# Strong and weak divergence of exponential and linear-implicit Euler approximations for stochastic partial differential equations with superlinearly growing nonlinearities 

M. Beccari and M. Hutzenthaler and A. Jentzen and R. Kurniawan and
F. Lindner and D. Salimova

Research Report No. 2019-15
March 2019

> Seminar für Angewandte Mathematik
> Eidgenössische Technische Hochschule
> CH-8092 Zürich
> Switzerland

# Strong and weak divergence of exponential and linear-implicit Euler approximations for stochastic partial differential equations with superlinearly growing nonlinearities 

Matteo Beccari ${ }^{1}$, Martin Hutzenthaler ${ }^{2}$, Arnulf Jentzen ${ }^{3}$, Ryan Kurniawan ${ }^{4}$, Felix Lindner ${ }^{5}$, and Diyora Salimova ${ }^{6}$<br>${ }^{1}$ Seminar for Applied Mathematics, Department of Mathematics, ETH Zurich, Switzerland, e-mail: matteobeccari@hotmail.it<br>${ }^{2}$ Faculty of Mathematics, University of Duisburg-Essen, 45117 Essen, Germany, e-mail: martin.hutzenthaler@uni-due.de<br>${ }^{3}$ Seminar for Applied Mathematics, Department of Mathematics, ETH Zurich, Switzerland, e-mail: arnulf.jentzen@sam.math.ethz.ch<br>${ }^{4}$ Seminar for Applied Mathematics, Department of Mathematics, ETH Zurich, Switzerland, e-mail: ryan.kurniawan@sam.math.ethz.ch<br>${ }^{5}$ Institute of Mathematics, Faculty of Mathematics and Natural Sciences, University of Kassel, Germany, e-mail: lindner@mathematik.uni-kassel.de<br>${ }^{6}$ Seminar for Applied Mathematics, Department of Mathematics, ETH Zurich, Switzerland, e-mail: diyora.salimova@sam.math.ethz.ch

March 18, 2019


#### Abstract

The explicit Euler scheme and similar explicit approximation schemes (such as the Milstein scheme) are known to diverge strongly and numerically weakly in the case of one-dimensional stochastic ordinary differential equations with superlinearly growing nonlinearities. It remained an open question whether such a divergence phenomenon also holds in the case of stochastic partial differential equations with superlinearly growing nonlinearities such as stochastic Allen-Cahn equations. In this work we solve this problem by proving that full-discrete exponential Euler and full-discrete linear-implicit Euler approximations diverge strongly and numerically weakly in the case of stochastic Allen-Cahn equations. This article also contains a short literature


overview on existing numerical approximation results for stochastic differential equations with superlinearly growing nonlinearities.

## Contents

1 Introduction ..... 2
2 Reverse a priori bounds based on Lyapunov-type functions ..... 5
2.1 A reverse Gronwall-type inequality ..... 5
2.2 Lower bounds for the probabilities of certain rare events ..... 6
2.3 Reverse a priori bounds ..... 13
3 Divergence results for Euler-type approximation schemes ..... 17
3.1 A continuous embedding based on the Sobolev embedding theorem ..... 17
3.2 Lower bounds for the probabilities of certain rare events ..... 18
3.3 Divergence results for general Euler-type approximation schemes ..... 21
3.4 Divergence results for specific Euler-type approximation schemes ..... 49

## 1 Introduction

Stochastic differential equations (SDEs), by which we mean both stochastic ordinary differential equations (SODEs) and stochastic partial differential equations (SPDEs), appear in many real-world models in engineering and applied sciences. In particular, SDEs are intensively employed in financial engineering to model prices of financial derivatives (cf., e.g., Filipović et al. [37, (1.3)] and Harms et al. [57, Theorem 3.5]), in molecular dynamics to describe a system of particles immersed in a fluid bath (cf., e.g., Leimkuhler \& Matthews [104, (6.32) and (6.33)]), in nonlinear filtering problems in engineering to describe the density of the state variable (cf., e.g., Zakai [163, (18) and (30)] and Kushner [102, (1)]), as well as in quantum mechanics to model the temporal dynamics associated to Euclidean quantum field theories (cf., e.g., Mourrat \& Weber [129, (1.1)]). The vast majority of SDEs appearing in these models contain superlinearly growing nonlinearities in their coefficient functions. Such SDEs can usually not be solved explicitly and it is a quite active area of research to design and analyze approximation algorithms which are able to solve SDEs with superlinearly growing nonlinearities approximatively. In particular, we refer, e.g., to [1, 2, [5, 11, 12, 16, 20, 22, 25, 26, 29] 31, 34] 36, 41, 45, 48, 50, 55, [56, 58, 58, [60, 63, $64,66,68,70,73,81,82,87-90,92,93,97,-101,103,105,108-112,115-117,, 120,122$, 127, 128, 132 -138, 140, $142-144,147-151,153,154,156,164-166,168,170,171,175,-177]$ for convergence and simulation results for explicit numerical approximation schemes for SODEs with superlinearly growing nonlinearities, we refer, e.g., to [6] 8 , 13-
 convergence and simulation results for explicit numerical approximation schemes for SPDEs with superlinearly growing nonlinearities, we refer, e.g., to [4, 11, 22, 38, 41, (60-62, 65, $\mathbf{7 3}, 90,107,118,119,123-125,131,145,152,157,[161,162,169,172,174$ for convergence and simulation results for implicit Euler-type numerical approximation
schemes for SODEs with superlinearly growing nonlinearities, and we refer, e.g., to [9, 10, 21, 24, 27, 28, 33, $39,40,44,49,51,52,86,94,96,106,114,139,167]$ for convergence and simulation results for implicit Euler-type numerical approximation schemes for SPDEs with superlinearly growing nonlinearities.

The most basic numerical scheme for SODEs, the Euler-Maruyama scheme, and similar explicit approximation schemes for SODEs (such as the Milstein scheme) have been shown to diverge strongly and numerically weakly in the case of onedimensional SODEs with superlinearly growing nonlinearities; see [69, Theorem 2.1] and [71, Theorem 2.1]. More specifically, Theorem 2.1 in [71] immediately implies the following result.

Theorem 1.1. Let $\alpha, \beta, c \in(1, \infty), T \in(0, \infty)$, let $\left(\Omega, \mathcal{F},\left(\mathcal{F}_{t}\right)_{t \in[0, T]}, \mathbb{P}\right)$ be a filtered probability space, let $W:[0, T] \times \Omega \rightarrow \mathbb{R}$ be a standard $\left(\mathcal{F}_{t}\right)_{t \in[0, T] \text {-Brownian motion, }}$, let $\xi: \Omega \rightarrow \mathbb{R}$ be an $\mathcal{F}_{0} / \mathcal{B}(\mathbb{R})$-measurable function, let $\mu, \sigma: \mathbb{R} \rightarrow \mathbb{R}$ be $\mathcal{B}(\mathbb{R}) / \mathcal{B}(\mathbb{R})$ measurable functions, let $Y_{n}^{N}: \Omega \rightarrow \mathbb{R}, n \in\{0,1, \ldots, N\}, N \in \mathbb{N}=\{1,2,3, \ldots\}$, satisfy for all $N \in \mathbb{N}, n \in\{0,1, \ldots, N-1\}$ that $Y_{0}^{N}=\xi$ and

$$
\begin{equation*}
Y_{n+1}^{N}=Y_{n}^{N}+\frac{T}{N} \mu\left(Y_{n}^{N}\right)+\sigma\left(Y_{n}^{N}\right)\left(W_{\frac{(n+1) T}{N}}-W_{\frac{n T}{N}}\right), \tag{1.1}
\end{equation*}
$$

assume for all $x \in(-\infty,-c] \cup[c, \infty)$ that $|\mu(x)|+|\sigma(x)| \geq \frac{|x|^{\alpha}}{c}$, and assume for all $x \in[1, \infty)$ that $\left([\mathbb{P}(\sigma(\xi) \neq 0)>0]\right.$ or $\left.\left[\mathbb{P}(|\xi| \geq x) \geq \beta^{\left(-x^{\beta}\right)}\right]\right)$. Then it holds for all $p \in(0, \infty)$ that $\lim _{N \rightarrow \infty} \mathbb{E}\left[\left|Y_{N}^{N}\right|^{p}\right]=\infty$.

Theorem 1.1 above proves strong and numerically weak divergence for the EulerMaruyama scheme and similar approximation schemes (such as the Milstein scheme) in the case of one-dimensional SODEs with superlinearly growing nonlinearities. However, it remained an open question whether the divergence phenomenon in Theorem 1.1 also holds in the case of SPDEs with superlinearly growing nonlinearities. In particular, it remained an open question whether such a divergence phenomenon also holds in the case of reaction-diffusion-type SPDEs with polynomial coefficients such as stochastic Allen-Cahn equations. We answer this question by proving that standard Euler-type approximation schemes for SPDEs (such as exponential Euler and linear-implicit Euler schemes) diverge strongly and numerically weakly in the case of reaction-diffusion-type SPDEs with polynomial coefficients such as stochastic Allen-Cahn equations. To be more precise, the main result of this paper, Theorem 3.7 in Section 3 below, establishes strong and numerically weak divergence for both full-discrete exponential Euler and full-discrete linear-implicit Euler approximations in the case of reaction-diffusion-type SPDEs with polynomial coefficients (including stochastic Allen-Cahn equations as special cases). To illustrate the findings of the main result of this article we now present in the following theorem a special case of Theorem 3.7.

Theorem 1.2. Let $\left(H,\|\cdot\|_{H},\langle\cdot, \cdot\rangle_{H}\right)$ be the $\mathbb{R}$-Hilbert space of equivalence classes of Lebesgue square integrable functions from $(0,1)$ to $\mathbb{R}$, let $A: D(A) \subseteq H \rightarrow H$ be the Laplacian with periodic boundary conditions on $H$, let $e_{n} \in H, n \in \mathbb{Z}$, satisfy for all $n \in \mathbb{N}$ that $e_{0}(\cdot)=1, e_{n}(\cdot)=\sqrt{2} \cos (2 n \pi(\cdot))$, and $e_{-n}(\cdot)=\sqrt{2} \sin (2 n \pi(\cdot))$, let $T, \eta \in(0, \infty)$, let $\left(H_{r},\|\cdot\|_{H_{r}},\langle\cdot, \cdot\rangle_{H_{r}}\right), r \in \mathbb{R}$, be a family of interpolation spaces
associated to $\eta-A$, let $P_{N}: H \rightarrow H, N \in \mathbb{N}$, be the linear operators which satisfy for all $N \in \mathbb{N}, v \in H$ that $P_{N}(v)=\sum_{n=-N}^{N}\left\langle e_{n}, v\right\rangle_{H} e_{n}$, let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space, let $q \in\{2,3, \ldots\}, a_{0}, a_{1}, \ldots, a_{q-1} \in \mathbb{R}, a_{q} \in \mathbb{R} \backslash\{0\}, \nu \in(1 / 4,3 / 4), \xi \in H_{1 / 3}$, let $W:[0, T] \times \Omega \rightarrow H_{-\nu}$ be an $\operatorname{Id}_{H}$-cylindrical Wiener process, let $S_{N}: H_{-\nu} \rightarrow H, N \in$ $\mathbb{N}$, be linear operators which satisfy for all $N \in \mathbb{N}$ that $S_{N} \in\left\{e^{T / N A},(I-T / N A)^{-1}\right\}$, and let $Y^{N}:\{0,1, \ldots, N\} \times \Omega \rightarrow H, N \in \mathbb{N}$, be the stochastic processes which satisfy for all $N \in \mathbb{N}, n \in\{0,1, \ldots, N-1\}$ that $Y_{0}^{N}=P_{N}(\xi)$ and

$$
\begin{equation*}
Y_{n+1}^{N}=P_{N} S_{N}\left(Y_{n}^{N}+\frac{T}{N}\left(\sum_{k=0}^{q} a_{k}\left[Y_{n}^{N}\right]^{k}\right)+\left(W_{\frac{(n+1) T}{N}}-W_{\frac{n T}{N}}\right)\right) \tag{1.2}
\end{equation*}
$$

Then it holds for all $p \in(0, \infty)$ that $\liminf _{N \rightarrow \infty} \mathbb{E}\left[\left\|Y_{N}^{N}\right\|_{H}^{p}\right]=\infty$.
Theorem 1.2 above is an immediate consequence of Corollary 3.8 in Section 3 below. Corollary 3.8, in turn, follows from Theorem 3.7, which is the main result of this article. Note that the assumption in Theorem 1.2 that $\left(H_{r},\|\cdot\|_{H_{r}},\langle\cdot, \cdot\rangle_{H_{r}}\right), r \in \mathbb{R}$, is a family of interpolation spaces associated to $\eta-A$ ensures that $H_{0}=H, H_{1}=D(A)$, $H_{2}=D\left(A^{2}\right), H_{3}=D\left(A^{3}\right), \ldots($ cf., e.g., Sell \& You [146, Section 3.7]). Moreover, observe that in the case where for all $N \in \mathbb{N}$ it holds that $q=3, a_{0}=0, a_{1} \in(0, \infty)$, $a_{2}=0, a_{3} \in(-\infty, 0)$, and $S_{N}=e^{T / N A}$ we have that Theorem 1.2 proves strong and numerically weak divergence for the full-discrete explicit exponential Euler scheme for stochastic Allen-Cahn equations. Furthermore, note that in the case where for all $N \in \mathbb{N}$ it holds that $q=3, a_{0}=0, a_{1} \in(0, \infty), a_{2}=0, a_{3} \in(-\infty, 0)$, and $S_{N}=(I-T / N A)^{-1}$ we have that Theorem 1.2 proves strong and numerically weak divergence for the full-discrete linear-implicit Euler scheme for stochastic Allen-Cahn equations. We prove Theorem 1.2 and Theorem 3.7, respectively, through an application of an abstract divergence theory which we have developed in Section 2 of this paper. We also refer, e.g., to $[42,54,59,[69,71,[76,126,130,159,160]$ for lower bounds for strong and weak approximation errors for numerical approximation schemes for SDEs with non-globally Lipschitz continuous nonlinearities.

The remainder of this article is organized as follows. In Section 2 we employ reverse Lyapunov-type functions to establish suitable lower bounds for a class of general stochastic processes; cf., e.g., Corollary 2.8. In particular, we establish in Lemma 2.4 in Section 2 lower bounds for the probabilities of certain rare events. Lemma 2.4 is used in our proof of Proposition 2.6, which is the main result of Section 2. Proposition [2.6, in turn, is employed in our proof of Corollary 2.8. In Section 3 we employ the general lower bounds which we have proved in Section 2 to establish Theorem 3.7, which is the main result of this article.

## Acknowledgments

This article is to a small extend based on the master thesis of RK written in 20132014 at ETH Zurich under the supervision of AJ and to a large extent based on the master thesis of MB written in 2016-2017 at ETH Zurich under the supervision of AJ. This project has been partially supported through the SNSF-Research project 200020_175699 "Higher order numerical approximation methods for stochastic partial differential equations" and through the SNSF-Research project 200021_156603 "Numerical approximations of nonlinear stochastic ordinary and partial differential equations".

## 2 Reverse a priori bounds based on Lyapunovtype functions

Throughout this section the following setting is frequently used.
Setting 2.1. For every two measurable spaces $\left(\Omega_{1}, \mathcal{F}_{1}\right)$ and $\left(\Omega_{2}, \mathcal{F}_{2}\right)$ let $\mathcal{M}\left(\mathcal{F}_{1}, \mathcal{F}_{2}\right)$ be the set of all $\mathcal{F}_{1} / \mathcal{F}_{2}$-measurable functions, let $(H, \mathcal{H})$ and $(U, \mathcal{U})$ be measurable spaces, let $\Phi: H \times U \rightarrow H$ be an $(\mathcal{H} \otimes \mathcal{U}) / \mathcal{H}$-measurable function, let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space, for every set $R \subseteq[-\infty, \infty]$ and every function $f: \Omega \rightarrow R$ let $\llbracket f \rrbracket$ be the set given by $\llbracket f \rrbracket=\{g \in \mathcal{M}(\mathcal{F}, \mathcal{B}([0, \infty))):(\exists A \in\{B \in \mathcal{F}: \mathbb{P}(B)=1\}:(\forall \omega \in$ $A: f(\omega)=g(\omega)))\}$, let $N \in \mathbb{N}, c \in(0,1], \alpha, \theta \in(1, \infty), \mathbb{H}_{0}, \mathbb{H}_{1}, \ldots, \mathbb{H}_{N} \in \mathcal{H}$, let $Z_{1}, Z_{2}, \ldots, Z_{N}: \Omega \rightarrow U$ be i.i.d. random variables, let $Y_{0}, Y_{1}, \ldots, Y_{N}: \Omega \rightarrow H$ be random variables which satisfy for all $n \in\{1,2, \ldots, N\}$ that $Y_{n}=\Phi\left(Y_{n-1}, Z_{n}\right)$, assume that $\sigma\left(Y_{0}\right)$ and $\sigma\left(Z_{1}, Z_{2}, \ldots, Z_{N}\right)$ are independent on $(\Omega, \mathcal{F}, \mathbb{P})$, and let $\mathcal{V}: H \rightarrow$ $[0, \infty)$ be an $\mathcal{H} / \mathcal{B}([0, \infty))$-measurable function.

### 2.1 A reverse Gronwall-type inequality

In the next elementary result, Lemma 2.2 below, we present a reverse Gronwalltype inequality. We employ this reverse Gronwall-type inequality to establish lower bounds for the probabilities of certain rare events in Lemma 2.4 below.

Lemma 2.2. Let $c, \alpha \in(0, \infty), N \in \mathbb{N}, e_{0}, e_{1}, \ldots, e_{N} \in[0, \infty)$ satisfy for all $n \in$ $\{0,1, \ldots, N-1\}$ that

$$
\begin{equation*}
e_{n+1} \geq c\left[e_{n}\right]^{\alpha} \tag{2.1}
\end{equation*}
$$

Then it holds for all $n \in\{0,1, \ldots, N\}$ that

$$
\begin{equation*}
e_{n} \geq c^{\left(\sum_{k=0}^{n-1} \alpha^{k}\right)} \cdot\left[e_{0}\right]^{\left(\alpha^{n}\right)} . \tag{2.2}
\end{equation*}
$$

Proof of Lemma 2.2. We prove (2.2) by induction on $n \in\{0,1, \ldots, N\}$. For the base $n=0$ we note that

$$
\begin{equation*}
e_{0}=c^{0} \cdot e_{0}=c^{\left(\sum_{k=0}^{-1} \alpha^{k}\right)} \cdot\left[e_{0}\right]^{\left(\alpha^{0}\right)} . \tag{2.3}
\end{equation*}
$$

This proves (2.2) in the base case $n=0$. For the induction step $\{0,1, \ldots, N-1\} \ni$ $n \rightarrow n+1 \in\{1,2, \ldots, N\}$ assume that (2.2) is fulfilled for an $n \in\{0,1, \ldots, N-1\}$. The induction hypothesis and (2.1) ensure that

$$
\begin{align*}
e_{n+1} & \geq c\left[e_{n}\right]^{\alpha} \geq c\left[c^{\left(\sum_{k=0}^{n-1} \alpha^{k}\right)} \cdot\left[e_{0}\right]^{\left(\alpha^{n}\right)}\right]^{\alpha} \\
& =c\left[c^{\left(\alpha \cdot \sum_{k=0}^{n-1} \alpha^{k}\right)} \cdot\left[e_{0}\right]^{\left(\alpha \cdot \alpha^{n}\right)}\right]=c\left[c^{\left(\sum_{k=0}^{n-1} \alpha^{k+1}\right)} \cdot\left[e_{0}\right]^{\left(\alpha^{n+1}\right)}\right]  \tag{2.4}\\
& =c^{\left(1+\sum_{k=0}^{n-1} \alpha^{k+1}\right)} \cdot\left[e_{0}\right]^{\left(\alpha^{n+1}\right)}=c^{\left(1+\sum_{k=1}^{n} \alpha^{k}\right)} \cdot\left[e_{0}\right]^{\left(\alpha^{n+1}\right)} \\
& =c^{\left(\sum_{k=0}^{n} \alpha^{k}\right)} \cdot\left[e_{0}\right]^{\left(\alpha^{n+1}\right)} .
\end{align*}
$$

This proves (2.2) in the case $n+1$. Induction thus completes the proof of Lemma 2.2.

### 2.2 Lower bounds for the probabilities of certain rare events

Lemma 2.3. Assume Setting 2.1, let $A_{n} \subseteq \Omega, n \in\{0,1, \ldots, N\}$, be the sets which satisfy for all $n \in\{1,2, \ldots, N\}$ that $A_{0}=\left\{Y_{0} \in \mathbb{H}_{0}\right\}$ and

$$
\begin{equation*}
A_{n}=\left\{\mathcal{V}\left(Y_{n}\right) \geq c\left[\mathcal{V}\left(Y_{n-1}\right)\right]^{\alpha}\right\} \cap\left\{Y_{n} \in \mathbb{H}_{n}\right\}, \tag{2.5}
\end{equation*}
$$

and let $p_{n}: H \rightarrow[0,1], n \in\{1,2, \ldots, N\}$, be the functions which satisfy for all $n \in\{1,2, \ldots, N\}, v \in H$ that

$$
\begin{equation*}
p_{n}(v)=\mathbb{P}\left(\left\{\mathcal{V}\left(\Phi\left(v, Z_{n}\right)\right) \geq c[\mathcal{V}(v)]^{\alpha}\right\} \cap\left\{\Phi\left(v, Z_{n}\right) \in \mathbb{H}_{n}\right\}\right) . \tag{2.6}
\end{equation*}
$$

Then
(i) it holds for all $n \in\{1,2, \ldots, N\}$ that $p_{n} \in \mathcal{M}(\mathcal{H}, \mathcal{B}([0,1]))$,
(ii) it holds for all $n \in\{1,2, \ldots, N\}$ that $A_{0} \in \sigma\left(Y_{0}\right)$ and $A_{n} \in \sigma\left(Y_{0}, Z_{1}, Z_{2}, \ldots, Z_{n}\right)$, (iii) it holds for all $n \in\{1,2, \ldots, N\}$ that

$$
\begin{align*}
& \mathbb{P}\left(\left(\cap_{k=0}^{n} A_{k}\right) \mid \sigma\left(Y_{0}\right)\right) \\
& =\mathbb{E}\left[p_{n}\left(Y_{n-1}\right) \mathbb{1}_{\left\{\mathcal{V}\left(Y_{n-1}\right) \geq c^{\left(\sum_{l=0}^{n-2} \alpha^{l}\right)}\left[\mathcal{V}\left(Y_{0}\right)\right]^{\left.\left(\alpha^{(n-1)}\right)\right\}}\right.}^{\left.\mathbb{1}_{\left(\cap_{k=0}^{n-1} A_{k}\right)}^{\Omega} \mid \sigma\left(Y_{0}\right)\right],}\right. \tag{2.7}
\end{align*}
$$

and
(iv) it holds for all $n \in\{1,2, \ldots, N\}$ that

$$
\begin{align*}
& \mathbb{P}\left(\left(\cap_{k=0}^{n} A_{k}\right) \mid \sigma\left(Y_{0}\right)\right) \llbracket \mathbb{1}_{\left\{\mathcal{V}\left(Y_{0}\right) \geq c^{(1 /(1-\alpha)} \theta\right\}} \rrbracket \\
& \geq \inf \left(\left\{p_{n}(v):\left(v \in \mathbb{H}_{n-1}: \mathcal{V}(v) \geq \theta^{\left(\alpha^{(n-1)}\right)}\right)\right\} \cup\{1\}\right)  \tag{2.8}\\
& \quad \cdot \mathbb{P}\left(\left(\cap_{k=0}^{n-1} A_{k}\right) \mid \sigma\left(Y_{0}\right)\right) \llbracket \mathbb{1}_{\left\{\mathcal{V}\left(Y_{0}\right) \geq c^{(1 /(1-\alpha))} \theta\right\}}^{\Omega} \rrbracket .
\end{align*}
$$

Proof of Lemma 2.3. Throughout this proof let $\mathcal{G}_{n} \subseteq \mathcal{P}(\Omega), n \in\{0,1, \ldots, N\}$, be the sigma-algebras on $\Omega$ which satisfy for all $n \in\{1,2, \ldots, N\}$ that $\mathcal{G}_{0}=\sigma\left(Y_{0}\right)$ and

$$
\begin{equation*}
\mathcal{G}_{n}=\sigma\left(Y_{0}, Z_{1}, Z_{2}, \ldots, Z_{n}\right), \tag{2.9}
\end{equation*}
$$

let $C_{k} \subseteq H \times \Omega, k \in\{1,2, \ldots, N\}$, and $D_{k} \subseteq H \times \Omega, k \in\{1,2, \ldots, N\}$, be the sets which satisfy for all $k \in\{1,2, \ldots, N\}$ that

$$
\begin{equation*}
C_{k}=\left\{(x, \omega) \in H \times \Omega: \mathcal{V}\left(\Phi\left(x, Z_{k}(\omega)\right)\right)-c[\mathcal{V}(x)]^{\alpha} \geq 0\right\} \tag{2.10}
\end{equation*}
$$

and

$$
\begin{equation*}
D_{k}=\left\{(x, \omega) \in H \times \Omega: \Phi\left(x, Z_{k}(\omega)\right) \in \mathbb{H}_{k}\right\}, \tag{2.11}
\end{equation*}
$$

let $\pi: H \times \Omega \rightarrow H$ and $f_{k}: H \times \Omega \rightarrow \mathbb{R}, k \in\{1,2, \ldots, N\}$, be the functions which satisfy for all $k \in\{1,2, \ldots, N\},(v, \omega) \in H \times \Omega$ that

$$
\begin{equation*}
\pi(v, \omega)=v \quad \text { and } \quad f_{k}(v, \omega)=\mathbb{1}_{C_{k} \cap D_{k}}^{H \times \Omega}(v, \omega), \tag{2.12}
\end{equation*}
$$

let $\Psi_{k}: H \times \Omega \rightarrow H \times U, k \in\{1,2, \ldots, N\}$, be the functions which satisfy for all $k \in\{1,2, \ldots, N\},(x, \omega) \in H \times \Omega$ that

$$
\begin{equation*}
\Psi_{k}(x, \omega)=\left(x, Z_{k}(\omega)\right), \tag{2.13}
\end{equation*}
$$

and let $\Upsilon: H \times \Omega \rightarrow[0, \infty)$ be the function which satisfies for all $(x, \omega) \in H \times \Omega$ that

$$
\begin{equation*}
\Upsilon(x, \omega)=c[(\mathcal{V} \circ \pi)(x, \omega)]^{\alpha} . \tag{2.14}
\end{equation*}
$$

Observe that for all $k \in\{1,2, \ldots, N\}$ it holds that $f_{k} \in \mathcal{M}(\mathcal{H} \otimes \mathcal{F}, \mathcal{B}(\mathbb{R}))$ if and only if it holds that

$$
\begin{equation*}
\left(C_{k} \cap D_{k}\right) \in \mathcal{H} \otimes \mathcal{F} . \tag{2.15}
\end{equation*}
$$

Next note that for all $k \in\{1,2, \ldots, N\}$ it holds that

$$
\begin{equation*}
\Psi_{k} \in \mathcal{M}(\mathcal{H} \otimes \mathcal{F}, \mathcal{H} \otimes \mathcal{U}) \tag{2.16}
\end{equation*}
$$

Moreover, observe that

$$
\begin{equation*}
\Phi \in \mathcal{M}(\mathcal{H} \otimes \mathcal{U}, \mathcal{H}) . \tag{2.17}
\end{equation*}
$$

Combining this with (2.16) implies for all $k \in\{1,2, \ldots, N\}$ that

$$
\begin{equation*}
\Phi \circ \Psi_{k} \in \mathcal{M}(\mathcal{H} \otimes \mathcal{F}, \mathcal{H}) . \tag{2.18}
\end{equation*}
$$

The fact that $\forall k \in\{1,2, \ldots, N\}: \mathbb{H}_{k} \in \mathcal{H}$ therefore proves for all $k \in\{1,2, \ldots, N\}$ that

$$
\begin{equation*}
D_{k}=\left(\Phi \circ \Psi_{k}\right)^{-1}\left(\mathbb{H}_{k}\right) \in \mathcal{H} \otimes \mathcal{F} . \tag{2.19}
\end{equation*}
$$

In addition, note that

$$
\begin{equation*}
\pi \in \mathcal{M}(\mathcal{H} \otimes \mathcal{F}, \mathcal{H}) \quad \text { and } \quad \mathcal{V} \in \mathcal{M}(\mathcal{H}, \mathcal{B}([0, \infty))) \tag{2.20}
\end{equation*}
$$

This and (2.18) imply for all $k \in\{1,2, \ldots, N\}$ that

$$
\begin{equation*}
\Upsilon \in \mathcal{M}(\mathcal{H} \otimes \mathcal{F}, \mathcal{B}([0, \infty))) \tag{2.21}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathcal{V} \circ \Phi \circ \Psi_{k} \in \mathcal{M}(\mathcal{H} \otimes \mathcal{F}, \mathcal{B}([0, \infty))) \tag{2.22}
\end{equation*}
$$

This ensures for all $k \in\{1,2, \ldots, N\}$ that

$$
\begin{equation*}
\left[\mathcal{V} \circ \Phi \circ \Psi_{k}-\Upsilon\right] \in \mathcal{M}(\mathcal{H} \otimes \mathcal{F}, \mathcal{B}(\mathbb{R})) . \tag{2.23}
\end{equation*}
$$

Hence, we obtain for all $k \in\{1,2, \ldots, N\}$ that

$$
\begin{equation*}
C_{k}=\left(\mathcal{V} \circ \Phi \circ \Psi_{k}-\Upsilon\right)^{-1}([0, \infty)) \in \mathcal{H} \otimes \mathcal{F} . \tag{2.24}
\end{equation*}
$$

Combining this with (2.19) establishes for all $k \in\{1,2, \ldots, N\}$ that

$$
\begin{equation*}
C_{k} \cap D_{k} \in \mathcal{H} \otimes \mathcal{F} \tag{2.25}
\end{equation*}
$$

This and (2.15) demonstrate that for all $k \in\{1,2, \ldots, N\}$ it holds that

$$
\begin{equation*}
f_{k} \in \mathcal{M}(\mathcal{H} \otimes \mathcal{F}, \mathcal{B}(\mathbb{R})) \tag{2.26}
\end{equation*}
$$

Furthermore, note that it holds for all $k \in\{1,2, \ldots, N\}, v \in H$ that

$$
\begin{equation*}
p_{k}(v)=\int_{\Omega} f_{k}(v, \omega) \mathbb{P}(d \omega) \tag{2.27}
\end{equation*}
$$

Fubini's theorem and (2.26) therefore ensure that for all $k \in\{1,2, \ldots, N\}$ it holds that

$$
\begin{equation*}
p_{k} \in \mathcal{M}(\mathcal{H}, \mathcal{B}([0,1])) . \tag{2.28}
\end{equation*}
$$

This proves Item (ii). Next note that

$$
\begin{equation*}
A_{0}=\left\{Y_{0} \in \mathbb{H}_{0}\right\}=Y_{0}^{-1}\left(\mathbb{H}_{0}\right) \in \sigma\left(Y_{0}\right) . \tag{2.29}
\end{equation*}
$$

Furthermore, observe that it holds for all $n \in\{1,2, \ldots, N\}$ that

$$
\begin{equation*}
\left\{\mathcal{V}\left(Y_{n}\right) \geq c\left[\mathcal{V}\left(Y_{n-1}\right)\right]^{\alpha}\right\} \in \sigma\left(Y_{n}, Y_{n-1}\right) \quad \text { and } \quad\left\{Y_{n} \in \mathbb{H}_{n}\right\} \in \sigma\left(Y_{n}\right) \tag{2.30}
\end{equation*}
$$

In the next step we demonstrate that for all $n \in\{1,2, \ldots, N\}$ it holds that

$$
\begin{equation*}
\sigma\left(Y_{n}\right) \subseteq \sigma\left(Y_{0}, Z_{1}, Z_{2}, \ldots, Z_{n}\right) . \tag{2.31}
\end{equation*}
$$

We prove (2.31) by induction on $n \in\{1,2, \ldots, N\}$. Observe that the assumption that $Y_{1}=\Phi\left(Y_{0}, Z_{1}\right)$ and the assumption that $\Phi \in \mathcal{M}(\mathcal{H} \otimes \mathcal{U}, \mathcal{H})$ ensure that

$$
\begin{equation*}
\sigma\left(Y_{1}\right) \subseteq \sigma\left(Y_{0}, Z_{1}\right) \tag{2.32}
\end{equation*}
$$

This establishes (2.31) in the base case $n=1$. For the induction step $\{1,2, \ldots, N-$ $1\} \ni n \rightarrow n+1 \in\{2,3, \ldots, N\}$ assume that (2.31) is fulfilled for an $n \in\{1,2, \ldots, N-$ $1\}$. The assumption that $\forall m \in\{1,2, \ldots, N\}: Y_{m}=\Phi\left(Y_{m-1}, Z_{m}\right)$ and the assumption that $\Phi \in \mathcal{M}(\mathcal{H} \otimes \mathcal{U}, \mathcal{H})$ assure that

$$
\begin{equation*}
\sigma\left(Y_{n+1}\right) \subseteq \sigma\left(Y_{n}, Z_{n+1}\right) \tag{2.33}
\end{equation*}
$$

Moreover, note that the induction hypothesis implies that

$$
\begin{equation*}
\sigma\left(Y_{n}, Z_{n+1}\right) \subseteq \sigma\left(Y_{0}, Z_{1}, Z_{2}, \ldots, Z_{n+1}\right) \tag{2.34}
\end{equation*}
$$

Combining this with (2.33) ensures that

$$
\begin{equation*}
\sigma\left(Y_{n+1}\right) \subseteq \sigma\left(Y_{0}, Z_{1}, Z_{2}, \ldots, Z_{n+1}\right) \tag{2.35}
\end{equation*}
$$

This proves (2.31) in the case $n+1$. Induction thus completes the proof of (2.31). Combining (2.31) with (2.30) and (2.5) proves that it holds for all $n \in\{1,2, \ldots, N\}$ that

$$
\begin{equation*}
A_{n} \in \sigma\left(Y_{0}, Z_{1}, \ldots, Z_{n}\right) \tag{2.36}
\end{equation*}
$$

This establishes Item (iii). Next note that the tower property for conditional expectations implies for all $k \in\{1,2, \ldots, N\}$ that

$$
\begin{align*}
\mathbb{P}\left(\left(\cap_{n=0}^{k} A_{n}\right) \mid \sigma\left(Y_{0}\right)\right) & =\mathbb{E}\left[\mathbb{1}_{\left(\cap_{n=0}^{k} A_{n}\right)}^{\Omega} \mid \mathcal{G}_{0}\right] \\
& =\mathbb{E}\left[\mathbb{E}\left[\mathbb{1}_{\left(\cap_{n=0}^{k} A_{n}\right)}^{\Omega} \mid \mathcal{G}_{k-1}\right] \mid \mathcal{G}_{0}\right]  \tag{2.37}\\
& =\mathbb{E}\left[\mathbb{E}\left[\mathbb{1}_{A_{k}}^{\Omega} \mathbb{1}_{\left(\cap_{n=0}^{\Omega} A_{n}\right)}^{\Omega} \mid \mathcal{G}_{k-1}\right] \mid \mathcal{G}_{0}\right] .
\end{align*}
$$

This and Item (iii) assure for all $k \in\{1,2, \ldots, N\}$ that

$$
\begin{equation*}
\mathbb{P}\left(\left(\cap_{n=0}^{k} A_{n}\right) \mid \sigma\left(Y_{0}\right)\right)=\mathbb{E}\left[\mathbb{E}\left[\mathbb{1}_{A_{k}}^{\Omega} \mid \mathcal{G}_{k-1}\right] \mathbb{1}_{\left(\cap_{n=0}^{k-1} A_{n}\right)}^{\Omega} \mid \mathcal{G}_{0}\right] . \tag{2.38}
\end{equation*}
$$

Combining this with (2.5) ensures for all $k \in\{1,2, \ldots, N\}$ that

$$
\begin{align*}
& \mathbb{P}\left(\left(\cap_{n=0}^{k} A_{n}\right) \mid \sigma\left(Y_{0}\right)\right)=\mathbb{E}\left[\mathbb{E}\left[\mathbb{1}_{\left\{\mathcal{V}\left(Y_{k}\right) \geq c\left[\mathcal{V}\left(Y_{k-1}\right)\right]^{\alpha}\right\} \cap\left\{Y_{k} \in \mathbb{H}_{k}\right\}}^{\Omega} \mid \mathcal{G}_{k-1}\right] \mathbb{1}_{\left(\cap_{n=0}^{k-1} A_{n}\right)}^{\Omega} \mid \mathcal{G}_{0}\right] \\
&=\mathbb{E} {\left[\mathbb{P}\left(\left\{\mathcal{V}\left(Y_{k}\right) \geq c\left[\mathcal{V}\left(Y_{k-1}\right)\right]^{\alpha}\right\} \cap\left\{Y_{k} \in \mathbb{H}_{k}\right\} \mid \mathcal{G}_{k-1}\right) \mathbb{1}_{\left(\cap_{n=0}^{k-1} A_{n}\right)}^{\Omega} \mid \mathcal{G}_{0}\right] }  \tag{2.39}\\
&=\mathbb{E} {\left[\mathbb{P}\left(\left\{\mathcal{V}\left(\Phi\left(Y_{k-1}, Z_{k}\right)\right) \geq c\left[\mathcal{V}\left(Y_{k-1}\right)\right]^{\alpha}\right\} \cap\left\{\Phi\left(Y_{k-1}, Z_{k}\right) \in \mathbb{H}_{k}\right\} \mid \mathcal{G}_{k-1}\right)\right.} \\
&\left.\cdot \mathbb{1}_{\left(\cap_{n=0}^{k-1} A_{n}\right)}^{\Omega} \mid \mathcal{G}_{0}\right] .
\end{align*}
$$

Moreover, observe that [78, Lemma 2.9] (with $(\Omega, \mathcal{F}, \mathbb{P})=(\Omega, \mathcal{F}, \mathbb{P}),(D, \mathcal{D})=$ $(H, \mathcal{H}),(E, \mathcal{E})=(U, \mathcal{U}), \mathcal{X}=\mathcal{G}_{k-1}, \mathcal{Y}=\sigma\left(Z_{k}\right), X=Y_{k-1}, Y=Z_{k}, \Phi=$ $\mathbb{1}_{\left\{(v, u) \in H \times U: \mathcal{V}(\Phi(v, u)) \geq c[\mathcal{V}(v)]^{\alpha}\right\} \cap\left\{(v, u) \in H \times U: \Phi(v, u) \in \mathbb{H}_{k}\right\}}^{H}$ for $k \in\{1,2, \ldots, N\}$ in the notation of [78, Lemma 2.9]) establishes for all $k \in\{1,2, \ldots, N\}$ that

$$
\begin{align*}
& \mathbb{E}[ \mathbb{P}\left(\left\{\mathcal{V}\left(\Phi\left(Y_{k-1}, Z_{k}\right)\right) \geq c\left[\mathcal{V}\left(Y_{k-1}\right)\right]^{\alpha}\right\} \cap\left\{\Phi\left(Y_{k-1}, Z_{k}\right) \in \mathbb{H}_{k}\right\} \mid \mathcal{G}_{k-1}\right) \\
&\left.\cdot \mathbb{1}_{\left(\cap_{n=0}^{\Omega}\right.}^{\Omega} A_{n}\right)  \tag{2.40}\\
&\left.\mathcal{G}_{0}\right]=\mathbb{E}\left[p_{k}\left(Y_{k-1}\right) \mathbb{1}_{\left(\cap_{n=0}^{\Omega-1} A_{n}\right)}^{\Omega} \mid \mathcal{G}_{0}\right] .
\end{align*}
$$

This and (2.39) prove for all $k \in\{1,2, \ldots, N\}$ that

$$
\begin{equation*}
\mathbb{P}\left(\left(\cap_{n=0}^{k} A_{n}\right) \mid \sigma\left(Y_{0}\right)\right)=\mathbb{E}\left[p_{k}\left(Y_{k-1}\right) \mathbb{1}_{\left(\cap_{n=0}^{\Omega-1} A_{n}\right)}^{\Omega} \mid \mathcal{G}_{0}\right] . \tag{2.41}
\end{equation*}
$$

Furthermore, note that (2.5) implies for all $k \in\{2,3, \ldots, N\}, n \in\{0,1, \ldots, k-2\}$, $\omega \in\left(\cap_{l=0}^{k-1} A_{l}\right)$ that

$$
\begin{equation*}
\mathcal{V}\left(Y_{n+1}(\omega)\right) \geq c\left[\mathcal{V}\left(Y_{n}(\omega)\right)\right]^{\alpha} . \tag{2.42}
\end{equation*}
$$

This and Lemma 2.2 (with $c=c, \alpha=\alpha, N=k-1, e_{n}=\mathcal{V}\left(Y_{n}(\omega)\right)$ for $k \in$ $\{2,3, \ldots, N\}, n \in\{0,1, \ldots, k-1\}, \omega \in\left(\cap_{l=0}^{k-1} A_{l}\right)$ in the notation of Lemma (2.2) assure that it holds for all $k \in\{2,3, \ldots, N\}, n \in\{0,1, \ldots, k-1\}, \omega \in\left(\cap_{l=0}^{k-1} A_{l}\right)$ that

$$
\begin{equation*}
\mathcal{V}\left(Y_{n}(\omega)\right) \geq c^{\left(\sum_{l=0}^{n-1} \alpha^{l}\right)}\left[\mathcal{V}\left(Y_{0}(\omega)\right)\right]^{\left(\alpha^{n}\right)} \tag{2.43}
\end{equation*}
$$

Hence, we obtain for all $k \in\{2,3, \ldots, N\}, \omega \in\left(\cap_{l=0}^{k-1} A_{l}\right)$ that

$$
\begin{equation*}
\mathcal{V}\left(Y_{k-1}(\omega)\right) \geq c^{\left(\sum_{l=0}^{k-2} \alpha^{l}\right)}\left[\mathcal{V}\left(Y_{0}(\omega)\right)\right]^{\left(\alpha^{(k-1)}\right)} \tag{2.44}
\end{equation*}
$$

Next observe that

$$
\begin{equation*}
\left\{\mathcal{V}\left(Y_{0}\right) \geq c^{\left(\sum_{l=0}^{-1} \alpha^{l}\right)}\left[\mathcal{V}\left(Y_{0}\right)\right]^{\left(\alpha^{0}\right)}\right\}=\left\{\mathcal{V}\left(Y_{0}\right) \geq \mathcal{V}\left(Y_{0}\right)\right\}=\Omega \tag{2.45}
\end{equation*}
$$

The fact that $A_{0} \subseteq \Omega$ therefore proves that

$$
\begin{equation*}
A_{0}=\left(\cap_{n=0}^{0} A_{n}\right) \subseteq\left\{\mathcal{V}\left(Y_{0}\right) \geq c^{\left(\sum_{l=0}^{-1} \alpha^{l}\right)}\left[\mathcal{V}\left(Y_{0}\right)\right]^{\left(\alpha^{0}\right)}\right\} \tag{2.46}
\end{equation*}
$$

Combining this with (2.44) implies for all $k \in\{1,2, \ldots, N\}$ that

$$
\begin{equation*}
\left(\cap_{n=0}^{k-1} A_{n}\right) \subseteq\left\{\mathcal{V}\left(Y_{k-1}\right) \geq c^{\left(\sum_{l=0}^{k-2} \alpha^{l}\right)}\left[\mathcal{V}\left(Y_{0}\right)\right]^{\left(\alpha^{(k-1)}\right)}\right\} \tag{2.47}
\end{equation*}
$$

Therefore, we obtain for all $k \in\{1,2, \ldots, N\}$ that

Combining this with (2.41) assures for all $k \in\{1,2, \ldots, N\}$ that

$$
\begin{align*}
& \mathbb{P}\left(\left(\cap_{n=0}^{k} A_{n}\right) \mid \sigma\left(Y_{0}\right)\right)=\mathbb{E}\left[p_{k}\left(Y_{k-1}\right) \mathbb{1}_{\left(\cap_{n=0}^{\Omega k-1} A_{n}\right)}^{\Omega} \mid \mathcal{G}_{0}\right] \\
& =\mathbb{E}\left[p_{k}\left(Y_{k-1}\right) \mathbb{1}_{\left.\left\{\mathcal{V}\left(Y_{k-1}\right) \geq c^{\left(\sum_{l=0}^{k-2} \alpha^{l}\right)}\left[\mathcal{V}\left(Y_{0}\right)\right]\right]^{\left.\left(\alpha^{(k-1)}\right)\right\}} \mathbb{1}_{\left(\cap_{n=0}^{k-1} A_{n}\right)}^{\Omega} \mid \mathcal{G}_{0}\right] .} .\right. \tag{2.49}
\end{align*}
$$

