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Abstract

We combine recent breakthroughs in coupled subwavelength resonator
mechanics with the theory of cochlear Hopf resonators in order to better
understand the active cochlea. We model the acoustic pressure on the
surface of the basilar membrane, offering an understanding of how this
couples the array of hair cells. By decomposing the behaviour over the
system’s resonant modes, we are able to offer explanations for several of
the inner ear’s key properties, including its frequency selectivity, nonlinear
amplification and two-tone response.

Mathematics subject classification: 35C20, 35Q92
Keywords: subwavelength resonance, coupled Hopf resonators, active cochlear
mechanics, hybridisation, nonlinear cochlear amplifier, two-tone interference

1 Introduction

In the 1850s, Hermann von Helmholtz proposed a cochlear model based on an
array of resonators tuned to different audible frequencies distributed along the
length of the cochlea [17]. More recently, bundles of cylindrical cells known as
hair cells have been identified as candidate resonant elements [6]. These cells
are 20-70µm tall and are distributed along the basilar membrane increasing in
size from base to apex [26, 12].

Following developments made in the second half of the 20th century, it is
now known that the cochlea employs an active response mechanism in its func-
tion, thanks to motor proteins within its hair cells (a process known as somatic
motility) [20, 23]. Indeed, some of the cochlea’s most remarkable abilities could
not be produced by a passive system. There is evidence that this active mech-
anism acts via a positive feedback loop, giving a nonlinear amplification effect,
however understanding the precise details of this system represents one of the
most fundamental open questions in understanding auditory perception [16, 25].

∗Department of Mathematics, ETH Zrich, Rmistrasse 101, CH-8092 Zrich, Switzerland
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1.1 Hopf resonators in cochlear mechanics

Hopf resonators have become popular objects to study thanks to their re-
markable ability to account for the key properties that typify cochlear be-
haviour [18, 19, 14, 20, 13, 23]. The normal form of a single Hopf resonator
z = z(t) : R → C in the complex plane is given by the forced differential
equation

dz

dt
= (µ+ iω0)z − |z|2z + F, (1)

where F = F (t) is the forcing term and ω0 and µ are real parameters. This
system is a resonator in the sense that the absolute value of the response z is
greatest when the forcing F occurs with frequency ω0.

The parameter µ is the bifurcation parameter. For µ < 0 the unforced
system (F = 0) has a stable equilibrium at z = 0 whereas when µ > 0 this
equilibrium is unstable and there exists a stable limit cycle z(t) =

√
µeiω0t.

This birth of a limit cycle is characteristic of a (supercritical) Hopf bifurcation.
For further details see e.g. [33].

The cochlea demonstrates exceptionally good frequency selectivity. Even
individuals without musical training can detect tones differing in frequency by
less than 0.5% [18, 11]. The excitation of system (1) at frequencies close to ω0

is able to account for this frequency selectivity.
The cochlea is able to detect sounds with amplitudes ranging over six orders

of magnitude [19, 21]. This relies on an ability to amplify sounds according
to a compressive nonlinearity whereby quiet sounds are amplified much more
greatly than louder ones [29]. This property is produced by the cubic term in
(1). Further, the one-third power law (|z| ∼ |F |1/3) associated with the solution
of (1) close to bifurcation (when µ is small) matches quantitatively with the
responsiveness observed in the cochlea [18, 21].

A further symptom of the nonlinearity that exists in the cochlea is the be-
haviour that is observed under the influence of a signal composed of two distinct
tones. It is firstly seen that when the ear is excited by such a stimulus two-tone
suppression occurs. That is, the frequency spectrum of the response contains
the expected two amplitude peaks, however, these are smaller than each would
be in the absence of the other tone [30]. Further, it has been known since
the 18th century that in such a situation the ear also detects additional tones,
variously known as combination tones, distortion products or Tartini’s tones
after the Italian violinist Giuseppe Tartini [17, 28, 21]. Close to bifurcation,
the nonlinearity in (1) gives products that can account for these phenomena
[21, 13].

