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Abstract

We propose a WENO finite difference scheme to approximate anelastic flows, and scalars advected
by them, on staggered grids. In contrast to existing WENO schemes on staggered grids, the proposed
scheme is designed to be arbitrarily high-order accurate as it judiciously combines ENO interpolations of
velocities with WENO reconstructions of spatial derivatives. A set of numerical experiments are presented
to demonstrate the increase in accuracy and robustness with the proposed scheme, when compared to
existing WENO schemes and state-of-the-art central finite difference schemes.

1 Introduction

In numerical modeling of fluid systems that are characterized by a low Mach number, it is often advantageous
to introduce approximations to the fully compressible equations that eliminate acoustic waves. Doing so
allows the explicit time integration of the governing equations to take much longer time steps in comparison
to a similar integration of the compressible equations. This is because numerical stability in the soundproofed
system does not depend on the phase velocity of acoustic waves. Various approximations to the compressible
equations that eliminate acoustic waves have been developed including the incompressible, Boussinesq, and
pseudo-incompressible approximations. The choice of which approximation is used is determined by the
properties of the system being studied.

In atmospheric science, the anelastic system of equations is widely used as the basis for limited area
models because many atmospheric flows are buoyancy driven and the stratification of the atmosphere makes
it natural to assume that vertical gradients of density are much larger than horizontal gradients. In the
anelastic system, the momentum, entropy, and continuity equations are given by

∂U

∂t
+

1

ρ0
∇ · (ρ0U ⊗ U) = −∇

(
p′

ρ0

)
+ be3, (1.1)

∂s

∂t
+

1

ρ0
∇ · (ρ0Us) = 0 (1.2)

∇ · (ρ0U) = 0 (1.3)

respectively. Here U = (u1, u2, u3) ∈ R
3 is the fluid velocity, ρ0 is a horizontally homogeneous reference state

density, p′ = p − p0 is the dynamic pressure, b is the buoyancy, e3 = (0, 0, 1), and s is the specific entropy
defined as in [13]. Following [10], we define ρ0 to be consistent with an isentropic and hydrostatic state and
where the buoyancy b = g (ρ/ρ0 − 1) couples the momentum to thermodynamics, and ρ is determined from
the equation of state.
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Given their importance in applications, a large variety of numerical methods for approximating anelastic
(incompressible) flows are available. In applications where complex domain geometries are rarely encoun-
tered, finite difference schemes are a popular discretization framework as they can account for more general
boundary conditions than spectral methods [3].

The most straightforward finite difference discretizations of (1.1) and (1.3) are on collocated meshes,
where one evolves point values of the velocity and pressure at cell centers. However, it is well known
that this procedure can lead to what is termed as velocity-pressure decoupling, [9] and references therein.
Consequently, nonphysical checkerboard modes are obtained as solutions to the (discrete) elliptic equation
that one has to solve in order to compute the pressure from the continuity equation (1.3).

A possible remedy for these nonphysical numerical artifacts is the use of staggered meshes. In this
framework, each velocity component is discretized on the center of the underlying normal cell edge. The
pressure (and any passively or actively advected scalars) is discretized at cell centers. The spatial derivatives
in (1.1) can then be discretized by (high-order) central differences. A large number of such central schemes
exist and are employed in many atmospheric codes.

In many applications, the Reynolds number of the underlying flow is very high and description of the
dynamics requires computing contributions across a large range of scales. Given the infeasibility of direct
numerical simulation (DNS) in such problems, one resorts to an additional turbulence model for (1.1). Large
eddy simulations (LES) are a very attractive framework for turbulence modeling. In LES, a certain range of
scales are numerically resolved and remaining sub-grid scales (SGS) are modeled by a suitable closure model;
a detailed discussion can be found in [11, 15]. Many closure models are based on adding eddy diffusivity in
terms of grid-scale gradients ([20, 7], further references in [12]).

As the leading order truncation terms for central finite difference schemes are dispersive in nature, the
dominant source of numerical dissipation is delegated to the SGS terms. Hence, central finite difference
schemes are widely used in the context of LES for anelastic flows. However, in many recent papers, it has
been observed that central difference schemes together with SGS terms may not provide enough numerical
diffusion to enable a stable computation. For instance, in recent papers [14], the authors demonstrated
that the lack of numerical dissipation and the generation of dispersive oscillations by central finite difference
schemes led to very inaccurate computation of stratocumulus clouds. In particular, there was not enough
dissipation in the mixing zone, where sharp gradients (at grid scale) are encountered which lead to excessive
SGS scalar fluxes. Given this well-known inadequacy of central finite difference schemes in resolving sharp
grid scale gradients, these schemes can be very inaccurate in the LES of a significant class of turbulent
flows. Moreover, a crucial constraint of any numerical simulation of anelastic flows is to retain positivity and
bound preservation for advected scalars. It is well-known that central difference schemes can yield spurious
oscillations that may lead to a breakdown of positivity of advected scalars.

An alternative discretization framework for such flows can be provided by (Weighted -) essentially non-
oscillatory or WENO schemes. These schemes were first developed in [6, 17, 16] in the context of robust
approximation of compressible flows which are characterized by discontinuities such as shock waves. In this
discretization framework, either cell averages or point values are reconstructed from a piecewise polynomial
interpolation, based on a clever stencil selection or stencil weighing procedure that tracks the direction of
smoothness of the underlying functions. Consequently, a precise amount of numerical diffusion is added in
the vicinity of sharp gradients (at grid scale) to stabilize computations. Moreover, the WENO procedure
yields schemes with arbitrarily high order of accuracy.

WENO schemes for anelastic flows on collocated grids were developed in [2] and references therein.
WENO schemes for anelastic flows on staggered grids have been described recently in [13, 14] and references
therein. In these articles, the authors adapted the WENO procedure to approximate anelastic flows on
staggered grids and used these schemes for a large eddy simulation of stratocumulus clouds. The results
were very satisfactory and a significant gain in accuracy (with respect to observations) was obtained over
central finite difference schemes. However a detailed analysis of the WENO schemes of [13, 14] reveals that
although arbitrarily high-order WENO interpolations are employed, the full scheme is at most second-order
accurate (see section 2 for details).

As very high order of accuracy is deemed essential for resolving flows with significant range of small scales
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such as in LES [4], our aim in this article is to design WENO schemes with these properties. In particular,
we design finite difference schemes that are

• Able to resolve sharp gradients without oscillations.

• (Formally) arbitrarily high-order accurate for the momentum equation (1.1) of anelastic flows.

• Formally arbitrarily high-order accurate for scalars, passively or actively advected by the flow.

We design these schemes by judiciously combining a WENO procedure with an additional essentially non-
oscillatory (ENO) interpolation step to provide point values of fields. The arbitrarily high-order scheme for
scalars is based on a non-conservative formulation.

The rest of the paper is organized as follows. In section 2, we describe the existing WENO schemes of
[13, 14] on a staggered grid and prove that they are at most second-order accurate. The novel WENO scheme
of this paper is presented in section 3 and numerical experiments are presented in section 4. In section 5, we
present the arbitrarily high-order schemes for scalars, advected by the anelastic flow.

2 Existing WENO schemes on staggered grids.

For simplicity of notation and exposition, we consider here the two-dimensional version of the momentum
equation (1.1). The corresponding velocity field is denoted as U = (u1, u2); for convenience of notation, we
will also use U = (u, v).

2.1 The Arakawa C-grid

The computational domain is the rectangle (xmin, xmax)× (ymin, ymax) ⊂ R
2. This rectangle is partitioned

into a grid of Nx × Ny cells Cij = [xi, xi+1) × [yj , yj+1), ∀(i, j) ∈ {0, 1, . . . , Nx} × {0, 1, . . . , Ny}, with
xi = xmin + i∆x, yj = ymin + j∆y and ∆x = xmax−xmin

Nx
, ∆y = ymax−ymin

Ny
. The grid cell centers are

(xi+ 1
2
, yj+ 1

2
) with xi+ 1

2
= xmin + (i+ 1

2 )∆x, yj+ 1
2
= ymin + (j + 1

2 )∆y.

