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ELECTROCOMMUNICATION FOR WEAKLY ELECTRIC FISH

ANDREA SCAPIN

Abstract. This paper addresses the problem of the electro-communication for weakly
electric fish. In particular we aim at sheding light on how the fish circumvent the
jamming issue for both electro-communication and active electro-sensing. A real-time
tracking algorithm is presented.

1. Introduction

In this paper we address the problem of studying the behaviour of two weakly electric
fish when they populate the same environment. Those kind of animals orient themselves
at night in complete darkness by using their active electro-sensing system. They gen-
erate a stable, relatively high-frequency, weak electric field and transdermically perceive
the corresponding feedback by means of many receptors on its skin. Since they have
an electric sense that allows underwater navigation, target classification and intraspecific
communication, they are privileged animals for bio-inspiring man-built autonomous sys-
tems [14, 18, 19, 21, 24, 29, 39, 40]. For electro-communication purposes, in processing
sensory information, this system has to separate feedback associated with their own signals
from interfering sensations caused by signals from other animals. Wave and pulse species
employ different mechanisms to minimize interference with EODs of conspecifics. It has
been observed that certain wave species, having wave-type electric organ discharge (EOD)
waveforms, such as Eigenmannia and Gymnarchus, reflexively shift their EOD frequency
away from interfering frequencies of nearby conspecifics, in order to avoid “jamming”
each others electrical signals. This phenomenon is known as jamming avoidance response

(JAR) [13, 22, 23]. The electro-communication for the weakly electric fish has already
been studied in the case of a simplified model consisting of a dipole-dipole interaction [39].

A lot of effort has also been devoted to the electro-sensing problem, that is, the capa-
bility of the animal to detect and recognize a dielectric target nearby [26, 31, 8, 9, 12, 16,
27, 28, 32, 35, 36, 37]. For the mathematical model of the electric fish described in [2], it
has been shown that the fish is able to locate a small target by employing a MUSIC-type
algorithm based on a multi-frequency approach. Its robustness with respect to measure-
ment noise and its sensitivity with respect to the number of frequencies, the number of
sensors, and the distance to the target have also been illustrated. The classification capa-
bilities of the electric fish have also been investigated. In particular, invariant quantities
under rotation, translation and scaling of the target, based on the generalized polariza-
tion tensors (GPTs), have been derived and used to identify a small homogeneous target
among other shapes of a pre-fixed dictionary [3, 4, 5, 6, 7]. The stability of the identifying
procedure has been discussed. The recognition algorithm has been recently extended to
sense small inhomogeneous target [33]. In [10], a capacitive sensing method has recently

2010 Mathematics Subject Classification. 35R30,35J05,31B10,35C20,78A30.
Key words and phrases. weakly electric fish, electro-sensing, tracking, communication.
This work was supported by the SNF grant 200021-172483.

1



2 ANDREA SCAPIN

been implemented. It has been shown that the size of a capacitive sphere can be estimated
from multi-frequency electrosensory data. In [11], uniqueness and stability estimates to
the considered electro-sensing inverse problem have been established.

In the present work we designed and implemented a real-time tracking algorithm for a
fish to track another conspecific that is swimming nearby. In particular, we showed that
the following fish can sense the presence of the leading fish and can estimate its positions
by using a MUSIC-type algorithm for searching its electric organ. We also showed that the
fish can locate a small dielectric target which lies in its electro-sensing range even when
another fish is swimming nearby, by filtering out its interfering signal and by applying the
MUSIC-type algorithm developed in [2].

The paper is organized as follows. In Section 2, starting from Maxwell’s equations
in time domain we adapt the mathematical model of the electric fish proposed in [2] in
order to be able to consider many fish with EOD working at possibly different frequencies.
We give a decomposition formula for the potential and, as a consequence, we decouple the
dipolar signals of the two fish when they have different EOD fundamental frequencies. The
amplitude of each signal can be retrieved from the measurements using Fourier analysis
techniques.

In Section 3, we use the decomposition formula for the total signal to tackle the problem
in the frequency domain. This allows us to employ a non-iterative MUSIC-type dipole
search algorithm for a fish to track another fish of the same species nearby.

In Section 4, we provide a method for a fish to electro-sense a small dielectric target
in the presence of many conspecifics. The aim of this section is to locate the target
which making use of the dipolar approximation of the transdermal potential modulations.
We show that the multi-frequency MUSIC-type algorithm in [5] is still applicable after
decomposing the total signal.