In this work, we will combine the capabilities of Hopf resonators with recent
breakthroughs in understanding the acoustic coupling that occurs between hair
cells [1]. We will study the acoustic pressure on the (two-dimensional) surface
of the basilar membrane and will explore a model based on the standard wave
equation for the propagation of sound waves, but with the addition of a “|z|2z”-
inspired forcing term. A thorough discussion of the evidence supporting the
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Figure 1: An array of eight (circular) subdomains D = D1 ∪ · · · ∪ D8, graded in size with
factor s > 1 and arranged linearly along x2 = 0. The separation between bubbles is assumed
to grow in proportion to the size. The point source is shown at (x0, 0) ∈ R2 on the negative
x1-axis.

modelling of hair cells as compressible elements that are excited by a pressure
wave in the cochlea is given in [5, 7], while the implications of such a model are
explored in [1]. We will show that when subjected to Hopf-type amplification
and coupled by variations in acoustic pressure, a simple model of a linear array
of hair cells can describe many of the above behaviours.

1.2 Problem formulation

Consider a domain D in R
2 which is the disjoint union of N ∈ N bounded and

simply connected subdomains {D1, . . . , DN}. Each subdomain ∂Dn represents
a hair cell bundle and is assumed to be such that there exists some 0 < α < 1
so that ∂Dn ∈ C1,α (that is, each ∂Dn is locally the graph of a differentiable
function whose derivatives are Hölder continuous with exponent α).

We consider an acoustic pressure wave that is emitted by a point source and
scattered by D. The point source will be located at a point (x0, 0) ∈ R

2 on the
negative x1-axis, so as to represent the signal entering the base of the cochlea.
We will consider the bundles arranged in a straight line since the curvature
of the cochlea does not contribute to its mechanical behaviour [12]. Figure 1
shows an example of such an arrangement, where x = (x1, x2) ∈ R

2 represents
the position on the surface of the basilar membrane.

We consider the effect of a nonlinear forcing term ∂tp|∂tp|2, inspired by the
discussion in Section 1.1. The incoming signal is represented by a forcing term
f(t) at (x0, 0). We denote by ρb and κb the density and bulk modulus of the
interior of the cell bundles, respectively, and denote by ρ and κ the corresponding
parameters for the auditory fluid (which we assume occupies R2 \D). We may
then denote the acoustic wave speeds in R

2 \D and in D respectively by

v =

√

κ

ρ
, vb =

√

κb
ρb
. (2)

The propagation of the acoustic pressure wave p = p(x, t) is then given by the
problem
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(

∆− 1
v2

∂2

∂t2

)

p = 1
v2 f(t)δ(x0,0)(x), for (x, t) ∈ R

2 \D × R,
(

∆− 1
v2

b

∂2

∂t2

)

p = β
v2

b

|∂p∂t |2
∂p
∂t , for (x, t) ∈ D × R,

p+ − p− = 0, for (x, t) ∈ ∂D × R,
1
ρ

∂p
∂νx

∣

∣

+
− 1

ρb

∂p
∂νx

∣

∣

−
= 0, for (x, t) ∈ ∂D × R,

(3)

where ∂
∂νx

denotes the outward normal derivative in x and the subscripts + and
- are used to denote evaluation from outside and inside ∂D respectively. β ∈ R

is a constant that controls the magnitude of the amplification.
The comparison between (3) and the standard form of a Hopf resonator (1)

close to bifurcation is particularly apparent when (3) is written in the form

∂2p

∂t2
= c(x)2∆p− β

∣

∣

∣

∣

∂p

∂t

∣

∣

∣

∣

2
∂p

∂t
XD(x)− f(t)δ(x0,0)(x), (x, t) ∈ R

2 × R, (4)

where c(x) := v − (v − vb)XD(x) and XD is the characteristic function of the
subset D ⊂ R

