2ℓ−1+1, . . . , x2ℓ)

) ∣∣∣

≤ 22(ℓ−1)

ñ2
δ +

22(ℓ−1)

ñ2
δ

(
1 +

22(ℓ−1)

ñ2
δ

)
+

1

ñ2
δ

≤ 22(ℓ−1) + 2 · 22(ℓ−1) + 1

ñ2
δ ≤ 22ℓ

ñ2
δ,

where we used (1 + δ22(ℓ−1)/ñ2) ≤ 2. This shows (2.14) for ℓ. Inserting ℓ = log2(ñ) into (2.14)
gives (2.11a).

We next show (2.11b). Without loss of generality, we only consider the derivative with
respect to x1, because each ×̃δ/ñ2,2-network is symmetric under permutations of its arguments.

For ℓ ∈ {1, . . . , log2(ñ)} we show by induction that for almost every (xi)
2ℓ

i=1 ∈ [−1, 1]2
ℓ

∣∣∣∣∣∣
∂

∂xi

2ℓ∏

j=1

xj −
∂

∂xi
Rℓ(x1, . . . , x2ℓ)

∣∣∣∣∣∣
≤ δ

22ℓ

ñ2
. (2.15)

Again, R(x1, x2) = ×̃δ/ñ2,2(x1, x2) and for ℓ = 1 Equation (2.15) follows from Proposition 2.5
and the choice for the accuracy of ×̃δ/ñ2,2, which is δ/ñ2.

For ℓ > 1, under the assumption that (2.15) holds for ℓ− 1, we find
∣∣∣∣∣∣
∂

∂x1

2ℓ∏

j=1

xj −
∂

∂x1
Rℓ(x1, . . . , x2ℓ)

∣∣∣∣∣∣

≤

∣∣∣∣∣∣

2ℓ∏

j=2ℓ−1+1

xj

∣∣∣∣∣∣
·

∣∣∣∣∣∣
∂

∂x1

2ℓ−1∏

j=1

xj −
∂

∂x1
Rℓ−1(x1, . . . , x2ℓ−1)

∣∣∣∣∣∣

+

∣∣∣∣∣∣

2ℓ∏

j=2ℓ−1+1

xj −Rℓ−1(x2ℓ−1+1, . . . , x2ℓ)

∣∣∣∣∣∣
·
∣∣∣∣
∂

∂x1
Rℓ−1(x1, . . . , x2ℓ−1)

∣∣∣∣

+

∣∣∣∣R
l−1(x2ℓ−1+1, . . . , x2ℓ)−

(
∂

∂a
×̃δ/ñ2,2

)(
Rl−1(x1, . . . , x2ℓ−1), Rl−1(x2ℓ−1+1, . . . , x2ℓ)

)∣∣∣∣

·
∣∣∣∣
∂

∂x1
Rℓ−1(x1, . . . , x2ℓ−1)

∣∣∣∣

≤ 22(ℓ−1)

ñ2
δ +

22(ℓ−1)

ñ2
δ

(
1 +

22(ℓ−1)

ñ2
δ

)
+

1

ñ2
δ

(
1 +

22(ℓ−1)

ñ2
δ

)

≤ 22(ℓ−1) + 2 · 22(ℓ−1) + 2

ñ2
δ ≤ 22ℓ

ñ2
δ,

where ∂
∂a ×̃δ/ñ2,2 denotes the (weak) derivative of ×̃δ/ñ2,2 : [−2, 2] × [−2, 2] → R w.r.t. its first

argument as in Proposition 2.5. This shows (2.15) for ℓ > 1, as desired. Filling in ℓ = log2(ñ)
gives (2.11b).
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The number of binary tree layers (each denoted by R) is bounded by O(log2(ñ)). With the
bound on the network depth from Proposition 2.5, for M = 1 the second part of (2.12) follows.

To estimate the network size, we cannot use the estimate size(f ◦ g) ≤ 2 size(f) + 2 size(g)
from Equation (2.8), because the number of concatenations log2(ñ)−1 depends on n, hence the
factors 2 would give an extra n-dependent factor in the estimate on the network size. Instead,
from Equation (2.8) we use size(f ◦ g) ≤ size(f)+ sizein(f)+ sizeout(g)+ size(g) and the bounds
from Proposition 2.5. We find (2log2(ñ)−ℓ being the number of product networks in binary tree
layer ℓ)

size(
∏̃

δ,1
) ≤

log2(ñ)∑

ℓ=1

2log2(ñ)−ℓ
(
sizein

(
×̃δ/ñ2,2

)
+ size

(
×̃δ/ñ2,2

)
+ sizeout

(
×̃δ/ñ2,2

))

≤
log2(ñ)∑

ℓ=1

2log2(ñ)−ℓ
(
C + C

(
1 + log

(
2ñ2/δ

) )
+ C

)

≤ (ñ− 1)C
(
1 + log (ñ/δ)

)
≤ C(1 + n log(n/δ)),

which finishes the proof of (2.12) for M = 1.

The previous two propositions can be used to deduce bounds on the approximation of uni-
variate polynomials on compact intervals w.r.t. the norm W 1,∞. One such result was already
proven in [19, Proposition 4.2]:

Proposition 2.7. There exists a constant C > 0 such that the following holds: For every δ > 0,
n ∈ N0 and every polynomial p =

∑n
j=0 cjy

j ∈ Pn there exists a σ1-NN p̃δ : [−1, 1] → R such
that

‖p− p̃δ‖W 1,∞([−1,1]) ≤ δ

and, with C0 := max{∑n
j=2 |cj |, δ},

size(p̃δ) ≤ C(1 + n log(C0/δ) + n log(n)), depth(p̃δ) ≤ C((1 + log(n)) log(C0/δ) + log(n)3).

Remark 2.8. If y0 ∈ R and p(y) =
∑n

j=0 cj(y−y0)j, then Proposition 2.7 can still be applied for
the approximation of p(y) for y ∈ [y0−1, y0+1], since the substitution z = y−y0 corresponds to a
shift, which can be realized exactly in the first layer of a NN, cp. (2.1). Thus, if q(z) :=

∑n
j=0 cjz

j

and if ‖q − q̃δ‖W 1,∞([−1,1]) ≤ δ as in Proposition 2.7, then y 7→ p̃δ(y) := q̃δ(y − y0) is a NN
satisfying the accuracy and size bounds of Proposition 2.7 w.r.t. the W 1,∞([y0−1, y0+1]) norm.

2.3.2 ReLU DNN approximation of univariate Legendre polynomials

For j ∈ N0 we denote by Lj the jth Legendre polynomial, normalized in L2([−1, 1], λ/2), where
λ/2 denotes the uniform probability measure on [−1, 1]. For j ∈ N0 it holds that Lj(x) =∑j

ℓ=0 c
j
ℓx

ℓ, where, with m(ℓ) := (j − ℓ)/2,

cjℓ =

{
0 j − ℓ ∈ {0, . . . , j} ∩ 2Z+ 1,

(−1)m2−j
(
j
m

)(
j+ℓ
j

)√
2j + 1 j − ℓ ∈ {0, . . . , j} ∩ 2Z,

(2.16)

see e.g. [9, Section 10.10 Equation (16)], (the factor
√
2j + 1 is needed to obtain the desired

normalization). We define cjℓ := 0 for ℓ > j.

Analogous to [19, Equation (4.17)] it holds that
∑j

ℓ=0 |c
j
ℓ | ≤ 4j for all j ∈ N (we use

that
√
2j + 1 ≤ √

πj). Inserting this into Proposition 2.7, we find the following result on the
approximation of univariate Legendre polynomials by σ1-NNs.
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Proposition 2.9 ([19, Proposition 4.2 and Equation (4.17)]). For every j ∈ N0 and δ ∈ (0, 1)
there exists a σ1-NN L̃j,δ with input dimension one and with output dimension one such that
for C independent of j and δ

‖Lj − L̃j,δ‖W 1,∞([−1,1]) ≤ δ, (2.17)

depth(L̃j,δ) ≤C(1 + log2 j)
(
j + log2(1/δ)

)
,

size(L̃j,δ) ≤Cj
(
j + log2(1/δ)

)
+ 1.