On this grid, we consider what is called an Arakawa-C [1] staggering of variables on the computational
grid, depicted in Figure 1. In this configuration, scalars (see section 5) lie at grid cell centers (denoted
φi+ 1

2 ,j+
1
2
:= φ(xi+ 1

2
, yj+ 1

2
)); pressure is diagnostically computed at those points as well. Conversely, veloc-

ities lie at the center of the cell interfaces normal to their direction; specifically, u velocities are located at
(xi, yj+ 1

2
), and v at (xi+ 1

2
, yj). We denote these as ui,j+ 1

2
:= u(xi, yj+ 1

2
), vi+ 1

2 ,j
:= v(xi+ 1

2
, yj).

Our aim is to design a WENO scheme on this grid to approximate the anelastic equations of motion. We
start by providing a very brief description of the WENO framework for the sake of completeness.

2.2 An overview of the ENO and WENO methodology

Given a grid and the cell averages (resp. point values) of a function on the grid, ENO and WENO methods
provide a reconstruction (resp. interpolation) of the function at a set of points on the grid in terms of
piecewise polynomials. See [6, 16, 17] and references therein.

For simplicity, we consider a function w : [xL, xR] → R on a 1D grid with cells Cj := [xj− 1
2
, xj+ 1

2
) and aim

to reconstruct piecewise polynomials from cell averages, with formal order of accuracy k ∈ N. To this end, the
key idea behind ENO is a careful choice of the stencil; i.e. the set of k cells S(r)(j) = {Cj−r, . . . , Cj−r+k−1},
r ∈ {0, . . . , k− 1}, from which information is taken. This choice is based on the smoothness of the function:
out of the available stencils, the interpolation corresponds to one where the function is the most regular.
This measurement of smoothness can be performed with Newton’s divided differences. Denoting the chosen
stencil by r, and denoting by w̄j the cell average of w in cell Cj , the reconstruction has the form:

w
(r)

j+ 1
2

:=

k−1∑

i=0

criw̄i−r+j = w(x−

j+ 1
2

) +O(∆xk),
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2 ,j

ui−1,j+ 1
2

Figure 1: The staggered Arakawa-C grid in 2D. Velocities (u, v) are stored at cell inter-
faces, scalars φ at cell centers. Pressure p′ is computed at cell centers as well.

where the constants cri are reconstruction weights, depending on stencil r, order k of the interpolation, and
on the grid, but not on the underlying function w.

Even if information from 2k − 1 cells is used in the ENO method, the order of accuracy is limited to
k. This redundancy is alleviated in the WENO method, in which the reconstruction is based on a convex
combination of all candidate ENO reconstructions. The weights in this combination are very small for
approximations coming from stencils with discontinuities, and we can still guarantee order of accuracy 2k−1
when the function is sufficiently smooth in all stencils. To be more specific, the reconstruction at the interface
of cell Cj has the form

wj+ 1
2
:=

k−1∑

r=0

ωrw
(r)

j+ 1
2

= w(x−

j+ 1
2

) +O(∆x2k−1),

where ωr ∝ dr

(ǫ+βr)p
is normalized so that

∑
r ωr = 1. Weights dr are chosen to produce high-order recon-

structions when w is smooth, and βr is a smoothness indicator, such that βr ≈ 0 if v is smooth in S(r)(j),
and βr = O(1) otherwise. Following [16], we set ǫ to be 10−10 for our experiments, and p = 2.

As we work with a finite difference framework, a priori it is unclear if the reconstruction procedure
outlined above can be applied in the current context. However, we are only interested in a high-order
approximation of the spatial derivatives in (1.1), and not in a very accurate approximation of point values.
Therefore, we can use the novel trick of Shu [16] by which he converts reconstruction of cell averages into
approximation of first derivatives. For the sake of completeness, we present the following proposition,

Proposition 1. Given the point values of a smooth function f on the cell centers of a uniform one-
dimensional grid with step ∆x, we can perform a WENO reconstruction to obtain numerical fluxes f̂ such
that the spatial derivative of f is approximated to a high-order of accuracy, i.e,

1

∆x
(f̂i+ 1

2
− f̂i− 1

2
) = f ′(xi) +O(∆xk−1) (2.1)

Proof. We follow Shu [16] and seek a function h, depending on ∆x, implicitly defined such that its sliding
cell average is f . That is,

f(x) =
1

∆x

∫ x+∆x
2

x−∆x
2

h(s)ds (2.2)
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A straightforward application of the fundamental theorem of calculus yields,

f ′(x) =
1

∆x

(
h

(
x+

∆x

2

)
− h

(
x−

∆x

2

))
(2.3)

On the other hand, the cell averages of h verify that:

h̄i :=
1

∆x

∫ xi+
∆x
2

xi−
∆x
2

h(s)ds
(2.2)
= f(xi)

Now, we can apply standard WENO reconstruction, as outlined above, to the cell averages h̄i to obtain

ĥi+ 1
2
= h

(
xi +

∆x

2

)
+O(∆xk)

And finally, inserting in (2.3),

f ′(xi) =
1

∆x

(
ĥi+ 1

2
− ĥi− 1

2

)
+O(∆xk−1)

So it suffices to let f̂i+ 1
2
:= ĥi+ 1

2
and conclude the proof.

2.2.1 Further notation for WENO reconstructions.

Let f : R → R be a function, and let

f̄i :=
1

∆x

∫ x
i+1

2

x
i− 1

2

f(x)dx,

i ∈ I its cell averages. Fix k ∈ N, we term W− 1
2
,W+ 1

2
: R2k−1 → R as the WENO-(2k − 1) reconstruction

operators that provide approximations to the point values at the left and right cell edge respectively, which
if f is sufficiently regular are high-order accurate; i.e.:

W+ 1
2
(f̄i−(k−1), f̄i−(k−2), . . . , f̄i, . . . , f̄i+(k−1)) = f(x−

i+ 1
2

) +O(∆x2k−1)

W− 1
2
(f̄i−(k−1), f̄i−(k−2), . . . , f̄i, . . . , f̄i+(k−1)) = f(x+

i− 1
2

) +O(∆x2k−1)

2.3 The WENO scheme used by Pressel et al. [13, 14]

.
We start by describing our discretization of the advection terms in the momentum equation (1.1). To

this end we assume uniform reference density and dynamic pressure ρ0, p
′ ≡ 1 and buoyancy b ≡ 0 in (1.1)

and write it down in two space dimensions as

∂u

∂t
= −

∂

∂x
(u2)−

∂

∂y
(uv),

∂v

∂t
= −

∂

∂x
(uv)−

∂

∂y
(v2).

(2.4)

In particular, we will focus on a WENO discretization of the first equation in (2.4). Following [13], a
semi-discrete WENO scheme for it can be written as

∂

∂t
u(xi, yj+ 1

2
, t) = −

1

∆x

(
Fu,x

i+ 1
2 ,j+

1
2

(t)− Fu,x

i− 1
2 ,j+

1
2

(t)
)
−

1

∆y

(
Fu,y
i,j+1(t)− Fu,y

i,j (t)
)
. (2.5)

5



yj

yj+1

xi−1 xi

Fu,y
i,j+1

Fu,y
i,j

ui,j+ 1
2

vi+ 1
2 ,j

vi− 1
2 ,j+1 vi+ 1

2 ,j+1

Figure 2: Reconstruction of ∂
∂y

(uv) on a staggered grid. Circles denote points where
fluxes need to be computed.

Flux reconstructions F (for the sake of clarity, we omit the time dependence throughout) are given by a

generic reconstruction operator (̂·), to be described in the sequel:

Fu,x

i+ 1
2 ,j+

1
2

= û2
i+ 1

2 ,j+
1
2
, Fu,y

i,j = ûvi,j .

The reconstruction Fu,x

i+ 1
2 ,j+

1
2

corresponds to the function u2 along the x-direction. It can be computed

directly by performing a WENO reconstruction from the point values u2
i,j+ 1

2

in the x-direction.

On the other hand, the reconstruction Fu,y
i,j corresponds to approximating a y-spatial derivative of the

function uv. This is problematic as the values of the velocities u and v are staggered and are not defined at
the same locations. In particular, u is defined at points (xi, yj+ 1

2
) whereas v is defined at points (xi+ 1

2
, yj).

This situation is depicted in Figure 2. Thus, we have to perform an interpolation procedure to be able
to obtain point values for the function uv, which can then provide the input to a WENO reconstruction
procedure for calculating Fu,y

i,j in (2.5).
One possible approach to reconstructing the uv momentum flux, that has been used in applications (e.g.