This establishes Item (iiii). It thus remains to prove Item (iv). For this we note that (2.7) implies that for all $k \in\{1,2, \ldots, N\}$ it holds that

$$
\begin{align*}
& \left.\mathbb{P}\left(\left(\cap_{n=0}^{k} A_{n}\right) \mid \sigma\left(Y_{0}\right)\right) \llbracket \mathbb{1}_{\left\{\mathcal{V}\left(Y_{0}\right) \geq c^{(1 /(1-\alpha))} \theta\right\}}^{\Omega}\right] \\
& =\mathbb{E}\left[p_{k}\left(Y_{k-1}\right) \mathbb{1}_{\left\{\mathcal{V}\left(Y_{k-1}\right) \geq c^{\left(\sum_{l=0}^{k-2} \alpha^{l}\right)}\left[\mathcal{V}\left(Y_{0}\right)\right]\right]^{\left.\left(\alpha^{(k-1)}\right)\right\}}} \mathbb{1}_{\left(\cap_{n=0}^{k-1} A_{n}\right)}^{\Omega} \mid \mathcal{G}_{0}\right] \mathbb{1}_{\left\{\mathcal{V}\left(Y_{0}\right) \geq c^{(1 /(1-\alpha))} \theta\right\}}^{\Omega} \rrbracket \\
& \geq \mathbb{E}\left[p_{k}\left(Y_{k-1}\right) \mathbb{1}_{\left\{Y _ { k - 1 } \in \left\{w \in \mathbb{H}_{k-1}: \mathcal{V}(w) \geq \theta^{\left.\left.\left(\alpha^{(k-1)}\right)\right\}\right\}}\right.\right.} \mathbb{1}_{\left\{\mathcal{V}\left(Y_{k-1}\right) \geq c^{\left(\sum_{l=0}^{k-2} \alpha^{l}\right)}\left[\mathcal{V}\left(Y_{0}\right)\right]^{\left.\left(\alpha^{(k-1)}\right)\right\}}\right.}\right. \\
& \quad \cdot \mathbb{1}_{\left(\cap_{n=0}^{k-1} A_{n}\right)}^{\left.\mathbb{1}_{\left\{\mathcal{V}\left(Y_{0}\right) \geq c^{(1 /(1-\alpha))} \theta\right\}}^{\Omega} \mid \mathcal{G}_{0}\right] .} \tag{2.50}
\end{align*}
$$

Next observe that (2.5) assures for all $k \in\{1,2, \ldots, N\}, \omega \in\left(\cap_{n=0}^{k-1} A_{n}\right)$ that

$$
\begin{equation*}
Y_{k-1}(\omega) \in \mathbb{H}_{k-1} . \tag{2.51}
\end{equation*}
$$

Moreover, note that for all $k \in\{2,3, \ldots, N\}, \omega \in\left\{\mathcal{V}\left(Y_{0}\right) \geq c^{(1 /(1-\alpha))} \theta\right\} \cap\left\{\mathcal{V}\left(Y_{k-1}\right) \geq\right.$ $\left.c^{\left(\sum_{l=0}^{k-2} \alpha^{l}\right)}\left[\mathcal{V}\left(Y_{0}\right)\right]^{\left(\alpha^{(k-1)}\right)}\right\}$ it holds that

$$
\begin{align*}
\mathcal{V}\left(Y_{k-1}(\omega)\right) & \geq c^{\left(\sum_{l=0}^{k-2} \alpha^{l}\right)}\left[\mathcal{V}\left(Y_{0}(\omega)\right)\right]^{\left(\alpha^{(k-1)}\right)} \\
& =c^{\left(\alpha^{(k-1)}-1\right) /(\alpha-1)}\left[\mathcal{V}\left(Y_{0}(\omega)\right)\right]^{\left(\alpha^{(k-1)}\right)}  \tag{2.52}\\
& \geq c^{\left(\alpha^{(k-1)}\right) /(\alpha-1)} c^{\left(\alpha^{(k-1)}\right) /(1-\alpha)} \theta^{\left(\alpha^{(k-1)}\right)}=\theta^{\left(\alpha^{(k-1)}\right)} .
\end{align*}
$$

Furthermore, observe that the hypothesis that $c \in(0,1]$ and the hypothesis that $\alpha \in(1, \infty)$ prove for all $\omega \in A_{0} \cap\left\{\mathcal{V}\left(Y_{0}\right) \geq c^{1 /(1-\alpha)} \theta\right\}$ that

$$
\begin{equation*}
\mathcal{V}\left(Y_{0}(\omega)\right) \geq c^{1 /(1-\alpha)} \theta \geq \theta \tag{2.53}
\end{equation*}
$$

This demonstrates that

$$
\begin{equation*}
A_{0} \cap\left\{\mathcal{V}\left(Y_{0}\right) \geq c^{1 /(1-\alpha)} \theta\right\} \subseteq\left\{Y_{0} \in\left\{w \in \mathbb{H}_{0}: \mathcal{V}(w) \geq \theta^{\left(\alpha^{0}\right)}\right\}\right\} \tag{2.54}
\end{equation*}
$$

Combining this with (2.51) and (2.52) ensures for all $k \in\{1,2, \ldots, N\}$ that

$$
\begin{align*}
& \left(\cap_{n=0}^{k-1} A_{n}\right) \cap\left\{\mathcal{V}\left(Y_{0}\right) \geq c^{1 /(1-\alpha)} \theta\right\} \cap\left\{\mathcal{V}\left(Y_{k-1}\right) \geq c^{\left(\sum_{l=0}^{k-2} \alpha^{l}\right)}\left[\mathcal{V}\left(Y_{0}\right)\right]^{\left(\alpha^{(k-1)}\right)}\right\} \\
& \subseteq\left\{Y_{k-1} \in\left\{w \in \mathbb{H}_{k-1}: \mathcal{V}(w) \geq \theta^{\left(\alpha^{(k-1)}\right)}\right\}\right\} . \tag{2.55}
\end{align*}
$$

This implies for all $k \in\{1,2, \ldots, N\}$ that

$$
\begin{align*}
& \mathbb{1}_{\left\{Y _ { k - 1 } \in \left\{w \in \mathbb{H}_{k-1}: \mathcal{V}(w) \geq \theta^{\left.\left.\left(\alpha \alpha^{(k-1)}\right)\right\}\right\}}\right.\right.} \mathbb{1}_{\left\{\mathcal{V}\left(Y_{k-1}\right) \geq c^{\left(\sum_{l=0}^{k-2} \alpha^{l}\right)}\left[\mathcal{V}\left(Y_{0}\right)\right]^{\left.\left(\alpha \alpha^{(k-1)}\right)\right\}}\right.} \quad \cdot \mathbb{1}_{\left(\cap_{n=0}^{k-1} A_{n}\right)}^{\Omega} \mathbb{1}_{\left.\left\{\mathcal{V}\left(Y_{0}\right) \geq c^{1 /(1-\alpha)}\right)\right\}}^{\Omega} \\
& =\mathbb{1}_{\left\{\mathcal{V}\left(Y_{k-1}\right) \geq c^{\left(\sum_{l=0}^{k-2} \alpha^{l}\right)}\left[\mathcal{V}\left(Y_{0}\right)\right]^{\left.\left(\alpha^{(k-1)}\right)\right\}} \mathbb{1}_{\left(\cap_{n=0}^{k-1} A_{n}\right)}^{\Omega} \mathbb{1}_{\left\{\mathcal{V}\left(Y_{0}\right) \geq c^{1 /(1-\alpha)} \theta\right\}}^{\Omega} .\right.} \tag{2.56}
\end{align*}
$$

Combining this with (2.50) assures for all $k \in\{1,2, \ldots, N\}$ that

$$
\begin{align*}
& \mathbb{P}\left(\left(\cap_{n=0}^{k} A_{n}\right) \mid \sigma\left(Y_{0}\right)\right) \llbracket \mathbb{1}_{\left\{\mathcal{V}\left(Y_{0}\right) \geq c^{1 /(1-\alpha) \theta\}}\right.} \rrbracket \\
& \geq \mathbb{E}\left[\inf \left(\left\{p_{k}(v):\left(v \in \mathbb{H}_{k-1}: \mathcal{V}(v) \geq \theta^{\left(\alpha^{(k-1)}\right)}\right)\right\} \cup\{1\}\right) \mathbb{1}_{\left\{Y_{k-1} \in\left\{w \in \mathbb{H}_{k-1}: \mathcal{V}(w) \geq \theta^{\left(\alpha^{(k-1)}\right)}\right\}\right\}}\right. \\
& \left.\cdot \mathbb{1}_{\left(\cap_{n=0}^{k-1} A_{n}\right)}^{\Omega} \mathbb{1}_{\left\{\mathcal{V}\left(Y_{k-1}\right) \geq c^{\left(\sum_{l=0}^{k-2} \alpha^{l}\right)}\left[\mathcal{V}\left(Y_{0}\right)\right]\left(\alpha^{(k-1)}\right)\right\}} \mathbb{1}_{\left\{\mathcal{V}\left(Y_{0}\right) \geq c^{1}(1-\alpha) \theta\right\}}^{\Omega} \mid \mathcal{G}_{0}\right] \\
& =\mathbb{E}\left[\inf \left(\left\{p_{k}(v):\left(v \in \mathbb{H}_{k-1}: \mathcal{V}(v) \geq \theta^{\left(\alpha^{(k-1)}\right)}\right)\right\} \cup\{1\}\right) \mathbb{1}_{\left(\cap_{n=0}^{k-1} A_{n}\right)}^{\Omega}\right. \\
& . \mathbb{1}_{\left\{\mathcal{V}\left(Y_{k-1}\right) \geq c^{\left(\sum_{l=0}^{k-2} \alpha^{l}\right)}\left[\mathcal{V}\left(Y_{0}\right)\right]^{\left(\alpha^{(k-1)}\right)}\right\}}^{\left.\mathbb{1}_{\left\{\mathcal{V}\left(Y_{0}\right) \geq c^{1 /(1-\alpha)} \theta\right\}}^{\Omega} \mid \mathcal{G}_{0}\right] .} \tag{2.57}
\end{align*}
$$

This and (2.48) ensure for all $k \in\{1,2, \ldots, N\}$ that

$$
\begin{align*}
& \mathbb{P}\left(\left(\cap_{n=0}^{k} A_{n}\right) \mid \sigma\left(Y_{0}\right)\right) \llbracket \mathbb{1}_{\left\{\mathcal{V}\left(Y_{0}\right) \geq c^{1 /(1-\alpha) \theta\}}\right.}^{\Omega} \rrbracket \\
& \geq \inf \left(\left\{p_{k}(v):\left(v \in \mathbb{H}_{k-1}: \mathcal{V}(v) \geq \theta^{\left(\alpha^{(k-1)}\right)}\right)\right\} \cup\{1\}\right) \\
& \quad \cdot \mathbb{E}\left[\mathbb{1}_{\left(\cap_{n=0}^{\Omega-1} A_{n}\right)}^{\Omega} \mid \mathcal{G}_{0}\right] \llbracket \mathbb{1}_{\left\{\mathcal{V}\left(Y_{0}\right) \geq c^{1 /(1-\alpha) \theta\}}\right.}^{\Omega} \rrbracket  \tag{2.58}\\
& =\inf \left(\left\{p_{k}(v):\left(v \in \mathbb{H}_{k-1}: \mathcal{V}(v) \geq \theta^{\left(\alpha^{(k-1)}\right)}\right)\right\} \cup\{1\}\right) \\
& \quad \cdot \mathbb{P}\left(\left(\cap_{n=0}^{k-1} A_{n}\right) \mid \sigma\left(Y_{0}\right)\right) \llbracket \mathbb{1}_{\left\{\mathcal{V}\left(Y_{0}\right) \geq c^{1 /(1-\alpha) \theta\}}\right.}^{\Omega} \rrbracket .
\end{align*}
$$

This establishes Item (iv). The proof of Lemma 2.3 is thus completed.
Lemma 2.4. Assume Setting 2.1 and let $p_{n}: H \rightarrow[0,1], n \in\{1,2, \ldots, N\}$, be the functions which satisfy for all $n \in\{1,2, \ldots, N\}, v \in H$ that

$$
\begin{equation*}
p_{n}(v)=\mathbb{P}\left(\left\{\mathcal{V}\left(\Phi\left(v, Z_{n}\right)\right) \geq c[\mathcal{V}(v)]^{\alpha}\right\} \cap\left\{\Phi\left(v, Z_{n}\right) \in \mathbb{H}_{n}\right\}\right) . \tag{2.59}
\end{equation*}
$$

Then

$$
\begin{align*}
& \mathbb{P}\left(\cap_{n=0}^{N}\left[\left\{\mathcal{V}\left(Y_{n}\right) \geq c^{\left(\sum_{k=0}^{n-1} \alpha^{k}\right)}\left[\mathcal{V}\left(Y_{0}\right)\right]^{\left(\alpha^{n}\right)}\right\} \cap\left\{Y_{n} \in \mathbb{H}_{n}\right\}\right] \mid \sigma\left(Y_{0}\right)\right) \\
& \quad \cdot \llbracket \mathbb{1}_{\left\{\mathcal{V}\left(Y_{0}\right) \geq c^{1 /(1-\alpha)} \theta\right\}} \rrbracket \\
& \geq\left[\prod_{n=1}^{N} \inf \left(\left\{p_{n}(v):\left(v \in \mathbb{H}_{n-1}: \mathcal{V}(v) \geq \theta^{\left(\alpha^{(n-1)}\right)}\right)\right\} \cup\{1\}\right)\right]  \tag{2.60}\\
& \quad \cdot \llbracket \mathbb{1}_{\left\{\mathcal{V}\left(Y_{0}\right) \geq c^{1 /(1-\alpha)} \theta\right\} \cap\left\{Y_{0} \in \mathbb{H}_{0}\right\}}^{\Omega} \rrbracket .
\end{align*}
$$

Proof of Lemma 2.4. Throughout this proof let $A_{n} \subseteq \Omega, n \in\{0,1, \ldots, N\}$, be the sets which satisfy for all $n \in\{1,2, \ldots, N\}$ that $A_{0}=\left\{Y_{0} \in \mathbb{H}_{0}\right\}$ and

$$
\begin{equation*}
A_{n}=\left\{\mathcal{V}\left(Y_{n}\right) \geq c\left[\mathcal{V}\left(Y_{n-1}\right)\right]^{\alpha}\right\} \cap\left\{Y_{n} \in \mathbb{H}_{n}\right\} \tag{2.61}
\end{equation*}
$$

Note that for all $k \in\{1,2, \ldots, N\}, n \in\{0,1, \ldots, k-1\}, \omega \in\left(\cap_{l=1}^{k}\left\{\mathcal{V}\left(Y_{l}\right) \geq\right.\right.$ $\left.\left.{ }_{c}\left[\mathcal{V}\left(Y_{l-1}\right)\right]^{\alpha}\right\}\right)$ it holds that

$$
\begin{equation*}
\mathcal{V}\left(Y_{n+1}(\omega)\right) \geq c\left[\mathcal{V}\left(Y_{n}(\omega)\right)\right]^{\alpha} . \tag{2.62}
\end{equation*}
$$

This and Lemma2.2 (with $c=c, \alpha=\alpha, N=k, e_{n}=\mathcal{V}\left(Y_{n}(\omega)\right)$ for $k \in\{1,2, \ldots, N\}$, $n \in\{0,1, \ldots, k\}, \omega \in\left(\cap_{l=1}^{k}\left\{\mathcal{V}\left(Y_{l}\right) \geq c\left[\mathcal{V}\left(Y_{l-1}\right)\right]^{\alpha}\right\}\right)$ in the notation of Lemma (2.2) ensure for all $k \in\{1,2, \ldots, N\}, n \in\{0,1, \ldots, k\}, \omega \in\left(\cap_{l=1}^{k}\left\{\mathcal{V}\left(Y_{l}\right) \geq c\left[\mathcal{V}\left(Y_{l-1}\right)\right]^{\alpha}\right\}\right)$ that

$$
\begin{equation*}
\mathcal{V}\left(Y_{n}(\omega)\right) \geq c^{\left(\sum_{l=0}^{n-1} \alpha^{l}\right)}\left[\mathcal{V}\left(Y_{0}(\omega)\right)\right]^{\left(\alpha^{n}\right)} \tag{2.63}
\end{equation*}
$$

Hence, we obtain for all $k \in\{1,2, \ldots, N\}$ that

$$
\begin{equation*}
\left(\cap_{n=1}^{k}\left\{\mathcal{V}\left(Y_{n}\right) \geq c\left[\mathcal{V}\left(Y_{n-1}\right)\right]^{\alpha}\right\}\right) \subseteq\left(\cap_{n=0}^{k}\left\{\mathcal{V}\left(Y_{n}\right) \geq c^{\left(\sum_{l=0}^{n-1} \alpha^{l}\right)}\left[\mathcal{V}\left(Y_{0}\right)\right]^{\left(\alpha^{n}\right)}\right\}\right) \tag{2.64}
\end{equation*}
$$

Moreover, observe that (2.61) establishes for all $k \in\{1,2, \ldots, N\}$ that

$$
\begin{align*}
\left(\cap_{n=0}^{k} A_{n}\right) & =A_{0} \cap\left(\cap_{n=1}^{k} A_{n}\right) \\
& =\left\{Y_{0} \in \mathbb{H}_{0}\right\} \cap\left(\cap_{n=1}^{k}\left(\left\{\mathcal{V}\left(Y_{n}\right) \geq c\left[\mathcal{V}\left(Y_{n-1}\right)\right]^{\alpha}\right\} \cap\left\{Y_{n} \in \mathbb{H}_{n}\right\}\right)\right)  \tag{2.65}\\
& =\left(\cap_{n=1}^{k}\left\{\mathcal{V}\left(Y_{n}\right) \geq c\left[\mathcal{V}\left(Y_{n-1}\right)\right]^{\alpha}\right\}\right) \cap\left(\cap_{n=0}^{k}\left\{Y_{n} \in \mathbb{H}_{n}\right\}\right) .
\end{align*}
$$

This and (2.64) imply for all $k \in\{1,2, \ldots, N\}$ that

$$
\begin{align*}
\left(\cap_{n=0}^{k} A_{n}\right) & \subseteq\left(\cap_{n=0}^{k}\left\{\mathcal{V}\left(Y_{n}\right) \geq c^{\left(\sum_{l=0}^{n-1} \alpha^{l}\right)}\left[\mathcal{V}\left(Y_{0}\right)\right]^{\left(\alpha^{n}\right)}\right\} \cap\left(\cap_{n=0}^{k}\left\{Y_{n} \in \mathbb{H}_{n}\right\}\right)\right)  \tag{2.66}\\
& =\cap_{n=0}^{k}\left(\left\{\mathcal{V}\left(Y_{n}\right) \geq c^{\left(\sum_{l=0}^{n-1} \alpha^{l}\right)}\left[\mathcal{V}\left(Y_{0}\right)\right]^{\left(\alpha^{n}\right)}\right\} \cap\left\{Y_{n} \in \mathbb{H}_{n}\right\}\right) .
\end{align*}
$$

Hence, we obtain that

$$
\begin{align*}
& \mathbb{P}\left(\cap_{n=0}^{N}\left[\left\{\mathcal{V}\left(Y_{n}\right) \geq c^{\left(\sum_{k=0}^{n-1} \alpha^{k}\right)}\left[\mathcal{V}\left(Y_{0}\right)\right]^{\left(\alpha^{n}\right)}\right\} \cap\left\{Y_{n} \in \mathbb{H}_{n}\right\}\right] \mid \sigma\left(Y_{0}\right)\right) \\
& \quad \cdot \llbracket \mathbb{1}_{\left\{\mathcal{V}\left(Y_{0}\right) \geq c^{1 /(1-\alpha) \theta\}}\right.}^{\Omega} \rrbracket  \tag{2.67}\\
& \geq \mathbb{P}\left(\left(\cap_{n=0}^{N} A_{n}\right) \mid \sigma\left(Y_{0}\right)\right) \llbracket \mathbb{1}_{\left\{\mathcal{V}\left(Y_{0}\right) \geq c^{1 /(1-\alpha) \theta\}}\right.}^{\Omega} \rrbracket .
\end{align*}
$$

Next note that Item (iv) in Lemma 2.3 and induction establish that

$$
\left.\left.\begin{array}{l}
\mathbb{P}\left(\left(\cap_{n=0}^{N} A_{n}\right) \mid \sigma\left(Y_{0}\right)\right) \llbracket \mathbb{1}_{\left\{\mathcal{V}\left(Y_{0}\right) \geq c^{1 /(1-\alpha) \theta\}}\right.}^{\Omega} \rrbracket \\
\geq \\
\quad \inf \left(\left\{p_{N}(v):\left(v \in \mathbb{H}_{N-1}: \mathcal{V}(v) \geq \theta^{\left(\alpha^{(N-1)}\right)}\right)\right\} \cup\{1\}\right)  \tag{2.68}\\
\quad \cdot \mathbb{P}\left(\left(\cap_{n=0}^{N-1} A_{n}\right) \mid \sigma\left(Y_{0}\right)\right) \llbracket \mathbb{1}_{\left\{\mathcal{V}\left(Y_{0}\right) \geq c^{1} /(1-\alpha) \theta\right\}}^{\Omega} \rrbracket \\
\geq
\end{array} \prod_{n=1}^{N} \inf \left(\left\{p_{n}(v):\left(v \in \mathbb{H}_{n-1}: \mathcal{V}(v) \geq \theta^{\left(\alpha^{(n-1)}\right)}\right)\right\} \cup\{1\}\right)\right] .\right] . ~\left[\mathbb{P}\left(A_{0} \mid \sigma\left(Y_{0}\right)\right) \llbracket \mathbb{1}_{\left\{\mathcal{V}\left(Y_{0}\right) \geq c^{1 /(1-\alpha) \theta\}}\right.}^{\Omega} \rrbracket .\right.
$$

This ensures that

$$
\begin{align*}
& \mathbb{P}\left(\left(\cap_{n=0}^{N} A_{n}\right) \mid \sigma\left(Y_{0}\right)\right) \llbracket \mathbb{1}_{\left\{\mathcal{V}\left(Y_{0}\right) \geq c^{1 /(1-\alpha) \theta\}}\right.}^{\Omega} \rrbracket \\
& \geq {\left[\prod_{n=1}^{N} \inf \left(\left\{p_{n}(v):\left(v \in \mathbb{H}_{n-1}: \mathcal{V}(v) \geq \theta^{\left(\alpha^{(n-1)}\right)}\right)\right\} \cup\{1\}\right)\right] } \\
&=\left.\cdot \mathbb{P}\left(\left\{Y_{0} \in \mathbb{H}_{0}\right\} \mid \sigma\left(Y_{0}\right)\right) \llbracket \mathbb{1}_{\left\{\mathcal{V}\left(Y_{0}\right) \geq c^{1 /(1-\alpha) \theta\}}\right.}^{\Omega} \inf \left(\left\{p_{n}(v):\left(v \in \mathbb{H}_{n-1}: \mathcal{V}(v) \geq \theta^{\left(\alpha^{(n-1)}\right)}\right)\right\} \cup\{1\}\right)\right] \\
& \cdot \mathbb{E}\left[\mathbb{1}_{\left\{Y_{0} \in \mathbb{H}_{0}\right\}}^{\Omega} \mid \sigma\left(Y_{0}\right)\right] \llbracket \mathbb{1}_{\left\{\mathcal{V}\left(Y_{0}\right) \geq c^{1 /(1-\alpha) \theta\}}\right.} \rrbracket  \tag{2.69}\\
&= {\left[\prod_{n=1}^{N} \inf \left(\left\{p_{n}(v):\left(v \in \mathbb{H}_{n-1}: \mathcal{V}(v) \geq \theta^{\left(\alpha^{(n-1)}\right)}\right)\right\} \cup\{1\}\right)\right] } \\
& \cdot\left[\mathbb{1}_{\left.\left\{\mathcal{V}\left(Y_{0}\right) \geq c^{1 /(1-\alpha)} \theta\right\} \cap\left\{Y_{0} \in \mathbb{H}_{0}\right\}\right\}}^{\Omega} \rrbracket .\right.
\end{align*}
$$

Combining this with (2.67) establishes (2.60). The proof of Lemma 2.4 is thus completed.

### 2.3 Reverse a priori bounds

Lemma 2.5. Assume Setting 2.1. Then

$$
\begin{align*}
& \mathbb{E}\left[\mathcal{V}\left(Y_{N}\right)\right] \geq c^{\left(\sum_{k=0}^{N-1} \alpha^{k}\right)}  \tag{2.70}\\
& \cdot \mathbb{E}\left[\left[\mathcal{V}\left(Y_{0}\right)\right]^{\left(\alpha^{N}\right)} \mathbb{P}\left(\cap_{n=0}^{N}\left[\left\{\mathcal{V}\left(Y_{n}\right) \geq c^{\left(\sum_{k=0}^{n-1} \alpha^{k}\right)}\left[\mathcal{V}\left(Y_{0}\right)\right]^{\left(\alpha^{n}\right)}\right\} \cap\left\{Y_{n} \in \mathbb{H}_{n}\right\}\right] \mid \sigma\left(Y_{0}\right)\right)\right] .
\end{align*}
$$

Proof of Lemma 2.5. First, note that the tower property for conditional expectations implies that

$$
\begin{align*}
& \mathbb{E}\left[\mathcal{V}\left(Y_{N}\right)\right] \geq \mathbb{E}\left[\mathcal{V}\left(Y_{N}\right) \mathbb{1}_{\left\{\mathcal{V}\left(Y_{N}\right) \geq c^{\Omega\left(\sum_{k=0}^{N-1} \alpha^{k}\right)}\left[\mathcal{V}\left(Y_{0}\right)\right]\left(\alpha^{N}\right)\right\}}\right. \\
& \geq \mathbb{E}\left[c^{\left(\sum_{k=0}^{N-1} \alpha^{k}\right)}\left[\mathcal{V}\left(Y_{0}\right)\right]^{\left(\alpha^{N}\right)} \mathbb{1}_{\left\{\mathcal{V}\left(Y_{N}\right) \geq c^{\left(\sum_{k=0}^{N-1} \alpha^{k}\right)}\left[\mathcal{V}\left(Y_{0}\right)\right]\left(\alpha^{N}\right)\right\}}\right. \\
& =\mathbb{E}\left[\mathbb{E}\left[c^{\left(\sum_{k=0}^{N-1} \alpha^{k}\right)}\left[\mathcal{V}\left(Y_{0}\right)\right]^{\left(\alpha^{N}\right)} \mathbb{1}_{\left\{\mathcal{V}\left(Y_{N}\right) \geq c^{\left(\sum_{k=0}^{N-1} \alpha^{k}\right)}\left[\mathcal{V}\left(Y_{0}\right)\right]\right]^{\left.\left(\alpha^{N}\right)\right\}}} \mid \sigma\left(Y_{0}\right)\right]\right]  \tag{2.71}\\
& =c^{\left(\sum_{k=0}^{N-1} \alpha^{k}\right)} \mathbb{E}\left[\left[\mathcal{V}\left(Y_{0}\right)\right]^{\left(\alpha^{N}\right)} \mathbb{E}\left[\mathbb{1}_{\left\{\mathcal{V}\left(Y_{N}\right) \geq c^{\left(\sum_{k=0}^{N-1} \alpha^{k}\right)}\left[\mathcal{V}\left(Y_{0}\right)\right]\right]^{\left.\left(\alpha^{N}\right)\right\}}} \mid \sigma\left(Y_{0}\right)\right]\right] .
\end{align*}
$$

Hence, we obtain that

$$
\begin{align*}
& \mathbb{E}\left[\mathcal{V}\left(Y_{N}\right)\right] \\
& \geq c^{\left(\sum_{k=0}^{N-1} \alpha^{k}\right)} \mathbb{E}\left[\left[\mathcal{V}\left(Y_{0}\right)\right]^{\left(\alpha^{N}\right)} \mathbb{P}\left(\left\{\mathcal{V}\left(Y_{N}\right) \geq c^{\left(\sum_{k=0}^{N-1} \alpha^{k}\right)}\left[\mathcal{V}\left(Y_{0}\right)\right]^{\left(\alpha^{N}\right)}\right\} \mid \sigma\left(Y_{0}\right)\right)\right]  \tag{2.72}\\
& \geq c^{\left(\sum_{k=0}^{N-1} \alpha^{k}\right)} \\
& \cdot \mathbb{E}\left[\left[\mathcal{V}\left(Y_{0}\right)\right]^{\left(\alpha^{N}\right)} \mathbb{P}\left(\cap_{n=0}^{N}\left[\left\{\mathcal{V}\left(Y_{n}\right) \geq c^{\left(\sum_{k=0}^{n-1} \alpha^{k}\right)}\left[\mathcal{V}\left(Y_{0}\right)\right]^{\left(\alpha^{n}\right)}\right\} \cap\left\{Y_{n} \in \mathbb{H}_{n}\right\}\right] \mid \sigma\left(Y_{0}\right)\right)\right] .
\end{align*}
$$

The proof of Lemma [2.5 is thus completed.
Proposition 2.6. Assume Setting 2.1. Then

$$
\begin{align*}
& \mathbb{E}\left[\mathcal{V}\left(Y_{N}\right)\right] \geq \theta^{\left(\alpha^{N}\right)} \mathbb{P}\left(\left\{Y_{0} \in \mathbb{H}_{0}\right\} \cap\left\{\mathcal{V}\left(Y_{0}\right) \geq c^{1 /(1-\alpha)} \theta\right\}\right) \\
& \cdot\left[\prod _ { n = 1 } ^ { N } \operatorname { i n f } \left(\left\{\mathbb{P}\left(\left\{\mathcal{V}\left(\Phi\left(v, Z_{1}\right)\right) \geq c[\mathcal{V}(v)]^{\alpha}\right\} \cap\left\{\Phi\left(v, Z_{1}\right) \in \mathbb{H}_{n}\right\}\right)\right.\right.\right.  \tag{2.73}\\
&\left.\left.\left.:\left(v \in \mathbb{H}_{n-1}: \mathcal{V}(v) \geq \theta^{\left(\alpha^{(n-1)}\right)}\right)\right\} \cup\{1\}\right)\right]
\end{align*}
$$

Proof of Proposition 2.6. First, note that Lemma 2.5 ensures that

$$
\begin{align*}
& \mathbb{E}\left[\mathcal{V}\left(Y_{N}\right)\right] \geq c^{\left(\sum_{k=0}^{N-1} \alpha^{k}\right)} \mathbb{E}\left[\left[\mathcal{V}\left(Y_{0}\right)\right]^{\left(\alpha^{N}\right)}\right. \\
& \left.\quad \cdot \mathbb{P}\left(\cap_{n=0}^{N}\left[\left\{\mathcal{V}\left(Y_{n}\right) \geq c^{\left(\sum_{k=0}^{n-1} \alpha^{k}\right)}\left[\mathcal{V}\left(Y_{0}\right)\right]^{\left(\alpha^{n}\right)}\right\} \cap\left\{Y_{n} \in \mathbb{H}_{n}\right\}\right] \mid \sigma\left(Y_{0}\right)\right)\right] \\
& \geq c^{\left(\frac{\alpha^{N-1}}{\alpha-1}\right)} \mathbb{E}\left[\left[\mathcal{V}\left(Y_{0}\right)\right]^{\left(\alpha^{N}\right)} \mathbb{1}_{\left\{\mathcal{V}\left(Y_{0}\right) \geq c^{1}(1-\alpha) \theta\right\}}\right.  \tag{2.74}\\
& \left.\quad \cdot \mathbb{P}\left(\cap_{n=0}^{N}\left[\left\{\mathcal{V}\left(Y_{n}\right) \geq c^{\left(\sum_{k=0}^{n-1} \alpha^{k}\right)}\left[\mathcal{V}\left(Y_{0}\right)\right]^{\left(\alpha^{n}\right)}\right\} \cap\left\{Y_{n} \in \mathbb{H}_{n}\right\}\right] \mid \sigma\left(Y_{0}\right)\right)\right] .
\end{align*}
$$

The assumption that $c \in(0,1]$, the fact that $\alpha>1$, and the fact that $\alpha^{N}>1$ therefore imply that

$$
\begin{align*}
& \mathbb{E}\left[\mathcal{V}\left(Y_{N}\right)\right] \geq c^{\left(\alpha^{N} /(\alpha-1)\right)} \mathbb{E}\left[\theta^{\left(\alpha^{N}\right)} c^{\left(\alpha^{N} /(1-\alpha)\right)} \mathbb{1}_{\left\{\mathcal{V}\left(Y_{0}\right) \geq c^{1} /(1-\alpha) \theta\right\}}^{\Omega}\right.  \tag{2.75}\\
& \left.\quad \cdot \mathbb{P}\left(\cap_{n=0}^{N}\left[\left\{\mathcal{V}\left(Y_{n}\right) \geq c^{\left(\sum_{k=0}^{n-1} \alpha^{k}\right)}\left[\mathcal{V}\left(Y_{0}\right)\right]^{\left(\alpha^{n}\right)}\right\} \cap\left\{Y_{n} \in \mathbb{H}_{n}\right\}\right] \mid \sigma\left(Y_{0}\right)\right)\right] .
\end{align*}
$$

This assures that

$$
\begin{align*}
\mathbb{E} & {\left[\mathcal{V}\left(Y_{N}\right)\right] \geq \theta^{\left(\alpha^{N}\right)} c^{\left(\alpha^{N} /(1-\alpha)\right)} c^{\left(\alpha^{N} /(\alpha-1)\right)} \mathbb{E}\left[\mathbb{1}_{\left\{\mathcal{V}\left(Y_{0}\right) \geq c^{1 /(1-\alpha)} \theta\right\}}\right.} \\
& \left.\cdot \mathbb{P}\left(\cap_{n=0}^{N}\left[\left\{\mathcal{V}\left(Y_{n}\right) \geq c^{\left(\sum_{k=0}^{n-1} \alpha^{k}\right)}\left[\mathcal{V}\left(Y_{0}\right)\right]^{\left(\alpha^{n}\right)}\right\} \cap\left\{Y_{n} \in \mathbb{H}_{n}\right\}\right] \mid \sigma\left(Y_{0}\right)\right)\right]  \tag{2.76}\\
= & \theta^{\left(\alpha^{N}\right)} \mathbb{E}\left[\mathbb{1}_{\left\{\mathcal{V}\left(Y_{0}\right) \geq c^{1 /(1-\alpha)} \theta\right\}}^{\Omega}\right. \\
& \left.\cdot \mathbb{P}\left(\cap_{n=0}^{N}\left[\left\{\mathcal{V}\left(Y_{n}\right) \geq c^{\left(\sum_{k=0}^{n-1} \alpha^{k}\right)}\left[\mathcal{V}\left(Y_{0}\right)\right]^{\left(\alpha^{n}\right)}\right\} \cap\left\{Y_{n} \in \mathbb{H}_{n}\right\}\right] \mid \sigma\left(Y_{0}\right)\right)\right] .
\end{align*}
$$

Moreover, note that Lemma 2.4 ensures that

$$
\begin{gather*}
\mathbb{P}\left(\cap_{n=0}^{N}\left[\left\{\mathcal{V}\left(Y_{n}\right) \geq c^{\left(\sum_{k=0}^{n-1} \alpha^{k}\right)}\left[\mathcal{V}\left(Y_{0}\right)\right]^{\left(\alpha^{n}\right)}\right\} \cap\left\{Y_{n} \in \mathbb{H}_{n}\right\}\right] \mid \sigma\left(Y_{0}\right)\right) \\
\cdot\left[\mathbb{1}_{\left\{\mathcal{V}\left(Y_{0}\right) \geq c^{1 /(1-\alpha) \theta\}}\right.}^{\Omega}\right] \geq \llbracket \mathbb{1}_{\left\{\mathcal{V}\left(Y_{0}\right) \geq c^{1 /(1-\alpha)} \theta\right\} \cap\left\{Y_{0} \in \mathbb{H}_{0}\right\}}\left(\left[\prod _ { n = 1 } ^ { N } \operatorname { i n f } \left(\left\{\mathbb{P}\left(\left\{\mathcal{V}\left(\Phi\left(v, Z_{n}\right)\right) \geq c[\mathcal{V}(v)]^{\alpha}\right\} \cap\left\{\Phi\left(v, Z_{n}\right) \in \mathbb{H}_{n}\right\}\right)\right.\right.\right.\right. \\
\left.\left.\left.:\left(v \in \mathbb{H}_{n-1}: \mathcal{V}(v) \geq \theta^{\left(\alpha^{(n-1)}\right)}\right)\right\} \cup\{1\}\right)\right] . \tag{2.77}
\end{gather*}
$$

Furthermore, observe that the fact that $Z_{1}, Z_{2}, \ldots, Z_{N}$ are identically distributed random variables implies that

$$
\begin{gather*}
\left.\mathbb{P}\left(\cap_{n=0}^{N}\left[\left\{\mathcal{V}\left(Y_{n}\right) \geq c^{\left(\sum_{k=0}^{n-1} \alpha^{k}\right)}\left[\mathcal{V}\left(Y_{0}\right)\right]^{\left(\alpha^{n}\right)}\right\} \cap\left\{Y_{n} \in \mathbb{H}_{n}\right\}\right]\right] \sigma\left(Y_{0}\right)\right) \\
\cdot\left[\mathbb{1}_{\left\{\mathcal{V}\left(Y_{0}\right) \geq c^{1 /(1-\alpha) \theta\}}\right.}^{\Omega} \rrbracket \geq \mathbb{1}_{\left\{\mathcal{V}\left(Y_{0}\right) \geq c^{1 /(1-\alpha) \theta\} \cap\left\{Y_{0} \in \mathbb{H}_{0}\right\}}\right]} \cdot\left[\prod _ { n = 1 } ^ { N } \operatorname { i n f } \left(\left\{\mathbb{P}\left(\left\{\mathcal{V}\left(\Phi\left(v, Z_{1}\right)\right) \geq c[\mathcal{V}(v)]^{\alpha}\right\} \cap\left\{\Phi\left(v, Z_{1}\right) \in \mathbb{H}_{n}\right\}\right)\right.\right.\right.\right. \\
\left.\left.\left.:\left(v \in \mathbb{H}_{n-1}: \mathcal{V}(v) \geq \theta^{\left(\alpha^{(n-1)}\right)}\right)\right\} \cup\{1\}\right)\right] . \tag{2.78}
\end{gather*}
$$

Combining this with (2.76) proves that

$$
\begin{gather*}
\mathbb{E}\left[\mathcal{V}\left(Y_{N}\right)\right] \geq \theta^{\left(\alpha^{N}\right)} \mathbb{P}\left(\left\{\mathcal{V}\left(Y_{0}\right) \geq c^{1 /(1-\alpha)} \theta\right\} \cap\left\{Y_{0} \in \mathbb{H}_{0}\right\}\right) \\
\cdot\left[\prod _ { n = 1 } ^ { N } \operatorname { i n f } \left(\left\{\mathbb{P}\left(\left\{\mathcal{V}\left(\Phi\left(v, Z_{1}\right)\right) \geq c[\mathcal{V}(v)]^{\alpha}\right\} \cap\left\{\Phi\left(v, Z_{1}\right) \in \mathbb{H}_{n}\right\}\right)\right.\right.\right.  \tag{2.79}\\
\left.\left.\left.:\left(v \in \mathbb{H}_{n-1}: \mathcal{V}(v) \geq \theta^{\left(\alpha^{(n-1)}\right)}\right)\right\} \cup\{1\}\right)\right] .
\end{gather*}
$$

The proof of Proposition 2.6 is thus completed.
Corollary 2.7. Let $(H, \mathcal{H})$ and $(U, \mathcal{U})$ be measurable spaces, let $\Phi: H \times U \rightarrow H$ be an $(\mathcal{H} \otimes \mathcal{U}) / \mathcal{H}$-measurable function, let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space, let $\mathbb{H} \in \mathcal{H}, N \in$ $\mathbb{N}, c \in(0,1], \alpha, \theta \in(1, \infty)$, let $Z_{1}, Z_{2}, \ldots, Z_{N}: \Omega \rightarrow U$ be i.i.d. random variables, let $Y_{0}, Y_{1}, \ldots, Y_{N}: \Omega \rightarrow H$ be random variables which satisfy for all $n \in\{1,2, \ldots, N\}$ that $Y_{n}=\Phi\left(Y_{n-1}, Z_{n}\right)$, assume that $\sigma\left(Y_{0}\right)$ and $\sigma\left(Z_{1}, Z_{2}, \ldots, Z_{N}\right)$ are independent on $(\Omega, \mathcal{F}, \mathbb{P})$, and let $\mathcal{V}: H \rightarrow[0, \infty)$ be an $\mathcal{H} / \mathcal{B}([0, \infty))$-measurable function. Then

$$
\begin{gather*}
\mathbb{E}\left[\mathcal{V}\left(Y_{N}\right)\right] \geq \theta^{\left(\alpha^{N}\right)} \mathbb{P}\left(\left\{Y_{0} \in \mathbb{H}\right\} \cap\left\{\mathcal{V}\left(Y_{0}\right) \geq c^{1 /(1-\alpha)} \theta\right\}\right) \\
\cdot\left[\prod _ { n = 1 } ^ { N } \operatorname { i n f } \left(\left\{\mathbb{P}\left(\left\{\mathcal{V}\left(\Phi\left(v, Z_{1}\right)\right) \geq c[\mathcal{V}(v)]^{\alpha}\right\} \cap\left\{\Phi\left(v, Z_{1}\right) \in \mathbb{H}\right\}\right)\right.\right.\right.  \tag{2.80}\\
\left.\left.\left.:\left(v \in \mathbb{H}: \mathcal{V}(v) \geq \theta^{\left(\alpha^{(n-1)}\right)}\right)\right\} \cup\{1\}\right)\right] .
\end{gather*}
$$

Proof of Corollary 2.7. First, note that Proposition 2.6 (with $(H, \mathcal{H})=(H, \mathcal{H})$, $(U, \mathcal{U})=(U, \mathcal{U}), \Phi=\Phi,(\Omega, \mathcal{F}, \mathbb{P})=(\Omega, \mathcal{F}, \mathbb{P}), N=N, c=c, \alpha=\alpha, \theta=\theta, \mathbb{H}_{n}=\mathbb{H}$
for $n \in\{0,1, \ldots, N\}, Z_{n}=Z_{n}$ for $n \in\{1,2, \ldots, N\}, Y_{n}=Y_{n}$ for $n \in\{0,1, \ldots, N\}$, $\mathcal{V}=\mathcal{V}$ in the notation of Proposition (2.6) ensures that

$$
\begin{gather*}
\mathbb{E}\left[\mathcal{V}\left(Y_{N}\right)\right] \geq \theta^{\left(\alpha^{N}\right)} \mathbb{P}\left(\left\{Y_{0} \in \mathbb{H}\right\} \cap\left\{\mathcal{V}\left(Y_{0}\right) \geq c^{1 /(1-\alpha)} \theta\right\}\right) \\
\cdot\left[\prod _ { n = 1 } ^ { N } \operatorname { i n f } \left(\left\{\mathbb{P}\left(\left\{\mathcal{V}\left(\Phi\left(v, Z_{1}\right)\right) \geq c[\mathcal{V}(v)]^{\alpha}\right\} \cap\left\{\Phi\left(v, Z_{1}\right) \in \mathbb{H}\right\}\right)\right.\right.\right.  \tag{2.81}\\
\left.\left.\left.:\left(v \in \mathbb{H}: \mathcal{V}(v) \geq \theta^{\left(\alpha^{(n-1)}\right)}\right)\right\} \cup\{1\}\right)\right]
\end{gather*}
$$

The proof of Corollary 2.7 is thus completed.
Corollary 2.8. Let $(H, \mathcal{H})$ and $(U, \mathcal{U})$ be measurable spaces, let $\Phi: H \times U \rightarrow H$ be an $(\mathcal{H} \otimes \mathcal{U}) / \mathcal{H}$-measurable function, let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space, let $N \in \mathbb{N}$, $c \in(0,1], \alpha, \theta \in(1, \infty)$, let $Z_{1}, Z_{2}, \ldots, Z_{N}: \Omega \rightarrow U$ be i.i.d. random variables, let $Y_{0}, Y_{1}, \ldots, Y_{N}: \Omega \rightarrow H$ be random variables which satisfy for all $n \in\{1,2, \ldots, N\}$ that $Y_{n}=\Phi\left(Y_{n-1}, Z_{n}\right)$, assume that $\sigma\left(Y_{0}\right)$ and $\sigma\left(Z_{1}, Z_{2}, \ldots, Z_{N}\right)$ are independent on $(\Omega, \mathcal{F}, \mathbb{P})$, and let $\mathcal{V}: H \rightarrow[0, \infty)$ be an $\mathcal{H} / \mathcal{B}([0, \infty))$-measurable function. Then

$$
\begin{align*}
& \mathbb{E}\left[\mathcal{V}\left(Y_{N}\right)\right] \geq \theta^{\left(\alpha^{N}\right)} \mathbb{P}\left(\mathcal{V}\left(Y_{0}\right) \geq c^{1 /(1-\alpha)} \theta\right)  \tag{2.82}\\
& \quad \cdot\left[\prod_{n=1}^{N} \inf \left(\left\{\mathbb{P}\left(\mathcal{V}\left(\Phi\left(v, Z_{1}\right)\right) \geq c[\mathcal{V}(v)]^{\alpha}\right):\left(v \in H: \mathcal{V}(v) \geq \theta^{\left(\alpha^{(n-1)}\right)}\right)\right\} \cup\{1\}\right)\right] .
\end{align*}
$$

Proof of Corollary 2.8. First, note that Corollary 2.7 $($ with $(H, \mathcal{H})=(H, \mathcal{H}),(U, \mathcal{U})=$ $(U, \mathcal{U}), \Phi=\Phi,(\Omega, \mathcal{F}, \mathbb{P})=(\Omega, \mathcal{F}, \mathbb{P}), \mathbb{H}=H, N=N, c=c, \alpha=\alpha, \theta=\theta, Z_{n}=Z_{n}$ for $n \in\{1,2, \ldots, N\}, Y_{n}=Y_{n}$ for $n \in\{0,1, \ldots, N\}, \mathcal{V}=\mathcal{V}$ in the notation of Corollary 2.7) ensures that

$$
\begin{align*}
& \mathbb{E}\left[\mathcal{V}\left(Y_{N}\right)\right] \geq \theta^{\left(\alpha^{N}\right)} \mathbb{P}\left(\left\{Y_{0} \in H\right\} \cap\left\{\mathcal{V}\left(Y_{0}\right) \geq c^{1 /(1-\alpha)} \theta\right\}\right) \\
& \cdot\left[\prod _ { n = 1 } ^ { N } \operatorname { i n f } \left(\left\{\mathbb{P}\left(\left\{\mathcal{V}\left(\Phi\left(v, Z_{1}\right)\right) \geq c[\mathcal{V}(v)]^{\alpha}\right\} \cap\left\{\Phi\left(v, Z_{1}\right) \in H\right\}\right)\right.\right.\right.  \tag{2.83}\\
&\left.\left.\left.:\left(v \in H: \mathcal{V}(v) \geq \theta^{\left(\alpha^{(n-1)}\right)}\right)\right\} \cup\{1\}\right)\right]
\end{align*}
$$

Moreover, observe that the fact that $Y_{0}(\Omega) \subseteq H$ implies that

$$
\begin{equation*}
\left\{Y_{0} \in H\right\} \cap\left\{\mathcal{V}\left(Y_{0}\right) \geq c^{1 /(1-\alpha)} \theta\right\}=\left\{\mathcal{V}\left(Y_{0}\right) \geq c^{1 /(1-\alpha)} \theta\right\} \tag{2.84}
\end{equation*}
$$

In addition, note that the fact that $\Phi(H \times U) \subseteq H$ assures that for all $v \in H$ it holds that

$$
\begin{equation*}
\left\{\mathcal{V}\left(\Phi\left(v, Z_{1}\right)\right) \geq c[\mathcal{V}(v)]^{\alpha}\right\} \cap\left\{\Phi\left(v, Z_{1}\right) \in H\right\}=\left\{\mathcal{V}\left(\Phi\left(v, Z_{1}\right)\right) \geq c[\mathcal{V}(v)]^{\alpha}\right\} \tag{2.85}
\end{equation*}
$$

Combining this with (2.84) and (2.83) establishes (2.82). The proof of Corollary 2.8 is thus completed.

