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We propose and analyze several multilevel algorithms for the fast simulation of possibly
non-stationary Gaussian random fields (GRFs) indexed, e.g., by the closure of a bounded
domain D ⊂ Rn or, more generally, by a compact metric space X such as a compact
n-manifold M. A colored GRF Z, admissible for our algorithms, solves the stochastic
fractional-order equation AβZ = W for some β > n/4, where A is a linear, local, second-
order elliptic self-adjoint differential operator in divergence form and W is white noise

on X . We thus consider GRFs on X with covariance operators of the form C = A−2β .
The proposed algorithms numerically approximate samples of Z on nested sequences

{Tℓ}ℓ≥0 of regular, simplicial partitions Tℓ of D and M, respectively. Work and memory
to compute one approximate realization of the GRF Z on the triangulation Tℓ of X
with consistency O(N−ρ

ℓ
), for some consistency order ρ > 0, scale essentially linear in

Nℓ = #(Tℓ), independent of the possibly low regularity of the GRF. The algorithms
are based on a sinc quadrature for an integral representation of (the application of)
the negative fractional-order elliptic “coloring” operator A−β to white noise W. For the
proposed numerical approximation, we prove bounds of the computational cost and the
consistency error in various norms.

Keywords: Gaussian random fields, Matérn covariances, spatial statistics, fractional op-
erators, multilevel methods.
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1. Introduction

1.1. Gaussian random fields in computational uncertainty

quantification

Gaussian and transformed Gaussian random fields (GRFs) are widely used to model

spatial or spatiotemporal real-world phenomena with uncertainty. We first mention

their relevance for geosciences such as for particulate matter concentration, temper-

ature distributions, precipitation, and subsurface flow.13,27,57 Further applications

include, e.g., biomedical imaging,55 astrophysics,4 and material models in compu-

tational mechanics.63

The efficient, approximate sampling of GRFs on unstructured meshes of various

physical domains is a key ingredient for several computational methodologies in

1
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spatial statistics and data science; it therefore has received increasing attention in

recent years.19,20,43,44,53,54 In addition, such samples are needed, e.g., in Markov

chain Monte Carlo algorithms for Bayesian estimation or filtering subject to PDE

constraints.27,58

In computational spatial statistics or computational uncertainty quantification

(UQ), a GRF Z, defined on a complete probability space (Ω,F ,P) with expectation

operator E, typically needs to be sampled at only finitely many locations in a

“physical domain” X (e.g., a bounded Euclidean domain D ⊂ Rn or a closed,

connected, orientable, smooth, compact 2-surface M ⊂ R3 such as the 2-sphere S2)

and not on the entire domain of its definition (e.g., Rn or M). In this case, if the

covariance function

̺(x, x′) := E [(Z(x)− E[Z(x)])(Z(x′)− E[Z(x′)])] , x, x′ ∈ X ,

of Z is explicitly available, a direct approach to numerically simulate the GRF Z
at N locations x1, . . . , xN ∈ X is to assemble the covariance matrix C ∈ RN×N with

entries Cij := ̺(xi, xj). A sample of the random vector (Z(x1), . . . ,Z(xN ))⊤ can

then be obtained by computing the square root
√
C ofC and by multiplying the ma-

trix
√
C with a realization y(ω) of the random vector y = (y1, . . . , yN )⊤ consisting

of N i.i.d. standard normally distributed random variables. This direct approach,

however, entails high computational effort, because the covariance matrix C is, in

general, dense so that calculating the square root requires O(N3) operations and

additional O(N2) operations are needed for the matrix-vector multiplication.

Reducing this computational complexity has been subject of recent research in

both areas, computational statistics and numerical mathematics, and many different

approaches have been suggested.

1.2. Existing methods

A widely used computational method is the circulant embedding of the covariance

matrix C.14,26,33 Here, stationarity, i.e., invariance of the Gaussian distribution

under translation in Rn enters in an essential fashion: It facilitates the applicability

of the fast Fourier transform (FFT) to numerically approximate the square root√
C and to perform the matrix-vector multiplication

√
Cy(ω) for a collection of

N sampling nodes at a computational cost of O(N log(N)) operations per sample.

For many applications, stationarity severely limits the scope of modeling: spatial

random data often does not satisfy tests for stationarity.9 For a set X that does not

afford invariance under translations, FFT-based methods require rather specific,

other invariances of X to achieve linear scaling, e.g., isotropic GRFs on X = S2.19

Furthermore, in order to apply such methods for the simulation of a GRF

in a Euclidean domain D ⊂ Rn, as proposed in Ref. 26, the sampling locations

x1, . . . , xN ∈ D have to be situated on a uniform grid. For the finite element dis-

cretization of a PDE with random coefficient or forcing, one typically needs to sim-

ulate a GRF on a triangulation T of D with local mesh refinement. Sampling based
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on circulant embedding mandates to simulate the GRF on a uniform “background”

mesh of D and to reinterpolate these samples to the unstructured triangulation T .33

The spatial resolution of this uniform “background” mesh therefore must equal the

smallest mesh width of T . This may obviate possible complexity gains from mesh

adaptation in the physical domain.

Sampling algorithms based on hierarchical matrices (H-matrices) overcome

these limitations at the cost of requiring the covariance function ̺ to be asymptoti-

cally smooth.15,28,29 In this case, it has been shown29 that combining an approxima-

tion of the covariance matrix C in the H-matrix format with an iterative algorithm

for realizing the matrix-vector product
√
Cy(ω) can reduce the computational ef-

fort for generating one sample of the field Z to an optimal cost of essentially O(N)

operations. In this work we pursue a different idea which has its roots in computa-

tional spatial statistics,46 and which will allow us to formulate an efficient sampling

algorithm for GRFs which neither are stationary nor have asymptotically smooth

covariance functions. To put the results of this article in context, in the following

we first present the key idea formulated in Ref. 46 as well as related developments

since then. Subsequently, we delineate our novel contributions.

The stochastic partial differential equation approach formulated in Ref. 46 ex-

ploits the following observation going back to Ref. 64 : In the case that D = Rn is

the whole Euclidean space, W denotes Gaussian white noise on the Hilbert space

L2(D), and κ > 0 is constant, then the solution Z to the fractional-order stochastic

partial differential equation (SPDE)

(κ2 −∆)βZ = W, a.e. in D, P-a.s., (1.1)

has a stationary covariance function ̺ of Matérn type, given for x,x′ ∈ Rn by

̺(x,x′) = ̺0(‖x− x′‖), ̺0(r) :=
σ2

2ν−1Γ(ν)
(κr)νKν(κr). (1.2)

Here, ‖ · ‖ is the Euclidean norm on Rn and Γ,Kν denote the gamma function and

a modified Bessel function of the second kind, respectively. The marginal variance

in (1.2) is given by σ2 = Γ(2β − n/2)Γ(2β)−1(4π)−n/2κn−4β and the parameter ν,

related to the fractional exponent β in (1.1) via ν = 2β − n/2, determines the

smoothness of the Matérn field. With the objective of modeling non-stationary

effects, in Ref. 46 the SPDE (1.1) has been considered on a bounded Euclidean

domain D ( Rn, where the differential operator κ2 − ∆ is augmented with Neu-

mann boundary conditions. Then, non-stationarity enters in two ways: firstly, a

(generalized) Whittle–Matérn field with spatially varying correlation range can be

obtained via a function-valued parameter κ : D → R; secondly, for D ( Rn, the

solution Z of (1.1) with Neumann or Dirichlet boundary conditions is, in general,

non-stationary, even if κ > 0 is constant. Furthermore, note that the covariance

operator C : L2(D) → L2(D) of the GRF Z is known, namely C = (κ2−∆)−2β , but

the covariance function ̺ of Z is usually not explicitly available in this case.

In Refs. 7, 8 the numerical solution of fractional-order stochastic partial differ-

ential equations including (1.1) has been considered in the general framework of
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the stochastic (pseudodifferential) equation AβZ = W, holding P-almost surely in

a separable Hilbert space H (here, W denotes white noise on H). Based on a sinc

quadrature for the Balakrishnan integral representation of the fractional-order in-

verse A−β , for the first time a numerical approximation has been proposed, which

is computable for the whole range of admissible parameters β > n/4. If A is a lin-

ear, symmetric, second-order elliptic differential operator in divergence form and

H := L2(X , νX ) for the closure of some spatial domain X , this approach can be

realized in practice by applying only inverses of discretized local linear operators to

a consistent numerical realization of white noise. The method is formulated with

respect to a subspace Vh ⊂ H of finite dimension Nh (here and throughout, h > 0

shall denote the discretization parameter which could indicate, for instance, the

mesh width in a finite element method). The corresponding random load vector be-

comes a centered, Nh-variate Gaussian distributed random vector, whose covariance

matrix corresponds to the Gramian (aka “mass matrix”) M of a basis for Vh. This

numerical approximation has been justified by a rigorous error analysis providing

explicit convergence rates for (i) the strong mean-square error with respect to H,7

and (ii) the weak error.8 For the case of a bounded Euclidean domain, X = D, the

error analysis of Refs. 7,8 recently has been complemented by bounds for the strong

mean-square error with respect to the (fractional-order) Sobolev space Hσ(D) and

the Hölder space Cγ(D) for σ ∈ [0, 1] and γ ∈ (0, 1).18 Furthermore, rates of con-

vergence for the covariance function of the approximation have been derived.18

1.3. Present work

Until now the following computational aspects of the approximation introduced

in Ref. 7 have remained open questions: (I) Assuming an asymptotic target accu-

racy O(N−ρ
h ) (in strong mean-square L2-sense) for some convergence rate ρ > 0,

generating one sample of Z via the approach of Ref. 7 will require the numerical

solution of O
(
log2(Nh)

)
linear systems of size Nh, out of which some correspond

to singularly perturbed problems. For this reason, the applicability and complexity

of multilevel preconditioning methods for solving these linear systems is unclear.

(II) The problem of calculating
√
C for the dense covariance matrix C has been

reduced to the computation of the matrix square root
√
M needed to simulate the

random load vector. Even though the Gramian M usually is sparse, it is not obvious

how to numerically realize
√
M in order to minimize the computational cost.

The novel contributions of the present work are to address the problems (I)–(II)

above in detail. Theorem 2.1 bounds under minimal assumptions on the operator A
and under certain conditions on the iterative solver involved (see Assumption 2.7)

the consistency error when approximating the GRF Z on a general compact metric

space X via the approach of Ref. 7. In Propositions 3.2, 4.1, and 5.1 it is shown

that these conditions hold on bounded Euclidean domains, X = D, and on closed,

connected, orientable, smooth, compact 2-surfaces, X = M, for finite element and

wavelet methods combined with BPX65 and diagonal preconditioning, respectively.
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These multilevel techniques are combined with the approach formulated in Sub-

section 2.2.4 to approximate the action of the matrix square root
√
M. Our main

result is that we are thus able to generate one approximate sample of the (general-

ized) Whittle–Matérn field Z at a total cost of O
(
Nh log

a(Nh)
)
operations for some

a ≥ 2 and at target accuracy of O(N−ρ
h ) for a convergence order ρ > 0 admitted

by regularity of Z and dimensionality of X . The presented algorithms allow, e.g.,

for non-stationary GRFs in the Euclidean case X = D, as well as for GRFs on

the sphere X = S2 which are non-isotropic, so that two-point correlations are not

rotation-invariant.

1.4. Outline

After a brief comment on notation in Subsection 1.5, we introduce GRFs indexed

by a compact metric space X in Section 2. For this general setting, we specify

admissible covariance operators of GRFs on X in Subsection 2.1. In Subsection 2.2

we then recall the sinc-Galerkin approximation of Refs. 7, 8 and we furthermore

address the numerical matrix-vector multiplication for the matrix square root of

the Gramian, needed for simulating the random forcing. Subsection 2.3 is devoted

to a unified numerical analysis of (i) the discretization error induced by the sinc-

Galerkin approximation and (ii) the consistency error, assuming that the arising

linear systems are approximately solved by an iterative solver which is robust under

singular perturbations.

Subsequently, we explicitly formulate sinc-Galerkin approximations based on

finite element discretizations on bounded Lipschitz polytopes X = D ⊂ Rn

in Section 3 and on closed, connected, orientable, smooth, compact 2-surfaces

X = M ⊂ R3 in Section 4. For the efficient solution of the arising second-order,

local, elliptic boundary value problems, we propose multilevel preconditioning al-

gorithms on hierarchies of unstructured, regular simplicial triangulations. We prove

their essentially linear complexity, uniformly with respect to singular perturbations

originating from the sinc quadrature, which allows us to apply the unified error anal-

ysis of Subsection 2.3. The results of Sections 3–4 are based on BPX preconditioning

and cover unstructured, shape-regular triangulations of D and M, respectively. Sec-

tion 5 develops the alternative approach of wavelet preconditioning. While providing

a unified framework for optimal preconditioning on X ∈ {D,M}, it is based on the

assumed availability of wavelet bases for Galerkin discretizations of the parametric

elliptic problems stemming from the sinc quadrature. Their construction commonly

requires hierarchic triangulations with some degree of regularity, whereas the BPX

techniques are readily applicable also for discretizations which are based on un-

structured, nested grids.

In Section 6 several numerical experiments for convex and non-convex poly-

gons D ⊂ R2 and the sphere M = S2 are performed, which verify our theoretical

results. Section 7 collects the principal contributions of this work, and indicates

several generalizations and extensions which follow from the present results.
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1.5. Notation

If not specified otherwise, E∗ denotes the dual space of a Banach space E and

( · , · )H is the inner product on a Hilbert space H. The domain of a linear opera-

tor A, which is possibly unbounded on H, is denoted by D(A) ⊆ H.

Throughout, (Ω,F ,P) denotes a complete probability space with expectation

operator E. We mark equations which hold almost everywhere or P-almost surely

with a.e. and P-a.s., respectively. For a Banach space E and p ∈ (0,∞), Lp(Ω;E)

denotes the space of (equivalence classes of) E-valued random variables with finite

p-th moment, equipped with the norm (respectively, quasi-norm if p ∈ (0, 1))

‖X‖Lp(Ω;E) :=
(
E
[
‖X‖pE

])1/p
, X ∈ Lp(Ω;E).

