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We consider a H-Φ field formulation to solve 3D frequency-domain eddy-current problems. This formulation uses vector and
scalar tetrahedral finite elements within, respectively, the conductive and nonconductive domain. It can handle multiply-connected
regions and eliminates the need to compute the source current density and source magnetic field before the actual simulation.

We propose three ways to couple finite elements with the Multiple Multipole Program (MMP) and solve this H-Φ variational form
on an unbounded domain. MMP is a method that uses exact solutions of the homogeneous equations as basis functions (the so-called
“multipoles”). The desired behavior at infinity is given by the chosen multipoles: this eliminates the need of artificially truncating the
computational domain. Interface conditions between the FEM and MMP domains allow to express the coupled FEM–MMP problem.

Index Terms—Maxwell equations, Electromagnetic analysis, Finite element analysis, Numerical simulation.

I. INTRODUCTION

Two major numerical methods for magnetostatics and eddy

currents have already been identified in the ’70s: the A-A and

T-Ω methods [1]. The A-A approach employs a magnetic

vector potential (A) in both the electrically-conductive (Ωc)

and nonconductive (Ωn) domains. The T-Ω approach employs

an electric vector potential (T) in conductive domains and a

magnetic scalar potential (Ω) elsewhere.

The H-Φ formulation was suggested as an alternative to

the T-Ω method [2]. Working with the H-field in conductors

and a magnetic scalar potential (Φ) in nonconductors, this

method typically requires the source magnetic field (Hs) and

has difficulties with multiply-connected domains, drawbacks

it shares with the T-Ω approach. Similarly, the A-A method

needs the spatial source current and, while it directly solves

multiply-connected domains, it also generates considerably

more unknowns in Ωn and produces ill-conditioned matrices.

[3] proposes a new H-Φ field formulation on a multiply-

connected domain not requiring to precompute the Hs-field

before the actual simulation. Here we present another similar

formulation with the same advantages: we solve it on an

unbounded domain by coupling finite elements with basis func-

tions that are exact solutions of the homogeneous equations.

II. BOUNDARY VALUE PROBLEM

We consider the same boundary value problem for eddy

currents as in [3], but on an unbounded domain Ωn. Boundary

conditions are only imposed on symmetry planes.
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`

σ−1
c ∇×Hc

˘

+ ıωµc Hc = 0 in Ωc

n×∇×Hc = 0 on ∂NΩc

n×Hc = 0 on ∂DΩc

Hn = ∇Φn, ∇ · pµn∇Φnq = 0 in Ωn

n · µn∇Φn = 0 on ∂NΩn

Φn = I{2 on ∂D1Ωn

Φn = 0 on ∂D2Ωn

Φn is const on ∂D3Ωn

(1)

Fig. 1. Domains Ωc (one eighth of a conductor with a hole) and Ωn

(surrounding unbounded box). ∂DΩ is the intersection with plane y = 0
(frontal face of the figure). ∂NΩ is the intersection with planes x = 0 and
z = 0 (right and bottom faces). All other boundaries of the figure are fictitious:
Ωn extends to infinity.

As in [3], we set I = 200A, while Φn on ∂D3Ωn is a constant

potential that has to be determined. The following behavior at

infinity completes the problem:

Φn(x) = O
´

‖x‖
−1

¯

for ‖x‖ → ∞ . (2)

Figure 1 illustrates the multiply-connected domain Ωc and

(a part of) Ωn. Interface conditions between Ωc and Ωn are

then required for the field to be well-posed:
{

n · µc Hc = n · µn∇Φn

n×Hc = n×∇Φn
on ∂cnΩc . (3)

III. COUPLING FINITE ELEMENTS

AND AUXILIARY SOURCES

We propose to solve electromagnetic problems on un-

bounded domains using two numerical techniques in different



subdomains that share a boundary: the Finite Element Method

(FEM) and the Multiple Multipole Program (MMP). MMP

is a Trefftz method relying on auxiliary sources and has

successfully been applied to computational electromagnetics

for many years [4].

FEM and MMP enjoy complementary capabilities.

FEM requires a mesh of the computational domain of

interest. This is expensive, but can treat inhomogeneous ma-

terials or complicated geometries. Moreover, FEM employs

basis functions with a finite support, allowing a purely local

construction of the discrete system of equations.

