
Subwavelength resonant dielectric

nanoparticles with high refractive indices

H. Ammari and A. Dabrowski and B. Fitzpatrick and P. Millien and

M. Sini

Research Report No. 2019-11
February 2019

Seminar für Angewandte Mathematik
Eidgenössische Technische Hochschule

CH-8092 Zürich
Switzerland

____________________________________________________________________________________________________



Subwavelength resonant dielectric nanoparticles with high

refractive indices

Habib Ammari∗ Alexander Dabrowski∗ Brian Fitzpatrick†

Pierre Millien‡ Mourad Sini§

Abstract

This paper aims at understanding the nature of the subwavelength resonant frequencies
of dielectric particles with high refractive indices. It is proved that for an arbitrary
shaped particle, these subwavelength resonant frequencies can be expressed in terms of
the eigenvalues of the Newtonian potential associated with its shape. The enhancement
of the scattered field at the resonant frequencies is shown. The hybridization of the
subwavelength resonant frequencies of a dimer consisting of high refractive index dielectric
nanoparticles is also characterized.
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1 Introduction

Nanoscale optics is usually associated with plasmonic resonant structures made of metals such
as gold or silver. Plasmonic resonances of nanoparticles can be treated as an eigenvalue prob-
lem for the Neumann-Poincaré operator, see [1, 6, 7, 9]. However, plasmonic structures suffer
from high losses inherent in metals and dissipation due to heating. Recent developments in
nanoscale optical physics have led to a new branch of nanophotonics focused on the manip-
ulation of optically induced subwavelength resonances in dielectric nanoparticles with high
refractive indices [14, 16, 17]. Resonant high-index dielectric nanostructures form new build-
ing blocks which can be used to realize unique functionalities and novel photonic devices [14].
Their study has been established as a new research direction in nanophotonics. Nevertheless,
despite strong experimental efforts, mathematical modeling of resonant high-index nanopar-
ticles remains limited. Apart from the case where the particles are disks or spheres, their
subwavelength resonant frequencies have not been characterized yet.

In this paper, we consider a dielectric high-index nanoparticle of arbitrary shape and char-
acterize its subwavelength resonances in terms of the eigenvalues of the Newtonian potential
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associated with its shape. Our formula is closely related to the one established in [15]. Then, we
provide an asymptotic formula for the field scattered by a dielectric nanoparticle and estimate
the scattering enhancement near its resonant frequencies. We also consider the hybridization
phenomenon of a dimer consisting of high refractive index dielectric nanoparticles. We derive
asymptotic formulas for the hybridized resonant frequencies, which correspond to monopole
and dipole modes.

For simplicity of presentation, we consider the Helmholtz equation as a model for the wave
propagation. But one should emphasize that the approach developed here can be extended
to the full Maxwell’s equations. On the other hand, based on the asymptotic formula for the
scattered field derived in this paper, one can characterize the temporal response of resonant
dielectric nanoparticles and obtain a time-domain resonant-mode-expansion for the scattered
field, which generalizes the time-domain asymptotic formula proved in [4] to the case of a
resonant subwavelength particle. This can be easily done by reproducing the calculations
presented in [11, Appendix B].

Our results in this paper provide a solid mathematical framework for the analysis of resonant
dielectric nanoparticles. They make possible the direct calculation of resonant frequencies and
the optimal design of dielectric nanoparticles that resonate at specified frequencies. They can
also be applied in the design of dielectric metamaterials and are expected to adavance the appli-
cations described in [12,16,17], in particular those concerned with metasurfaces, double-negative
all dielectric materials, super-focusing, and wavefront control at the deep subwavelength scale.

2 Resonant frequencies of dielectric nanoparticles with

high refractive indices

Let D ⋐ R
d, for d = 2, 3, be a small particle of the form D = z+δB, where δ is its characteristic

size, z its location, and B is a smooth bounded domain containing the origin. Let ω denote
the frequency, let ε ≡ τεc + εm inside D and ε ≡ εm outside D. Here, εc, εm, and τ are positive
constants. Let E in be an incident plane wave with frequency ω.

Consider the Helmholtz equation
{

(∆ + ω2ε)E = 0 in R
d,

E − E in satisfies the Sommerfeld radiation condition.