For a compact, connected metric space X , B(X ) is the Borel σ-algebra on X .

If, in addition, νX is a Borel measure on X then Lp(X , νX ) is the corresponding

Lp-space of p-integrable real-valued functions, with norm

‖f‖Lp(X ,νX ) :=

(∫

X
|f(x)|p dνX (x)

)1/p

, 1 ≤ p <∞,

and with the usual modification for p = ∞.

For a Euclidean domain D ⊂ Rn, D is its closure, and the Lp-space with respect

to the Lebesgue measure is abbreviated by Lp(D). Furthermore, for σ > 0, Hσ(D)

denotes the (integer- or fractional-order) Sobolev space.

For a closed, connected, orientable, smooth, compact 2-surface M, the set

OPSr
1,0(M) comprises all pseudodifferential operators of order r ∈ R in the sense

of Def. II.1.4 in Ref. 62.

2. Gaussian random fields on compact metric spaces

2.1. Admissible fields

Let us first assume that Z is a centered (i.e., E[Z] = 0) GRF on a com-

pact, connected metric space (X , dX ) and let νX be a strictly positive and fi-

nite Borel measure on (X ,B(X )). The covariance operator of the GRF Z, denoted

by C : L2(X , νX ) → L2(X , νX ), is then defined via

(Cφ, ψ)L2(X ,νX ) = E
[
(Z, φ)L2(X ,νX )(Z, ψ)L2(X ,νX )

]
∀φ, ψ ∈ L2(X , νX ).

This integral operator is self-adjoint and compact on L2(X , νX ). Furthermore, while

being in general only positive semi-definite, the covariance operators considered in

this work exhibit positive definiteness.

More precisely, we focus on the following class of admissible covariance struc-

tures: We consider GRFs, whose precision operator C−1 is a linear operator A as

specified in the assumption below or—motivated by the example (1.1) of Whittle–

Matérn fields—more generally, by a fractional power of such an operator.

Assumption 2.1. The linear operator A : D(A) ⊆ L2(X , νX ) → L2(X , νX ) is
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densely defined, self-adjoint, and positive definite. Furthermore, it has an inverse

A−1 : L2(X , νX ) → L2(X , νX ) which is compact.

Assuming compactness of A−1 ensures the existence of a countable, orthonormal

basis {ej}j∈N of L2(X , νX ), consisting of (equivalence classes of) eigenvectors of A.

We let them be enumerated such that the corresponding eigenvalues {λj}j∈N ⊂ R

of A are in nondecreasing order, i.e.,

0 < λ1 ≤ λ2 ≤ . . . ≤ λj ≤ λj+1 ≤ . . . , lim
j→∞

λj = ∞,

and repeated counting multiplicity.

For any σ > 0, the fractional power operator Aσ/2 is well-defined on the domain

D
(
Aσ/2

)
:=

{
ψ ∈ L2(X , νX ) :

∑

j∈N

λσj (ψ, ej)
2
L2(X ,νX ) <∞

}

via the spectral representation Aσ/2ψ :=
∑

j∈N
λ
σ/2
j (ψ, ej)L2(X ,νX ) ej . For σ > 0,

we thus introduce the subspace
(
Ḣσ

A, ( · , · )σ
)
, Ḣσ

A := D
(
Aσ/2

)
⊆ L2(X , νX ), (2.1)

which is equipped with the inner product

(φ, ψ)σ :=
(
Aσ/2φ,Aσ/2ψ

)
L2(X ,νX )

=
∑

j∈N

λσj (φ, ej)L2(X ,νX )(ψ, ej)L2(X ,νX ),

and the induced norm ‖ · ‖σ. Note that ( · , · )σ renders Ḣσ
A a Hilbert space. In

addition, we define Ḣ0
A := L2(X , νX ) and, for σ > 0, we let Ḣ−σ

A denote the dual

space
(
Ḣσ

A
)∗

after identification via the inner product on L2(X , νX ) (continuously

extended as duality pairing). In this way, we obtain, for 0 ≤ σ0 ≤ σ1, the following

chain of continuous and dense embeddings

Ḣσ1

A →֒ Ḣσ0

A →֒ Ḣ0
A = L2(X , νX ) ∼= L2(X , νX )∗ →֒ Ḣ−σ0

A →֒ Ḣ−σ1

A .

We furthermore recall from [48, Thm. 4.36] that, for all 0 ≤ σ0 < σ1 and every

θ ∈ [0, 1], the space Ḣ
(1−θ)σ0+θσ1

A is equivalent to the complex interpolation space[
Ḣσ0

A , Ḣσ1

A
]
θ
, i.e.,

∃c1 = c1(σ0, σ1, θ) > 0 : ∀v ∈ Ḣσ1

A : ‖v‖(1−θ)σ0+θσ1
≤ c1‖v‖[Ḣσ0

A
,Ḣ

σ1
A ]

θ

, (2.2)

∃c2 = c2(σ0, σ1, θ) > 0 : ∀v ∈ Ḣσ1

A : ‖v‖[Ḣσ0
A

,Ḣ
σ1
A ]

θ

≤ c2‖v‖(1−θ)σ0+θσ1
. (2.3)

We then consider the generalization of the Whittle–Matérn field (1.1) to a cen-

tered, possibly non-stationary GRF Zβ , defined on the compact metric space X ,

with distribution

Zβ ∼ N(0, Cβ), Cβ := A−2β . (2.4)

Here, we emphasize the dependence of the covariance structure on the fractional

exponent by the index β. Note that any system of eigenvectors for A is one for

the covariance operator Cβ and, in particular, Cβej = λ−2β
j ej . Furthermore, the
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definition (2.1) of Ḣσ
A renders C1/2

β = A−β an isometric isomorphism as a mapping

from Ḣσ
A to Ḣσ+2β

A for any σ ∈ R.

This property and a Karhunen–Loève expansion of the GRF Zβ in terms of the

eigenpairs {(λj , ej)}j∈N of the operator A can be exploited to show the following

regularity results for Zβ in (2.4) with respect to the spaces
(
Ḣσ

A
)
σ≥0

in (2.1).

Lemma 2.2. Let A be an operator satisfying Assumption 2.1, β > 0, p ∈ (0,∞),

σ ≥ 0 and Z be a GRF with distribution (2.4). Suppose furthermore that the eigen-

values {λj}j∈N of A satisfy the spectral asymptotics

∃c1, c2 > 0 : ∀j ∈ N : c1j
α ≤ λj ≤ c2j

α, (2.5)

for some α > 0. Then, E
[
‖Zβ‖pσ

]
<∞ if and only if 2β − σ > α−1.

Proof. By Fubini’s theorem and by (2.4), (2.5) we find

E
[
‖Zβ‖2σ

]
=
∑

j∈N

λσj (Cβej , ej)0 =
∑

j∈N

λ−2β+σ
j ≤ c

−(2β−σ)
1

∑

j∈N

j−α(2β−σ),

and this series converges if and only if α(2β − σ) > 1. By observing that similarly

c
−(2β−σ)
2

∑
j∈N

j−α(2β−σ) ≤ E
[
‖Zβ‖2σ

]
, this shows that Zβ is a zero-mean Gaus-

sian random variable in L2(Ω; Ḣ
σ
A) if and only if 2β − σ > α−1. By the Kahane–

Khintchine inequalities [45, Thm. 4.7 and p. 103] this statement remains true for

Lp(Ω; Ḣ
σ
A) and an arbitrary p ∈ (0,∞).

We close this subsection by observing that a centered GRF Zβ with distribu-

tion (2.4) can be represented as the solution to the stochastic equation

AβZβ = W, P-a.s. (2.6)

Here, W denotes Gaussian white noise on L2(X , νX ), i.e., W is a weak random vari-

able in the sense of [3, Ch. 6.4], with values in Ḣ0
A = L2(X , νX ) and characteristic

function given by Ḣ0
A ∋ ψ 7→ E[exp(i(ψ,W)0)] = exp(− 1

2‖ψ‖20).

2.2. Sinc-Galerkin discretization

The numerical solution of white noise driven, fractional-order equations of the

form (2.6) for β ∈ (0, 1) has been analyzed in a general Hilbert space framework in

Refs. 7, 8.

We adopt this approach, based on an integral representation of the negative

fractional power A−β due to Balakrishnan2 and a quadrature for this integral with

exponential convergence, first proposed in Ref. 10. This method reduces the appli-

cation of A−β to the numerical realization of finitely many inverses of local second-

order elliptic operators. In the following, we clearly exhibit the structure of these

local operators, since this will be key to the multilevel preconditioning techniques.
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2.2.1. Integral representation and sinc quadrature

A linear operator A satisfying Assumption 2.1 is closed. Therefore, for β ∈ (0, 1),

the negative fractional power A−β of the operator A admits the Balakrishnan rep-

resentation2

A−β =
cβ
2

∫ ∞

0

t−β(A+ tI)−1 dt = cβ

∫ ∞

−∞
e−2βy

(
e−2yA+ I

)−1
dy, (2.7)

where cβ := π−1(2 sin(πβ)) and I denotes the identity on L2(X , νX ).

In Ref. 10 it has been proven that the latter integral in (2.7) fulfills the require-

ments for convergence with respect to the operator norm when approximated by a

sinc quadrature (see, e.g., Refs. 49,60). For K ∈ N and k ∈ {−K, . . . ,K}, we define
the following quadrature parameters:

δy := 1/
√
K > 0, yk := kδy, εk := exp(−yk). (2.8)

If f ∈ L2(X , νX ) and β ∈ (0, 1), the sinc approximation uK of u = A−βf with A−β

as represented in (2.7) then reads

uK := Q−β
K (A)f, Q−β

K (A) := cβδy
∑

|k|≤K

ε2βk
(
ε2kA+ I

)−1
. (2.9)

In [10, Lem. 3.4] exponential convergence for the sinc quadrature (2.9) (with A
replaced with an element λ of the positive real-valued spectrum of A) is proven.

The next lemma is an immediate consequence of that result.

Lemma 2.3. Let A : D(A) ⊆ L2(X , νX ) → L2(X , νX ) satisfy Assumption 2.1,

β ∈ (0, 1) and Q−β
K (A) be the sinc quadrature in (2.9). Then, for every 0 ≤ σ ≤ 1,

there exists a constant C > 0, independent of K, such that, for all f ∈ Ḣσ
A,

∥∥A−βf −Q−β
K (A)f

∥∥
σ
≤ Ce−2min{β,1−β}

√
K ‖f‖σ

holds with respect to the norm ‖ · ‖σ on Ḣσ
A, see (2.1).

2.2.2. Galerkin discretization

For f ∈ L2(X , νX ) and K ∈ N, we can write the sinc quadrature approximation uK
from (2.9) as

uK = Q−β
K (A)f = cβδy

∑

|k|≤K

ε2βk uk, (2.10)

i.e., as a linear combination of the 2K +1 solutions to the non-fractional equations
(
ε2kA+ I

)
uk = f, k = −K, . . . ,K. (2.11)

Recall the Hilbert space
(
Ḣσ

A, ( · , · )σ
)
from (2.1), and suppose that we are given

a family (Vh)h>0 of finite-dimensional subspaces,

Vh ⊂ Ḣ1
A, dim(Vh) := Nh <∞. (2.12)
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A Vh-valued Galerkin approximation for uK in (2.10) is then based on weak formu-

lations of the problems in (2.11). To state these, we first introduce, for η > 0, the

parametric bilinear form

aη : Ḣ
1
A × Ḣ1

A → R, aη(w, v) := η(w, v)1 + (w, v)0, (2.13)

where ( · , · )1 and ( · , · )0 are the inner products on Ḣ1
A and Ḣ0

A = L2(X , νX ),

respectively, cf. (2.1). In addition, we let

‖v‖a,η :=
√
aη(v, v), v ∈ Ḣ1

A, (2.14)

be the corresponding η-dependent energy norm on Ḣ1
A. Note that, for any η > 0,

the norms ‖ · ‖a,η and ‖ · ‖1 are equivalent (with equivalence constants depending

on η). The Galerkin discretization of (2.11) with respect to Vh then reads, find

ukh ∈ Vh : aε2k(u
k
h, vh) = (f, vh)0 ∀vh ∈ Vh, k = −K, . . . ,K. (2.15)

Since A : Ḣ1
A → Ḣ−1

A is bounded, symmetric and positive definite, the Lax–Milgram

lemma ensures that the numerical approximations
{
u−K
h , . . . , uKh

}
⊂ Vh in (2.15)

are well-defined. Furthermore, we have optimality with respect to the energy norm,

‖uk − ukh‖a,ε2k = inf
wh∈Vh

‖uk − wh‖a,ε2k , k = −K, . . . ,K. (2.16)

Finally, by exploiting the Galerkin approximations from (2.15) in the sinc

quadrature (2.10), we arrive at the sinc-Galerkin approximation uK,h for u = A−βf ,

uK,h := cβδy
∑

|k|≤K

ε2βk ukh,

with the sinc parameters δy, εk > 0 from (2.8). We note that

uK,h = cβδy
∑

|k|≤K

ε2βk
(
ε2kAh + Ih

)−1
f = Q−β

K (Ah)f, (2.17)

where Ih denotes the identity on Vh and Ah : Vh → Vh is the Galerkin discretization

of the operator A. Thus, the Galerkin discretization for the sinc quadrature equals

the sinc quadrature formulated for the Galerkin operator Ah.

2.2.3. Fully discrete approximation for β ∈ (0, 1)

Besides an approximation of the negative fractional power operator A−β we need a

(P-a.s.) Vh-valued approximation of white noise W on the Hilbert space L2(X , νX )

in order to solve (2.6) numerically for the GRF Zβ .

To this end, let Πh : L2(X , νX ) → Vh denote the L2(X , νX )-orthogonal projec-

tion onto the finite-dimensional subspace Vh ⊂ Ḣ1
A. Although Gaussian white noise

on L2(X , νX ) is only Ḣ
− 1

α−ε

A -regular for α > 0 as in (2.5) and ε > 0 (P-a.s. and in



October 14, 2019 10:18 WSPC/INSTRUCTION FILE hks-sincML-revise

Multilevel Approximation of GRFs: Fast Simulation 11

Lp-sense, p ∈ (0,∞), see [7, Prop. 2.3]), the Gaussian random variable Wh := ΠhW
is a well-defined element of Lp(Ω;L2(X , νX )) as shown in the following lemma.