## 3 Divergence results for Euler-type approximation schemes for SPDEs with superlinearly growing nonlinearities

Throughout this section the following setting is frequently used.
Setting 3.1. Let $\lambda: \mathcal{B}((0,1)) \rightarrow[0, \infty]$ be the Lebesgue-Borel measure on $(0,1)$, let $\left(H,\|\cdot\|_{H},\langle\cdot, \cdot\rangle_{H}\right)=\left(L^{2}(\lambda ; \mathbb{R}),\|\cdot\|_{L^{2}(\lambda ; \mathbb{R})},\langle\cdot, \cdot\rangle_{L^{2}(\lambda ; \mathbb{R})}\right)$, let $e_{n} \in H, n \in \mathbb{Z}$, satisfy for all $n \in \mathbb{N}$ that $e_{0}(\cdot)=1, e_{n}(\cdot)=\sqrt{2} \cos (2 n \pi(\cdot))$, and $e_{-n}(\cdot)=\sqrt{2} \sin (2 n \pi(\cdot))$, let $A: D(A) \subseteq H \rightarrow H$ be the linear operator which satisfies that

$$
\begin{equation*}
D(A)=\left\{v \in H: \sum_{n \in \mathbb{Z}} n^{4}\left|\left\langle e_{n}, v\right\rangle_{H}\right|^{2}<\infty\right\} \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\forall v \in D(A): \quad A v=\sum_{n \in \mathbb{Z}}-4 \pi^{2} n^{2}\left\langle e_{n}, v\right\rangle_{H} e_{n}, \tag{3.2}
\end{equation*}
$$

let $\eta \in(0, \infty)$, let $\left(H_{r},\|\cdot\|_{H_{r}},\langle\cdot, \cdot\rangle_{H_{r}}\right)$, $r \in \mathbb{R}$, be a family of interpolation spaces associated to $\eta-A$, and let $P_{N} \in L\left(H_{-1}, H_{1}\right), N \in \mathbb{N}$, be the linear operators which satisfy for all $N \in \mathbb{N}, v \in H$ that $P_{N}(v)=\sum_{n=-N}^{N}\left\langle e_{n}, v\right\rangle_{H} e_{n}$.

### 3.1 A continuous embedding based on the Sobolev embedding theorem

The next elementary and well-known result, Lemma 3.2below, presents a special case of the Sobolev embedding theorem. Lemma 3.2 is used in our proof of Proposition 3.6 in Section 3.3 below. For completeness we also include in this article the short proof of Lemma 3.2,

Lemma 3.2. Assume Setting 3.1 and let $p \in[2, \infty), \chi \in[1 / 4-1 /(2 p), \infty)$. Then it holds that $H_{\chi} \subseteq L^{p}(\lambda ; \mathbb{R})$ and

$$
\begin{equation*}
0<\sup _{v \in H_{\chi} \backslash\{0\}} \frac{\|v\|_{L^{p}(\lambda ; \mathbb{R})}}{\|v\|_{H_{\chi}}}<\infty . \tag{3.3}
\end{equation*}
$$

Proof of Lemma 3.2. Throughout this proof let $C \in[0, \infty]$ be the extended real number which satisfies that

$$
\begin{equation*}
C=\sup _{v \in\left(L^{p}(\lambda ; \mathbb{R}) \cap H_{\chi}\right) \backslash\{0\}} \frac{\|v\|_{L^{p}(\lambda ; \mathbb{R})}}{\|v\|_{H_{\chi}}} . \tag{3.4}
\end{equation*}
$$

Note that

$$
\begin{equation*}
C \geq \frac{\left\|e_{0}\right\|_{L^{p}(\lambda ; \mathbb{R})}}{\left\|e_{0}\right\|_{H_{\chi}}}=\frac{1}{|\eta|^{\chi}}>0 \tag{3.5}
\end{equation*}
$$

Next observe that the hypothesis that $\chi \geq 1 / 4-1 /(2 p)$ ensures that

$$
\begin{equation*}
2 \chi \geq \max \{1 / 2-1 / p, 0\} \tag{3.6}
\end{equation*}
$$

Combining this with the Sobolev embedding theorem implies that $H_{\chi} \subseteq L^{p}(\lambda ; \mathbb{R})$ and

$$
\begin{equation*}
C=\sup _{v \in H_{\chi} \backslash\{0\}} \frac{\|v\|_{L^{p}(\lambda ; \mathbb{R})}}{\|v\|_{H_{\chi}}}<\infty . \tag{3.7}
\end{equation*}
$$

This and (3.5) establish (3.3). The proof of Lemma 3.2 is thus completed.

### 3.2 Lower bounds for the probabilities of certain rare events

In the next result, Lemma 3.3 below, we establish an elementary property for certain normally distributed random variables. We use Lemma 3.3 to establish in Lemma 3.4 below lower bounds for the probabilities of certain rare events. We refer to the statement and the proof of Lemma 3.4 below for more details.

Lemma 3.3. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space, let $c \in \mathbb{R}, T, \varepsilon \in(0, \infty), N \in \mathbb{N}$, and let $Y: \Omega \rightarrow \mathbb{R}$ be a normalkly distributed random variable with mean 0 and variance $T / N$. Then

$$
\begin{equation*}
\mathbb{P}(|c-Y| \leq \varepsilon) \geq \frac{\varepsilon}{\sqrt{2 \pi T}} \exp \left(-\frac{N\left(c^{2}+\varepsilon^{2}\right)}{T}\right) \tag{3.8}
\end{equation*}
$$

Proof of Lemma 3.3. First, note that

$$
\begin{align*}
& \mathbb{P}(|c-Y| \leq \varepsilon)=\mathbb{P}(|Y-c| \leq \varepsilon) \\
& =\mathbb{P}(Y-c \in[-\varepsilon, \varepsilon])=\mathbb{P}(Y \in[c-\varepsilon, c+\varepsilon])  \tag{3.9}\\
& =\int_{c-\varepsilon}^{c+\varepsilon} \frac{\sqrt{N}}{\sqrt{2 \pi T}} e^{-\frac{N y^{2}}{2 T}} d y .
\end{align*}
$$

This and the fact that $\sup _{x \in[c-\varepsilon, c+\varepsilon]} x^{2}=\max \left\{(c-\varepsilon)^{2},(c+\varepsilon)^{2}\right\}$ ensure that

$$
\begin{equation*}
\mathbb{P}(|c-Y| \leq \varepsilon) \geq \frac{2 \varepsilon \sqrt{N}}{\sqrt{2 \pi T}} e^{-\frac{N \max \left\{(c-\varepsilon)^{2},(c+\varepsilon)^{2}\right\}}{2 T}} . \tag{3.10}
\end{equation*}
$$

Moreover, observe that the fact that $\forall a, b \in[0, \infty): \max \{a, b\} \leq a+b$ assures that

$$
\begin{align*}
& \max \left\{(c-\varepsilon)^{2},(c+\varepsilon)^{2}\right\} \leq(c-\varepsilon)^{2}+(c+\varepsilon)^{2}  \tag{3.11}\\
& =c^{2}+\varepsilon^{2}-2 c \varepsilon+c^{2}+\varepsilon^{2}+2 c \varepsilon=2\left(c^{2}+\varepsilon^{2}\right) .
\end{align*}
$$

This implies that

$$
\begin{equation*}
\frac{N \max \left\{(c-\varepsilon)^{2},(c+\varepsilon)^{2}\right\}}{2 T} \leq \frac{N\left(c^{2}+\varepsilon^{2}\right)}{T} . \tag{3.12}
\end{equation*}
$$

Combining this with (3.10) proves that

$$
\begin{equation*}
\mathbb{P}(|c-Y| \leq \varepsilon) \geq \frac{2 \varepsilon \sqrt{N}}{\sqrt{2 \pi T}} e^{-\frac{N\left(c^{2}+\varepsilon^{2}\right)}{T}} \geq \frac{\varepsilon}{\sqrt{2 \pi T}} \exp \left(-\frac{N\left(c^{2}+\varepsilon^{2}\right)}{T}\right) . \tag{3.13}
\end{equation*}
$$

The proof of Lemma 3.3 is thus completed.

Lemma 3.4. Assume Setting 3.1, let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space, let $T, x, \gamma \in$ $(0, \infty), \nu \in(1 / 4,1], N \in \mathbb{N}, v \in H$ satisfy that

$$
\begin{equation*}
\gamma=\sum_{n=-N}^{N}\left(\eta+4 \pi^{2} n^{2}\right)^{-2 \nu} \tag{3.14}
\end{equation*}
$$

and let $W:[0, T] \times \Omega \rightarrow H_{-\nu}$ be an $\operatorname{Id}_{H}$-cylindrical Wiener process. Then
$\mathbb{P}\left(\left\|(\eta-A)^{-\nu}\left(P_{N}(v)-P_{N}\left(W_{T / N}\right)\right)\right\|_{H} \leq x\right) \geq\left[\frac{x}{\sqrt{2 \pi \gamma T}}\right]^{(2 N+1)} \exp \left(-\frac{3 N^{2}}{T}\left[\|v\|_{H}^{2}+\frac{x^{2}}{\gamma}\right]\right)$.

Proof of Lemma 3.4. Throughout this proof let $\beta^{n}: \Omega \rightarrow \mathbb{R}, n \in\{-N,-N+$ $1, \ldots, N-1, N\}$, be the random variables which satisfy for all $n \in\{-N,-N+$ $1, \ldots, N-1, N\}$ that

$$
\begin{equation*}
\beta^{n}=\left\langle e_{n}, P_{N}\left(W_{T / N}\right)\right\rangle_{H} \tag{3.16}
\end{equation*}
$$

and let $v_{n} \in \mathbb{R}, n \in \mathbb{Z}$, be the real numbers which satisfy for all $n \in \mathbb{Z}$ that

$$
\begin{equation*}
v_{n}=\left\langle e_{n}, v\right\rangle_{H} \tag{3.17}
\end{equation*}
$$

Note that Parseval's identity assures that

$$
\begin{align*}
& \mathbb{P}\left(\left\|(\eta-A)^{-\nu}\left(P_{N}(v)-P_{N}\left(W_{T / N}\right)\right)\right\|_{H} \leq x\right) \\
& =\mathbb{P}\left(\left\|(\eta-A)^{-\nu}\left(P_{N}(v)-P_{N}\left(W_{T / N}\right)\right)\right\|_{H}^{2} \leq x^{2}\right)  \tag{3.18}\\
& =\mathbb{P}\left(\sum_{n=-\infty}^{\infty}\left|\left\langle(\eta-A)^{-\nu}\left(P_{N}(v)-P_{N}\left(W_{T / N}\right)\right), e_{n}\right\rangle_{H}\right|^{2} \leq x^{2}\right)
\end{align*}
$$

This implies that

$$
\begin{align*}
& \mathbb{P}\left(\left\|(\eta-A)^{-\nu}\left(P_{N}(v)-P_{N}\left(W_{T / N}\right)\right)\right\|_{H} \leq x\right) \\
& =\mathbb{P}\left(\sum_{n=-\infty}^{\infty}\left|\left\langle P_{N}(v)-P_{N}\left(W_{T / N}\right),(\eta-A)^{-\nu} e_{n}\right\rangle_{H}\right|^{2} \leq x^{2}\right)  \tag{3.19}\\
& =\mathbb{P}\left(\sum_{n=-\infty}^{\infty}\left|\left\langle P_{N}(v)-P_{N}\left(W_{T / N}\right),\left(\eta+4 \pi^{2} n^{2}\right)^{-\nu} e_{n}\right\rangle_{H}\right|^{2} \leq x^{2}\right)
\end{align*}
$$

Hence, we obtain that

$$
\begin{align*}
& \mathbb{P}\left(\left\|(\eta-A)^{-\nu}\left(P_{N}(v)-P_{N}\left(W_{T / N}\right)\right)\right\|_{H} \leq x\right) \\
& =\mathbb{P}\left(\sum_{n=-N}^{N}\left(\eta+4 \pi^{2} n^{2}\right)^{-2 \nu}\left|\left\langle P_{N}(v)-P_{N}\left(W_{T / N}\right), e_{n}\right\rangle_{H}\right|^{2} \leq x^{2}\right) \\
& =\mathbb{P}\left(\sum_{n=-N}^{N}\left(\eta+4 \pi^{2} n^{2}\right)^{-2 \nu}\left|\left\langle e_{n}, v\right\rangle_{H}-\left\langle P_{N}\left(W_{T / N}\right), e_{n}\right\rangle_{H}\right|^{2} \leq x^{2}\right)  \tag{3.20}\\
& =\mathbb{P}\left(\sum_{n=-N}^{N}\left(\eta+4 \pi^{2} n^{2}\right)^{-2 \nu}\left|v_{n}-\beta^{n}\right|^{2} \leq x^{2}\right) .
\end{align*}
$$

This proves that

$$
\begin{align*}
& \mathbb{P}\left(\left\|(\eta-A)^{-\nu}\left(P_{N}(v)-P_{N}\left(W_{T / N}\right)\right)\right\|_{H} \leq x\right) \\
& \geq \mathbb{P}\left(\left(\sum_{n=-N}^{N}\left(\eta+4 \pi^{2} n^{2}\right)^{-2 \nu}\right) \sup _{n \in\{-N, \ldots, N\}}\left|v_{n}-\beta^{n}\right|^{2} \leq x^{2}\right)  \tag{3.21}\\
& =\mathbb{P}\left(\sup _{n \in\{-N, \ldots, N\}}\left|v_{n}-\beta^{n}\right|^{2} \leq \frac{x^{2}}{\gamma}\right) .
\end{align*}
$$

The fact that $v_{n}-\beta^{n}, n \in\{-N,-N+1, \ldots, N-1, N\}$, are independent random variables (cf., e.g., Proposition 2.5.2 in [113]) therefore implies that

$$
\begin{align*}
& \mathbb{P}\left(\left\|(\eta-A)^{-\nu}\left(P_{N}(v)-P_{N}\left(W_{T / N}\right)\right)\right\|_{H} \leq x\right) \\
& \geq \mathbb{P}\left(\cap_{n=-N}^{N}\left\{\left|v_{n}-\beta^{n}\right|^{2} \leq \frac{x^{2}}{\gamma}\right\}\right)  \tag{3.22}\\
& =\prod_{n=-N}^{N} \mathbb{P}\left(\left|v_{n}-\beta^{n}\right|^{2} \leq \frac{x^{2}}{\gamma}\right) .
\end{align*}
$$

Next note that Lemma 3.3 (with $(\Omega, \mathcal{F}, \mathbb{P})=(\Omega, \mathcal{F}, \mathbb{P}), c=v_{n}, T=T, \varepsilon=\frac{x}{\sqrt{\gamma}}$, $N=N, Y=\beta^{n}$ for $n \in\{-N, \ldots, N\}$ in the notation of Lemma (3.3) ensures for all $n \in\{-N, \ldots, N\}$ that

$$
\begin{align*}
& \mathbb{P}\left(\left|v_{n}-\beta^{n}\right|^{2} \leq \frac{x^{2}}{\gamma}\right)=\mathbb{P}\left(\left|v_{n}-\beta^{n}\right| \leq \frac{x}{\sqrt{\gamma}}\right)  \tag{3.23}\\
& \geq \frac{x}{\sqrt{2 \pi \gamma T}} \exp \left(-\frac{N}{T}\left[\left|v_{n}\right|^{2}+\frac{x^{2}}{\gamma}\right]\right)
\end{align*}
$$

Combining this with (3.22) establishes that

$$
\begin{align*}
& \mathbb{P}\left(\left\|(\eta-A)^{-\nu}\left(P_{N}(v)-P_{N}\left(W_{T / N}\right)\right)\right\|_{H} \leq x\right) \\
& \geq \prod_{n=-N}^{N}\left[\frac{x}{\sqrt{2 \pi \gamma T}} \exp \left(-\frac{N}{T}\left[\left|v_{n}\right|^{2}+\frac{x^{2}}{\gamma}\right]\right)\right]  \tag{3.24}\\
& =\left[\frac{x}{\sqrt{2 \pi \gamma T}}\right]^{(2 N+1)} \exp \left(-\sum_{n=-N}^{N} \frac{N\left[\left|v_{n}\right|^{2}+\frac{x^{2}}{\gamma}\right]}{T}\right)
\end{align*}
$$

Hence, we obtain that

$$
\begin{align*}
& \mathbb{P}\left(\left\|(\eta-A)^{-\nu}\left(P_{N}(v)-P_{N}\left(W_{T / N}\right)\right)\right\|_{H} \leq x\right) \\
& \geq\left[\frac{x}{\sqrt{2 \pi \gamma T}}\right]^{(2 N+1)} \exp \left(-\frac{N}{T}\left[\|v\|_{H}^{2}+\frac{(2 N+1) x^{2}}{\gamma}\right]\right) \\
& \geq\left[\frac{x}{\sqrt{2 \pi \gamma T}}\right]^{(2 N+1)} \exp \left(-\frac{N}{T}\left[3 N\|v\|_{H}^{2}+\frac{3 N x^{2}}{\gamma}\right]\right)  \tag{3.25}\\
& \geq\left[\frac{x}{\sqrt{2 \pi \gamma T}}\right]^{(2 N+1)} \exp \left(-\frac{3 N^{2}}{T}\left[\|v\|_{H}^{2}+\frac{x^{2}}{\gamma}\right]\right) .
\end{align*}
$$

The proof of Lemma 3.4 is thus completed.
Corollary 3.5. Assume Setting 3.1, let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space, let $T, x, \gamma, y \in$ $(0, \infty), p \in[2, \infty), \delta \in[1, \infty), \nu \in(1 / 4,3 / 4), s \in(1 / 4,1-\nu], N \in \mathbb{N}, v \in L^{p}(\lambda ; \mathbb{R})$, $S \in L\left(H, H_{\nu+s}\right)$ satisfy that

$$
\begin{gather*}
\gamma=\sum_{n=-N}^{N}\left(\eta+4 \pi^{2} n^{2}\right)^{-2 \nu},  \tag{3.26}\\
\left\|(\eta-A)^{(\nu+s)} S\right\|_{L(H)} \leq \delta\left[\frac{N}{T}\right]^{(\nu+s)},  \tag{3.27}\\
\forall u \in H:(\eta-A)^{-\nu} S u=S(\eta-A)^{-\nu} u,  \tag{3.28}\\
y=\frac{x}{\delta}\left[\frac{T}{N}\right]^{(\nu+s)}\left\|(\eta-A)^{-s}\right\|_{L\left(H, L^{p}(\lambda ; \mathbb{R})\right)}^{-1}, \tag{3.29}
\end{gather*}
$$

and let $W:[0, T] \times \Omega \rightarrow H_{-\nu}$ be an $\operatorname{Id}_{H}$-cylindrical Wiener process. Then

$$
\begin{align*}
& \mathbb{P}\left(\left\|S\left(P_{N}(v)-P_{N}\left(W_{T / N}\right)\right)\right\|_{L^{p}(\lambda ; \mathbb{R})} \leq x\right)  \tag{3.30}\\
& \geq\left[\frac{y}{\sqrt{2 \pi \gamma T}}\right]^{(2 N+1)} \exp \left(-\frac{3 N^{2}}{T}\left[\|v\|_{H}^{2}+\frac{y^{2}}{\gamma}\right]\right) .
\end{align*}
$$

Proof of Corollary 3.5. First, note that (3.28) ensures that

$$
\begin{align*}
& \left\|S\left(P_{N}(v)-P_{N}\left(W_{T / N}\right)\right)\right\|_{L^{p}(\lambda ; \mathbb{R})} \\
& =\left\|(\eta-A)^{\nu}(\eta-A)^{-\nu} S\left(P_{N}(v)-P_{N}\left(W_{T / N}\right)\right)\right\|_{L^{p}(\lambda ; \mathbb{R})}  \tag{3.31}\\
& =\left\|(\eta-A)^{\nu} S(\eta-A)^{-\nu}\left(P_{N}(v)-P_{N}\left(W_{T / N}\right)\right)\right\|_{L^{p}(\lambda ; \mathbb{R})} .
\end{align*}
$$

This implies that

$$
\begin{align*}
& \left\|S\left(P_{N}(v)-P_{N}\left(W_{T / N}\right)\right)\right\|_{L^{p}(\lambda ; \mathbb{R})}  \tag{3.32}\\
& \leq\left\|(\eta-A)^{s}(\eta-A)^{-s}(\eta-A)^{\nu} S\right\|_{L\left(H, L^{p}(\lambda ; \mathbb{R})\right)}\left\|(\eta-A)^{-\nu}\left(P_{N}(v)-P_{N}\left(W_{T / N}\right)\right)\right\|_{H} \\
& \leq\left\|(\eta-A)^{(\nu+s)} S\right\|_{L(H)}\left\|(\eta-A)^{-s}\right\|_{L\left(H, L^{p}(\lambda ; \mathbb{R})\right)}\left\|(\eta-A)^{-\nu}\left(P_{N}(v)-P_{N}\left(W_{T / N}\right)\right)\right\|_{H} .
\end{align*}
$$

Combining this with (3.27) proves that

$$
\begin{align*}
& \left\|S\left(P_{N}(v)-P_{N}\left(W_{T / N}\right)\right)\right\|_{L^{p}(\lambda ; \mathbb{R})} \\
& \leq \delta\left[\frac{N}{T}\right]^{(\nu+s)}\left\|(\eta-A)^{-s}\right\|_{L\left(H, L^{p}(\lambda ; \mathbb{R})\right)}\left\|(\eta-A)^{-\nu}\left(P_{N}(v)-P_{N}\left(W_{T / N}\right)\right)\right\|_{H} . \tag{3.33}
\end{align*}
$$

Hence, we obtain that

$$
\begin{align*}
& \mathbb{P}\left(\left\|S\left(P_{N}(v)-P_{N}\left(W_{T / N}\right)\right)\right\|_{L^{p}(\lambda ; \mathbb{R})} \leq x\right)  \tag{3.34}\\
& \geq \mathbb{P}\left(\left\|(\eta-A)^{-\nu}\left(P_{N}(v)-P_{N}\left(W_{T / N}\right)\right)\right\|_{H} \leq \frac{x}{\delta}\left[\frac{T}{N}\right]^{(\nu+s)}\left\|(\eta-A)^{-s}\right\|_{L\left(H, L^{p}(\lambda ; \mathbb{R})\right)}^{-1}\right)
\end{align*}
$$

Combining this with Lemma 3.4 (with $(\Omega, \mathcal{F}, \mathbb{P})=(\Omega, \mathcal{F}, \mathbb{P}), T=T, x=y, \nu=\nu$, $N=N, v=v, W=W$ in the notation of Lemma 3.4) establishes (3.30). The proof of Corollary 3.5 is thus completed.

### 3.3 Divergence results for general Euler-type approximation schemes for SPDEs with superlinearly growing nonlinearities

Proposition 3.6. Assume Setting 3.1. let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space, let $T \in$ $(0, \infty), q \in\{2,3, \ldots\}, a_{0}, a_{1}, \ldots, a_{q-1} \in \mathbb{R}, a_{q} \in \mathbb{R} \backslash\{0\}, \chi \in(1 / 4,1], \nu \in(1 / 4,3 / 4)$, $\xi \in H_{\chi}$, let $W:[0, T] \times \Omega \rightarrow H_{-\nu}$ be an $\operatorname{Id}_{H}$-cylindrical Wiener process, let $S_{N} \in$ $L\left(H_{-\nu}\right), N \in \mathbb{N}$, be linear operators which satisfy for all $N \in \mathbb{N}, r \in[-\nu, \infty)$, $v, u \in H$ that

$$
\begin{gather*}
S_{N}\left(H_{r}\right) \subseteq H_{r+1}, \quad S_{N} e_{0}=e_{0}, \quad\left\langle S_{N} u, v\right\rangle_{H}=\left\langle u, S_{N} v\right\rangle_{H},  \tag{3.35}\\
\sup _{M \in \mathbb{N}} \sup _{s \in[0,1]} \sup _{w \in H,\|w\|_{H} \leq 1}\left(M^{-s}\left\|S_{M} w\right\|_{H_{s}}\right)<\infty  \tag{3.36}\\
(\eta-A)^{-\nu} S_{N} v=S_{N}(\eta-A)^{-\nu} v, \quad \text { and } \quad P_{N} S_{N} v=S_{N} P_{N} v, \tag{3.37}
\end{gather*}
$$

and let $Y^{N}:\{0,1, \ldots, N\} \times \Omega \rightarrow H, N \in \mathbb{N}$, be the stochastic processes which satisfy for all $N \in \mathbb{N}, n \in\{0,1, \ldots, N-1\}$ that $Y_{0}^{N}=P_{N}(\xi)$ and

$$
\begin{equation*}
Y_{n+1}^{N}=P_{N} S_{N}\left(Y_{n}^{N}+\frac{T}{N}\left(\sum_{k=0}^{q} a_{k}\left[Y_{n}^{N}\right]^{k}\right)+\left(W_{\frac{(n+1) T}{N}}-W_{\frac{n T}{N}}\right)\right) . \tag{3.38}
\end{equation*}
$$

Then it holds for all $r \in(0, \infty)$ that $\liminf _{N \rightarrow \infty} \mathbb{E}\left[\left\|Y_{N}^{N}\right\|_{H}^{r}\right]=\infty$.

Proof of Proposition 3.6. Throughout this proof let $p \in[2 q, \infty), s \in(1 / 4,1-\nu]$, let $\zeta_{r} \in[1, \infty), r \in[0,1]$, be real numbers which satisfy for all $r \in[0,1]$ that

$$
\begin{equation*}
\sup _{N \in \mathbb{N}}\left(N^{-r}\left\|(\eta-A)^{r} S_{N}\right\|_{L(H)}\right) \leq \zeta_{r} T^{-r} \tag{3.39}
\end{equation*}
$$

let $C \in(0, \infty)$ be the real number which satisfies that

$$
\begin{equation*}
C=\sup _{v \in\left(L^{p}(\lambda ; \mathbb{R}) \cap H_{\chi}\right) \backslash\{0\}} \frac{\|v\|_{L^{p}(\lambda ; \mathbb{R})}}{\|v\|_{H_{\chi}}} \tag{3.40}
\end{equation*}
$$

(cf. Lemma3.2), for every $N \in \mathbb{N}, r \in(0, \infty)$ let $\kappa, \vartheta, \rho_{N, r}, \theta_{N, r} \in(1, \infty), c_{N, r} \in(0,1]$, $\gamma_{N}, y_{N}, z_{N, r}, g_{N, r} \in(0, \infty)$ be the real numbers which satisfy that

$$
\begin{gather*}
\kappa=(q+2)|\max \{C, 1\}|^{q} \max \{T, 1\} \max _{k \in\{0,1, \ldots, q\}}\left\{1,\left|a_{k}\right|\right\} \max \left\{1,\|\xi\|_{H_{\chi}}^{q}\right\},  \tag{3.41}\\
\vartheta=2^{(q-1)} \max \{C, 1\} \max \{T, 1\} \max _{k \in\{0,1, \ldots, q\}}\left\{8,\left|a_{k}\right|\right\},  \tag{3.42}\\
\rho_{N, r}=\max \left\{8 \vartheta^{2} \max \{C, 1\} \max \{T, 1\} \frac{\zeta_{\chi} N}{\left|c_{N, r}\right|^{1 / r} \min \{T, 1\}}, \frac{1}{2^{1 / q}-1}\right\},  \tag{3.43}\\
\theta_{N, r}=\max \left\{\left[\frac{4 T \vartheta+8 N}{T\left|a_{q}\right|}\right]^{r}, 2^{r}\right\},  \tag{3.44}\\
c_{N, r}=\min \left\{\left[\frac{T\left|a_{q}\right|}{4 N}\right]^{r}, 1\right\}, \quad \gamma_{N}=\sum_{n=-N}^{N}\left(\eta+4 \pi^{2} n^{2}\right)^{-2 \nu},  \tag{3.45}\\
z_{N, r}=\frac{y_{N}}{\mid \rho_{N, r} r^{(N+1)}}, \quad g_{N, r}=\frac{y_{N}}{2\left|\rho_{N, r}\right|^{N}},  \tag{3.46}\\
\text { and } \quad y_{N}=\frac{T^{(\nu+s)}}{\zeta_{\nu+s} N^{(\nu+s)}\left\|(\eta-A)^{-s}\right\|_{L\left(H, L^{p}(\lambda ; \mathbb{R})\right)}} \tag{3.47}
\end{gather*}
$$

(cf. Lemma 3.2), let $P_{0}, \mathcal{R}: H \rightarrow H$ be the linear operators which satisfy for all $v \in H$ that

$$
\begin{equation*}
P_{0}(v)=\left\langle e_{0}, v\right\rangle_{H} e_{0} \quad \text { and } \quad \mathcal{R}[v]=v-P_{0}(v), \tag{3.48}
\end{equation*}
$$

let $\Phi_{N}: H \times H_{-\nu} \rightarrow H, N \in \mathbb{N}$, be the functions which satisfy for all $N \in \mathbb{N}$, $(v, u) \in H \times H_{-\nu}$ that

$$
\begin{equation*}
\Phi_{N}(v, u)=P_{N} S_{N}\left(v+\frac{T}{N}\left(\sum_{k=0}^{q} a_{k}[v]^{k}\right)+u\right) \mathbb{1}_{L^{2 q}(\lambda ; \mathbb{R}) \times H_{-\nu}}^{H \times H_{-\nu}}(v, u), \tag{3.49}
\end{equation*}
$$

let $\mathcal{V}_{r}: H \rightarrow[0, \infty), r \in(0, \infty)$, be the functions which satisfy for all $r \in(0, \infty)$, $v \in H$ that $\mathcal{V}_{r}(v)=\left\|P_{0}(v)\right\|_{H}^{r}$, let $Z_{n}^{N}: \Omega \rightarrow H_{-\nu}, n \in\{1,2, \ldots, N\}, N \in \mathbb{N}$, be the random variables which satisfy for all $N \in \mathbb{N}, n \in\{1,2, \ldots, N\}$ that

$$
\begin{equation*}
Z_{n}^{N}=W_{\frac{n T}{N}}-W_{\frac{(n-1) T}{N}} \tag{3.50}
\end{equation*}
$$

let $\left(v_{n}^{u}\right)_{n \in \mathbb{Z}} \subseteq H, u \in H_{-\nu}$, satisfy for all $u \in H_{-\nu}$ that

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left\|u-v_{n}^{u}\right\|_{H_{-\nu}}=0 \tag{3.51}
\end{equation*}
$$

and let $\mathbb{H}_{n, r}^{N} \subseteq H_{\chi}, n \in\{0,1, \ldots, N\}, N \in \mathbb{N}, r \in(0, \infty)$, be the sets which satisfy for all $r \in(0, \infty), N \in \mathbb{N}, n \in\{0,1, \ldots, N\}$ that

$$
\begin{equation*}
\mathbb{H}_{n, r}^{N}=\left\{v \in H_{\chi}:\|\mathcal{R}[v]\|_{L^{p}(\lambda ; \mathbb{R})} \leq \frac{1}{2}\left|\rho_{N, r}\right|^{(n-N)}\left\|P_{0}(v)\right\|_{H}\right\} . \tag{3.52}
\end{equation*}
$$

Note that Lemma 3.2 (with $p=p, \chi=\chi$ in the notation of Lemma 3.2) ensures that the function $\left(H_{\chi} \ni v \mapsto v \in L^{p}(\lambda ; \mathbb{R})\right)$ is continuous. Combining this with the fact that the functions ( $H_{\chi} \ni v \mapsto \mathcal{R}[v] \in H_{\chi}$ ) and ( $H_{\chi} \ni v \mapsto P_{0}(v) \in H$ ) are continuous assures that

$$
\begin{equation*}
\left(H_{\chi} \ni v \mapsto \mathcal{R}[v] \in L^{p}(\lambda ; \mathbb{R})\right) \in \mathcal{M}\left(\mathcal{B}\left(H_{\chi}\right), \mathcal{B}\left(L^{p}(\lambda ; \mathbb{R})\right)\right) \tag{3.53}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(H_{\chi} \ni v \mapsto P_{0}(v) \in H\right) \in \mathcal{M}\left(\mathcal{B}\left(H_{\chi}\right), \mathcal{B}(H)\right) . \tag{3.54}
\end{equation*}
$$

This implies for all $N \in \mathbb{N}, n \in\{0,1, \ldots, N\}, r \in(0, \infty)$ that

$$
\begin{equation*}
\mathbb{H}_{n, r}^{N} \in \mathcal{B}\left(H_{\chi}\right) . \tag{3.55}
\end{equation*}
$$

Furthermore, observe that the fact that $H_{\chi} \subseteq H$ continuously and Lemma 2.2 in [3] (with $V_{0}=H$ and $V_{1}=H_{\chi}$ in the notation of Lemma 2.2 in [3]) establish that

$$
\begin{equation*}
\mathcal{B}\left(H_{\chi}\right) \subseteq \mathcal{B}(H) \tag{3.56}
\end{equation*}
$$

Combining this with (3.55) proves for all $N \in \mathbb{N}, n \in\{0,1, \ldots, N\}, r \in(0, \infty)$ that

$$
\begin{equation*}
\mathbb{H}_{n, r}^{N} \in \mathcal{B}(H) \tag{3.57}
\end{equation*}
$$

In addition, note that Lemma 5.3 in [6] (with $V=L^{2 q}(\lambda ; \mathbb{R}) \times H_{-\nu}, W=H \times H_{-\nu}$, $(S, \mathcal{S})=(H, \mathcal{B}(H)), s=0, \psi(v, u)=P_{N} S_{N}\left(v+\frac{T}{N} \sum_{k=0}^{q} a_{k}[v]^{k}+u\right)$ for $(v, u) \in$ $L^{2 q}(\lambda ; \mathbb{R}) \times H_{-\nu}, N \in \mathbb{N}$ in the notation of Lemma 5.3 in [6]) ensures for all $N \in \mathbb{N}$ that

$$
\begin{equation*}
\Phi_{N} \in \mathcal{M}\left(\mathcal{B}\left(H \times H_{-\nu}\right), \mathcal{B}(H)\right) \tag{3.58}
\end{equation*}
$$

Combining this with the fact that $\mathcal{B}\left(H \times H_{-\nu}\right)=\mathcal{B}(H) \otimes \mathcal{B}\left(H_{-\nu}\right)$ proves for all $N \in \mathbb{N}$ that

$$
\begin{equation*}
\Phi_{N} \in \mathcal{M}\left(\mathcal{B}(H) \otimes \mathcal{B}\left(H_{-\nu}\right), \mathcal{B}(H)\right) . \tag{3.59}
\end{equation*}
$$

Moreover, note that it holds for all $r \in(0, \infty)$ that

$$
\begin{equation*}
\mathcal{V}_{r} \in \mathcal{M}(\mathcal{B}(H), \mathcal{B}([0, \infty))) \tag{3.60}
\end{equation*}
$$

Next observe that it holds for all $N \in \mathbb{N}$ that $\sigma\left(Y_{1}^{N}\right)$ and $\sigma\left(Z_{2}^{N}, Z_{3}^{N}, \ldots, Z_{N}^{N}\right)$ are independent on $(\Omega, \mathcal{F}, \mathbb{P})$ and $Z_{2}^{N}, Z_{3}^{N}, \ldots, Z_{N}^{N}$ are i.i.d. random variables. This, (3.59), (3.60), and Proposition [2.6 (with $(H, \mathcal{H})=(H, \mathcal{B}(H)),(U, \mathcal{U})=\left(H_{-\nu}, \mathcal{B}\left(H_{-\nu}\right)\right)$, $\Phi=\Phi_{M},(\Omega, \mathcal{F}, \mathbb{P})=(\Omega, \mathcal{F}, \mathbb{P}), N=M-1, c=c_{M, r}, \alpha=q, \theta=\theta_{M, r}, \mathbb{H}_{0}=\mathbb{H}_{0, r}^{M}$, $\mathbb{H}_{1}=\mathbb{H}_{1, r}^{M}, \ldots, \mathbb{H}_{N}=\mathbb{H}_{M-1, r}^{M},\left(Z_{1}, Z_{2}, \ldots, Z_{N}\right)=\left(Z_{2}^{M}, Z_{3}^{M}, \ldots, Z_{M}^{M}\right), Y_{0}=Y_{1}^{M}$,
$Y_{1}=Y_{2}^{M}, \ldots, Y_{N}=Y_{M}^{M}, \mathcal{V}=\mathcal{V}_{r}$ for $r \in(0, \infty), M \in\{2,3, \ldots\}$ in the notation of Proposition (2.6) ensure for all $r \in(0, \infty), M \in\{2,3, \ldots\}$ that

$$
\begin{align*}
& \mathbb{E}\left[\left|\left\langle e_{0}, Y_{M}^{M}\right\rangle_{H}\right|^{r}\right]  \tag{3.61}\\
& \geq\left|\theta_{M, r}\right|^{\left(q^{(M-1)}\right)} \mathbb{P}\left(\left\{\left|\left\langle e_{0}, Y_{1}^{M}\right\rangle_{H}\right|^{r} \geq\left|c_{M, r}\right|^{1 /(1-q)} \theta_{M, r}\right\} \cap\left\{Y_{1}^{M} \in \mathbb{H}_{0, r}^{M}\right\}\right) \\
& \cdot\left[\prod _ { n = 1 } ^ { M - 1 } \operatorname { i n f } \left(\left\{\mathbb { P } \left(\left\{\left|\left\langle e_{0}, P_{M} S_{M}\left(v+\frac{T}{M}\left(\sum_{k=0}^{q} a_{k}[v]^{k}\right)+Z_{2}^{M}\right)\right\rangle_{H}\right|^{r} \geq c_{M, r}\left|\left\langle e_{0}, v\right\rangle_{H}\right|^{r q}\right\}\right.\right.\right.\right. \\
& \left.\cap\left\{P_{M} S_{M}\left(v+\frac{T}{M}\left(\sum_{k=0}^{q} a_{k}[v]^{k}\right)+Z_{2}^{M}\right) \in \mathbb{H}_{n, r}^{M}\right\}\right) \\
& \left.\left.\left.\quad:\left(v \in \mathbb{H}_{n-1, r}^{M}:\left|\left\langle e_{0}, v\right\rangle_{H}\right|^{r} \geq\left|\theta_{M, r}\right|^{\left(q^{(n-1)}\right)}\right)\right\} \cup\{1\}\right)\right] .
\end{align*}
$$

This implies for all $r \in(0, \infty), M \in\{2,3, \ldots\}$ that

$$
\begin{align*}
& \mathbb{E}\left[\left|\left\langle e_{0}, Y_{M}^{M}\right\rangle_{H}\right|^{r}\right]  \tag{3.62}\\
& \geq\left|\theta_{M, r}\right|^{\left(q^{(M-1)}\right)} \mathbb{P}\left(\left\{\left|\left\langle e_{0}, Y_{1}^{M}\right\rangle_{H}\right|^{r} \geq\left|c_{M, r}\right|^{1 /(1-q)} \theta_{M, r}\right\} \cap\left\{Y_{1}^{M} \in \mathbb{H}_{0, r}^{M}\right\}\right) \\
& \cdot\left[\prod _ { n = 1 } ^ { M - 1 } \operatorname { i n f } \left(\left\{\mathbb { P } \left(\left\{\left|\left\langle e_{0}, P_{M} S_{M}\left(v+\frac{T}{M}\left(\sum_{k=0}^{q} a_{k}[v]^{k}\right)+Z_{2}^{M}\right)\right\rangle_{H}\right| \geq\left|c_{M, r}\right|^{1 / r}\left|\left\langle e_{0}, v\right\rangle_{H}\right|^{q}\right\}\right.\right.\right.\right. \\
& \left.\cap\left\{P_{M} S_{M}\left(v+\frac{T}{M}\left(\sum_{k=0}^{q} a_{k}[v]^{k}\right)+Z_{2}^{M}\right) \in \mathbb{H}_{n, r}^{M}\right\}\right) \\
& \left.\left.\left.\quad:\left(v \in \mathbb{H}_{n-1, r}^{M}:\left|\left\langle e_{0}, v\right\rangle_{H}\right| \geq\left|\theta_{M, r}\right|^{\left(q^{(n-1)} / r\right.}\right)\right\} \cup\{1\}\right)\right]
\end{align*}
$$