For future reference we note that by (2.17) and Equation (2.19) below, for all j ∈ N0,
δ ∈ (0, 1) and k ∈ {0, 1}

‖L̃j,δ‖Wk,∞([−1,1]) ≤ (2j + 1)1/2+2k + δ ≤ (2j + 1)1/2+2k + 1 ≤ (2j + 2)2k+1. (2.18)

2.3.3 ReLU DNN approximation of tensor product Legendre polynomials

Let d ∈ N. Denote the uniform probability measure on [−1, 1]d by µd, i.e. µd := 2−dλ where λ
is the Lebesgue measure on [−1, 1]d. Then, for all ν ∈ N

d
0 the tensorized Legendre polynomials

Lν(y) :=
∏d

j=1 Lνj
(yj) form a µd-orthonormal basis of L2([−1, 1]d, µd). We shall require the

following bound on the norm of the tensorized Legendre polynomials which itself is a consequence
of the Markoff inequality, and our normalization of the Legendre polynomials: for any k ∈ N0

∀ν ∈ N
d
0 : ‖Lν‖Wk,∞([−1,1]d) ≤

d∏

j=1

(1 + 2νj)
1/2+2k. (2.19)

To provide bounds on the size of the networks approximating the tensor product Legendre
polynomials, for finite subsets Λ ⊂ N

d
0 we will make use of the quantity

m(Λ) := max
ν∈Λ

|ν|1. (2.20)

Proposition 2.10. For every finite subset Λ ⊂ N
d
0 and every δ ∈ (0, 1) there exists a σ1-NN

fΛ,δ with input dimension d and output dimension |Λ|, such that the outputs {L̃ν,δ}ν∈Λ of fΛ,δ

satisfy

∀ν ∈ Λ : ‖Lν − L̃ν,δ‖W 1,∞([−1,1]d) ≤ δ,

sup
y∈[−1,1]d

|L̃ν,δ((yj)j∈supp ν)| ≤ (2m(Λ) + 2)d,

and for a constant C > 0 that is independent of d, Λ and δ it holds

depth(fΛ,δ) ≤C(1 + d log d)(1 + log2m(Λ))
(
m(Λ) + log2(1/δ)

)
,

size(fΛ,δ) ≤Cd2m(Λ)3 + Cd2m(Λ)2 log2(1/δ) + Cd2|Λ|
(
1 + log2m(Λ) + log2(1/δ)

)
.

Proof. Let δ ∈ (0, 1) and a finite subset Λ ⊂ N
d
0 be given.

The proof is divided into three steps. In the first step, we define ReLU NN approxima-
tions of tensor product Legendre polynomials {L̃ν,δ}ν∈Λ and fix the parameters used in the
NN approximation. In the second step, we estimate the error of the approximation, and the
L∞([−1, 1]d)-norm of the L̃ν,δ, ν ∈ Λ. In the third step, we describe the network fΛ,δ and
estimate its depth and size.

Step 1. For all ν ∈ N
d
0, we define nν := | suppν| and Mν := 2|ν|1 +2. We can now define

L̃ν,δ((yj)j∈supp ν) :=
∏̃

M−3
ν δ/2,Mν

({
L̃νj ,δ′(yj)

}
j∈supp ν

)
, (2.21)
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where
∏̃

M−3
ν δ/2,Mν

: [−Mν ,Mν ]
| supp ν| → R is as in Proposition 2.6. For the approximate

univariate Legendre polynomials {L̃νj ,δ′}j∈supp ν,ν∈Λ as in Proposition 2.9, we set the accuracy
parameter as δ′ := 1

2d
−1(2m(Λ) + 2)−d−1δ < 1. Let us point out that by (2.18) for all ν ∈ N

d
0

and all j ∈ suppν

‖L̃νj ,δ′‖L∞([−1,1]) ≤ 2νj + 2 ≤ 2|ν|1 + 2 =Mν ≤ 2m(Λ) + 2,

so that, as required by Proposition 2.6, the absolute values of the arguments of
∏̃

M−3
ν δ/2,Mν

in

(2.21) are all bounded by Mν .
Step 2. For the L∞([−1, 1])-error of L̃ν,δ we find

sup
y∈[−1,1]d

∣∣∣Lν(y)− L̃ν,δ((yj)j∈supp ν)
∣∣∣

≤ sup
y∈[−1,1]d

∣∣∣∣∣∣
Lν(y)−

∏

j∈supp ν

L̃νj ,δ′(yj)

∣∣∣∣∣∣

+ sup
y∈[−1,1]d

∣∣∣∣∣∣

∏

j∈supp ν

L̃νj ,δ′(yj)−
∏̃

M−3
ν δ/2,Mν

({
L̃νj ,δ′(yj)

}
j∈supp ν

)∣∣∣∣∣∣

≤ sup
y∈[−1,1]d

∑

k∈supp ν

∣∣∣∣∣∣∣

∏

j∈supp ν:
j<k

L̃νj ,δ′(yj)

∣∣∣∣∣∣∣
·
∣∣∣Lνk

(yk)− L̃νk,δ′(yk)
∣∣∣ ·

∣∣∣∣∣∣∣

∏

j∈supp ν:
j>k

Lνj (yj)

∣∣∣∣∣∣∣
+

δ

2M3
ν

.

Using Proposition 2.10, (2.18), (2.19) and Mν = 2|ν|1 + 2 ≤ 2m(Λ) + 2, the last term can be
bounded by

| suppν|Mnν−1
ν

δ′ +
δ

2
≤ | suppν|

d

Mnν−1
ν

(2m(Λ) + 2)d+1

δ

2
+
δ

2
≤ δ.

It follows that for all ν ∈ Λ

sup
y∈[−1,1]d

∣∣∣L̃ν,δ((yj)j∈supp ν)
∣∣∣ ≤ sup

y∈[−1,1]d
|Lν(y)| + sup

y∈[−1,1]d

∣∣∣Lν(y)− L̃ν,δ((yj)j∈supp ν)
∣∣∣

≤
d∏

j=1

(1 + 2νj)
1/2 + δ

≤
d∏

j=1

(1 + 2νj)
1/2 + 1 ≤Md

ν
.

To determine the error of the gradient, without loss of generality we only consider the derivative
with respect to y1. In the case 1 /∈ suppν, we trivially have ∂

∂y1
(Lν(y) − L̃ν,δ(y)) = 0 for all
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y ∈ [−1, 1]d. Thus let ν1 6= 0 in the following. Then, with δ′ = 1
2d

−1(2m(Λ) + 2)−d−1δ

sup
y∈[−1,1]d

∣∣∣∣
∂

∂y1
Lν(y)−

∂

∂y1
L̃ν,δ((yj)j∈supp ν)

∣∣∣∣

≤ sup
y∈[−1,1]d

∣∣∣∣∣∣
∂

∂y1
Lν(y)−

∂

∂y1

∏

j∈supp ν

L̃νj ,δ′(yj)

∣∣∣∣∣∣

+ sup
y∈[−1,1]d

∣∣∣∣∣∣
∂

∂y1

∏

j∈supp ν

L̃νj ,δ′(yj)−
∂

∂y1

∏̃
M−3

ν δ/2,Mν

({
L̃νj ,δ′(yj)

}
j∈supp ν

)∣∣∣∣∣∣

≤ sup
y∈[−1,1]d

∣∣∣∣
∂

∂y1
Lν1

(y1)−
∂

∂y1
L̃ν1,δ′(y1)

∣∣∣∣ ·

∣∣∣∣∣∣∣

∏

j∈supp ν:
j>1

Lνj
(yj)

∣∣∣∣∣∣∣

+ sup
y∈[−1,1]d

∑

1 6=k∈supp ν

∣∣∣∣
∂

∂y1
L̃ν1,δ′(y1)

∣∣∣∣ ·

∣∣∣∣∣∣∣

∏

1 6=j∈supp ν:
j<k

L̃νj ,δ′(yj)

∣∣∣∣∣∣∣
·
∣∣∣Lνk

(yk)− L̃νk,δ′(yk)
∣∣∣ ·

∣∣∣∣∣∣∣

∏

j∈supp ν:
j>k

Lνj
(yj)