Conversely, MMP uses global basis functions with central

singularities that solve the homogeneous equations exactly and

are placed outside the domain of approximation (the multi-

poles): their coefficients are established by imposing boundary

conditions on hyperplanes. The obtained linear combination is

valid in the whole domain where the equations hold, which can

be unbounded. MMP performs well where the electromagnetic

field is easy to model, i.e. in the free space far from physical

sources and material interfaces.

Thus, a natural way to combine the strengths of these

methods arises when one needs to simulate the electromagnetic

field of complicated structures surrounded by free space: use

FEM on a mesh defined on the structures and MMP in the

unbounded complement. The boundary between the FEM and

MMP domains can be artificial if one surrounds the structures

by a conforming mesh of an “air box”, also modeled by FEM.

The proposed coupling offers computational advantages. For

FEM, there is no need to approximate the field by imposing a

boundary condition on the mesh. For MMP, the approximation

is rather robust with respect to the locations of the centers of

multipoles if an artificial FEM–MMP boundary is used.

The interface conditions between the FEM and MMP do-

mains are key to accurate coupled FEM–MMP solutions. In [5],

[6] for Poisson’s equation and [7] for magnetostatics (ω = 0
in (1)), different ways to achieve this coupling are explored.

An approach (Dirichlet-to-Neumann-based coupling) imposes

interface conditions through the boundary terms arising from

the variational form of FEM, except one, which is enforced

weakly with multipoles as test functions. Two other approaches

are based on the mortar element method (multi-field coupling)

and Discontinuous Galerkin (DG-based coupling).

IV. H-Φ FIELD FORMULATION

Given the boundary value problem (1), we treat all the

boundaries that do not represent planes of symmetry in Fig. 1

as artificial boundaries where we impose the coupling between

FEM and MMP.

Considering the variational form found in [8, p. 19, Prob-

lem DHP], we aim at finding a stationary point of the functional

JΩf (Hf
c,Φ

f
n) –

∫

Ωf
c

σ−1
c

`

∇×H
f
c

˘

·
`

∇×H
f
c

˘

dx+

ıω

∫

Ωf
c

µc H
f
c ·H

f
c dx+ ıω

∫

Ωf
n

µn ∇Φf
n · ∇Φf

n dx (4)

subject to

n×H
f
c = n×∇Φf

n on ∂cnΩ
f (5)

and
{

n · µn∇Φf
n = n · µn∇Φm

n

Φf
n = Φm

n

on ∂fmΩ
f . (6)

Superscripts f and m in the equations stand for FEM and MMP,

respectively. Note that σc, µc, µn can be local parameters in Ωf ,

but µn needs to be constant in Ωm
– R

3 \ Ωf .

As discretization, we take a mesh of tetrahedra M on

Ωf
– Ωf

c ∪ Ωf
n and approximate H

f
c ∈ H(curl,Ωf

c) with

the first family of lowest-order Nédélec edge elements, i.e.

Vh = R1(Mf), and Φf
n ∈ H1(Ωf

n) with piecewise-linear

Lagrangian finite elements, i.e. Vh = S0
1 (Mf). Dirichlet

boundary conditions in (1) are imposed strongly by setting the

affected degrees of freedom of Vh, Vh accordingly.

Outside Ωf , multipoles that respect (1) and (2) have the form

Φm
n (r, θ, ϕ) = r−pl+1q Ylm(θ, ϕ),

l = 0, . . . ,∞, m = −l, . . . , l, (7)

where Ylm are complex spherical harmonics and the origin of

Φm
n is shifted inside the volume of Fig. 1. To form a multipole,

in addition to (7), there are seven other terms whose origins are

symmetrically disposed such that the boundary conditions of

(1) are respected on the infinite symmetry planes of Ωn (∂NΩn

and ∂D2Ωn). We call the discrete space of chosen multipoles

Th(Ω
m), with T standing for “Trefftz”.

Equation (5) is then imposed by (scalar) Lagrange multipli-

ers for each edge ℓ of M on ∂cnΩ
f , relying on the identity

∫

ℓi

vi · t d~s = vi1(xi1)− vi2(xi2), i = 1, . . . , Nbnd
edges, (8)

with vi ∈ Vh, vi1, vi2 ∈ Vh, t tangent, and xi1,xi2 endpoints

of edge ℓi. The other interface condition in (3) is enforced

weakly.