Next observe that Lemma 3.2 (with $p=p q, \chi=\chi$ in the notation of Lemma 3.2) ensures that for all $v \in H_{\chi}$ it holds that $[v]^{q} \in L^{p}(\lambda ; \mathbb{R})$. This proves that for all $M \in\{2,3, \ldots\}, v \in H_{\chi}$ it holds that

$$
\begin{equation*}
v+\frac{T}{M} \sum_{k=0}^{q} a_{k}[v]^{k} \in L^{p}(\lambda ; \mathbb{R}) \tag{3.63}
\end{equation*}
$$

Furthermore, note that for all $M \in\{2,3, \ldots\}, v \in H_{\chi}$ it holds that

$$
\begin{align*}
& \left\langle e_{0}, P_{M} S_{M}\left(v+\frac{T}{M}\left(\sum_{k=0}^{q} a_{k}[v]^{k}\right)+Z_{2}^{M}\right)\right\rangle_{H} \\
& =\left\langle e_{0}, P_{M} S_{M}\left(v+\frac{T}{M} \sum_{k=0}^{q} a_{k}[v]^{k}\right)+P_{M} S_{M} Z_{2}^{M}\right\rangle_{H} \\
& =\left\langle e_{0}, P_{M} S_{M}\left(v+\frac{T}{M} \sum_{k=0}^{q} a_{k}[v]^{k}\right)\right\rangle_{H}+\left\langle e_{0}, P_{M} S_{M} Z_{2}^{M}\right\rangle_{H}  \tag{3.64}\\
& =\left\langle P_{M}\left(e_{0}\right), S_{M}\left(v+\frac{T}{M} \sum_{k=0}^{q} a_{k}[v]^{k}\right)\right\rangle_{H}+\left\langle e_{0}, P_{M} S_{M} Z_{2}^{M}\right\rangle_{H} .
\end{align*}
$$

This, (3.35), and (3.63) imply for all $M \in\{2,3, \ldots\}, v \in H_{\chi}$ that

$$
\begin{align*}
& \left\langle e_{0}, P_{M} S_{M}\left(v+\frac{T}{M}\left(\sum_{k=0}^{q} a_{k}[v]^{k}\right)+Z_{2}^{M}\right)\right\rangle_{H} \\
& =\left\langle e_{0}, S_{M}\left(v+\frac{T}{M} \sum_{k=0}^{q} a_{k}[v]^{k}\right)\right\rangle_{H}+\left\langle e_{0}, P_{M} S_{M} Z_{2}^{M}\right\rangle_{H} \\
& =\left\langle S_{M}\left(e_{0}\right), v+\frac{T}{M} \sum_{k=0}^{q} a_{k}[v]^{k}\right\rangle_{H}+\left\langle e_{0}, P_{M} S_{M} Z_{2}^{M}\right\rangle_{H}  \tag{3.65}\\
& =\left\langle e_{0}, v+\frac{T}{M} \sum_{k=0}^{q} a_{k}[v]^{k}\right\rangle_{H}+\left\langle e_{0}, P_{M} S_{M} Z_{2}^{M}\right\rangle_{H} .
\end{align*}
$$

Next observe that (3.37) and the fact that $\forall u \in H_{-\nu}, N \in \mathbb{N}, n \in \mathbb{Z}: P_{N}\left(u-v_{n}^{u}\right) \in$ $H_{\nu}$ ensure for all $u \in H_{-\nu}, N \in \mathbb{N}, n \in \mathbb{Z}$ that

$$
\begin{align*}
S_{N} P_{N} u-S_{N} P_{N} v_{n}^{u} & =S_{N} P_{N}\left(u-v_{n}^{u}\right) \\
& =S_{N}(\eta-A)^{-\nu}(\eta-A)^{\nu} P_{N}\left(u-v_{n}^{u}\right)  \tag{3.66}\\
& =(\eta-A)^{-\nu} S_{N}(\eta-A)^{\nu} P_{N}\left(u-v_{n}^{u}\right) .
\end{align*}
$$

The fact that $\forall N \in \mathbb{N}:(\eta-A)^{-\nu} S_{N} \in L\left(H_{-\nu}, H\right)$ therefore assures for all $u \in H_{-\nu}$, $N \in \mathbb{N}, n \in \mathbb{Z}$ that

$$
\begin{align*}
\left\|S_{N} P_{N} u-S_{N} P_{N} v_{n}^{u}\right\|_{H} & \leq\left\|(\eta-A)^{-\nu} S_{N}\right\|_{L\left(H_{-\nu}, H\right)}\left\|(\eta-A)^{\nu} P_{N}\left(u-v_{n}^{u}\right)\right\|_{H_{-\nu}} \\
& =\left\|(\eta-A)^{-\nu} S_{N}\right\|_{L\left(H_{-\nu}, H\right)}\left\|P_{N}\left(u-v_{n}^{u}\right)\right\|_{H} . \tag{3.67}
\end{align*}
$$

This, the fact that $\forall N \in \mathbb{N}: P_{N} \in L\left(H_{-1}, H_{1}\right)$, and the fact that $L\left(H_{-1}, H_{1}\right) \subseteq$ $L\left(H_{-1}, H\right)$ prove for all $u \in H_{-\nu}, N \in \mathbb{N}, n \in \mathbb{Z}$ that

$$
\begin{equation*}
\left\|S_{N} P_{N} u-S_{N} P_{N} v_{n}^{u}\right\|_{H} \leq\left\|(\eta-A)^{-\nu} S_{N}\right\|_{L\left(H_{-\nu}, H\right)}\left\|P_{N}\right\|_{L\left(H_{-1}, H\right)}\left\|u-v_{n}^{u}\right\|_{H_{-1}} . \tag{3.68}
\end{equation*}
$$

Combining this with (3.51) and the fact that $H_{-\nu} \subseteq H_{-1}$ continuously establishes for all $u \in H_{-\nu}, N \in \mathbb{N}$ that

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left\|S_{N} P_{N} u-S_{N} P_{N} v_{n}^{u}\right\|_{H}=0 . \tag{3.69}
\end{equation*}
$$

In addition, observe that it holds for all $u \in H_{-\nu}, N \in \mathbb{N}, n \in \mathbb{Z}$ that

$$
\begin{align*}
& \left\|P_{N} S_{N} u-P_{N} S_{N} v_{n}^{u}\right\|_{H}=\left\|P_{N} S_{N}\left(u-v_{n}^{u}\right)\right\|_{H} \\
& \leq\left\|P_{N}\right\|_{L\left(H_{-1}, H\right)}\left\|S_{N}\left(u-v_{n}^{u}\right)\right\|_{H_{-1}} \\
& \leq\left[\sup _{w \in H_{-\nu} \backslash\{0\}} \frac{\|w\|_{H_{-1}}}{\|w\|_{H_{-\nu}}}\right]\left\|P_{N}\right\|_{L\left(H_{-1}, H\right)}\left\|S_{N}\left(u-v_{n}^{u}\right)\right\|_{H_{-\nu}}  \tag{3.70}\\
& \leq\left[\sup _{w \in H_{-\nu} \backslash\{0\}} \frac{\|w\|_{H_{-1}}}{\|w\|_{H_{-\nu}}}\right]\left\|P_{N}\right\|_{L\left(H_{-1}, H\right)}\left\|S_{N}\right\|_{L\left(H_{-\nu}\right)}\left\|u-v_{n}^{u}\right\|_{H_{-\nu}} .
\end{align*}
$$

Combining this with (3.51) and the fact that $H_{-\nu} \subseteq H_{-1}$ continuously proves for all $u \in H_{-\nu}, N \in \mathbb{N}$ that

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left\|P_{N} S_{N} u-P_{N} S_{N} v_{n}^{u}\right\|_{H}=0 \tag{3.71}
\end{equation*}
$$

Moreover, note that (3.37) assures for all $u \in H_{-\nu}, N \in \mathbb{N}, n \in \mathbb{N}$ that

$$
\begin{equation*}
S_{N} P_{N} v_{u}^{N}=P_{N} S_{N} v_{u}^{N} . \tag{3.72}
\end{equation*}
$$

Combining this, (3.69), and (3.71) establishes for all $u \in H_{-\nu}, N \in \mathbb{N}$ that

$$
\begin{equation*}
S_{N} P_{N} u=P_{N} S_{N} u \tag{3.73}
\end{equation*}
$$

This and (3.65) ensure for all $M \in\{2,3, \ldots\}, v \in H_{\chi}$ that

$$
\begin{align*}
& \left\langle e_{0}, P_{M} S_{M}\left(v+\frac{T}{M}\left(\sum_{k=0}^{q} a_{k}[v]^{k}\right)+Z_{2}^{M}\right)\right\rangle_{H}  \tag{3.74}\\
& =\left\langle e_{0}, v+\frac{T}{M} \sum_{k=0}^{q} a_{k}[v]^{k}\right\rangle_{H}+\left\langle e_{0}, S_{M} P_{M} Z_{2}^{M}\right\rangle_{H} .
\end{align*}
$$

Combining this with the reverse triangle inequality proves for all $M \in\{2,3, \ldots\}$, $v \in H_{\chi}$ that

$$
\begin{align*}
& \left|\left\langle e_{0}, P_{M} S_{M}\left(v+\frac{T}{M}\left(\sum_{k=0}^{q} a_{k}[v]^{k}\right)+Z_{2}^{M}\right)\right\rangle_{H}\right| \\
& \geq\left|\left\langle e_{0}, v+\frac{T}{M} \sum_{k=0}^{q} a_{k}[v]^{k}\right\rangle_{H}\right|-\left|\left\langle e_{0}, S_{M} P_{M} Z_{2}^{M}\right\rangle_{H}\right|  \tag{3.75}\\
& \geq\left|\left\langle e_{0}, \frac{T}{M} a_{q}[v]^{q}\right\rangle_{H}\right|-\left|\left\langle e_{0}, v+\frac{T}{M} \sum_{k=0}^{q-1} a_{k}[v]^{k}\right\rangle_{H}\right|-\left|\left\langle e_{0}, S_{M} P_{M} Z_{2}^{M}\right\rangle_{H}\right| \\
& =\frac{T\left|q_{q}\right|}{M}\left|\left\langle e_{0},[v]^{q}\right\rangle_{H}\right|-\left|\left\langle e_{0}, v\right\rangle_{H}+\frac{T}{M} \sum_{k=0}^{q-1} a_{k}\left\langle e_{0},[v]^{k}\right\rangle_{H}\right|-\left|\left\langle e_{0}, S_{M} P_{M} Z_{2}^{M}\right\rangle_{H}\right| .
\end{align*}
$$

This and the triangle inequality imply for all $M \in\{2,3, \ldots\}, v \in H_{\chi}$ that

$$
\begin{align*}
& \left|\left\langle e_{0}, P_{M} S_{M}\left(v+\frac{T}{M}\left(\sum_{k=0}^{q} a_{k}[v]^{k}\right)+Z_{2}^{M}\right)\right\rangle_{H}\right|  \tag{3.76}\\
& \geq \frac{T\left|a_{q}\right|}{M}\left|\left\langle e_{0},[v]^{q}\right\rangle_{H}\right|-\left|\frac{T}{M} \sum_{k=0}^{q-1} a_{k}\left\langle e_{0},[v]^{k}\right\rangle_{H}\right|-\left|\left\langle e_{0}, v\right\rangle_{H}\right|-\left|\left\langle e_{0}, S_{M} P_{M} Z_{2}^{M}\right\rangle_{H}\right| \\
& \geq \frac{T\left|a_{q}\right|}{M}\left|\left\langle e_{0},[v]^{q}\right\rangle_{H}\right|-\frac{T}{M} \sum_{k=0}^{q-1}\left|a_{k}\right|\left|\left\langle e_{0},[v]^{k}\right\rangle_{H}\right|-\left|\left\langle e_{0}, v\right\rangle_{H}\right|-\left|\left\langle e_{0}, S_{M} P_{M} Z_{2}^{M}\right\rangle_{H}\right| .
\end{align*}
$$

Moreover, observe that it holds for all $v \in H_{\chi}$ that

$$
\begin{equation*}
[v]^{q}=\left(P_{0}(v)+\mathcal{R}[v]\right)^{q}=\sum_{m=0}^{q}\binom{q}{m}\left(P_{0}(v)\right)^{(q-m)}(\mathcal{R}[v])^{m} . \tag{3.77}
\end{equation*}
$$

This proves for all $v \in H_{\chi}$ that

$$
\begin{align*}
& \left|\left\langle e_{0},[v]^{q}\right\rangle_{H}\right|=\left|\left\langle e_{0}, \sum_{m=0}^{q}\binom{q}{m}\left(P_{0}(v)\right)^{(q-m)}(\mathcal{R}[v])^{m}\right\rangle_{H}\right| \\
& =\left|\left\langle e_{0},\left(P_{0}(v)\right)^{q}+\sum_{m=1}^{q}\binom{q}{m}\left(P_{0}(v)\right)^{(q-m)}(\mathcal{R}[v])^{m}\right\rangle_{H}\right|  \tag{3.78}\\
& \geq\left|\left\langle e_{0},\left(P_{0}(v)\right)^{q}\right\rangle_{H}\right|-\left|\left\langle e_{0}, \sum_{m=1}^{q}\binom{q}{m}\left(P_{0}(v)\right)^{(q-m)}(\mathcal{R}[v])^{m}\right\rangle_{H}\right| \\
& \geq\left|\left\langle e_{0},\left(P_{0}(v)\right)^{q}\right\rangle_{H}\right|-\sum_{m=1}^{q}\binom{q}{m}\left|\left\langle e_{0},\left(P_{0}(v)\right)^{(q-m)}(\mathcal{R}[v])^{m}\right\rangle_{H}\right| .
\end{align*}
$$

Next note that it holds for all $v \in H_{\chi}$ that

$$
\begin{align*}
& \left|\left\langle e_{0},\left(P_{0}(v)\right)^{q}\right\rangle_{H}\right|=\left|\left\langle e_{0},\left(\left\langle e_{0}, v\right\rangle_{H} e_{0}\right)^{q}\right\rangle_{H}\right| \\
& =\left|\left\langle e_{0},\left(\left\langle e_{0}, v\right\rangle_{H}\right)^{q}\left(e_{0}\right)^{q}\right\rangle_{H}\right|=\left|\left\langle e_{0},\left(\left\langle e_{0}, v\right\rangle_{H}\right)^{q} e_{0}\right\rangle_{H}\right|  \tag{3.79}\\
& =\left|\left(\left\langle e_{0}, v\right\rangle_{H}\right)^{q}\left\langle e_{0}, e_{0}\right\rangle_{H}\right|=\left|\left\langle e_{0}, v\right\rangle_{H}\right|^{q} .
\end{align*}
$$

Furthermore, observe that it holds for all $v \in H_{\chi}, k \in\{0,1, \ldots, q\}, m \in\{0,1, \ldots, k\}$ that

$$
\begin{align*}
& \left|\left\langle e_{0},\left(P_{0}(v)\right)^{(k-m)}(\mathcal{R}[v])^{m}\right\rangle_{H}\right| \leq\left\langle e_{0},\right|\left(P_{0}(v)\right)^{(k-m)}(\mathcal{R}[v])^{m}| \rangle_{H} \\
& =\left\langle e_{0},\right|\left(\left\langle e_{0}, v\right\rangle_{H} e_{0}\right)^{(k-m)}(\mathcal{R}[v])^{m}| \rangle_{H}=\left\langle e_{0},\right|\left(\left\langle e_{0}, v\right\rangle_{H}\right)^{(k-m)}(\mathcal{R}[v])^{m}| \rangle_{H} \\
& \left.=\left|\left\langle e_{0}, v\right\rangle_{H}\right|^{(k-m)}\left\langle e_{0},\right|(\mathcal{R}[v])^{m}| \rangle_{H}=\left.\left|\left\langle e_{0}, v\right\rangle_{H}\right|^{(k-m)}\left\langle e_{0},\right| \mathcal{R}[v]\right|^{m}\right\rangle_{H}  \tag{3.80}\\
& =\left|\left\langle e_{0}, v\right\rangle_{H}\right|^{(k-m)}\|\mathcal{R}[v]\|_{L^{m}(\lambda ; \mathbb{R})}^{m} \leq\left|\left\langle e_{0}, v\right\rangle_{H}\right|^{(k-m)}\|\mathcal{R}[v]\|_{L^{2 q}(\lambda ; \mathbb{R}) .}^{m} .
\end{align*}
$$

This, (3.52), and the fact that $2 q \leq p$ prove for all $r \in(0, \infty), M \in\{2,3, \ldots\}$, $n \in\{1,2, \ldots, M\}, v \in \mathbb{H}_{n-1, r}^{M}$ that

$$
\begin{align*}
& \sum_{m=1}^{q}\binom{q}{m}\left|\left\langle e_{0},\left(P_{0}(v)\right)^{(q-m)}(\mathcal{R}[v])^{m}\right\rangle_{H}\right| \\
& \leq \sum_{m=1}^{q}\binom{q}{m}\left|\left\langle e_{0}, v\right\rangle_{H}\right|^{(q-m)}\|\mathcal{R}[v]\|_{L^{p}(\lambda ; \mathbb{R})}^{m}  \tag{3.81}\\
& \leq \sum_{m=1}^{q}\binom{q}{m} \frac{1}{2^{m}}\left|\rho_{M, r}\right|^{m(n-1-M)}\left|\left\langle e_{0}, v\right\rangle_{H}\right|^{(q-m)}\left|\left\langle e_{0}, v\right\rangle_{H}\right|^{m} \\
& =\sum_{m=1}^{q}\binom{q}{m} \frac{1}{2^{m}}\left|\rho_{M, r}\right|^{m(n-1-M)}\left|\left\langle e_{0}, v\right\rangle_{H}\right|^{q} .
\end{align*}
$$

Hence, we obtain for all $r \in(0, \infty), M \in\{2,3, \ldots\}, n \in\{1,2, \ldots, M\}, v \in \mathbb{H}_{n-1, r}^{M}$ that

$$
\begin{align*}
& \sum_{m=1}^{q}\binom{q}{m}\left|\left\langle e_{0},\left(P_{0}(v)\right)^{(q-m)}(\mathcal{R}[v])^{m}\right\rangle_{H}\right| \\
& \leq\left|\left\langle e_{0}, v\right\rangle_{H}\right|^{q} \sum_{m=1}^{q}\binom{q}{m}\left(\frac{1}{2}\right)^{m}\left(\left|\rho_{M, r}\right|^{(n-1-M)}\right)^{m} \\
& =\left|\left\langle e_{0}, v\right\rangle_{H}\right|^{q} \sum_{m=1}^{q}\binom{q}{m}\left(\frac{1}{2}\left|\rho_{M, r}\right|^{(n-1-M)}\right)^{m} \cdot 1^{(q-m)}  \tag{3.82}\\
& =\left|\left\langle e_{0}, v\right\rangle_{H}\right|^{q}\left[\sum_{m=0}^{q}\binom{q}{m}\left(\frac{1}{2}\left|\rho_{M, r}\right|^{(n-1-M)}\right)^{m} \cdot 1^{(q-m)}-1\right] \\
& =\left|\left\langle e_{0}, v\right\rangle_{H}\right|^{q}\left[\left(\frac{1}{2}\left|\rho_{M, r}\right|^{(n-1-M)}+1\right)^{q}-1\right] .
\end{align*}
$$

Combining this with (3.78) and (3.79) establishes for all $r \in(0, \infty), M \in\{2,3, \ldots\}$, $n \in\{1,2, \ldots, M\}, v \in \mathbb{H}_{n-1, r}^{M}$ that

$$
\begin{align*}
\left|\left\langle e_{0},[v]^{q}\right\rangle_{H}\right| & \geq\left|\left\langle e_{0}, v\right\rangle_{H}\right|^{q}-\sum_{m=1}^{q}\binom{q}{m}\left|\left\langle e_{0},\left(P_{0}(v)\right)^{(q-m)}(\mathcal{R}[v])^{m}\right\rangle_{H}\right| \\
& \geq\left|\left\langle e_{0}, v\right\rangle_{H}\right|^{q}-\left|\left\langle e_{0}, v\right\rangle_{H}\right|^{q}\left[\left(\frac{1}{2}\left|\rho_{M, r}\right|^{(n-1-M)}+1\right)^{q}-1\right]  \tag{3.83}\\
& =\left[2-\left(\frac{1}{2}\left|\rho_{M, r}\right|^{(n-1-M)}+1\right)^{q}\right]\left|\left\langle e_{0}, v\right\rangle_{H}\right|^{q} .
\end{align*}
$$

Next observe that for all $v \in H_{\chi}, k \in\{0,1, \ldots, q-1\}$ it holds that

$$
\begin{align*}
\left|\left\langle e_{0},[v]^{k}\right\rangle_{H}\right| & =\left|\left\langle e_{0},\left(P_{0}(v)+\mathcal{R}[v]\right)^{k}\right\rangle_{H}\right| \\
& =\left|\left\langle e_{0}, \sum_{m=0}^{k}\binom{k}{m}\left(P_{0}(v)\right)^{(k-m)}(\mathcal{R}[v])^{m}\right\rangle_{H}\right| \\
& =\left|\sum_{m=0}^{k}\left\langle e_{0},\binom{k}{m}\left(P_{0}(v)\right)^{(k-m)}(\mathcal{R}[v])^{m}\right\rangle_{H}\right|  \tag{3.84}\\
& \leq \sum_{m=0}^{k}\left|\left\langle e_{0},\binom{k}{m}\left(P_{0}(v)\right)^{(k-m)}(\mathcal{R}[v])^{m}\right\rangle_{H}\right| .
\end{align*}
$$

This, (3.52), and (3.80) prove for all $r \in(0, \infty), M \in\{2,3, \ldots\}, n \in\{1,2, \ldots, M\}$, $v \in \mathbb{H}_{n-1, r}^{M}, k \in\{0,1, \ldots, q-1\}$ that

$$
\begin{align*}
\left|\left\langle e_{0},[v]^{k}\right\rangle_{H}\right| & \leq \sum_{m=0}^{k}\binom{k}{m}\left|\left\langle e_{0}, v\right\rangle_{H}\right|^{(k-m)}\|\mathcal{R}[v]\|_{L^{2 q}(\lambda ; \mathbb{R})}^{m} \\
& \leq \sum_{m=0}^{k}\binom{k}{m}\left|\left\langle e_{0}, v\right\rangle_{H}\right|^{(k-m)}\|\mathcal{R}[v]\|_{L^{p}(\lambda ; \mathbb{R})}^{m} \\
& \leq \sum_{m=0}^{k}\binom{k}{m}\left|\left\langle e_{0}, v\right\rangle_{H}\right|^{(k-m)}\left|\left\langle e_{0}, v\right\rangle_{H}\right|^{m}  \tag{3.85}\\
& =\sum_{m=0}^{k}\binom{k}{m}\left|\left\langle e_{0}, v\right\rangle_{H}\right|^{k}=\left|\left\langle e_{0}, v\right\rangle_{H}\right|^{k} \sum_{m=0}^{k}\binom{k}{m} \\
& =\left|\left\langle e_{0}, v\right\rangle_{H}\right|^{k} \sum_{m=0}^{k}\binom{k}{m} 1^{(k-m)} \cdot 1^{m} \\
& =\left|\left\langle e_{0}, v\right\rangle_{H}\right|^{k}(1+1)^{k}=\left|\left\langle e_{0}, v\right\rangle_{H}\right|^{k} 2^{k} .
\end{align*}
$$

This implies for all $r \in(0, \infty), M \in\{2,3, \ldots\}, n \in\{1,2, \ldots, M\}, v \in \mathbb{H}_{n-1, r}^{M}$, $k \in\{0,1, \ldots, q-1\}$ with $\left|\left\langle e_{0}, v\right\rangle_{H}\right|>1$ that

$$
\begin{equation*}
\left|\left\langle e_{0},[v]^{k}\right\rangle_{H}\right| \leq 2^{(q-1)}\left|\left\langle e_{0}, v\right\rangle_{H}\right|^{(q-1)} \tag{3.86}
\end{equation*}
$$

This and (3.42) ensure for all $r \in(0, \infty), M \in\{2,3, \ldots\}, n \in\{1,2, \ldots, M\}$,
$v \in \mathbb{H}_{n-1, r}^{M}$ with $\left|\left\langle e_{0}, v\right\rangle_{H}\right|>1$ that

$$
\begin{align*}
& \frac{T}{M} \sum_{k=0}^{q-1}\left|a_{k}\right|\left|\left\langle e_{0},[v]^{k}\right\rangle_{H}\right| \leq \frac{T}{M} \sum_{k=0}^{q-1} 2^{(q-1)}\left|a_{k}\right|\left|\left\langle e_{0}, v\right\rangle_{H}\right|^{(q-1)} \\
& \leq \frac{2^{(q-1)} T}{M} \sum_{k=0}^{q-1} \max \left\{\left|a_{0}\right|,\left|a_{1}\right|, \ldots,\left|a_{q-1}\right|\right\}\left|\left\langle e_{0}, v\right\rangle_{H}\right|^{(q-1)}  \tag{3.87}\\
& \leq \frac{2(q-1) T}{M} \max \left\{\left|a_{0}\right|,\left|a_{1}\right|, \ldots,\left|a_{q-1}\right|\right\}\left|\left\langle e_{0}, v\right\rangle_{H}\right|^{(q-1)} \\
& \leq \frac{T \vartheta}{M}\left|\left\langle e_{0}, v\right\rangle_{H}\right|^{(q-1)} .
\end{align*}
$$

Combining this with (3.76) establishes for all $r \in(0, \infty), M \in\{2,3, \ldots\}, n \in$ $\{1,2, \ldots, M\}, v \in \mathbb{H}_{n-1, r}^{M}$ with $\left|\left\langle e_{0}, v\right\rangle_{H}\right|>1$ that

$$
\begin{align*}
& \left|\left\langle e_{0}, P_{M} S_{M}\left(v+\frac{T}{M}\left(\sum_{k=0}^{q} a_{k}[v]^{k}\right)+Z_{2}^{M}\right)\right\rangle_{H}\right| \\
& \geq \frac{T\left|a_{q}\right|}{M}\left|\left\langle e_{0},[v]^{q}\right\rangle_{H}\right|-\frac{T \vartheta}{M}\left|\left\langle e_{0}, v\right\rangle_{H}\right|^{(q-1)}-\left|\left\langle e_{0}, v\right\rangle_{H}\right|-\left|\left\langle e_{0}, S_{M} P_{M} Z_{2}^{M}\right\rangle_{H}\right| . \tag{3.88}
\end{align*}
$$

This and (3.83) prove for all $r \in(0, \infty), M \in\{2,3, \ldots\}, n \in\{1,2, \ldots, M\}, v \in$ $\mathbb{H}_{n-1, r}^{M}$ with $\left|\left\langle e_{0}, v\right\rangle_{H}\right|>1$ that

$$
\begin{align*}
& \left|\left\langle e_{0}, P_{M} S_{M}\left(v+\frac{T}{M}\left(\sum_{k=0}^{q} a_{k}[v]^{k}\right)+Z_{2}^{M}\right)\right\rangle_{H}\right| \\
& \geq \frac{T\left|a_{q}\right|}{M}\left[2-\left(\frac{1}{2}\left|\rho_{M, r}\right|^{(n-1-M)}+1\right)^{q}\right]\left|\left\langle e_{0}, v\right\rangle_{H}\right|^{q}-\frac{T \vartheta}{M}\left|\left\langle e_{0}, v\right\rangle_{H}\right|^{(q-1)}  \tag{3.89}\\
& \quad-\left|\left\langle e_{0}, v\right\rangle_{H}\right|-\left|\left\langle e_{0}, S_{M} P_{M} Z_{2}^{M}\right\rangle_{H}\right| .
\end{align*}
$$

Hence, we obtain for all $r \in(0, \infty), M \in\{2,3, \ldots\}, n \in\{1,2, \ldots, M\}, v \in \mathbb{H}_{n-1, r}^{M}$ with $\left|\left\langle e_{0}, v\right\rangle_{H}\right|>1$ that

$$
\begin{align*}
& \left|\left\langle e_{0}, P_{M} S_{M}\left(v+\frac{T}{M}\left(\sum_{k=0}^{q} a_{k}[v]^{k}\right)+Z_{2}^{M}\right)\right\rangle_{H}\right| \\
& \geq \frac{T\left|a_{q}\right|}{M}\left[2-\left(\frac{1}{2}\left|\rho_{M, r}\right|^{(n-1-M)}+1\right)^{q}\right]\left|\left\langle e_{0}, v\right\rangle_{H}\right|^{q}-\frac{T \vartheta}{M}\left|\left\langle e_{0}, v\right\rangle_{H}\right|^{(q-1)}  \tag{3.90}\\
& \quad-\left|\left\langle e_{0}, v\right\rangle_{H}\right|-\left\|S_{M} P_{M} Z_{2}^{M}\right\|_{H} .
\end{align*}
$$

This establishes for all $r \in(0, \infty), M \in\{2,3, \ldots\}, n \in\{1,2, \ldots, M\}, v \in \mathbb{H}_{n-1, r}^{M}$ with $\left|\left\langle e_{0}, v\right\rangle_{H}\right|>1$ that

$$
\begin{align*}
& \left|\left\langle e_{0}, P_{M} S_{M}\left(v+\frac{T}{M}\left(\sum_{k=0}^{q} a_{k}[v]^{k}\right)+Z_{2}^{M}\right)\right\rangle_{H}\right| \\
& \geq \frac{T\left|a_{q}\right|}{M}\left[2-\left(\frac{1}{2}\left|\rho_{M, r}\right|^{(n-1-M)}+1\right)^{q}\right]\left|\left\langle e_{0}, v\right\rangle_{H}\right|^{q}  \tag{3.91}\\
& \quad-\frac{T \vartheta}{M}\left|\left\langle e_{0}, v\right\rangle_{H}\right|^{(q-1)}-\left|\left\langle e_{0}, v\right\rangle_{H}\right|^{(q-1)}-\left\|S_{M} P_{M} Z_{2}^{M}\right\|_{H} .
\end{align*}
$$

Next note that the fact that $\forall r \in(0, \infty), N \in \mathbb{N}: \rho_{N, r} \geq \frac{1}{2^{1 / q}-1}$ ensures for all $r \in(0, \infty), M \in\{2,3, \ldots\}, n \in\{1,2, \ldots, M\}$ that

$$
\begin{align*}
& 2-\left(\frac{1}{2}\left|\rho_{M, r}\right|^{(n-1-M)}+1\right)^{q} \geq 2-\left(\frac{1}{2}\left|\rho_{M, r}\right|^{-1}+1\right)^{q} \geq 2-\left(\frac{1}{2}\left(2^{1 / q}-1\right)+1\right)^{q} \\
& =2-\left(\frac{1}{2} \cdot 2^{1 / q}+\frac{1}{2}\right)^{q}=2-\left(2^{(1 / q)-1}+\frac{1}{2}\right)^{q}=2-\left(2^{(1-q) / q}+\frac{1}{2}\right)^{q} . \tag{3.92}
\end{align*}
$$

Moreover, observe that the fact that $\forall x, y \in \mathbb{R}:|x+y|^{q} \leq 2^{(q-1)}\left(|x|^{q}+|y|^{q}\right)$ assures that

$$
\begin{equation*}
\left(2^{(1-q) / q}+\frac{1}{2}\right)^{q} \leq 2^{(q-1)}\left(2^{(1-q)}+2^{-q}\right)=1+\frac{1}{2}=\frac{3}{2} . \tag{3.93}
\end{equation*}
$$

This and (3.92) establish for all $r \in(0, \infty), M \in\{2,3, \ldots\}, n \in\{1,2, \ldots, M\}$ that

$$
\begin{equation*}
2-\left(\frac{1}{2}\left|\rho_{M, r}\right|^{(n-1-M)}+1\right)^{q} \geq 2-\frac{3}{2}=\frac{1}{2} . \tag{3.94}
\end{equation*}
$$

Combining this with (3.91) proves for all $r \in(0, \infty), M \in\{2,3, \ldots\}, n \in\{1,2, \ldots, M\}$, $v \in \mathbb{H}_{n-1, r}^{M}$ with $\left|\left\langle e_{0}, v\right\rangle_{H}\right|>1$ that

$$
\begin{align*}
& \left|\left\langle e_{0}, P_{M} S_{M}\left(v+\frac{T}{M}\left(\sum_{k=0}^{q} a_{k}[v]^{k}\right)+Z_{2}^{M}\right)\right\rangle_{H}\right| \\
& \geq \frac{T\left|a_{q}\right|}{2 M}\left|\left\langle e_{0}, v\right\rangle_{H}\right|^{q}-\frac{T \vartheta}{M}\left|\left\langle e_{0}, v\right\rangle_{H}\right|^{(q-1)}-\left|\left\langle e_{0}, v\right\rangle_{H}\right|^{(q-1)}-\left\|S_{M} P_{M} Z_{2}^{M}\right\|_{H}  \tag{3.95}\\
& =\frac{T\left|a_{q}\right|}{2 M}\left|\left\langle e_{0}, v\right\rangle_{H}\right|^{q}-\frac{T \vartheta+M}{M}\left|\left\langle e_{0}, v\right\rangle_{H}\right|^{(q-1)}-\left\|S_{M} P_{M} Z_{2}^{M}\right\|_{H} .
\end{align*}
$$

Hence, we obtain for all $r \in(0, \infty), M \in\{2,3, \ldots\}, n \in\{1,2, \ldots, M\}, v \in \mathbb{H}_{n-1, r}^{M}$ with $\left|\left\langle e_{0}, v\right\rangle_{H}\right|>1$ that

$$
\begin{align*}
& \mathbb{P}\left(\left|\left\langle e_{0}, P_{M} S_{M}\left(v+\frac{T}{M}\left(\sum_{k=0}^{q} a_{k}[v]^{k}\right)+Z_{2}^{M}\right)\right\rangle_{H}\right| \geq\left|c_{M, r}\right|^{1 / r}\left|\left\langle e_{0}, v\right\rangle_{H}\right|^{q}\right) \\
& \geq \mathbb{P}\left(\frac{T\left|a_{q}\right|}{2 M}\left|\left\langle e_{0}, v\right\rangle_{H}\right|^{q}-\frac{T \vartheta+M}{M}\left|\left\langle e_{0}, v\right\rangle_{H}\right|^{(q-1)}-\left\|S_{M} P_{M} Z_{2}^{M}\right\|_{H} \geq\left|c_{M, r}\right|^{1 / r}\left|\left\langle e_{0}, v\right\rangle_{H}\right|^{q}\right) \\
& \geq \mathbb{P}\left(\left\{\frac{T\left|a_{q}\right|}{2 M}\left|\left\langle e_{0}, v\right\rangle_{H}\right|^{q}-\frac{T \vartheta+M}{M}\left|\left\langle e_{0}, v\right\rangle_{H}\right|^{(q-1)}\right.\right. \\
& \left.\left.\quad \quad-\left\|S_{M} P_{M} Z_{2}^{M}\right\|_{H} \geq\left|c_{M, r}\right|^{1 / r}\left|\left\langle e_{0}, v\right\rangle_{H}\right|^{q}\right\} \cap\left\{\left\|S_{M} P_{M} Z_{2}^{M}\right\|_{H} \leq 1\right\}\right) . \tag{3.96}
\end{align*}
$$

This implies for all $r \in(0, \infty), M \in\{2,3, \ldots\}, n \in\{1,2, \ldots, M\}, v \in \mathbb{H}_{n-1, r}^{M}$ with $\left|\left\langle e_{0}, v\right\rangle_{H}\right|>1$ that

$$
\begin{align*}
& \mathbb{P}\left(\left|\left\langle e_{0}, P_{M} S_{M}\left(v+\frac{T}{M}\left(\sum_{k=0}^{q} a_{k}[v]^{k}\right)+Z_{2}^{M}\right)\right\rangle_{H}\right| \geq\left|c_{M, r}\right|^{1 / r}\left|\left\langle e_{0}, v\right\rangle_{H}\right|^{q}\right) \\
& \geq \mathbb{P}\left(\frac{T\left|a_{q}\right|}{2 M}\left|\left\langle e_{0}, v\right\rangle_{H}\right|^{q}-\frac{T \vartheta+M}{M}\left|\left\langle e_{0}, v\right\rangle_{H}\right|^{(q-1)}-1 \geq\left|c_{M, r}\right|^{1 / r}\left|\left\langle e_{0}, v\right\rangle_{H}\right|^{q}\right)  \tag{3.97}\\
& \quad \cdot \mathbb{P}\left(\left\|S_{M} P_{M} Z_{2}^{M}\right\|_{H} \leq 1\right) .
\end{align*}
$$

Moreover, note that it holds for all $M \in\{2,3, \ldots\}, v \in H$ with $\left|\left\langle e_{0}, v\right\rangle_{H}\right|>1$ that

$$
\begin{align*}
& \frac{T\left|a_{q}\right|}{2 M}\left|\left\langle e_{0}, v\right\rangle_{H}\right|^{q}-\frac{T \vartheta+M}{M}\left|\left\langle e_{0}, v\right\rangle_{H}\right|^{(q-1)}-1 \\
& \geq \frac{T\left|a_{q}\right|}{2 M}\left|\left\langle e_{0}, v\right\rangle_{H}\right|^{q}-\frac{T \vartheta+M}{M}\left|\left\langle e_{0}, v\right\rangle_{H}\right|^{(q-1)}-\left|\left\langle e_{0}, v\right\rangle_{H}\right|^{(q-1)} \\
& =\frac{T\left|a_{q}\right|}{2 M}\left|\left\langle e_{0}, v\right\rangle_{H}\right|^{q}-\frac{T \vartheta+2 M}{M}\left|\left\langle e_{0}, v\right\rangle_{H}\right|^{(q-1)}  \tag{3.98}\\
& =\frac{T\left|a_{q}\right|}{4 M}\left|\left\langle e_{0}, v\right\rangle_{H}\right|^{q}+\frac{T\left|a_{q}\right|}{4 M}\left|\left\langle e_{0}, v\right\rangle_{H}\right|^{q}-\frac{T \vartheta+2 M}{M}\left|\left\langle e_{0}, v\right\rangle_{H}\right|^{(q-1)} .
\end{align*}
$$

Next observe that it holds for all $M \in\{2,3, \ldots\}, v \in H$ with $\left|\left\langle e_{0}, v\right\rangle_{H}\right|>1$ that

$$
\begin{align*}
& \frac{T\left|a_{q}\right|}{4 M}\left|\left\langle e_{0}, v\right\rangle_{H}\right|^{q}-\frac{T \vartheta+2 M}{M}\left|\left\langle e_{0}, v\right\rangle_{H}\right|^{(q-1)} \geq 0 \\
& \Leftrightarrow \frac{T\left|a_{q}\right|}{4 M}\left|\left\langle e_{0}, v\right\rangle_{H}\right| \geq \frac{T \vartheta+2 M}{M}  \tag{3.99}\\
& \Leftrightarrow\left|\left\langle e_{0}, v\right\rangle_{H}\right| \geq \frac{4 T \vartheta+8 M}{T\left|a_{q}\right|} .
\end{align*}
$$

The fact that $\forall r \in(0, \infty), M \in\{2,3, \ldots\}, n \in\{1,2, \ldots, M\}, v \in H$ with $\left|\left\langle e_{0}, v\right\rangle_{H}\right| \geq$ $\left|\theta_{M, r}\right|^{\left(q^{(n-1)}\right) / r}:\left|\left\langle e_{0}, v\right\rangle_{H}\right| \geq\left|\theta_{M, r}\right|^{1 / r}$ and (3.44) therefore assure for all $r \in(0, \infty)$, $M \in\{2,3, \ldots\}, n \in\{1,2, \ldots, M\}, v \in H$ with $\left|\left\langle e_{0}, v\right\rangle_{H}\right| \geq\left|\theta_{M, r}\right|^{\left(q^{(n-1)}\right) / r}$ that

$$
\begin{equation*}
\frac{T\left|a_{q}\right|}{4 M}\left|\left\langle e_{0}, v\right\rangle_{H}\right|^{q}-\frac{T \vartheta+2 M}{M}\left|\left\langle e_{0}, v\right\rangle_{H}\right|^{(q-1)} \geq 0 . \tag{3.100}
\end{equation*}
$$

Combining this with (3.98) proves for all $r \in(0, \infty), M \in\{2,3, \ldots\}, n \in\{1,2, \ldots, M\}$, $v \in H$ with $\left|\left\langle e_{0}, v\right\rangle_{H}\right| \geq\left|\theta_{M, r}\right|^{\left(q^{(n-1)}\right) / r}$ that

$$
\begin{align*}
& \frac{T\left|a_{q}\right|}{2 M}\left|\left\langle e_{0}, v\right\rangle_{H}\right|^{q}-\frac{T \vartheta+M}{M}\left|\left\langle e_{0}, v\right\rangle_{H}\right|^{(q-1)}-1 \geq \frac{T\left|a_{q}\right|}{4 M}\left|\left\langle e_{0}, v\right\rangle_{H}\right|^{q} \\
& \geq \min \left\{\frac{T\left|a_{q}\right|}{4 M}, 1\right\}\left|\left\langle e_{0}, v\right\rangle_{H}\right|^{q}=\min \left\{\left[\frac{T\left|a_{q}\right|}{4 M}\right]^{r}, 1\right\}^{1 / r}\left|\left\langle e_{0}, v\right\rangle_{H}\right|^{q}  \tag{3.101}\\
& =\left|c_{M, r}\right|^{1 / r}\left|\left\langle e_{0}, v\right\rangle_{H}\right|^{q} .
\end{align*}
$$

This establishes for all $r \in(0, \infty), M \in\{2,3, \ldots\}, n \in\{1,2, \ldots, M\}, v \in H$ with $\left|\left\langle e_{0}, v\right\rangle_{H}\right| \geq\left|\theta_{M, r}\right|^{\left(q^{(n-1)}\right) / r}$ that

$$
\begin{equation*}
\frac{T\left|a_{q}\right|}{2 M}\left|\left\langle e_{0}, v\right\rangle_{H}\right|^{q}-\frac{T \vartheta+M}{M}\left|\left\langle e_{0}, v\right\rangle_{H}\right|^{(q-1)}-1 \geq\left|c_{M, r}\right|^{1 / r}\left|\left\langle e_{0}, v\right\rangle_{H}\right|^{q} . \tag{3.102}
\end{equation*}
$$

Next observe that for all $M \in\{2,3, \ldots\}$ it holds that

$$
\begin{equation*}
\mathbb{P}\left(\left\|S_{M} P_{M} Z_{2}^{M}\right\|_{H} \leq 1\right) \geq \mathbb{P}\left(\left\|S_{M} P_{M} Z_{2}^{M}\right\|_{L^{p}(\lambda ; \mathbb{R})} \leq 1\right) \tag{3.103}
\end{equation*}
$$

Corollary 3.5 (with $(\Omega, \mathcal{F}, \mathbb{P})=(\Omega, \mathcal{F}, \mathbb{P}), T=T, x=1, \gamma=\gamma_{M}, y=y_{M}, p=p$, $\delta=\zeta_{\nu+s}, \nu=\nu, s=s, N=M, v=0, S=\left(H \ni w \mapsto S_{M} w \in H_{\nu+s}\right), W=W$ for $M \in\{2,3, \ldots\}$ in the notation of Corollary (3.5) therefore establishes for all $M \in\{2,3, \ldots\}$ that

$$
\begin{align*}
& \mathbb{P}\left(\left\|S_{M} P_{M} Z_{2}^{M}\right\|_{H} \leq 1\right) \geq \mathbb{P}\left(\left\|S_{M} P_{M}\left(W_{2 T / M}-W_{T / M}\right)\right\|_{L^{p}(\lambda ; \mathbb{R})} \leq 1\right) \\
& \quad=\mathbb{P}\left(\left\|S_{M} P_{M}\left(W_{T / M}\right)\right\|_{L^{p}(\lambda ; \mathbb{R})} \leq 1\right) \geq\left[\frac{y_{M}}{\sqrt{2 \pi \gamma_{M} T}}\right]^{(2 M+1)} \exp \left(-\frac{3 M^{2}\left|y_{M}\right|^{2}}{\gamma_{M} T}\right) . \tag{3.104}
\end{align*}
$$