∣∣∣∣∣∣∣

+ sup
y∈[−1,1]d

∣∣∣∣∣∣

∏

1 6=j∈supp ν

L̃νj ,δ′(yj)−
(

∂

∂x1

∏̃
M−3

ν δ/2,Mν

)({
L̃νj ,δ′(yj)

}
j∈supp ν

)∣∣∣∣∣∣
·
∣∣∣∣
∂

∂y1
L̃ν1,δ′(y1)

∣∣∣∣ ,

where ∂
∂x1

∏̃
M−3

ν δ/2,Mν
denotes the (weak) derivative of

∏̃
M−3

ν δ/2,Mν
: [−Mν ,Mν ]

| supp ν| → R

with respect to its first argument, cf. Proposition 2.6.
Using (2.19) and Proposition 2.9 for the first term, Proposition 2.9, (2.18) and (2.19) for

the second term and Proposition 2.6 and (2.19) for the third term, we further bound the NN
approximation error by

δ′Mnν−1
ν

+(| suppν|−1)M3
ν
Mnν−2

ν
δ′+

δ

2M3
ν

M3
ν
≤ | suppν|Mnν+1

ν

1
2d

−1(2m(Λ)+2)−d−1δ+
δ

2
≤ δ.

Step 3. We now describe the network fΛ,δ, which in parallel emulates {L̃ν,δ}ν∈Λ. The
network is constructed as the concatenation of two subnetworks, i.e.

fΛ,δ = f
(1)
Λ,δ ◦ f

(2)
Λ,δ.

The subnetwork f
(2)
Λ,δ evaluates, in parallel, approximate univariate Legendre polynomials in

the input variables (yj)j∈supp ν . With T := {(j, νj) ∈ N
2 : ν ∈ Λ, j ∈ suppν} it is defined as

f
(2)
Λ,δ ((yj)j≤d) :=

({
IdR ◦L̃νj ,δ′(yj)

}
(j,νj)∈T

)
,

where the pair of round brackets denotes a parallelization. The depth of the identity networks
is chosen such that all components of the parallelization have equal depth.

The subnetwork f
(1)
Λ,δ takes the output of f

(2)
Λ,δ as input and computes

fΛ,δ ((yj)j≤d) = f
(1)
Λ,δ

(
f
(2)
Λ,δ ((yj)j≤d)

)

=

({
L̃ν,δ ((yj)j≤d)

}
ν∈Λ

)

=

({
IdR ◦

∏̃
M−3

ν δ/2,Mν

({
L̃νj ,δ′(yj)

}
j∈supp ν

)}

ν∈Λ

)
,
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where in the last two lines the outer pair of round brackets denotes a parallelization. Again,
the depth of the identity networks is such that all components of the parallelization have equal
depth.

We have the following expression for the network depth:

depth(fΛ,δ) = depth
(
f
(1)
Λ,δ

)
+ 1 + depth

(
f
(2)
Λ,δ

)
.

We can choose the depths of the identity networks in the definition of f
(2)
Λ,δ such that (denoting

here and in the remainder of this proof by C > 0 constants independent of d, Λ and δ ∈ (0, 1))

depth
(
f
(2)
Λ,δ

)
=1 + max

ν∈Λ,
j∈supp ν

depth(L̃νj ,δ′)

≤C(1 + log2m(Λ))
(
m(Λ) + log2(1/δ

′)
)

≤C(1 + log2m(Λ))
(
m(Λ) + log2(d) + 1 + (d+ 1) log2(4m(Λ)) + log2(1/δ)

)

≤Cd(1 + log2m(Λ))
(
m(Λ) + log2(1/δ)

)
,

where we used that 2m(Λ) + 2 ≤ 4m(Λ) when Λ 6= {0}.
Similarly, due to Mν = 2|ν|1+2 ≤ 4m(Λ) (if Λ 6= {0}), we can choose the identity networks

in the definition of f
(1)
Λ,δ such that

depth
(
f
(1)
Λ,δ

)
=1 +max

ν∈Λ
depth

(∏̃
M−3

ν δ/2,Mν

)

≤ max
ν∈Λ

C
(
1 + log2(nν) log2(nνM

nν+3
ν

2/δ)
)

≤Cmax
ν∈Λ

(
1 + log2(nν)

(
log2 nν + 1 + (nν + 3) log2(4m(Λ)) + log2(1/δ)

))

≤C(1 + d log d)
(
1 + log2m(Λ) + log2(1/δ)

)
,

where we used that nν ≤ d. Finally, we find the following bound on the network depth:

depth(fΛ,δ) ≤C(1 + d log d)(1 + log2m(Λ))
(
m(Λ) + log2(1/δ)

)
.

For the network size, we find that

size(fΛ,δ) ≤ 2 size
(
f
(1)
Λ,δ

)
+ 2 size

(
f
(2)
Λ,δ

)
.

To estimate the size of f
(2)
Λ,δ, we note that the depth of each of the identity networks in the

definition of f
(2)
Λ,δ is at most depth(f

(2)
Λ,δ) ≤ Cd(1 + log2m(Λ))

(
m(Λ) + log2(1/δ)

)
. To estimate

the number of evaluations of approximate univariate Legendre polynomials, we use that |T | =
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|{(j, νj) ∈ N
2 : ν ∈ Λ, j ∈ suppν}| ≤ m(Λ)d. Using this, it follows that

size
(
f
(2)
Λ,δ

)
=

∑

(j,νj)∈T

size
(
IdR ◦L̃νj ,δ′

)

≤
∑

(j,νj)∈T

2 size (IdR) + 2 size
(
L̃νj ,δ′

)

≤ 4m(Λ)d
(
depth

(
f
(2)
Λ,δ

)
+ 1
)
+ 2d

m(Λ)∑

k=1

size
(
L̃k,δ′

)

≤Cdm(Λ) · Cd(1 + log2m(Λ))
(
m(Λ) + log2(1/δ)

)

+ 2d

m(Λ)∑

k=1

Ck
(
k + 1 + log2 d+ (d+ 1) log2(4m(Λ)) + log2(1/δ)

)
+ 2dm(Λ)

≤Cd2(1 + log2m(Λ))
(
m(Λ)2 +m(Λ) log2(1/δ)

)

+ Cdm(Λ)3 + Cd2m(Λ)2
(
1 + log2m(Λ) + log2(1/δ)

)

≤Cd2m(Λ)3 + Cd2m(Λ)2 log2(1/δ).

The depth of each of the identity networks in the definition of f
(1)
Λ,δ is bounded by depth(f

(1)
Λ,δ) ≤

C(1 + d log d)
(
1 + log2m(Λ) + log2(1/δ)

)
. It follows that

size
(
f
(1)
Λ,δ

)
=
∑

ν∈Λ

size

(
IdR ◦

∏̃
M−3

ν δ/2,Mν

)

≤
∑

ν∈Λ

2 size (IdR) + 2 size

(∏̃
M−3

ν δ/2,Mν

)

≤ 4|Λ|
(
depth

(
f
(1)
Λ,δ

)
+ 1
)
+ C

∑

ν∈Λ

(
1 + nν log2(nνM

nν+3
ν

2/δ)
)

≤C(1 + d log d)|Λ|
(
1 + log2m(Λ) + log2(1/δ)

)
+ C(1 + d log d)|Λ|

+ Cd
∑

ν∈Λ

(
1 + (nν + 3) log2(4m(Λ)) + log2(1/δ)

)

≤Cd2|Λ|
(
1 + log2m(Λ) + log2(1/δ)

)
.

Hence, we arrive at

size(fΛ,δ) ≤ 2 size
(
f
(1)
Λ,δ

)
+ 2 size

(
f
(2)
Λ,δ

)

≤Cd2m(Λ)3 + Cd2m(Λ)2 log2(1/δ) + Cd2|Λ|
(
1 + log2m(Λ) + log2(1/δ)

)
.