2. Similar formulations are considered by e.g. [20, 13], for the
case of a single (uncoupled) Hopf resonator.

We introduce the two dimensionless contrast parameters

δ :=
ρb
ρ
, τ :=

vb
v

=

√

ρκb
ρbκ

. (5)

By rescaling the dimensions of the physical problem we may assume that

v = O(1), vb = O(1), τ = O(1). (6)

We also assume that the rescaled dimensions are such that the subdomains
{D1, . . . , DN} have widths that are O(1). On the other hand, we assume that
there is a large contrast between both the bulk moduli and the density values
in R

2 \D and in D, so that
δ ≪ 1. (7)

Such an assumption is explored at length in [5], relying on experimental deter-
minations of the Poisson ratio of hair cells.

1.3 Coupling of graded resonators

In order to understand the interactions that occur between hair cell bundles we
consider the behaviour of the system of graded resonators (3) when f = 0 and
β = 0 (i.e. the unforced, passive problem).

We transform problem (3) into the complex frequency domain and are left
with the Helmholtz problem



























(

∆+ ω2

v2

)

u(x, ω) = 0, for (x, ω) ∈ R
2 \D × C,

(

∆+ ω2

v2

b

)

u(x, ω) = 0, for (x, ω) ∈ D × C,

u+ − u− = 0, for (x, ω) ∈ ∂D × C,

δ ∂u
∂ν

∣

∣

+
− ∂u

∂ν

∣

∣

−
= 0, for (x, ω) ∈ ∂D × C,

(8)
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where we must also insist that u(·, ω) satisfies the Sommerfeld radiation condi-
tion

lim
|x|→∞

|x|1/2
(

∂

∂|x| − i
ω

v

)

u(x, ω) = 0. (9)

This condition is required to ensure that the solution represents outgoing waves
(rather than incoming from infinity) and gives the well-posedness of (8).

In light of the fact that (8) contains the assumption that f = 0, we define the
resonances and associated eigenmodes (or resonant modes) of (3) to be solutions
(ω, u(·, ω)) ∈ C×H1

loc(R
2) of (8) with the Sommerfeld radiation condition (9).

Here, H1
loc(R

2) is the space of functions that, on every compact subset of R2, are
square integrable and have a weak first derivative that is also square integrable.
We are particularly interested in solutions where ω is small and the cell bundles
are much smaller than the wavelength of the associated radiation (as is the
case with hair cells, when compared to the wavelength of audible sound). Such
solutions are known as subwavelength modes.

In [1] it is shown that the system of N coupled resonators D = D1 ∪ · · · ∪
DN has N subwavelength resonances ω1, . . . , ωN and associated eigenmodes
u1(x), . . . , uN (x). The argument is based on representing the solution u(x, ω)
to (8) as

u(x, ω) =

{

Sω/v
D [ψ](x), (x, ω) ∈ R

2 \D × C,

Sω/vb
D [φ](x), (x, ω) ∈ D × C,

(10)

for some surface potentials φ, ψ ∈ L2(∂D) where SD is the Helmholtz single

layer potential associated with the domain D. This integral operator is defined
as

Sk
D[ϕ](x) :=

∫

∂D

Γk(x− y)ϕ(y) dσ(y), x ∈ ∂D,ϕ ∈ L2(∂D), k ∈ C, (11)

where Γk is the outgoing (i.e. satisfying the Sommerfeld radiation condition)
fundamental solution to the Helmholtz operator ∆ + k2 in R

2 [2].
A detailed examination of the resonances and eigenmodes can be found in

[1]. The crucial result is that, when the incoming signal has a wavelength that
is much larger than the physical dimensions of the resonators, the behaviour of
the system can be approximated by decomposing the solution over the space
spanned by the subwavelength eigenmodes. In the case of audible sound (whose
wavelength in cochlear fluid ranges from a few centimetres to several metres)
being scattered by hair cells measuring tens of micrometres, this approximation
gives a comprehensive description of the system’s behaviour.

