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We consider a H-Φ field formulation to solve 3D frequency-domain eddy-current problems. This formulation uses vector and
scalar tetrahedral finite elements within, respectively, the conductive and nonconductive domain. It can handle multiply-connected
regions and eliminates the need to compute the source current density and magnetic field before the actual simulation.

We propose three ways to couple finite elements with the Multiple Multipole Program (MMP) and solve this H-Φ variational form
on an unbounded domain. MMP is a method that uses exact solutions of the homogeneous equations as basis functions (the so-called
“multipoles”). The desired behavior at infinity is given by the chosen multipoles: this eliminates the need of artificially truncating the
computational domain. Interface conditions between the FEM and MMP domains allow to express the coupled FEM–MMP problem.

Index Terms—Maxwell equations, Electromagnetic analysis, Finite element analysis, Numerical simulation.

I. INTRODUCTION

Two major numerical methods for magnetostatics and eddy

currents have already been identified in the ’70s: the A-A and

T-Ω methods [1]. The A-A approach employs a magnetic

vector potential (A) in both the electrically conductive (Ωc)

and nonconductive (Ωn) domains. The T-Ω approach employs

an electric vector potential (T) in conductive domains and a

magnetic scalar potential (Ω) elsewhere.

The H-Φ formulation was suggested as an alternative to

the T-Ω method [2]. Working with the H-field in conductors

and a magnetic scalar potential (Φ) in nonconductors, this

method typically requires the source magnetic field (Hs) and

has difficulties with multiply-connected domains.

[3] proposes a new H-Φ field formulation on a multiply-

connected domain not requiring to precompute the Hs-field

before the actual simulation. Here we present another formu-

lation with the same property: we solve it on an unbounded

domain by coupling finite elements with basis functions that

are exact solutions of the homogeneous equations.

II. BOUNDARY VALUE PROBLEM

We consider the same boundary value problem for eddy

currents as in [3], but on an unbounded domain Ωn. Boundary

conditions are only imposed on symmetry planes.














































∇×
`

σ−1
c ∇×Hc

˘

+ ıωµc Hc = 0 in Ωc

n×∇×Hc = 0 on ∂NΩc

n×Hc = 0 on ∂DΩc

Hn = ∇Φn, ∇ · pµn∇Φnq = 0 in Ωn

n · ∇Φn = 0 on ∂NΩn

Φn = I{2 on ∂D1Ωn

Φn = 0 on ∂D2Ωn

Φn is const on ∂D3Ωn

(1)

Φn on ∂D3Ωn is a constant potential that has to be determined.

The following behavior at infinity completes the problem:

Φn(x) = O
´

‖x‖
−1

¯

for ‖x‖ → ∞ . (2)

Fig. 1. Domains Ωc (one octant of a holed wire) and Ωn (surrounding
unbounded box). ∂DΩ is the intersection with the XZ-plane (frontal face of
the figure). ∂NΩ comprises the boundaries that intersect the Y Z- and XY -
planes (right and bottom face, respectively). All other boundaries of the figure
are fictitious: Ωn extends to infinity.

Figure 1 illustrates the multiply-connected domain Ωc and

(a part of) Ωn. Interface conditions between Ωc and Ωn are

then required for the field to be well-posed:
{

µc n ·Hc = µn n · ∇Φn

n×Hc = n×∇Φn
on ∂cnΩc . (3)

III. COUPLING FINITE ELEMENTS

AND AUXILIARY SOURCES

We propose to solve electromagnetic problems on un-

bounded domains using two numerical techniques in different

subdomains that share a boundary: the Finite Element Method

(FEM) and the Multiple Multipole Program (MMP). MMP

belongs to the class of methods of auxiliary sources and has



successfully been applied to computational electromagnetics

for many years [4].

FEM and MMP enjoy complementary capabilities.

FEM requires a mesh of the computational domain of

interest. This is expensive, but can treat inhomogeneous ma-

terials or complicated geometries. Moreover, FEM employs

basis functions with a finite support, allowing a purely local

construction of the discrete system of equations.