2.4 RePU DNN emulation of polynomials

The approximation of polynomials by neural networks can be significantly simplified if instead
of the ReLU activation σ1 we consider as activation function the so-called rectified power unit
(“RePU” for short): recall that for r ∈ N, r ≥ 2, the RePU activation is defined by σr(x) =
max{0, x}r, x ∈ R. In contrast to σ1-NNs, as shown in [12], for every r ∈ N, r ≥ 2 there
exist RePU networks of depth 1 realizing the multiplication of two real numbers without error.
This yields the following result proven in [12, Theorem 9] for r = 2. With [12, Theorem 5] this
extends to all r ≥ 2.

Proposition 2.11. Fix d ∈ N and r ∈ N, r ≥ 2. Then there exists a constant C > 0 (depending
on d) such that for any finite downward closed Λ ⊆ N

d
0 and any p ∈ PΛ there is a σr-network

p̃ : Rd → R which realizes p exactly and such that size(p̃) ≤ C|Λ| and depth(p̃) ≤ C log2(|Λ|).
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Remark 2.12. Let ψ : R → R be an arbitrary C2 function that is not linear, i.e. it does not hold
ψ′′(x) = 0 for all x ∈ R. In [23] it is shown that ψ-networks can approximate the multiplication
of two numbers a, b in a fixed bounded interval up to arbitrary accuracy with a fixed number
of units. We also refer to [30, Section 3.3] where we explain this observation from [23] in more
detail. From this, analogous to [12, Theorem 9], one can obtain a version of Proposition 2.11 for
arbitrary C2 activation functions. To state it, we fix d ∈ N. Then there exists C > 0 (depending
on d) such that for every δ > 0, for every downward closed Λ ⊆ N

d
0 and every p ∈ PΛ, there exists

a ψ-neural network q : [−M,M ]d → R such that supx∈[−M,M ]d |p(x)− q(x)| ≤ δ, size(q) ≤ C|Λ|
and depth(q) ≤ C log2(|Λ|).

3 Exponential expression rate bounds

We now proceed to the statement and proof of the main result of the present note, namely the
exponential rate bounds for the DNN expression of d-variate holomorphic maps. First, in Section
3.1 we recall (classical) polynomial approximation results for analytic functions. Subsequently,
these are used to deduce DNN approximation results for ReLU and RePU networks.

3.1 Polynomial approximation

Fix d ∈ N. For ρ > 1 define the open Bernstein ellipse

Eρ :=

{
z + z−1

2
: z ∈ C, 1 ≤ |z| < ρ

}
⊂ C,

and for ρ = (ρj)
d
j=1 ⊆ (1,∞)d set

Eρ :=
d×

j=1

Eρj ⊆ C
d. (3.1)

Let u : [−1, 1]d → R admit a complex holomorphic extension to the polyellipse Eρ. Such a
function can be approximated on [−1, 1]d by multivariate Legendre expansions, with the error
decaying uniformly like exp(−βN1/d) for some β > 0 and in terms of the dimension N of the
approximation space. This statement is made precise in the next theorem.

Remark 3.1. Suppose that u : [−1, 1]d → R is (real) analytic. Then it allows a complex
holomorphic extension to some open set O ⊆ C

d containing [−1, 1]d. Since for ρ > 1 close to
1, the maximal distance of a point in Eρ to the interval [−1, 1] becomes arbitrarily small, there

always exists ρ > 1 such that u allows a holomorphic extension to×d

j=1
Eρ.

For the proof of the theorem we shall use the following result mentioned in [27].

Lemma 3.2. Let (aj)
d
j=1 ∈ (0,∞)d. Then, with a :=

∑d
j=1 1/aj

∣∣∣∣∣∣



ν ∈ N

d
0 :

d∑

j=1

νj
aj

≤ 1





∣∣∣∣∣∣
≤ 1

d!
(1 + a)d

d∏

j=1

aj . (3.2)

The lemma is proved by computing (as an upper bound of the left-hand side in (3.2)) the

volume of the set {(xj)dj=1 ∈ R
d
+ :

∑d
j=1

(xj−1)
aj

≤ 1}, which equals the right-hand side in (3.2).

The significance of this result is, that it provides an upper bound for multiindex sets of the type

Λε := {ν ∈ N
d
0 : ρ−ν ≥ ε}, ε ∈ (0, 1). (3.3)
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To see this, note that due to log(ρ−ν) = −∑d
j=1 νj log(ρj), for any ε ∈ (0, 1) we have

Λε =



ν ∈ N

d
0 :

d∑

j=1

νj log(ρj) ≤ log(1/ε)



 .

Applying Lemma 3.2 with aj = log(1/ε)/ log(ρj) we thus get (also see [2, Lemma 4.2]):

Lemma 3.3. It holds

|Λε| ≤
1

d!


log(1/ε) +

d∑

j=1

log(ρj)




d
d∏

j=1

1

log(ρj)
. (3.4)

Remark 3.4. Note that
{
ν ∈ N

d
0 : 0 ≤ νj ≤

− log(ε)

d log(ρj)
∀j
}

⊆ Λε ⊆
{
ν ∈ N

d
0 : 0 ≤ νj ≤

− log(ε)

log(ρj)
∀j
}
. (3.5)

This implies the existence of a constant C (depending on ρ) such that for all ε ∈ (0, 1) with
ρmin := minj=1,...,d ρj and ρmax := maxj=1,...,d ρj (cp. (2.20))

m(Λε) = max{|ν|1 : ρ−ν ≥ ε} = max{n ∈ N0 : ρ−n
min ≥ ε} (3.6)

= max

{
n ∈ N0 : n ≤ − log(ε)

log(ρmin)

}
≤ d

log(ρmax)

log(ρmin)




d∏

j=1

− log(ε)

d log(ρj)




1/d

≤ Cd|Λε|1/d. (3.7)

We are now in position to prove the following theorem, variations of which can be considered
as classical.

Theorem 3.5. Let k ∈ N0, d ∈ N and ρ = (ρj)
d
j=1 ∈ (1,∞)d. Let u : Eρ → C be holomorphic.

Then, for all k ∈ N0 and for any β > 0 such that

β <


d!

d∏

j=1

log(ρj)




1/d

(3.8)

there exists C > 0 (depending on d, ρ, k, β and u) such that with

lν :=

∫

[−1,1]d
u(y)Lν(y)dµd(y), ν ∈ N

d
0 (3.9)

and Λε in (3.3) it holds for all ε ∈ (0, 1)

∥∥∥∥∥u−
∑

ν∈Λε

lνLν

∥∥∥∥∥
Wk,∞([−1,1]d)

≤ C e−β|Λε|
1/d

.

Proof. Due to the holomorphy of u on Eρ, lν ∈ R satisfies the bound

|lν | ≤ ‖u‖L∞(Eρ)ρ
−ν

d∏

j=1

(1 + 2νj)
1/2, ν ∈ N

d
0. (3.10)
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For d = 1 a proof can be found in [6, Chapter 12]. For general d ∈ N the bound follows by
application of the one dimensional result in each variable. For more details we refer for instance
to [4] or [28, Corollary B.2.7].

Since (Lν)ν∈Nd
0
forms an orthonormal basis of (the Hilbert space) L2([−1, 1]d, µd) we have

u(y) =
∑

ν∈Nd
0

lνLν (3.11)

converging in L2([−1, 1]d, µd). Furthermore, with (3.10) and (2.19), for k ∈ N0 and every ν ∈ N
d
0

|lν |‖Lν‖Wk,∞([−1,1]d) ≤ ‖u‖L∞(Eρ)ρ
−ν

d∏

j=1

(1 + 2νj)
1+2k. (3.12)

Using [30, Lemma 3.13] (which is a variation of [5, Lemma 7.11])
∑

ν∈Nd
0
|lν |‖Lν‖Wk,∞([−1,1]d) <

∞, and thus (3.11) also converges in W k,∞([−1, 1]d).
Next, for j ∈ {1, . . . , d} let ej := (δij)

d
i=1 and introduce

Aε := {ν ∈ N
d
0 : ρ−ν < ε, ∃ j ∈ suppν s.t. ρ−(ν−ej) ≥ ε}.