Combining this with (3.97) and (3.102) assures for all $r \in(0, \infty), M \in\{2,3, \ldots\}$, $n \in\{1,2, \ldots, M\}, v \in \mathbb{H}_{n-1, r}^{M}$ with $\left|\left\langle e_{0}, v\right\rangle_{H}\right| \geq\left|\theta_{M, r}\right|^{\left(q^{(n-1)}\right) / r}$ that

$$
\begin{align*}
& \mathbb{P}\left(\left|\left\langle e_{0}, P_{M} S_{M}\left(v+\frac{T}{M}\left(\sum_{k=0}^{q} a_{k}[v]^{k}\right)+Z_{2}^{M}\right)\right\rangle_{H}\right| \geq\left|c_{M, r}\right|^{1 / r}\left|\left\langle e_{0}, v\right\rangle_{H}\right|^{q}\right) \\
& \geq\left[\frac{y_{M}}{\sqrt{2 \pi \gamma_{M} T}}\right]^{(2 M+1)} \exp \left(-\frac{3 M^{2}\left|y_{M}\right|^{2}}{\gamma_{M} T}\right) . \tag{3.105}
\end{align*}
$$

Next note that the triangle inequality and (3.37) establish for all $M \in\{2,3, \ldots\}$, $v \in H_{\chi}$ that

$$
\begin{align*}
& \left\|\mathcal{R}\left[P_{M} S_{M}\left(v+\frac{T}{M}\left(\sum_{k=0}^{q} a_{k}[v]^{k}\right)+Z_{2}^{M}\right)\right]\right\|_{L^{p}(\lambda ; \mathbb{R})} \\
& =\left\|\mathcal{R}\left[P_{M} S_{M}\left(v+\frac{T}{M} \sum_{k=0}^{q} a_{k}[v]^{k}\right)+P_{M} S_{M} Z_{2}^{M}\right]\right\|_{L^{p}(\lambda ; \mathbb{R})} \\
& \leq\left\|\mathcal{R}\left[P_{M} S_{M}\left(v+\frac{T}{M} \sum_{k=0}^{q} a_{k}[v]^{k}\right)\right]\right\|_{L^{p}(\lambda ; \mathbb{R})}+\left\|\mathcal{R}\left[P_{M} S_{M} Z_{2}^{M}\right]\right\|_{L^{p}(\lambda ; \mathbb{R})}  \tag{3.106}\\
& =\left\|P_{M} \mathcal{R}\left[S_{M}\left(v+\frac{T}{M} \sum_{k=0}^{q} a_{k}[v]^{k}\right)\right]\right\|_{L^{p}(\lambda ; \mathbb{R})}+\left\|\mathcal{R}\left[S_{M} P_{M} Z_{2}^{M}\right]\right\|_{L^{p}(\lambda ; \mathbb{R})} .
\end{align*}
$$

Moreover, observe that the triangle inequality proves for all $v \in L^{p}(\lambda ; \mathbb{R})$ that

$$
\begin{align*}
\|\mathcal{R}[v]\|_{L^{p}(\lambda ; \mathbb{R})} & =\left\|v-\left\langle e_{0}, v\right\rangle_{H} e_{0}\right\|_{L^{p}(\lambda ; \mathbb{R})} \leq\|v\|_{L^{p}(\lambda ; \mathbb{R})}+\left\|\left\langle e_{0}, v\right\rangle_{H} e_{0}\right\|_{L^{p}(\lambda ; \mathbb{R})}  \tag{3.107}\\
& =\|v\|_{L^{p}(\lambda ; \mathbb{R})}+\left|\left\langle e_{0}, v\right\rangle_{H}\right| \leq\|v\|_{L^{p}(\lambda ; \mathbb{R})}+\|v\|_{H} \leq 2\|v\|_{L^{p}(\lambda ; \mathbb{R})} .
\end{align*}
$$

Next note that (3.35) ensures that for all $M \in \mathbb{N}, v \in H$ it holds that

$$
\begin{align*}
\mathcal{R}\left[S_{M} v\right] & =\left(\operatorname{Id}_{H}-P_{0}\right) S_{M} v=S_{M} v-P_{0} S_{M} v \\
& =S_{M} v-\left\langle e_{0}, S_{M} v\right\rangle_{H} e_{0}=S_{M} v-\left\langle S_{M} e_{0}, v\right\rangle_{H} e_{0} \\
& =S_{M} v-\left\langle e_{0}, v\right\rangle_{H} e_{0}=S_{M} v-\left\langle e_{0}, v\right\rangle_{H} S_{M} e_{0}  \tag{3.108}\\
& =S_{M} v-S_{M}\left(\left\langle e_{0}, v\right\rangle_{H} e_{0}\right)=S_{M}\left(v-\left\langle e_{0}, v\right\rangle_{H} e_{0}\right) \\
& =S_{M} \mathcal{R}[v] .
\end{align*}
$$

Combining this with (3.63), (3.106), and (3.107) proves for all $M \in\{2,3, \ldots\}$, $v \in H_{\chi}$ that

$$
\begin{align*}
& \left\|\mathcal{R}\left[P_{M} S_{M}\left(v+\frac{T}{M}\left(\sum_{k=0}^{q} a_{k}[v]^{k}\right)+Z_{2}^{M}\right)\right]\right\|_{L^{p}(\lambda ; \mathbb{R})}  \tag{3.109}\\
& \leq\left\|P_{M} S_{M} \mathcal{R}\left[v+\frac{T}{M} \sum_{k=0}^{q} a_{k}[v]^{k}\right]\right\|_{L^{p}(\lambda ; \mathbb{R})}+2\left\|S_{M} P_{M} Z_{2}^{M}\right\|_{L^{p}(\lambda ; \mathbb{R})} .
\end{align*}
$$

This establishes for all $M \in\{2,3, \ldots\}, v \in H_{\chi}$ that

$$
\begin{align*}
& \left\|\mathcal{R}\left[P_{M} S_{M}\left(v+\frac{T}{M}\left(\sum_{k=0}^{q} a_{k}[v]^{k}\right)+Z_{2}^{M}\right)\right]\right\|_{L^{p}(\lambda ; \mathbb{R})} \\
& \leq C\left\|P_{M} S_{M} \mathcal{R}\left[v+\frac{T}{M} \sum_{k=0}^{q} a_{k}[v]^{k}\right]\right\|_{H_{\chi}}+2\left\|S_{M} P_{M} Z_{2}^{M}\right\|_{L^{p}(\lambda ; \mathbb{R})}  \tag{3.110}\\
& =C\left\|(\eta-A)^{\chi} P_{M} S_{M} \mathcal{R}\left[v+\frac{T}{M} \sum_{k=0}^{q} a_{k}[v]^{k}\right]\right\|_{H}+2\left\|S_{M} P_{M} Z_{2}^{M}\right\|_{L^{p}(\lambda ; \mathbb{R})}
\end{align*}
$$

Combining this with (3.37) implies for all $M \in\{2,3, \ldots\}, v \in H_{\chi}$ that

$$
\begin{align*}
& \left\|\mathcal{R}\left[P_{M} S_{M}\left(v+\frac{T}{M}\left(\sum_{k=0}^{q} a_{k}[v]^{k}\right)+Z_{2}^{M}\right)\right]\right\|_{L^{p}(\lambda ; \mathbb{R})} \\
& \leq C\left\|(\eta-A)^{\chi} S_{M} P_{M} \mathcal{R}\left[v+\frac{T}{M} \sum_{k=0}^{q} a_{k}[v]^{k}\right]\right\|_{H}+2\left\|S_{M} P_{M} Z_{2}^{M}\right\|_{L^{p}(\lambda ; \mathbb{R})}  \tag{3.111}\\
& \leq C\left\|(\eta-A)^{\chi} S_{M}\right\|_{L(H)}\left\|P_{M} \mathcal{R}\left[v+\frac{T}{M} \sum_{k=0}^{q} a_{k}[v]^{k}\right]\right\|_{H}+2\left\|S_{M} P_{M} Z_{2}^{M}\right\|_{L^{p}(\lambda ; \mathbb{R})}
\end{align*}
$$

This and the fact that $\forall N \in \mathbb{N}, w \in H:\left\|P_{N}(w)\right\|_{H} \leq\|w\|_{H}$ prove for all $M \in$ $\{2,3, \ldots\}, v \in H_{\chi}$ that

$$
\begin{align*}
& \left\|\mathcal{R}\left[P_{M} S_{M}\left(v+\frac{T}{M}\left(\sum_{k=0}^{q} a_{k}[v]^{k}\right)+Z_{2}^{M}\right)\right]\right\|_{L^{p}(\lambda ; \mathbb{R})}  \tag{3.112}\\
& \leq C\left\|(\eta-A)^{\chi} S_{M}\right\|_{L(H)}\left\|\mathcal{R}\left[v+\frac{T}{M} \sum_{k=0}^{q} a_{k}[v]^{k}\right]\right\|_{H}+2\left\|S_{M} P_{M} Z_{2}^{M}\right\|_{L^{p}(\lambda ; \mathbb{R})} \\
& \leq C \zeta_{\chi}\left[\frac{M}{T}\right]^{\chi}\left\|\mathcal{R}\left[v+\frac{T}{M} \sum_{k=0}^{q} a_{k}[v]^{k}\right]\right\|_{H}+2\left\|S_{M} P_{M} Z_{2}^{M}\right\|_{L^{p}(\lambda ; \mathbb{R})} .
\end{align*}
$$

The triangle inequality and the linearity of $\mathcal{R}$ hence ensure for all $M \in\{2,3, \ldots\}$, $v \in H_{\chi}$ that

$$
\begin{align*}
& \left\|\mathcal{R}\left[P_{M} S_{M}\left(v+\frac{T}{M}\left(\sum_{k=0}^{q} a_{k}[v]^{k}\right)+Z_{2}^{M}\right)\right]\right\|_{L^{p}(\lambda ; \mathbb{R})} \\
& \leq C \zeta_{\chi}\left[\frac{M}{T}\right]^{\chi}\left(\|\mathcal{R}[v]\|_{H}+\frac{T}{M}\left\|\mathcal{R}\left[\sum_{k=0}^{q} a_{k}[v]^{k}\right]\right\|_{H}\right)+2\left\|S_{M} P_{M} Z_{2}^{M}\right\|_{L^{p}(\lambda ; \mathbb{R})}  \tag{3.113}\\
& =C \zeta_{\chi}\left[\frac{M}{T}\right]^{\chi}\left(\|\mathcal{R}[v]\|_{H}+\frac{T}{M}\left\|\sum_{k=0}^{q} a_{k} \mathcal{R}\left[[v]^{k}\right]\right\|_{H}\right)+2\left\|S_{M} P_{M} Z_{2}^{M}\right\|_{L^{p}(\lambda ; \mathbb{R})} .
\end{align*}
$$

The triangle inequality therefore implies for all $M \in\{2,3, \ldots\}, v \in H_{\chi}$ that

$$
\begin{align*}
& \left\|\mathcal{R}\left[P_{M} S_{M}\left(v+\frac{T}{M}\left(\sum_{k=0}^{q} a_{k}[v]^{k}\right)+Z_{2}^{M}\right)\right]\right\|_{L^{p}(\lambda ; \mathbb{R})} \\
& \leq C \zeta_{\chi}\left[\frac{M}{T}\right]^{\chi}\left(\|\mathcal{R}[v]\|_{H}+\frac{T}{M} \max \left\{\left|a_{0}\right|,\left|a_{1}\right|, \ldots,\left|a_{q}\right|\right\} \sum_{k=0}^{q}\left\|\mathcal{R}\left[[v]^{k}\right]\right\|_{H}\right)  \tag{3.114}\\
& \quad+2\left\|S_{M} P_{M} Z_{2}^{M}\right\|_{L^{p}(\lambda ; \mathbb{R}) .}
\end{align*}
$$

This and (3.42) ensure for all $M \in\{2,3, \ldots\}, v \in H_{\chi}$ that

$$
\begin{align*}
& \left\|\mathcal{R}\left[P_{M} S_{M}\left(v+\frac{T}{M}\left(\sum_{k=0}^{q} a_{k}[v]^{k}\right)+Z_{2}^{M}\right)\right]\right\|_{L^{p}(\lambda ; \mathbb{R})} \\
& \leq C \zeta_{\chi}\left[\frac{M}{T}\right]^{\chi}\left(\|\mathcal{R}[v]\|_{H}+\frac{T}{M} \vartheta \sum_{k=0}^{q}\left\|\mathcal{R}\left[[v]^{k}\right]\right\|_{H}\right)+2\left\|S_{M} P_{M} Z_{2}^{M}\right\|_{L^{p}(\lambda ; \mathbb{R})}  \tag{3.115}\\
& \leq \max \{C, 1\} \zeta_{\chi} \frac{|M| x}{\min \{T, 1\}}\left(\|\mathcal{R}[v]\|_{H}+\frac{T \vartheta}{M} \sum_{k=0}^{q}\left\|\mathcal{R}\left[[v]^{k}\right]\right\|_{H}\right)+2\left\|S_{M} P_{M} Z_{2}^{M}\right\|_{L^{p}(\lambda ; \mathbb{R})} \\
& \leq \max \{C, 1\} \zeta_{\chi} \frac{|M| x}{\min \{T, 1\}}\left(\|\mathcal{R}[v]\|_{H}+\frac{T \vartheta}{M} \sum_{k=0}^{q}\left\|\mathcal{R}\left[[v]^{k}\right]\right\|_{H}+2\left\|S_{M} P_{M} Z_{2}^{M}\right\|_{L^{p}(\lambda ; \mathbb{R})}\right) .
\end{align*}
$$

Furthermore, note that (3.107) and the fact that $\|\mathcal{R}\|_{L(H)} \leq 2$ ensure for all $v \in H_{\chi}$ that

$$
\begin{align*}
\sum_{k=0}^{q}\left\|\mathcal{R}\left[[v]^{k}\right]\right\|_{H} & \leq \sum_{k=0}^{q}\|\mathcal{R}\|_{L(H)}\left\|[v]^{k}\right\|_{H} \leq 2 \sum_{k=0}^{q}\left\|[v]^{k}\right\|_{H} \\
& =2 \sum_{k=0}^{q}\left\|\sum_{m=0}^{k}\binom{k}{m}\left(P_{0}(v)\right)^{(k-m)}(\mathcal{R}[v])^{m}\right\|_{H} \\
& \leq 2 \sum_{k=0}^{q} \sum_{m=0}^{k}\binom{k}{m}\left\|\left(P_{0}(v)\right)^{(k-m)}(\mathcal{R}[v])^{m}\right\|_{H}  \tag{3.116}\\
& =2 \sum_{k=0}^{q} \sum_{m=0}^{k}\binom{k}{m}\left|\left\langle e_{0}, v\right\rangle_{H}\right|^{(k-m)}\left\|(\mathcal{R}[v])^{m}\right\|_{H} .
\end{align*}
$$

This assures for all $r \in(0, \infty), M \in\{2,3, \ldots\}, n \in\{1,2, \ldots, M\}, v \in \mathbb{H}_{n-1, r}^{M}$ that

$$
\begin{align*}
& \sum_{k=0}^{q}\left\|\mathcal{R}\left([v]^{k}\right)\right\|_{H} \leq 2 \sum_{k=0}^{q} \sum_{m=0}^{k}\binom{k}{m}\left|\left\langle e_{0}, v\right\rangle_{H}\right|^{(k-m)}\|\mathcal{R}[v]\|_{L^{2 m}(\lambda, \mathbb{R})}^{m} \\
& \leq 2 \sum_{k=0}^{q} \sum_{m=0}^{k}\binom{k}{m}\left|\left\langle e_{0}, v\right\rangle_{H}\right|^{(k-m)}\|\mathcal{R}[v]\|_{L^{p}(\lambda, \mathbb{R})}^{m} \\
& \leq 2 \sum_{k=0}^{q} \sum_{m=0}^{k}\binom{k}{m} \frac{1}{2^{m}}\left|\rho_{M, r}\right|^{m(n-1-M)}\left|\left\langle e_{0}, v\right\rangle_{H}\right|^{(k-m)}\left|\left\langle e_{0}, v\right\rangle_{H}\right|^{m} \\
& \leq 2 \sum_{k=0}^{q} \sum_{m=0}^{k}\binom{k}{m}\left|\rho_{M, r}\right|^{(n-1-M)}\left|\left\langle e_{0}, v\right\rangle_{H}\right|^{k}  \tag{3.117}\\
& =2\left|\rho_{M, r}\right|^{(n-1-M)}\left(\sum_{k=0}^{q}\left|\left\langle e_{0}, v\right\rangle_{H}\right|^{k}\left[\sum_{m=0}^{k}\binom{k}{m}\right]\right) \\
& =2\left|\rho_{M, r}\right|^{(n-1-M)}\left(\sum_{k=0}^{q} 2^{k}\left|\left\langle e_{0}, v\right\rangle_{H}\right|^{k}\right) .
\end{align*}
$$

Therefore, we obtain for all $r \in(0, \infty), M \in\{2,3, \ldots\}, n \in\{1,2, \ldots, M\}, v \in$ $\mathbb{H}_{n-1, r}^{M}$ with $\left|\left\langle e_{0}, v\right\rangle_{H}\right|>1$ that

$$
\begin{align*}
& \sum_{k=0}^{q}\left\|\mathcal{R}\left([v]^{k}\right)\right\|_{H} \leq 2\left|\rho_{M, r}\right|^{(n-1-M)}\left|\left\langle e_{0}, v\right\rangle_{H}\right|^{q}\left(\sum_{k=0}^{q} 2^{k}\right) \\
& =2\left|\rho_{M, r}\right|^{(n-1-M)}\left|\left\langle e_{0}, v\right\rangle_{H}\right|^{q}\left(2^{q+1}-1\right) \leq 2^{q+2}\left|\rho_{M, r}\right|^{(n-1-M)}\left|\left\langle e_{0}, v\right\rangle_{H}\right|^{q}  \tag{3.118}\\
& \leq \vartheta\left|\rho_{M, r}\right|^{(n-1-M)}\left|\left\langle e_{0}, v\right\rangle_{H}\right|^{q} .
\end{align*}
$$

Combining this with (3.115) proves for all $r \in(0, \infty), M \in\{2,3, \ldots\}, n \in\{1,2, \ldots, M\}$, $v \in \mathbb{H}_{n-1, r}^{M}, \omega \in \Omega$ with $\left|\left\langle e_{0}, v\right\rangle_{H}\right|>1$ and $\left\|S_{M} P_{M} Z_{2}^{M}(\omega)\right\|_{L^{p}(\lambda ; \mathbb{R})} \leq\left|\rho_{M, r}\right|^{(n-1-M)}$
that

$$
\begin{align*}
& \left\|\mathcal{R}\left[P_{M} S_{M}\left(v+\frac{T}{M}\left(\sum_{k=0}^{q} a_{k}[v]^{k}\right)+Z_{2}^{M}(\omega)\right)\right]\right\|_{L^{p}(\lambda ; \mathbb{R})}  \tag{3.119}\\
& \leq \max \{C, 1\} \frac{\zeta_{\chi}|M| \chi}{\min \{T, 1\}}\left(\|\mathcal{R}[v]\|_{H}+\frac{T \vartheta^{2}}{M}\left|\rho_{M, r}\right|^{(n-1-M)}\left|\left\langle e_{0}, v\right\rangle_{H}\right|^{q}+2\left|\rho_{M, r}\right|^{(n-1-M)}\right) \\
& \leq \max \{C, 1\} \frac{\zeta_{\chi}|M|}{\min \{T, 1\}}\left(\|\mathcal{R}[v]\|_{L^{p}(\lambda ; \mathbb{R})}+\frac{T \vartheta^{2}}{M}\left|\rho_{M, r}\right|^{(n-1-M)}\left|\left\langle e_{0}, v\right\rangle_{H}\right|^{q}+2\left|\rho_{M, r}\right|^{(n-1-M)}\right) \\
& \leq \max \{C, 1\} \frac{\zeta\langle | M \mid \chi}{\min \{T, 1\}}\left(\frac{1}{2}\left|\rho_{M, r}\right|^{(n-1-M)}+\frac{T \vartheta^{2}}{M}\left|\rho_{M, r}\right|^{(n-1-M)}\left|\left\langle e_{0}, v\right\rangle_{H}\right|^{q}+2\left|\rho_{M, r}\right|^{(n-1-M)}\right) .
\end{align*}
$$

Hence, we obtain for all $r \in(0, \infty), M \in\{2,3, \ldots\}, n \in\{1,2, \ldots, M\}, v \in \mathbb{H}_{n-1, r}^{M}$, $\omega \in \Omega$ with $\left|\left\langle e_{0}, v\right\rangle_{H}\right|>1$ and $\left\|S_{M} P_{M} Z_{2}^{M}(\omega)\right\|_{L^{p}(\lambda ; \mathbb{R})} \leq\left|\rho_{M, r}\right|^{(n-1-M)}$ that

$$
\begin{align*}
& \left\|\mathcal{R}\left[P_{M} S_{M}\left(v+\frac{T}{M}\left(\sum_{k=0}^{q} a_{k}[v]^{k}\right)+Z_{2}^{M}(\omega)\right)\right]\right\|_{L^{p}(\lambda ; \mathbb{R})}  \tag{3.120}\\
& \leq \max \{C, 1\} \frac{\zeta_{\chi}|M| x}{\min \{T, 1\}}\left|\rho_{M, r}\right|^{(n-1-M)}\left(\frac{T \vartheta^{2}}{M}+3\right)\left|\left\langle e_{0}, v\right\rangle_{H}\right|^{q} .
\end{align*}
$$

Next note that it holds for all $r \in(0, \infty), M \in\{2,3, \ldots\}$ that

$$
\begin{align*}
& \max \{C, 1\} \frac{\zeta_{\chi}|M| \chi}{\left|c_{M, r}\right|^{1 / r} \min \{T, 1\}}\left(\frac{T \vartheta^{2}}{M}+3\right) \\
& \leq \max \{C, 1\} \frac{\zeta_{\chi}|M| \chi}{\left|c_{M, r}\right|^{1 / r} \min \{T, 1\}}\left(\max \{T, 1\} \vartheta^{2}+3 \max \{T, 1\} \vartheta^{2}\right)  \tag{3.121}\\
& =\vartheta^{2} \max \{C, 1\} \max \{T, 1\} \frac{\zeta_{\chi}|M|^{\chi}}{\left|c_{M, r}\right|^{\left.\right|^{r}} \min \{T, 1\}} \leq \frac{1}{2} \rho_{M, r} .
\end{align*}
$$

Combining this with (3.120) therefore establishes for all $r \in(0, \infty), M \in\{2,3, \ldots\}$, $n \in\{1,2, \ldots, M\}, v \in \mathbb{H}_{n-1, r}^{M}, \omega \in \Omega$ with $\left|\left\langle e_{0}, v\right\rangle_{H}\right|>1$ and $\left\|S_{M} P_{M} Z_{2}^{M}(\omega)\right\|_{L^{p}(\lambda ; \mathbb{R})} \leq$ $\left|\rho_{M, r}\right|^{(n-1-M)}$ that

$$
\begin{align*}
& \left\|\mathcal{R}\left[P_{M} S_{M}\left(v+\frac{T}{M}\left(\sum_{k=0}^{q} a_{k}[v]^{k}\right)+Z_{2}^{M}(\omega)\right)\right]\right\|_{L^{p}(\lambda ; \mathbb{R})}  \tag{3.122}\\
& \leq \frac{1}{2}\left|\rho_{M, r}\right|^{(n-M)}\left|c_{M, r}\right|^{1 / r}\left|\left\langle e_{0}, v\right\rangle_{H}\right|^{q} .
\end{align*}
$$

This implies for all $r \in(0, \infty), M \in\{2,3, \ldots\}, n \in\{1,2, \ldots, M\}, v \in H_{\chi}$ with $\left|\left\langle e_{0}, v\right\rangle_{H}\right|>1$ that

$$
\begin{align*}
& \mathbb{P}\left(\left\{\left\|\mathcal{R}\left[P_{M} S_{M}\left(v+\frac{T}{M}\left(\sum_{k=0}^{q} a_{k}[v]^{k}\right)+Z_{2}^{M}\right)\right]\right\|_{L^{p}(\lambda ; \mathbb{R})}\right.\right. \\
& \left.\left.\quad \leq \frac{1}{2}\left|\rho_{M, r}\right|^{(n-M)}\left|c_{M, r}\right|^{1 / r}\left|\left\langle e_{0}, v\right\rangle_{H}\right|^{q}\right\} \cap\left\{\left\|S_{M} P_{M} Z_{2}^{M}\right\|_{L^{p}(\lambda ; \mathbb{R})} \leq\left|\rho_{M, r}\right|^{(n-1-M)}\right\}\right) \\
& =\mathbb{P}\left(\left\|S_{M} P_{M} Z_{2}^{M}\right\|_{L^{p}(\lambda ; \mathbb{R})} \leq\left|\rho_{M, r}\right|^{(n-1-M)}\right) . \tag{3.123}
\end{align*}
$$

Furthermore, note that (3.63) ensures for all $r \in(0, \infty), M \in\{2,3, \ldots\}, n \in$ $\{1,2, \ldots, M\}, v \in \mathbb{H}_{n-1, r}^{M}$ that

$$
\begin{align*}
& \left\{\omega \in \Omega: P_{M} S_{M}\left(v+\frac{T}{M}\left(\sum_{k=0}^{q} a_{k}[v]^{k}\right)+Z_{2}^{M}(\omega)\right) \in \mathbb{H}_{n, r}^{M}\right\} \\
& =\left\{\omega \in \Omega:\left\|\mathcal{R}\left[P_{M} S_{M}\left(v+\frac{T}{M}\left(\sum_{k=0}^{q} a_{k}[v]^{k}\right)+Z_{2}^{M}(\omega)\right)\right]\right\|_{L^{p}(\lambda ; \mathbb{R})}\right.  \tag{3.124}\\
& \left.\leq \frac{1}{2}\left|\rho_{M, r}\right|^{(n-M)}\left\|P_{0}\left[P_{M} S_{M}\left(v+\frac{T}{M}\left(\sum_{k=0}^{q} a_{k}[v]^{k}\right)+Z_{2}^{M}(\omega)\right)\right]\right\|_{H}\right\} .
\end{align*}
$$

This implies for all $r \in(0, \infty), M \in\{2,3, \ldots\}, n \in\{1,2, \ldots, M\}, v \in \mathbb{H}_{n-1, r}^{M}$ that

$$
\begin{align*}
& \mathbb{P}\left(\left\{\left|\left\langle e_{0}, P_{M} S_{M}\left(v+\frac{T}{M}\left(\sum_{k=0}^{q} a_{k}[v]^{k}\right)+Z_{2}^{M}\right)\right\rangle_{H}\right| \geq\left|c_{M, r}\right|^{1 / r}\left|\left\langle e_{0}, v\right\rangle_{H}\right|^{q}\right\}\right. \\
& = \\
& \left.\cap\left\{P_{M} S_{M}\left(v+\frac{T}{M}\left(\sum_{k=0}^{q} a_{k}[v]^{k}\right)+Z_{2}^{M}\right) \in \mathbb{H}_{n, r}^{M}\right\}\right) \\
& \\
& \cap\left\{\left\lvert\,\left.\left\langle e_{0},\left.\left.P_{M} S_{M}\left(v+\frac{T}{M}\left(\sum_{k=0}^{q} a_{k}[v]^{k}\right)+Z_{2}^{M} S_{M}\left(v+\frac{T}{M}\left(\sum_{k=0}^{q} a_{k}[v]^{k}\right)+Z_{2}^{M}\right)\right]\right|_{L^{p}(\lambda ; \mathbb{R})}\right|^{1 / r}\right|\left\langle e_{0}, v\right\rangle_{H}\right|^{q}\right.\right\}  \tag{3.125}\\
& \left.\left.\quad \leq \frac{1}{2}\left|\rho_{M, r}\right|^{(n-M)}\left\|P_{0}\left[P_{M} S_{M}\left(v+\frac{T}{M}\left(\sum_{k=0}^{q} a_{k}[v]^{k}\right)+Z_{2}^{M}\right)\right]\right\|_{H}\right\}\right)
\end{align*}
$$

Hence, we obtain for all $r \in(0, \infty), M \in\{2,3, \ldots\}, n \in\{1,2, \ldots, M\}, v \in \mathbb{H}_{n-1, r}^{M}$ that

$$
\begin{align*}
& \mathbb{P}\left(\left\{\left|\left\langle e_{0}, P_{M} S_{M}\left(v+\frac{T}{M}\left(\sum_{k=0}^{q} a_{k}[v]^{k}\right)+Z_{2}^{M}\right)\right\rangle_{H}\right| \geq\left|c_{M, r}\right|^{1 / r}\left|\left\langle e_{0}, v\right\rangle_{H}\right|^{q}\right\}\right. \\
&\left.\cap\left\{P_{M} S_{M}\left(v+\frac{T}{M}\left(\sum_{k=0}^{q} a_{k}[v]^{k}\right)+Z_{2}^{M}\right) \in \mathbb{H}_{n, r}^{M}\right\}\right) \\
&=\mathbb{P}\left(\left\{\left|\left\langle e_{0}, P_{M} S_{M}\left(v+\frac{T}{M}\left(\sum_{k=0}^{q} a_{k}[v]^{k}\right)+Z_{2}^{M}\right)\right\rangle_{H}\right| \geq\left|c_{M, r}\right|^{1 / r}\left|\left\langle e_{0}, v\right\rangle_{H}\right|^{q}\right\}\right. \\
& \cap\left\{\left|\left\lvert\, \mathcal{R}\left[P_{M} S_{M}\left(v+\frac{T}{M}\left(\sum_{k=0}^{q} a_{k}[v]^{k}\right)+Z_{2}^{M}\right)\right]\right. \|_{L^{p}(\lambda ; \mathbb{R})}\right.\right. \\
&\left.\left.\leq \frac{1}{2}\left|\rho_{M, r}\right|^{(n-M)}\left|\left\langle e_{0}, P_{M} S_{M}\left(v+\frac{T}{M}\left(\sum_{k=0}^{q} a_{k}[v]^{k}\right)+Z_{2}^{M}\right)\right\rangle_{H}\right|\right\}\right) . \tag{3.126}
\end{align*}
$$

This assures for all $r \in(0, \infty), M \in\{2,3, \ldots\}, n \in\{1,2, \ldots, M\}, v \in \mathbb{H}_{n-1, r}^{M}$ that

$$
\begin{align*}
& \mathbb{P}\left(\left\{\left|\left\langle e_{0}, P_{M} S_{M}\left(v+\frac{T}{M}\left(\sum_{k=0}^{q} a_{k}[v]^{k}\right)+Z_{2}^{M}\right)\right\rangle_{H}\right| \geq\left|c_{M, r}\right|^{1 / r}\left|\left\langle e_{0}, v\right\rangle_{H}\right|^{q}\right\}\right. \\
& \\
& \left.\cap\left\{P_{M} S_{M}\left(v+\frac{T}{M}\left(\sum_{k=0}^{q} a_{k}[v]^{k}\right)+Z_{2}^{M}\right) \in \mathbb{H}_{n, r}^{M}\right\}\right) \\
& \geq \mathbb{P}\left(\left\{\left|\left\langle e_{0}, P_{M} S_{M}\left(v+\frac{T}{M}\left(\sum_{k=0}^{q} a_{k}[v]^{k}\right)+Z_{2}^{M}\right)\right\rangle_{H}\right| \geq\left|c_{M, r}\right|^{1 / r}\left|\left\langle e_{0}, v\right\rangle_{H}\right|^{q}\right\}\right. \\
& \cap  \tag{3.127}\\
& \cap\left\{\left\lvert\, \mathcal{R}\left[P_{M} S_{M}\left(v+\frac{T}{M}\left(\sum_{k=0}^{q} a_{k}[v]^{k}\right)+Z_{2}^{M}\right)\right]\right. \|_{L^{p}(\lambda ; \mathbb{R})}\right. \\
& \left.\left.\quad \leq \frac{1}{2}\left|\rho_{M, r}\right|^{(n-M)}\left|c_{M, r}\right|^{1 / r}\left|\left\langle e_{0}, v\right\rangle_{H}\right|^{q}\right\}\right) .
\end{align*}
$$

Next observe that (3.73), (3.35) prove for all $N \in \mathbb{N}, v \in H_{-\nu}$ that

$$
\begin{equation*}
\left\langle e_{0}, P_{N} S_{N} v\right\rangle_{H}=\left\langle e_{0}, S_{N} P_{N} v\right\rangle_{H}=\left\langle S_{N} e_{0}, P_{N} v\right\rangle_{H}=\left\langle e_{0}, P_{N} v\right\rangle_{H} . \tag{3.128}
\end{equation*}
$$

This implies that it holds for all $M \in\{2,3, \ldots\}, n \in\{1,2, \ldots, M\}, v \in H_{-\nu}$ that

$$
\begin{align*}
\left\langle e_{0}, P_{M} S_{M}\left(v+Z_{n}^{M}\right)\right\rangle_{H} & =\left\langle e_{0}, P_{M} S_{M} v\right\rangle_{H}+\left\langle e_{0}, P_{M} S_{M} Z_{n}^{M}\right\rangle_{H} \\
& =\left\langle e_{0}, P_{M} S_{M} v\right\rangle_{H}+\left\langle e_{0}, P_{M} Z_{n}^{M}\right\rangle_{H} . \tag{3.129}
\end{align*}
$$

Therefore, we obtain for all $M \in\{2,3, \ldots\}, n \in\{1,2, \ldots, M\}, v \in H_{-\nu}, x \in \mathbb{R}$ that

$$
\begin{equation*}
\left\{\omega \in \Omega:\left|\left\langle e_{0}, P_{M} S_{M}\left(v+Z_{n}^{M}(\omega)\right)\right\rangle_{H}\right| \geq x\right\} \in \sigma\left(\left\langle e_{0}, P_{M} Z_{n}^{M}\right\rangle_{H}\right) . \tag{3.130}
\end{equation*}
$$

Moreover, observe that it holds for all $M \in\{2,3, \ldots\}, n \in\{1,2, \ldots, M\}, v \in H_{-\nu}$ that

$$
\begin{equation*}
\mathcal{R}\left[P_{M} S_{M}\left(v+Z_{n}^{M}\right)\right]=\mathcal{R}\left[P_{M} S_{M} v\right]+\mathcal{R}\left[P_{M} S_{M} Z_{n}^{M}\right] \tag{3.131}
\end{equation*}
$$

In addition, note that (3.73), (3.108), and the fact that $\forall u \in H_{-\nu}, M \in\{2,3, \ldots\}$ : $P_{M} u \in H$ ensure for all $M \in\{2,3, \ldots\}, v \in H_{-\nu}$ that

$$
\begin{equation*}
\mathcal{R}\left[P_{M} S_{M} v\right]=\mathcal{R}\left[S_{M} P_{M} v\right]=S_{M} \mathcal{R}\left[P_{M} v\right] . \tag{3.132}
\end{equation*}
$$

Hence, we obtain for all $M \in\{2,3, \ldots\}, v \in H_{-\nu}$ that

$$
\begin{equation*}
\mathcal{R}\left[P_{M} S_{M} v\right]=S_{M}\left(\sum_{k \in\{-M, \ldots, M\} \backslash\{0\}}\left\langle e_{k}, P_{M} v\right\rangle_{H} e_{k}\right) . \tag{3.133}
\end{equation*}
$$

This and (3.131) establish for all $M \in\{2,3, \ldots\}, n \in\{1,2, \ldots, M\}, v \in H_{-\nu}$ that

$$
\begin{align*}
& \mathcal{R}\left[P_{M} S_{M}\left(v+Z_{n}^{M}\right)\right] \\
& =\mathcal{R}\left[P_{M} S_{M} v\right]+S_{M}\left(\sum_{k \in\{-M, \ldots, M\} \backslash\{0\}}\left\langle e_{k}, P_{M} Z_{n}^{M}\right\rangle_{H} e_{k}\right) . \tag{3.134}
\end{align*}
$$

Therefore, we obtain that for all $M \in\{2,3, \ldots\}, n \in\{1,2, \ldots, M\}, v \in H_{-\nu}, x \in \mathbb{R}$ it holds that

$$
\begin{align*}
& \left\{\omega \in \Omega:\left\|\mathcal{R}\left[P_{M} S_{M}\left(v+Z_{n}^{M}(\omega)\right)\right]\right\|_{L^{p}(\lambda ; \mathbb{R})} \leq x\right\} \\
& =\left\{\omega \in \Omega:\left\|\mathcal{R}\left[P_{M} S_{M} v\right]+S_{M}\left(\sum_{k \in\{-M, \ldots, M\} \backslash\{0\}}\left\langle e_{k}, P_{M} Z_{n}^{M}(\omega)\right\rangle_{H} e_{k}\right)\right\|_{L^{p}(\lambda ; \mathbb{R})} \leq x\right\} \\
& \quad \in \sigma\left(\left\{\left\langle e_{m}, P_{M} Z_{n}^{M}\right\rangle_{H}: m \in\{-M, \ldots, M\} \backslash\{0\}\right\}\right) . \tag{3.135}
\end{align*}
$$

Moreover, observe that for all $M \in\{2,3, \ldots\}, n \in\{1,2, \ldots, M\}$ it holds that $\sigma\left(\left\langle e_{m}, P_{M} Z_{n}^{M}\right\rangle_{H}\right), m \in \mathbb{Z}$, are independent sigma algebras (cf., e.g., Proposition 2.5.2 in [113]). Combining this with (3.130) and (3.135) ensures for all $M \in$ $\{2,3, \ldots\}, n \in\{1,2, \ldots, M\}, v \in H_{-\nu}, x_{1}, x_{2} \in \mathbb{R}$ that

$$
\begin{equation*}
\left\{\omega \in \Omega:\left|\left\langle e_{0}, P_{M} S_{M}\left(v+Z_{n}^{M}(\omega)\right)\right\rangle_{H}\right| \geq x_{1}\right\} \tag{3.136}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\{\omega \in \Omega:\left\|\mathcal{R}\left[P_{M} S_{M}\left(v+Z_{n}^{M}(\omega)\right)\right]\right\|_{L^{p}(\lambda ; \mathbb{R})} \leq x_{2}\right\} \tag{3.137}
\end{equation*}
$$

are independent events. Hence, we obtain for all $M \in\{2,3, \ldots\}, n \in\{1,2, \ldots, M\}$, $v \in H_{-\nu}, x_{1}, x_{2} \in \mathbb{R}$ that

$$
\begin{align*}
& \mathbb{P}\left(\left\{\left|\left\langle e_{0}, P_{M} S_{M}\left(v+Z_{n}^{M}\right)\right\rangle_{H}\right| \geq x_{1}\right\} \cap\left\{\left\|\mathcal{R}\left[P_{M} S_{M}\left(v+Z_{n}^{M}\right)\right]\right\|_{L^{p}(\lambda ; \mathbb{R})} \leq x_{2}\right\}\right) \\
& =\mathbb{P}\left(\left|\left\langle e_{0}, P_{M} S_{M}\left(v+Z_{n}^{M}\right)\right\rangle_{H}\right| \geq x_{1}\right) \mathbb{P}\left(\left\|\mathcal{R}\left[P_{M} S_{M}\left(v+Z_{n}^{M}\right)\right]\right\|_{L^{p}(\lambda ; \mathbb{R})} \leq x_{2}\right) . \tag{3.138}
\end{align*}
$$

Combining this with (3.127) establishes for all $r \in(0, \infty), M \in\{2,3, \ldots\}, n \in$ $\{1,2, \ldots, M\}, v \in \mathbb{H}_{n-1, r}^{M}$ that

$$
\begin{align*}
& \mathbb{P}\left(\left\{\left|\left\langle e_{0}, P_{M} S_{M}\left(v+\frac{T}{M}\left(\sum_{k=0}^{q} a_{k}[v]^{k}\right)+Z_{2}^{M}\right)\right\rangle_{H}\right| \geq\left|c_{M, r}\right|^{1 / r}\left|\left\langle e_{0}, v\right\rangle_{H}\right|^{q}\right\}\right. \\
& \left.\quad \cap\left\{P_{M} S_{M}\left(v+\frac{T}{M}\left(\sum_{k=0}^{q} a_{k}[v]^{k}\right)+Z_{2}^{M}\right) \in \mathbb{H}_{n, r}^{M}\right\}\right) \\
& \geq \mathbb{P}\left(\left|\left\langle e_{0}, P_{M} S_{M}\left(v+\frac{T}{M}\left(\sum_{k=0}^{q} a_{k}[v]^{k}\right)+Z_{2}^{M}\right)\right\rangle_{H}\right| \geq\left|c_{M, r}\right|^{1 / r}\left|\left\langle e_{0}, v\right\rangle_{H}\right|^{q}\right)  \tag{3.139}\\
& \quad \cdot \mathbb{P}\left(\left\|\mathcal{R}\left[P_{M} S_{M}\left(v+\frac{T}{M}\left(\sum_{k=0}^{q} a_{k}[v]^{k}\right)+Z_{2}^{M}\right)\right]\right\|_{L^{p}(\lambda ; \mathbb{R})}\right. \\
& \left.\quad \leq \frac{1}{2}\left|\rho_{M, r}\right|^{(n-M)}\left|c_{M, r}\right|^{1 / r}\left|\left\langle e_{0}, v\right\rangle_{H}\right|^{q}\right) .
\end{align*}
$$

This implies for all $r \in(0, \infty), M \in\{2,3, \ldots\}, n \in\{1,2, \ldots, M\}, v \in \mathbb{H}_{n-1, r}^{M}$ that

$$
\begin{align*}
& \mathbb{P}\left(\left\{\left|\left\langle e_{0}, P_{M} S_{M}\left(v+\frac{T}{M}\left(\sum_{k=0}^{q} a_{k}[v]^{k}\right)+Z_{2}^{M}\right)\right\rangle_{H}\right| \geq\left|c_{M, r}\right|^{1 / r}\left|\left\langle e_{0}, v\right\rangle_{H}\right|^{q}\right\}\right. \\
& \left.\quad \cap\left\{P_{M} S_{M}\left(v+\frac{T}{M}\left(\sum_{k=0}^{q} a_{k}[v]^{k}\right)+Z_{2}^{M}\right) \in \mathbb{H}_{n, r}^{M}\right\}\right) \\
& \geq \mathbb{P}\left(\left|\left\langle e_{0}, P_{M} S_{M}\left(v+\frac{T}{M}\left(\sum_{k=0}^{q} a_{k}[v]^{k}\right)+Z_{2}^{M}\right)\right\rangle_{H}\right| \geq\left|c_{M, r}\right|^{1 / r}\left|\left\langle e_{0}, v\right\rangle_{H}\right|^{q}\right)  \tag{3.140}\\
& \quad \cdot \mathbb{P}\left(\left\{\left|\left\lvert\, \mathcal{R}\left[P_{M} S_{M}\left(v+\frac{T}{M}\left(\sum_{k=0}^{q} a_{k}[v]^{k}\right)+Z_{2}^{M}\right)\right]\right. \|_{L^{p}(\lambda ; \mathbb{R})}\right.\right.\right. \\
& \left.\left.\quad \leq \frac{1}{2}\left|\rho_{M, r}\right|^{(n-M)}\left|c_{M, r}\right|^{1 / r}\left|\left\langle e_{0}, v\right\rangle_{H}\right|^{q}\right\} \cap\left\{\left\|S_{M} P_{M} Z_{2}^{M}\right\|_{L^{p}(\lambda ; \mathbb{R})} \leq\left|\rho_{M, r}\right|^{(n-1-M)}\right\}\right) .
\end{align*}
$$

Combining this with (3.123) proves for all $r \in(0, \infty), M \in\{2,3, \ldots\}, n \in\{1,2, \ldots, M\}$, $v \in \mathbb{H}_{n-1, r}^{M}$ with $\left|\left\langle e_{0}, v\right\rangle_{H}\right|>1$ that

$$
\begin{align*}
& \mathbb{P}\left(\left\{\left|\left\langle e_{0}, P_{M} S_{M}\left(v+\frac{T}{M}\left(\sum_{k=0}^{q} a_{k}[v]^{k}\right)+Z_{2}^{M}\right)\right\rangle_{H}\right| \geq\left|c_{M, r}\right|^{1 / r}\left|\left\langle e_{0}, v\right\rangle_{H}\right|^{q}\right\}\right. \\
& \left.\quad \cap\left\{P_{M} S_{M}\left(v+\frac{T}{M}\left(\sum_{k=0}^{q} a_{k}[v]^{k}\right)+Z_{2}^{M}\right) \in \mathbb{H}_{n, r}^{M}\right\}\right)  \tag{3.141}\\
& \geq \mathbb{P}\left(\left|\left\langle e_{0}, P_{M} S_{M}\left(v+\frac{T}{M}\left(\sum_{k=0}^{q} a_{k}[v]^{k}\right)+Z_{2}^{M}\right)\right\rangle_{H}\right| \geq\left|c_{M, r}\right|^{1 / r}\left|\left\langle e_{0}, v\right\rangle_{H}\right|^{q}\right) \\
& \quad \cdot \mathbb{P}\left(\left\|S_{M} P_{M} Z_{2}^{M}\right\|_{L^{p}(\lambda ; \mathbb{R})} \leq\left|\rho_{M, r}\right|^{(n-1-M)}\right) .
\end{align*}
$$