In order to improve computational efficiency, we assume in this work that the
cell bundles are circular. This means that we can use the multipole expansion
method, an explanation of which is provided in e.g. [3, Appendix C]. The method
relies on the idea that functions in L2(∂D) are, on each circular ∂Di, 2π-
periodic so we may approximate by the leading order terms of a Fourier series
representation.
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2 Coupled Hopf system

We decompose the motion of system (3) into the N subwavelength resonant
modes by writing

p(x, t) ≃ Re

(

N
∑

n=1

αn(t)un(x)

)

, (12)

for some complex-valued functions of time α1(t), . . . , αN (t).
In light of the transmission properties (across ∂D) that the eigenmodes in-

herit from (8), we reach the problem

N
∑

n=1

(

α′′
n(t) + ω2

nαn(t)
)

un(x) + f(t)δ(x0,0)(x)

+ β

(

N
∑

n=1

α′
n(t)un(x)

)2( N
∑

n=1

α′
n(t)un(x)

)

XD(x) = 0.

(13)

We now fix some large domain Q in R
2 that contains all the resonators as

well as the point source (i.e. D∪{(x0, 0)} ⊂ Q). Then we may define γ ∈ C
N×N

to be the square matrix with entries

γi,j :=

∫

Q

ui(x)uj(x) dx = (ui, uj)Q, (14)

for i, j = 1, . . . , N . As a consequence of the linear independence of the eigen-
modes, γ is invertible [1].

We are then in a position to take the L2(Q) product of (13) with um for
m = 1, . . . , N , reaching a system of N equations in t given by

γT







α′′
1 + ω2

1α1

...
α′′
N + ω2

NαN






+f







(δ(x0,0), u1)Q
...

(δ(x0,0), uN )Q






+β







((
∑

α′
nun)

2
∑

α′
nun, u1)D

...
((
∑

α′
nun)

2
∑

α′
nun, uN )D






= 0.

(15)

2.1 Pure-tone response

Consider the case of an incoming signal that consists of a single pure tone
at frequency Ω, that is, f(t) = Re(FeiΩt) for F,Ω ∈ R. In this case, we
may represent the solutions to (15) as αn(t) = Xne

iΩt for complex amplitudes
Xn ∈ C [20, 33, 15]. This gives the coupled equations for m = 1, . . . , N

(ω2
m − Ω2)Xm + F

N
∑

n=1

[γ−1]n,m(δ(x0,0), un)Q

− iΩ3β

N
∑

n=1

[γ−1]n,m





N
∑

i,j,k=1

XiXjXk(uiujuk, un)D



 = 0.

(16)
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Figure 2: Nonlinear amplification in the coupled Hopf system at resonance. We show how
the response X2/F varies with incoming frequency Ω in system (16) for difference forcing
magnitudes F . The response of the second eigenmode in a system of N = 6 cell bundles
is studied. The dashed line shows the case where the cubic nonlinearity has been removed
(giving a passive system) for comparison.

The results of solving (16) numerically for X1, . . . , XN are shown in Figure 2.
There is a sharply increased response when Ω is close to the resonant frequency
associated with the eigenmode. Different magnitudes of force F are shown.
When the force is smaller, the response is much greater, thereby allowing the
model to capture a very large range of forcing amplitudes with only relatively
small variations in acoustic pressure. The sharper response of the active system
will also improve frequency resolution, compared to the passive model.