From
(∆ + ω2εm)(E − E in) = −ω2τεcE✶D in R

d,

where ✶D is the characteristic function of D, it follows that the following Lippmann-Schwinger
representation formula holds:

(E − E in)(x) = −ω2τεc

ˆ

D

E(y)Γm(x− y;ω)dy for x ∈ R
d, (1)

where Γm is the outgoing (i.e., subject to the Sommerfeld radiation condition) fundamental
solution of ∆ + εmω

2 in free space.
Let km = ω

√
εm. Let the volume integral operator Kkm

D be defined by

Kkm
D : E ∈ L2(D) 7→ −

ˆ

D

E(y)Γm(x− y;ω)dy ∈ L2(D).

It is well known that, due to the weak singularity of the fundamental solution, Kkm
D is compact.

When the norm of τω2εcK
km
D is smaller than 1, I − τω2εcK

km
D is invertible, so (3) can be

rewritten as
E(x) = (I − τω2εcK

km
D )−1[E in](x) for all x ∈ D, (2)
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where I denotes the identity operator.
Assume that the characteristic size δ of the particle D is much smaller than the wavelength

2π/km), and let ω → 0. The subwavelength resonance problem is then to find an ω ∈ C close to

0 such that (I− τω2εcK
km
D )−1 is singular, or equivalently, such that there exists L2(D) ∋ E 6≡ 0

with

E(x) + ω2τεc

ˆ

D

E(y)Γm(x− y;ω)dy = 0, for x ∈ D; (3)

see [10]. Such an ω would be a subwavelength resonance for the high refractive index dielectric
particle D.

Through a Taylor series expansion of the fundamental solution we obtain the following
result.

Lemma 2.1. Let d = 3. Let K
(0)
D be the Newtonian potential on D, i.e., the operator defined

by

K
(0)
D [E](x) = −

ˆ

D

E(y)Γ(x− y) dy for x ∈ D,

with Γ(x) being the fundamental solution of the Laplacian in R
3. The operator Kkm

D can be
rewritten as

Kkm
D =

∞
∑

i=0

ωiK
(i)
D , (4)

where the series converges in operator norm if ω is small enough.

Let Ai = τω2εcK
(i)
D . By expanding with a Neumann series, we have

(

I − A0 −
∞
∑

i=1

ωiAi

)−1

=
(

I − (I − A0)
−1

∞
∑

i=1

ωiAi

)−1

(I − A0)
−1

=
∞
∑

k=0

(

(I − A0)
−1

∞
∑

i=1

ωiAi

)k

(I − A0)
−1

= (I − A0)
−1 + (I − A0)

−1ωA1(I − A0)
−1 +O(ω3). (5)

Recall that K
(0)
D : L2(D) → L2(D) is a compact, self-adjoint operator. Let, for the sake of

clarity of the presentation, λ0 be a simple eigenvalue of K
(0)
D associated with the normalized

eigenfunction φ0 in L
2(D). We remark that the eigenvalues ofK

(0)
D are positive. For the analysis

of the spectrum of the Newtonian potential, we refer the reader, for instance, to [13].
Let ω0 be a frequency at which I − A0 becomes singular. In particular, let

ω0 = 1/
√

τεcλ0. (6)

Note that ω0 is small only for τ large enough. This shows that subwavelength resonances occur
only for particles with high refractive indices.

For ω near ω0, we have, by a pole-pencil operator decomposition, that

(I − A0)
−1[ψ] =

〈ψ, φ0〉φ0

1− τω2εcλ0
+R(ω)[ψ],

where ω 7→ R(ω) is analytic in a neighborhood of ω0 and 〈 ·, · 〉 denotes the scalar product on
L2(D). Hence, considering only the first two terms in the expansion (5), we obtain from (2)
that an approximation of the resonance must satisfy (see, for instance, [2, 5])

φ0

1− τω2εcλ0
+ τω3εc

〈K(1)
D [φ0], φ0〉

(1− τω2εcλ0)
2φ0 = 0.

Therefore, we have the following approximation for the subwavelength resonances.

3



Proposition 2.2. Let d = 3 and let τ be large enough. Let ω0 be defined by (6), where

λ0 is an eigenvalue of the Newtonian potential K
(0)
D . Then, the O(ω4)-approximation of the

subwavelength resonant frequencies ωs of the dielectric particle D satisfies

1− τω2
s εcλ0 = −τωs

sεc〈K(1)
D [φ0], φ0〉.