Pressel et al. [13]∗, Skamarock et al. [19]), is to use a high-order one-dimensional central interpolation to
reconstruct the advecting velocity v, and WENO interpolation to reconstruct the velocity u. This procedure
can be summarized as:

Algorithm 1.
Goal: Given k ∈ N, find a reconstruction of the numerical flux, Fu,y

i,j+1, such that, formally, ∀i, j:

1

∆y
(Fu,y

i,j+1 − Fu,y
i,j ) =

∂

∂y
(uv)(xi, yj+ 1

2
) +O(∆x2k−1 +∆y2k−1) (2.6)

1. Using 1D central interpolation on the horizontal, symmetric, 2k-point stencil {vi− 1
2+l, j+1}

k
l=−k+1,

compute
ṽi,j+1 = v(xi, yj+1) +O(∆x2k)

2. Compute the two possible biased, vertical (2k − 1)-WENO reconstructions of u at (xi, yj+1):

û−
i,j+1 := W+ 1

2
(ui,j+ 1

2+(−k+1), ui,j+ 1
2+(−k+2), . . . , ui,j+ 1

2+k−1)

û+
i,j+1 := W− 1

2
(ui,j+ 1

2+(−k+2), ui,j+ 1
2+(−k+3), . . . , ui,j+ 1

2+k)

∗In [13], this idea of interpolating the advecting velocity is also used for the reconstruction of the (ui)
2 fluxes
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3. Upwind with the sign of ṽi,j+1:

ûi,j+1 =

{
û+
i,j+1 if ṽi,j+1 < 0

û−
i,j+1 if ṽi,j+1 ≥ 0

4. Set Fu,y
i,j+1 := ṽi,j+1ûi,j+1

This completes the description of the scheme (2.5). We observe that one can discretize the second equation
in (2.4) in an analogous fashion. In particular, the WENO reconstruction of ∂y(v

2) is straightforward and
Algorithm 1 can be readily modified to yield a WENO reconstruction of ∂x(uv).

2.3.1 Order of Accuracy

In this section, we will investigate the (formal) order of accuracy of the WENO scheme described in [13].
This order of accuracy is measured in terms of the truncation error of the scheme. We have the following
theorem,

Theorem 1. For u, v sufficiently smooth and for any 2 ≤ k ∈ N, Algorithm 1 produces an at most second
order approximation to ∂

∂y
(uv)(xi, yj+ 1

2
) in (2.4). Hence, the WENO schemes used by[13] are at most second

order accurate, and equation (2.6) does not hold for them.

Proof. We assume ∆x ∝ ∆y, and so O(∆x) = O(∆y). Following Algorithm 1, the approximation to
∂y(uv)(xi, yj+ 1

2
) is:

Du,y

i,j+ 1
2

:=
1

∆y
(ṽi,j+1ûi,j+1 − ṽi,j ûi,j)

where û are the reconstructions of u such that, by (2.1),

1

∆y
(ûi,j+1 − ûi,j) = ∂yu(xi, yj+ 1

2
) +O(∆y2k−1),

and ṽi,m is the horizontally interpolated value for v at (xi, ym), m ∈ {j, j+1}, as per step 1 in Algorithm 1:

ṽi,m = v(xi, ym) +O(∆x2k)

We will show that Du,y

i,j+ 1
2

= ∂y(uv) +O(∆y2).

Denote by vi,j+ 1
2
:= v(xi, yj+ 1

2
) the exact point value of v. Adding and subtracting vi,j+ 1

2
(ûi,j+1 +

ûi,j)/∆y and rearranging:

Du,y

i,j+ 1
2

=
ṽi,j+1 − vi,j+ 1

2

∆y
ûi,j+1 +

vi,j+ 1
2
− ṽi,j

∆y
ûi,j + vi,j+ 1

2

ûi,j+1 − ûi,j

∆y
(2.7)

We observe that, by (2.1), the last term in the right hand side of (2.7) is a high-order O(∆x2k−1)
approximation to (v ∂yu) (xi, yj+ 1

2
).

Next, we will show that the other terms in (2.7), which approximate u ∂yv, produce a lower-order ap-
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proximation. Using Taylor expansions and (2.1),

ṽi,j+1 − vi,j+ 1
2

∆y
ûi,j+1 +

vi,j+ 1
2
− ṽi,j

∆y
ûi,j =

=
vi,j+1 − vi,j+ 1

2

∆y
ûi,j+1 +

vi,j+ 1
2
− vi,j

∆y
ûi,j +O(∆y2k−1)

=

(
∂yv(xi, yj+ 1

2
)

2
+ ∂yyv(xi, yj+ 1

2
)
∆y

8
+O(∆y2)

)
ûi,j+1

+

(
∂yv(xi, yj+ 1

2
)

2
− ∂yyv(xi, yj+ 1

2
)
∆y

8
+O(∆y2)

)
ûi,j +O(∆y2k−1)

= ∂yv(xi, yj+ 1
2
)
ûi,j+1 + ûi,j

2
+

∂yyv(xi, yj+ 1
2
)

8

ûi,j+1 − ûi,j

∆y
∆y2 +O(∆y2)

= ∂yv(xi, yj+ 1
2
)
ûi,j+1 + ûi,j

2
+

(∂yyv ∂yu) (xi, yj+ 1
2
)

8
∆y2 +O(∆y2)

= ∂yv(xi, yj+ 1
2
)
ûi,j+1 + ûi,j

2
+O(∆y2)

For the first term, considering the 1D function fi(·) = u(xi, ·), and naming hi(·) its 1D WENO recon-
struction function as in Proposition 1, we have that:

ûi,j+1 + ûi,j

2
=

1

∆y
∆y

hi(yj+1) + hi(yj)

2
+O(∆y2k−1) (2.8)

=
1

∆y

(∫ yj+1

yj

hi(t) dt+O(∆y3)

)
+O(∆y2k−1) (2.9)

= u(xi, yj+ 1
2
) +O(∆y2) (2.10)

Where in the second step we have used the accuracy of the trapezoidal quadrature rule. Finally,

ûi,j+1 + ûi,j

2
∂yv(xi, yj+ 1

2
) = (u ∂yv)(xi, yj+ 1

2
) +O(∆y2)

Summarizing,

1

∆y
(ṽi,j+1ûi,j+1 − ṽi,j ûi,j) =

(
(v ∂yu)(xi, yj+ 1

2
) +O(∆y2k−1)

)
+
(
(u ∂yv)(xi, yj+ 1

2
) +O(∆y2)

)

= ∂y(uv) +O(∆y2)

An analogous treatment of the WENO discretization of the ∂x(uv) term in the second equation of (2.4)
also yields an at most second order accuracy of this term.

Remark 1. The surprising aspect of Theorem 1 is the fact that the formal order of accuracy of the WENO
scheme is at most 2, even if the underlying interpolating polynomials are of arbitrarily high order. As the
above proof shows, this can be attributed to the errors that accumulate while interpolating values on the
staggered grid. A similar and unexpected loss of convergence is also found for some popular central schemes
for anelastic flows, for instance the Wicker-Skamarock scheme presented in [19]), see Appendix A for details.
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3 An arbitrarily high-order WENO scheme on staggered grids

Given the fact that existing WENO schemes for discretizing the anelastic equations (1.1) are at most second
order accurate, we will present an arbitrarily high-order WENO scheme on such grids. Again for the simplicity
of notation and exposition, we will focus on the two-dimensional problem while remarking that the extension
to three space dimensions is straightforward.

3.1 Interpolation

As identified in the previous section, the reason for the loss of accuracy of existing WENO schemes is the
error accumulated while interpolating across the staggered grid. In particular, one-dimensional (central)
interpolations cause a loss of order of accuracy. A genuinely multi-dimensional interpolation can potentially
restore design order of accuracy. Similar ideas were explored in Ghosh and Baeder [5] and Zhang and
Jackson [23]. In both these papers, the authors consider a non-conservative formulation of the momentum
equations that necessitates a genuinely multi-dimensional (central) interpolation. Here, we will retain the
conservative version of the momentum equations and design a two-dimensional ENO interpolation, in order
to be consistent with the non-oscillatory character of the overall scheme. This increases the computational
cost of the scheme, albeit the overall cost is still in the same order as the WENO reconstructions.