The way interface conditions in (6) are considered leads to

different FEM–MMP coupling approaches [6], [7].

V. COUPLING STRATEGIES

The FEM–MMP coupling is done on the artifical interface

Γ – ∂fmΩ
f inside Ωn. Hence, in the description we drop

the subscript n when unnecessary and omit the (purely FEM)

terms of (4) expressing the problem in Ωc. We also define

the Neumann trace operator γ : H1(∇2,Ωn) → H−

1

2 (Γ),
γφ – n · µn∇φ for any φ ∈ H1(∇2,Ωn).

A. Dirichlet-to-Neumann-based Coupling

This coupling approach is the special case of the Trefftz co-

chain calculus presented in [9]. The second interface condition

in (6) is imposed in weak form by testing it with γφm, given

φm ∈ T (Ωm):
∫

Γ

`

Φf − Φm
˘

γφm dS = 0 ∀φm ∈ T (Ωm). (9)



Combining (9) with the variational form of FEM in Ωf
n, we

end up with the following symmetric system:

Seek Φf ∈ H1(Ωf
n), Φm ∈ T (Ωm) :







∫

Ωf
n

`

µn∇Φf · ∇φf
˘

dx −
∫

Γ
γΦm φf dS = 0

−
∫

Γ
Φf γφm dS +

∫

Γ
Φm γφm dS = 0

∀φf ∈ H1(Ωf
n), ∀φ

m ∈ T (Ωm), (10)

where the bottom-right term is symmetric because of Φm, φm ∈
T (Ωm).

B. Multi-Field Coupling

Mortar element methods allow to use FEM with noncon-

forming meshes on different neighboring domains for the

same boundary value problem [10]. This is well-suited for the

coupling because one can think of MMP as FEM with special

functions acting on a “single-cell mesh” defined on Ωm.

With the same idea, the multi-field coupling approach im-

poses the second continuity (6) in a weak sense, like (9), by

means of a Lagrange multiplier λ. Note that the continuity we

want to impose connects traces in H
1

2 (Γ), and therefore λ has

to belong to the dual space H−

1

2 (Γ).

Hence, the multi-field coupling can be expressed by the

following Lagrangian:

L(Φf ,Φm, λ) – JΩf
n
(Φf) + JΩm(Φm) +

∫

Γ

`

Φf − Φm
˘

λ dS.

(11)

The functional JΩf
n
(Φf) –

∫

Ωf
n

µn‖∇Φf‖2
ℓ2
dx is the term of

(4) that expresses the problem in Ωf
n, while JΩm has the same

formulation, but can be rewritten as a boundary integral:

JΩm(Φm) –

∫

Ωm

µn‖∇Φm‖2
ℓ2
dx =

∫

Γ

γΦm Φm dS. (12)

The discretization of λ ∈ H−

1

2 (Γ) is a topic debated in

the literature [11, Section 4]: in the spirit of mortar element

methods, we opt for the Dirichlet traces of finite elements in

Vh, which discretizes one of the neighboring domains [11,

p. B426].

C. Discontinuous Galerkin

As for the multi-field coupling, we again treat the MMP

discretization as a finite element with special functions. Here

we exploit the other main approach for imposing weak conti-

nuity on nonconforming meshes, which is the Discontinuous

Galerkin method [12].

Under this idea, the coupling can be expressed as a discrete

stationary problem for the following Lagrangian:

L(Φf
h,Φ

m
h ) – JΩf

n
(Φf

h) + JΩm(Φm
h )+

∫

Γ

`

Φf
h − Φm

h

˘

Ph(Φ
f
h,Φ

m
h ) dS, (13)

where JΩf
n

and JΩm are the same as for the multi-field coupling.

0.02 0.04 0.06 0.08 0.1

meshwidth h

70

70.5

71

71.5

72

72.5

73

|I
3
|

DtN-based

Multi-Field

DG-based

0.02 0.04 0.06 0.08 0.1

meshwidth h

28.5

29

29.5

30

30.5

|I
4
|

DtN-based

Multi-Field

DG-based

Fig. 2. Computed |I3| and |I4| for different mesh refinements of the geometry
in Fig. 1.