Note that, in three dimensions,

K
(1)
D [φ] = −i

√
εm
4π

ˆ

D

φ dy for all φ ∈ L2(D).

Therefore, ωs satisfies

1− τω2
s εcλ0 =

iτ

4π
ωs
s

√
εmεc

(

ˆ

D

φ0 dy
)2

.

Since ωs is close to ω0, by approximating ω3
s ≃ ω3

0, and since by definition τεcλ0 = 1/ω2
0, we

obtain

1− ω2
s

ω2
0

=
iτ

4π
ω3
0

√
εmεc

(

ˆ

D

φ0 dy
)2

.

Corollary 2.3. Let d = 3. Then, the O(ω4)-approximation of the subwavelength resonant
frequencies of the dielectric particle D can be computed as

ωs = ω0 −
i

8π

ω2
0

λ0

√
εm

(

ˆ

D

φ0 dy
)2

.

By using the Lippmann-Schwinger representation formula (3), we can also rewrite

E(x)− E in(x) ≃ −ω2τεcΓm(x− z;ω)
〈E in, φ0〉(

´

D
φ0)

1− τω2εcλ0
+ τω3εc

〈K(1)
D [φ0], φ0〉〈E in, φ0〉(

´

D
φ0)

(1− τω2εcλ0)
2 .

By plugging the expression of ωs obtained in Proposition 2.2 into the above approximation of
the scattered field, we arrive at the following result.

Proposition 2.4. For ω (real) near the resonant frequency ωs and E
in such that 〈E in, φ0〉L2

(D)
6=

0 , the following monopole approximation of the dielectric nanoparticle D holds:

E(x)− E in(x) ≃ −
λ0

(ω2
s

ω2 − 1
)

− i

√
εm
4π

(
´

D
φ0)

2
(

ω − ω3
s

ω2

)

(

λ0

(ω2
s

ω2 − 1
)

− i

√
εm
4π

(
´

D
φ0)

2 ω
3
s

ω2

)2
〈E in, φ0〉L2

(D)
Γm(x− z;ω), (7)

for |x− z| ≫ 2π/(ω
√
εm).

Now, we turn to the two-dimensional case. In this case the problem is complicated by the
logarithmic singularity of the operator Kkm

D as ω → 0 which gives rise to an averaging operator
at leading order when asymptotically expanded. This means we cannot expect to frame the
resonance frequency in terms of a single eigenvalue of the Newtonian potential. Instead, in two
dimensions the resonance frequency takes account of an infinite number of eigenvalues of the
Newtonian potential.

From the asymptotic expansion of the Hankel function H
(1)
0 of the first kind of order zero:

H
(1)
0 (s) =

2i

π

∞
∑

m=0

(−1)m
s2m

22m(m!)2

(

log(γ̂s)−
m
∑

j=1

1

j

)

,
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where 2γ̂ = exp(γ − iπ/2) with γ being the Euler’s constant (see, for instance, [8]), it follows
that

Kkm
D [E] = − 1

2π
(log(ω

√
εmγ̂))

ˆ

D

E(y) dy +K
(0)
D + (ω2 logω) as ω → 0, (8)

where K
(0)
D is the Newtonian potential in dimension two, that is, the operator defined on L2(D)

by

K
(0)
D [E](x) =

ˆ

D

E(y)Γ(x− y) dy for x ∈ D,

with Γ being the fundamental solution of the Laplacian in R
2.

Expanding Kkm
D as in (5) and following the same calculations, we obtain the following char-

acterization of subwavelength resonant frequencies in the two-dimensional case; see Appendix
A.

Proposition 2.5. Let d = 2 and τ large enough. Then, the o(ω2)-approximation of the sub-
wavelength resonant frequencies ωs of the dielectric particle D satisfies

1− ω2
s τεc

(

− |D|
2π

log(ωsγ̂
√
εm) + 〈K(0)

D [✶̂D], ✶̂D〉
)

= 0,

where |D| is the volume of D and ✶̂D = ✶D/
√

|D|.