We illustrate the algorithm by describing the discretization of the problematic ∂y(uv) term in the first
equation of (2.4). Recalling the issue from section 2 and as depicted in Figure 3, we have to obtain values of
uv at a set of points in order to provide a WENO reconstruction of the derivative ∂y(uv). In particular, we
need to find approximations to the values of v at the points (xi, yj+ 1

2
) where values of u are defined. There are

two possible choices, as depicted in Figure 3. Either we perform a one-dimensional ENO interpolation of v in
the y-direction to define the point values vi+ 1

2 ,j+
1
2
(at the cell centers) and then perform a one-dimensional

ENO interpolation of vi+ 1
2 ,j+

1
2
along the x-direction to obtain the values of v at the points (xi, yj+ 1

2
) (this

procedure is shown by solid curves in Figure 3) or we perform a one-dimensional ENO interpolation of v in
the x-direction to define the point values vi,j and then perform a one-dimensional ENO interpolation of vi,j
along the y-direction to obtain the values of v at the points (xi, yj+ 1

2
) (this procedure is shown by dashed

curves in Figure 3). In the sequel, we will require the values of the velocity field at cell centers. Therefore,
we do the former and summarize the interpolation algorithm below,

Algorithm 2.
Goal: Given point values of vi+ 1

2 ,j
≈ v(xi+ 1

2
, yj), ∀i, j, find non-oscillatory, order 2k − 1 interpolations of

v, at the locations (xi, yj+ 1
2
).

1. For each cell, use 1D vertical ENO interpolation to find an approximation to v at the cell center,
ṽi+ 1

2 ,j+
1
2
, based on the stencil of maximal smoothness of 2k− 1 cells contained in {vi+ 1

2 ,j+r}
2k−2
r=−(2k−3)

ṽi+ 1
2 ,j+

1
2
= v(xi+ 1

2
, yj+ 1

2
) +O(∆y2k−1)

2. For each cell, use 1D horizontal ENO interpolation to find an approximation to v at the location
of u, denote it ṽi,j+ 1

2
, based on the stencil of maximal smoothness of 2k − 1 cells contained in

{ṽi+ 1
2+r,j+ 1

2
}2k−3
r=−(2k−2)

ṽi,j+ 1
2
= v(xi, yj+ 1

2
) +O(∆x2k−1 +∆y2k−1)

Remark 2. The above algorithm can be readily extended to discretize the ∂x(uv) term in the second
equation of (2.4). This procedure applies almost verbatim to the 3D scenario, the only difference being that
a higher number of interpolations, along each of three directions, are required.

Remark 3. In Algorithm 2, we choose to apply 1D ENO interpolation, rather than WENO; this choice is
made for stability. Near sharp gradients, the scheme displays some sensitivity to the reconstruction stencil.
Experimentally, we have found that the best results are produced with ENO, with a stencil that contains at
least one node to each side of the point where interpolation is required. The stencils described above already
enforce this requirement. E.g. for step 1, all stencils of 2k − 1 cells contain vi+ 1

2 ,j
and vi+ 1

2 ,j+1
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xi xi+1

yj−1

yj

yj+1

yj+2

vi+ 1
2 ,j−1

vi+ 1
2 ,j

vi+ 1
2 ,j+1

vi+ 1
2 ,j+2

ui,j− 1
2

ui,j+ 1
2

ui,j+ 3
2

ui,j+ 5
2

Figure 3: 2D interpolation for ∂
∂y

(uv) on a staggered mesh. The two candidate 2-step
1D interpolations are depicted with solid and dashed curved arrows.

ui−1,j+ 1
2

ui,j+ 1
2

ui+1,j+ 1
2

ui+2,j+ 1
2

Fu,x

i+ 1
2 ,j+

1
2

Figure 4: Reconstruction of ∂
∂x

u2 on a staggered grid. The diamond marks the location
of u in the highlighted cell; numerical fluxes must be calculated at the circles.

3.2 Numerical fluxes

In this section, we will describe the numerical fluxes for discretizing the advective terms in (1.1). As the
preceding discussion indicates, we need to differentiate between two sets of terms, namely ∂

∂xi
(ρ0u

2
i ), and

∂
∂xj

(ρ0uiuj) for i 6= j.

3.2.1 Terms of the form ∂
∂xi

(ρ0u
2
i )

For illustration, we describe the flux for ∂
∂x

(ρ0u
2) in two space dimensions. This configuration is displayed

in Figure 4, where the diamond marks the position of u in the highlighted cell, and the circles are at the
points where fluxes need to be reconstructed.

Algorithm 3.
Goal: Find a numerical flux Fu,x such that, formally, ∀i, j:

Fu,x

i+ 1
2 ,j+

1
2

− Fu,x

i− 1
2 ,j+

1
2

∆x
=

∂(ρ0u
2)

∂x
(xi, yj+ 1

2
) +O(∆x2k−1 +∆y2k−1)
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1. Compute the two biased WENO reconstructions of the flux function f(x) =
(
ρ0u

2
)
(x, yj+ 1

2
) at

(xi+ 1
2
, yj+ 1

2
). Denoting fl := ρ0(xl, yj+ 1

2
) u2

l,j+ 1
2

, this is:

f̂−

i+ 1
2 ,j+

1
2

= W+ 1
2
(fi−(k−1), fi−(k−2), . . . , fi+(k−1))

f̂+
i+ 1

2 ,j+
1
2

= W− 1
2
(fi−(k−2), fi−(k−1), . . . , fi+k)

2. Choose a consistent numerical flux function G(u−, u+), and set

Fu,x

i+ 1
2 ,j+

1
2

:= G(f̂−

i+ 1
2 ,j+

1
2

, f̂+
i+ 1

2 ,j+
1
2

)

Remark 4. In the numerical experiments in the sequel, G is taken to be the upwind flux:

G(ul, ur) =

{
ul if ai+ 1

2 ,j+
1
2
≥ 0

ur if ai+ 1
2 ,j+

1
2
< 0

; ai+ 1
2 ,j+

1
2
=

ui,j+ 1
2
+ ui+1,j+ 1

2

2
.

Other fluxes, e.g. Lax-Friedrichs, Rusanov, etc. can also be considered.

3.2.2 Terms of the form ∂
∂xj

(ρ0uiuj), with i 6= j

Again for the purpose of illustration, we focus on the two-dimensional discretization of the term ∂
∂y

(ρ0uv). As
discussed before, this computation requires interpolations of v at the points where u lies; i.e. this algorithm
assumes the availability in each cell of interpolations

ṽi,j+ 1
2+m := v(xi, yj+ 1

2+m) +O(∆x2k−1 +∆y2k−1), for m ∈ {−(k − 1), . . . , k},

which can be computed with Algorithm 2. This is depicted in Figure 5, where the diamond marks the
position of v in the highlighted cell; and the circles are at the locations where fluxes need to be computed.

With said interpolations, we now have high-order approximations to the values of (uv) at the desired
points (marked with black dots in Fig. 5). Thus, for Fu,y

i,j+1, the procedure would be:

Algorithm 4.
Goal: Find a numerical flux Fu,y

i,j+1 such that, formally, ∀i, j:

Fu,y
i,j+1 − Fu,y

i,j

∆y
=

∂(ρ0uv)

∂y
(xi, yj+ 1

2
) +O(∆x2k−1 +∆y2k−1)

1. Compute the two biased WENO reconstructions of the flux function g(y) = (ρ0uv) (xi, y) at (xi, yj+1).
Denoting gl := ρ0(xi, yl+ 1

2
)ui,l+ 1

2
ṽi,l+ 1

2
, with ṽi,l+ 1

2
the high-order interpolations of Algorithm 2, results

in

ĝ−i,j+1 = W+ 1
2
(gj−(k−1), gj−(k−2), . . . , gj+(k−1))

ĝ+i,j+1 = W− 1
2
(gj−(k−2), gj−(k−1), . . . , gj+k)

2. Choose a numerical flux function G(u−, u+), and set

Fu,y
i,j+1 := G(ĝ−i,j+1, ĝ

+
i,j+1).

Again, one can use the upwind flux function and upwind with the value of ṽi,j+ 1
2
or use a Lax-Friedrichs

or Rusanov flux.