In Section 5, many numerical simulations are driven. The performances of the real-time
tracking algorithm are reported. We show that the algorithms work well even when the
measurements are corrupted by noise.

2. The two-fish model and the jamming avoidance response

Let Ω be a simply-connected bounded domain. We assume Ω ∈ C2,α for some 0 < α < 1.
Given an arbitrary function w defined on R2 \ ∂Ω and x ∈ ∂Ω, we define

w(x)|± := lim
t→0

w(x± tν(x)),

∂w

∂ν
(x)

∣∣∣∣
±

:= lim
t→0
∇w(x± tν(x)) · ν(x),

where ν is the outward normal to ∂Ω.
Let us denote by Γ the fundamental solution of the Laplacian in R2, that is,

Γ(x− y) =
1

2π
log ‖x− y‖, x 6= y ∈ R

2.

The single- and double-layer potentials on Ω, SΩ and DΩ, are the operators that respec-
tively map any φ ∈ L2(∂Ω) to

SΩ[φ](x) =

∫

∂Ω

Γ(x, y)φ(y) dsy,

DΩ[φ](x) =

∫

∂Ω

∂Γ

∂νy
(x, y)φ(y) dsy.
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Recall that for φ ∈ L2(∂Ω), the functions S∂Ω[φ] and D∂Ω[φ] are harmonic functions in
R2 \ ∂Ω.
The behaviour of these functions across the boundary ∂Ω is described by the following
relations [1]:

SΩ[φ]|+ = SΩ[φ]|−,

∂SΩ[φ]

∂ν

∣∣∣∣
±

=

(
±
1

2
I +K∗

Ω

)
[φ],

DΩ[φ]|± =

(
∓
1

2
I +KΩ

)
[φ],

∂DΩ[φ]

∂ν

∣∣∣∣
+

=
∂DΩ[φ]

∂ν

∣∣∣∣
−

.

The operator KΩ and its L2-adjoint K∗
Ω are given by the following formulas:

KΩ[φ](x) :=
1

2π

∫

∂Ω

(y − x) · ν(y)

|x− y|2
φ(y) dsy, x ∈ ∂Ω,(2.1)

K∗
Ω[φ](x) :=

1

2π

∫

∂Ω

(x− y) · ν(x)

|x− y|2
φ(y) dsy, x ∈ ∂Ω.(2.2)

For the sake of simplicity, we consider the case of two weakly electric fish F1 and F2. The
extension to the case of many fish is immediate.

Starting from Maxwell’s equations in time domain we derive

∇ · (σ + ε∂t)E = −∇ · js in R
2,

where σ is the conductivity of the medium, ε is the electric permittivity, E is the electric
field, js is a source of current. Let ω1 and ω2 be the fundamental frequencies associated to
the oscillations of the electric organ discharge (EOD) of the two fish F1 and F2, respectively.
We consider a source term which is of the form

−∇ · js = eiω1tf1(x) + eiω2tf2(x),

where f1 =
∑

α
(1)
j δ

x
(1)
j

and f2 =
∑

α
(2)
j δ

x
(2)
j

are the spatial dipoles located inside Ω1 and

Ω2, respectively. Throughout this paper we assume that the dipoles f1 and f2 satisfy the
local charge neutrality conditions:

α
(i)
1 + α

(i)
2 = 0 for i = 1 ;

see [2]. Considering the boundary conditions as in [2], we get the following system of
equations:

(2.3)





∆u(x, t) = f1(x)h1(t) in Ω1 × R+,

∆u(x, t) = f2(x)h2(t) in Ω2 × R+,

∇ · (σ(x) + ε(x)∂t)∇u(x, t) = 0 in (R2 \ Ω1 ∪ Ω2)× R+,

u|+ − u|− = ξ1
∂u

∂ν

∣∣∣∣
+

on ∂Ω1 × R+,

u|+ − u|− = ξ2
∂u

∂ν

∣∣∣∣
+

on ∂Ω2 × R+,

∂u

∂ν

∣∣∣∣
−

= 0 on ∂Ω1 × R+, ∂Ω2 × R+,

|u(x, t)| = O(|x|−1) as |x| → ∞, t ∈ R+,
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where σ0, ε0 are the material parameters of the target D, and ξ1 and ξ2 are the effective
skin thickness parameters of F1 and F2, respectively. Here, h1 and h2 encode the type of
signal generated by the fish.

2.1. Wave-type fish. For the wave-type fish we have h1(t) = eiω1t and h2(t) = eiω2t.
When ω1 6= ω2 the overall signal is the superposition of two periodic signals oscillating at
different frequencies.