Conversely, MMP uses global basis functions with central

singularities that solve the homogeneous equations exactly

and are placed outside the domain of approximation (the

multipoles): their coefficients are established by imposing

boundary conditions on hypersurfaces. The obtained linear

combination is valid in the whole domain where the equations

hold, which can be unbounded. MMP performs well where the

electromagnetic field is easy to model, i.e. in the free space far

from physical sources and material interfaces.

Thus, a natural way to combine the strengths of these

methods arises when one needs to simulate the electromagnetic

field of complicated structures surrounded by free space: use

FEM on a mesh defined on the structures and MMP in the

unbounded complement. The boundary between the FEM and

MMP domains can be artificial if one surrounds the structures

by a conforming mesh of an “air box”, also modeled by FEM.

The proposed coupling offers computational advantages. For

FEM, there is no need to approximate the field by imposing a

boundary condition on the mesh. For MMP, the approximation

is rather robust with respect to the locations of the centers of

multipoles if an artificial FEM–MMP boundary is used.

The interface conditions between the FEM and MMP do-

mains are key to accurate coupled FEM–MMP solutions. In [5],

[6] for Poisson’s equation and [7] for magnetostatic Maxwell’s

equations, different ways to achieve this coupling are explored.

An approach (Dirichlet-to-Neumann-based coupling) imposes

interface conditions through the boundary terms arising from

the variational form of FEM, except one, which is enforced

weakly with multipoles as test functions. Two other approaches

are based on the mortar element method (multi-field coupling)

and Discontinuous Galerkin (DG-based coupling).

IV. H-Φ FIELD FORMULATION

Given the boundary value problem (1), we treat all the

boundaries that do not intersect symmetry planes in Fig. 1 as

artificial boundaries where we impose the coupling between

FEM and MMP.

Considering the variational form found in [8, p. 19, Prob-

lem DHP], we aim at minimizing the functional

JΩf (Hf
c,Φ

f
n) –

∫

Ωf
c

σ−1
c

`

∇×H
f
c

˘

·
`

∇×H
f
c

˘

dx+

ıω

∫

Ωf
c

µc H
f
c ·H

f
c dx+ ıω

∫

Ωf
n

µn ∇Φf
n · ∇Φf

n dx (4)

subject to

n×H
f
c = n×∇Φf

n on ∂cnΩ
f (5)

and
{

n · ∇Φf
n = n · ∇Φm

n

Φf
n = Φm

n

on ∂fmΩ
f . (6)

Superscripts f and m in the equations stand for FEM and MMP,

respectively. Note that σc, µc, µn can be local parameters in Ωf ,

but µn needs to be constant in Ωm
– R

3 \ Ωf .

As discretization, we take a mesh of tetrahedrons M on

Ωf
– Ωf

c ∪ Ωf
n and approximate H

f
c ∈ H(curl,Ωf

c) with

the first family of lowest-order Nédélec edge elements, i.e.

Vh = R1(Mf), and Φf
n ∈ H1(Ωf

n) with piecewise-linear

Lagrangian finite elements, i.e. Vh = S0
1 (Mf). Dirichlet

boundary conditions in (1) are imposed strongly by setting the

affected degrees of freedom of Vh, Vh accordingly.

Outside Ωf , multipoles that respect (1) and (2) have the form

Φm
n (r, θ, ϕ) = r−pl+1q Ylm(θ, ϕ),

l = 0, . . . ,∞, m = −l, . . . , l, (7)

where Ylm are complex spherical harmonics and the origin of

Φm
n is shifted inside the volume of Fig. 1. To form a multipole,

in addition to (7), there are seven other terms whose origins are

symmetrically disposed such that the boundary conditions of

(1) are respected on the infinite symmetry planes of Ωn (∂NΩn

and ∂D2Ωn). We call the discrete space of chosen multipoles

Th(Ω
m).