Lemma 2.4. Let the operator A satisfy Assumption 2.1 and Πh : L2(X , νX ) → Vh
be the L2(X , νX )-orthogonal projection onto Vh ⊂ Ḣ1

A with dim(Vh) = Nh, and the

space Ḣ1
A be defined as in (2.1). Then, for Wh := ΠhW, we have E

[
‖Wh‖20

]
= Nh.

Furthermore, for any p ∈ (0,∞), there exists a constant Cp > 0, depending only

on p, such that
(
E
[
‖Wh‖p0

])1/p ≤ Cp

√
Nh holds.

Proof. Let {(λk,h, ek,h)}Nh

k=1 be eigenpairs of the Galerkin operator Ah : Vh → Vh,

with {ek,h}Nh

k=1 orthonormalized in L2(X , νX ) so that ‖ek,h‖20 = 1. Then, for p = 2,

we find by Fubini’s theorem,

E
[
‖Wh‖20

]
= E

∑

j∈N

(ΠhW, ej)
2
0 =

∑

j∈N

‖Πhej‖20 =

Nh∑

k=1

‖ek,h‖20 = Nh.

For a general p ∈ (0,∞), the assertion of this lemma follows from the Kahane–

Khintchine inequalities [45, Thm. 4.7 and p. 103].

Thus, for any β ∈ (0, 1), we may approximate the L2(X , νX )-valued Gaussian

random variable Zβ in (2.6), with distribution (2.4), by the GRF

Zβ
K,h := Q−β

K (Ah)Wh, P-a.s., (2.18)

taking values in the finite-dimensional space Vh (P-a.s.).

As mentioned already in Subsection 2.2.2 for the deterministic setting, comput-

ing (a sample of) Q−β
K (Ah)Wh requires to solve 2K+1 integer-order problems. More

precisely, the sinc-Galerkin approximation in (2.18) equals the linear combination

Zβ
K,h = cβδy

∑

|k|≤K

ε2βk Zk
h , P-a.s., (2.19)

where the random fields
{
Z−K

h , . . . ,ZK
h

}
are solutions to the stochastic equations

(
ε2kAh + Ih

)
Zk

h = Wh, P-a.s., k = −K, . . . ,K. (2.20)

These discrete problems in turn lead to 2K + 1 systems of linear equations of

size Nh, namely

(
ε2kA+M

)
Zk

h = b, k = −K, . . . ,K, (2.21)

where the symmetric matrices M,A ∈ RNh×Nh
sym are the Gramian and the matrix

representation of the discrete operator Ah : Vh → Vh, which both depend on the

choice of basis Φh := {φ1,h, . . . , φNh,h} for Vh ⊂ Ḣ1
A. Their elements are given by

(recall the inner product ( · , · )σ on Ḣσ
A from (2.1))

Mij := (φj,h, φi,h)0, Aij := (Ahφj,h, φi,h)0 = (φj,h, φi,h)1, (2.22)
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for i, j ∈ {1, . . . , Nh}. The load vector b has entries bi :=
(
Wh, φi,h

)
0
. Thus, it is

multivariate Gaussian distributed with b ∼ N(0,M), since

E[(Wh, φi,h)0(Wh, φj,h)0] = E[(ΠhW, φi,h)0(ΠhW, φj,h)0] = (φi,h, φj,h)0.

The vector Z
β
K of coefficients for the sinc-Galerkin approximation Zβ

K,h in (2.18),

(2.19) with respect to basis Φh is then given by

Z
β
K = cβδy

∑

|k|≤K

ε2βk Zk
h, Z

β
K ∼ N (0,Qβ,KMQβ,K) .

Here, Qβ,K ∈ RNh×Nh
sym is the matrix representation of the sinc-Galerkin operator

Q−β
K (Ah) from (2.17) with respect to the basis Φh = {φ1,h, . . . , φNh,h}, i.e.,

Qβ,K := cβδy
∑

|k|≤K

ε2βk
(
ε2kA+M

)−1
.

Remark 2.1. The random fields
{
Z−K

h , . . . ,ZK
h

}
in (2.20) are independent of the

fractional exponent β ∈ (0, 1). Thus, having simulated Zk
h for every k, we can gen-

erate samples of the sinc-Galerkin approximation Zβ
K,h in (2.18) simultaneously for

different values of β ∈ (0, 1) by taking the corresponding linear combinations (2.19).

2.2.4. Simulation of the noise WΦ
h

Simulating the random load vector b ∼ N(0,M) in (2.21) requires the matrix-

vector multiplication of (an approximation for) the matrix square root
√
M of the

Gramian M ∈ RNh×Nh
sym in (2.22) with a vector y of Nh i.i.d. N(0, 1)-distributed

random variables. In this part we address how this matrix square root can be

efficiently approximated. Specifically, we apply the method proposed in Ref. 35

based on contour integral representations to the well-conditioned Gramian M and

are thus able to generate an approximation of the load vector b ∼ N(0,M) at a

complexity of O(Nh log(Nh)) and at certified accuracy.

In what follows, let m̂ > 0 be a lower bound for smallest eigenvalue and M̂ > 0

be an upper bound for the largest eigenvalue of the Gramian M. Furthermore, we

set κ̂M := M̂/m̂. Following [35, Eq. (4.4) and comments below], for K̃ ∈ N, an

approximation M
√

K̃
of the matrix square root

√
M can be obtained via

M
√

K̃
:=

2J ′√m̂
πK̃

M

K̃∑

j=1

dn
(
tj |1− κ̂−1

M

)

cn2
(
tj |1− κ̂−1

M

) (M+ w2
j I
)−1

. (2.23)

Here, I ∈ RNh×Nh
sym denotes the identity matrix, sn, cn and dn are the Jacobian

elliptic functions [1, Ch. 16], J ′ is the complete elliptic integral of the second kind

associated with the parameter κ̂−1
M [1, Ch. 17] and, for j ∈ {1, . . . , K̃},

wj :=
√
m̂

sn
(
tj |1− κ̂−1

M

)

cn
(
tj |1− κ̂−1

M

) and tj :=

(
j − 1

2

)
J ′

K̃
.
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Note that (2.23) was obtained by reformulating [35, Eq. (4.4)] in order to clearly

exhibit symmetry, positive definiteness and condition of the matrices M + w2
j I,

whose inverses have to be applied to the vector y. We furthermore emphasize that,

even though (2.23) results from a quadrature for a contour integral with complex

arguments, all quantities in (2.23) are real-valued. In addition, the Gramian M is

symmetric, positive definite and, thus, efficient methods are available to compute

approximations m̂, M̂ of the smallest and largest eigenvalue of M, which are nec-

essary for (2.23). We mention here the power method and the inverse iterationa,

respectively, which performed well in our numerical experiments, see Subsection 6.1.

The following result, taken from [35, Thm. 4.1], shows exponential convergence

of the approximation in (2.23) to the matrix square root
√
M as K̃ → ∞ with

respect to the 2-norm ‖ · ‖ (i.e., the operator matrix norm).

Proposition 2.1. Let M be a matrix with eigenvalues in the interval
[
m̂, M̂

]
for

some 0 < m̂ < M̂ . Then M
√

K̃
defined for K̃ ∈ N in (2.23) converges to the matrix

square root
√
M of M and there exist constants c̃, C > 0, which depend only on

κ̂M = M̂/m̂, but not on the dimension of M, such that

∥∥√M−M
√

K̃

∥∥ ≤ Ce−c̃K̃ . (2.24)

Remark 2.2. If
(
Mh

)
h
are mass matrices corresponding to finite element spaces

(Vh)h induced by a quasi-uniform family of triangulations and indexed by the mesh

width h ∈ (0, h0), it is well-known that the condition number κM and, thus, the

constants c̃, C in (2.24) are independent of h ∈ (0, h0), see, e.g., [65, Eq. (5.8)]. Since

the sum of two well-conditioned, symmetric, positive definite matrices is again well-

conditioned, the same is true for the matrices M+ w2
j I appearing in (2.23).

2.2.5. The case β ≥ 1

We briefly comment on the case of an exponent β ≥ 1. If β = nβ + β⋆ ≥ 1 for some

nβ ∈ N and β⋆ ∈ [0, 1), we approximate Zβ in (2.6) by

Zβ
K,h := Q−β⋆

K (Ah) A−nβ

h Wh,

cf. (2.18), where we set Q0
K(Ah) := Ih.

If β⋆ = 0, no sinc quadrature is needed, and we obtain the approximation Zβ
K,h

from an iterated finite element approach, i.e.,

Z
β
K = A−1

(
MA−1

)nβ−1
M

√

K̃
y, y ∼ N(0, I).

Here, M
√

K̃
denotes the approximation (2.23) of the matrix square root

√
M. The

inverse of A can be numerically approximated for example by means of multilevel

methods as described in Sections 3–5.

aFor a convergence analysis of the power method and the inverse iteration, see [32, Section 8.2].
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For β⋆ ∈ (0, 1), samples of the approximation Zβ
K,h can be efficiently obtained

by solving the 2K +1 linear systems in (2.21) for the random load vector, approxi-

mately given by b ≈
(
MA−1

)nβ
M

√

K̃
y for y ∼ N(0, I), and by evaluating the linear

combination (2.19) with β replaced by β⋆.

2.3. Unified error analysis

The purpose of this section is to provide a complete error analysis for the sinc-

Galerkin approximation Zβ
K,h in (2.18), (2.19), including rigorous bounds for the

consistency error if the linear systems (2.21) are approximately solved by an iterative

method generating approximations Z̃k
h of Zk

h in (2.20). For linear iterative methods,

after any finite number of steps the resulting approximation Z̃k
h is again a centered

GRF.

We first discuss the discretization error of the sinc-Galerkin approximation Zβ
K,h

from (2.18) in a different manner than in Refs. 7, 18: In contrast to Ref. 18 we

consider GRFs on general compact metric spaces instead of on bounded Euclidean

domains, and compared to [7, Ass. 2.6], we impose less restrictive assumptions on

the family of discrete spaces (Vh)h>0.

We develop our error analysis under the following assumptions on (Vh)h>0.

Assumption 2.5. Let (Vh)h>0 be a one parameter family of subspaces Vh ⊂ Ḣ1
A of

finite dimension dim(Vh) = Nh <∞ such that:

(i) There exists a linear projection Ph : L2(X , νX ) → Vh, which is stable on

L2(X , νX ), uniformly in Nh, and whose restriction to Ḣ1
A is stable on Ḣ1

A,
uniformly in Nh. Moreover, it allows for convergence rates ρ01, ρ02, ρ12 > 0

such that

‖v − Phv‖0 ≤ C01N
−ρ01

h ‖v‖1 ∀v ∈ Ḣ1
A, (2.25)

‖v − Phv‖0 ≤ C02N
−ρ02

h ‖v‖2 ∀v ∈ Ḣ2
A, (2.26)

‖v − Phv‖1 ≤ C12N
−ρ12

h ‖v‖2 ∀v ∈ Ḣ2
A, (2.27)

with constants C01, C02, C12 > 0 which are independent of Nh.

(ii) There exists ρ̃ > 0 such that, for every 0 ≤ σ ≤ 1, the inverse inequality

‖φh‖σ ≤ C̃σN
ρ̃σ
h ‖φh‖0 ∀φh ∈ Vh, (2.28)

holds. Here, the constant C̃σ > 0 is independent of Nh.

Lemma 2.6. Suppose that Assumptions 2.1 and 2.5(i) are satisfied for the opera-

tor A and the family (Vh)h>0, respectively. For β ∈ (0, 1), let Q−β
K (A) and Q−β

K (Ah)

be the sinc quadrature in (2.10) and the sinc-Galerkin approximation in (2.17). As-

sume further that γ, γ′ ∈ (0, β) and σ, σ′ ≥ 0 are such that

σ < (β − γ)min
{

1−γ
γ , γ

1−γ

}
, σ′ < (β − γ′)min

{
1−γ′

γ′ , γ′

1−γ′

}
. (2.29)
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There exists a constant C > 0, independent of K,Nh, such that, for all f ∈ Ḣ−σ′

A ,

∥∥Q−β
K (A)f −Q−β

K (Ah)f
∥∥
σ
≤ CN

−(γ+γ′)min{ρ01, ρ12}
h ‖f‖−σ′ .

Proof. Recall from (2.14) that ‖v‖2
a,ε2k

= ε2k‖v‖21 + ‖v‖20 and, thus, ‖v‖0 ≤ ‖v‖a,ε2k ,
‖v‖1 ≤ ε−1

k ‖v‖a,ε2k , for all v ∈ Ḣ1
A. For 0 ≤ σ̃ ≤ 1, we exploit the equivalence of Ḣ σ̃

A
with the complex interpolation space

[
Ḣ0

A, Ḣ
1
A
]
σ̃
, see (2.2)–(2.3), and conclude that

there exists a constant Cσ̃ > 0, independent of K,Nh, such that, for all v ∈ Ḣ1
A,

‖v‖σ̃ ≤ Cσ̃‖v‖[Ḣ0
A
,Ḣ1

A]σ̃
≤ Cσ̃ε

−σ̃
k ‖v‖a,ε2k . (2.30)

Thus, uk ∈ Ḣ1
A defined for k ∈ {−K, . . . ,K} as in (2.11) satisfies, for f ∈ Ḣ−σ̃

A ,

aε2k(u
k, uk) = (f, uk)0 ≤ ‖f‖−σ̃‖uk‖σ̃ ≤ Cσ̃ε

−σ̃
k ‖f‖−σ̃‖uk‖a,ε2k . (2.31)

In the case that f ∈ L2(X , νX ), we furthermore obtain that ‖uk‖0 ≤ ‖uk‖a,ε2k ≤
‖f‖0 and

ε4k‖uk‖22 = ‖ε2kAuk‖20 = ‖f − uk‖20 = ‖f‖20 − 2(f, uk)0 + ‖uk‖20
= ‖f‖20 − 2‖uk‖2a,ε2k + ‖uk‖20 ≤ ‖f‖20.