Proposition 2.1. If ω1 6= ω2 such that ω1, ω2 6= 0, then the solution u to the equations

(2.3) can be represented as

(2.4) u(x, t) = u1(x)e
iω1t + u2(x)e

iω2t,

where u1, u2 satisfy the following transmission problems:

(2.5)





∆u1(x) = f1(x) in Ω1,

∆u1(x) = 0 in Ω2,

∇ · (σ(x) + iω1ε(x))∇u1(x) = 0 in R2 \ Ω1 ∪ Ω2,

u1|+ − u1|− = ξ1
∂u1

∂ν

∣∣∣∣
+

on ∂Ω1,

u1|+ − u1|− = ξ2
∂u1

∂ν

∣∣∣∣
+

on ∂Ω2,

∂u1

∂ν

∣∣∣∣
−

= 0 on ∂Ω1, ∂Ω2,

|u1(x)| = O(|x|−1) as |x| → ∞,

and

(2.6)





∆u2(x) = 0 in Ω1,

∆u2(x) = f2(x) in Ω2,

∇ · (σ(x) + iω2ε(x))∇u2(x) = 0 in R2 \ Ω1 ∪ Ω2,

u2|+ − u2|− = ξ1
∂u2

∂ν

∣∣∣∣
+

on ∂Ω1,

u2|+ − u2|− = ξ2
∂u2

∂ν

∣∣∣∣
+

on ∂Ω2,

∂u2

∂ν

∣∣∣∣
−

= 0 on ∂Ω1, ∂Ω2,

|u2(x)| = O(|x|−1) as |x| → ∞.

Proof. We substitute (2.4) into (2.3). Considering the equation in Ω1 × R+ we get

eiω1t∆u1 + eiω2t∆u2 = eiω1tf1.

Thus

(∆u1 − f1) + ei(ω2−ω1)t∆u2 = 0,

which yields ∆u1 − f1 = 0 in Ω1 and ∆u2 = 0 in Ω1.
In the same manner, we get the equations satisfied by u1 and u2 in Ω2.
Outside the fish bodies, we have

∇ · (σ + ε∂t)∇e
iω1tu1 +∇ · (σ + ε∂t)∇e

iω2tu2 = 0,

eiω1t∇ · (σ + iω1ε)∇u1 + eiω2t∇ · (σ + iω2ε)∇u2 = 0,
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that yields ∇ · (σ + iω1ε)∇u1 = 0 in R2 \ (Ω1 ∪ Ω2) and ∇ · (σ + iω2ε)∇u2 = 0 in
R2 \ (Ω1 ∪ Ω2).
Finally it is easy to check that the boundary conditions remain unchanged because the
time dependency does not appear explicitly.

�

Remark. The potentials u1 and u2, that respectively solve (2.5) and (2.6), have a mean-
ingful interpretation that is based on two different sub-modalities of the electroreception.
As a matter of fact, u1 can be viewed as the potential when the fish F1 is active and F2 is
passive, whereas u2 can be viewed as the potential when the fish F1 is passive and F2 is
active. See [15].
Formula (2.4) tells us that it is possible to study the total field looking separately at these
two different oscillating regimes.

The idea is to separate the two signals from the measurements of their superposition. This
can be done easily by using signal analysis techniques, see [17].
Figure 2.3 illustrates the potential before the jamming avoidance response, when the fish
emit signals at a certain common frequency, whereas Figure 2.4 depicts the two submodal-
ities contained in the total signal u(x, t) after they have switched their EOD frequencies.

2.2. Pulse-type fish. For the pulse-type fish we have that h1(t) and h2(t) are pulse
wave. We can assume that they both can be obtained from a standard pulse shape h(t)
(see Figure Figure 2.1) by means of translation and scaling, i.e.,

h1(t) = h(η1t− T1),

h2(t) = h(η2t− T2).

Figure 2.1. Standard shape of the pulse wave h(t).

For some pulse-type species, as Gymnotoid, the jamming avoidance response is obtained
by shortening the duration of the emitted pulse, see [23]. In this way, they minimize the
chance of pulse coincidence by transient accelerations (decelerations) of their EOD rate.
For η1, η2 > 0 large enough such that supp(h1) ∩ supp(h2) = ∅.