11



(uṽ)i,j+ 5
2

(uṽ)i,j+ 3
2

(uṽ)i,j+ 1
2

(uṽ)i,j− 1
2

Fu,y
i,j+1

Figure 5: Reconstruction of ∂
∂y

(uv) on a staggered grid. The diamond marks the lo-
cation of u in the highlighted cell; numerical fluxes must be calculated at the circles.
Interpolations of v are required at the points marked with dots.

3.3 The advection scheme

We collect all the above ingredients and write the advection scheme as:

Algorithm 5.
Goal: Given i ∈ {1, . . . , d}, obtain a high-order, essentially non-oscillatory approximation, on an Arakawa-C
grid (Fig. 1), to the spatial derivatives in:

∂

∂t
ui = −

1

ρ0

d∑

j=1

∂

∂xj

(ρ0uiuj)

1. Using Algorithm 2, ∀j ∈ {1, . . . , d}, j 6= i, obtain high-order approximations to uj at the location of
ui.

2. For j ∈ {1, . . . , d}:

(a) If j = i, find a numerical flux Fui,xi for ∂
∂xi

(ρ0u
2
i ) using Algorithm 3.

(b) Otherwise, find a numerical flux Fui,xj for ∂
∂xj

(ρ0uiuj) using Algorithm 4.

3. Find the spatial differences of the computed numerical fluxes Fui,xk in the direction of xk, k ∈
{1, . . . , d}, and divide by ρ0 to complete the approximation. As an example, the semi-discrete scheme
for discretizing (2.4) is

∂

∂t
ui,j+ 1

2
= −

1

ρ0(xi, yj+ 1
2
)

(
Fu,x

i+ 1
2 ,j+

1
2

− Fu,x

i− 1
2 ,j+

1
2

∆x
+

Fu,y
i,j+1 − Fu,y

i,j

∆y

)

∂

∂t
vi+ 1

2 ,j
= −

1

ρ0(xi+ 1
2
, yj)

(
Fu,y
i+1,j − Fu,y

i,j

∆x
+

F v,y

i+ 1
2 ,j+

1
2

− Fu,y

i+ 1
2 ,j−

1
2

∆y

) (3.1)
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Lemma 1. For sufficiently smooth U , ρ0, Algorithm 5 produces arbitrarily high-order accurate approxima-
tions to the spatial derivatives of the fluxes in (1.1), i.e, for any k ∈ N, the truncation error in discretizing
the advective parts of (1.1) is O(∆x2k−1 +∆y2k−1).

The proof follows in a straightforward manner from the construction and for the accuracy of the WENO
method, see Proposition 1.

3.4 The complete scheme

In this section, we will provide an overview of the discretizations of other terms in the anelastic equations.

3.4.1 Source terms

Source terms in the equations (e.g. buoyancy b in the equation of momentum (1.1), or any other physical
source terms) are easy to deal with in this context. Since buoyancy has a closed form in the anelastic
formulation (see section 5.2.1), this reduces to computing the source terms at the appropriate locations and
adding them to the tendencies, i.e, discretizations of the advective terms, computed in Algorithm 5.

3.4.2 Pressure

For the resolution of the pressure gradient in (1.1), and the continuity equation (1.3), the well-known idea
of Leray projection into the space of divergence-free fields can be used. The divergence operator is applied
to (1.1) yielding,

∂2

∂t∂xi

ρ0ui = −
∂2

∂xixj

(ρ0uiuj) +
∂

∂x3
(ρ0be3)−

∂

∂xi

ρ0
∂

∂xi

p′

ρ0

where we use Einstein’s notation of implied summation over repeated indices. Discretizing the time derivative
with forward Euler method with time step ∆t, we can rewrite it as:

(
∂

∂xi

ρ0ui

)n+1

=

(
∂

∂xi

ρ0ui

)n

+∆t

(
∂2

∂xixj

(ρ0uiuj) +
∂

∂x3
(ρ0be3)−

∂

∂xi

ρ0
∂

∂xi

p′

ρ0

)

Setting the left hand side to zero in order to enforce null divergence, and rearranging, results in

∂

∂xi

ρ0
∂

∂xi

p′∆t

ρ0
=

∂

∂xi

ρ0

(
un
i +

1

ρ0

∂

∂xj

(ρ0uiuj) + be3

)

We observe that the above is a Poisson-type equation for the function p′∆t
ρ0

, and the right hand side is

the result of evolving (ui)
n by forward Euler with the spatial tendencies computed so far.

In the directions in which the domain is periodic (e.g. for horizontal surfaces), this Poisson equation can
be efficiently solved with a spectral method. For the vertical direction, however, periodicity does not, in
general, hold (as ρ0(zbottom) 6= ρ0(ztop)). In this case, we need to apply a finite difference method such as
the one used in Pressel et al. [13].

Once pressure p′ is computed, its gradient needs to be removed from the computed tendencies as per eq.
(1.1).

3.4.3 Time evolution

So far, we have a semi-discrete scheme of the form:

d

dt
Ui,j(t) = L(t, Ui,j(t))

where L is the operator that collects all spatial discretizations. A time marching algorithm is necessary to
complete our discretization. Given our focus on obtaining a non-oscillatory discretization, we choose the
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popular strong stability preserving, third order Runge-Kutta method (SSP-RK3), described e.g. by Shu in
[17] for discretizing ODE ϕ′(t) = L(t, ϕ(t)) with

ϕ(1) = ϕn +∆t(L(tn, ϕn))

ϕ(2) =
3

4
ϕn +

1

4

(
ϕ(1) +∆t

(
L(tn +∆t, ϕ(1))

))

ϕn+1 =
1

3
ϕn +

2

3

(
ϕ(2) +∆t

(
L(tn +

∆t

2
, ϕ(2))

))

3.4.4 Layout of the full scheme

The complete scheme is realized in the following algorithmic form,

Algorithm 6.
Goal: Find numerical approximations to the anelastic Euler equations (1.1)-(1.3) on an Arakawa-C grid.

For each time step, t = tn:

1. Compute ∆tn such that a CFL condition is verified

2. For each Runge-Kutta substep:

(a) Compute the advective tendencies for momentum (Algorithm 5)

(b) Add source terms

(c) Perform pressure correction

3. Compute total SSP-RK3 tendencies and update velocities.

4. tn+1 = tn +∆tn

4 Numerical experiments

In this section, we will present a suite of numerical experiments in order to compare WENO schemes, such
as the one described in [13] and the one proposed here, to each other and to well-known central schemes
such as the Wicker-Skamarock scheme [19] and the Morinishi scheme [8]. See Appendix A for a detailed
description of these schemes.

4.1 Discontinuous vortex patch

The first numerical experiment is designed to test the ability of a finite difference scheme to approximate sharp
gradients. We consider only the advective part of the momentum equations (2.4) on the two-dimensional
domain D = [0, 2π]2 with periodic boundary conditions. The initial datum is

u0(x, y) =

{
− 1

2 (y − π) if (x, y) ∈ ∆

0 otherwise
, v0(x, y) =

{
1
2 (x− π) if (x, y) ∈ ∆

0 otherwise

Here, ∆ = {(x, y) ∈ R
2, (x − π)2 + (y − π)2 < π

2 }. Thus, initial velocity is discontinuous and the initial
vorticity is confined to the region ∆. All schemes are tested on a uniform Cartesian grid of 1282 points. The
time step is chosen to be consistent with a CFL number of 0.1.

We approximate (2.4) with the sixth-order scheme of Morinishi et al [8], see also Appendix A, on this
grid and display the results at time T = 1 in Figure 6a. We observe from Figure 6a that the computed
velocity with this high-order central scheme is already very oscillatory around the discontinuity at this time.
These spurious oscillations build up in time and the scheme blows up by time T = 2. Similar behavior
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was also seen in the case of the Wicker-Skamarock scheme, [19] and Appendix A, and for different orders of
the central schemes. The numerical results are expected as the central scheme will become unstable around
discontinuities.

We compute solutions for this test case with the fifth order versions of the WENO scheme of [13] and the
WENO scheme proposed in this paper, i.e. Algorithm 6; and display the results in Figures 6b and 6c. The
results show that both schemes produce very stable approximations, even at the time T = 5. In particular,
the vortex patch is very well confined to the disk. There are minor differences between the WENO scheme
of [13] that we denote by Algorithm 1 and the scheme proposed here (Algorithm 6). In particular, although
both schemes produce small amplitude oscillations at the discontinuity, the WENO scheme proposed here
resolves the discontinuity with oscillations of significantly smaller amplitude.