Note that for ε ∈ (0, 1)

{ν ∈ N
d
0 : ρ−ν < ε} = {µ+ η : µ ∈ Aε, η ∈ N

d
0}. (3.13)

Furthermore, since for every ν ∈ Aε there exists j ∈ suppν ⊆ {1, . . . , d} such that ρ−(ν−ej) ≥ ε
and therefore ν−ej ∈ Λε, we find with (3.4) that there exists a constant C depending on d and
ρ but independent of ε ∈ (0, 1) such that for all ε ∈ (0, 1)

|Aε| ≤ d|Λε| ≤ C(1 + log(1/ε))d. (3.14)

Furthermore, for such ν ∈ Aε and j ∈ suppν ⊆ {1, . . . , d} with ρmin := mini∈{1,...,d} ρi we get

ρ
−|ν|1+1
min = ρ

−|ν−ej |1
min ≥ ρ

−(ν−ej) ≥ ε

and therefore

|ν|1 − 1 ≤ log(1/ε)

log(ρmin)
. (3.15)

Now
∥∥∥∥∥u−

∑

ν∈Λε

lνLν

∥∥∥∥∥
Wk,∞([−1,1]d)

≤
∑

{ν∈Nd
0 :ρ−ν<ε}

|lν |‖Lν‖Wk,∞([−1,1]d)

≤
∑

{ν,µ : ν∈Aε, µ∈Nd
0}

‖u‖L∞(Eρ)ρ
−(ν+µ)

d∏

j=1

(1 + 2(νj + µj))
1+2k

≤ ‖u‖L∞(Eρ)

∑

{ν,µ : ν∈Aε, µ∈Nd
0}

ρ
−ν

ρ
−µ

d∏

j=1

((1 + 2νj)(1 + 2µj))
1+2k

≤ ‖u‖L∞(Eρ)ε


∑

ν∈Aε

d∏

j=1

(1 + 2νj)
1+2k




∑

µ∈Nd
0

ρ
−µ

d∏

j=1

(1 + 2µj)
1+2k


 .

19



The sum in the second brackets is finite independent of ε by [30, Lemma 3.13]. The sum in the
first brackets can be bounded using (3.14) and (3.15) to obtain a constant C > 0 depending on
u, d, ρ and k such that for all ε ∈ (0, 1)

∥∥∥∥∥u−
∑

ν∈Λε

lνLν

∥∥∥∥∥
Wk,∞([−1,1]d)

≤ Cε|Aε| max
ν∈Aε

d∏

j=1

(1 + 2νj)
1+2k ≤ Cε(1 + log(1/ε))2d+2dk.

To finish the proof, note that our above calculation shows that for any τ ∈ (0, 1) there exists
Cτ > 0 depending on u, d, ρ and k such that

∥∥u−∑
ν∈Λε

lνLν

∥∥
Wk,∞([−1,1]d)

≤ Cτε
τ for all

ε ∈ (0, 1). Moreover, (3.4) implies

d∑

j=1

log(ρj)−


|Λε|d!

d∏

j=1

log(ρj)




1/d

≥ log(ε). (3.16)

Hence for all ε ∈ (0, 1)

∥∥∥∥∥u−
∑

ν∈Λε

lνLν

∥∥∥∥∥
Wk,∞([−1,1]d)

≤ Cτε
τ ≤ Cτ exp


τ




d∑

j=1

log(ρj)−


|Λε|d!

d∏

j=1

log(ρj)




1/d






= C exp
(
−β|Λε|1/d

)

where C := Cτ exp(τ
∑d

j=1 log(ρj)), β := τ(d!
∏d

j=1 log(ρj))
1/d and where τ ∈ (0, 1) can be

arbitrarily close to 1.

We note that by Stirling’s inequality, with ρmin = mindj=1 ρj and ρmax = maxdj=1 ρj ,

(d/e) log(ρmin) ≤


d!

d∏

j=1

log(ρj)




1/d

≤ (d/e)(e2d)1/(2d) log(ρmax). (3.17)

We shall also use the following classic result for Taylor expansions of holomorphic functions.

Lemma 3.6. Let 0 < γ < κ, k ∈ N0, x ∈ C and assume that u : BC
κ (x) → C is holomorphic.

Then with Cγ,κ,k := (
∑k

l=0(κ/γ)
l)/(1−γ/κ) and Cu := supy∈BC

κ(x)
|u(y)|, for all j ∈ N0 it holds

|u(j)(x)|/j! ≤ Cuκ
−j and

∥∥∥∥∥∥
u(·)−

m−1∑

j=0

u(j)(x)

j!
(· − x)j

∥∥∥∥∥∥
Wk,∞(BC

γ(x))

≤ Cγ,κ,kCu

(γ
κ

)m
∀m ∈ N.

Proof. By Cauchy’s integral formula, for any κ̃ ∈ (0, κ) it holds

u(j)(x)

j!
=

1

2πi

∫

|ζ−x|=κ̃

u(ζ)

(ζ − x)j+1
dζ ∀j ∈ N0,

which implies |u(j)(x)/j!| ≤ Cuκ̃
−j , and since κ̃ ∈ (0, κ) was arbitrary |u(j)(x)/j!| ≤ Cuκ

−j for
all j ∈ N0. The bound on the truncated Taylor expansion can be deduced from the fact that for
all l ∈ N0 we have u

(l)(y) =
∑

j≥l(y−x)j−lu(j)(x)/(j−l)! and for um :=
∑m−1

j=0 (y−x)ju(j)(x)/j!,
u
(l)
m (y) =

∑m−1
j=l (y − x)j−lu(j)(x)/(j − l)! so that for all l ∈ N0

sup
y∈BC

γ(x)

∣∣∣u(l)(y)− u(l)m (y)
∣∣∣ ≤ Cu

∑

j≥max{m,l}

(γ
κ

)j−l

= Cu
(γ/κ)max{m,l}−l

1− γ/κ
≤ Cu

(κ/γ)l

1− γ/κ
(γ/κ)m,

which implies the lemma.
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3.2 ReLU DNN approximation

We now come to the main result, concerning the approximation of holomorphic functions on
bounded intervals by ReLU networks. The following theorem improves upon [7, Theorem 2.6]
in two ways: first, we merely assume u to be analytic from [−1, 1]d → R (and not analytic from
(BC

1 )
d → C, cp. [7, Theorem 2.6] and Remark 3.1), and second, we consider the error in the

W 1,∞([−1, 1]d) norm instead of the L∞([−1, 1]d) norm.

Theorem 3.7. Fix d ∈ N and let ρ = (ρj)
d
j=1 ∈ (1,∞)d. Assume that u : [−1, 1]d → R admits

a holomorphic extension to Eρ.
Then, there exist constants β′ = β′(ρ, d) > 0 and C = C(u,ρ, d) > 0, and for every N ∈ N

there exists a σ1-NN ũN : [−1, 1]d → R satisfying

size(ũN ) ≤ N , depth(ũN ) ≤ CN 1
d+1 log2(N ) (3.18)

and the error bound

‖u(·)− ũN (·)‖W 1,∞([−1,1]d) ≤ C exp
(
−β′N 1

d+1

)
. (3.19)

Proof. Throughout this proof, let β > 0 be fixed such that (3.8) holds. We proceed in five steps:
In Steps 1-2 we treat the case d = 1. Subsequently, in Steps 3-5 we treat the case d ≥ 2.

Step 1. We start with d = 1. Throughout this step fix m ∈ N. We now construct a NN ûm
approximating u with accuracy

δ := ρ−m

(up to some constant), where by assumption u : Eρ → C is holomorphic. First, we assume
Cu := supy∈Eρ

|u(y)| ≤ 1.

Fix κ ∈ (0, 1) so small that BC
κ (x) ⊆ Eρ for all x ∈ [−1, 1]. Let −1 = x0 < · · · < xn = 1 be a

finite sequence of equidistant points with n ∈ N so large that

1

n
<
κ

ρ
.