Thus, for t1, t2 > 0 such that h1(t1) 6= 0 and h2(t2) 6= 0 we can consider u1(x) := u(x, t1)
and u2(x) := u(x, t2). These time-slices have the following property:
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{
∆u1(x) = f1(x)h1(t1), x ∈ Ω1

∆u1(x) = 0, x ∈ Ω2,
,

{
∆u2(x) = 0, x ∈ Ω1

∆u2(x) = f2(x)h2(t2), x ∈ Ω2

.

Hence we can achieve a separation of signals.

(a) Before the JAR the two pulse signals may inter-

fere with each other.

(b) By shortening the duration of the pulse it is pos-

sible to identify two non-overlapping time-windows
I1 and I2 corresponding to the signal emitted by the
fish F1 and F2, respectively.

Figure 2.2

In the next sections, we will see an important consequence of Proposition 2.1. As a matter
of fact F1 can track F2 by using the measurements of u2|∂Ω1 , solution to (2.6), and can
detect a small target D by using the measurements of u1|∂Ω1 .

-5 0 5

-5

-4

-3

-2

-1

0
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2

3

4

5

Figure 2.3. Before the JAR (the EOD frequencies of the two fish are the
same). Plot of u(x) = u1(x) + u2(x), where u(x, t) = u(x)eiω0t.
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(a) Plot of u2. Ω1 (red) is passive and Ω2 (green) is

active.
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(b) Plot of u1. Ω1 (green) is active and Ω2 (red) is

passive.

Figure 2.4. After the JAR (the EOD frequencies ω1 and ω2 of the two fish
are apart from each other).

3. Electro–communication

The aim of this section is to give a mathematical procedure to model the communication
abilities of the weakly electric fish, i.e., the capability of a fish to perceive a conspecific
nearby. Assume, for instance, the point of view of the fish F1. We want F1 to estimate
some basic features of F2, such as the position of its electric organ. More importantly, by
using subsequent estimates, we want to design an algorithm for F1 to track F2.

For the sake of clarity, we consider the case without the small dielectric target. It is
worth emphasizing that the presence of the target is not troublesome since its effect on
the tracking procedure is negligible even when the fish are swimming nearby.

When F1 gets close to F2, both F1 and F2 experiment the so-called jamming avoidance
response and thus their electric organ discharge (EOD) frequencies switch. When the
EOD frequencies ω1 and ω2 are apart from each other, Proposition 2.1 can be applied.
Let u2 be the solution to the transmission problem (2.6). As previously mentioned, the
function u2 can be extracted from the total signal u(x, t) using signal analysis techniques.

We define

Hu2(x) = (SΩ1 − ξ1DΩ1)

[
∂u2

∂ν

∣∣∣∣
+

]
(x).

Let us recall the following boundary integral representation: for each x ∈ R2 \ (Ω1 ∪ Ω2),

(u2 −Hu2)(x) =

∫

∂Ω2

(
∂u2

∂ν

∣∣∣∣
+

(y) Γ(x, y)−
∂Γ

∂νy
(x, y) u2|+(y)

)
dsy .
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Making use of the Robin boundary condition on ∂Ω2 and integration by parts yields

(u2 −Hu2)(x) =

∫

∂Ω2

(
∂u2

∂ν

∣∣∣∣
+

(y) Γ(x, y)−
∂Γ

∂νy
(x, y) u2|+(y)

)
dsy

=

∫

∂Ω2

(
∂u2

∂ν

∣∣∣∣
+

(y) Γ(x, y)−
∂Γ

∂νy
(x, y)

(
ξ2

∂u2

∂ν

∣∣∣∣
+

(y) + u2|−(y)

))
dsy

=

∫

∂Ω2

∂u2

∂ν

∣∣∣∣
+

(y)

(
Γ(x, y)− ξ2

∂Γ

∂νy
(x, y)

)
dsy −

∫

∂Ω2

∂Γ

∂νy
(x, y)u2|−(y) dsy

=

∫

∂Ω2

∂u2

∂ν

∣∣∣∣
+

(
Γ− ξ2

∂Γ

∂ν

)
ds± α

[
Γ(x− x

(2)
1 )− Γ(x− x

(2)
2 )
]
.

Therefore, we obtain

(3.1) (u2 −Hu2)(x) =

∫

∂Ω2

∂u2

∂ν

∣∣∣∣
+

(
Γ− ξ2

∂Γ

∂ν

)
ds± α

[
Γ(x− x

(2)
1 )− Γ(x− x

(2)
2 )
]
.