3 Hybridization of subwavelength resonant frequencies

for a dimer of dielectric nanoparticles

Consider a dimer of two identical particles D1 and D2 with the same dielectric parameter as
in the above section. Then the field E − E in scattered by the two particles has the following
representation formula:

(E−E in)(x) = −ω2τεc

(

ˆ

D1

E(y)Γm(x− y;ω)dy+

ˆ

D2

E(y)Γm(x− y;ω)dy
)

for x ∈ R
d. (9)

Define the operators Kkm
Di

and Rkm
Di,Dj

for i, j = 1, 2, by

Kkm
Di

: E|Di
∈ L2(Di) 7→ −

ˆ

Di

E(y)Γm(x− y;ω)dy
∣

∣

Di

∈ L2(Di),

and

Rkm
Di,Dj

: E|Di
∈ L2(Di) 7→ −

ˆ

Di

E(y)Γm(x− y;ω)dy
∣

∣

Dj

∈ L2(Dj).

Then, from (9) we obtain the following system of operator equations:
(

1− τω2εcK
km
D1

−τω2εcR
km
D2,D1

−τω2εcR
km
D1,D2

1− τω2εcK
km
D2

)

(

E|D1

E|D2

)

=

(

E in|D1

E in|D2
.

)

(10)

The scattering resonance problem is to find ω such that the operator in (10) is singular, or
equivalently such that there exists L2(D1)× L2(D2) ∋ (E1, E2) 6≡ (0, 0) such that

(

1− τω2εcK
km
D1

−τω2εcR
km
D2,D1

−τω2εcR
km
D1,D2

1− τω2εcK
km
D2

)

(

E|D1

E|D2

)

=

(

0
0

)

. (11)

Note that here we have a coupled system of subwavelength resonators. As in [2, 3], the
following results hold.
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Proposition 3.1. Let d = 3. The subwavelength resonant frequency ωs is hybridized into two
subwavelength resonant frequencies ω±

s approximately given by

ω±

s = ω0 ±
1

2
τω3

0εc

√

(Rωs

D1,D2

[φ
(1)
0 ], φ

(2)
0 )(Rωs

D2,D1

[φ
(2)
0 ], φ

(1)
0 ), (12)

where φ
(i)
0 , for i = 1, 2, is the eigenfunction associated to the eigenvalue λ0 of the Newtonian

potential of Di. Moreover, in the far-field, the dimer of dielectric particles behaves as the sum
of a monopole and a dipole.

Now, let d = 2 and consider for simplicity a dimer of two identical disks D1 and D2 with
the same dielectric parameters as in the above section.

Define the operators Kkm
Di

and Rkm
Di,Dj

for i, j = 1, 2, by

Kkm
Di

:E|Di
∈ L2(Di) 7→ −

ˆ

Di

E(y)Γkm
(x− y)dy

∣

∣

Di

∈ L2(Di),

Rkm
Di,Dj

:E|Di
∈ L2(Di) 7→ −

ˆ

Di

E(y)Γkm
(x− y)dy

∣

∣

Dj

∈ L2(Dj).

Define the operators Mkm
Di

and Nkm
Di,Dj

for i, j = 1, 2, by

Mkm
Di

:= K̂km
Di

+K
(0)
Di
,

Nkm
Di,Dj

:= K̂km
Di,Dj

+R
(0)
Di,Dj

,

where

K
(0)
Di

:E|Di
∈ L2(Di) 7→

ˆ

Di

E(y)Γ(x− y)dy|Di
∈ L2(Di),

K̂km
Di

:E|Di
∈ L2(Di) 7→ log(γ̂km)K̂Di

[E]|Di
∈ L2(Di),

K̂Di
:E|Di

∈ L2(Di) 7→ − 1

2π

ˆ

Di

E(y)dy|Di
∈ L2(Di),

R
(0)
Di,Dj

:E|Di
∈ L2(Di) 7→

ˆ

Di

E(y)Γ(x− y)
∣

∣

Dj

∈ L2(Dj),

K̂km
Di,Dj

:E|Di
∈ L2(Di) 7→ log(γ̂km)K̂Di

[E]|Dj
∈ L2(Dj),

K̂Di,Dj
:E|Di

∈ L2(Di) 7→ − 1

2π

ˆ

Di

E(y)dy|Dj
∈ L2(Dj).

We refer to Appendix C for the proof of the following proposition.

Proposition 3.2. Let d = 2 and τ large enough. Then the monopole and dipole hybridized
resonances of the dimer of two identical disks D1 and D2 of radius δ are approximately given
by

1− ω2τεc

(

− δ2

2
log(ωγ̂

√
εm)(1± 1) + 〈K(0)

D1

[✶̂D1
]✶̂D1

〉 ± 〈R(0)
D2,D1

[✶̂D2
], ✶̂D1

〉
)

= 0.