Then (xj)
n
j=0 induces a partition of [−1, 1] into n intervals of length 2/n. For every 0 ≤ j ≤ n

and y ∈ Ij := [−1, 1] ∩ [xj − 1/n, xj + 1/n] ⊆ BC
κ (xj) we have

u(y) =
∑

k∈N0

tj,k(y − xj)
k, tj,k =

u(k)(xj)

k!
,

and, because Cu ≤ 1, by Lemma 3.6 (with γ := 1/n and γ/κ = 1/(κn) < 1/ρ) with um,j(y) :=∑m−1
k=0 tj,k(y − xj)

k

‖u− um,j‖W 1,∞(Ij)
≤ Cγ,κ,1Cu(κn)

−m ≤ Cγ,κ,1ρ
−m = Cγ,κ,1δ. (3.20)

Moreover, Lemma 3.6 implies that it holds for all 0 ≤ j ≤ n (here we use κ ∈ (0, 1))

m−1∑

k=0

|tj,k| ≤ Cu

m−1∑

k=0

κ−k ≤ κ−m − 1

κ−1 − 1
≤ Cκ−m,

for C depending on κ, which depends on ρ.
Let ũm,j,δ : [−1, 1] → R be an approximation to the polynomial um,j as in Proposition 2.7,

i.e.
‖um,j − ũm,j,δ‖W 1,∞([−1,1]) ≤ δ,
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and thus
‖u− ũm,j,δ‖W 1,∞(Ij) ≤ Cδ (3.21)

for C depending on ρ, but independent of u. Therefore, and due to δ = ρ−m, Proposition 2.7
gives

size(ũm,j,δ) ≤ C(1 +m log(Cκ−m/δ) +m log(m)) ≤ Cm2,

depth(ũm,j,δ) ≤ C((1 + log(m)) log(Cκ−m/δ) + log(m)3) ≤ C(1 +m log(m)),
(3.22)

for a constant C depending on ρ, but independent of m and u.
Next, denote by (ϕj)

n
j=0 the continuous, piecewise affine functions on the partition induced

by (xj)
n
j=0 on [−1, 1] such that ϕj(xi) = δi,j for all i, j. As is well known, each ϕj can be

expressed without error with a ReLU network of depth 1 and size at most 3 (see for example
[25]). For C > 0 as in (3.21) and M := C + 1 we define a network ûm approximating u by

ûm :=
n∑

j=0

×̃δ,M (ϕj , ũm,j,δ). (3.23)

We observe that for all 0 ≤ j ≤ n

sup
y∈[−1,1]

|ũm,j,δ(y)| ≤ sup
y∈[−1,1]

|ũm,j,δ(y)− u(y)|+ sup
y∈[−1,1]

|u(y)| ≤ Cδ + Cu ≤M,

so that by Proposition 2.5

ess sup
y∈[−1,1]

|ϕj ũm,j,δ − ×̃δ,M (ϕj , ũm,j,δ)| ≤ δ,

ess sup
y∈[−1,1]

|ũm,j,δ −
∂

∂a
×̃δ,M (ϕj , ũm,j,δ)| ≤ δ,

ess sup
y∈[−1,1]

|ϕj −
∂

∂b
×̃δ,M (ϕj , ũm,j,δ)| ≤ δ,

where here and in the following all derivatives are interpreted as weak derivatives. These esti-
mates will be used repeatedly in the following.

We now provide an upper bound for ‖u− ûm‖W 1,∞([−1,1]). For every 0 ≤ j ≤ n it holds

‖ϕju− ×̃δ,M (ϕj , ũm,j,δ)‖W 1,∞([−1,1])

≤ ‖ϕju− ϕj ũm,j,δ‖L∞([−1,1]) + ‖ϕj ũm,j,δ − ×̃δ,M (ϕj , ũm,j,δ)‖L∞([−1,1])

+
∥∥ϕ′

ju− ϕ′
j ũm,j,δ

∥∥
L∞([−1,1])

+

∥∥∥∥ϕ
′
j ũm,j,δ − ϕ′

j

∂

∂a
×̃δ,M (ϕj , ũm,j,δ)

∥∥∥∥
L∞([−1,1])

+
∥∥ϕju

′ − ϕj ũ
′
m,j,δ

∥∥
L∞([−1,1])

+

∥∥∥∥ϕj ũ
′
m,j,δ −

∂

∂b
×̃δ,M (ϕj , ũm,j,δ)ũ

′
m,j,δ

∥∥∥∥
L∞([−1,1])

.

Using (3.21) and δ = ρ−m as well as ‖ϕ′
j‖L∞([−1,1]) ≤ n and suppϕj = Ij = [−1, 1] ∩ [xj −

1/n, xj + 1/n], these norms can be bounded by Cδ for a constant C depending on n, u and on
ρ. Hence

‖u− ûm‖W 1,∞([−1,1]) =

∥∥∥∥∥∥

n∑

j=0

ϕju− ×̃δ,M (ϕj , ũm,j,δ)

∥∥∥∥∥∥
W 1,∞([−1,1])

≤
n∑

j=0

∥∥ϕju− ×̃δ,M (ϕj , ũm,j,δ)
∥∥
W 1,∞([−1,1])

≤ Cδ. (3.24)
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The constant C depends on the number of intervals n in the partition induced by (xj)
n
j=0, but

we emphasize that n is a fixed constant in this computation and does not increase as δ → 0.
We now describe the network ûm. The following σ1-NN realizes (3.23):

ûm = Sumn+1 ◦
({

×̃δ,M

}n
j=0

)
d
◦
(
{IdR ◦ϕj , IdR ◦ũm,j,δ}nj=0

)
.

Here, Sumn+1 is a network with input dimension n + 1, output dimension 1, depth 0 and size
n + 1 which implements the sum of its inputs. Round brackets denote parallelizations. The
depth of the identity networks is chosen such that all components of the parallelization have
equal depth, which is 1 + maxnj=0 depth (ũm,j,δ).

Next, we bound the size and depth of the network ûm. By (3.22), the identity networks
contribute at most (2n + 2)2(1 + maxnj=0 depth (ũm,j,δ)) ≤ C(4n + 4)(1 + m log(m)) to the

network size, for C independent of u, but depending on ρ. Using the bound size(×̃δ,M ) ≤
C(1 + log(M/δ)) ≤ Cm (by Proposition 2.5), (3.22) and size(ϕj) = 3 for all 0 ≤ j ≤ n

size(ûm)
(2.8)

≤
n∑

j=0

4 size(Sumn+1) + 4 size(ϕj) + 4 size(×̃δ,M ) + 4 size(ũm,j,δ)

+ 4C(4n+ 4)(1 +m log(m))

≤ C1m
2, (3.25a)

for a constant C1 depending on n and on ρ but independent of m ∈ N and u. Similarly one
obtains

depth(ûm) ≤ C(1 +m log(m)), (3.25b)

for a constant C that does not depend on m ∈ N and u.
Now, for u with Cu = supy∈Eρ

|u(y)| > 1 we approximate u/Cu as above, and multiply all
weights and biases in the output layer of the resulting network by Cu. This does not affect the
network’s depth and size, and it follows that (3.24) holds for C replaced by CuC.

Step 2. Fix N in N. Define m(N ) := ⌊(N/C1)
1/2⌋ and ũN := ûm(N ) whenever m(N ) ≥ 1,

i.e. whenever N ≥ C1 (here C1 is as in (3.25)). From (3.25) we deduce (3.18). A bound on the
error (for N ≥ C1) is obtained via (3.24):

‖u− ũN ‖W 1,∞([−1,1]) = ‖u− û⌊(N/C1)1/2⌋‖W 1,∞([−1,1]) ≤ Cρ−⌊(N/C1)
1/2⌋

= C exp
(
− log(ρ)⌊(N/C1)

1/2⌋
)
≤ Cρ exp

(
− log(ρ)

C
1/2
1

N 1/2

)
.

This implies (3.19) for d = 1 with

β′ = log(ρ)C
−1/2
1 (3.26)

and for all N ≥ C1. With ũN := 0 (i.e. a trivial NN giving the constant value 0) for all (finitely
many) N < C1, we obtain (3.19).

Step 3. We now consider the case d ≥ 2. In this step, for any ε ∈ (0, 1) we introduce a
network ûε approximating u (with increasing accuracy as ε→ 0).

Fix ε ∈ (0, 1) arbitrary, let Λε ⊆ N
d
0 be as in (3.3) and set uε :=

∑
ν∈Λε

lνLν with the
Legendre coefficients lν of u as in (3.9).