This shows, for 0 ≤ σ̃ ≤ 1, the εk-dependent stability estimates

‖uk‖0 ≤ ‖f‖0, ‖uk‖1 ≤ ε−1
k ‖uk‖a,ε2k ≤ Cσ̃ε

−1−σ̃
k ‖f‖−σ̃, ‖uk‖2 ≤ ε−2

k ‖f‖0.

Using the equivalence in (2.2)–(2.3) once more, we find that for all 0 ≤ γ′, σ̃ ≤ 1,

there exist constants Cj = Cj(γ
′, σ̃) > 0, j = 1, 2, independent of K,Nh, such that

‖uk‖γ′ ≤ C1ε
−γ′(1+σ̃)
k ‖f‖−γ′σ̃, ‖uk‖1+γ′ ≤ C2ε

−1−γ′−(1−γ′)σ̃
k ‖f‖−σ̃+γ′σ̃. (2.32)

Now fix γ, γ′ ∈ (0, β) and σ, σ′ ≥ 0 satisfying (2.29) and f ∈ Ḣ−σ′

A . First, let

k ∈ {0, . . . ,K} and uk, ukh be defined as in (2.11), (2.15). Since ukh ∈ Vh is the best

approximation of uk with respect to the energy norm, see (2.16), we find

‖uk − ukh‖a,ε2k ≤ εk‖uk − Phu
k‖1 + ‖uk − Phu

k‖0,

where Ph : Ḣ
1
A → Vh is the operator from Assumption 2.5(i). The approximation

properties (2.25), (2.27) of Ph may be interpolated to hold for elements in Ḣγ′

A with

rate γ′ρ01 and in Ḣ1+γ′

A with rate γ′ρ12, respectively. Thus, by (2.32) applied for

the choice of parameter σ̃ := σ′/(1 −max{1 − γ′, γ′}) < 1, there exists a constant

C > 0, independent of K,Nh, such that, for all k ∈ {0, . . . ,K}, we have

‖uk − ukh‖a,ε2k ≤ Cε
−γ′−max{1−γ′,γ′}σ̃
k

(
N−γ′ρ12

h +N−γ′ρ01

h

)
‖f‖−σ̃(1−max{1−γ′,γ′}),

≤ Cε−γ′−σ̄′

k N
−γ′ min{ρ01, ρ12}
h ‖f‖−σ′ , (2.33)

where σ̄′ := σ′ max{1− γ′, γ′}/(1−max{1− γ′, γ′}).
For k ∈ {−K, . . . ,−1}, we consider vk := ε2ku

k and vkh := ε2ku
k
h, where u

k, ukh
are again as in (2.11), (2.15). Then vk solves (A+ ε−2

k I)vk = f (in weak sense) and



October 14, 2019 10:18 WSPC/INSTRUCTION FILE hks-sincML-revise

16 L. Herrmann, K. Kirchner, & Ch. Schwab

vkh is the respective Galerkin approximation. Since ε−1
k < 1 for k < 0, the operator

(A+ε−2
k I) is not singularly perturbed. Thus, by a standard argument there exists a

constant C > 0 that does not depend on K,Nh such that, for all k ∈ {−K, . . . ,−1}

‖vk − vkh‖1 ≤ CN
−ρ12(1−σ′)
h ‖f‖−σ′ ≤ CN−γ′ρ12

h ‖f‖−σ′ , (2.34)

where 1− σ′ > γ′ is implied by the assumption on σ′ in (2.29).

Let G ∈ Ḣ−σ
A be arbitrary such that ‖G‖−σ = 1 and denote by ukG, u

k
G,h, v

k
G, v

k
G,h

the respective solutions to the adjoint equation (2.11) with right-hand side G. The

differences ukG −ukG,h, v
k
G − vkG,h satisfy (2.33) and (2.34), respectively, with ‖f‖−σ′

replaced by ‖G‖−σ. By an Aubin–Nitsche duality argument, we then obtain

∣∣G(Q−β
K (A)f −Q−β

K (Ah)f)
∣∣ ≤ Cδy

(
K∑

k=0

ε2βk ‖uk − ukh‖a,ε2k‖u
k
G − ukG,h‖a,ε2k

+

−1∑

k=−K

ε2β−2
k ‖vk − vkh‖1‖vkG − vkG,h‖1

)

≤ CN
−(γ+γ′)min{ρ01, ρ12}
h ‖f‖−σ′

(
δy + δy

K∑

k=1

ε2β−γ−σ̄−γ′−σ̄′

k + δy

−1∑

k=−K

ε2β−2
k

)
.

By a geometric series argument and the fact that 1/(ex − 1) ≤ 1/x for every x > 0,

δy

K∑

k=1

ε2β−γ−σ̄−γ′−σ̄′

k ≤ 1
2β−γ−σ̄−γ′−σ̄′ and δy

−1∑

k=−K

ε2β−2
k ≤ 1

2(1−β) .

The claim follows upon taking the supremum over G ∈ Ḣ−σ
A with ‖G‖−σ = 1.

Exploiting Lemmata 2.3, 2.4 and 2.6 allows us to bound, for β ∈ (0, 1), the

strong Lp

(
Ω; Ḣσ

A
)
-error between the generalized Whittle–Matérn field Zβ in (2.4),

indexed by a compact metric space X , and the sinc-Galerkin approximation Zβ
K,h

in (2.18). This generality comes at the expense that for the Euclidean case X = D in

connection with uniformly refined finite element meshes, analyzed in detail in [18,

Thm. 6.23], the error bound of the following proposition will be as strong only if

ρ01 = ρ12 = 1 and ρ02 = 2, i.e., if the elliptic problem associated with the differential

operator A is H2(D)-regular in the sense of [18, Def. 6.20].

Proposition 2.2. Let the operator A satisfy Assumption 2.1 and the spectral

asymptotics (2.5) for some α > 0. Suppose Assumptions 2.5(i)–(ii) for the dis-

crete spaces (Vh)h>0. For β ∈ (0, 1), let Zβ be a GRF with distribution (2.4) and

Zβ
K,h be the sinc-Galerkin approximation in (2.18). Assume further that γ ∈ (0, β)

and σ ≥ 0 are such that 2β − σ > α−1 and (2.29) hold. Then, for every δ > 0 and

all p ∈ (0,∞), there exists a constant C > 0, independent of K and Nh := dim(Vh),
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such that
(
E
[∥∥Zβ −Zβ

K,h

∥∥p
σ

])1/p
≤ CN

−ρ02/2 (2β−σ−α−1−δ)
h

+ C
(
e−2min{β,1−β}

√
KN ρ̃σ

h +N
−2γ min{ρ01,ρ12}
h

)
N

1/2
h .

Here, ρ01, ρ02, ρ12, ρ̃ > 0 are as in Assumption 2.5.

Proof. We consider the case p = 2 first. Then we bound the error as follows,

E
[∥∥Zβ −Zβ

K,h

∥∥2
σ

]
≤ 3E

[∥∥A−β(W −Wh)
∥∥2
σ

]
+ 3E

[∥∥(A−β −Q−β
K (A)

)
Wh

∥∥2
σ

]

+ 3E
[∥∥(Q−β

K (A)−Q−β
K (Ah)

)
Wh

∥∥2
σ

]
=: (I) + (II) + (III).

The terms (II) and (III) can be bounded by Lemma 2.3 and by Lemma 2.6 (applied

for γ = γ′ and σ′ = 0), respectively, combined with Lemma 2.4 and Assump-

tion 2.5(ii). Thus, there exists a constant C > 0, independent of K,Nh such that

(II) ≤ C2e−4min{β,1−β}
√
KN1+2ρ̃σ

h , (III) ≤ C2N
−4γ min{ρ01,ρ12}+1
h .

It remains to estimate term (I). To this end, we recall the definition of Ḣσ
A from (2.1)

and find by Fubini’s theorem

(I) =
∑

j∈N

λσj E
[(
A−β(I −Πh)W, ej

)2
0

]
=
∑

j∈N

λσ−2β
j ‖(I −Πh)ej‖20.

We use the fact that Πhej ∈ Vh is the L2(X , νX )-best approximation of ej and we

find with (2.26) of Assumption 2.5(i) that

‖(I −Πh)ej‖0 ≤ ‖(I − Ph)ej‖0 ≤ C02N
−ρ02

h ‖ej‖2.

Since also ‖(I −Πh)ej‖0 ≤ ‖ej‖0 = 1, we obtain, for 0 ≤ σ′ ≤ 2, by the equivalence

of Ḣσ′

A with
[
Ḣ0

A, Ḣ
2
A
]
σ′/2

, cf. (2.2)–(2.3), that there exists a constant Cσ′ > 0,

independent of K,Nh such that

‖(I −Πh)ej‖0 ≤ ‖(I − Ph)ej‖0 ≤ C
σ′/2
02 N

−ρ02σ
′/2

h ‖ej‖[Ḣ0
A
,Ḣ2

A]σ′/2

≤ Cσ′N
−ρ02σ

′/2
h ‖ej‖σ′ = Cσ′N

−ρ02σ
′/2

h λ
σ′/2
j .

Without loss of generality we may assume that δ ∈ (0, 2β − σ − α−1). We then

conclude with the choice σ′ := 2β − σ − α−1 − δ ∈ (0, 2) and the spectral asymp-

totics (2.5) that there exist constants C, C̃ > 0, independent of K,Nh, such that

(I) ≤ C̃N
−ρ02(2β−σ−α−1−δ)
h

∑

j∈N

j−1−αδ ≤ CN
−ρ02(2β−σ−α−1−δ)
h .

Applying the Kahane–Khintchine inequalities, see, e.g., [45, Thm. 4.7 and p. 103],

for the zero-mean Ḣσ
A-valued Gaussian random variable Zβ − Zβ

K,h shows the as-

sertion for all p ∈ (0,∞).
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The final component in our unified error analysis is the consistency error. For

this, we suppose that a bound for the consistency error of each Galerkin approxima-

tion ukh in (2.15) with respect to the respective energy norm ‖ · ‖a,ε2k holds, which

is uniform in k. Below, we formulate this assumption for general ε > 0.

Assumption 2.7. Suppose that A : D(A) ⊆ L2(X , νX ) → L2(X , νX ) is a lin-

ear operator satisfying Assumption 2.1 and that Vh ⊂ Ḣ1
A has finite dimension

dim(Vh) = Nh. For ε > 0, let aε2( · , · ) and ‖ · ‖a,ε2 denote the bilinear form

in (2.13) and the corresponding energy norm in (2.14) with η = ε2. Assume that

f ∈ L2(X , νX ) and that ũεh ∈ Vh is an approximation to the Galerkin solution

uεh ∈ Vh : aε2(u
ε
h, vh) = (f, vh)0 ∀vh ∈ Vh,

which is obtained by approximate solution of the linear system of equations by an

iterative solution algorithm, whose number of iterations is uniquely determined by

n0 ∈ N and Nh. Suppose, there exist constants Ccon > 0, q ∈ (0, 1), independent of

ε, n0, f and Nh, such that ũεh satisfies the consistency error bound

‖ũεh − uεh‖a,ε2 ≤ Ccon q
n0‖uεh‖a,ε2 . (2.35)

Proposition 2.3. Suppose that we are given an iterative solution algorithm satisfy-

ing Assumption 2.7 which generates approximations ũkh of the Galerkin solutions ukh
in (2.15). Let cβ := π−1(2 sin(πβ)) and δy, εk be as in (2.8). Then, ũK,h defined as

the linear combination

ũK,h := cβδy
∑

|k|≤K

ε2βk ũkh,

approximates the sinc-Galerkin solution uK,h in (2.17), and there exists a constant

C > 0, independent of q, n0,K and Nh, such that, for β ∈ (0, 1), 0 ≤ σ ≤ 1 with

σ < 2β, 0 ≤ σ′ < min{1, 2β − σ}, and all f ∈ Ḣ−σ′

A the consistency error bound

‖ũK,h − uK,h‖σ ≤ Cqn0‖f‖−σ′ , (2.36)

with respect to the norm on Ḣσ
A from (2.1) and on the dual space Ḣ−σ′

A holds.

Proof. Let 0 ≤ σ̃ ≤ 1 and C1→֒σ̃ > 0 be a constant such that ‖v‖σ̃ ≤ C1→֒σ̃‖v‖1 for
all v ∈ Ḣ1

A →֒ Ḣ σ̃
A. Then, by definition of the bilinear form aε2k , cf. (2.13), we obtain,

for v ∈ Ḣ1
A, the following relations for the corresponding energy norm (2.14),

‖v‖0 ≤ ‖v‖a,ε2k , ‖v‖1 ≤ ε−1
k ‖v‖a,ε2k , ‖v‖σ̃ ≤

{
C1→֒σ̃ ε

−1
k ‖v‖a,ε2k , k < 0,

Cσ̃ ε
−σ̃
k ‖v‖a,ε2k , k ≥ 0,

where Cσ̃ > 0 is a constant, independent of K,Nh, see (2.30). The εk-dependent

stability estimate (2.31) holds also for the Galerkin approximation ukh in (2.15), i.e.,

‖ukh‖a,ε2k ≤ Cσ̃ ε
−σ̃
k ‖f‖−σ̃, 0 ≤ σ̃ ≤ 1. (2.37)
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With these preliminary observations on the energy norm ‖ · ‖a,ε2k at hand, we

proceed similarly as in the proof of Lemma 2.6 and find

‖uK,h − ũK,h‖σ ≤ cβδy
∑

|k|≤K

ε2βk ‖ukh − ũkh‖σ

≤ C ′δy

( −1∑

k=−K

ε2β−1
k ‖ukh − ũkh‖a,ε2k +

K∑

k=0

ε2β−σ
k ‖ukh − ũkh‖a,ε2k

)
,

where C ′ := cβ max{C1→֒σ, Cσ}. We use the consistency error bound (2.35) of

Assumption 2.7 for each term in the sums, ‖ukh − ũkh‖a,ε2k ≤ Cconq
n0‖ukh‖a,ε2k , and

set C ′′ := CconC
′ > 0. By recalling the definition of εk from (2.8), we then obtain

with (2.37) (applied for σ̃ = 1 and σ̃ = σ′, respectively) that, for 0 ≤ σ < 2β,

0 ≤ σ′ < min{1, 2β − σ} and all f ∈ Ḣ−σ′

A ,

‖uK,h − ũK,h‖σ ≤ C ′′qn0δy

(
C1

−1∑

k=−K

ε
−2(1−β)
k ‖f‖−1 + Cσ′

K∑

k=0

ε2β−σ−σ′

k ‖f‖−σ′

)

≤ C̃qn0‖f‖−σ′

(
δy + δy

K∑

k=1

e−2(1−β)kδy + δy

K∑

k=1

e−(2β−σ−σ′)kδy

)
,

where C̃ := C ′′ max{C1, Cσ′} > 0. Finally, bounding the sums by geometric series

and using the relation
(
eaδy − 1

)−1 ≤ (aδy)
−1, which holds for any a > 0, gives

‖uK,h − ũK,h‖σ ≤ C̃
(

1√
K

+ 1
2(1−β) +

1
2β−σ−σ′

)
qn0‖f‖−σ′ ,

and (2.36) follows for C := C̃
(
1 + (2− 2β)−1 + (2β − σ − σ′)−1

)
.