Summarizing, both WENO schemes are quite good at resolving discontinuities or sharp gradients. This
is in sharp contrast to central finite difference scheme which can blow up at discontinuities due to spurious
oscillations.

(a) 6th order Morinishi, T = 1 (b) Algorithm 1), T = 5 (c) Algorithm 5), T = 5

Figure 6: Simulations of discontinuous vortex patch problem. In each figure, left plots
represent u (2D, and 1D cut along y = π), right ones v (2D, and 1D cut along x = π).

4.2 Taylor vortex

In this experiment, we fix the domain [−8, 8]2 with periodic boundary conditions and solve the anelastic
equations (1.1), (1.3) with buoyancy b = 0 and ρ0 ≡ 1, i.e. incompressible Euler, and the following initial
condition,

u0(x, y) = −ye
1
2 (1−x2−y2) + 8 (4.1)

v0(x, y) = xe
1
2 (1−x2−y2) (4.2)

As no exact solution is available, we compute a reference solution on a very fine grid of 8748× 8748 points,
and an appropriately small time step, using a sixth-order Morinishi scheme of [8]. We will compute approx-
imations with the WENO scheme of [13] (Algorithm 1) and the WENO scheme proposed here (Algorithm
6) and compute corresponding errors with respect to the reference solution.

To guarantee that the leading error term in the advection scheme stems from the spatial discretization,
we require ∆xq > ∆t3 (as we use SSP-RK3). For this reason, we limit these tests to q ∈ {3, 5} (i.e. k = {2, 3}
in Algorithms 1 and 6), and we take a fixed ∆t with ∆t3 < ∆x5. For the resolutions considered, ∆t = 0.0001
suffices. We run our tests up to T = 0.01 (i.e. 100 time steps). For both the original and new schemes, we
have compared third and fifth order approximations, on grids where nx = ny. We show here the discrete L1

error for u with respect to the reference solution.
The numerical error results in Table 1 are consistent with our theoretical findings. The new scheme

converges at a rate that is dictated by the order of the underlying approximations whereas the WENO
scheme used by [13] is restricted to at most second order accuracy. Interestingly, the version of Algorithm
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Advection scheme (Alg. 1) High-order formulation (Alg. 5)
nx u (3rd) EOC u (5th) EOC u (3rd) EOC u (5th) EOC
12 0.0469 – 0.0424 – 0.0529 – 0.0465 –
36 0.0267 0.51 0.00132 3.15 0.0069 1.66 0.00167 3.03
108 0.00802 1.09 8.41e-5 2.51 0.000419 2.55 7.45e-6 4.93
324 0.00284 0.94 9.89e-6 1.94 2.67e-5 2.51 3.89e-8 4.78
972 0.000939 1.01 1.06e-6 2.03 1.39e-5 2.69 1.88e-10 4.85

Table 1: Discrete L1 numerical error for experiment 4.2 (Taylor vortex)

1 using third order interpolations shows only first order convergence. This is on account of the choice of
the stencil in step 1 of Algorithm 1: instead of taking 2k points, in the description of the scheme in [13],
the (2k − 2)-point symmetric stencil was chosen. Revisiting the proof of Theorem 1, it is easy to see that
taking a (2k − 2)-nd order accurate approximation, the order of convergence is min{2, 2k − 3}; with k = 2
(i.e. WENO3) this only produces first-order accuracy.

4.3 Double shear layer

In the last numerical experiment of this section, we present a well-known example that has been used before,
for instance in Zhang and Jackson [23], Ghosh and Baeder [5].

For (x, y) ∈ [0, 2π) × [0, 2π) with periodic boundary conditions, we solve the anelastic equations (1.1),
(1.3), with initial data,

u0(x, y) =




tanh

[
1
ρ

(
y − π

2

)]
if y < π

tanh
[
1
ρ

(
3π
2 − y

)]
if y ≥ π

, v0(x, y) = δ sin(x)

Following [5], we set ρ = π
15 , δ = 0.05, and approximate the problem on a grid of 256× 256 points, using an

underlying WENO5 scheme and a SSP-RK3 time marching method. We take a CFL number of 0.2. For the
WENO scheme proposed here (Algorithm 6), reconstructions are performed with an ENO5 method. Figure
7 shows a numerical approximation of the vorticity (−∂u

∂y
+ ∂v

∂x
) at the cell centers, at three different times.

There are very minor differences between the two WENO schemes, with the scheme proposed here adding
slightly less dissipation. Both schemes approximate the solution very well, even at late times. This is in
marked contrast to the behavior of well-known central schemes such as the schemes of [8] and [19]. This
contrast can be seen from Figure 8 where the vorticity, computed with sixth-order versions of both central
schemes are shown. In contrast to the WENO schemes, the central schemes seem to become unstable at later
times. This example clearly demonstrates the superiority of WENO type schemes in long time integration
of anelastic equations.

5 An arbitrarily high-order WENO scheme for advecting scalars
in anelastic flows

Advection of scalars by an anelastic flow is modeled as:

∂φ

∂t
+

1

ρ0

d∑

i=1

∂(ρ0uiφ)

∂xi

= Φ. (5.1)

Here, φ : Rd → R is the scalar that is advected by the flow field U = {ui}1≤i≤d, that solves the anelastic
equations (1.1), (1.3), and Φ represents sources and sinks for the scalar. Our aim is to discretize the scalar
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(a) Vorticity at t = 5, Algorithm 1 (b) Vorticity at t = 5, Algorithm 5

(c) Vorticity at t = 7, Algorithm 1 (d) Vorticity at t = 7, Algorithm 5

(e) Vorticity at t = 14, Algorithm 1 (f) Vorticity at t = 14, Algorithm 5

Figure 7: Vorticity for problem 4.3. We compare Algorithm 1 and 5 for the advection of
momentum, otherwise using the same pressure solver, time-stepping, etc.
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(a) Vorticity at t = 5, Morinishi-6 (b) Vorticity at t = 5, Wicker-Skamarock-6

(c) Vorticity at t = 7, Morinishi-6 (d) Vorticity at t = 7, Wicker-Skamarock-6

(e) Vorticity at t = 14, Morinishi-6 (f) Vorticity at t = 14, Wicker-Skamarock-6

Figure 8: Comparison of the central schemes in Appendix A: 6th order Morinishi and
Wicker-Skamarock, at the same time instants as in Fig. 7.
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Fφ,x

i+1,j+ 1
2

φi+ 1
2 ,j+

1
2

ũi+ 1
2 ,j+

1
2

Figure 9: Reconstruction of ∂
∂x

(uφ) on a staggered grid. The diamond marks the lo-
cation of φ in the highlighted cell; numerical fluxes must be calculated at the circles.
Interpolations of u are required at the points marked with dots.

advection equation (5.1) on the Arakawa-C staggered grid. As pointed out in section 2 and shown in Figure
9, point values of the scalar φ are stored at cell centers, i.e φi+ 1

2 ,j+
1
2
≈ φ(xi+ 1

2
, yj+ 1

2
).

In [13], a WENO scheme for the advection of scalars is presented, with spatial derivatives being dis-
cretized in a manner completely analogous to Algorithm 1. Reiterating the argument of Theorem 1, one can
readily show that the resulting scheme is at most second-order accurate, even if very high-order interpolat-
ing polynomials are utilized within the WENO procedure. Our aim is to design an arbitrarily high-order
accurate WENO scheme.

5.1 The high-order scheme

We start by using the divergence constraint and recasting the scalar advection equation (5.1) in the non-
conservative form,

∂φ

∂t
+

1

ρ0

3∑

i=1

∂(ρ0uiφ)

∂xi

= Φ
∇·(ρ0U)=0

⇐⇒
∂φ

∂t
+

3∑

i=1

ui

∂φ

∂xi

= Φ (5.2)

We choose to discretize this non-conservative form of scalar advection on account of observed better stability
of this formulation, as well as for slightly lower computational costs.