This and (3.105) assure for all $r \in(0, \infty), M \in\{2,3, \ldots\}, n \in\{1,2, \ldots, M\}$, $v \in \mathbb{H}_{n-1, r}^{M}$ with $\left|\left\langle e_{0}, v\right\rangle_{H}\right| \geq\left|\theta_{M, r}\right|^{\left(q^{(n-1)}\right) / r}$ that

$$
\begin{align*}
& \mathbb{P}\left(\left\{\left|\left\langle e_{0}, P_{M} S_{M}\left(v+\frac{T}{M}\left(\sum_{k=0}^{q} a_{k}[v]^{k}\right)+Z_{2}^{M}\right)\right\rangle_{H}\right| \geq\left|c_{M, r}\right|^{1 / r}\left|\left\langle e_{0}, v\right\rangle_{H}\right|^{q}\right\}\right. \\
& \left.\quad \cap\left\{P_{M} S_{M}\left(v+\frac{T}{M}\left(\sum_{k=0}^{q} a_{k}[v]^{k}\right)+Z_{2}^{M}\right) \in \mathbb{H}_{n, r}^{M}\right\}\right) \\
& \geq \mathbb{P}\left(\left\|S_{M} P_{M} Z_{2}^{M}\right\|_{L^{p}(\lambda ; \mathbb{R})} \leq\left|\rho_{M, r}\right|^{(n-1-M)}\right)\left[\frac{y_{M}}{\sqrt{2 \pi \gamma_{M} T}}\right]^{(2 M+1)} \exp \left(-\frac{3 M^{2}\left|y_{M}\right|^{2}}{\gamma_{M} T}\right)  \tag{3.142}\\
& \geq \mathbb{P}\left(\left\|S_{M} P_{M} Z_{2}^{M}\right\|_{L^{p}(\lambda ; \mathbb{R})} \leq\left|\rho_{M, r}\right|^{(-1-M)}\right)\left[\frac{y_{M}}{\sqrt{2 \pi \gamma_{M} T}}\right]
\end{align*}
$$

Corollary 3.5 (with $(\Omega, \mathcal{F}, \mathbb{P})=(\Omega, \mathcal{F}, \mathbb{P}), T=T, x=\left|\rho_{M, r}\right|^{-1-M}, \gamma=\gamma_{M}, y=z_{M, r}$, $p=p, \delta=\zeta_{\nu+s}, \nu=\nu, s=s, N=M, v=0, S=\left(H \ni w \mapsto S_{M} w \in H_{\nu+s}\right)$,
$W=W$ for $M \in\{2,3, \ldots\}, r \in(0, \infty)$ in the notation of Corollary 3.5) therefore implies for all $r \in(0, \infty), M \in\{2,3, \ldots\}, n \in\{1,2, \ldots, M\}, v \in \mathbb{H}_{n-1, r}^{M}$ with $\left|\left\langle e_{0}, v\right\rangle_{H}\right| \geq\left|\theta_{M, r}\right|^{\left(q^{(n-1)}\right) / r}$ that

$$
\begin{align*}
\mathbb{P} & \left(\left\{\left|\left\langle e_{0}, P_{M} S_{M}\left(v+\frac{T}{M}\left(\sum_{k=0}^{q} a_{k}[v]^{k}\right)+Z_{2}^{M}\right)\right\rangle_{H}\right| \geq\left|c_{M, r}\right|^{1 / r}\left|\left\langle e_{0}, v\right\rangle_{H}\right|^{q}\right\}\right. \\
& \left.\cap\left\{P_{M} S_{M}\left(v+\frac{T}{M}\left(\sum_{k=0}^{q} a_{k}[v]^{k}\right)+Z_{2}^{M}\right) \in \mathbb{H}_{n, r}^{M}\right\}\right) \\
\geq & {\left[\frac{z_{M, r}}{\sqrt{2 \pi \gamma_{M} T}}\right]^{(2 M+1)} \exp \left(-\frac{3 M^{2}\left|z_{M, r}\right|^{2}}{\gamma_{M} T}\right)\left[\frac{y_{M}}{\sqrt{2 \pi \gamma_{M} T}}\right]^{(2 M+1)} \exp \left(-\frac{3 M^{2}\left|y_{M}\right|^{2}}{\gamma_{M} T}\right) }  \tag{3.143}\\
= & {\left[\frac{z_{M, r} y_{M}}{2 \pi \gamma_{M} T}\right]^{(2 M+1)} \exp \left(-\frac{3 M^{2}}{\gamma_{M} T}\left(\left|z_{M, r}\right|^{2}+\left|y_{M}\right|^{2}\right)\right) . }
\end{align*}
$$

Moreover, observe that for all $r \in(0, \infty), N \in \mathbb{N}, n \in\{0,1, \ldots, N\}, \alpha \in \mathbb{R}$ it holds that $\alpha e_{0} \in \mathbb{H}_{n, r}^{N}$. This ensures for all $r \in(0, \infty), N \in \mathbb{N}, n \in\{0,1, \ldots, N\}$ that $\mathbb{H}_{n, r}^{N} \neq \emptyset$ and

$$
\begin{equation*}
\sup \left(\left\{\left|\left\langle e_{0}, v\right\rangle_{H}\right|: v \in \mathbb{H}_{n, r}^{N}\right\}\right)=\infty \tag{3.144}
\end{equation*}
$$

Hence, we obtain that for all $r \in(0, \infty), M \in\{2,3, \ldots\}, n \in\{1,2, \ldots, M\}$ it holds that

$$
\begin{equation*}
\left\{v \in \mathbb{H}_{n-1, r}^{M}:\left|\left\langle e_{0}, v\right\rangle_{H}\right| \geq\left|\theta_{M, r}\right|^{\left(q^{(n-1)}\right) / r}\right\} \neq \emptyset . \tag{3.145}
\end{equation*}
$$

This and (3.143) assure for all $r \in(0, \infty), M \in\{2,3, \ldots\}$ that

$$
\begin{gather*}
{\left[\prod _ { n = 1 } ^ { M - 1 } \operatorname { i n f } \left(\left\{\mathbb { P } \left(\left\{\left|\left\langle e_{0}, P_{M} S_{M}\left(v+\frac{T}{M}\left(\sum_{k=0}^{q} a_{k}[v]^{k}\right)+Z_{2}^{M}\right)\right\rangle_{H}\right| \geq\left|c_{M, r}\right|^{1 / r}\left|\left\langle e_{0}, v\right\rangle_{H}\right|^{q}\right\}\right.\right.\right.\right.} \\
\left.\cap\left\{P_{M} S_{M}\left(v+\frac{T}{M}\left(\sum_{k=0}^{q} a_{k}[v]^{k}\right)+Z_{2}^{M}\right) \in \mathbb{H}_{n, r}^{M}\right\}\right) \\
\left.\left.\left.:\left(v \in \mathbb{H}_{n-1, r}^{M}:\left|\left\langle e_{0}, v\right\rangle_{H}\right| \geq\left|\theta_{M, r}\right|^{\left(q^{(n-1)}\right) / r}\right)\right\} \cup\{1\}\right)\right]
\end{gather*}
$$

Combining this with (3.62) proves for all $r \in(0, \infty), M \in\{2,3, \ldots\}$ that

$$
\begin{align*}
& \mathbb{E}\left[\left|\left\langle e_{0}, Y_{M}^{M}\right\rangle_{H}\right|^{r}\right] \geq\left|\theta_{M, r}\right|^{\left(q^{(M-1)}\right)} \mathbb{P}\left(\left\{\left|\left\langle e_{0}, Y_{1}^{M}\right\rangle_{H}\right|^{r} \geq\left|c_{M, r}\right|^{1 /(1-q)} \theta_{M, r}\right\}\right. \\
& \left.\cap\left\{Y_{1}^{M} \in \mathbb{H}_{0, r}^{M}\right\}\right)\left[\frac{z_{M, r} y_{M}}{2 \pi \gamma_{M} T}\right]^{M(2 M+1)} \exp \left(-\frac{3 M^{3}}{\gamma_{M} T}\left(\left|z_{M, r}\right|^{2}+\left|y_{M}\right|^{2}\right)\right) . \tag{3.147}
\end{align*}
$$

Next note that it holds for all $r \in(0, \infty), M \in\{2,3, \ldots\}$ that

$$
\begin{align*}
& \mathbb{P}\left(\left\{\left|\left\langle e_{0}, Y_{1}^{M}\right\rangle_{H}\right|^{r} \geq\left|c_{M, r}\right|^{1 /(1-q)} \theta_{M, r}\right\} \cap\left\{Y_{1}^{M} \in \mathbb{H}_{0, r}^{M}\right\}\right) \\
& =\mathbb{P}\left(\left\{\left|\left\langle e_{0}, Y_{1}^{M}\right\rangle_{H}\right| \geq\left|c_{M, r}\right|^{1 /[r(1-q)]}\left|\theta_{M, r}\right|^{1 / r}\right\} \cap\left\{Y_{1}^{M} \in \mathbb{H}_{0, r}^{M}\right\}\right)  \tag{3.148}\\
& =\mathbb{P}\left(\left\{\left|\left\langle e_{0}, Y_{1}^{M}\right\rangle_{H}\right| \geq\left|c_{M, r}\right|^{1 /[r(1-q)]}\left|\theta_{M, r}\right|^{1 / r}\right\} \cap\left\{Y_{1}^{M} \in H_{\chi}\right\}\right. \\
& \left.\quad \cap\left\{\left\|Y_{1}^{M}-\left\langle e_{0}, Y_{1}^{M}\right\rangle_{H} e_{0}\right\|_{L^{p}(\lambda ; \mathbb{R})} \leq \frac{1}{2}\left|\rho_{M, r}\right|^{-M}\left|\left\langle e_{0}, Y_{1}^{M}\right\rangle_{H}\right|\right\}\right) .
\end{align*}
$$

In addition, note that (3.631) ensures for all $M \in\{2,3, \ldots\}$ that

$$
\begin{equation*}
P_{M}(\xi)+\frac{T}{M} \sum_{k=0}^{q} a_{k}\left[P_{M}(\xi)\right]^{k} \in H \tag{3.149}
\end{equation*}
$$

The fact that $\forall N \in \mathbb{N}, \omega \in \Omega: W_{\frac{T}{N}}(\omega) \in H_{-\nu}$ and (3.35) therefore establish for all $M \in\{2,3, \ldots\}, \omega \in \Omega$ that

$$
\begin{equation*}
S_{M}\left(P_{M}(\xi)+\frac{T}{M} \sum_{k=0}^{q} a_{k}\left[P_{M}(\xi)\right]^{k}\right) \in H_{1} \quad \text { and } \quad S_{M} W_{\frac{T}{M}}(\omega) \in H_{-\nu+1} \tag{3.150}
\end{equation*}
$$

This, the fact that $\forall j \in\{1,-\nu+1\}: H_{j} \subseteq H_{-1}$, and the fact that $\forall N \in \mathbb{N}: P_{N}\left(H_{-1}\right) \subseteq$ $H_{1}$ prove for all $M \in\{2,3, \ldots\}, \omega \in \Omega$ that

$$
\begin{equation*}
P_{M} S_{M}\left(P_{M}(\xi)+\frac{T}{M} \sum_{k=0}^{q} a_{k}\left[P_{M}(\xi)\right]^{k}\right) \in H_{1} \quad \text { and } \quad P_{M} S_{M} W_{\frac{T}{M}}(\omega) \in H_{1} \tag{3.151}
\end{equation*}
$$

This implies for all $M \in\{2,3, \ldots\}, \omega \in \Omega$ that

$$
\begin{equation*}
Y_{1}^{M}(\omega)=P_{M} S_{M}\left(P_{M}(\xi)+\frac{T}{M}\left(\sum_{k=0}^{q} a_{k}\left[P_{M}(\xi)\right]^{k}\right)+W_{\frac{T}{M}}(\omega)\right) \in H_{1} . \tag{3.152}
\end{equation*}
$$

The fact that $\chi \leq 1$ therefore ensures for all $M \in\{2,3, \ldots\}, \omega \in \Omega$ that

$$
\begin{equation*}
Y_{1}^{M}(\omega) \in H_{\chi} . \tag{3.153}
\end{equation*}
$$

Combining this with (3.148) therefore proves for all $r \in(0, \infty), M \in\{2,3, \ldots\}$ that

$$
\begin{align*}
& \mathbb{P}\left(\left\{\left|\left\langle e_{0}, Y_{1}^{M}\right\rangle_{H}\right|^{r} \geq\left|c_{M, r}\right|^{1 /(1-q)} \theta_{M, r}\right\} \cap\left\{Y_{1}^{M} \in \mathbb{H}_{0, r}^{M}\right\}\right) \\
& =\mathbb{P}\left(\left\{\left|\left\langle e_{0}, Y_{1}^{M}\right\rangle_{H}\right| \geq\left|c_{M, r}\right|^{1 /[r(1-q)]}\left|\theta_{M, r}\right|^{1 / r}\right\}\right.  \tag{3.154}\\
& \left.\quad \cap\left\{\left\|Y_{1}^{M}-\left\langle e_{0}, Y_{1}^{M}\right\rangle_{H} e_{0}\right\|_{L^{p}(\lambda ; \mathbb{R})} \leq \frac{1}{2}\left|\rho_{M, r}\right|^{-M}\left|\left\langle e_{0}, Y_{1}^{M}\right\rangle_{H}\right|\right\}\right) .
\end{align*}
$$

Moreover, note that the fact that $\forall r \in(0, \infty), M \in\{2,3, \ldots\}: c_{M, r} \in(0,1]$ and $r(1-q)<0$ ensures for all $r \in(0, \infty), M \in\{2,3, \ldots\}$ that

$$
\begin{equation*}
\left|c_{M, r}\right|^{1 /[r(1-q)]} \geq 1 \tag{3.155}
\end{equation*}
$$

Furthermore, observe that (3.44) establishes for all $r \in(0, \infty), M \in\{2,3, \ldots\}$ that

$$
\begin{equation*}
\left|\theta_{M, r}\right|^{1 / r} \geq 2 \tag{3.156}
\end{equation*}
$$

Combining this with (3.155) proves for all $r \in(0, \infty), M \in\{2,3, \ldots\}$ that

$$
\begin{equation*}
\frac{1}{2}\left|c_{M, r}\right|^{1 /[r(1-q)]}\left|\theta_{M, r}\right|^{1 / r} \geq 1 \tag{3.157}
\end{equation*}
$$

This and (3.154) imply for all $r \in(0, \infty), M \in\{2,3, \ldots\}$ that

$$
\begin{align*}
& \mathbb{P}\left(\left\{\left|\left\langle e_{0}, Y_{1}^{M}\right\rangle_{H}\right|^{r} \geq\left|c_{M, r}\right|^{1 /(1-q)} \theta_{M, r}\right\} \cap\left\{Y_{1}^{M} \in \mathbb{H}_{0, r}^{M}\right\}\right) \\
& \geq \mathbb{P}\left(\left\{\left|\left\langle e_{0}, Y_{1}^{M}\right\rangle_{H}\right| \geq\left|c_{M, r}\right|^{1 /[r(1-q)]}\left|\theta_{M, r}\right|^{1 / r}\right\}\right. \\
& \left.\quad \cap\left\{\left|\left|Y_{1}^{M}-\left\langle e_{0}, Y_{1}^{M}\right\rangle_{H} e_{0} \|_{L^{p}(\lambda ; \mathbb{R})} \leq \frac{1}{2}\right| \rho_{M, r}\right|^{-M}\left|c_{M, r}\right|^{1 /[r(1-q)]}\left|\theta_{M, r}\right|^{1 / r}\right\}\right)  \tag{3.158}\\
& \geq \mathbb{P}\left(\left\{\left|\left\langle e_{0}, Y_{1}^{M}\right\rangle_{H}\right| \geq\left|c_{M, r}\right|^{1 /[r(1-q)]}\left|\theta_{M, r}\right|^{1 / r}\right\}\right. \\
& \left.\quad \cap\left\{\left\|Y_{1}^{M}-\left\langle e_{0}, Y_{1}^{M}\right\rangle_{H} e_{0}\right\|_{L^{p}(\lambda ; \mathbb{R})} \leq\left|\rho_{M, r}\right|^{-M}\right\}\right) .
\end{align*}
$$

Next note that it holds for all $M \in\{2,3, \ldots\}$ that

$$
\begin{equation*}
Y_{1}^{M}=P_{M} S_{M}\left(P_{M}(\xi)+\frac{T}{M}\left(\sum_{k=0}^{q} a_{k}\left[P_{M}(\xi)\right]^{k}\right)+Z_{1}^{M}\right) . \tag{3.159}
\end{equation*}
$$

Combining this with (3.138) and (3.158) ensures that for all $r \in(0, \infty), M \in$ $\{2,3, \ldots\}$ it holds that

$$
\begin{align*}
& \mathbb{P}\left(\left\{\left|\left\langle e_{0}, Y_{1}^{M}\right\rangle_{H}\right|^{r} \geq\left|c_{M, r}\right|^{1 /(1-q)} \theta_{M, r}\right\} \cap\left\{Y_{1}^{M} \in \mathbb{H}_{0, r}^{M}\right\}\right) \\
& \geq \mathbb{P}\left(\left|\left\langle e_{0}, Y_{1}^{M}\right\rangle_{H}\right| \geq\left|c_{M, r}\right|^{1 /[r(1-q)]}\left|\theta_{M, r}\right|^{1 / r}\right)  \tag{3.160}\\
& \quad \cdot \mathbb{P}\left(\left\|Y_{1}^{M}-\left\langle e_{0}, Y_{1}^{M}\right\rangle_{H} e_{0}\right\|_{L^{p}(\lambda ; \mathbb{R})} \leq\left|\rho_{M, r}\right|^{-M}\right) .
\end{align*}
$$

Furthermore, observe that it holds for all $r \in(0, \infty), M \in\{2,3, \ldots\}$ that

$$
\begin{align*}
& \mathbb{P}\left(\left\|Y_{1}^{M}-\left\langle e_{0}, Y_{1}^{M}\right\rangle_{H} e_{0}\right\|_{L^{p}(\lambda ; \mathbb{R})} \leq\left|\rho_{M, r}\right|^{-M}\right) \\
& \geq \mathbb{P}\left(\left\|Y_{1}^{M}\right\|_{L^{p}(\lambda ; \mathbb{R})}+\left|\left\langle e_{0}, Y_{1}^{M}\right\rangle_{H}\right| \leq\left|\rho_{M, r}\right|^{-M}\right)  \tag{3.161}\\
& \geq \mathbb{P}\left(\left\|Y_{1}^{M}\right\|_{L^{p}(\lambda ; \mathbb{R})}+\left\|Y_{1}^{M}\right\|_{L^{p}(\lambda ; \mathbb{R})} \leq\left|\rho_{M, r}\right|^{-M}\right) \\
& =\mathbb{P}\left(\left\|Y_{1}^{M}\right\|_{L^{p}(\lambda ; \mathbb{R})} \leq \frac{1}{2}\left|\rho_{M, r}\right|^{-M}\right) .
\end{align*}
$$

This, (3.63), and (3.73) assure for all $r \in(0, \infty), M \in\{2,3, \ldots\}$ that

$$
\begin{align*}
& \mathbb{P}\left(\left\|Y_{1}^{M}-\left\langle e_{0}, Y_{1}^{M}\right\rangle_{H} e_{0}\right\|_{L^{p}(\lambda ; \mathbb{R})} \leq\left|\rho_{M, r}\right|^{-M}\right)  \tag{3.162}\\
& \geq \mathbb{P}\left(\left\|P_{M} S_{M}\left(P_{M}(\xi)+\frac{T}{M}\left(\sum_{k=0}^{q} a_{k}\left[P_{M}(\xi)\right]^{k}\right)+W_{\frac{T}{M}}\right)\right\|_{L^{p}(\lambda ; \mathbb{R})} \leq \frac{1}{2}\left|\rho_{M, r}\right|^{-M}\right) \\
& =\mathbb{P}\left(\left\|S_{M}\left[P_{M}\left(P_{M}(\xi)+\frac{T}{M} \sum_{k=0}^{q} a_{k}\left[P_{M}(\xi)\right]^{k}\right)+P_{M}\left(W_{T / M}\right)\right]\right\|_{L^{p}(\lambda ; \mathbb{R})} \leq \frac{1}{2}\left|\rho_{M, r}\right|^{-M}\right) \\
& =\mathbb{P}\left(\left\|S_{M}\left[P_{M}\left(P_{M}(\xi)+\frac{T}{M} \sum_{k=0}^{q} a_{k}\left[P_{M}(\xi)\right]^{k}\right)-P_{M}\left(W_{T / M}\right)\right]\right\|_{L^{p}(\lambda ; \mathbb{R})} \leq \frac{1}{2}\left|\rho_{M, r}\right|^{-M}\right) .
\end{align*}
$$

Combining this with Corollary 3.5 (with $(\Omega, \mathcal{F}, \mathbb{P})=(\Omega, \mathcal{F}, \mathbb{P}), T=T, x=\frac{1}{2}\left|\rho_{M, r}\right|^{-M}$, $\gamma=\gamma_{M}, y=g_{M, r}, p=p, \delta=\zeta_{\nu+s}, \nu=\nu, s=s, N=M, v=P_{M}(\xi)+$ $\frac{T}{M} \sum_{k=0}^{q} a_{k}\left[P_{M}(\xi)\right]^{k}, S=\left(H \ni w \mapsto S_{M} w \in H_{\nu+s}\right), W=W$ for $M \in\{2,3, \ldots\}$, $r \in(0, \infty)$ in the notation of Corollary 3.5) ensures for all $r \in(0, \infty), M \in\{2,3, \ldots\}$ that

$$
\begin{align*}
& \mathbb{P}\left(\left\|Y_{1}^{M}-\left\langle e_{0}, Y_{1}^{M}\right\rangle_{H} e_{0}\right\|_{L^{p}(\lambda ; \mathbb{R})} \leq\left|\rho_{M, r}\right|^{-M}\right)  \tag{3.163}\\
& \geq\left[\frac{g_{M, r}}{\sqrt{2 \pi \gamma_{M} T}}\right]^{(2 M+1)} \exp \left(-\frac{3 M^{2}}{T}\left(\left\|P_{M}(\xi)+\frac{T}{M} \sum_{k=0}^{q} a_{k}\left[P_{M}(\xi)\right]^{k}\right\|_{H}^{2}+\frac{\left|g_{M, r}\right|^{2}}{\gamma_{M}}\right)\right) \\
& \geq\left[\frac{g_{M, r}}{\sqrt{2 \pi \gamma_{M} T}}\right]^{(2 M+1)} \exp \left(-\frac{3 M^{2}}{T}\left[\left(\frac{T}{M}\left[\sum_{k=0}^{q}\left|a_{k}\right|\left\|\left[P_{M}(\xi)\right]^{k}\right\|_{H}\right]+\left\|P_{M}(\xi)\right\|_{H}\right)^{2}+\frac{\left|g_{M, r}\right|^{2}}{\gamma_{M}}\right]\right) \\
& \geq\left[\frac{g_{M, r}}{\sqrt{2 \pi \gamma_{M} T}}\right]^{(2 M+1)} \exp \left(-\frac{3 M^{2}}{T}\left[\left(T\left[\sum_{k=0}^{q}\left|a_{k}\right|\left\|\left[P_{M}(\xi)\right]^{k}\right\|_{H}\right]+\|\xi\|_{H}\right)^{2}+\frac{\left|g_{M, r}\right|^{2}}{\gamma_{M}}\right]\right) .
\end{align*}
$$

Moreover, note that it holds for all $M \in\{2,3, \ldots\}$ that

$$
\begin{align*}
& T\left(\sum_{k=0}^{q}\left|a_{k}\right|\left\|\left[P_{M}(\xi)\right]^{k}\right\|_{H}\right)+\|\xi\|_{H} \leq T\left(\sum_{k=0}^{q}\left|a_{k}\right|\left\|P_{M}(\xi)\right\|_{L^{2 k}(\lambda ; \mathbb{R})}^{k}\right)+\|\xi\|_{H} \\
& \leq T\left(\sum_{k=0}^{q}\left|a_{k}\right|\left\|P_{M}(\xi)\right\|_{L^{2 q}(\lambda ; \mathbb{R})}^{k}\right)+\|\xi\|_{H} \\
& \leq T\left(\sum_{k=0}^{q}\left|a_{k}\right|\left\|P_{M}(\xi)\right\|_{L^{p}(\lambda ; \mathbb{R})}^{k}\right)+\|\xi\|_{L^{p}(\lambda ; \mathbb{R})} \\
& \leq T\left(\sum_{k=0}^{q}\left[\left|a_{k}\right|\left(\sup _{N \in \mathbb{N}}\left\|P_{N}(\xi)\right\|_{L^{p}(\lambda ; \mathbb{R})}\right)^{k}\right]\right)+\|\xi\|_{L^{p}(\lambda ; \mathbb{R})} . \tag{3.164}
\end{align*}
$$

Next note that the fact that $H_{\chi} \subseteq L^{p}(\lambda ; \mathbb{R})$ and the fact that $\forall N \in \mathbb{N}:\left\|P_{N}\right\|_{L(H)} \leq 1$ ensure that

$$
\begin{align*}
& \sup _{M \in \mathbb{N}}\left\|P_{M}(\xi)\right\|_{L^{p}(\lambda ; \mathbb{R})} \leq C \sup _{M \in \mathbb{N}}\left\|P_{M}(\xi)\right\|_{H_{\chi}} \\
& =C \sup _{M \in \mathbb{N}}\left\|(\eta-A)^{\chi} P_{M}(\xi)\right\|_{H}=C \sup _{M \in \mathbb{N}}\left\|P_{M}(\eta-A)^{\chi} \xi\right\|_{H}  \tag{3.165}\\
& \leq C \sup _{M \in \mathbb{N}}\left\|P_{M}\right\|_{L(H)}\left\|(\eta-A)^{\chi} \xi\right\|_{H} \leq C \sup _{M \in \mathbb{N}}\left\|(\eta-A)^{\chi} \xi\right\|_{H} \\
& =C\left\|(\eta-A)^{\chi} \xi\right\|_{H}=C\|\xi\|_{H_{\chi}} .
\end{align*}
$$

This and (3.164) prove for all $M \in\{2,3, \ldots\}$ that

$$
\begin{align*}
& T\left(\sum_{k=0}^{q}\left|a_{k}\right|\left\|\left[P_{M}(\xi)\right]^{k}\right\|_{H}\right)+\|\xi\|_{H} \leq T\left(\sum_{k=0}^{q}|C|^{k}\left|a_{k}\right|\|\xi\|_{H_{\chi}}^{k}\right)+\|\xi\|_{L^{p}(\lambda ; \mathbb{R})} \\
& \leq T\left(\sum_{k=0}^{q}|C|^{k}\left|a_{k}\right|\|\xi\|_{H_{\chi}}^{k}\right)+C\|\xi\|_{H_{\chi}}  \tag{3.166}\\
& \leq(q+2)|\max \{C, 1\}|^{q} \max \{T, 1\} \max \left\{1,\left|a_{0}\right|, \ldots,\left|a_{q}\right|\right\} \max \left\{\|\xi\|_{H_{\chi}}^{q}, 1\right\}=\kappa .
\end{align*}
$$

Combining this with (3.163) assures for all $r \in(0, \infty), M \in\{2,3, \ldots\}$ that

$$
\begin{align*}
& \mathbb{P}\left(\left\|Y_{1}^{M}-\left\langle e_{0}, Y_{1}^{M}\right\rangle_{H} e_{0}\right\|_{L^{p}(\lambda ; \mathbb{R})} \leq\left|\rho_{M, r}\right|^{-M}\right) \\
& \geq\left[\frac{g_{M, r}}{\sqrt{2 \pi \gamma_{M} T}}\right]^{(2 M+1)} \exp \left(-\frac{3 M^{2}}{T}\left(\kappa^{2}+\frac{\left|g_{M, r}\right|^{2}}{\gamma_{M}}\right)\right) . \tag{3.167}
\end{align*}
$$

In addition, note that for all $r \in(0, \infty), M \in\{2,3, \ldots\}$ it holds that

$$
\begin{aligned}
& \mathbb{P}\left(\left|\left\langle e_{0}, Y_{1}^{M}\right\rangle_{H}\right| \geq\left|c_{M, r}\right|^{1 /[r(1-q)]}\left|\theta_{M, r}\right|^{1 / r}\right) \\
& =\mathbb{P}\left(\left|\left\langle e_{0}, P_{M} S_{M}\left(P_{M}(\xi)+\frac{T}{M}\left(\sum_{k=0}^{q} a_{k}\left[P_{M}(\xi)\right]^{k}\right)+W_{\frac{T}{M}}\right)\right\rangle_{H}\right| \geq\left|c_{M, r}\right|^{1 /[r(1-q)]}\left|\theta_{M, r}\right|^{1 / r}\right)
\end{aligned}
$$

This, (3.37), and (3.128) prove for all $r \in(0, \infty), M \in\{2,3, \ldots\}$ that

$$
\begin{align*}
& \mathbb{P}\left(\left|\left\langle e_{0}, Y_{1}^{M}\right\rangle_{H}\right| \geq\left|c_{M, r}\right|^{1 /[r(1-q)]}\left|\theta_{M, r}\right|^{1 / r}\right) \\
& =\mathbb{P}\left(\left|\left\langle e_{0}, P_{M}\left(P_{M}(\xi)+\frac{T}{M}\left(\sum_{k=0}^{q} a_{k}\left[P_{M}(\xi)\right]^{k}\right)+W_{\frac{T}{M}}\right)\right\rangle_{H}\right| \geq\left|c_{M, r}\right|^{1 /[r(1-q)]}\left|\theta_{M, r}\right|^{1 / r}\right) \\
& \geq \mathbb{P}\left(\left|\left\langle e_{0}, P_{M} W_{\frac{T}{M}}\right\rangle_{H}\right|-\left|\left\langle e_{0}, P_{M}(\xi)+\frac{T}{M} \sum_{k=0}^{q} a_{k}\left[P_{M}(\xi)\right]^{k}\right\rangle_{H}\right|\right. \\
& \left.\quad \geq\left|c_{M, r}\right|^{1 /[r(1-q)]}\left|\theta_{M, r}\right|^{1 / r}\right) . \tag{3.169}
\end{align*}
$$

Hence, we obtain for all $r \in(0, \infty), M \in\{2,3, \ldots\}$ that

$$
\begin{align*}
& \mathbb{P}\left(\left|\left\langle e_{0}, Y_{1}^{M}\right\rangle_{H}\right| \geq\left|c_{M, r}\right|^{1 /[r(1-q)]}\left|\theta_{M, r}\right|^{1 / r}\right)  \tag{3.170}\\
& \geq \mathbb{P}\left(\left|\left\langle e_{0}, P_{M} W_{\frac{T}{M}}\right\rangle_{H}\right| \geq\left|c_{M, r}\right|^{1 /[r(1-q)]}\left|\theta_{M, r}\right|^{1 / r}+\left|\left\langle e_{0}, P_{M}(\xi)+\frac{T}{M} \sum_{k=0}^{q} a_{k}\left[P_{M}(\xi)\right]^{k}\right\rangle_{H}\right|\right) \\
& \geq \mathbb{P}\left(\left|\left\langle e_{0}, P_{M} W_{\frac{T}{M}}\right\rangle_{H}\right| \geq\left|c_{M, r}\right|^{1 /[r(1-q)]}\left|\theta_{M, r}\right|^{1 / r}+\left\|P_{M}(\xi)+\frac{T}{M} \sum_{k=0}^{q} a_{k}\left[P_{M}(\xi)\right]^{k}\right\|_{H}\right) .
\end{align*}
$$

This ensures for all $r \in(0, \infty), M \in\{2,3, \ldots\}$ that

$$
\begin{aligned}
& \mathbb{P}\left(\left|\left\langle e_{0}, Y_{1}^{M}\right\rangle_{H}\right| \geq\left|c_{M, r}\right|^{1 /[r(1-q)]}\left|\theta_{M, r}\right|^{1 / r}\right) \\
& \geq \mathbb{P}\left(\left|\left\langle e_{0}, P_{M} W_{\frac{T}{M}}\right\rangle_{H}\right| \geq\left|c_{M, r}\right|^{1 /[r(1-q)]}\left|\theta_{M, r}\right|^{1 / r}+\frac{T}{M}\left(\sum_{k=0}^{q}\left|a_{k}\right|\left\|\left[P_{M}(\xi)\right]^{k}\right\|_{H}\right)+\|\xi\|_{H}\right) \\
& \geq \mathbb{P}\left(\left|\left\langle e_{0}, P_{M} W_{\frac{T}{M}}\right\rangle_{H}\right| \geq\left|c_{M, r}\right|^{1 /[r(1-q)]}\left|\theta_{M, r}\right|^{1 / r}+T\left(\sum_{k=0}^{q}\left|a_{k}\right|\left\|\left[P_{M}(\xi)\right]^{k}\right\|_{H}\right)+\|\xi\|_{H}\right) .
\end{aligned}
$$

Combining this with (3.166) proves for all $r \in(0, \infty), M \in\{2,3, \ldots\}$ that

$$
\begin{align*}
& \mathbb{P}\left(\left|\left\langle e_{0}, Y_{1}^{M}\right\rangle_{H}\right| \geq\left|c_{M, r}\right|^{1 /[r(1-q)]}\left|\theta_{M, r}\right|^{1 / r}\right) \\
& \geq \mathbb{P}\left(\left|\left\langle e_{0}, P_{M} W_{\frac{T}{M}}\right\rangle_{H}\right| \geq\left|c_{M, r}\right|^{1 /[r(1-q)]}\left|\theta_{M, r}\right|^{1 / r}+\kappa\right)  \tag{3.172}\\
& =\mathbb{P}\left(M^{-1 / 2}\left|\left\langle e_{0}, P_{M} W_{T}\right\rangle_{H}\right| \geq\left|c_{M, r}\right|^{1 /[r(1-q)]}\left|\theta_{M, r}\right|^{1 / r}+\kappa\right) \\
& =\mathbb{P}\left(T^{-1 / 2}\left|\left\langle e_{0}, P_{M} W_{T}\right\rangle_{H}\right| \geq M^{1 / 2} T^{-1 / 2}\left(\left|c_{M, r}\right|^{1 /[r(1-q)]}\left|\theta_{M, r}\right|^{1 / r}+\kappa\right)\right) .
\end{align*}
$$

Therefore, we obtain for all $r \in(0, \infty), M \in\{2,3, \ldots\}$ that

$$
\begin{align*}
& \mathbb{P}\left(\left|\left\langle e_{0}, Y_{1}^{M}\right\rangle_{H}\right| \geq\left|c_{M, r}\right|^{1 /[r(1-q)]}\left|\theta_{M, r}\right|^{1 / r}\right) \\
& \geq 2 \int_{M^{1 / 2} T^{-1 / 2}\left(\left|c_{M, r}\right|^{1 /[r(1-q)]}\left|\theta_{M, r}\right|^{1 / r}+\kappa\right)}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-\frac{y^{2}}{2}} d y  \tag{3.173}\\
& \geq \frac{2}{\sqrt{2 \pi}} \int_{\left(\frac{T}{M}\right)^{-1 / 2}\left(\left|c_{M, r}\right|^{1 /[r(1-q)]}\left|\theta_{M, r}\right|^{1 / r}+\kappa\right)}^{2\left(\frac{T}{M}\right)^{-1 / 2}\left(\left|c_{M, r}\right|^{1 /[r(1-q)]}\left|\theta_{M, r}\right|^{1 / r}+\kappa\right)} e^{-\frac{y^{2}}{2}} d y
\end{align*}
$$

This and the fact that $\forall a, b \in \mathbb{R}:|a+b|^{2} \leq 2|a|^{2}+2|b|^{2}$ imply for all $r \in(0, \infty)$, $M \in\{2,3, \ldots\}$ that

$$
\begin{align*}
& \mathbb{P}\left(\left|\left\langle e_{0}, Y_{1}^{M}\right\rangle_{H}\right| \geq\left|c_{M, r}\right|^{1 /[r(1-q)]}\left|\theta_{M, r}\right|^{1 / r}\right) \\
& \geq \frac{2}{\sqrt{2 \pi}}\left(\frac{T}{M}\right)^{-1 / 2}\left(\left|c_{M, r}\right|^{1 /[r(1-q)]}\left|\theta_{M, r}\right|^{1 / r}+\kappa\right) \exp \left(-\frac{4 M\left(\left|c_{M, r}\right|^{1 /[r(1-q)]}\left|\theta_{M, r}\right|^{1 / r}+\kappa\right)^{2}}{2 T}\right) \\
& \geq \frac{\left|c_{M, r}\right|^{1 /[r(1-q)]}\left|\theta_{M, r}\right|^{1 / r}}{\sqrt{2 \pi T}} \exp \left(-\frac{4 M\left(\left|c_{M, r}\right|^{2 /[r(1-q)]}\left|\theta_{M, r}\right|^{2 / r}+\kappa^{2}\right)}{T}\right) . \tag{3.174}
\end{align*}
$$

Combining this with (3.160) and (3.167) ensures for all $r \in(0, \infty), M \in\{2,3, \ldots\}$
that

$$
\begin{align*}
& \mathbb{P}\left(\left\{\left|\left\langle e_{0}, Y_{1}^{M}\right\rangle_{H}\right|^{r} \geq\left|c_{M, r}\right|^{1 / 1-q} \theta_{M, r}\right\} \cap\left\{Y_{1}^{M} \in \mathbb{H}_{0, r}^{M}\right\}\right) \\
& \geq \frac{\left|c_{M, r}\right|^{1 /[r(1-q)]}\left|\theta_{M, r}\right|^{1 / r}}{\sqrt{2 \pi T}} \exp \left(-\frac{4 M\left(\left.\left|c_{M, r}\right|^{2}|(r(1-q)]| \theta_{M, r}\right|^{2 / r}+\kappa^{2}\right)}{T}\right)  \tag{3.175}\\
& \quad \cdot\left[\frac{g_{M, r}}{\sqrt{2 \pi \gamma_{M} T}}\right]^{(2 M+1)} \exp \left(-\frac{3 M^{2}}{T}\left(\kappa^{2}+\frac{\left|g_{M, r}\right|^{2}}{\gamma_{M}}\right)\right) .
\end{align*}
$$

This and (3.147) establish for all $r \in(0, \infty), M \in\{2,3, \ldots\}$ that

$$
\begin{align*}
& \mathbb{E}\left[\left|\left\langle e_{0}, Y_{M}^{M}\right\rangle_{H}\right|^{r}\right] \geq\left|\theta_{M, r}\right|^{\left(q^{(M-1)}\right)} \frac{\left|c_{M, r}\right|^{1 /[r(1-q)]}\left|\theta_{M, r}\right|^{1 / r}}{\sqrt{2 \pi T}} \exp \left(-\frac{4 M\left(\left|c_{M, r}\right|^{2 /[r(1-q)]}\left|\theta_{M, r}\right|^{2 / r}+\kappa^{2}\right)}{T}\right) \\
& \quad \cdot\left[\frac{g_{M, r}}{\sqrt{2 \pi \gamma_{M} T}}\right]^{(2 M+1)} \exp \left(-\frac{3 M^{2}}{T}\left(\kappa^{2}+\frac{\left|g_{M, r}\right|^{2}}{\gamma_{M}}\right)\right)\left[\frac{z_{M, r} y_{M}}{2 \pi \gamma_{M} T}\right]^{M(2 M+1)} \\
& \quad \cdot \exp \left(-\frac{3 M^{3}}{\gamma_{M} T}\left(\left|z_{M, r}\right|^{2}+\left|y_{M}\right|^{2}\right)\right) . \tag{3.176}
\end{align*}
$$

Hence, we obtain that for all $r \in(0, \infty), M \in\{2,3, \ldots\}$ it holds that

$$
\begin{align*}
& \mathbb{E}\left[\left|\left\langle e_{0}, Y_{M}^{M}\right\rangle_{H}\right|^{r}\right] \geq \exp \left(q^{(M-1)} \ln \left(\theta_{M, r}\right)+\ln \left(\left|c_{M, r}\right|^{1 /[r(1-q)]}\left|\theta_{M, r}\right|^{1 / r}\right)\right. \\
& -\frac{1}{2} \ln (2 \pi T)-\frac{4 M}{T}\left(\left|c_{M, r}\right|^{2 /[r(1-q)]}\left|\theta_{M, r}\right|^{2 / r}+\kappa^{2}\right)+(2 M+1) \ln \left(\frac{g_{M, r}}{\sqrt{2 \pi \gamma_{M} T}}\right)  \tag{3.177}\\
& \left.-\frac{3 M^{2}}{T}\left(\kappa^{2}+\frac{\left|g_{M, r}\right|^{2}}{\gamma_{M}}\right)+\left(2 M^{2}+M\right) \ln \left(\frac{z_{M, r} y_{M}}{2 \pi \gamma_{M} T}\right)-\frac{3 M^{3}}{\gamma_{M} T}\left(\left|z_{M, r}\right|^{2}+\left|y_{M}\right|^{2}\right)\right) .
\end{align*}
$$

The fact that $\forall N \in \mathbb{N}, r \in(0, \infty): \theta_{N, r} \geq 2^{r}$ therefore assures for all $r \in(0, \infty)$, $M \in\{2,3, \ldots\}$ that

$$
\begin{align*}
& \mathbb{E}\left[\left|\left\langle e_{0}, Y_{M}^{M}\right\rangle_{H}\right|^{r}\right] \geq \exp \left(q^{(M-1)} r \ln (2)+\ln \left(\left|c_{M, r}\right|^{1 /[r(1-q)]}\left|\theta_{M, r}\right|^{1 / r}\right)\right. \\
& -\frac{1}{2} \ln (2 \pi T)-\frac{4 M}{T}\left(\left|c_{M, r}\right|^{2 /[r(1-q)]}\left|\theta_{M, r}\right|^{2 / r}+\kappa^{2}\right)+(2 M+1) \ln \left(\frac{g_{M, r}}{\sqrt{2 \pi \gamma_{M} T}}\right)  \tag{3.178}\\
& \left.-\frac{3 M^{2}}{T}\left(\kappa^{2}+\frac{\left|g_{M, r}\right|^{2}}{\gamma_{M}}\right)+\left(2 M^{2}+M\right) \ln \left(\frac{z_{M, r} y_{M}}{2 \pi \gamma_{M} T}\right)-\frac{3 M^{3}}{\gamma_{M} T}\left(\left|z_{M, r}\right|^{2}+\left|y_{M}\right|^{2}\right)\right) .
\end{align*}
$$

Combining this with the fact that $\ln (2) \geq \frac{1}{2}$ and the fact that $\frac{1}{2} \ln (2 \pi T) \leq \pi T$ proves for all $r \in(0, \infty)$ that

$$
\begin{align*}
& \liminf _{M \rightarrow \infty} \mathbb{E}\left[\left|\left\langle e_{0}, Y_{M}^{M}\right\rangle_{H}\right|^{r}\right] \geq \liminf _{M \rightarrow \infty}\left[\operatorname { e x p } \left(\frac{r}{2} q^{(M-1)}\right.\right. \\
& \quad+\ln \left(\left|c_{M, r}\right|^{1 /[r(1-q)]}\left|\theta_{M, r}\right|^{1 / r}\right)-\pi T-\frac{4 M}{T}\left(\left|c_{M, r}\right|^{2 /[r(1-q)]}\left|\theta_{M, r}\right|^{2 / r}+\kappa^{2}\right) \\
& \quad+(2 M+1) \ln \left(\frac{g_{M, r}}{\sqrt{2 \pi \gamma_{M} T}}\right)-\frac{3 M^{2}}{T}\left(\kappa^{2}+\frac{\left|g_{M, r}\right|^{2}}{\gamma_{M}}\right)+\left(2 M^{2}+M\right) \ln \left(\frac{z_{M, r} y_{M}}{2 \pi \gamma_{M} T}\right)  \tag{3.179}\\
& \left.\left.\quad-\frac{3 M^{3}}{\gamma_{M} T}\left(\left|z_{M, r}\right|^{2}+\left|y_{M}\right|^{2}\right)\right)\right]
\end{align*}
$$