In Figure 3 we study how the oscillations of the solution to Equation (16)
lag behind the forcing, as is common in a coupled system of forced oscillators.
This is achieved by writing the solution (12) as

p(x, t) ≃ Re

(

N
∑

n=1

Xne
iΩtun(x)

)

= Re
(

R(x)ei(Ωt+φ(x))
)

, (17)

for real constants R and φ, the latter of which represents the phase delay. φ in
(17) is, in principle, defined such that 0 ≤ φ < 2π, however the assumption that
φ should be a continuous function of Ω leads to the phase delays of multiple
cycles seen in Figure 3. The group delay, the time required for information to
be delivered, is then given by the quantity dφ/dΩ [10].

The behaviour in Figure 3 shows many similarities to experimental observa-
tions [29, 32]. In Figure 3 (Left), it is notable that the curves all start at a phase
delay of approximately minus a quarter cycle and the delay then increases with
increasing frequency. There is a tendency for curves to group around values

7



Figure 3: The phase and group delays of the response of the coupled Hopf system. Left:
We show how the phase delay (in cycles) varies as a function of the incoming frequency Ω
at different points x = (x1, x2) on the basilar membrane. Right: We show, for just one of
the points, how the group delay (in cycles) varies as a function of Ω. The circles denote the
position of resonant frequencies of the system (Ω = Reω1,Reω2,Reω3,Reω4, respectively).
In both cases, a system of N = 6 cells arranged along the line x2 = 0 is studied.

separated by a full cycle. Known as “phase plateaus”, this behaviour has been
widely observed by experimentalists [27].

In Figure 3 (Right), it is seen that in the region of one of the system’s
resonant frequencies the group delay can reach several cycles. These values are
typical of the cochlea and represent an important consideration when evaluating
a Helmholtz-inspired, resonance-based model [6].

2.2 Two-tone interference

Consider the case of an incoming signal composed of two pure tones. We explore
the response to such a stimulus by considering forcing of the form

f(t) = Re
(

F1e
iΩ1t + F2e

iΩ2t
)

, (18)

in system (15). In this case the response, captured by the complex-valued func-
tions α1(t), . . . , αN (t), will contain contributions from all the Fourier amplitudes
with frequencies pΩ1+qΩ2 for integers p, q ∈ Z [21]. Thus, for each n = 1, . . . , N

there exist X
(n)
p,q ∈ C, p, q ∈ Z such that

αn(t) =

∞
∑

p,q=−∞

X(n)
p,q e

i(pΩ1+qΩ2)t. (19)

The expansion (19) is dominated by the terms with small |p|+|q| [21, 24, 31].
As a result, it makes sense to refer to |p|+|q| as the order ofXp,q. In particular, it

is found in [31] that the amplitudes approximately obey the lawXp,q ∼ X
|p|
1,0X

|q|
0,1

and thus diminish with increasing order (for small amplitudes).
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Figure 4: Two-tone interference in the coupled Hopf system. We study the fourth eigenmode
in a system of N = 6 cells and show how the absolute values of the leading order coefficients
vary in the case that Ω1 = |ω4| is fixed and Ω2 is varied. We use F1 = F2 = 10−5. The red

dashed line shows X
(4)
0,1 in the case where the cubic nonlinearity has been removed (giving a

passive system) for comparison.

We substitute the expansion (19) into (15). The effect of the cubic nonlin-
earity is that many terms, including all those of even order, must vanish. We
find that, for small amplitudes, we can approximate (19) by

αn(t) ≃ X
(n)
1,0 e

iΩ1t +X
(n)
0,1 e

iΩ2t

+X
(n)
2,−1e

i(2Ω1−Ω2)t +X
(n)
−1,2e

i(−Ω1+2Ω2)t.
(20)

By comparing the coefficients of the dominant modes eiΩ1t, eiΩ2t, ei(2Ω1−Ω2)t

and ei(−Ω1+2Ω2)t we reach a coupled system of equations that we can solve to

find
{

X
(n)
1,0 , X

(n)
0,1 , X

(n)
2,−1, X

(n)
−1,2 : n = 1, . . . , N

}

(for details, see Appendix A).