The basis of our WENO discretization of (5.2) is to adapt ideas presented in section 3 to the present
setting. For simplicity, we consider the problem in two space dimensions and assume a constant density ρ0.
Then, (5.2) reduces to

φt + u∂xφ+ v∂yφ = Φ. (5.3)

Here, U = (u, v) is the velocity that solves (1.1), (1.3) in two space dimensions. A semi-discrete finite
difference scheme (on the Arakawa-C grid) for discretizing (5.3) is given by

d

dt
φi+ 1

2 ,j+
1
2
(t) +Dφ,x

i+ 1
2 ,j+

1
2

+Dφ,y

i+ 1
2 ,j+

1
2

= Φi+ 1
2 ,j+

1
2
. (5.4)

Here, Φi+ 1
2 ,j+

1
2
= Φ(xi+ 1

2
, yj+ 1

2
) is a point evaluation of the source term in (5.3) and

Dφ,x

i+ 1
2 ,j+

1
2

≈ (u∂xφ)(xi+ 1
2
, yj+ 1

2
), Dφ,y

i+ 1
2 ,j+

1
2

≈ (v∂yφ)(xi+ 1
2
, yj+ 1

2
), (5.5)

are discretizations of the non-conservative products of velocities and spatial derivatives of the scalar. Thus,
the scheme (5.4) needs a routine to calculate spatial derivatives in a non-oscillatory manner and to very high
order of accuracy. We follow ideas presented in section 3 and propose the following algorithm for defining
Dφ,x

i+ 1
2 ,j+

1
2

. The definition of Dφ,y

i+ 1
2 ,j+

1
2

is analogous.

Algorithm 7.
Goal: Find Dφ,x

i+ 1
2 ,j+

1
2

such that:
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Dφ,x

i+ 1
2 ,j+

1
2

=

(
u
∂φ

∂x

)
(xi+ 1

2
, yj+ 1

2
) +O(∆x2k−1 +∆y2k−1), 1 ≤ k ∈ N

1. Compute high-order approximations to the velocity field u at cell centers,

ũi+ 1
2 ,j+

1
2
= u(xi+ 1

2
, yj+ 1

2
) +O(∆x2k−1)

2. Compute the two biased WENO-(2k − 1) reconstructions of φ along x at (xi+1, yj+ 1
2
):

φ̂−

i+1,j+ 1
2

= W+ 1
2
(φi+ 1

2−(k−1),j+ 1
2
, φi+ 1

2−(k−2),j+ 1
2
, . . . , φi+ 1

2+(k−1),j+ 1
2
)

φ̂+
i+1,j+ 1

2

= W− 1
2
(φi+ 1

2−(k−2),j+ 1
2
, φi+ 1

2−(k−1),j+ 1
2
, . . . , φi+ 1

2+k,j+ 1
2
)

3. Choose a numerical flux function G(u−, u+) (for instance upwind with respect to ũi+ 1
2 ,j+

1
2
), and set

φ̂i+1,j+ 1
2
:= G(φ̂−

i+1,j+ 1
2

, φ̂+
i+1,j+ 1

2

)

4. Define

Dφ,x

i+ 1
2 ,j+

1
2

= ũi+ 1
2 ,j+

1
2

φ̂i+1,j+ 1
2
− φ̂i,j+ 1

2

∆x

Remark 5. For the first step of Algorithm 7 we require high-order interpolations of the advecting velocity
at cell centers. We recall from section 3 that these values have been already computed as an intermediate
step of the interpolation procedure (Algorithm 2).

We can define Dφ,y

i+ 1
2 ,j+

1
2

by readily adapting Algorithm 7 and using the reconstructed values of v at

cell centers. The scheme (5.4) can be easily extended to include variable densities and to discretize (5.2) in
three space dimensions. A straightforward truncation error analysis, together with the arbitrarily high-order
nature of WENO interpolations, demonstrates that the resulting scheme is as accurate as the order of the
underlying WENO reconstructions.

5.2 Numerical experiments

5.2.1 Passive scalar

We design this experiment to test the order of accuracy of the WENO schemes. In order do so, we will
manufacture an exact solution of (5.3) in the two-dimensional periodic domain [0, 2π]2 by setting,

u(x, y, t) = − cos(t) sin(x) sin(2y)

v(x, y, t) = cos(t) cos(x) sin(y)2

φ(x, y, t) = 2 + cos(x) sin(y) cos(t),

and computing the source term Φ analytically in order to satisfy (5.3), as well as source terms for velocity
so that eq. (1.1) holds. We observe that the velocity field (u, v) defined above is divergence free and satisfies
the two-dimensional form of the anelastic equations with a suitable pressure term.

We compare the approximations computed for T = 1 with the exact solution, measuring error in L1

norm. We choose ∆t small enough to ensure that the leading error term comes from spatial discretization.
Table 2 shows the numerical error for u (as the values for v are very similar) and φ. In this table, we
compare the errors with the WENO scheme of [13] (denoted by Algorithm 1) and the WENO scheme
proposed here (Algorithm 6-7). We see from the table that that there is a loss of order of convergence
with the previously existing WENO scheme and it is limited to at most second order accuracy even when
interpolation polynomials of a higher degree are used. On the other hand, the proposed scheme recovers the
design order of accuracy and has an error that is three to four orders of magnitude smaller than the existing
WENO schemes.
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L1 error (velocity and scalar)
(Alg. 1) (Alg. 6-7)

nx u (5th) EOC φ (5th) EOC u (5th) EOC φ (5th) EOC
16 0.103 – 0.395 – 0.127 – 0.563 –
32 0.0367 1.489 0.126 1.651 0.01 3.661 0.0497 3.503
64 0.0104 1.823 0.0341 1.882 0.00042 4.578 0.00198 4.651
128 0.00269 1.947 0.00895 1.931 1.47e-05 4.84 7.68e-05 4.685
256 0.000688 1.968 0.00231 1.957 4.85e-07 4.916 2.62e-06 4.872
512 0.000174 1.983 0.000586 1.977 1.57e-08 4.949 8.54e-08 4.942

Table 2: Discrete L1 numerical error for experiment 5.2.1 (Passive scalar)

5.2.2 Active scalar: entropy and buoyancy

Next, we consider a more realistic example of an active scalar, transported by the anelastic flow. The scalar
represents s, the dry entropy. This, in turn, induces buoyancy (cf. the momentum equation (1.1)), which
will drive the evolution, following the equations:

b(x, y, z) = g
T (x, y, z)− T0(z)

T0(z)
(5.6)

T (x, y, z) = exp

(
s(x, y, z)/ρ0(z)− s̃+Rd log(p0(z)/p̃)

cpd

)
, (5.7)

where T is air temperature, variables with subindex 0 stand for values in the reference state, tildes denote
standard surface values (p̃ = 105 Pa, s̃ = 6864.8 J kg−1K−1), g = 9.8 m/s2, Rd = 287.1 J kg−1K−1 and
cpd = 1004 J kg−1K−1. A detailed derivation of expressions (5.6) and (5.7) can be found in [13], for the
more general case of moist air.

The test case is taken from Straka et al. [21]. The domain is D = [−25600, 25600] × [0, 6400]. Here,
the boundaries at z = {0, 6400} are no-flow, with the boundaries in x still periodic. We begin by a cold
perturbation of the reference state. Let L : R2 −→ R

+,

L(x, z) =

(( x

4000

)2
+

(
z − 3000

2000

)2
) 1

2

The perturbation in temperature from the reference atmospheric state is

∆T (x, z) = −7.5 (cos(min{L(x, z), 1} π) + 1)

The evolution of the bubble is computed over a 512×512 grid, and results, computed with the fifth order
versions of Algorithm 5 for momentum and Algorithm 7 for scalars, are presented in Figure 10. Due to the
symmetry of the problem, plots show only the subdomain [0, 22400]× [0, 4000] (comprising 192× 320 mesh
points). The plot shows values for entropy temperature,

θ(x, z) := 300 exp

(
s(x, z)− s̃

cpd

)
.

Variations in the total amount of entropy, during the full simulation, remain in the order of 0.01%.
This suggests that the non-conservative character of the scheme has a minor effect, if at all, on the results.
Moreover, the figure also shows that the proposed high-order WENO scheme of this paper approximates this
realistic bubble evolution very well.
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(a) T = 0 (b) T = 300

(c) T = 600 (d) T = 900

Figure 10: Entropy temperature θ for test case 5.2.2 in a 2D vertical domain (y axis
represents height)

22



6 Summary

We consider the anelastic equations (1.1), (1.3) and passive or active scalars, advected by the anelastic flow
(5.1). These equations arise frequently in atmospheric sciences and other related fields. Although (high-
order) central finite difference schemes have been extensively used to discretize these equations, they are
deficient at resolving sharp gradients, such as in large eddy simulations (LES) of clouds, or at ensuring
positivity or bound preservation for scalars. Consequently, WENO type schemes, that are well-suited for
simulation of flows with sharp gradients, have been designed in recent years to approximate the anelastic
flow equations.