This ensures for all $r \in(0, \infty)$ that

$$
\begin{align*}
& \liminf _{M \rightarrow \infty} \mathbb{E}\left[\left|\left\langle e_{0}, Y_{M}^{M}\right\rangle_{H}\right|^{r}\right] \geq \liminf _{M \rightarrow \infty}\left[\operatorname { e x p } \left(\frac{r}{10} q^{(M-1)}+\ln \left(\left|c_{M, r}\right|^{1 /[r(1-q)]}\left|\theta_{M, r}\right|^{1 / r}\right)\right.\right. \\
& \quad-\pi T-\frac{4 M}{T}\left(\left|c_{M, r}\right|^{2 /[r(1-q)]}\left|\theta_{M, r}\right|^{2 / r}+\kappa^{2}\right)+\frac{r}{10} q^{(M-1)}  \tag{3.180}\\
& \quad+(2 M+1) \ln \left(\frac{g_{M, r}}{\sqrt{2 \pi \gamma_{M} T}}\right)+\frac{r}{10} q^{(M-1)}-\frac{3 M^{2}}{T}\left(\kappa^{2}+\frac{\left|g_{M, r}\right|^{2}}{\gamma_{M}}\right) \\
& \left.\left.\quad+\frac{r}{10} q^{(M-1)}+\left(2 M^{2}+M\right) \ln \left(\frac{z_{M, r} y_{M}}{2 \pi \gamma_{M} T}\right)+\frac{r}{10} q^{(M-1)}-\frac{3 M^{3}}{\gamma_{M} T}\left(\left|z_{M, r}\right|^{2}+\left|y_{M}\right|^{2}\right)\right)\right] .
\end{align*}
$$

Hence, we obtain for all $r \in(0, \infty)$ that

$$
\begin{align*}
& \liminf _{M \rightarrow \infty} \mathbb{E}\left[\left|\left\langle e_{0}, Y_{M}^{M}\right\rangle_{H}\right|^{r}\right] \geq \exp \left(\operatorname { l i m i n f } _ { M \rightarrow \infty } \left[\frac{r}{10} q^{(M-1)}+\ln \left(\left|c_{M, r}\right|^{1 / r(1-q)]}\left|\theta_{M, r}\right|^{1 / r}\right)\right.\right. \\
& \left.\quad-\pi T-\frac{4 M}{T}\left(\left|c_{M, r}\right|^{2 /[r(1-q)]}\left|\theta_{M, r}\right|^{2 / r}+\kappa^{2}\right)\right]+\liminf _{M \rightarrow \infty}\left[\frac{r}{10} q^{(M-1)}+(2 M+1)\right. \\
& \left.\quad \cdot \ln \left(\frac{g_{M, r}}{\sqrt{2 \pi \gamma_{M} T}}\right)\right]+\liminf _{M \rightarrow \infty}\left[\frac{r}{10} q^{(M-1)}-\frac{3 M^{2}}{T}\left(\kappa^{2}+\frac{\left|g_{M, r}\right|^{2}}{\gamma_{M}}\right)\right] \\
& +\liminf _{M \rightarrow \infty}\left[\frac{r}{10} q^{(M-1)}+\left(2 M^{2}+M\right) \ln \left(\frac{z_{M, r} y_{M}}{2 \pi \gamma_{M} T}\right)\right] \\
& \left.+\liminf _{M \rightarrow \infty}\left[\frac{r}{10} q^{(M-1)}-\frac{3 M^{3}}{\gamma_{M}}\left(\left|z_{M, r}\right|^{2}+\left|y_{M}\right|^{2}\right)\right]\right) . \tag{3.181}
\end{align*}
$$

Moreover, note that it holds for all $r \in(0, \infty)$ that

$$
\begin{align*}
\liminf _{M \rightarrow \infty} & {\left[\frac{r}{10} q^{(M-1)}+\ln \left(\left|c_{M, r}\right|^{1 /[r(1-q)]}\left|\theta_{M, r}\right|^{1 / r}\right)\right.} \\
& \left.-\pi T-\frac{4 M}{T}\left(\left|c_{M, r}\right|^{2 /[r(1-q)]}\left|\theta_{M, r}\right|^{2 / r}+\kappa^{2}\right)\right] \\
= & \liminf _{M \rightarrow \infty}\left[\frac{r}{10} q^{(M-1)}+\ln \left(\left[\frac{T\left|a_{q}\right|}{4 M}\right]^{1 /(1-q)}\left|\theta_{M, r}\right|^{1 / r}\right)\right. \\
& \left.-\pi T-\frac{4 M}{T}\left(\left[\frac{T\left|a_{q}\right|}{4 M}\right]^{2 /(1-q)}\left|\theta_{M, r}\right|^{2 / r}+\kappa^{2}\right)\right]  \tag{3.182}\\
= & \liminf _{M \rightarrow \infty}\left[\frac{r}{10} q^{(M-1)}+\ln \left(\left[\frac{T\left|a_{q}\right|}{4 M}\right]^{1 /(1-q)}\left[\frac{4 T \vartheta+8 M}{T\left|a_{q}\right|}\right]\right)\right. \\
& \left.-\pi T-\frac{4 M}{T}\left(\left[\frac{T\left|a_{q}\right|}{4 M}\right]^{2 /(1-q)}\left[\frac{4 T \vartheta+8 M}{T\left|a_{q}\right|}\right]^{2}+\kappa^{2}\right)\right] .
\end{align*}
$$

In addition, observe that it holds for all $M \in\{2,3, \ldots\}$ that

$$
\begin{align*}
& \ln \left(\left[\frac{T\left|a_{q}\right|}{4 M}\right]^{1 /(1-q)}\left[\frac{4 T \vartheta+8 M}{T\left|a_{q}\right|}\right]\right) \geq \ln \left(\left[\frac{T\left|a_{q}\right|}{4 M}\right]^{1 /(1-q)}\left[\frac{4 T \vartheta+8 \mid}{T\left|a_{q}\right|}\right]\right) \\
& =\ln \left(M^{1 /(q-1)}\left[\frac{T\left|a_{q}\right|}{4}\right]^{1 /(1-q)}\left[\frac{4 T \vartheta+8}{T\left|a_{q}\right|}\right]\right)  \tag{3.183}\\
& =\ln \left(M^{1 /(q-1)}\right)+\ln \left(\left[\frac{T\left|a_{q}\right|}{4}\right]^{1 /(1-q)}\left[\frac{4 T \vartheta+8}{T\left|a_{q}\right|}\right]\right) \\
& =\frac{1}{q-1} \ln (M)+\ln \left(\left[\frac{T\left|a_{q}\right|}{4}\right]^{1 /(1-q)}\left[\frac{4 T \vartheta+8}{T\left|a_{q}\right|}\right]\right) .
\end{align*}
$$

The fact that $q>1$ and the fact that $\forall M \in\{2,3, \ldots\}: \ln (M)>0$ therefore imply for all $M \in\{2,3, \ldots\}$ that

$$
\begin{equation*}
\ln \left(\left[\frac{T\left|a_{q}\right|}{4 M}\right]^{1 /(1-q)}\left[\frac{4 T \vartheta+8 M}{T\left|a_{q}\right|}\right]\right) \geq \ln \left(\left[\frac{T\left|a_{q}\right|}{4}\right]^{1 /(1-q)}\left[\frac{4 T \vartheta+8}{T\left|a_{q}\right|}\right]\right) . \tag{3.184}
\end{equation*}
$$

Combining this with (3.182) proves for all $r \in(0, \infty)$ that

$$
\begin{align*}
& \liminf _{M \rightarrow \infty}\left[\frac{r}{10} q^{(M-1)}+\ln \left(\left|c_{M, r}\right|^{1 /[r(1-q)]}\left|\theta_{M, r}\right|^{1 / r}\right)\right. \\
& \left.\quad-\pi T-\frac{4 M}{T}\left(\left|c_{M, r}\right|^{2 /[r(1-q)]}\left|\theta_{M, r}\right|^{2 / r}+\kappa^{2}\right)\right] \\
& \geq \liminf _{M \rightarrow \infty}\left[\frac{r}{10} q^{(M-1)}+\ln \left(\left[\frac{T\left|a_{q}\right|}{4}\right]^{1 /(1-q)}\left[\frac{4 T \vartheta+8}{T\left|a_{q}\right|}\right]\right)\right.  \tag{3.185}\\
& \left.\quad-\pi T-\frac{4 M}{T}\left(\left[\frac{T\left|a_{q}\right|}{4 M}\right]^{2 /(1-q)}\left[\frac{4 T \vartheta+8 M}{T\left|a_{q}\right|}\right]^{2}+\kappa^{2}\right)\right]=\infty .
\end{align*}
$$

Furthermore, observe that it holds for all $r \in(0, \infty)$ that

$$
\begin{align*}
& \liminf _{M \rightarrow \infty}\left[\frac{r}{10} q^{(M-1)}+(2 M+1) \ln \left(\frac{g_{M, r}}{\sqrt{2 \pi \gamma_{M} T}}\right)\right]  \tag{3.186}\\
& =\liminf _{M \rightarrow \infty}\left[\frac{r}{10} q^{(M-1)}+(2 M+1) \ln \left(g_{M, r}\right)-(2 M+1) \ln \left(\sqrt{2 \pi \gamma_{M} T}\right)\right] \\
& =\liminf _{M \rightarrow \infty}\left[\frac{r}{10} q^{(M-1)}+(2 M+1) \ln \left(\frac{1}{2 \zeta_{\nu+s}}\left[\frac{T}{M}\right]^{(\nu+s)}\left\|(\eta-A)^{-s}\right\|_{L\left(H, L^{p}(\lambda ; \mathbb{R})\right)}^{-1}\left|\rho_{M, r}\right|^{-M}\right)\right. \\
& \left.\quad-(2 M+1) \ln \left(\sqrt{2 \pi \gamma_{M} T}\right)\right] \\
& =\liminf _{M \rightarrow \infty}\left[\frac{r}{10} q^{(M-1)}+(2 M+1) \ln \left(\frac{1}{2 \zeta_{\nu+s}}\left[\frac{T}{M}\right]^{(\nu+s)}\left\|(\eta-A)^{-s}\right\|_{L\left(H, L^{p}(\lambda ; \mathbb{R})\right)}^{-1}\right.\right. \\
& \left.\left.\left(8 \vartheta^{2} \max \{C, 1\} \max \{T, 1\} \frac{\zeta_{\chi}|M| \chi}{\left|c_{M, r}\right|^{\mid / r} \min \{T, 1\}}\right)^{-M}\right)-(2 M+1) \ln \left(\sqrt{2 \pi \gamma_{M} T}\right)\right] .
\end{align*}
$$

Hence, we obtain for all $r \in(0, \infty)$ that

$$
\begin{align*}
& \liminf _{M \rightarrow \infty}\left[\frac{r}{10} q^{(M-1)}+(2 M+1) \ln \left(\frac{g_{M, r}}{\sqrt{2 \pi \gamma_{M} T}}\right)\right] \\
& =\liminf _{M \rightarrow \infty}\left[\frac{r}{10} q^{(M-1)}+(2 M+1) \ln \left(\frac{1}{2 \zeta_{\nu+s}}\left[\frac{T}{M}\right]^{(\nu+s)}\left\|(\eta-A)^{-s}\right\|_{L\left(H, L^{p}(\lambda ; \mathbb{R})\right)}^{-1}\right.\right.  \tag{3.187}\\
& \left.\left.\left(\frac{T\left|a_{q}\right| \min \{T, 1\}}{32 M \vartheta^{2} \max \{C, 1\} \max \{T, 1\} \zeta_{\chi}|M| \chi}\right)^{M}\right)-(2 M+1) \ln \left(\sqrt{2 \pi \gamma_{M} T}\right)\right] .
\end{align*}
$$

Moreover, observe that it holds for all $M \in \mathbb{N}$ that

$$
\begin{align*}
& \ln \left(\frac{1}{2 \zeta_{\nu+s}}\left[\frac{T}{M}\right]^{(\nu+s)}\left\|(\eta-A)^{-s}\right\|_{L\left(H, L^{p}(\lambda ; \mathbb{R})\right)}^{-1}\left(\frac{T\left|a_{q}\right| \min \{T, 1\}}{32 \vartheta^{2} \max \{C, 1\} \max \{T, 1\} \zeta_{\chi} M^{(1+\chi)}}\right)^{M}\right) \\
& =\ln \left(\frac{1}{2 \zeta_{\nu+s}}\left[\frac{T}{M}\right]^{(\nu+s)}\left\|(\eta-A)^{-s}\right\|_{\left.L\left(H, L^{p}(\lambda ; \mathbb{R})\right)\right)}^{-1}\right)  \tag{3.188}\\
& \quad+\ln \left(\left(\frac{T\left|a_{q}\right| \min \{T, 1\}}{32 \vartheta^{2} \max \{C, 1\} \max \{T, 1\} \zeta_{\chi} M^{(1+\chi)}}\right)^{M}\right) .
\end{align*}
$$

Next note that it holds for all $M \in \mathbb{N}$ that

$$
\begin{align*}
& \ln \left(\left(\frac{T\left|a_{q}\right| \min \{T, 1\}}{32 \vartheta^{2} \max \{C, 1\} \max \{T, 1\} \zeta_{\chi} M^{(1+\chi)}}\right)^{M}\right)=M \ln \left(\frac{T\left|a_{q}\right| \min \{T, 1\}}{32 \vartheta^{2} \max \{C, 1\} \max \{T, 1\} \zeta_{\chi} M^{(1+\chi)}}\right)  \tag{3.189}\\
& =M \ln \left(T\left|a_{q}\right| \min \{T, 1\}\right)-M \ln \left(32 \vartheta^{2} \max \{C, 1\} \max \{T, 1\} \zeta_{\chi} M^{(1+\chi)}\right) .
\end{align*}
$$

Combining this with (3.187) and (3.188) proves for all $r \in(0, \infty)$ that

$$
\begin{align*}
& \liminf _{M \rightarrow \infty}\left[\frac{r}{10} q^{(M-1)}+(2 M+1) \ln \left(\frac{g_{M, r}}{\sqrt{2 \pi \gamma_{M} T}}\right)\right] \\
& =\liminf _{M \rightarrow \infty}\left(\frac{r}{10} q^{(M-1)}+(2 M+1)\left[\ln \left(\frac{1}{2 \zeta_{\nu+s}}\left[\frac{T}{M}\right]^{(\nu+s)}\left\|(\eta-A)^{-s}\right\|_{L\left(H, L^{p}(\lambda ; \mathbb{R})\right)}^{-1}\right)\right.\right. \\
& \quad+M \ln \left(T\left|a_{q}\right| \min \{T, 1\}\right)-M \ln \left(32 \vartheta^{2} \max \{C, 1\} \max \{T, 1\} \zeta_{\chi} M^{(1+\chi)}\right) \\
& \left.\left.\quad-\ln \left(\sqrt{2 \pi \gamma_{M} T}\right)\right]\right) . \tag{3.190}
\end{align*}
$$

Furthermore, observe that the fact that $\forall x \in(0, \infty): \ln (x) \leq x$ assures that for all $M \in \mathbb{N}$ it holds that

$$
\begin{align*}
& \ln \left(\frac{1}{2 \zeta_{\nu+s}}\left[\frac{T}{M}\right]^{(\nu+s)}\left\|(\eta-A)^{-s}\right\|_{L\left(H, L^{p}(\lambda ; \mathbb{R})\right)}^{-1}\right) \\
& =\ln \left(\frac{T^{(\nu+s)}}{2 \zeta_{\nu+s}}\left\|(\eta-A)^{-s}\right\|_{L\left(H, L^{p}(\lambda ; \mathbb{R})\right)}^{-1} M^{(-\nu-s)}\right) \\
& =\ln \left(\frac{T^{(\nu+s)}}{2 \zeta_{\nu+s}}\left\|(\eta-A)^{-s}\right\|_{L\left(H, L^{p}(\lambda ; \mathbb{R})\right)}^{-1}\right)+\ln \left(M^{(-\nu-s)}\right)  \tag{3.191}\\
& =\ln \left(\frac{T^{(\nu+s)}}{2 \zeta_{\nu+s}}\left\|(\eta-A)^{-s}\right\|_{L\left(H, L^{p}(\lambda ; \mathbb{R})\right)}^{-1}\right)-(\nu+s) \ln (M) \\
& \geq \ln \left(\frac{T^{(\nu+s)}}{2 \zeta_{\nu+s}}\left\|(\eta-A)^{-s}\right\|_{L\left(H, L^{p}(\lambda ; \mathbb{R})\right)}^{-1}\right)-(\nu+s) M .
\end{align*}
$$

This and (3.190) imply for all $r \in(0, \infty)$ that

$$
\begin{align*}
& \liminf _{M \rightarrow \infty}\left[\frac{r}{10} q^{(M-1)}+(2 M+1) \ln \left(\frac{g_{M, r}}{\sqrt{2 \pi \gamma_{M} T}}\right)\right] \\
& \geq \liminf _{M \rightarrow \infty}\left(\frac{r}{10} q^{(M-1)}+(2 M+1)\left[\ln \left(\frac{T^{(\nu+s)}}{2 \zeta_{\nu+s}}\left\|(\eta-A)^{-s}\right\|_{L\left(H, L^{p}(\lambda ; \mathbb{R})\right)}^{-1}\right)-(\nu+s) M\right.\right. \\
& \quad+M \ln \left(T\left|a_{q}\right| \min \{T, 1\}\right)-M \ln \left(32 \vartheta^{2} \max \{C, 1\} \max \{T, 1\} \zeta_{\chi} M^{(1+\chi)}\right) \\
& \left.\left.\quad-\ln \left(\sqrt{2 \pi \gamma_{M} T}\right)\right]\right) \tag{3.192}
\end{align*}
$$

The fact that $\forall x \in(0, \infty): \ln (x) \leq x$ therefore ensures for all $r \in(0, \infty)$ that

$$
\begin{align*}
& \liminf _{M \rightarrow \infty}\left[\frac{r}{10} q^{(M-1)}+(2 M+1) \ln \left(\frac{g_{M, r}}{\sqrt{2 \pi \gamma_{M} T}}\right)\right] \\
& \geq \liminf _{M \rightarrow \infty}\left(\frac{r}{10} q^{(M-1)}+(2 M+1)\left[\ln \left(\frac{T^{(\nu+s)}}{2 \zeta_{\nu+s}}\left\|(\eta-A)^{-s}\right\|_{L\left(H, L^{p}(\lambda ; \mathbb{R})\right)}^{-1}\right)-(\nu+s) M\right.\right. \\
& \quad+M \ln \left(T\left|a_{q}\right| \min \{T, 1\}\right)-32 \vartheta^{2} \max \{C, 1\} \max \{T, 1\} \zeta_{\chi} M^{(2+\chi)} \\
& \left.\left.\quad-\ln \left(\sqrt{2 \pi \gamma_{M} T}\right)\right]\right) \tag{3.193}
\end{align*}
$$

Moreover, note that it holds for all $N \in \mathbb{N}$ that

$$
\begin{equation*}
\gamma_{N}=\sum_{n=-N}^{N}\left(\eta+4 \pi^{2} n^{2}\right)^{-2 \nu}=\sum_{n=-N}^{N} \frac{1}{\left(\eta+4 \pi^{2} n^{2}\right)^{2 \nu}} \leq \sum_{n=-N}^{N} \frac{1}{\eta^{2 \nu}}=\frac{2 N+1}{\eta^{2 \nu}} \leq \frac{3 N}{\eta^{2 \nu}} \tag{3.194}
\end{equation*}
$$

This and the fact that $\forall x \in(0, \infty): \ln (x) \leq x$ imply for all $M \in \mathbb{N}$ that

$$
\begin{align*}
& (2 M+1) \ln \left(\sqrt{2 \pi \gamma_{M} T}\right) \leq 3 M \ln \left(\sqrt{2 \pi \gamma_{M} T}\right)=\frac{3 M}{2} \ln \left(2 \pi \gamma_{M} T\right) \\
& \leq 3 M \pi \gamma_{M} T \leq 3 M \pi T \frac{3 M}{\eta^{2 \nu}}=\frac{9 M^{2} \pi T}{\eta^{2 \nu}} . \tag{3.195}
\end{align*}
$$

Combining this with (3.193) demonstrates for all $r \in(0, \infty)$ that

$$
\begin{align*}
& \liminf _{M \rightarrow \infty}\left[\frac{r}{10} q^{(M-1)}+(2 M+1) \ln \left(\frac{g_{M, r}}{\sqrt{2 \pi \gamma_{M} T}}\right)\right] \\
& \geq \liminf _{M \rightarrow \infty}\left[\frac{r}{10} q^{(M-1)}+(2 M+1) \ln \left(\frac{T^{(\nu+s)}}{2 \zeta_{\nu+s}}\left\|(\eta-A)^{-s}\right\|_{L\left(H, L^{p}(\lambda ; \mathbb{R})\right)}^{-1}\right)-(\nu+s) M(2 M+1)\right. \\
& \quad+M(2 M+1) \ln \left(T\left|a_{q}\right| \min \{T, 1\}\right)-32 \vartheta^{2} \max \{C, 1\} \max \{T, 1\} \zeta_{\chi} M^{(2+\chi)}(2 M+1) \\
& \left.\quad-\frac{9 M^{2} \pi T}{\eta^{2 \nu}}\right]=\infty . \tag{3.196}
\end{align*}
$$

Furthermore, observe that it holds for all $N \in \mathbb{N}$ that

$$
\begin{align*}
\gamma_{N} & =\sum_{n=-N}^{N} \frac{1}{\left(\eta+4 \pi^{2} n^{2}\right)^{2 \nu}} \geq \sum_{n=-N}^{N} \frac{1}{\left(\eta N^{2}+4 \pi^{2} N^{2}\right)^{2 \nu}} \\
& =\sum_{n=-N}^{N} \frac{1}{N^{4 \nu}\left(\eta+4 \pi^{2}\right)^{2 \nu}}=\frac{(2 N+1)}{N^{4 \nu}\left(\eta+4 \pi^{2}\right)^{2 \nu}} \geq \frac{1}{N^{4 \nu}\left(\eta+4 \pi^{2}\right)^{2 \nu}} . \tag{3.197}
\end{align*}
$$

This implies for all $r \in(0, \infty)$ that

$$
\begin{align*}
& \liminf _{M \rightarrow \infty}\left[\frac{r}{10} q^{(M-1)}-\frac{3 M^{2}}{T}\left(\kappa^{2}+\frac{\left|g_{M, r}\right|^{2}}{\gamma_{M}}\right)\right]=\liminf _{M \rightarrow \infty}\left[\frac{r}{10} q^{(M-1)}-\frac{3 M^{2} \kappa^{2}}{T}-\frac{3 M^{2}\left|g_{M, r}\right|^{2}}{T \gamma_{M}}\right] \\
& =\liminf _{M \rightarrow \infty}\left[\frac{r}{10} q^{(M-1)}-\frac{3 M^{2} \kappa^{2}}{T}-\frac{3 M^{2}}{4 T \gamma_{M}\left|\zeta_{\nu+s}\right|^{2}}\left[\frac{T}{M}\right]^{2(\nu+s)}\left\|(\eta-A)^{-s}\right\|_{L\left(H, L^{p}(\lambda ; \mathbb{R})\right)}^{-2}\right. \\
& \left.\cdot\left(\frac{T\left|q_{q}\right| \min \{T, 1\}}{32 \vartheta^{2} \max \{C, 1\} \max \{T, 1\} \zeta_{\chi} M^{(1+x)}}\right)^{2 M}\right] \geq \liminf _{M \rightarrow \infty}\left[\frac{r}{10} q^{(M-1)}-\frac{3 M^{2} \kappa^{2}}{T}\right. \\
& \left.-\frac{3 M^{2}\left(\eta+4 \pi^{2}\right)^{2 \nu} M^{4 \nu}}{4 T\left|\zeta_{\nu+s}\right|^{2}}\left[\frac{T}{M}\right]^{2(\nu+s)}\left\|(\eta-A)^{-s}\right\|_{L\left(H, L^{p}(\lambda ; \mathbb{R})\right)}^{-2}\left(\frac{T\left|q_{q}\right| \min \{T, 1\}}{32 \vartheta^{2} \max \{C, 1\} \max \{T, 1\} \zeta_{\chi} M^{(1++\chi)}}\right)^{2 M}\right] \\
& =\liminf _{M \rightarrow \infty}\left[\frac{r}{10} q^{(M-1)}-\frac{3 M^{2} \kappa^{2}}{T}-\frac{3\left(\eta+4 \pi^{2}\right)^{2 \nu} T^{(2(\nu+s)-1)}}{4 \mid\left\langle\nu+\left.s\right|^{2}\right.}\right. \\
& \left.\cdot\left\|(\eta-A)^{-s}\right\|_{L\left(H, L^{p}(\lambda ; \mathbb{R})\right)}^{-2} M^{2(1+\nu-s)}\left(\frac{T\left|a_{q}\right| \min \{T, 1\}}{32 \vartheta^{2} \max \{C, 1\} \max \{T, 1\} \zeta_{\chi} M^{(1+\chi)}}\right)^{2 M}\right] \tag{3.198}
\end{align*}
$$

Next observe that for all $x_{1}, x_{2}, x_{3}, \alpha \in(0, \infty)$ it holds that

$$
\begin{align*}
\liminf _{M \rightarrow \infty} M^{x_{1}}\left(\frac{\alpha}{M^{x_{2}}}\right)^{x_{3} M} & =\liminf _{M \rightarrow \infty}\left(\frac{\alpha M^{x_{1} /\left(x_{3} M\right)}}{M^{x_{2}}}\right)^{x_{3} M} \leq \liminf _{M \rightarrow \infty}\left(\frac{\alpha M^{x_{2} / 2}}{M^{x_{2}}}\right)^{x_{3} M}  \tag{3.199}\\
& =\liminf _{M \rightarrow \infty}\left(\frac{\alpha}{M^{x_{2} / 2}}\right)^{x_{3} M} \leq \liminf _{M \rightarrow \infty}\left(\frac{1}{2}\right)^{x_{3} M}=0
\end{align*}
$$

Combining this with (3.198) establishes for all $r \in(0, \infty)$ that

$$
\begin{equation*}
\liminf _{M \rightarrow \infty}\left[\frac{r}{10} q^{(M-1)}-\frac{3 M^{2}}{T}\left(\kappa^{2}+\frac{\left|g_{M, r}\right|^{2}}{\gamma_{M}}\right)\right]=\infty \tag{3.200}
\end{equation*}
$$

Moreover, note that it holds for all $M \in \mathbb{N}$ that

$$
\begin{align*}
& \left(\frac{T\left|a_{q}\right| \min \{T, 1\}}{32 \vartheta^{2} \max \{C, 1\} \max \{T, 1\} \zeta_{\chi} M^{(1+\chi)}}\right)^{(1+M)}\left|y_{M}\right|^{2}  \tag{3.201}\\
& =\left(\frac{T\left|a_{q}\right| \min \{T, 1\}}{32 \vartheta^{2} \max \{C, 1\} \max \{T, 1\} \zeta_{\chi} M^{(1+\chi)}}\right)^{(1+M)} \frac{1}{\left|\zeta_{\nu+s}\right|^{2}}\left[\frac{T}{M}\right]^{2(\nu+s)}\left\|(\eta-A)^{-s}\right\|_{L\left(H, L^{p}(\lambda ; \mathbb{R})\right)}^{-2}
\end{align*}
$$

This implies for all $M \in \mathbb{N}$ that

$$
\begin{align*}
& \ln \left(\left(\frac{T\left|a_{q}\right| \min \{T, 1\}}{32 \vartheta^{2} \max \{C, 1\} \max \{T, 1\} \zeta_{\chi} M^{(1+\chi)}}\right)^{(1+M)}\left|y_{M}\right|^{2}\right) \\
& =\ln \left(\left(\frac{T\left|a_{q}\right| \min \{T, 1\}}{32 \vartheta^{2} \max \{C, 1\} \max \{T, 1\} \zeta_{\chi} M^{(1+\chi)}}\right)^{(1+M)}\right) \\
& \left.\quad+\ln \left(\frac{1}{\left|\zeta_{\nu+s}\right|^{2}}\left[\frac{T}{M}\right]^{2(\nu+s)}\left\|(\eta-A)^{-s}\right\|_{L\left(H, L^{p}(\lambda ; \mathbb{R})\right)}^{-2}\right)\right]  \tag{3.202}\\
& =(1+M) \ln \left(\frac{T\left|a_{q}\right| \min \{T, 1\}}{32 \vartheta^{2} \max \{C, 1\} \max \{T, 1\} \zeta_{\chi} M^{(1+\chi)}}\right) \\
& \quad+\ln \left(\frac{T^{2(\nu+s)}}{\left|\zeta_{\nu+s}\right|^{2}}\left\|(\eta-A)^{-s}\right\|_{L\left(H, L^{p}(\lambda ; \mathbb{R})\right)}^{-2}\right)+\ln \left(M^{-2(\nu+s)}\right)
\end{align*}
$$

Hence, we obtain for all $M \in \mathbb{N}$ that

$$
\begin{align*}
& \ln \left(\left(\frac{T a_{q} \mid \min \{T, 1\}}{32 \vartheta^{2} \max \{C, 1\} \max \{T, 1\} \zeta_{\chi} M^{(1+\chi)}}\right)^{(1+M)}\left|y_{M}\right|^{2}\right) \\
& =(1+M) \ln \left(\frac{T\left|a_{q}\right| \min \{T, 1\}}{32 \vartheta^{2} \max \{C, 1\} \max \{T, 1\} \zeta_{\chi}}\right)+(1+M) \ln \left(M^{-(1+\chi)}\right) \\
& \quad+\ln \left(\frac{T^{2(\nu+s)}}{\left|\zeta_{\nu+s}\right|^{2}}\left\|(\eta-A)^{-s}\right\|_{L\left(H, L^{p}(\lambda ; \mathbb{R})\right)}^{-2}\right)-2(\nu+s) \ln (M)  \tag{3.203}\\
& =(1+M) \ln \left(\frac{T\left|a_{q}\right| \min \{T, 1\}}{32 \vartheta^{2} \max \{C, 1\} \max \{T, 1\} \zeta_{\chi}}\right)-(1+\chi)(1+M) \ln (M) \\
& \quad+\ln \left(\frac{T^{2(\nu+s)}}{\left|\zeta_{\nu+s}\right|^{2}}\left\|(\eta-A)^{-s}\right\|_{L\left(H, L^{p}(\lambda ; \mathbb{R})\right)}^{-2}\right)-2(\nu+s) \ln (M) .
\end{align*}
$$

This and the fact that $\forall x \in(0, \infty): \ln (x) \leq x$ ensure for all $M \in \mathbb{N}$ that

$$
\begin{align*}
& \ln \left(\left(\frac{T\left|a_{q}\right| \min \{T, 1\}}{32 \vartheta^{2} \max \{C, 1\} \max \{T, 1\} \zeta_{\chi} M^{(1+\chi)}}\right)^{(1+M)}\left|y_{M}\right|^{2}\right) \geq(1+M) \ln \left(\frac{T\left|a_{q}\right| \min \{T, 1\}}{32 \vartheta^{2} \max \{C, 1\} \max \{T, 1\} \zeta_{\chi}}\right) \\
& \quad-(1+\chi)(1+M) M+\ln \left(\frac{T^{2(\nu+s)}}{\left|\zeta_{\nu+s}\right|^{2}}\left\|(\eta-A)^{-s}\right\|_{L\left(H, L^{p}(\lambda ; \mathbb{R})\right)}^{-2}\right)-2(\nu+s) M . \tag{3.204}
\end{align*}
$$

In addition, note that (3.194) implies for all $r \in(0, \infty)$ that

$$
\begin{align*}
& \liminf _{M \rightarrow \infty}\left[\frac{r}{10} q^{(M-1)}+\left(2 M^{2}+M\right) \ln \left(\frac{z_{M, r} y_{M}}{2 \pi \gamma_{M} T}\right)\right] \\
& =\liminf _{M \rightarrow \infty}\left[\frac{r}{10} q^{(M-1)}+\left(2 M^{2}+M\right) \ln \left(z_{M, r} y_{M}\right)-\left(2 M^{2}+M\right) \ln \left(2 \pi \gamma_{M} T\right)\right] \\
& \geq \liminf _{M \rightarrow \infty}\left[\frac{r}{10} q^{(M-1)}+\left(2 M^{2}+M\right) \ln \left(z_{M, r} y_{M}\right)-2\left(2 M^{2}+M\right) \pi \gamma_{M} T\right] \\
& \geq \liminf _{M \rightarrow \infty}\left[\frac{r}{10} q^{(M-1)}+\left(2 M^{2}+M\right) \ln \left(z_{M, r} y_{M}\right)-\frac{6 M}{\eta^{2 \nu}}\left(2 M^{2}+M\right) \pi T\right] \\
& =\liminf _{M \rightarrow \infty}\left[\frac{r}{10} q^{(M-1)}+\left(2 M^{2}+M\right) \ln \left(\left(\frac{T\left|a_{q}\right| \min \{T, 1\}}{32 \vartheta^{2} \max \{C, 1\} \max \{T, 1\} \zeta_{\chi} M^{(1+x)}}\right)^{(1+M)}\left|y_{M}\right|^{2}\right)\right. \\
& \left.\quad-\frac{6 M}{\eta^{2 \nu}}\left(2 M^{2}+M\right) \pi T\right] . \tag{3.205}
\end{align*}
$$

This and (3.204) assure for all $r \in(0, \infty)$ that

$$
\begin{equation*}
\liminf _{M \rightarrow \infty}\left[\frac{r}{10} q^{(M-1)}+\left(2 M^{2}+M\right) \ln \left(\frac{z_{M, r}, r y_{M}}{2 \pi \gamma_{M} T}\right)\right]=\infty \tag{3.206}
\end{equation*}
$$

Furthermore, observe that the fact that $\forall M \in \mathbb{N}, r \in(0, \infty):\left|\rho_{M, r}\right|^{-2(1+M)} \leq 1$ ensures for all $M \in \mathbb{N}, r \in(0, \infty)$ that

$$
\begin{align*}
& \left|z_{M, r}\right|^{2}+\left|y_{M}\right|^{2}=\left|\rho_{M, r}\right|^{-2(1+M)}\left|y_{M}\right|^{2}+\left|y_{M}\right|^{2} \\
& =\left|y_{M}\right|^{2}\left(\left|\rho_{M, r}\right|^{-2(1+M)}+1\right) \leq 2\left|y_{M}\right|^{2}  \tag{3.207}\\
& =\frac{2}{\left|\varsigma_{\nu+s}\right|^{2}}\left[\frac{T}{M}\right]^{2(\nu+s)}\left\|(\eta-A)^{-s}\right\|_{L\left(H, L^{p}(\lambda ; \mathbb{R})\right)}^{-2} .
\end{align*}
$$

This and (3.197) assure for all $r \in(0, \infty)$ that

$$
\begin{align*}
& \liminf _{M \rightarrow \infty}\left[\frac{r}{10} q^{(M-1)}-\frac{3 M^{3}}{\gamma_{M} T}\left(\left|z_{M, r}\right|^{2}+\left|y_{M}\right|^{2}\right)\right] \\
& \geq \liminf _{M \rightarrow \infty}\left[\frac{r}{10} q^{(M-1)}-\frac{3 M^{(3+4 \nu)}\left(\eta+4 \pi^{2}\right)^{2 \nu}}{T}\left[\frac{2}{\mid \zeta_{\nu+\left.s\right|^{2}}}\left[\frac{T}{M}\right]^{2(\nu+s)}\left\|(\eta-A)^{-s}\right\|_{L\left(H, L^{p}(\lambda ; \mathbb{R})\right)}^{-2}\right]\right] \\
& =\infty \tag{3.208}
\end{align*}
$$

Combining this with (3.181), (3.185), (3.196), (3.200), and (3.206) proves for all $r \in(0, \infty)$ that

$$
\begin{equation*}
\liminf _{M \rightarrow \infty} \mathbb{E}\left[\left|\left\langle e_{0}, Y_{M}^{M}\right\rangle_{H}\right|^{r}\right]=\infty \tag{3.209}
\end{equation*}
$$

The fact that $\forall N \in \mathbb{N}:\left|\left\langle e_{0}, Y_{N}^{N}\right\rangle_{H}\right| \leq\left\|Y_{N}^{N}\right\|_{H}$ therefore establishes for all $r \in(0, \infty)$ that

$$
\begin{equation*}
\liminf _{N \rightarrow \infty} \mathbb{E}\left[\left\|Y_{N}^{N}\right\|_{H}^{r}\right] \geq \liminf _{N \rightarrow \infty} \mathbb{E}\left[\left|\left\langle e_{0}, Y_{N}^{N}\right\rangle_{H}\right|^{r}\right]=\infty \tag{3.210}
\end{equation*}
$$

The proof of Proposition 3.6 is thus completed.
Theorem 3.7. Let $\lambda: \mathcal{B}((0,1)) \rightarrow[0, \infty]$ be the Lebesgue-Borel measure on $(0,1)$, let $\left(H,\|\cdot\|_{H},\langle\cdot, \cdot\rangle_{H}\right)=\left(L^{2}(\lambda ; \mathbb{R}),\|\cdot\|_{L^{2}(\lambda ; \mathbb{R})},\langle\cdot, \cdot\rangle_{L^{2}(\lambda ; \mathbb{R})}\right)$, let $e_{n} \in H, n \in \mathbb{Z}$, satisfy
for all $n \in \mathbb{N}$ that $e_{0}(\cdot)=1, e_{n}(\cdot)=\sqrt{2} \cos (2 n \pi(\cdot))$, and $e_{-n}(\cdot)=\sqrt{2} \sin (2 n \pi(\cdot))$, let $A: D(A) \subseteq H \rightarrow H$ be the linear operator which satisfies that

$$
\begin{equation*}
D(A)=\left\{v \in H: \sum_{n \in \mathbb{Z}} n^{4}\left|\left\langle e_{n}, v\right\rangle_{H}\right|^{2}<\infty\right\} \tag{3.211}
\end{equation*}
$$

and

$$
\begin{equation*}
\forall v \in D(A): \quad A v=\sum_{n \in \mathbb{Z}}-4 \pi^{2} n^{2}\left\langle e_{n}, v\right\rangle_{H} e_{n} \tag{3.212}
\end{equation*}
$$

let $T, \eta \in(0, \infty)$, let $\left(H_{r},\|\cdot\|_{H_{r}},\langle\cdot, \cdot\rangle_{H_{r}}\right), r \in \mathbb{R}$, be a family of interpolation spaces associated to $\eta-A$, let $P_{N} \in L\left(H_{-1}, H_{1}\right), N \in \mathbb{N}$, be the linear operators which satisfy for all $N \in \mathbb{N}, v \in H$ that $P_{N}(v)=\sum_{n=-N}^{N}\left\langle e_{n}, v\right\rangle_{H} e_{n}$, let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space, let $q \in\{2,3, \ldots\}, a_{0}, a_{1}, \ldots, a_{q-1} \in \mathbb{R}, a_{q} \in \mathbb{R} \backslash\{0\}, \chi \in(1 / 4, \infty), \nu \in$ $(1 / 4,3 / 4), \xi \in H_{\chi}$, let $W:[0, T] \times \Omega \rightarrow H_{-\nu}$ be an $\operatorname{Id}_{H}$-cylindrical Wiener process, let $S_{N} \in L\left(H_{-\nu}\right), N \in \mathbb{N}$, be linear operators which satisfy for all $N \in \mathbb{N}, r \in[-\nu, \infty)$, $v, u \in H$ that $S_{N}\left(H_{r}\right) \subseteq H_{r+1}, \sup _{M \in \mathbb{N}} \sup _{s \in[0,1]} \sup _{w \in H,\|w\|_{H} \leq 1} M^{-s}\left\|S_{M} w\right\|_{H_{s}}<\infty$, $S_{N} e_{0}=e_{0},(\eta-A)^{-\nu} S_{N} v=S_{N}(\eta-A)^{-\nu} v,\left\langle S_{N} u, v\right\rangle_{H}=\left\langle u, S_{N} v\right\rangle_{H}$, and $P_{N} S_{N} v=$ $S_{N} P_{N} v$, and let $Y^{N}:\{0,1, \ldots, N\} \times \Omega \rightarrow H, N \in \mathbb{N}$, be stochastic processes which satisfy for all $N \in \mathbb{N}, n \in\{0,1, \ldots, N-1\}$ that $Y_{0}^{N}=P_{N}(\xi)$ and

$$
\begin{equation*}
Y_{n+1}^{N}=P_{N} S_{N}\left(Y_{n}^{N}+\frac{T}{N}\left(\sum_{k=0}^{q} a_{k}\left[Y_{n}^{N}\right]^{k}\right)+\left(W_{\frac{(n+1) T}{N}}-W_{\frac{n T}{N}}\right)\right) . \tag{3.213}
\end{equation*}
$$

Then it holds for all $p \in(0, \infty)$ that $\lim _{\inf }^{N \rightarrow \infty} \boldsymbol{E}\left[\left\|Y_{N}^{N}\right\|_{H}^{p}\right]=\infty$.
Proof of Theorem 3.7. Note that Proposition 3.6 (with $\lambda=\lambda,\left(H,\|\cdot\|_{H},\langle\cdot, \cdot\rangle_{H}\right)$ $=\left(H,\|\cdot\|_{H},\langle\cdot, \cdot\rangle_{H}\right), e_{n}=e_{n}, A=A, T=T, \eta=\eta,\left(H_{r},\|\cdot\|_{H_{r}},\langle\cdot, \cdot\rangle_{H_{r}}\right)=$ $\left(H_{r},\|\cdot\|_{H_{r}},\langle\cdot, \cdot\rangle_{H_{r}}\right), P_{N}=P_{N},(\Omega, \mathcal{F}, \mathbb{P})=(\Omega, \mathcal{F}, \mathbb{P}), q=q, a_{0}=a_{0}, a_{1}=a_{1}$, $\ldots, a_{q-1}=a_{q-1}, a_{q}=a_{q}, \chi=\min \{\chi, 1\}, \nu=\nu, \xi=\xi, W=W, S_{N}=S_{N}$, $Y^{N}=Y^{N}$ for $n \in \mathbb{Z}, r \in \mathbb{R}, N \in \mathbb{N}$ in the notation of Proposition 3.6) establishes Theorem 3.7. The proof of Theorem 3.7 is thus completed.