Theorem 2.1. Let β ∈ (0, 1) and suppose that the operator A satisfies Assump-

tion 2.1 and the spectral asymptotics (2.5) for α > 0. Assume that we are given an

iterative algorithm satisfying Assumption 2.7 which generates approximations Z̃k
h

of the GRFs Zk
h in (2.20). Then, Z̃β

K,h, defined as the linear combination

Z̃β
K,h := cβδy

∑

|k|≤K

ε2βk Z̃k
h , P-a.s., cβ := π−1(2 sin(πβ)), (2.38)

with δy, εk from (2.8), approximates the sinc-Galerkin GRF Zβ
K,h in (2.18)–(2.19).

Furthermore, for all p ∈ (0,∞), there exists a constant C > 0, which is independent

of q, n0,K, and Nh, such that

(
E
[∥∥Z̃β

K,h −Zβ
K,h

∥∥p
σ

])1/p
≤ Cqn0N

1/2
h (2.39)

holds, with respect to the norm on Ḣσ
A in (2.1) for any 0 ≤ σ ≤ 1 with σ < 2β.

Proof. The claim follows from Proposition 2.3 (with σ′ = 0) and Lemma 2.4.
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3. GRF simulation on bounded Euclidean domains

3.1. Admissible fields

In what follows, we let D be a bounded, connected, open polytope in Rn for

n ∈ {1, 2, 3}, with Lipschitz continuous boundary ∂D, and we consider GRFs as

described in Subsection 2.1 on X = D, equipped with the Euclidean distance and

the Lebesgue measure.

We furthermore assume that the operator A : D(A) ⊆ L2(D) → L2(D) is a

linear, self-adjoint, elliptic differential operator of second order. Specifically, given

functions A : D → Rn×n and κ : D → R, we let A : D(A) ⊆ L2(D) → L2(D) be

the maximal accretive operator on L2(D) associated with the coefficients A, κ2, and

with domain D(A) ⊆ H1
0 (D). By this we mean that, for u ∈ D(A), the element

Au ∈ L2(D) is uniquely defined via the relation

(A∇u,∇v)L2(D)d + (κ2u, v)L2(D) = (Au, v)L2(D) ∀v ∈ H1
0 (D). (3.1)

We work under the following minimal assumptions on the coefficients A, κ (we

shall add further, more restrictive assumptions as required in the ensuing analysis).

Assumption 3.1. κ ∈ L∞(D) and A ∈ L∞
(
D;Rn×n

)
is symmetric and uniformly

positive definite, i.e.,

∃a− > 0 : ∀ξ ∈ Rn : ess inf
x∈D

ξ⊤A(x)ξ ≥ a−|ξ|2. (3.2)

The corresponding bounds for the essential suprema on D are κ+ ≥ 0, a+ > 0, i.e.,

ess sup
x∈D

|κ(x)| = κ+, ∀ξ ∈ Rn : ess sup
x∈D

ξ⊤A(x)ξ ≤ a+|ξ|2.

Under Assumption 3.1 the operator A : D(A) → L2(D) in (3.1) is densely de-

fined, self-adjoint and by the Lax–Milgram theorem, it admits a bounded inverse

A−1 : H1
0 (D)∗ → H1

0 (D). By the Rellich–Kondrachov theorem, A−1 is compact on

L2(D), see, e.g., [31, Thm. 7.22]. Therefore, A satisfies Assumption 2.1 for X = D
and we are in the setting of Subsection 2.1. For β > 0, we may then consider the

GRF Zβ in (2.4)/(2.6) with covariance operator Cβ = A−2β .

By Weyl’s law, the second-order differential operator A defined via (3.1) admits

the spectral asymptotics (2.5) for α = 2/n, see [23, Thm. 6.3.1]. Thus, Lemma 2.2

shows that

β > n/4, (3.3)

is sufficient for Zβ ∈ L2(D) to hold P-a.s. and in Lp-sense for p ∈ (0,∞).

Remark 3.1. For the Whittle–Matérn field (1.1), the assumption (3.3) corresponds

to a positive smoothness parameter ν > 0, i.e., a non-degenerate random field.
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Below, we briefly recall the relation between the space Ḣσ
A in (2.1), defined for

the differential operator A in (3.1), and the Sobolev space Hσ(D), cf. [47, Ch. 11].

Lemma 3.2. Let Assumption 3.1 be satisfied and A : D(A) → L2(D) be the differ-

ential operator in (3.1). In this case, the space Ḣσ
A defined via (2.1) satisfies

(
Ḣσ

A, ‖ · ‖σ
)
→֒
(
Hσ(D), ‖ · ‖Hσ(D)

)
, 0 ≤ σ ≤ 1,

and the norms ‖ · ‖σ, ‖ · ‖Hσ(D) are equivalent on Ḣσ
A for 0 ≤ σ ≤ 1 and σ 6= 1/2.

Remark 3.2. Lemma 3.2 shows that all results of the presently developed, unified

error analysis in Subsection 2.3 can be formulated with respect to the norms on

the Sobolev space Hσ(D) and the dual H−σ′

(D) = Hσ′

(D)∗ instead of ‖ · ‖σ and

‖ · ‖−σ′ , respectively.

3.2. Finite element discretization

The discretization of the 2K+1 reaction-diffusion equations (2.11) for X = D ⊂ Rn

proceeds by a standard Galerkin finite element method (FEM). We confine our error

and preconditioning analysis to first order, Lagrangean nodal FEM on regular,

simplicial partitions Th of D of mesh width h := max{diam(T ) |T ∈ Th}. We add

that higher order, Lagrangean FEM can be analyzed in exactly the same fashion.

The corresponding subspace Vh of Ḣ1
A = H1

0 (D) in (2.12) is of finite dimension

Nh = dim(Vh) = O (h−n).

In the context of multilevel methods, we shall also stipulate the availability of a

nested sequence {Tℓ}ℓ≥0 of such triangulations, with mesh width hℓ and correspond-

ing finite element (FE) space Vℓ := Vhℓ
of dimension Nℓ := dim(Vℓ), with nodal

FE basis Φℓ. We also write Aℓ and Iℓ for the corresponding Galerkin-FE operator

Ahℓ
: Vℓ → Vℓ and the identity on Vℓ, respectively.

We note that in the Euclidean case with A defined via (3.1) the local linear,

second-order divergence form differential operators in (2.11) are formally given by
(
ε2A+ I

)
w(x) = −ε2∇ ·A(x)∇w(x) +

(
1 + ε2κ2(x)

)
w(x) (3.4)

where the parameter ε > 0 stemming from the sinc quadrature ranges from

exp
(
−
√
K
)
to exp

(√
K
)
, cf. (2.8). Consequently, if the coefficients A, κ satisfy

Assumption 3.1, the differential operator in (3.4) is a) regularly perturbed for

1 ≤ ε ≤ exp
(√
K
)
, and b) singularly perturbed for exp

(
−
√
K
)
≤ ε < 1.

3.3. Multilevel preconditioning

The key to the efficient simulation of the sinc-Galerkin approximation Zβ
K,h

in (2.18), (2.19) of the GRF Zβ in (2.6) with distribution (2.4) is the numeri-

cal solution of the linear systems (2.21). The corresponding solution vectors enter

the sinc approximation (2.19) additively; accordingly, the 2K + 1 linear systems

(2.21) can be solved in parallel. The main issue in proving linear complexity for
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iterative solvers is preconditioning of the coefficient matrices in (2.21). Due to the

above-mentioned range of the parameters εk standard preconditioning arguments

for second-order, elliptic PDEs do not robustly precondition (2.21), i.e., the condi-

tion number of the preconditioned coefficient matrices cannot be bounded uniformly

with respect to h and to εk.

In the following, we present and analyze multilevel preconditioning methods

which are robust with respect to εk. Specifically, we consider the BPX multilevel

preconditioner which is applicable to any available FEM implementation for the

operator A that affords a multilevel structure. We remark that in this section we

first develop the preconditioning techniques for the Euclidean case, but their scope is

considerably wider: they extend to n-variate manifolds X = M, thereby facilitating

efficient numerical simulation of the GRF in (2.4). For 2-surfaces in R3, this is

discussed in Section 4.

For symmetric problems like (2.15) multilevel preconditioners afford fast solu-

tion methods, see, e.g., Ref. 65. In our setting, an estimate for the condition number

of the preconditioned coefficient matrix is required, which is uniform with respect

to the parameter ε in (3.4). We thus consider the BPX preconditioner for the para-

metric family of bounded linear operators {A+ ε−2I : H1
0 (D) → H−1(D), ε > 0},

i.e., the elliptic operator A “shifted” by the factor ε−2.

The finite-dimensional operators Aℓ : Vℓ → Vℓ, ℓ ≥ 0, introduced in Subsec-

tion 3.2 are symmetric, positive definite (SPD), and there exists a constant C > 0

such that the condition number of Aℓ satisfies κ(Aℓ) ≤ Ch−2
ℓ (e.g., [65, Eq. (5.8)]).

This limits the applicability of iterative solvers such as conjugate gradient (CG),

which converge linearly, with contraction number δℓ =
(√

κ(Aℓ)−1
)
/
(√

κ(Aℓ)+1
)
.

Thus, it may happen that δℓ → 1 as ℓ → ∞. Appropriate preconditioning of Aℓ

by Bℓ : Vℓ → Vℓ can provide linear convergence of preconditioned CG (PCG) with

contraction numbers that only depend mildly on ℓ. For every discretization level

L ∈ N, the BPX preconditioner, see Ref. 65, on VL is defined by

BL :=

L∑

ℓ=0

RℓΠℓ, (3.5)

where, for ℓ ∈ {0, . . . , L}, Rℓ : Vℓ → Vℓ is an SPD operator that is referred to as

smoother and Πℓ : VL → Vℓ is the L2(D)-orthogonal projection. For simplicity the

dependence on L is not explicitly reflected in the notation of these operators.

We recall that Ḣ0
A = L2(D) and ( · , · )0 = ( · , · )L2(D), see Lemma 3.2. In what

follows, we assume that there exists a constant C > 0 such that for every ℓ ≥ 0, for

all vℓ ∈ Vℓ, and for every ε ∈ (0,∞),

C−1(Rℓvℓ, vℓ)0 ≤ h2ℓ
(
‖∇vℓ‖20 + ε−2h2ℓ‖vℓ‖20

)
≤ C(Rℓvℓ, vℓ)0. (3.6)

Proposition 3.1. Suppose that the coefficients A, κ of the differential operator A
in (3.1) satisfy Assumption 3.1 with bounds a+ ≥ a− > 0, κ+ ≥ 0 and that the

smoothers {Rℓ}ℓ≥0 in (3.5) satisfy (3.6). Then, there exists a constant C > 0,
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depending on a±, κ+,D and independent of ε ∈ (0,∞), such that

κ
(
BL

(
AL + ε−2IL

))
≤ C | log(hL)| ∀L ∈ N.

Proof. For all ℓ ≥ 0, the FE-discretized Dirichlet Laplacian −∆ℓ : Vℓ → Vℓ satisfies

(−∆ℓvℓ, wℓ)0 := (∇vℓ,∇wℓ)0 ∀vℓ, wℓ ∈ Vℓ.

By Assumption 3.1 and the Poincaré inequality we have, for ℓ ≥ 0 and vℓ ∈ Vℓ,

a−(−∆ℓvℓ, vℓ)0 ≤ (Aℓvℓ, vℓ)0 ≤
(
a+ + CDκ

2
+

)
(−∆ℓvℓ, vℓ)0, (3.7)

where CD > 0 is the constant in the Poincaré inequality, which depends only on D;

namely C−1
D is the smallest positive eigenvalue of the Dirichlet Laplacian on D.

Thus, we find with (3.7) and [42, Lem. 6] that, for every vL ∈ VL,
((
AL + ε−2IL

)
vL, vL

)
0
≤
(
a+ + CDκ

2
+

)
(−∆LvL, vL)0 + (ε−2vL, vL)0

≤ CA,κ,D| log(hL)|
(
B−1

L vL, vL
)
0
,

and the constant CA,κ,D := max
{
1, a+ + CDκ2+

}
> 0 does not depend on ε > 0.

We conclude that λmax

(
BL

(
AL + ε−2IL

))
≤ CA,κ,D| log(hL)|. Here and below,

λmax( · ), λmin( · ) denote the largest and smallest eigenvalue of an operator on VL.

Similarly, we obtain by [42, Lem. 8] and (3.7), for every vL ∈ VL,
(
B−1

L vL, vL
)
0
≤ C̃D

((
−∆L + ε−2IL

)
vL, vL

)
0
≤ CA,D

((
AL + ε−2IL

)
vL, vL

)
0
,

where again the constant CA,D := C̃D max
{
1, a−1

−
}
> 0 is independent of ε > 0.

Thus, λmin

(
BL

(
AL + ε−2IL

))
≥ C−1

A,D and the claim of this proposition follows,

since κ
(
BL

(
AL + ε−2IL

))
= λmax(BL(AL+ε−2IL))

λmin(BL(AL+ε−2IL)) .