Figure 4 shows the amplitudes of the four dominant Fourier modes when
Ω1 = |ω4| is fixed and Ω2 is varied (in the neighbourhood of |ω4|). When Ω2 is
away from |ω4| there appears to be little interaction between the two frequency
modes. As Ω1 and Ω2 become close, however, two phenomena emerge. Firstly,
two-tone suppression occurs. This is witnessed both by the fact that the value

of X
(4)
1,0 drops (from its otherwise approximately constant value) and that the

response of X
(4)
0,1 at resonance is diminished relative to the passive system. On

top of this, so-called combination tones appear in the regime where Ω1 and Ω2

are close together. These tones have frequencies 2Ω1 − Ω2 and −Ω1 + 2Ω2 and
occur with much smaller amplitudes than the two primary modes, as is the case
when this phenomenon is observed in practice [28, 17].
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3 Discussion

We have studied the acoustic pressure on the surface of the basilar membrane
by combining an understanding of the coupling between an array of subwave-
length resonators with the theory of Hopf resonators in cochlear mechanics. This
approach has proved successful in describing several phenomena commonly ex-
hibited by the cochlea. Firstly, it was shown in Section 2.1 that the model
produced the desired frequency selectivity and nonlinear amplification. The
phase and group delays also showed similarities to experimental observations,
particularly by taking values greater than a cycle. Then, in Section 2.2 it was
further shown that the two-tone response of this coupled Hopf system both
suffers from two-tone suppression and produces combination tones.

It should be emphasised that these observations have been made by study-
ing the acoustic pressure locally on the two-dimensional surface of the basilar
membrane without any consideration for the movement of the membrane itself.
It was shown similarly in [1] that such a model can further account for the
cochlea’s tonotopic frequency map and travelling pressure wave. These con-
clusions suggest that coupling by acoustic pressure is an important factor in
understanding cochlear mechanics and should not be disregarded.

It has been known since their first observation by David Kemp in 1978
that the ear emits sounds known as otoacoustic emissions as part of its activity
[22, 34]. The ear even emits spontaneous otoacoustic emissions in the absence of
external stimulation. This phenomenon was one of the earlier pieces of evidence
supporting the active nature of the cochlea and is the most significant aspect of
cochlear behaviour not accounted for by the model considered here [18]. Recent
work [9, 13] has shown that a Hopf resonator can account for the production of
spontaneous otoacoustic emissions by the addition of a “self-tuning” feedback
loop. In our setting, this entails introducing a µ∂tp term to (3) and varying the
parameter µ in the neighbourhood of the bifurcation. The spontaneous sounds
are created when the system strays into the regime where a stable limit cycle
exists.

Contrary to the linear array used in this work, hair cells in the cochlea of a
mammal are arranged as one row of inner hair cells and three rows of outer hair
cells. It is believed that the outer hair cells are responsible for amplification
while inner hair cells act as receivers [9, 11]. In recent work, the geometric
arrangement of the hair cells has been studied in an attempt to capture the
cochlea’s behaviour [8, 4]. Using our layer potential formulation, the geometry
can be easily modified providing an avenue for developing such theories.

Even with the use of the multipole method (reliant on the assumption that
the cell bundles are circular) the computations in this work become expensive
for large numbers of cells. In order to efficiently and concisely demonstrate the
behaviour of the coupled Hopf system, the results displayed here use only small
values of N . While it is feasible to study up to a few hundred cells with our
current methodology, numerical computations on a model resembling a genuine
mammalian cochlea (and its approximately 15,000 hair cells) are beyond the
scope of our current setup. A rigorous approach to approximating the coupling
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between an array of subwavelength resonators would thus represent a valuable
breakthrough.
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A Appendix: Two-tone interference

By writing the amplitudes αn(t) in the approximate form given in (20) we are
able to rewrite the decomposition of p(x, t) in (12) in terms of the dominant
Fourier amplitudes

p(x, t) =

(

N
∑

n=1

X
(n)
1,0 un(x)