Equation (5) is then imposed by (scalar) Lagrange multipli-

ers for each edge ℓ of M on ∂cnΩ
f , relying on the identity

∫

ℓi

t · vi d~s = vi1(xi1)− vi2(xi2), i = 1, . . . , Nbnd
edges, (8)

with vi ∈ Vh, vi1, vi2 ∈ Vh, and xi1,xi2 corners of edge ℓi.
The other interface condition in (3) is imposed implicitly.

The way the interface conditions in (6) are considered leads

to different FEM–MMP coupling approaches [6], [7].

V. COUPLING STRATEGIES

The FEM–MMP coupling is done on the artifical interface

Γ – ∂fmΩ
f inside Ωn. Hence, in the description we drop

the subscript n when unnecessary and omit the (purely FEM)

terms of (4) expressing the problem in Ωc. We also define

the Neumann trace operator γ : H1(∇2,Ωn) → H−
1

2 (Γ),
γφ – µn n · ∇φ for any φ ∈ H1(∇2,Ωn).

A. Dirichlet-to-Neumann-based Coupling

This coupling approach is the special case of the Trefftz co-

chain calculus presented in [9]. The second interface condition

in (6) is imposed in weak form by testing it with γφm, given

φm ∈ T (Ωm):
∫

Γ

`

Φf − Φm
˘

γφm dS = 0 ∀φm ∈ T (Ωm). (9)

Combining (9) with the variational form of FEM in Ωf
n, we

end up with the following symmetric system:

Seek Φf ∈ H1(Ωf
n), Φm ∈ T (Ωm) :







∫

Ωf
n

`

µc ∇Φf · ∇φf
˘

dx −
∫

Γ
γΦm φf dS = 0

−
∫

Γ
Φf γφm dS +

∫

Γ
Φm γφm dS = 0

∀φf ∈ H1(Ωf
n), ∀φ

m ∈ T (Ωm), (10)



where the bottom-right term is symmetric because of Φm, φm ∈
T (Ωm).

B. Multi-Field Coupling

Mortar element methods allow to use FEM with noncon-

forming meshes on different neighboring domains for the

same boundary value problem [10]. This is well-suited for the

coupling because one can think of MMP as FEM with special

functions acting on a “mesh with a single cell” defined on Ωm.

With the same idea, the multi-field coupling approach im-

poses the second continuity (6) in a weak sense, like (9),

by means of a Lagrange multiplier λ – γφm. Note that the

continuity we want to impose connects traces in H
1

2 (Γ), and

therefore λ has to belong to the dual space H−
1

2 (Γ).
Hence, the multi-field coupling can be expressed by the

following Lagrangian:

L(Φf ,Φm, λ) – JΩf
n
(Φf) + JΩm(Φm) +

∫

Γ

`

Φf − Φm
˘

λ dS.

(11)

The functional JΩf
n
(Φf) –

∫

Ωf
n

µn‖∇Φf‖2
ℓ2
dx is the term of

(4) that expresses the problem in Ωf
n, while JΩm has the same

formulation, but can be rewritten as a boundary integral:

JΩm(Φm) –

∫

Ωm

µn‖∇Φm‖2
ℓ2
dx =

∫

Γ

γΦm Φm dS. (12)

The discretization of λ ∈ H−
1

2 (Γ) is a topic debated in

the literature [11, Section 4]: in the spirit of mortar element

methods, we opt for the Dirichlet traces of the finite elements

in Vh, which discretizes one of the neighboring domains [11,

p. B426].

C. Discontinuous Galerkin

As for the multi-field coupling, we again treat the MMP

discretization as a finite element with special functions. Here

we exploit the other main approach for imposing weak conti-

nuity on nonconforming meshes, which is the Discontinuous

Galerkin (DG) method [12].

Under this idea, the coupling can be expressed as a discrete

minimization problem for the following Lagrangian:

L(Φf
h,Φ

m
h ) – JΩf

n
(Φf

h) + JΩm(Φm
h )+

∫

Γ

`

Φf
h − Φm

h

˘

Ph(Φ
f
h − Φm

h ) dS, (13)

where JΩf
n

and JΩm are the same as for the multi-field coupling.