Remark 3.3. Assumption (3.6) is satisfied by Jacobi and Gauss–Seidel smoothers,

cf. [42, Thm. 1 and Rem. 2]. Thus, by Proposition 3.1 they may be used with respect

to the shifted operator AL + ε−2IL for implementations in practice.

Recall the bilinear form aη with corresponding energy norm ‖ · ‖a,η, depending
on the parameter η > 0, from (2.13)–(2.14). For given fL ∈ VL and ε > 0, we wish

to approximate the solution uL ∈ VL of the parametric linear system

aε2(uL, vL) =
((
ε2AL + IL

)
uL, vL

)
0
= (fL, vL)0 ∀vL ∈ VL (3.8)

by an iterative solver which converges at a rate independent of ε and L ∈ N.

Proposition 3.2. Suppose that the coefficients A, κ of the differential operator A
in (3.1) satisfy Assumption 3.1 and that the smoothers {Rℓ}ℓ≥0 in (3.5) sat-

isfy (3.6). Let L ∈ N, n0 ≥ 1 be given and set the number of iterations to

n =
⌈
n0

√
| log(hL)|

⌉
. Let U0

L ∈ VL be an arbitrary initial guess.

Then, there exist constants C > 0, q ∈ (0, 1), independent of ε, n0, hL and U0
L

such that the n-step BPX preconditioned CG approximation Un
L ∈ VL of uL in (3.8)

satisfies

‖uL − Un
L‖a,ε2 ≤ Cqn0‖uL − U0

L‖a,ε2 ,
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where ‖ · ‖a,ε2 is the norm in (2.13). The computational cost is O(n0NL

√
log(NL)),

with the constant implicit in O( · ) independent of ε.

Proof. For any U0
L ∈ VL holds (see, e.g., [32, Eq. (11.3.27)])

‖uL − Un
L‖a,ε2 ≤ 2

(√
κ(BL(AL + ε−2IL))− 1√
κ(BL(AL + ε−2IL)) + 1

)n

‖uL − U0
L‖a,ε2 . (3.9)

By Proposition 3.1, there exists a constant c > 0, which is independent of ε and hL,

such that the BPX PCG algorithm converges linearly with contraction number(√
c| log(hL)| − 1

)
/
(√

c| log(hL)|+ 1
)
. The statement

(√
c| log(hL)| − 1√
c| log(hL)|+ 1

)√| log(hL)|

≤ q < 1 (3.10)

is equivalent to

√
| log(hL)| log

(√
c| log(hL)|+ 1√
c| log(hL)| − 1

)
≥ log(q−1).

The facts that limx→∞ x log((x+1)/(x−1)) = 2 and that x 7→ x log((x+1)/(x−1))

is monotonically decreasing on (1,∞) imply that (3.10) holds for q = exp(−2/
√
c).

The assertion follows then by the usual convergence estimate of PCG in (3.9).

Remark 3.4. It is also possible to apply the BPX preconditioner combined

with a relaxed Richardson iteration and relaxation parameter in the interval

(0, 2κ−1(BL(AL + ε−2IL))) instead of PCG, cf. [65, Prop. 2.3]. Then the state-

ment of Proposition 3.2 holds with number of iterations n =
⌈
n0 | log(hL)|

⌉
and

computational cost O(n0NL log(NL)) (with O( · ) independent of ε > 0). In the

case of a BPX preconditioned relaxed Richardson iteration, the approximate so-

lution depends linearly on the right-hand side, which is generally not the case for

PCG. Thus, Z̃β
h,k in (2.38) generated with BPX preconditioned relaxed Richardson

iteration will be a GRF and unbiased.

Remark 3.5. The assertion of Proposition 3.2 verifies Assumption 2.7 for PCG

using standard multilevel preconditioning by BPX. Thus, the main result on the

consistency error for approximate simulation of the GRF Zβ (2.4), Theorem 2.1,

holds with Lagrangean FE for GRFs that belong to the class induced by the minimal

Assumption 3.1 on the coefficients A and κ. The computational cost for generating

one approximate sample Z̃β
K,hL

of Zβ is shown in Table 1, assuming the calibrations

K = O
(
log2(NL)

)
for the number of sinc quadrature nodes, n0 = O(log(NL)) for

the number of PCG iterations, and K̃ = O(log(NL)) for the approximation of the

matrix square root in (2.23).

In the case that, in addition to Assumption 3.1, D is convex and the coefficient A

is of class C0,1(D)n×n, then Assumption 2.5 and, thus, Proposition 2.2 hold with the



October 14, 2019 10:18 WSPC/INSTRUCTION FILE hks-sincML-revise

Multilevel Approximation of GRFs: Fast Simulation 25

rates ρ01 = ρ12 = 1/n and ρ02 = 2/n. This follows from elliptic regularity results,

see, e.g., [34, Thm. 3.2.1.2], where Phℓ
may be taken as the L2-projection Πℓ, cf. [59,

Eq. (9.27)] and Ref. 12. The corresponding accuracy of the approximation Z̃β
K,hL

in L2(Ω;L2(D)) is presented in Table 1 for this case.

Table 1. Computational cost and unbiasedness for simulating Z̃β
K,hL

in (2.38) on a Euclidean

domain X = D with BPX. In addition, the L2(Ω;L2(D))-accuracy of this approximation is shown
for the case that the operator A is H2(D)-regular.

Solver
Cost for Z̃k

hL
Total cost for Z̃β

K,hL Unbiased
Accuracy

cf. (2.20) cf. (2.38)
∥∥Zβ − Z̃β

K,hL

∥∥
L2(Ω;L2)

PCG O
(
NL log3/2(NL)

)
O
(
NL log7/2(NL)

)
No

O
(
N

−1/n(2β−n/2−δ)
L

)
relaxed O

(
NL log2(NL)

)
O
(
NL log4(NL)

)
Yes

Richardson

4. GRFs on surfaces

In this section, we consider GRFs on a closed, connected, orientable, smooth, com-

pact 2-surface M immersed into the Euclidean space R3 and endowed with the

positive surface measure νM (induced by the first fundamental form). The GRF

Zβ with distribution (2.4) is again considered as the solution to the stochastic

fractional-order PDE (2.6), where A is a self-adjoint, second-order, elliptic differ-

ential operator in divergence form, i.e., w 7→ Aw = −∇M · (A∇Mw) + κ2w for

w ∈ D(A), where ∇M · and ∇M denote the surface divergence and gradient. In

this case, A is a symmetric tensor field, i.e., A(x) : TxM → TxM is linear and sym-

metric for almost all x ∈ M, where TxM denotes the tangent space at x. Below,

we collect all assumptions on the coefficients A and κ. In order to use pseudod-

ifferential calculus, we assume that they are smooth. However, we add that the

preconditioning results of this section only require A and κ to be positive, bounded,

and measurable.

Assumption 4.1. The symmetric tensor field A and κ : M → R are smooth. Fur-

thermore, there exist constants a−, κ− > 0 such that, for almost all x ∈ M,

|κ(x)| ≥ κ−, ∀ξ ∈ TxM : ξ⊤A(x)ξ ≥ a−|ξ|2 . (4.1)

Under Assumption 4.1, the Lax–Milgram lemma implies that A : Ḣ1
A → Ḣ−1

A is

boundedly invertible, with Ḣσ
A defined as in (2.1). Furthermore, A ∈ OPS2

1,0(M)

is a self-adjoint, elliptic pseudodifferential operator of second order. By the spectral

theorem it admits a countably infinite sequence {(λj , ej)}j∈N of eigenpairs with

eigenfunctions {ej}j∈N ⊂ C∞(M) constituting an orthonormal basis of L2(M, νM)

when normalized in L2(M, νM), i.e., (ej , ej′) = δjj′ , where δjj′ denotes the Kro-

necker delta.
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It follows from [62, Thms. XII.1.3, XII.2.1] that, for all β ∈ R, the fractional

power Aβ of A ∈ OPS2
1,0(M) is well-defined and (using that dim(M) = 2) that

λj(Aβ) ∼ jβ as j → ∞. In particular, α = 1 in (2.5). Thus, by Lemma 2.2 the

SPDE (2.6) admits a unique solution in Lp(Ω;L2(M, νM)) for any β > 1/2.

Furthermore, as ej ∈ C∞(M), for every f ∈ C∞(M)∗ and every j ∈ N, we

may define f̂j = 〈f, ej〉 (with 〈 · , · 〉 denoting the extension of the L2(M, νM) inner

product to the C∞(M)∗ × C∞(M)-duality pairing). Then [62, Ex. XII.2.1]

∀σ ∈ R : f ∈ Hσ(M) ⇐⇒
∑

j∈N

∣∣f̂j
∣∣2jσ <∞ ⇐⇒ lim

N→∞

N∑

j=1

f̂jϕj = f in Hσ(M).

In particular, we have the isomorphy

∀σ ∈ R : Hσ(M) ∼= Ḣσ
A, (4.2)

and the norms are equivalent with constants depending only on σ and M.

AsM was assumed compact, for every β > 0, A−β ∈ OPS−2β
1,0 (M) is a compact,

self-adjoint operator on L2(M, νM), since

A−βL2(M, νM) = H2β(M) →֒ L2(M, νM),

with the last injection being compact by Rellich’s theorem [62, Ch. I.5, Eq. (I.5.15)].

Remark 4.1. If the assumption that the coefficients A and κ are smooth is

dropped, then by the Lax–Milgram lemma A : Ḣ1
A → Ḣ−1

A is still boundedly in-

vertible and the equivalence Hσ(M) ∼= Ḣσ
A follows for σ ∈ [−1, 1]. Furthermore,

also the spectral asymptotics (2.5) with α = 1 can be shown by exploiting the min-

max principle (which shows that a−λj(−∆M) + κ2− ≤ λj(A) ≤ a+λj(−∆M) + κ2+)

combined with the corresponding asymptotic behavior of the eigenvalues for the

negative Laplace–Beltrami operator −∆M on M.

For the finite element discretization, we suppose available an inscribed polyhe-

dron and denote its surface by M̃ with plane faces {F1, . . . , FJ} which is enclosed

by M and which is such that the vertices of M̃ are situated on the surface M. The

surface measure of M̃ is denoted by νM̃. Moreover, we assume that there exists a

bijective, piecewise smooth mapping F : M̃ → M such that the Jacobian DF is

invertible a.e. The FE spaces on M will be defined patchwise, where the patches

are given by F(Fi) ⊂ M, i = 1, . . . , J . Let Ṽh be a first order FE space on M̃ with

maximal mesh width h, i.e., let it be the space of piecewise affine functions on a

triangulation of M̃. A FE space V on M results by

Vh :=
{
v ∈ Ḣ1

A : ∃ṽh ∈ Ṽh s.t. vh ◦ F = ṽh
}
.

The bilinear form corresponding to A, upon pullback in local coordinates to
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M̃ ⊂ R3, is, for v, w ∈ Ḣ1
A, given by

∫

M

[
A∇Mv · ∇Mw + κ2vw

]
dνM

=

∫

M̃

[
(DF)−⊤Ã(DF)−1∇M̃ṽ · ∇M̃w̃ + κ̃2ṽw̃

]
dνFM̃, (4.3)

where dνFM̃ =
√

det((DF)⊤(DF)) dνM̃ and the composition of a function g

with F is denoted by g̃. In particular, also the L2(M, νM)-inner product may

be pulled back and results in a weighted L2(M̃, νM̃)-inner product with weight√
det((DF)⊤(DF)).

Multilevel preconditioning by BPX can be analyzed via the correspondence

in (4.3). Let Ṽℓ, ℓ ≥ 0 be a nested sequence of FE spaces that result by uniformly

refining an initial triangulation on M̃ with maximal mesh width hℓ. The correspond-

ing nested FE spaces on M are denoted by Vℓ, ℓ ≥ 0. Denote by Aℓ, ℓ ≥ 0, the FE-

discretizations of A. Recall that Ḣ0
A = L2(M, νM) with norm ‖ · ‖0 = ‖ · ‖L2(M,νM)

and consider the BPX preconditioner with SPD smoothers Rℓ, ℓ = 0, . . . , L, which

satisfy for some constant C > 0

C−1(Rℓvℓ, vℓ)0 ≤ h2ℓ
(
‖∇Mvℓ‖20 + ε−2h2ℓ‖vℓ‖20

)
≤ C(Rℓvℓ, vℓ)0. (4.4)

This property is satisfied, e.g., for Jacobi smoothers, see Subsection 3.3 for details.

Proposition 4.1. Suppose that the coefficients A and κ are bounded, measurable,

and satisfy (4.1). Further, suppose that the smoothers {Rℓ}ℓ≥0 satisfy (4.4). There

exists a constant C > 0, independent of ε ∈ (0,∞), such that

κ(BL(AL + ε−2I)) ≤ C| log(hL)| ∀L ∈ N.

Proof. We begin by verifying the statements of [42, Lem. 6 and 8] in the case of

the operator −∆M̃ + ε−1I on M̃, where ∆M̃ denotes the Laplace–Beltrami on M̃.

Denote by ∆M̃,L
the FE discretized Laplace–Beltrami operator on level L.

The proof of [42, Lem. 6] is based on a strengthened Cauchy–Schwarz inequality,

cf. [65, Lem. 6.1]. Since the strengthened Cauchy–Schwarz inequality is proven in

Ref. 65 element-wise without requiring boundary conditions, the same proof is also

applicable for boundaries of polyhedra. Thus, as in [42, Lem. 6], there exists a

constant C > 0, which does not depend on hL, such that for every ṽ ∈ ṼL(
(−∆M̃,L

+ ε−2I)ṽ, ṽ
)
0
≤ C| log(hL)|

(
B̃−1

L ṽ, ṽ
)
0
. (4.5)

Here, B̃L denotes the corresponding linear operator on the FE space ṼL.