Observe that, for x away from the x
(i)
1 , we can approximate Γ(x − x

(2)
2 ) − Γ(x − x

(2)
1 ) as

follows:

[
Γ(x− x

(2)
2 )− Γ(x− x

(2)
1 )
]
≈ ±∇Γ(x− x

(2)
1 ) · (x

(2)
2 − x

(2)
1 ) =

(x− x
(2)
1 ) · (x

(2)
2 − x

(2)
1 )

‖x− x
(2)
1 ‖

2
.

Consider an array of receptors (xl)
M
l=1 on ∂Ω1. We aim at solving the inverse source

problem of determining the dipole, of F2 from the knowledge of the measurements on the
skin of F1:

(3.2) {(u2 −Hu2)(xl) : for l = 1, ..., N} .

In order to estimate the dipole, we assume that the following single-dipole approximation
holds:

(3.3) (u2 −Hu2)(xl) ≈
(xl − ẑ) · p̂

‖xl − ẑ‖2
,

where p̂ and ẑ denote respectively the moment and the center of the equivalent dipolar
source.

Remark. The single-dipole approximation (3.3) is an equivalent representation of a spread
source. However, in the presence of several well-separated sources, such approximation is
not trustworthy anymore [20]. In the case of P ≥ 3 conspecifics we would extract u1, ..., uP

components from the total signal, and the single-dipole approximation remains applicable
to each one of the components u2, ..., uP .

4. Electro–sensing

Now, suppose to have F1,F2 as before and a target close to F1.



ELECTROCOMMUNICATION FOR WEAKLY ELECTRIC FISH 9

Let u1 be the solution to the transmission problem (2.5), that is,




∆u1(x) = f1(x) in Ω1,

∆u1(x) = 0 in Ω2,

∇ · (σ(x) + iω1ε(x))∇u1(x) = 0 in R2 \ Ω1 ∪ Ω2,

u1|+ − u1|− = ξ1
∂u1

∂ν

∣∣∣∣
+

on ∂Ω1,

u1|+ − u1|− = ξ2
∂u1

∂ν

∣∣∣∣
+

on ∂Ω2,

∂u1

∂ν

∣∣∣∣
−

= 0 on ∂Ω1, ∂Ω2,

|u1(x)| = O(|x|−1) as |x| → ∞,

and let U1 be the background solution, that solves the problem




∆U1(x) = f1(x) in Ω1,

∆U1(x) = 0 in Ω2,

∆U1(x) = 0 in R2 \ Ω1 ∪ Ω2,

U1|+ − U1|− = ξ1
∂U1

∂ν

∣∣∣∣
+

on ∂Ω1,

U1|+ − U1|− = ξ2
∂U1

∂ν

∣∣∣∣
+

on ∂Ω2,

∂U1

∂ν

∣∣∣∣
−

= 0 on ∂Ω1, ∂Ω2,

|U1(x)| = O(|x|−1) as |x| → ∞.

Consider Γ
(1,2)
R the Green’s function associated with Robin boundary conditions, that is

defined for x ∈ R2 \ (Ω1 ∪ Ω2) by

(4.1)





−∆yΓ
(1,2)
R (x, y) = δx(y), y ∈ R2 \ Ω1 ∪ Ω2,

Γ
(1,2)
R (x, y)|+ − ξ1

∂Γ
(1,2)
R

∂νx
(x, y)

∣∣∣∣
+

= 0, y ∈ ∂Ω1,

Γ
(1,2)
R (x, y)|+ − ξ2

∂Γ
(1,2)
R

∂νx
(x, y)

∣∣∣∣
+

= 0, y ∈ ∂Ω2,
∣∣∣Γ(1,2)

R (x, y) + 1
2π log |y|

∣∣∣ = O(|y|−1), |y| → ∞.

Recall the following boundary integral equation: for each x ∈ R2 \ (Ω1 ∪ Ω2 ∪D),

(u1 − U1)(x) =

∫

∂D

(
∂u

∂ν

∣∣∣∣
+

(y) Γ
(1,2)
R (x, y)−

∂Γ
(1,2)
R

∂νy
(x, y) u|+(y)

)
dsy,

where U1 is the background solution, i.e., the solution without the inhomogeneity D, when
the only dipolar source lies inside the body of F1, see Figure 2.4b.

(u1 − U1)(x) =
(k − 1)

k

∫

∂D

(
∂u

∂ν

∣∣∣∣
+

(y) Γ
(1,2)
R (x, y)

)
dsy.