### 3.4 Divergence results for specific Euler-type approximation schemes for SPDEs with superlinearly growing nonlinearities

The next result, Corollary 3.8 below, follows from Theorem 3.7.
Corollary 3.8. Let $\lambda: \mathcal{B}((0,1)) \rightarrow[0, \infty]$ be the Lebesgue-Borel measure on $(0,1)$, let $\left(H,\|\cdot\|_{H},\langle\cdot, \cdot\rangle_{H}\right)=\left(L^{2}(\lambda ; \mathbb{R}),\|\cdot\|_{L^{2}(\lambda ; \mathbb{R})},\langle\cdot, \cdot\rangle_{L^{2}(\lambda ; \mathbb{R})}\right)$, let $e_{n} \in H, n \in \mathbb{Z}$, satisfy for all $n \in \mathbb{N}$ that $e_{0}(\cdot)=1, e_{n}(\cdot)=\sqrt{2} \cos (2 n \pi(\cdot))$, and $e_{-n}(\cdot)=\sqrt{2} \sin (2 n \pi(\cdot))$, let $A: D(A) \subseteq H \rightarrow H$ be the linear operator which satisfies that

$$
\begin{equation*}
D(A)=\left\{v \in H: \sum_{n \in \mathbb{Z}} n^{4}\left|\left\langle e_{n}, v\right\rangle_{H}\right|^{2}<\infty\right\} \tag{3.214}
\end{equation*}
$$

and

$$
\begin{equation*}
\forall v \in D(A): \quad A v=\sum_{n \in \mathbb{Z}}-4 \pi^{2} n^{2}\left\langle e_{n}, v\right\rangle_{H} e_{n}, \tag{3.215}
\end{equation*}
$$

let $T, \eta \in(0, \infty)$, let $\left(H_{r},\|\cdot\|_{H_{r}},\langle\cdot, \cdot\rangle_{H_{r}}\right), r \in \mathbb{R}$, be a family of interpolation spaces associated to $\eta-A$, let $P_{N}: H \rightarrow H, N \in \mathbb{N}$, be the linear operators which satisfy for all $N \in \mathbb{N}, v \in H$ that $P_{N}(v)=\sum_{n=-N}^{N}\left\langle e_{n}, v\right\rangle_{H} e_{n}$, let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space, let $q \in\{2,3, \ldots\}, a_{0}, a_{1}, \ldots, a_{q-1} \in \mathbb{R}, a_{q} \in \mathbb{R} \backslash\{0\}, \chi \in(1 / 4, \infty), \nu \in$ $(1 / 4,3 / 4), \xi \in H_{\chi}$, let $W:[0, T] \times \Omega \rightarrow H_{-\nu}$ be an $\operatorname{Id}_{H-c y l i n d r i c a l ~ W i e n e r ~ p r o c e s s, ~}^{R}$, let $S_{N}: H_{-\nu} \rightarrow H, N \in \mathbb{N}$, be linear operators which satisfy for all $N \in \mathbb{N}$ that $S_{N} \in\left\{e^{T / N A},(I-T / N A)^{-1}\right\}$, and let $Y^{N}:\{0,1, \ldots, N\} \times \Omega \rightarrow H, N \in \mathbb{N}$, be the stochastic processes which satisfy for all $N \in \mathbb{N}, n \in\{0,1, \ldots, N-1\}$ that $Y_{0}^{N}=P_{N}(\xi)$ and

$$
\begin{equation*}
Y_{n+1}^{N}=P_{N} S_{N}\left(Y_{n}^{N}+\frac{T}{N}\left(\sum_{k=0}^{q} a_{k}\left[Y_{n}^{N}\right]^{k}\right)+\left(W_{\frac{(n+1) T}{N}}-W_{\frac{n T}{N}}\right)\right) . \tag{3.216}
\end{equation*}
$$

Then it holds for all $p \in(0, \infty)$ that $\liminf _{N \rightarrow \infty} \mathbb{E}\left[\left\|Y_{N}^{N}\right\|_{H}^{p}\right]=\infty$.
Proof of Corollary 3.8. Throughout this proof let $\tilde{P}_{N} \in L\left(H_{-1}, H_{1}\right), N \in \mathbb{N}$, be the linear operators which satisfy for all $N \in \mathbb{N}, v \in H$ that $\tilde{P}_{N}(v)=P_{N}(v)$ and let $\tilde{S}_{N} \in L\left(H_{-\nu}\right), N \in \mathbb{N}$, be the linear operators which satisfy for all $N \in \mathbb{N}, v \in H_{-\nu}$ that $\tilde{S}_{N} v=S_{N} v$. Note that for all $N \in \mathbb{N}, r \in[-\nu, \infty), v \in H_{r}$ it holds that

$$
\begin{equation*}
e^{T / N A} v \in H_{r+1} \quad \text { and } \quad(I-T / N A)^{-1} v \in H_{r+1} \tag{3.217}
\end{equation*}
$$

This proves that for all $N \in \mathbb{N}, r \in[-\nu, \infty)$ it holds that

$$
\begin{equation*}
\tilde{S}_{N}\left(H_{r}\right)=S_{N}\left(H_{r}\right) \subseteq H_{r+1} . \tag{3.218}
\end{equation*}
$$

Next observe that the fact that $\forall r \in[0,1], t \in(0, \infty):\left\|(t(\eta-A))^{r} e^{t A}\right\|_{L(H)} \leq e^{t \eta}$ (cf., e.g., Renardy \& Rogers [141, Lemma 11.36]) ensures that for all $M \in \mathbb{N}$, $s \in[0,1]$ it holds that

$$
\begin{align*}
\sup _{w \in H,\|w\|_{H} \leq 1}\left(M^{-s}\left\|e^{T / M A} w\right\|_{H_{s}}\right) & =\sup _{w \in H,\|w\|_{H} \leq 1}\left(M^{-s}\left\|(\eta-A)^{s} e^{T / M A} w\right\|_{H}\right) \\
& =T^{-s} \sup _{w \in H,\|w\|_{H} \leq 1}\left(\left\|(T / M(\eta-A))^{s} e^{T / M A} w\right\|_{H}\right) \\
& \leq T^{-s}\left\|(T / M(\eta-A))^{s} e^{T / M A}\right\|_{L(H)} \\
& \leq T^{-s} e^{T \eta / M} \leq \max \left\{1, T^{-1}\right\} e^{T \eta} . \tag{3.219}
\end{align*}
$$

Moreover, note that for all $M \in \mathbb{N}, s \in[0,1]$ it holds that

$$
\begin{align*}
& {\left[\sup _{w \in H,\|w\|_{H} \leq 1}\left(M^{-s}\left\|(I-T / M A)^{-1} w\right\|_{H_{s}}\right)\right]^{2}} \\
& =\sup _{w \in H,\|w\|_{H} \leq 1}\left(M^{-2 s}\left\|(\eta-A)^{s}(I-T / M A)^{-1} w\right\|_{H}^{2}\right) \\
& =\sup _{w \in H,\|w\|_{H} \leq 1}\left(\sum_{n \in \mathbb{Z}} \frac{M^{-2 s}\left(\eta+4 \pi^{2} n^{2}\right)^{2 s}}{\left(1+4^{2} n^{2} T / M\right)^{2}}\left\langle w, e_{n}\right\rangle_{H}^{2}\right)  \tag{3.220}\\
& \leq \sup _{w \in H,\|w\|_{H} \leq 1}\left(\left[\sup _{n \in \mathbb{Z}} \frac{M^{-2 s}\left(\eta+4 \pi^{2} n^{2}\right)^{2 s}}{\left(1+4^{2} n^{2} T / M\right)^{2}}\right]\left[\sum_{m \in \mathbb{Z}}\left\langle w, e_{m}\right\rangle_{H}^{2}\right]\right) \\
& \leq \sup _{n \in \mathbb{Z}}\left(\frac{M^{-2 s}\left(\eta+4 \pi^{2} n^{2}\right)^{2 s}}{\left(1+4 \pi^{2} n^{2} T / M\right)^{2}}\right)=\sup _{n \in \mathbb{Z}}\left(\frac{\left(\eta / M+4 \pi^{2} n^{2} / M\right)^{2 s}}{\left(1+4 \pi^{2} n^{2} T / M\right)^{2}}\right) .
\end{align*}
$$

This demonstrates that for all $M \in \mathbb{N}, s \in[0,1]$ it holds that

$$
\begin{align*}
& \sup _{w \in H,\|w\|_{H} \leq 1}\left(M^{-s}\left\|(I-T / M A)^{-1} w\right\|_{H_{s}}\right) \leq \sup _{n \in \mathbb{Z}}\left(\frac{\left(\eta / M+4 \pi^{2} n^{2} / M\right)^{s}}{\left(1+4 \pi^{2} n^{2} T / M\right)}\right) \\
& \leq \sup _{n \in \mathbb{Z}}\left(\frac{\left(\eta / \min \{T, 1\}+4 \pi^{2} n^{2} T /[\min \{T, 1\} M]\right)^{s}}{\left(1+4 \pi^{2} n^{2} T / M\right)}\right)  \tag{3.221}\\
& \leq\left[\frac{\max \{\eta, 1\}}{\min \{T, 1\}}\right]^{s}\left[\sup _{n \in \mathbb{Z}}\left(\frac{\left(1+4 \pi^{2} n^{2} T / M\right)^{s}}{\left(1+4 \pi^{2} n^{2} T / M\right)}\right)\right] \leq\left[\frac{\max \{\eta, 1\}}{\min \{T, 1\}}\right]<\infty .
\end{align*}
$$

Combining this with (3.219) assures that

$$
\begin{equation*}
\sup _{M \in \mathbb{N}} \sup _{s \in[0,1]} \sup _{w \in H,\|w\|_{H} \leq 1}\left(M^{-s}\left\|\tilde{S}_{M} w\right\|_{H_{s}}\right)<\infty \tag{3.222}
\end{equation*}
$$

The fact that $\forall N \in \mathbb{N}, u, v \in H:\left(\tilde{S}_{N} e_{0}=e_{0},(\eta-A)^{-\nu} \tilde{S}_{N} v=\tilde{S}_{N}(\eta-A)^{-\nu} v\right.$, $\left\langle\tilde{S}_{N} u, v\right\rangle_{H}=\left\langle u, \tilde{S}_{N} v\right\rangle_{H}$, and $\tilde{P}_{N} \tilde{S}_{N} v=\tilde{S}_{N} \tilde{P}_{N} v$ ), (3.218), and Theorem 3.7 (with $\lambda=\lambda,\left(H,\|\cdot\|_{H},\langle\cdot, \cdot\rangle_{H}\right)=\left(H,\|\cdot\|_{H},\langle\cdot, \cdot\rangle_{H}\right), e_{n}=e_{n}, A=A, T=T, \eta=\eta$, $\left(H_{r},\|\cdot\|_{H_{r}},\langle\cdot, \cdot\rangle_{H_{r}}\right)=\left(H_{r},\|\cdot\|_{H_{r}},\langle\cdot, \cdot\rangle_{H_{r}}\right), P_{N}=\tilde{P}_{N},(\Omega, \mathcal{F}, \mathbb{P})=(\Omega, \mathcal{F}, \mathbb{P}), q=q$, $a_{0}=a_{0}, a_{1}=a_{1}, \ldots, a_{q-1}=a_{q-1}, a_{q}=a_{q}, \chi=\chi, \nu=\nu, \xi=\xi, W=W, S_{N}=\tilde{S}_{N}$, $Y^{N}=Y^{N}$ for $n \in \mathbb{Z}, r \in \mathbb{R}, N \in \mathbb{N}$ in the notation of Theorem 3.7) hence establish Corollary 3.8. The proof of Corollary 3.8 is thus completed.

## References

[1] Abdulle, A., and Cirilli, S. S-ROCK: Chebyshev methods for stiff stochastic differential equations. SIAM J. Sci. Comput. 30, 2 (2008), 9971014.
[2] Akhtari, B., Babolian, E., and Neuenkirch, A. An Euler scheme for stochastic delay differential equations on unbounded domains: pathwise convergence. Discrete Contin. Dyn. Syst. Ser. B 20, 1 (2015), 23-38.
[3] Andersson, A., Jentzen, A., and Kurniawan, R. Existence, uniqueness, and regularity for stochastic evolution equations with irregular initial values. arXiv:1512.06899 (2016), 35 pages. Revision requested from the J. Math. Anal. Appl.
[4] Andersson, A., and Kruse, R. Mean-square convergence of the BDF2Maruyama and backward Euler schemes for SDE satisfying a global monotonicity condition. BIT 57, 1 (2017), 21-53.
[5] Bao, J., Huang, X., and Yuan, C. Convergence Rate of Euler-Maruyama Scheme for SDEs with Hölder-Dini Continuous Drifts. J. Theoret. Probab. (08 2018).
[6] Becker, S., Gess, B., Jentzen, A., and Kloeden, P. E. Strong convergence rates for explicit space-time discrete numerical approximations of stochastic Allen-Cahn equations. arXiv:1711.02423 (2017), 104 pages.
[7] Becker, S., Gess, B., Jentzen, A., and Kloeden, P. E. Lower and upper bounds for strong approximation errors for numerical approximations of stochastic heat equations. arXiv:1811.01725 (2018), 20 pages.
[8] Becker, S., and Jentzen, A. Strong convergence rates for nonlinearitytruncated Euler-type approximations of stochastic Ginzburg-Landau equations. Stochastic Process. Appl. 129, 1 (2019), 28-69.
[9] Bessaih, H., Hausenblas, E., Randrianasolo, T. A., and Razafimandimby, P. A. Numerical approximation of stochastic evolution equations: convergence in scale of Hilbert spaces. J. Comput. Appl. Math. 343 (2018), 250-274.
[10] Bessaih, H., and Millet, A. On strong $L^{2}$ convergence of time numerical schemes for the stochastic 2D Navier-Stokes equations. arXiv:1801.03548 (2018), 28 pages.
[11] Beyn, W.-J., Isaak, E., and Kruse, R. Stochastic C-stability and Bconsistency of explicit and implicit Euler-type schemes. J. Sci. Comput. 67, 3 (2016), 955-987.
[12] Beyn, W.-J., Isaak, E., and Kruse, R. Stochastic C-stability and Bconsistency of explicit and implicit Milstein-type schemes. J. Sci. Comput. 70, 3 (2017), 1042-1077.
[13] Blömker, D., and Jentzen, A. Galerkin approximations for the stochastic Burgers equation. SIAM J. Numer. Anal. 51, 1 (2013), 694-715.
[14] Blömker, D., and Kamrani, M. Numerically Computable A PosterioriBounds for stochastic Allen-Cahn equation. arXiv:1702.01347 (2017), 27 pages.
[15] Blömker, D., Kamrani, M., and Hosseini, S. M. Full discretization of the stochastic Burgers equation with correlated noise. IMA J. Numer. Anal. 33, 3 (2013), 825-848.
[16] Blömker, D., Schillings, C., and Wacker, P. A strongly convergent numerical scheme from ensemble Kalman inversion. SIAM J. Numer. Anal. 56, 4 (2018), 2537-2562.
[17] Breckner, H. Galerkin approximation and the strong solution of the NavierStokes equation. J. Appl. Math. Stochastic Anal. 13, 3 (2000), 239-259.
[18] Bréhier, C.-E., Cui, J., and Hong, J. Strong convergence rates of semidiscrete splitting approximations for the stochastic Allen-Cahn equation. arXiv:1802.06372 (2018), 33 pages.
[19] Bréhier, C.-E., and Goudenége, L. Analysis of some splitting schemes for the stochastic Allen-Cahn equation. arXiv:1801.06455 (2018), 23 pages.
[20] Brosse, N., Durmus, A., Moulines, É., and Sabanis, S. The tamed unadjusted Langevin algorithm. Stochastic Process. Appl. (2018).
[21] Brzeźniak, Z., Carelli, E., and Prohl, A. Finite-element-based discretizations of the incompressible Navier-Stokes equations with multiplicative random forcing. IMA J. Numer. Anal. 33, 3 (2013), 771-824.
[22] Burrage, K., Burrage, P. M., and Tian, T. Numerical methods for strong solutions of stochastic differential equations: an overview. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 460, 2041 (2004), 373-402.
[23] Campbell, S., and Lord, G. Adaptive time-stepping for Stochastic Partial Differential Equations with non-Lipschitz drift. arXiv:1812.09036 (2018), 25 pages.
[24] Carelli, E., and Prohl, A. Rates of convergence for discretizations of the stochastic incompressible Navier-Stokes equations. SIAM J. Numer. Anal. 50, 5 (2012), 2467-2496.
[25] Chassagneux, J.-F., Jacquier, A., and Mihaylov, I. An explicit Euler scheme with strong rate of convergence for financial SDEs with non-Lipschitz coefficients. SIAM J. Financial Math. 7, 1 (2016), 993-1021.
[26] Chen, Z., Gan, S., and Wang, X. Mean-square approximations of Lévy noise driven SDEs with super-linearly growing diffusion and jump coefficients. arXiv:1812.03069 (2018), 19 pages.
[27] Cox, S., and van Neerven, J. Pathwise Hölder convergence of the implicitlinear Euler scheme for semi-linear SPDEs with multiplicative noise. Numer. Math. 125, 2 (2013), 259-345.
[28] Cui, J., Hong, J., Liu, Z., and Zhou, W. Strong convergence rate of splitting schemes for stochastic nonlinear Schrödinger equations. J. Differential Equations 266, 9 (2019), 5625-5663.
[29] Dareiotis, K., Kumar, C., and Sabanis, S. On tamed Euler approximations of SDEs driven by Lévy noise with applications to delay equations. SIAM J. Numer. Anal. 54, 3 (2016), 1840-1872.
[30] Deng, S., Fei, W., Liu, W., and Mao, X. The truncated EM method for stochastic differential equations with Poisson jumps. J. Comput. Appl. Math. 355 (2019), 232-257.
[31] Díaz-Infante, S., and Jerez, S. The linear Steklov method for SDEs with non-globally Lipschitz coefficients: strong convergence and simulation. J. Comput. Appl. Math. 309 (2017), 408-423.
[32] Dörsek, P. Semigroup splitting and cubature approximations for the stochastic Navier-Stokes equations. SIAM J. Numer. Anal. 50, 2 (2012), 729-746.
[33] Duan, Y., and Yang, X. The finite element method of a Euler scheme for stochastic Navier-Stokes equations involving the turbulent component. Int. J. Numer. Anal. Model. 10, 3 (2013), 727-744.
[34] Erdoğan, U., and Lord, G. J. A new class of exponential integrators for SDEs with multiplicative noise. IMA J. Numer. Anal. (03 2018).
[35] Fang, W., and Giles, M. B. Adaptive Euler-Maruyama method for SDEs with non-globally Lipschitz drift. In Monte Carlo and quasi-Monte Carlo methods, vol. 241 of Springer Proc. Math. Stat. Springer, Cham, 2018, pp. 217234.
[36] Fang, W., and Giles, M. B. Multilevel Monte Carlo Method for Ergodic SDEs without Contractivity. arXiv:1803.05932 (2018), 39 pages.
[37] Filipović, D., Tappe, S., and Teichmann, J. Term structure models driven by Wiener processes and Poisson measures: existence and positivity. SIAM J. Financial Math. 1, 1 (2010), 523-554.
[38] Foroush Bastani, A., and Tahmasebi, M. Strong convergence of splitstep backward Euler method for stochastic differential equations with nonsmooth drift. J. Comput. Appl. Math. 236, 7 (2012), 1903-1918.
[39] Furihata, D., Kovács, M., Larsson, S., and Lindgren, F. Strong convergence of a fully discrete finite element approximation of the stochastic Cahn-Hilliard equation. SIAM J. Numer. Anal. 56, 2 (2018), 708-731.
[40] Gazeau, M. Probability and pathwise order of convergence of a semidiscrete scheme for the stochastic Manakov equation. SIAM J. Numer. Anal. 52, 1 (2014), 533-553.
[41] Geiser, J. Iterative Semi-implicit Splitting Methodsfor Stochastic Chemical Kinetics. In Finite Difference Methods. Theory and Applications. FDM 2018 (2019), pp. 35-47.
[42] Gerencsér, M., Jentzen, A., and Salimova, D. On stochastic differential equations with arbitrarily slow convergence rates for strong approximation in two space dimensions. Proc. A. 473,2207 (2017), 20170104, 16.
[43] Ghayebi, B., Hosseini, S. M., and Blömker, D. Numerical solution of the Burgers equation with Neumann boundary noise. J. Comput. Appl. Math. 311 (2017), 148-164.
[44] Glatt-Holtz, N., Temam, R., and Wang, C. Time discrete approximation of weak solutions to stochastic equations of geophysical fluid dynamics and applications. Chin. Ann. Math. Ser. B 38, 2 (2017), 425-472.
[45] Guo, Q., Liu, W., and Mao, X. A note on the partially truncated EulerMaruyama method. Appl. Numer. Math. 130 (2018), 157-170.
[46] Guo, Q., Liu, W., Mao, X., and Yue, R. The partially truncated EulerMaruyama method and its stability and boundedness. Appl. Numer. Math. 115 (2017), 235-251.
[47] Guo, Q., Liu, W., Mao, X., and Yue, R. The truncated Milstein method for stochastic differential equations with commutative noise. J. Comput. Appl. Math. 338 (2018), 298-310.
[48] Guo, Q., Liu, W., Mao, X., and Zhan, W. Multi-level Monte Carlo methods with the truncated Euler-Maruyama scheme for stochastic differential equations. Int. J. Comput. Math. 95, 9 (2018), 1715-1726.
[49] Gyöngy, I. Lattice approximations for stochastic quasi-linear parabolic partial differential equations driven by space-time white noise. I. Potential Anal. 9, 1 (1998), 1-25.
[50] Gyöngy, I. A note on Euler's approximations. Potential Anal. 8, 3 (1998), 205-216.
[51] GyÖngy, I. Lattice approximations for stochastic quasi-linear parabolic partial differential equations driven by space-time white noise. II. Potential Anal. 11, 1 (1999), 1-37.
[52] Gyöngy, I., and Millet, A. On discretization schemes for stochastic evolution equations. Potential Anal. 23, 2 (2005), 99-134.
[53] Gyöngy, I., Sabanis, S., and Šiška, D. Convergence of tamed Euler schemes for a class of stochastic evolution equations. Stoch. Partial Differ. Equ. Anal. Comput. (2015), 1-21.
[54] Hairer, M., Hutzenthaler, M., and Jentzen, A. Loss of regularity for Kolmogorov equations. Ann. Probab. 43, 2 (2015), 468-527.
[55] Halidias, N. A novel approach to construct numerical methods for stochastic differential equations. Numer. Algorithms 66, 1 (2014), 79-87.
[56] Han, M., Ma, Q., and Ding, X. The projected explicit Itô-Taylor methods for stochastic differential equations under locally Lipschitz conditions and polynomial growth conditions. J. Comput. Appl. Math. 348 (2019), 161-180.
[57] Harms, P., Stefanovits, D., Teichmann, J., and Wüthrich, M. V. Consistent recalibration of yield curve models. Math. Finance 28, 3 (2018), 757-799.
[58] HatZesberger, S. Strongly Asymptotically Optimal Schemes for the Strong Approximation of Non-Lipschitzian Stochastic Differential Equations with respect to the Supremum Error. arXiv:1901.06148 (2019), 27 pages.
[59] Hefter, M., Herzwurm, A., and Müller-Gronbach, T. Lower error bounds for strong approximation of scalar SDEs with non-Lipschitzian coefficients. Ann. Appl. Probab. 29, 1 (2019), 178-216.
[60] Higham, D. J., and Kloeden, P. E. Strong convergence rates for backward Euler on a class of nonlinear jump-diffusion problems. J. Comput. Appl. Math. 205, 2 (2007), 949-956.
[61] Higham, D. J., Mao, X., and Stuart, A. M. Strong convergence of Euler-type methods for nonlinear stochastic differential equations. SIAM J. Numer. Anal. 40, 3 (2002), 1041-1063.
[62] Higham, D. J., Mao, X., and Szpruch, L. Convergence, non-negativity and stability of a new Milstein scheme with applications to finance. Discrete Contin. Dyn. Syst. Ser. B 18, 8 (2013), 2083-2100.
[63] Hu, L., Li, X., and Mao, X. Convergence rate and stability of the truncated Euler-Maruyama method for stochastic differential equations. J. Comput. Appl. Math. 337 (2018), 274-289.
[64] Hu, L., and Ren, Y. Numerical Solutions of Hybrid Stochastic Differential Delay Equations under the Generalized Khasminskii-Type Conditions. Mathematical Computation 3, 4 (2014), 112-121.
[65] Hu, Y. Semi-implicit Euler-Maruyama scheme for stiff stochastic equations. In Stochastic analysis and related topics, V (Silivri, 1994), vol. 38 of Progr. Probab. Birkhäuser Boston, Boston, MA, 1996, pp. 183-202.
[66] Hutzenthaler, M., and Jentzen, A. Convergence of the stochastic Euler scheme for locally Lipschitz coefficients. Found. Comput. Math. 11, 6 (2011), 657-706.
[67] Hutzenthaler, M., and Jentzen, A. On a perturbation theory and on strong convergence rates for stochastic ordinary and partial differential equations with non-globally monotone coefficients. arXiv:1401.0295 (2014), 41 pages.
[68] Hutzenthaler, M., and Jentzen, A. Numerical approximations of stochastic differential equations with non-globally Lipschitz continuous coefficients. Mem. Amer. Math. Soc. 236, 1112 (2015), v+99.
[69] Hutzenthaler, M., Jentzen, A., and Kloeden, P. E. Strong and weak divergence in finite time of Euler's method for stochastic differential equations with non-globally Lipschitz continuous coefficients. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 467 (2011), 1563-1576.
[70] Hutzenthaler, M., Jentzen, A., and Kloeden, P. E. Strong convergence of an explicit numerical method for SDEs with non-globally Lipschitz continuous coefficients. Ann. Appl. Probab. 22, 4 (2012), 1611-1641.
[71] Hutzenthaler, M., Jentzen, A., and Kloeden, P. E. Divergence of the multilevel Monte Carlo Euler method for nonlinear stochastic differential equations. Ann. Appl. Probab. 23, 5 (2013), 1913-1966.
[72] Hutzenthaler, M., Jentzen, A., and Salimova, D. Strong convergence of full-discrete nonlinearity-truncated accelerated exponential Euler-type approximations for stochastic Kuramoto-Sivashinsky equations. Comm. Math. Sci. 16, 6 (2018), 1489-1529.
[73] İzgi, B., and Çetin, C. Semi-implicit split-step numerical methods for a class of nonlinear stochastic differential equations with non-Lipschitz drift terms. J. Comput. Appl. Math. 343 (2018), 62-79.
[74] Jentzen, A. Pathwise numerical approximations of SPDEs with additive noise under non-global Lipschitz coefficients. Potential Anal. 31, 4 (2009), 375-404.
[75] Jentzen, A., Kloeden, P. E., and Neuenkirch, A. Pathwise approximation of stochastic differential equations on domains: higher order convergence rates without global Lipschitz coefficients. Numer. Math. 112, 1 (2009), 41-64.
[76] Jentzen, A., Müller-Gronbach, T., and Yaroslavtseva, L. On stochastic differential equations with arbitrary slow convergence rates for strong approximation. Commun. Math. Sci. 14, 6 (2016), 1477-1500.
[77] Jentzen, A., and Pušnik, P. Strong convergence rates for an explicit numerical approximation method for stochastic evolution equations with nonglobally Lipschitz continuous nonlinearities. arXiv:1504.03523 (2015), 38 pages. Minor revision requested from IMA J. Num. Anal.
[78] Jentzen, A., and Pušnik, P. Exponential moments for numerical approximations of stochastic partial differential equations. arXiv:1609.07031 (2016), 44 pages.
[79] Jentzen, A., and Röckner, M. A Milstein scheme for SPDEs. Found. Comput. Math. 15, 2 (2015), 313-362.
[80] Jentzen, A., Salimova, D., and Welti, T. Strong convergence for explicit space-time discrete numerical approximation methods for stochastic Burgers equations. J. Math. Anal. Appl. 469, 2 (2019), 661-704.
[81] Ji, Y., and Yuan, C. Tamed EM scheme of neutral stochastic differential delay equations. J. Comput. Appl. Math. 326 (2017), 337-357.
[82] Jimenez, J. C., and de la Cruz Cancino, H. Convergence rate of strong local linearization schemes for stochastic differential equations with additive noise. BIT 52, 2 (2012), 357-382.
[83] Kamrani, M. Numerical solution of stochastic partial differential equations using a collocation method. ZAMM Z. Angew. Math. Mech. 96, 1 (2016), 106-120.
[84] Kamrani, M., and Blömker, D. Pathwise convergence of a numerical method for stochastic partial differential equations with correlated noise and local Lipschitz condition. J. Comput. Appl. Math. 323 (2017), 123-135.
[85] Kamrani, M., and Hosseini, S. M. Spectral collocation method for stochastic Burgers equation driven by additive noise. Math. Comput. Simulation 82, 9 (2012), 1630-1644.
[86] Kamrani, M., Hosseini, S. M., and Hausenblas, E. Implicit Euler method for numerical solution of nonlinear stochastic partial differential equations with multiplicative trace class noise. Math. Methods Appl. Sci. 41, 13 (2018), 4986-5002.
[87] Kelly, C., and Lord, G. Adaptive Euler methods for stochastic systems with non-globally Lipschitz coefficients. arXiv:1805.11137 (2018), 21 pages.
[88] Kelly, C., and Lord, G. J. Adaptive time-stepping strategies for nonlinear stochastic systems. IMA J. Numer. Anal. 38, 3 (2018), 1523-1549.
[89] Kelly, C., Rodkina, A., and Rapoo, E. M. Adaptive timestepping for pathwise stability and positivity of strongly discretised nonlinear stochastic differential equations. J. Comput. Appl. Math. 334 (2018), 39-57.
[90] Kloeden, P., and Neuenkirch, A. Convergence of numerical methods for stochastic differential equations in mathematical finance. In Recent developments in computational finance, vol. 14 of Interdiscip. Math. Sci. World Sci. Publ., Hackensack, NJ, 2013, pp. 49-80.
[91] Kloeden, P. E., Lord, G. J., Neuenkirch, A., and Shardlow, T. The exponential integrator scheme for stochastic partial differential equations: pathwise error bounds. J. Comput. Appl. Math. 235, 5 (2011), 1245-1260.
[92] Komori, Y. Weak second-order stochastic Runge-Kutta methods for noncommutative stochastic differential equations. J. Comput. Appl. Math. 206, 1 (2007), 158-173.
[93] Komori, Y., Cohen, D., and Burrage, K. Weak second order explicit exponential Runge-Kutta methods for stochastic differential equations. SIAM J. Sci. Comput. 39, 6 (2017), A2857-A2878.
[94] Kossioris, G. T., and Zouraris, G. E. Finite element approximations for a linear Cahn-Hilliard-Cook equation driven by the space derivative of a space-time white noise. Discrete Contin. Dyn. Syst. Ser. B 18, 7 (2013), 1845-1872.
[95] Kovács, M., Larsson, S., and Lindgren, F. On the backward Euler approximation of the stochastic Allen-Cahn equation. J. Appl. Probab. 52, 2 (2015), 323-338.
[96] Kovács, M., Larsson, S., and Lindgren, F. On the discretisation in time of the stochastic Allen-Cahn equation. Math. Nachr. 291, 5-6 (2018), 966-995.
[97] Kumar, C. Milstein-type Schemes of SDE Driven by Lévy Noise with Superlinear Diffusion Coefficients. arXiv:1707.02343 (2017), 40 pages.
[98] Kumar, C., and Sabanis, S. Strong convergence of Euler approximations of stochastic differential equations with delay under local Lipschitz condition. Stoch. Anal. Appl. 32, 2 (2014), 207-228.
[99] Kumar, C., and Sabanis, S. On explicit approximations for Lévy driven SDEs with super-linear diffusion coefficients. Electron. J. Probab. 22 (2017), Paper No. 73, 19.
[100] Kumar, C., and Sabanis, S. On tamed Milstein schemes of SDEs driven by Lévy noise. Discrete Contin. Dyn. Syst. Ser. B 22, 2 (2017), 421-463.
[101] Kumar, T., and Kumar, C. A New Efficient Explicit Scheme of Order 1.5 for SDE with Super-linear Drift Coefficient. arXiv:1805.07976 (2018), 33 pages.
[102] Kushner, H. J. On the differential equations satisfied by conditional probablitity densities of Markov processes, with applications. J. Soc. Indust. Appl. Math. Ser. A Control 2 (1964), 106-119.
[103] Lan, G., and Xia, F. Strong convergence rates of modified truncated EM method for stochastic differential equations. J. Comput. Appl. Math. 334 (2018), 1-17.
[104] Leimkuhler, B., and Matthews, C. Molecular dynamics, vol. 39 of Interdisciplinary Applied Mathematics. Springer, Cham, 2015. With deterministic and stochastic numerical methods.
[105] Li, X., Mao, X., and Yin, G. Explicit numerical approximations for stochastic differential equations in finite and infinite horizons: truncation methods, convergence in pth moment and stability. IMA J. Numer. Anal. (2018).
[106] Li, X., and Yang, X. Error estimates of finite element methods for fractional stochastic Navier-Stokes equations. J. Inequal. Appl. (2018), Paper No. 284, 15.
[107] Lindner, F., And Stroot, H. Strong convergence of a half-explicit Euler scheme for constrained stochastic mechanical systems. arXiv:1709.07964 (2017), 39 pages.
[108] Lionnet, A. Adapted time steps explicit scheme for monotone BSDEs. arXiv:1612.00077 (2016), 31 pages.
[109] Lionnet, A., dos Reis, G., and Szpruch, L. Time discretization of FBSDE with polynomial growth drivers and reaction-diffusion PDEs. Ann. Appl. Probab. 25, 5 (2015), 2563-2625.
[110] Lionnet, A., dos Reis, G., and Szpruch, L. Convergence and qualitative properties of modified explicit schemes for BSDEs with polynomial growth. Ann. Appl. Probab. 28, 4 (2018), 2544-2591.
[111] Liu, W., and Mao, X. Strong convergence of the stopped Euler-Maruyama method for nonlinear stochastic differential equations. Applied Mathematics and Computation 223 (2013), 389-400.
[112] Liu, W., Mao, X., Tang, J., and Wu, Y. Truncated Euler-Maruyama method for a class of non-autonomous stochastic differential equations. arXiv:1812.00683 (2018), 19 pages.
[113] Liu, W., and Röckner, M. Stochastic partial differential equations: an introduction. Universitext. Springer, Cham, 2015.
[114] Liu, Z., And Qiao, Z. Strong approximation of stochastic Allen-Cahn equation with white noise. arXiv:1801.09348 (2018), 17 pages.
[115] Mao, W., You, S., and Mao, X. On the asymptotic stability and numerical analysis of solutions to nonlinear stochastic differential equations with jumps. J. Comput. Appl. Math. 301 (2016), 1-15.
[116] Mao, X. The truncated Euler-Maruyama method for stochastic differential equations. J. Comput. Appl. Math. 290 (2015), 370-384.
[117] Mao, X. Convergence rates of the truncated Euler-Maruyama method for stochastic differential equations. J. Comput. Appl. Math. 296 (2016), 362375.
[118] Mao, X., and Szpruch, L. Strong convergence and stability of implicit numerical methods for stochastic differential equations with non-globally Lipschitz continuous coefficients. J. Comput. Appl. Math. 238 (2013), 14-28.
[119] Mao, X., and Szpruch, L. Strong convergence rates for backward EulerMaruyama method for non-linear dissipative-type stochastic differential equations with super-linear diffusion coefficients. Stochastics 85, 1 (2013), 144-171.
[120] Marion, G., Mao, X., and Renshaw, E. Convergence of the Euler scheme for a class of stochastic differential equation. Int. Math. J. 1, 1 (2002), 9-22.
[121] Mazzonetto, S. Strong convergence for explicit space-time discrete numerical approximation for 2D stochastic Navier-Stokes equations. arXiv:1809.01937 (2018), 35 pages.
[122] Milošević, M. Highly nonlinear neutral stochastic differential equations with time-dependent delay and the Euler-Maruyama method. Math. Comput. Modelling 54, 9-10 (2011), 2235-2251.
[123] Milošević, M. Implicit numerical methods for highly nonlinear neutral stochastic differential equations with time-dependent delay. Appl. Math. Comput. 244 (2014), 741-760.
[124] Milošević, M. Convergence and almost sure exponential stability of implicit numerical methods for a class of highly nonlinear neutral stochastic differential equations with constant delay. J. Comput. Appl. Math. 280 (2015), 248-264.
[125] Milošević, M. Convergence and almost sure polynomial stability of the backward and forward-backward Euler methods for highly nonlinear pantograph stochastic differential equations. Math. Comput. Simulation 150 (2018), 2548.
[126] Milošević, M. Divergence of the backward Euler method for ordinary stochastic differential equations. Numer. Algorithms (Jan 2019).
[127] Milstein, G. N., and Tretyakov, M. V. Numerical integration of stochastic differential equations with nonglobally Lipschitz coefficients. SIAM J. Numer. Anal. 43, 3 (2005), 1139-1154.
[128] Mora, C. M., Mardones, H. A., Jimenez, J. C., Selva, M., and Biscay, R. A stable numerical scheme for stochastic differential equations with multiplicative noise. SIAM J. Numer. Anal. 55, 4 (2017), 1614-1649.
[129] Mourrat, J.-C., and Weber, H. Convergence of the two-dimensional dynamic Ising-Kac model to $\Phi_{2}^{4}$. Comm. Pure Appl. Math. 70, 4 (2017), 717812.
[130] Müller-Gronbach, T., and Yaroslavtseva, L. A note on strong approximation of SDEs with smooth coefficients that have at most linearly growing derivatives. J. Math. Anal. Appl. 467, 2 (2018), 1013-1031.
[131] Neuenkirch, A., and Szpruch, L. First order strong approximations of scalar SDEs defined in a domain. Numerische Mathematik (2014), 1-34.
[132] Ngo, H.-L., and Luong, D.-T. Strong rate of tamed Euler-Maruyama approximation for stochastic differential equations with Hölder continuous diffusion coefficient. Braz. J. Probab. Stat. 31, 1 (2017), 24-40.
[133] Ngo, H. L., and Luong, D. T. Tamed Euler-Maruyama approximation for stochastic differential equations with locally Hölder continuous diffusion coefficients. Statist. Probab. Lett. 145 (2019), 133-140.
[134] Ngo, H.-L., and Taguchi, D. Strong rate of convergence for the EulerMaruyama approximation of stochastic differential equations with irregular coefficients. Math. Comp. 85, 300 (2016), 1793-1819.
[135] Ngo, H.-L., and Taguchi, D. On the Euler-Maruyama approximation for one-dimensional stochastic differential equations with irregular coefficients. IMA J. Numer. Anal. 37, 4 (2017), 1864-1883.
[136] Ngo, H.-L., And Taguchi, D. Approximation for non-smooth functionals of stochastic differential equations with irregular drift. J. Math. Anal. Appl. 457, 1 (2018), 361-388.
[137] Nguyen, D. T., Nguyen, S. L., Hoang, T. A., and Yin, G. TamedEuler method for hybrid stochastic differential equations with Markovian switching. Nonlinear Anal. Hybrid Syst. 30 (2018), 14-30.
[138] Obradović, M., and Milošević, M. Stability of a class of neutral stochastic differential equations with unbounded delay and Markovian switching and the Euler-Maruyama method. J. Comput. Appl. Math. 309 (2017), 244-266.
[139] Printems, J. On the discretization in time of parabolic stochastic partial differential equations. M2AN Math. Model. Numer. Anal. 35, 6 (2001), 10551078.
[140] Protter, P., Qiu, L., and Martin, J. S. Asymptotic error distribution for the Euler scheme with locally Lipschitz coefficients. arXiv:1709.04480 (2017), 26 pages.
[141] Renardy, M., and Rogers, R. C. An introduction to partial differential equations, vol. 13 of Texts in Applied Mathematics. Springer-Verlag, New York, 1993.
[142] Sabanis, S. A note on tamed Euler approximations. Electron. Commun. Probab. 18 (2013), no. 47, 10.
[143] Sabanis, S. Euler approximations with varying coefficients: the case of superlinearly growing diffusion coefficients. Ann. Appl. Probab. 26, 4 (2016), 2083-2105.
[144] Sabanis, S., and Zhang, Y. On explicit order 1.5 approximations with varying coefficients: The case of super-linear diffusion coefficients. J. Complexity 50 (2019), 84-115.
[145] Sauer, M., and Stannat, W. Lattice approximation for stochastic reaction diffusion equations with one-sided Lipschitz condition. Math. Comp. 84, 292 (2015), 743-766.
[146] Sell, G. R., and You, Y. Dynamics of evolutionary equations, vol. 143 of Applied Mathematical Sciences. Springer-Verlag, New York, 2002.
[147] Shao, J. Weak convergence of Euler-Maruyama's approximation for SDEs under integrability condition. arXiv:1808.07250 (2018), 33 pages.
[148] Song, M., and Zhang, L. Numerical solutions of stochastic differential equations with piecewise continuous arguments under Khasminskii-type conditions. J. Appl. Math. (2012), Art. ID 696849, 21.
[149] Song, M. H., Lu, Y. L., and Liu, M. Z. Convergence of the tamed Euler method for stochastic differential equations with piecewise continuous arguments under non-global Lipschitz continuous coefficients. Numer. Funct. Anal. Optim. 39, 5 (2018), 517-536.
[150] Szpruch, L. U., and Zhāng, X. $V$-integrability, asymptotic stability and comparison property of explicit numerical schemes for non-linear SDEs. Math. Comp. 87, 310 (2018), 755-783.
[151] Tambue, A., and Mukam, J. D. Strong convergence and stability of the semi-tamed and tamed Euler schemes for stochastic differential equations with jumps under non-global Lipschitz condition. Int. J. Numer. Anal. Mod. 1, 1 (2018), 1-18.
[152] Tan, L., and Yuan, C. A note on strong convergence of implicit scheme for SDEs under local one-sided Lipschitz conditions. arXiv:1801.05518 (2018), 14 pages.
[153] Tan, L., and Yuan, C. Convergence rates of truncated EM scheme for NSDDEs. arXiv:1801.05952 (2018), 26 pages.
[154] Tretyakov, M. V., and Zhang, Z. A fundamental mean-square convergence theorem for SDEs with locally Lipschitz coefficients and its applications. SIAM J. Numer. Anal. 51, 6 (2013), 3135-3162.
[155] WANG, X. An efficient explicit full discrete scheme for strong approximation of stochastic Allen-Cahn equation. arXiv:1802.09413 (2018), 25 pages.
[156] Wang, X., and Gan, S. The tamed Milstein method for commutative stochastic differential equations with non-globally Lipschitz continuous coefficients. J. Difference Equ. Appl. 19, 3 (2013), 466-490.
[157] Wen, H. Convergence rates of full-implicit truncated Euler-Maruyama method for stochastic differential equations. J. Appl. Math. Comput. (2018).
[158] Yang, L., and Zhang, Y. Convergence of the spectral Galerkin method for the stochastic reaction-diffusion-advection equation. J. Math. Anal. Appl. 446, 2 (2017), 1230-1254.
[159] Yaroslavtseva, L. On non-polynomial lower error bounds for adaptive strong approximation of SDEs. J. Complexity 42 (2017), 1-18.
[160] Yaroslavtseva, L., and Müller-Gronbach, T. On sub-polynomial lower error bounds for quadrature of SDEs with bounded smooth coefficients. Stoch. Anal. Appl. 35, 3 (2017), 423-451.
[161] Yue, C. High-order split-step theta methods for non-autonomous stochastic differential equations with non-globally Lipschitz continuous coefficients. Math. Methods Appl. Sci. 39, 9 (2016), 2380-2400.
[162] Yue, C., Huang, C., and Jiang, F. Strong convergence of split-step theta methods for non-autonomous stochastic differential equations. Int. J. Comput. Math. 91, 10 (2014), 2260-2275.
[163] Zakai, M. On the optimal filtering of diffusion processes. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 11 (1969), 230-243.
[164] Zhan, W., Jiang, Y., and Liu, W. A note on convergence and stability of the truncated Milstein method for stochastic differential equations. arXiv:1809.05993 (2018), 21 pages.
[165] Zhang, L., and Song, M. Convergence of the Euler method of stochastic differential equations with piecewise continuous arguments. Abstr. Appl. Anal. (2012), Art. ID 643783, 16.
[166] Zhang, L., Zhou, W., and Jı, L. Parareal algorithms applied to stochastic differential equations with conserved quantities. J. Comput. Math. 37, 1 (2019), 48-60.
[167] Zhang, Z., and Karniadakis, G. E. Numerical methods for stochastic partial differential equations with white noise, vol. 196 of Applied Mathematical Sciences. Springer, Cham, 2017.
[168] Zhang, Z., and Ma, H. Order-preserving strong schemes for SDEs with locally Lipschitz coefficients. Appl. Numer. Math. 112 (2017), 1-16.
[169] Zhou, S. Strong convergence and stability of backward Euler-Maruyama scheme for highly nonlinear hybrid stochastic differential delay equation. Calcolo 52, 4 (2015), 445-473.
[170] Zhou, S., and FAng, Z. Numerical approximation of nonlinear neutral stochastic functional differential equations. J. Appl. Math. Comput. 41, 1-2 (2013), 427-445.
[171] Zhou, S., and Hu, C. Numerical approximation of stochastic differential delay equation with coefficients of polynomial growth. Calcolo 54, 1 (2017), 1-22.
[172] Zhou, S., and Jin, H. Strong convergence of implicit numerical methods for nonlinear stochastic functional differential equations. J. Comput. Appl. Math. 324 (2017), 241-257.
[173] Zhou, S., and Jin, H. Implicit numerical solutions to neutral-type stochastic systems with superlinearly growing coefficients. J. Comput. Appl. Math. 350 (2019), 423-441.
[174] Zhou, S., ANd Jin, H. Numerical solution to highly nonlinear neutral-type stochastic differential equation. Appl. Numer. Math. (2019).
[175] Zhou, S., and Xue, M. Exponential stability for nonlinear hybrid stochastic pantograph equations and numerical approximation. Acta Math. Sci. Ser. B (Engl. Ed.) 34, 4 (2014), 1254-1270.
[176] Zhou, W., Zhang, L., Hong, J., and Song, S. Projection methods for stochastic differential equations with conserved quantities. BIT 56, 4 (2016), 1497-1518.
[177] Zong, X., Wu, F., and Huang, C. Convergence and stability of the semitamed Euler scheme for stochastic differential equations with non-Lipschitz continuous coefficients. Appl. Math. Comput. 228 (2014), 240-250.