The proof of [42, Lem. 8] is based on an identity from the abstract theory of

parallel subspace correction, cf. [66, Lem. 2.4], which implies with the assumption

on BL in (4.4) a version of [42, Eq. (4.7)]. For all ṽ ∈ ṼL, we have

C−1(B̃−1
L ṽ, ṽ)0 ≤ inf∑L

ℓ=0 ṽℓ=ṽ

{
((−∆M̃,L

+ ε−2I)ṽ0, ṽ0)0 +
L∑

ℓ=1

h−2
ℓ ‖ṽℓ‖20

}

≤ C(B̃−1
L ṽ, ṽ)0,

(4.6)
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where C > 0 is a constant that does not depend on L. For ℓ ∈ {0, . . . , L}, let Π̃ℓ

denote L2-projection onto Ṽℓ. The next step is to verify that there exists a constant

C > 0 which does not depend on hℓ, ℓ = 0, . . . , L, such that, for every ṽ ∈ ṼL,

‖∇M̃Π̃0ṽ‖20 +
L∑

ℓ=1

h−2
ℓ ‖(Π̃ℓ − Π̃ℓ−1)ṽ‖20 ≤ C‖∇M̃ṽ‖20. (4.7)

The estimate (4.7) has been verified in the Euclidean case in [11, Eq. (4.5)]. The

particular ingredients of the proof are estimates [11, Eq. (4.6) and (4.7)]. A first

order approximation property of the L2-projection Π̃ℓ and stability in the H1(M̃)-

norm results in [11, Eq. (4.6)]. In our case, for the approximation property of Πℓ

see, e.g., [59, Thm. 10.2] and for the stability in the H1(M̃)-norm see, e.g., [59,

Lem. 9.13] (and also Ref. 12) for the Euclidean case, which can be applied patchwise.

Furthermore, since−∆M̃+1 is boundedly invertible fromH1+ε′(M̃) → H−1+ε′(M̃)

for some ε′ > 0 and since the FE spaces Ṽℓ satisfy an approximation property (see,

e.g., [59, Lem. 10.8]) the estimate [11, Eq. (4.7)] holds with α = ε′ in the notation

of Ref. 11. As a result, the proof of [11, Eq. (4.5)] is applicable line by line and we

conclude (4.7). Inserting the decomposition ṽ = Π̃0 +
∑L

ℓ=1(Π̃ℓ − Π̃ℓ−1)ṽ into (4.6),

we find with (4.7) the following version of [42, Lem. 8]: There exists a constant

C > 0, which does not depend on L and ε ∈ (0,∞), such that, for all ṽ ∈ ṼL,
(
B̃−1

L ṽ, ṽ
)
0
≤ C

(
(−∆M̃,L

+ ε−2I)ṽ, ṽ
)
0
. (4.8)

Recall that the proof of Proposition 3.1 relied on the estimates from [42, Lem. 6

and 8], which we have derived for the setting here as (4.5) and (4.8). By (4.3) the

FE operator on Vℓ corresponding to A+ ε−2I can be identified with a symmetric,

elliptic FE operator with variable coefficients on Ṽℓ, given by

Ṽℓ × Ṽℓ ∋ (ṽ, w̃) 7→
∫

M̃

[
(DF)−⊤Ã(DF)−1∇M̃ṽ · ∇M̃w̃ + (κ̃2 + ε−2)ṽw̃

]
dνFM̃.

Thus, the proof of Proposition 3.1 is applicable, where we point out that here also

variable coefficients appear in the shifted term ε−2; that is due to the transformation

of the measure. This constitutes a simple extension of Proposition 3.1 and we omit

the details.

Remark 4.2. The error bounds of Proposition 3.2 for PCG with BPX hold also

in the setting of this section. Thus, Assumption 2.7 is satisfied and the unified

consistency error bound of Theorem 2.1 applies also for the approximate simulation

of the GRF Zβ with distribution (2.4) on a closed, connected, orientable, smooth,

compact 2-surface M.

Remark 4.3. The sinc-FE algorithm discussed in this section can also be consid-

ered on piecewise smooth Lipschitz surfaces. The presented analysis may be recon-

ciled. We refer to [22, p. 2259] for gaining an impression of such an extension which

would partly be beyond classical theory of pseudodifferential operators on smooth

surfaces as, e.g., presented in Ref. 62.
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Remark 4.4. For the particular choice F(x) := x − d (x)∇d (x), where d is the

signed distance function with a negative sign inside M, explicit formulae have been

derived in [24, Eq. (2.10) and (2.12)] that allow for an implementation of the al-

gorithm provided d is accessible. The signed distance function admits a closed

form expression in the case of M = S2, i.e., the 2-sphere. FE approximations have

been computationally realized in [37, Sec. 6]. Thus, fast sampling of non-isotropic

GRFs on S2 is admissible by the algorithms presented in this work. The simula-

tion of isotropic GRFs, whose covariance structures are invariant under rotations,

was previously treated with fast Fourier techniques in Refs. 19,43. In addition, the

presently developed methods extend in a unified way to any smooth surface that is

homeomorphic to the 2-sphere.

5. Wavelet preconditioning

The BPX preconditioning techniques of the previous Sections 3–4 allowed under

Assumption 3.1 (respectively, under (4.1) as part of Assumption 4.1, see also Re-

mark 4.1) for an iterative solution of the linear systems (2.21) at accuracy O(N−ρ
h )

for a prescribed consistency order ρ > 0 (limited by the regularity of the GRF

Zβ and the order afforded by the Galerkin discretization), cf. Proposition 2.2 and

Theorem 2.1. The incurred computational costs in work and memory are essentially

O(Nh), see Table 1. As we have explained, BPX preconditioning applies to unstruc-

tured regular triangulations of X in both cases, for a Euclidean domain X = D and

for a 2-surface X = M. In the following, we present an alternative approach which

is based on the (assumed) availability of a multiresolution analysis (MRA) in the

spaces L2(X , νX ) and Ḣ1
A, see (2.1). To streamline the discussion, we provide all

statements and proofs in a unified fashion, with X ∈ {D,M}, where D ⊂ Rn is

as in Section 3, and where M is as in Section 4. Throughout this section, we work

under Assumptions 3.1 and 4.1, respectively.

We recapitulate, from Refs. 22, 52, 61, notation and basic results on wavelet

Galerkin discretizations of operator equations. We limit the presentation to Riesz

bases, and norm equivalences required for the multilevel preconditioning of the

parametric linear systems (2.21). We remark that having at hand a wavelet basis Ψ

of the spaces Ḣs
A which is stable in a range of Sobolev orders s ∈ (−γ̃, γ) for some

γ̃ > 0, γ > 1 allows compressive numerical approximation of samples of the GRF

Zβ in (2.4). Wavelet-based approximation methods can, therefore, in principle also

exploit more regularity of the GRF Zβ that is afforded, for example, by a higher

fractional exponent β > 0, see [18, Lem. 4.1].

Wavelet preconditioning (see, e.g., Refs. 21,61 and the references there) is based

on the observation that wavelet FEM provide Riesz bases for Ḣσ
A for a range of σ

around σ = 0. As is customary (see, e.g. Ref. 22), we let Ψ = {ψλ : λ ∈ J } denote

a countable collection of wavelets. Here, J is a countable index set of multi-indices

λ = (ℓ, k, e), with ℓ(λ) = |λ| ∈ N0 denoting the scale of resolution, k(λ) denoting

the spatial location of wavelet ψλ in X and (optionally) e(λ) is the type of wavelet.
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In particular, we view Ψ as infinite collection of wavelets; Galerkin approximations

will of course only use finite sections of these which correspond to a finite set Λ ⊂ J
of “active indices” λ ∈ Λ.

We require Ψ to be a Riesz basis of L2(X , νX ), which is to say that for every

v ∈ L2(X , νX ), there exists a unique vector v ∈ ℓ2(J ) such that

v =
∑

λ∈J
vλψλ = v⊤Ψ (5.1)

holds, with equality in L2(X , νX ). We shall require systems Ψ which are localized,

i.e.,

Xλ := supp(ψλ) ⊂ X , diam(Xλ) ≃ 2−|λ| , λ ∈ J . (5.2)

For a function v ∈ L2(X , νX ), the vector v ∈ ℓ2(J ) of coefficients with respect

to the multiresolution system Ψ characterizes the regularity of v on the scale of

spaces {Ḣσ
A : σ ∈ (−γ̃, γ)} for some constants γ, γ̃ > 0 (which depend on Ψ).

To formally state this property, we introduce bi-infinite diagonal scaling matrices

D = diag{wλ : λ ∈ J } with diagonal elements wλ > 0. More generally, for s ∈ R,

we write Ds = diag
{
2|λ|s : λ ∈ J

}
. The key observation for preconditioning is then

the following norm equivalence on Ḣσ
−∆X+I . For σ ∈ (−γ̃, γ), there exist constants

0 < cσ ≤ Cσ <∞ such that the coefficient vectors in (5.1) satisfy

cσ‖v‖ℓ2 ≤ ‖v⊤D−σΨ‖Ḣσ
−∆X+I

≤ Cσ‖v‖ℓ2 ∀v ∈ ℓ2(J ). (5.3)

In order not to clutter the exposition, we restrict ourselves here to compactly sup-

ported wavelets and remark that certain wavelets with sufficient decay also allow

norm equivalences of type (5.3), see [51, Section 6.10]; the unbounded support en-

tails significant technical repercussions.

Equation (5.3) implies in particular that the scaled basis D−σΨ is a Riesz basis

for Ḣσ
A in (2.1), i.e., every v ∈ Ḣσ

A admits a representation v = v⊤D−σΨ with a

unique v ∈ ℓ2(J ) such that (5.3) holds.

An immediate consequence of (5.3) is the following result on robust wavelet

preconditioning.

Proposition 5.1. Let Ψ be a Riesz basis for L2(X , νX ) which satisfies (5.3) for

some γ̃ > 0 and γ > 1. For ε > 0, define on Ḣ1
A the parametric norm ‖ · ‖Hε(X ) by

‖v‖2Hε(X ) := ε2
[
(∇X v,∇X v)L2(X ,νX ) + (v, v)L2(X ,νX )

]
+ (v, v)L2(X ,νX ), (5.4)

where ∇X denotes the Euclidean gradient if X = D and the surface gradient if

X = M. Then, for every ε > 0, with the constants cσ, Cσ > 0 from (5.3), and with

the bi-infinite diagonal preconditioning matrix

Dε := diag
{(

1 + ε2|λ|
)
: λ ∈ J

}
, (5.5)

we have, for every v ∈ ℓ2(J ) and for all ε > 0,

(
2
(
c−2
0 + c−2

1

))−1/2 ‖v‖ℓ2 ≤ ‖v⊤D−1
ε Ψ‖Hε(X ) ≤

(
C2

0 + C2
1

)1/2 ‖v‖ℓ2 . (5.6)
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If, in addition, Assumption 3.1 (or Assumption 4.1) is satisfied, then there exist

constants 0 < č ≤ ĉ < ∞ (depending on a±, κ± in Assumption 3.1/4.1, and

on ci, Ci > 0, i = 0, 1, in the norm equivalence (5.3)) such that for the parametric

bilinear form aη( · , · ) in (2.13) we have, for any ε > 0,

∀v ∈ ℓ2(J ) : č2‖v‖2ℓ2 ≤ aε2
(
v⊤D−1

ε Ψ,v⊤D−1
ε Ψ

)
≤ ĉ2‖v‖2ℓ2 . (5.7)

In particular, there exists a constant c̄ such that, for every ε > 0,

κ
(
D−1

ε

(
MΨ + ε2AΨ

)
D−1

ε

)
≤ c̄, (5.8)

where MΨ and AΨ are the Gramian and operator matrix in (2.22) with respect to

the wavelet basis Ψ.

Proof. Statement (5.6) can be proven as in [21, Rem. 1] by replacing the H1

semi-norm by the H1-norm in the proof of [21, Rem. 1], which is justified by our

assumptions on Ψ in (5.3).

To show (5.7)–(5.8), we observe that under Assumption 3.1/4.1 the parametric

bilinear form aε2( · , · ) = ε2(∇ · , A∇ · )0 + ( · , (1 + ε2κ2) · )0 corresponding to (3.4)

is uniformly equivalent to the parametric norm ‖ · ‖Hε(X ) in (5.4) with respect to

ε > 0. We will show this first for X = M, i.e., in the setting of Assumption 4.1.

Specifically,

∀v ∈ Ḣ1
A : min{a−, κ2−, 1}‖v‖2Hε(X ) ≤ aε2(v, v) ≤ max{a+, κ2+, 1}‖v‖2Hε(X ).

In the case X = D, Assumption 3.1 permits ess infx∈D{κ2(x)} = κ2− = 0, since

the boundary conditions (homogeneous Dirichlet) facilitate a Poincaré inequality

with constant CD > 0, i.e., ‖v‖L2(D) ≤ CD‖∇v‖L2(D) for every v ∈ Ḣ1
A. As a

consequence, the lower bound of aε2(v, v) uniformly with respect to ε > 0 follows,

∀v ∈ Ḣ1
A : min

{a−

2 (1 + C−2
D ), 1

}
‖v‖2Hε(X ) ≤ aε2(v, v) ≤ max{a+, κ2+, 1}‖v‖2Hε(X ).

Thus, assertions (5.7) and (5.8) follow from (5.6).

Proposition 5.1 and its proof do not require the smoothness assumption on A

and κ2 in Assumption 4.1. We add some further comments on Proposition 5.1.

Remark 5.1. For computational purposes, indices of “active” wavelets need to be

restricted to finitely many indices contained in some index set Λ ⊂ J . Suitable

choices of Λ can accommodate, for example, local mesh refinement in bounded

domains that account for corner singularities (see, e.g., Ref. 39 and references there).

The norm equivalences (5.6)–(5.7) of Proposition 5.1 are valid for every infinite

coefficient sequence v ∈ ℓ2(J ). They hold in particular for Λ-“supported” subse-

quences, i.e., for vΛ = {vλ : λ ∈ Λ}. We furthermore note that the constants in

(5.6)–(5.7) and also in the condition number bound (5.8) are independent of Λ.