Let B be a bounded open set with characteristic size 1. Assume that D = z + δB, i.e.,
D is a target located at z which has characteristic size δ. With the same argument as in
[2], we obtain the following small volume approximation.
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Theorem 4.1 (Dipolar approximation). Suppose dist(∂Ω1, z) ≫ 1 and δ ≪ 1. Then for

any x ∈ ∂Ω1,

(4.2)

(
∂u1

∂ν
−

∂U1

∂ν

)
(x) = −δ2∇U1(z)

TM(λ,B)∇y

(
∂Γ

(1,2)
R

∂ν

∣∣∣∣
+

)
(x, z) +O(δ3),

where T denotes the transpose, M(λ,B) = (mij)i,j∈{1,2} is the first-order polarization

tensor associated with B and contrast parameter λ, given by

(4.3) mij =

∫

∂B

yi (λI −K
∗
B)

−1

(
∂xj

∂ν

∣∣∣∣
∂B

)
(y) dsy.

Note that, since the background potential is real, for x ∈ ∂Ω1 we have

(4.4) Im

(
∂u1

∂ν

)
(x) ≈ −δ2∇U1(z)

T ImM(λ,B)∇y

(
∂Γ

(1,2)
R

∂ν

∣∣∣∣
+

)
(x, z).

This last step is crucial to locate the target because U1 is only approximately known
from the measurements and even a very small displacement in the location of F2 can cause
an error on the background potential U1, which is of the same order as the contribution
of the target.
On the other hand, when z is not too close to ∂Ω2, the contribution of F2 contained into

∇U1(z) is negligible. Therefore, we approximate ∇U1(z) ≈ ∇Û1(z), where Û1 is solution
to the problem

(4.5)





∆Û1(x) = f1(x) in Ω1,

∆Û1(x) = 0 in R2 \ Ω1,

Û1|+ − Û1|− = ξ1
∂Û1

∂ν

∣∣∣∣
+

on ∂Ω1,

∂Û1

∂ν

∣∣∣∣
−

= 0 on ∂Ω1,

|Û1(x)| = O(|x|−1) as |x| → ∞.

After post-processing (4.4) using the following operator

PΩ1
=

1

2
I −K∗

Ω1
− ξ

∂DΩ1

∂ν
,

see [2], we get

(4.6) PΩ1

[
Im

(
∂u1

∂ν

)]
(x) ≈ δ2∇Û1(z)

T ImM(λ,B)∇y

(
∂Γ

∂νx

∣∣∣∣
+

)
(x, z), x ∈ ∂Ω1.

Therefore, as long as dist(z, ∂Ω2) ≫ 0, the leading order term of the post-processed
measured data is not significantly affected by the presence of F2.

A MUSIC-type algorithm for searching the position z and a least square method for
recovering the imaginary part of the polarization tensor M(λ,B) can be applied, see [4].

5. Numerical experiments

With applications in robotics in mind, and for the sake of simplicity, we can assume
that the two fish populating our testing environment share the same effective thickness ξ
and the same shape, which is an ellipse with semiaxes a = 2 and b = 0.3. Therefore no
tail-bending has been taken into account.
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For the numerical computations of the direct solutions to the transmission problems in-
volved in the following simulations, we solved the boundary integral system of equations by
relying on boundary element techniques. We adapted the codes in [38] to our framework,
with many fish populating the same environment.

5.1. Electro-communication. We perform numerical simulations to show how F1 can
locate the position and the orientation of F2 by using a modified version of MUSIC-type
algorithm for searching the dipolar source. Firstly, let us observe that accuracy is not
improved by using a multi-frequency approach when noisy measurements are considered.
Instead, F1 can use a MUSIC-type algorithm based on movement in order to improve the
accuracy in the detection algorithm. We use the approximation (3.3).
We consider Ns positions. For each s ∈ {1, ..., Ns} let us denote by Fs

2 the fish at the

position s. On its skin there are Nr receptors {xs
n}

Nr

n=1. For each s = 1, ..., Ns, we define
the M × 2 lead field matrix As as

(5.1) As(z) =




xs
1,1 − z1

‖xs
1 − z‖2

xs
1,2 − z1

‖xs
1 − z‖2

...
...

xs
M,1 − z1

‖xs
M − z‖2

xs
M,2 − z2

‖xs
M − z‖2



.

Let F be the Multi-Static Response (MSR) matrix defined as follows

F =



(u2 −Hu2)(x1

1) . . . (u2 −Hu2)(xNs

1 )
...

. . .
...

(u2 −Hu2)(x1
Nr

) . . . (u2 −Hu2)(xNs

Nr
)


 .