)

eiΩ1t +

(

N
∑

n=1

X
(n)
0,1 un(x)

)

eiΩ2t

+

(

N
∑

n=1

X
(n)
2,−1un(x)

)

ei(2Ω1−Ω2)t +

(

N
∑

n=1

X
(n)
−1,2un(x)

)

ei(−Ω1+2Ω2)t,

(21)

from which we see that it is convenient to define the sums

S1,0(x) := Ω1

N
∑

n=1

X
(n)
1,0 un(x), S0,1(x) := Ω2

N
∑

n=1

X
(n)
0,1 un(x),

S2,−1(x) := (2Ω1 − Ω2)

N
∑

n=1

X
(n)
2,−1un(x),

S−1,2(x) := (−Ω1 + 2Ω2)

N
∑

n=1

X
(n)
−1,2un(x).

We then wish to compute the coefficients of the Fourier modes eiΩ1t, eiΩ2t,
ei(2Ω1−Ω2)t and ei(−Ω1+2Ω2)t when we substitute (21) into the cubic nonlinearity
|∂tp|2∂tp. We find that these coefficients are respectively given by

C1,0 := S1,0|S1,0|2 + 2S1,0

[

|S0,1|2 + |S2,−1|2 + |S−1,2|2
]

+ S2
0,1S−1,2 + 2S0,1S2,−1S1,0 + 2S2,−1S−1,2S0,1,

C0,1 := S0,1|S0,1|2 + 2S0,1

[

|S1,0|2 + |S2,−1|2 + |S−1,2|2
]

+ S2
1,0S2,−1 + 2S1,0S−1,2S0,1 + 2S2,−1S−1,2S1,0,

C2,−1 := S2,−1|S2,−1|2 + 2S2,−1

[

|S1,0|2 + |S0,1|2 + |S−1,2|2
]

+ S2
1,0S0,1 + 2S1,0S0,1S−1,2,
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C−1,2 := S−1,2|S−1,2|2 + 2S−1,2

[

|S1,0|2 + |S0,1|2 + |S2,−1|2
]

+ S2
0,1S1,0 + 2S1,0S0,1S2,−1.

It is then more straightforward to see that when we substitute (20) into
system (15) and equate coefficients of the Fourier modes eiΩ1t, eiΩ2t, ei(2Ω1−Ω2)t

and ei(−Ω1+2Ω2)t we reach the four coupled systems given by

γT









(ω2
1 − Ω2

1)X
(1)
1,0

...

(ω2
N − Ω2

1)X
(N)
1,0









+ F1







(δ(x0,0), u1)Q
...

(δ(x0,0), uN )Q






− iβ







(C1,0, u1)D
...

(C1,0, uN )D






= 0, (22)

γT









(ω2
1 − Ω2

2)X
(1)
0,1

...

(ω2
N − Ω2

2)X
(N)
0,1









+ F2







(δ(x0,0), u1)Q
...

(δ(x0,0), uN )Q






− iβ







(C0,1, u1)D
...

(C0,1, uN )D






= 0, (23)

γT









(ω2
1 − (2Ω1 − Ω2)

2)X
(1)
2,−1

...

(ω2
N − (2Ω1 − Ω2)

2)X
(N)
2,−1









− iβ







(C2,−1, u1)D
...

(C2,−1, uN )D






= 0, (24)

γT









(ω2
1 − (−Ω1 + 2Ω2)

2)X
(1)
−1,2

...

(ω2
N − (−Ω1 + 2Ω2)

2)X
(N)
−1,2









− iβ







(C−1,2, u1)D
...

(C−1,2, uN )D






= 0, (25)

which we can solve numerically to find
{

X
(n)
1,0 , X

(n)
0,1 , X

(n)
2,−1, X

(n)
−1,2 : n = 1, . . . , N

}

.
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