Thus, for L ∈ N and ΛL := {λ ∈ J : |λ| ≤ L} with #(ΛL) = O
(
2Ln

)
, the

norm equivalences (5.6)–(5.7) hold on ℓ2(ΛL) with constants č, ĉ and c̄ which are

independent of the refinement level L and of ε > 0.
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Furthermore, by Proposition 5.1 the singularly perturbed, truncated Galerkin

projected operators in wavelets (MΨ + ε2AΨ)Λ allow for uniformly optimal diago-

nal preconditioning by
(
D−1

ε

)
Λ
, i.e., with condition bounded uniformly in ε > 0. In

particular, the occurring condition number bounds hold without log-factors. This

therefore improves the BPX results of Propositions 3.1 and 4.1 (which, however,

might be an artifact of the method of proof). As a consequence, Assumption 2.7

is satisfied with n0 denoting the iteration numbers of either PCG or a relaxed

Richardson iteration. The system matrices that are ΛL-sections of MΨ and AΨ

have O
(
2nLL

)
non-zero entries. However, by compression techniques from Ref. 22

exploiting certain vanishing moment properties of the MRA, a consistent approxi-

mate matrix vector product can be realized that only uses O
(
2nL

)
matrix entries.

Thus, the overall computational cost for the sinc quadrature combined with MRA is

in the setting of Table 1 reduced to O(NL log(NL)) for Z̃k
hL

and to O
(
NL log3(NL)

)

for Z̃β
K,hL

at the same accuracy.

Remark 5.2. The preconditioning result requires only the Riesz basis property

of Ψ; it does not suppose specific properties on the dual wavelet system Ψ̃ (see,

e.g., Refs. 21, 61 for a definition). Such assumptions usually appear in the analysis

and synthesis operations in signal processing. This affords extra flexibility in the

construction of explicit systems Ψ which can be exploited for minimizing condition

numbers of Gramian matrices and support sizes.

Remark 5.3. We refer to Ref. 56 and the references there for the construction of a

continuous, piecewise quadratic spline wavelet basis on regular, simplicial triangu-

lations of bounded polygons D ⊂ R2 with straight sides. This construction affords

the stability (5.3) with γ̃ = γ = 3/2, and also extends to Lipschitz polytopes in R3.

6. Numerical experiments

In this section we study the numerical approximation of the GRF Zβ in (2.4) on

a convex polygon D1 ⊂ R2, on a non-convex polygon D2 ⊂ R2, and on the 2-

sphere S2 ⊂ R3. To this end, we consider the operator A = −∆X + κ2. Here,

∆X denotes the Laplace operator with homogeneous Dirichlet boundary conditions

if X ∈ {D1,D2}, and, for X = M, −∆M is the Laplace–Beltrami operator on

M = S2. The coefficient function κ2 will be piecewise constant. We suppose given

a sequence of nested FE spaces Vℓ, ℓ ≥ 0, which results by an uniform refinement of

an initial regular triangulation of D in affine triangles or of S2 in curved triangles

as discussed in Section 4. In particular, we realize an exact triangulation of S2, i.e.,

absence of geometry approximation errors.

6.1. Approximation of the square root of the mass matrix

We numerically test the performance of the algorithm discussed in Section 2.2.4 to

approximate the square root of the mass matrix. Specifically, we require the action
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of this approximation on a vector of i.i.d. N(0, 1)-distributed coefficients. In for-

mula (2.23) the required solutions to linear systems are performed with CG. Since

the condition number of the mass matrix does not depend on the mesh width for

quasi-uniform refinement, CG converges linearly with a convergence rate that is in-

dependent of the dimension of the FE space. Also note that the condition number of

the sum of two SPD matrices is upper bounded by the sum of the individual condi-

tion numbers. The algorithm in (2.23) requires values for M̂ and m̂ that upper and

lower bound the spectrum of the mass matrix. These are obtained by multiplying,

respectively dividing, the result of 20 iterations of the power method, respectively

of the inverse iteration, by the value 1.1. In Figure 1, the relative error is visualized

for the approximation of
√
My in the Euclidean norm, where y has i.i.d. N(0, 1)-

distributed entries. In the case dim(Vℓ) = 1985, the approximation can be compared

to the exact vector
√
My. For dim(Vℓ) = 130561, we use a reference vector obtained

with K̃ = 20 in (2.23). The linear systems in (2.23) were approximately solved by

CG with error tolerance 10−12, which also limits the approximation quality. This

is visible in Figure 1 in the case dim(Vℓ) = 1985, where the approximation is com-

pared to the exact vector
√
My. These tests were performed for D1 = (0, 1)2 with

homogeneous Dirichlet boundary conditions.

6.2. Simulation of non-stationary GRFs in bounded Euclidean

domains

We consider two bounded polygons D1,D2 and impose homogeneous Dirichlet

boundary conditions. For β ∈ (0, 1), the sinc-FE approximation Zβ
K,h in (2.18)

of Zβ in (2.4) depends on the FE mesh width h and on the number K, where the

sinc quadrature has 2K + 1 terms. Since D1 = (0, 1)2 is convex, the inverse of the

shifted Dirichlet Laplacian (−∆+κ2(x))−1 is bounded from L2(D) to H2(D). Con-

sequently, Assumption 2.5 holds with ρ01 = ρ12 = 1/2, ρ02 = 1, and the FE error is

asymptotically (as Nℓ → ∞) O
(
N

−β+1/2+δ
ℓ

)
, see Proposition 2.2 and Table 1. Bal-

ancing the bounds for the sinc quadrature error O
(
e−c

√
K
)
for c = 2min{β, 1− β}

yields K⋆
ℓ = ((β − 1/2) log(Nℓ)/c)

2. We use Kℓ = 4K⋆
ℓ in our simulations. In Fig-

ure 2, we plot the CPU time for β = 0.75 as an average of 40 runs, where we apply

PCG with BPX and Jacobi smoothers. PCG is stopped with an error tolerance of

10−12 and we use K̃ = 10 on all levels. As a comparison, Nℓ log
2(Nℓ) is also shown,

which would be the computational cost if one PDE solve in the sinc formula were of

computational cost O(Nℓ). The slopes are fitted with least squares in log scale. The

function κ2(x1, x2) is chosen to be κ21 if x1 < 1/2 and κ22 otherwise for κ21, κ
2
2 ≥ 0.

In Figure 2, κ21 = 20, κ22 = 200.

The relative L2(Ω;L2(Di))-error, i = 1, 2, is studied in Figures 3–4. To this end,

the L2(Ω;L2(Di))-error is approximated with R = 60 Monte Carlo samples and

with a reference solution, which is obtained for Figure 3 on a FE mesh with two

additional levels of refinement with 2095105 degrees of freedom using a sparse direct

solver SuperLU, see, e.g., Ref. 25, andKref = KL+2+10 for the sinc quadrature. The
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Figure 2. CPU time per sample versus Nh = dim(Vh) for Z̃β
K,h

for β = 0.75

random forcing is approximated with K̃ = 20 on the reference discretization level

and subsequently projected using the L2(Di) projection onto coarser discretization

levels. This enables a comparison of the approximate GRFs on different levels of

accuracy in the error plots. In Figure 3, we choose again D1 = (0, 1)2 and β = 0.75.



October 14, 2019 10:18 WSPC/INSTRUCTION FILE hks-sincML-revise

Multilevel Approximation of GRFs: Fast Simulation 35

The convergence rate expected from the presented theory is ≈ 1/4 with respect to

the degrees of freedom Nℓ of the FE space. We observe a pre-asymptotic regime,

whose size seems to depend on the function κ2, which determines the spatial cor-

relation length of the GRF. More precisely, the particular form Aκ = A0 + κ2 with

A0 = −∆ entails a (β-independent) pre-asymptotic regime in the onset of FE con-

vergence which, for κ ≡ const., corresponds to h−1 . κ. This is due to the lack of

scale-resolution in the FE eigenfunction approximation in this regime. This effect

is also visible in the present numerical experiment until the FE mesh is sufficiently

fine to resolve the correlation length scale of the GRF Zβ in D1.

We furthermore investigate in Figure 4 the effect of a non-convex polygon on

the asymptotic FE convergence rate. There, the convergence behavior for the square

D1 = (0, 1)2 and for the polygon D2 = (0, 1)2\△ are compared, where the triangle

△ has corners (1, 0)⊤, (1, 1/10)⊤, and (1/2, 1/2)⊤ (the largest interior angle at

(1/2, 1/2)⊤ is θ ≈ 1.96π). Here, we set β = 1.5 and follow Section 2.2.5, where Kℓ

is chosen as above with c = 1/2. The reference solution is obtained as before with

K̃ = 20, but with one further level of refinement with 523265 degrees of freedom

using a sparse direct solver. The expected convergence rate is ≈ 1 for the convex

polygon D1, see Table 1. For the non-convex polygon D2, we observe a reduced

convergence rate with uniform refinement. This is explained by the fact that the

inverse of the Dirichlet Laplacian is bounded from L2(D2) to H1+t(D2) for every

t ∈ (0,min{π/θ, 1}) ≈ (0, 0.51). The empirical convergence rates in Figures 3 and 4

are computed by least squares taking into account the five data pairs corresponding

to the five finest resolutions. The observed convergence rate for D2 is in accordance

with the recently derived results on convergence of Whittle–Matérn fields if A is

only H1+t(D2)-regular for some t ∈ (0, 1), see [18, Def. 6.20 and Thm. 6.23]. The

tests in Figure 4 were performed with κ21 = κ22 = 10.

6.3. Simulation of non-isotropic GRFs on the sphere

We consider the 2-sphere S2 = {x ∈ R3 : x21 + x22 + x23 = 1} as a special case

of a 2-dimensional closed, connected, orientable, smooth, compact surface. For

isotropic GRFs on S2 (with isotropy taking the role of stationarity in the Eu-

clidean case), fast simulation on equispaced partitions via FFT are possible. Here,

we address a more general, non-isotropic setting where the function κ2(x) is given

by κ2(x1, x2, x3) = κ1 if x1 < 0 and by κ2(x1, x2, x3) = κ2 otherwise for some

κ1, κ2 > 0. The resulting GRF Zβ is non-isotropic, i.e., the two point covariance is

not given by a scalar function evaluated at the geodesic (here great circle) distance,

since its covariance operator is not diagonalized by spherical harmonics, a necessary

condition for isotropy of Zβ , see [50, Thm. 5.13].

Finite Elements with nested spaces have been computationally realized on S2

for example in [37, Sec. 6]. We use again PCG with BPX and Jacobi smoothers.

The stopping criterion for the iterative linear system solvers is as above the error

tolerance 10−12. The steering parameters of the sinc quadrature are likewise chosen
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Figure 3. Relative L2(Ω;L2(D1))-error of Z̃β
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. D1 = (0, 1)2, β = 0.75 various values of κ2
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i = 1, 2. Onset of asymptotic convergence is delayed for large values of κ (corresponding to small
spatial correlation length).
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β = 1.5. Reduced convergence rate for uniform refinement due to low path regularity caused by
corner singularities in polygonal domain.
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as above; the domain is again 2-dimensional. In Figure 5 the CPU time is plotted as

the average of 40 runs using κ21 = 20 and κ22 = 200. In Figure 6, the L2(Ω;L2(S
2))-

error of the sinc-FE approximation for the non-isotropic GRF Zβ is shown, where

the rate is again computed via a least squares fit. The L2(Ω;L2(S
2))-norm is ap-

proximated as the sample average of 60 Monte Carlo samples. The random forcing

is as above approximated with K̃ = 20 on the discretization level of the reference

solution and projected onto coarser levels with the L2(S
2) projection. The reference

solution is as above the numerical solution taken on two additional levels of mesh

refinement with 4194306 degrees of freedom using a sparse direct solver.
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Figure 5. Simulation of non-isotropic GRFs on the sphere. CPU time per sample versus Nh =
dim(Vh) for Z̃β

K,h
with β = 0.75 on S2

The implementation for all numerical tests is based on the C++ library BETL,

cf. Ref. 41. The CPU time in Figures 2 and 5 has been computed sequentially using

the CPU Intel(R) Xeon(R) CPU E5-2697 v2 @ 2.70GHz.

7. Conclusions

We have developed the mathematical analysis and implementation of a class of

Gaussian random fields Zβ on certain compact metric spaces X , particularly on

closures of bounded Euclidean subdomains D ⊂ Rd and on compact 2-surfaces

without boundary. The fields Zβ are obtained as solutions of the fractional-order

equation AβZβ = W, where W denotes white noise and where A denotes a linear,

self-adjoint, second-order, elliptic reaction-diffusion operator on X . The numerical

simulation of the GRF Zβ has been realized by approximating A−β via a sinc
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quadrature combined with a multilevel FE discretization of A. Under the minimal

Assumption 3.1 on the coefficients of A, we have provided two computational strate-

gies to numerically generate samples of Zβ on simplicial triangulations T of X in

essentially linear complexity O(#(T )) (up to log-terms) per sample. Here, X may

be the closure of a bounded Euclidean domain or a manifold satisfying certain

conditions. We note that these two strategies can furthermore be combined with

approaches, where the fractional inverse A−β is treated numerically via a rational

(Padé) approximation, such as in Ref. 6, since they typically also require solving

singularly perturbed elliptic problems.

In Section 5 we introduced MRA’s on X ∈ {D,M} for the purpose of multi-

level preconditioning. Having at hand a FE wavelet basis Ψ, which is stable in the

spaces Ḣσ
A in a range of Sobolev orders σ ∈ (−γ̃, γ) for γ̃ > 0 and γ > 1, allows

for a compressive numerical simulation of the GRF Zβ . The localization of sup-

ports of elements in such bases is also the key in linear scaling quasi-Monte Carlo

algorithms.30,38–40 For this reason, wavelet-based approximations of the equation

AβZβ = W can, in principle, exploit higher P-a.s. Sobolev regularity of the GRF

Z that is afforded, for example, by a greater value of β > 0, see [18, Lem. 4.1] for

the case of convex Euclidean domains. We remark that the assumption of global

smoothness of the surface M which we imposed in Sections 4–5 can be relaxed to

piecewise smooth surfaces which admit a global Lipschitz atlas, see Remark 4.3 and

Ref. 22.

The presently developed multilevel approaches allow the fast simulation of GRFs

also in a number applications which are currently of interest in computational UQ
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and in data assimilation, e.g., when X is a high-dimensional data graph G.16,17,36
The need for fast (multilevel) simulation of GRFs arises, e.g., in (multilevel) Markov

chain Monte Carlo methods in Bayesian UQ, see Ref. 5 and the references there.

They also extend to spatiotemporal GRFs that are of interest in data assimilation

and spatial statistics, see, e.g., Ref. 13.
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