Moreover, we assume that the acquired measurements are corrupted by noise, i.e.,

Fnoisy = F+X,

where X ∼ N (0, σ2
noise) is a Gaussian random variable with mean 0 and variance σ2

noise.
In our simulations we set the variance to:

σnoise = (Fmax − Fmin)σ0,

where σ0 is a positive constant called noise level, and Fmax and Fmin are the maximal
and the minimal coefficient in the MSR matrix F.

Let FR
noisy be the real part of Fnoisy. Let λ1 ≥ λ2 ≥ ... ≥ λNr

be the eigenvalues

of FR
noisy · (F

R
noisy)

T and let Φ1, ...,ΦNr
be the correspondent eigenvectors. The first

eigenvalue is the one associated to the signal source and the span of the eigenvector Φ1 is
called the signal subspace. The other eigenvectors span the noise subspace.
As it is well known, the MUSIC algorithm estimates the location of the dipole by checking
the orthogonality between As(z) (5.1) and the noise subspace projector PN [30]. This can
be done for each position s.
For this purpose, we shall use a modified version of the MUSIC localizer in [34], by simply
taking the maximum over the positions:

(5.2) I2(z) = max
s=1,...,Ns

(
1

λmin(As(z)TPNAs(z),As(z)As(z)T )

)
,

where λmin(·, ·) indicates the generalized minimum eigenvalue of a matrix pair.
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We expect that the MUSIC localizer has a large peak at the location of the equivalent
dipole we are searching for. Once an estimate ẑ of the true location has been obtained,
the dipole moment can be estimated by means of the following formula:

(5.3) p̂est = (A(ẑ)TA(ẑ))−1A(ẑ)TΦ1.

i.e., the least-square solution to the linear system

(5.4) Φ1 = A(ẑ)p̂.

Figure 5.1. The setting. F1 is acquiring measurements at Ns = 150 different
closely spaced positions.
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Figure 5.2. Estimate of the position and the orientation of F2, with noise level
σ0 = 0.1. The dashed red curve represents the estimated body of F2, whereas
the green one represents the true body of F2. The white circle represents a
small dielectric object placed between F1 and F2.
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Algorithm 1: MS MUSIC: Detect the presence of a conspecific from skin mea-
surements
Input : The feedback, that is the total electric potential signal u(x, t) recorded

by the receptors on ∂Ω1.

1 Decompose the feedback u into u1 and u2 using signal separation techniques;

2 MUSIC dipoleSearch(u2|∂Ω1
,Ω1) :

3 Build the (real part of the) MSR matrix Fnoisy ∈M(Nr ×Ns,R) from

measurements collected during a short period;

4 Compute the eigen-decomposition of FnoisyF
T
noisy = ΦΛΦT and the noise

subspace projector PN ;

5 Evaluate the MUSIC localizer I2 on the nodes of a fine uniform grid G in the

vicinity of Ω1 ;

6 ẑ ← argmaxG I2(z) ;

7 Determine p̂est as the least-square solution to the linear system (5.4);

Output: an approximated position of the position of the electric organ of the
conspecific F2.

5.2. Tracking. Now we want to show that the dipole approximation that we assumed in
the previous subsection is good enough to be used successfully for tracking purposes.
We assume the following setting for the numerical simulations. The fish F1 is swimming
along a fixed trajectory. Let us assume that the motion of its electric organ is described
by a continuous path F : [t1, tN ] −→ R2. Let t1 < t2 < ... < tN be a temporal grid on

[t1, tN ] and let tj = s
j
1 < ... < s

j
M = tj+1 be a grid on [tj , tj+1] for j = 1, ..., N − 1.

At the beginning, when t = t1, F2 starts following F1. The tracking is performed by
estimating the positions of F1 at the nodes of the grid t1, ..., tN . Let us denote by Xn, Yn

and pn, qn the positions and the orientations of F2 and F1 at t = tn, respectively. In

order to obtain an estimate Ŷn of the position Yn we can apply Algorithm 2, that employs
measurements at sn−1

1 , ..., sn−1
M to reduce the effect of the noise. More precisely, the discrete

dynamic system that describes the evolution of the positions and orientations of the two
fish is as follows:

(5.5)





Xn = Xn−1 + hnpn−1,

pn = R(θn)pn−1,

Yn = F (tn),

qn = F ′(tn) ≈
F (tn)−F (tn−1)

h
,

where X0 and p0 are the initial data. Let us define Tn−1 := Ŷn−1 − Xn−1, the pointing
direction. The update of the orientation of F2 is given by an orthogonal matrix associated
with a rotation by an angle θn, R(θn) ∈ O(2,R), and the turning angle is defined as

(5.6) θn := θn−1 ±min
(
θmax, ̂Tn−1pn−1

)
.