We show that these WENO schemes on the underlying staggered grid, such as the scheme described in
[13], suffer from a loss in the design order of convergence due to the staggering of the velocity components
on cell edges. In particular, the scheme is restricted to at most second order of accuracy, irrespective of
the underlying (high-order) piecewise polynomial reconstructions. Given this deficiency, we propose a novel
scheme that is guaranteed to be arbitrarily high-order accurate. This scheme is based on a novel ENO
interpolation of the velocity components to a set of collocated points and the subsequent use of a WENO
reconstruction of the spatial derivatives. This combination ensures that the overall scheme has a order of
accuracy which is consistent with the underlying WENO method. The advection scheme is complemented
with standard pressure solvers and SSP Runge-Kutta methods. Moreover, we design a WENO scheme
that discretizes scalars advected by the anelastic flow (5.1). This scheme is based on a non-conservative
formulation and reuses the ENO interpolated velocities at cell centers. It is also shown to be arbitrarily
high-order accurate.

We have presented various numerical experiments comparing different schemes and summarize the results
below,

• Both the proposed WENO scheme and the WENO scheme of [13] are very robust at resolving discon-
tinuities and sharp gradients. We noticed a slight increase in robustness with our proposed scheme.
This robustness of WENO schemes is in marked contrast to the failure of central difference schemes at
resolving sharp gradients on account of the generation of spurious oscillations.

• The proposed WENO scheme was verified to possess an order of convergence that it is consistent with
the design order, i.e the order of accuracy dictated by the underlying order of piecewise polynomials.
This should be contrasted with existing WENO scheme of [13] and even the central difference schemes
of [19], where the observed order of convergence was at most two. We demonstrate this gain in accuracy
with both velocity fields as well as scalars.

• Both WENO schemes were observed to be particularly suitable for problems with long time integration,
when compared to central schemes.

Based on the above observations, it is reasonable to argue that WENO schemes are considerably superior
when approximating anelastic flows containing sharp gradients. Since such flows are ubiquitous, WENO
schemes constitute a natural discretization framework for anelastic flows. The main advantage of the pro-
posed scheme over existing WENO schemes is the increased order of accuracy. This results in errors that
are several orders of magnitude lower than those generated by existing WENO schemes on staggered grids.
On the other hand, the proposed scheme is more computationally expensive as additional ENO interpola-
tions have to be performed. However, the additional cost is of the same order as the cost for the WENO
reconstructions in the first place. Hence, this additional cost can be justified if higher order of accuracy is
desired for the given problem, particularly on reasonably coarse grids.
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Appendices

A Central schemes on a staggered grid

In this appendix we review existing, popular central schemes for the advection of scalars on a staggered grid.

A.1 Wicker-Skamarock schemes

The discussion of the Wicker-Skamarock schemes will be done here for 1D grids. To generalize to higher
dimensions it suffices to repeat the procedure independently for the flux in every direction.

The scheme discussed in this subsection is presented in Wicker and Skamarock [22] as follows: for
∂
∂t
φ+ ∂

∂x
(uφ) = 0, we use a discretization of the type:

φn+1
i+ 1

2

− φn
i+ 1

2

∆t
= −

Fn
i+1 − Fn

i

∆x
(A.1)

where several possibilities (with different orders of accuracy) are proposed for the spatial discretization, e.g.:

F 4th
i :=

ui

12
[7(φi+ 1

2
+ φi− 1

2
)− (φi+ 3

2
+ φi− 3

2
)] (A.2)

F 6th
i =

ui

60
[37(φi+ 1

2
+ φi− 1

2
)− 8(φi+ 3

2
+ φi− 3

2
) + (φi+ 5

2
+ φi− 5

2
)] (A.3)

A.1.1 Order of convergence for the Wicker-Skamarock scheme

In [22], the above expressions for the flux are shown to produce high-order accurate results for constant
advecting velocities. However, in a general case where velocities are not constant, they are limited to second-
order accuracy, as acknowledged in Skamarock and Klemp [18]. As an example, we prove it here for F 4th.

Theorem 2. For u, φ sufficiently smooth, and taking F = F 4th as in (A.2), the central scheme (A.1) is at
most second order accurate.

Proof. Let us write the fluxes as:

F 4th
i = uiQi, F 4th

i+1 = ui+1Qi+1, with Qi :=
1

12

(
7(φi+ 1

2
+ φi− 1

2
)− (φi+ 3

2
+ φi− 3

2
)
)

By Taylor expansion, we know that:

ui = u(xi+ 1
2
)− u′(xi+ 1

2
)
∆x

2
+

u′′(xi+ 1
2
)

2

∆x2

4
+O(∆x3)

ui+1 = u(xi+ 1
2
) + u′(xi+ 1

2
)
∆x

2
+

u′′(xi+ 1
2
)

2

∆x2

4
+O(∆x3)

Then:

(F 4th)ni+1 − (F 4th)ni =

(
u(xi+ 1

2
) +

u′′(xi+ 1
2
)∆x2

8

)
(Qi+1 −Qi)+

u′(xi+ 1
2
)∆x

2
(Qi+1 +Qi)+O(∆x3) (A.4)

Using Taylor expansions of {φi− 3
2
, φi− 1

2
, . . . , φi+ 5

2
}, immediately:

Qi+1 −Qi = φ′(xi+ 1
2
)∆x−

φ(5)(xi+ 1
2
)∆x5

30
+O(∆x7)
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Qi+1 +Qi = 2φ(xi+ 1
2
) +

φ′′(xi+ 1
2
)∆x2

6
+O(∆x4)

Replacing these values in equation (A.4), and discarding error terms ∆xk for k ≥ 3, some computations
give

(F 4th)ni+1 − (F 4th)ni
∆x

= (uφ)′(xi+ 1
2
) +O(∆x2)

Remark 6. It is easy to check that all error terms of order ∆x2 have a derivative of u as a factor, whereas

the first error term with no derivatives of u is uφ(5)

30 ∆x4. Thus the design order is obtained for spatially
constant advecting velocity.

A.2 Morinishi schemes

A second popular set of conservative approximations to the fluxes is described by Morinishi et al. [8]. They
can quite easily be described in full 3D generality, although some notation is required to write them in a
convenient manner:

ϕ̄n,x(xi, yj , zk) :=
ϕ(xi +

n
2∆x, yj , zk) + ϕ(xi −

n
2∆x, yj , zk)

2
(A.5)

δnϕ

δnx
(xi, yj , zk) :=

ϕ(xi +
n
2∆x, yj , zk)− ϕ(xi −

n
2∆x, yj , zk)

n∆x
(A.6)

The corresponding definitions for (A.5) (interpolation) and (A.6) (approximation to the derivative) in y
and z are analogous. With these, the schemes can be written as follows.

A.2.1 4th order Morinishi scheme

∂

∂t
(ui) =

9

8

3∑

j=1

δ1
δ1xj

[(
9

8
ū1,xi

j −
1

8
ū3,xi

j

)
ū
1,xj

i

]

−
1

8

3∑

j=1

δ3
δ3xj

[(
9

8
ū1,xi

j −
1

8
ū3,xi

j

)
ū
3,xj

i

]
+O(∆x4)

A.2.2 6th order Morinishi scheme

∂

∂t
(ui) =

150

128

3∑

j=1

δ1
δ1xj

[(
150

128
ū1,xi

j −
25

128
ū3,xi

j +
3

128
ū5,xi

j

)
ū
1,xj

i

]

−
25

128

3∑

j=1

δ1
δ1xj

[(
150

128
ū1,xi

j −
25

128
ū3,xi

j +
3

128
ū5,xi

j

)
ū
3,xj

i

]

+
3

128

3∑

j=1

δ1
δ1xj

[(
150

128
ū1,xi

j −
25

128
ū3,xi

j +
3

128
ū5,xi

j

)
ū
5,xj

i

]
+O(∆x6)
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