Let Affineu be a NN of depth 0, with input dimension |Λε|, output dimension 1 and size at
most |Λε| which implements the affine transformation R

|Λε| → R : (zν)ν∈Λ 7→∑
ν∈Λε

lνzν . Fur-
thermore, let fΛε,δ be the network from Proposition 2.10, emulating in parallel approximations
to all multivariate Legendre polynomials (Lν)ν∈Λε

. We define a NN

ûε := Affineu ◦fΛε,δ.
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Then
ûε(y) =

∑

ν∈Λε

lνL̃ν,δ(y), y ∈ [−1, 1]d,

where (with β > 0 as in (3.8)) the accuracy δ > 0 of the σ1-NN approximations of the tensor
product Legendre polynomials is chosen as

δ := exp
(
−β|Λε|1/d

)
.

Step 4. For the NN ûε we obtain the error estimate

‖uε − ûε‖W 1,∞([−1,1]d) ≤
∑

ν∈Λε

|lν | ‖Lν − L̃ν,δ‖W 1,∞([−1,1]d)

≤
∑

ν∈Λε

|lν | δ

=
∑

ν∈Λε

|lν | exp
(
−β|Λε|1/d

)
.

With Theorem 3.5 this yields the existence of a constant C > 0 (depending on d, ρ, β and u)
such that

‖u− ûε‖W 1,∞([−1,1]d) ≤ C exp
(
−β|Λε|1/d

)
. (3.27)

We now bound the depth and the size of ûε. Using (3.6), we obtain

depth(ûε) ≤ depth(Affineu) + 1 + depth (fΛε,δ)

≤C(1 + d log d)(1 + log2m(Λε))
(
m(Λε) + log2(1/δ)

)

≤C(1 + d log d)(1 + log2(d) + log2 |Λε|)
(
Cd|Λε|1/d + β|Λε|1/d

)

≤C(1 + β)(1 + d2(log d)2)(1 + |Λε|1/d log2 |Λε|) (3.28)

for C > 0 depending on ρ. To bound the NN size, Proposition 2.10 and (3.6) give

size(ûε) ≤ 2 size(Affineu) + 2 size(fΛε,δ)

≤ 2|Λε|+ 2Cd2m(Λε)
3 + 2Cd2m(Λε)

2 log2(1/δ) + 2Cd2|Λε|
(
1 + log2m(Λε) + log2(1/δ)

)

≤ 2|Λε|+ Cd5(|Λε|1/d)3 + Cd4(|Λε|1/d)2β|Λε|1/d

+ Cd2|Λε|
(
1 + log(d) + log2 |Λε|+ β|Λε|1/d

)

≤C(1 + β)d5|Λε|3/d + C(1 + β)(1 + d2 log d)|Λε|1+1/d ≤ C2(1 + β)d5|Λε|1+1/d (3.29)

for a constant C2 > 0 which depends on ρ, but is independent of d, β, u and of ε ∈ (0, 1).
Step 5. Finally, we define ũN . Fix β > 0 satisfying (3.8) and N ∈ N such that N > N0 :=

C2(1 + β)d5, with the constant C2 as in (3.29). Set

N̂ :=

( N
N0

)d/(d+1)

∈ R. (3.30)

Next, let ε ∈ (0, 1) be such that

N̂ =
d∏

j=1

(
log(1/ε)

log(ρj)
+ 1

)
, (3.31)

which is possible since N̂ > 1 due to the assumption N > N0 = C2(1 + β)d5. Define ũN := ûε.
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First let us estimate the size of ũN . By (3.5)

N̂ ≥
d∏

j=1

(⌊
log(1/ε)

log(ρj)

⌋
+ 1

)
=

∣∣∣∣
{
ν ∈ N

d
0 : 0 ≤ νj ≤

log(1/ε)

log(ρj)
∀j
}∣∣∣∣ ≥ |Λε|.

Hence (3.29) and the definition of N̂ imply

size(ũN ) = size(ûε) ≤ C2(1 + β)d5|Λε|1+1/d ≤ C2(1 + β)d5N̂ 1+1/d ≤ N .

Similarly one obtains the bound on the depth of ũN by using (3.28). This shows (3.18).
Next we estimate the error ‖u− ũN ‖W 1,∞([−1,1]d). By (3.5)

N̂ ≤
d∏

j=1

(
d

⌊
log(1/ε)

d log(ρj)

⌋
+ d+ 1

)
=

d∏

j=1

(⌊
log(1/ε)

d log(ρj)

⌋
+ 1

) d∏

j=1


d+ 1⌊

log(1/ε)
d log(ρj)

⌋
+ 1




≤ |Λε|(d+ 1)d.

Thus (3.27) gives

‖u− ũN ‖W 1,∞([−1,1]d) ≤ C exp
(
−β|Λε|1/d

)
≤ C exp

(
−β(d+ 1)−1N̂ 1/d

)
.

By (3.30) this is (3.19) for any N > N0 and with

β′ = β(d+ 1)−1(C2(1 + β)d5)−1/(d+1) (3.32)

for C2 as in (3.29) (independent of d, β and u). Similar as in Step 2 (by increasing C > 0 in
(3.19) if necessary) we conclude that (3.19) holds for all N ∈ N.

Remark 3.8. Note that in step 1 of the proof, the network ûm only depends on u through
the NNs {ũm,j,δ}nj=0. The weights and biases of those networks continuously depend on u with
respect to the L∞(Eρ)-norm (because the only u-dependent weights and biases are the Taylor
coefficients of u, which are bounded in terms of Cu).

Similarly, in step 4, the network ûε depends on u only via the Legendre coefficients {lν}ν∈Λε
,

appearing only as weights in the output layer. In particular, the weights and biases of ûε contin-
uously depend on u with respect to the L2([−1, 1]d, µd)-norm, because the Legendre coefficients
do so. Finally, the L2([−1, 1]d, µd)-norm is bounded by the L∞([−1, 1]d)-norm.

3.3 RePU DNN approximation

For RePU approximations, with activation σr(x) for integer r ≥ 2, we may combine Proposi-
tion 2.11 (which is [12, Theorem 9]) and Theorem 3.5 to infer the following result. Note that
the decay of the provided upper bound of the error in (3.33) in terms of the network size N is
slightly faster than the one we obtained for ReLU approximations in (3.19).

Theorem 3.9. Fix d ∈ N, k ∈ N0 and r ∈ N, r ≥ 2. Let ρ = (ρj)
d
j=1 ∈ (1,∞)d. Assume that

u : [−1, 1]d → R admits a holomorphic extension to Eρ.
Then, there exists C > 0 such that with β as in (3.8), for every N ∈ N, there exists a σr-NN

ũN : [−1, 1]d → R satisfying

size(ũN ) ≤ CN , depth(ũN ) ≤ C log2(N ) (3.33)

and

‖u(y)− ũN (y)‖Wk,∞([−1,1]d) ≤ C exp
(
−βN 1

d

)
. (3.34)
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Proof. For ε ∈ (0, 1) let Λε be as in (3.3). This set is finite and downward closed. Hence, by
Proposition 2.11 there exists a σr-NN ûε such that ûε(y) =

∑
ν∈Λε

lνLν(y) for all y ∈ [−1, 1]d.
According to this proposition, the NN ûε satisfies size(ûε) ≤ C|Λε| and depth(ûε) ≤ C log |Λε|.
This is (3.33) for N := |Λε|. By Theorem 3.5, it holds (3.34).

For general N > 1, it follows as in Step 5 of the proof of Theorem 3.7 (with N taking the

role of N̂ ) that there exists ε ∈ (0, 1) such that (d + 1)−dN ≤ |Λε| ≤ N . This implies that
(3.34) holds for any N ∈ N with a constant C depending on d.

Remark 3.10. It follows from the proof of [12, Theorem 2], which is the basis for the proof of
Proposition 2.11, that the weights of ũN depend continuously on the Legendre coefficients of u,
which themselves depend continuously on u w.r.t. the L2([−1, 1]d, µd)-norm, which is bounded
by the L∞([−1, 1]d)-norm.