The numbers h1, ..., hM incorporate the velocity of the tracking fish and should be chosen
adaptively, in order to allow a variety of maneuvering capabilities such as acceleration
and deceleration, as well as swimming backwards when hn < 0. In order to prevent both
collision and separation, we shall assume the velocity to be a function of the distance
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between Xn and Ŷn. θmax is the maximum turning angle. It is worth mentioning that the
choice of θmax has a strong impact on the efficiency of the tracking procedure.

Algorithm 2: Real-Time Tracking: Fish-follows-Fish algorithm.

Input : Temporal grid over [t1, tN ]. The maximum turning angle θmax.

1 RT Tracking(θmax, [t1, tN ], N,M) :

2 for n← 1, . . . , N do

3 Xn ← Xn−1 + hnpn−1;

4 pn ← R(θn)pn−1;

5 Ŷn ← MUSIC dipoleSearch(n)

end

Output: Trajectory of the following fish.
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Figure 5.3. Plot of the imaging functional I2 that the fish F1 uses to track F2.
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Figure 5.4. Plot of the linear trajectory tracking. Nexp = 10 trials have been
considered.

The algorithm MUSIC dipoleSearch employs a multi-position dipole search that uses M

positions in between. In our numerical simulations, in order to have a real-time tracking
procedure, we have set M = 5. We have set θmax = 10−1.

5.3. Electro-sensing. While the fish can sense the presence of other conspecifics at some
distance, the range for the active electrosensing is much more short [25].

The effectivity of the estimated position of a small dielectric target inevitably depends
on the relative distances among the fish, its conspecifics and the target. However, this
seems perfectly reasonable. We have to require
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Figure 5.5. Plot of the trajectory tracking when the leading fish is swimming
in circle, clockwisely. Nexp = 10 trials/realizations have been considered.

(1) The two fish do not get too close to each other;
(2) The small dielectric target D is in the electro-sensing range of F1.

If the above qualitative conditions are not met, there is no garantee that we can get
accurate results.

We perform many experiments to show that the MUSIC-type algorithm proposed in [2]
works under the conditions outlined above. Based on approximation (4.6) we consider the
illumination vector

g(z) =

(
∇Û1(z) · ∇z

(
∂Γ

∂νx

)
(x1, z), . . . ,∇Û1(z) · ∇z

(
∂Γ

∂νx

)
(xNr

, z)

)T

,
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and define the MUSIC localizer as follows:

(5.7) I1(z) =
1

|(I − P )g̃(z)|
,

where g̃ = g
|g| and Û1 is the solution to (4.5).

Algorithm 3: SF MUSIC: Detection of a small dielectric target in the presence
of another conspecific

Input : The feedback, that is the total electric potential signal u(x, t) recorded
by the receptors on ∂Ω1.

1 Decompose the feedback u into u1 and u2 using signal separation techniques ;

2 MUSIC target(u1|∂Ω1
,Ω1) :

3 Post-process the data Imu1|∂Ω1 ;

4 Build the SFR Snoise for the post-processed data ;

5 Build and evaluate the MUSIC localizer I1 on the nodes of a fine uniform grid

G in the vicinity of Ω1 ;

6 ẑ ← argmaxG I1(z) ;

Output: An approximated position of the target.

-5 0 5

-5

-4

-3

-2

-1

0

1

2

3

4

5

(a) Plot of Reu1.

-5 0 5

-5

-4

-3

-2

-1

0

1

2

3

4

5

(b) Plot of Imu1.

Figure 5.6. Plot of the isopotential lines when F2 (red) is passive (electrically
silent) and F1 (green) is active.
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(a) (b)

Figure 5.7. Plot of the MUSIC imaging functional used in Algorithm 3 by
using Nr = 32 receptors and Nf = 100 frequencies, with noise level σ0 = 0.1.
The square and the diamond indicate the approximation of the center and the
true center of the target D, respectively. F1 (green) can image the target despite
the presence of F2 (red), which is estimated by applying Algorithm 2.

6. Concluding remarks

In this paper, we have formulated the time-domain model for a shoal of weakly electric
fish. We have shown how the jamming avoidance response can be interpreted within this
mathematical framework and how it can be exploited to design communication systems,
following strategies and active electrosensing algorithms. In a forthcoming paper, we plan
to extend our present approach to develop navigation patterns inspired by the collective
behavior of the weakly electric fish.
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