Depending on the choice of the discrete operator Ph :
H

1

2 (Γ) → H−
1

2 (Γ), we obtain different DG approaches. We

follow the Interior Penalty DG method [13]:

Ph(φ) – ǫn γφ+ η φ . (14)

• ǫn(x) : R
3 → {1,−1} is = 1 if one is integrating on Γ

from the side of Ωf
n and = −1 from the side of Ωm.

• η ∈ R is a penalty parameter that needs to be assigned

heuristically and should be proportional to Nm/h, where

Nm is the number of degrees of freedom of Th(Ω
m) and

h ∈ R the meshwidth of M restricted to Γ.

VI. IMPLEMENTATION

Meshes were generated using Comsol.

Our code is written in C++14, using C++11 multithreading

for parallelization. We use Eigen v3.3.7 for linear algebra and

HyDi [14] for the FEM component. The PARDISO v6.0 solver

provides the sparse LU decomposition to solve the systems of

the coupling, characterized by nontrivial sparsity patterns.

VII. NUMERICAL RESULTS

We run tests on meshes with different levels of refinement,

given the geometry show in Fig. 1. As in [3], we use parameters

σc = 3.5 · 107 Svm−1, ω = 400π rad s−1, µc = µn =
4π · 10−7 TmA−1, and I = 200A.

Multipoles are uniformly disposed on a rectangular prism

that lies completely inside Fig. 1 (i.e. outside the MMP domain

of approximation). For each center we consider multipoles

following (7) with l = 0, m = 0 and l = 1, m = −1, 0, 1.

The total number of multipoles is proportional to the number

of intersections of each mesh with Γ.

To validate our results, we first compute induced eddy

currents I3 and I4, which are defined as surface integrals

Ii –

∫

Σi

n · p∇×HcqdS, i = 3, 4, (15)

where Σ3 and Σ4 are surfaces cutting Ωc on each side of the

hole of Fig. 1. For all meshes considered, the different coupling

approaches return values similar to each other, with |I3|+ |I4|
being very close to I{2 = 100A, as expected from the theory.

This is shown in Figure 2.

We also compute the power loss of the conductor Lc, which

is defined as the integral

Lc –

∫

Ωc

σc ‖Ec‖
2
dx =

∫

Ωc

1

σc

‖∇ ×Hc‖
2
dx . (16)

Again, Figure 3 shows that Lc stays constant throughout all

our simulations, as expected.

Convergence tests for the relative L
2(Ωf)-error of the H-

field with respect to the most refined mesh are presented

in Figure 4. All coupling approaches exhibit an algebraic

convergence with a similar rate.

Finally, Figure 5 illustrates the magnitude of the H-field in

Ωf as seen from the front of Fig. 1 (along the XZ-plane),

applying the DG-based coupling to the most refined mesh.

Figures for the other coupling approaches are also very similar.

VIII. CONCLUSION

Compared to other hybrid methods, such as FEM cou-

pled with the boundary element method, MMP presents the

advantages of (1) a simpler assembly process, as there are

no singular integrals, and (2) an exponentially convergent

approximation error, given loose requirements on the positions

of the multipoles. The latter point entails a small number of

degrees of freedom for MMP, which, in the case of the DtN-

and DG-based coupling approaches, can even be eliminated by
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Fig. 2. Computed |I3| and |I4| for different mesh refinements of the geometry in Fig. 1.
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Fig. 3. Computed Lc for different mesh refinements.
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Fig. 4. Convergence of L2(Ωf)-error w.r.t. most refined mesh.

computing the Schur complement of the final system. Using

an iterative solver is also possible [9].

Among the three coupling approaches we present, we rec-

ommend the multi-field and DG-based coupling thanks to their

reliability. The DtN-based coupling is the easiest to implement,

but has (mild) stability issues.
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