Depending on the choice of the discrete operator Ph :
H

1

2 (Γ) × H
1

2 (Γ) → H−

1

2 (Γ), we obtain different DG ap-

proaches. We follow the Interior Penalty DG method [13]:

Ph(Φ
f
h,Φ

m
h ) – −γ

`

Φf
h +Φm

h

˘

+ η
`

Φf
h +Φm

h

˘

, (14)

where η ∈ R is a penalty parameter that needs to be assigned

heuristically and should be proportional to Nm/h, given Nm

number of degrees of freedom of Th(Ω
m) and h ∈ R mesh-

width of M restricted to Γ.

VI. IMPLEMENTATION

Meshes were generated using COMSOL v5.3a.

Our code is written in C++14, using C++11 multithreading

for parallelization. We use Eigen v3.3.7 for linear algebra and

HyDi [14] for the FEM component. The PARDISO v6.0 solver

provides the sparse LU decomposition to solve the systems of

the coupling, characterized by nontrivial sparsity patterns.

VII. NUMERICAL RESULTS

We run tests on meshes with different levels of refine-

ment, given the geometry shown in Fig. 1. As in [3], we

use parameters σc = 3.5 · 107 Svm−1, ω = 400π rad s−1,

µc = µn = 4π · 10−7 TmA−1, and I = 200A.

Multipoles are uniformly disposed on the three faces closest

to Γ of a rectangular prism that lies completely inside Fig. 1

(i.e. outside the MMP domain of approximation). For each

center we consider multipoles (7) with l = 0, m = 0 and l = 1,

m = −1, 0, 1. The total number of multipoles is proportional

to the number of intersections of each mesh with Γ.

To validate our results, we first compute induced eddy

currents I3 and I4, which are defined as surface integrals

Ii –

∫

Σi

n · p∇×HcqdS, i = 3, 4, (15)

where Σ3 and Σ4 are surfaces cutting Ωc on each side of the

hole of Fig. 1. For all meshes considered, the different coupling

approaches return values similar to each other, with |I3|+ |I4|
being very close to I{2 = 100A, as implied by Ampère’s law.

This is shown in Figure 2.

We also compute the power loss of the conductor Lc, which

is defined as the integral

Lc –

∫

Ωc

σc ‖Ec‖
2
dx =

∫

Ωc

σ−1
c ‖∇ ×Hc‖

2
dx. (16)

Again, Figure 3 shows that Lc stays constant throughout all

our simulations, as expected.
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Fig. 5. Computed ‖Hf‖ with DG-based coupling (plane y = 0).

Convergence tests for the relative L
2(Ωf)-error of the H-

field with respect to the finest mesh are presented in Figure 4.

All coupling approaches exhibit an algebraic convergence with

a similar rate.

Finally, Figure 5 illustrates the magnitude of the H-field

in Ωf as seen from the front of Fig. 1 (along the plane y =
0), applying the DG-based coupling on the finest mesh. Field

strengths for the other coupling approaches are very similar.

VIII. CONCLUSIONS

Compared to other hybrid methods, such as FEM cou-

pled with the boundary element method, MMP presents the

advantages of (1) a simpler assembly process, as there are

no singular integrals, and (2) an exponentially convergent

approximation error under weak assumptions on the positions

of the multipoles [6]. This permits us to use only a small

number of degrees of freedom for MMP, which, in the case

of the DtN- and DG-based coupling approaches, can even be

eliminated by computing the Schur complement of the final

system [9] (an iterative solver can also be used).

Hence, the FEM–MMP coupling is no more expensive

than classical FEM with artificial Dirichlet/Neumann boundary

conditions on Γ. In fact, in contrast to the artificial truncation,

the FEM–MMP coupling boundary Γ can be much closer to

Ωc, thus reducing the number of degrees of freedom compared

to a pure FEM approach (see [3], solving a similar problem

with a larger “air box”).

Another approach comparable to FEM–MMP is the infinite

element method [15], which would however employ weighted

polynomial finite element shape functions for the spherical

component of Φm
h

in (7).

Among the three coupling approaches we presented here,

we recommend the multi-field and DG-based coupling thanks

to their reliability. The DtN-based coupling is the easiest to

implement, but has (mild) stability issues.
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