Remark 3.11. A similar result as in Theorem 3.9 was obtained in [16, Theorem 3.3]. It
assumed a different class of activation functions, termed “sigmoidal functions of order k ≥ 2”
(see Remark 2.1). The L∞([−1, 1]d) error bound provided in [16, Theorem 3.3] is, in our
notation, of the type exp(−bN 1/d) for a suitable constant b > 0 and a DNN of size N log(N ).
This is slightly worse than Theorem 3.9.

4 Conclusion

We review in Section 4.1 the main results obtained in the previous sections and indicate in
Section 4.2 some implications of these.

4.1 Main Results

We have established for analytic maps u : [−1, 1]d → R exponential expression rate bounds in
W k,∞([−1, 1]d) in terms of the DNN size for the ReLU activation (for k = 0, 1) and for the
RePU activations σr, r ≥ 2 (for k = 0, ..., r). The present analysis improves earlier results in
that the NN sizes are slightly reduced and we obtain exponential convergence of ReLU and
RePU DNNs for general d-variate analytic functions, without assuming the Taylor expansion of
u around 0 ∈ R

d to converge on [−1, 1]d. We also point out that by a simple scaling argument
our main results in Theorem 3.7 and Theorem 3.9 imply corresponding expression rate results
for analytic functions defined on an arbitrary cartesian product of finite intervals ×d

j=1[aj , bj ],
where −∞ < aj < bj <∞ for all j ∈ {1, . . . , d}.

4.2 Applications and generalizations

4.2.1 Solution manifolds of PDEs

One possible application of our results concerns the approximation of (quantities of interest) of
solution manifolds of parametric PDEs depending on a d-dimensional parameter y ∈ [−1, 1]d.
Such a situation arises in particular in Uncertainty Quantification (UQ). There, a mathematical
model is described by a PDE depending on the parameters y, which in turn can for instance
determine boundary conditions, forcing terms or diffusion coefficients. It is known for a wide
range of linear and nonlinear PDE models (see e.g. [4]), that parametric PDE solutions depend
analytically on the parameters. In addition, for these models usually one has precise knowledge
on the domain of holomorphic extension of the objective function u, i.e. knowledge of the
constants (ρj)

d
j=1 in Thm. 3.5. These constants determine the sets of multiindices Λε in (3.3).

As our proofs are constructive and based on the sets Λε, such information can be leveraged to
a priori guide the identification of suitable network architectures.
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4.2.2 Infinite-dimensional (d = ∞) case

The expression rate analysis becomes more involved, if the objective function u depends on an
infinite dimensional parameter (i.e., a parameter sequence) y ∈ [−1, 1]N. Such functions occur in
UQ for instance if the uncertainty is described by a Karhunen-Loeve expansion. Under certain
circumstances, u can be expressed by a so-called generalized polynomial chaos (gpc) expansion.
Reapproximating truncated gpc expansions by NNs leads to expression rate results for the
approximation of infinite dimensional functions, as we showed in [25]. One drawback of [25] is
however, that the proofs crucially relied on the assumption that u is holomorphic on certain
polydiscs containing [−1, 1]N. This criterion is not always met in practice [4]. To overcome this
restriction, we will generalize the expression rate results of [25] in the forthcoming paper [20],
by basing the analysis on the present results for the approximation of d-variate functions which
are merely assumed to be analytic in some (possibly small) neighborhood of [−1, 1]d.

4.2.3 Extension to non-holomorphic settings

The present results were based on the quantified holomorphy of the map u : [−1, 1]d → N.
While this can be perceived as a strong requirement (and, consequently, limitation) of the
present results, let us indicate that, in fact, the present deep ReLU NN emulation rate bounds
do cover more general situations. The key observation is that deep ReLU NNs are closed under
concatenation (or under composition of realizations) as we explained in Section 2.2.3.

Let us give a specific example from high-dimensional integration, where the task is to evaluate
the integral ∫

[−1,1]d
u(y)π(y)dy . (4.1)

Here, u : [−1, 1]d → R is a function which is holomorphic in a polyellipse Eρ as in (3.1) and
π denotes an a-priori given probability density on the co-ordinates y1, ..., yd. Assuming that
the co-ordinates are independent, the density π factors, i.e. π =

⊗d
j=1 πj with certain marginal

probability densities πj which we assume to be absolutely continuous w.r. to the Lebesgue

measure, i.e. i.e.
∫ 1

−1
πj(ξ)dξ = 2. In the case that the marginals πj > 0 are simple functions

for example on finite partitions Tj of [−1, 1] (as e.g. if πj is a histogram for the law of yj estimated
from empirical data), the changes of coordinates in (4.1)

Tj(yj) := −1 +

∫ yj

−1

πj(ξj)dξj : [−1, 1] → [−1, 1] , j = 1, ..., d (4.2)

are bijective. Furthermore, in this case each component map Tj : [−1, 1] → [−1, 1] is bijective,
continuous and piecewise affine, and can therefore be exactly represented by a σ1-NN of depth 1
and width proportional to #(Tj).

Denote by T = (T1, ..., Td)
⊤ the d-variate diagonal transformation, and let T−1 : [−1, 1]d →

[−1, 1]d denote its inverse (which is also continuous, piecewise linear). Denoting by dT−1(x) the
Jacobian matrix of T−1 at x ∈ [−1, 1]d we may then rewrite (4.1) as
∫

[−1,1]d
u(y)π(y)dy =

∫

[−1,1]d
u(T−1(x))π(T−1(x)) det dT−1(x)dx =

∫

[−1,1]d
g(x)dx, (4.3)

where g = u ◦ T−1 is not continuously differentiable. Here we have used that dT−1(T (y)) =
(dT (y))−1 and det(dT (y)) = π(y), i.e. det dT−1(x) = π(T−1(x))−1.

Now, the function g̃N := ũN ◦ T−1 with the σ1-NN ũN constructed in Theorem 3.7 is a
σ1-NN which still affords the error bound (3.19): Denote for n ∈ N and f ∈W 1,∞([−1, 1]d,Rn)

|f |W 1,∞([−1,1]d,Rn) := sup
x 6=y∈[−1,1]d

‖f(x)− f(y)‖
‖x− y‖ ,
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where ‖·‖ is the Euclidean norm on R
n resp. on R

d. As usual, for n = 1 we write |f |W 1,∞([−1,1]d) :=
|f |W 1,∞([−1,1]d,R) instead. With these conventions, it holds

‖g(·)− g̃N (·)‖W 1,∞([−1,1]d) = ‖u ◦ T−1(·)− ũN ◦ T−1(·)‖W 1,∞([−1,1]d)

= ‖u ◦ T−1(·)− ũN ◦ T−1(·)‖L∞([−1,1]d) + |u ◦ T−1(·)− ũN ◦ T−1(·)|W 1,∞([−1,1]d)

≤ ‖u(·)− ũN (·)‖L∞([−1,1]d) + |u(·)− ũN (·)|W 1,∞([−1,1]d)|T−1|W 1,∞([−1,1]d,Rd)

≤ C exp
(
−β′N 1

d+1

)
(4.4)

for a constant C which now additionally depends on |T−1(·)|W 1,∞([−1,1]d,Rd). The approximation
of the integral (4.1) can thus be reduced to the problem of approximating the integral of the
surrogate g̃N , which can be efficiently represented by a σ1-NN.

More generally, if π : [−1, 1]d → (0,∞) is for example a continuous density function (not
necessarily a product of its marginals) there exists a bijective transport T : [−1, 1]d → [−1, 1]d

such that analogous to (4.3) it holds
∫
[−1,1]d

u(y)π(y)dy =
∫
[−1,1]d

u(T−1(x))dx (contrary to the

situation above, this transformation T is not diagonal in general). One explicit representation
of such a transport is provided by the Knothe-Rosenblatt transport, see, e.g. [24, Section 2.3].
It has the property that T inherits the smoothness of π, cp. [24, Remark 2.19]. In case T−1 can
be realized without error by a σ1 (or σr) network, we find again an estimate of the type (3.19).
If T−1 does not allow an explicit representation by a NN however, we may still approximate
T−1 by a NN S̃N to obtain a NN g̃N := ũN ◦ S̃N approximating g = u◦T−1. This will introduce
an additional error in (4.4) due to the approximation of T−1 addressed in [20].
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