The following corollary gives more explicit formulae for the hybridized resonances in the
case when D1 and D2 are unit disks.
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Corollary 3.3. Let d = 2 and τ large enough. Then the monopole and dipole hybridized
resonances of a dimer of two identical unit disks D1 and D2 are given by

ωm(τ) =−
√
2i

√

τεcW (Φ(τ))
,

ωd(τ) =

√
2

√

τεc

(

1
4
− 2

π
〈R(0)

D2,D1

[✶D2
],✶D1

〉
)

,

where

Φ(τ) = − 2

τεc
exp

(

2 log(
√
εmγ̂)−

1

4
− 2

π
〈R(0)

D2,D1

[✶D2
],✶D1

〉
)

,

and W is the lower branch of the Lambert W function defined in the interval [−1/e, 0).

Remark 3.4. Note that as τ → ∞ the monopole resonance ωm = O(1/
√

τ log(τ)) and hence it
decays at the same rate as the single particle resonance ωs, however the dipole resonance ωd

decays slightly slower, i.e., as O(1/
√
τ). �

4 Numerical illustrations

Let εm = εc = 1. Let D,D1, and D2 be unit disks with D centered at the origin, D1 centered
at (−2, 0), and D2 centered at (2, 0) with D being the geometry for the single particle problem
(3) and D1 ∪D2 being the geometry for the dimer problem (11).

The asymptotic resonances ωs, ωm, and ωd are given by the formulas in Proposition B.1

and Corollary 3.3, with the 〈R(0)
D2,D1

[✶D2
],✶D1

〉 term in the hybridized resonances computed
numerically using Python’s nquad routine after first putting it in polar coordinates with respect
to the center of D1. We numerically compute reference solutions to the single particle problem
and the dimer problem using boundary integral equation formulations expanded on multipole
bases to obtain reference resonances ωs,ref (single particle), ωm,ref (monopole), and ωd,ref (dipole).
In Figure 1 we plot the asymptotic resonances along with the corresponding reference resonances
and predicted rates of convergence.

In Table 1 we give values of ωs and ωs,ref and their corresponding relative errors for τ ∈
{2j}7j=3.

τ Re(ωs,ref) Re(ωs) Im(ωs,ref) Im(ωs) Rel. err.

23 2.8012e−01 2.8043e−01 1.4476e−01 1.4022e−01 1.44e−02

24 1.9685e−01 1.9649e−01 8.4484e−01 8.3198e−01 6.23e−03

25 1.3602e−01 1.3581e−01 4.9465e−01 4.9189e−01 2.40e−03

26 9.3188e−02 9.3111e−02 2.9242e−02 2.9221e−02 8.22e−04

27 6.3606e−02 6.3587e−02 1.7497e−02 1.7521e−02 4.68e−04

Table 1: The real and imaginary parts of ωs and ωs,ref along with the relative error for τ ∈
{2j}7j=3.
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Figure 1: The asymptotic resonances ωs (single particle), ωm (monpole) and ωd (dipole) given by
the formulas in Propositions B.1 and Corollary 3.3 and the corresponding resonances obtained
using reference solutions.

5 Concluding remarks

In this paper, we have provided the first mathematical model of resonant high-index dielectric
nanoparticles. We have characterized their subwavelength resonances in terms of the eigenvalues
of the associated Newtonian potential. We have also discussed the hybridization phenomenon
of a dimer of dielectric nanoparticles with high refractive indices. Our results in this paper pave
the way for the analysis, design, and manipulation of resonant dielectric nanostructures and
their use as metamaterials. In particular, they can be used for mathematically and numerically
modelling super-focusing in dielectric nanostructures, double-negative dielectric materials, and
dielectric metasurfaces. Moreover, following [4,11], formula (7) can be easily generalized to the
time-domain in order to characterize the temporal response of resonant dielectric nanoparti-
cles and accelerate computations involving the temporal responses of subwavelength dielectric
resonators.

A Proof of Proposition 2.5

Expansion (8) can be rewritten as

Kkm
D = K̂km

D +K
(0)
D +O(ω2 log(ω)),

where

K̂km
D [E] = log(γ̂km)K̂D[E],

K̂D[E] = − 1

2π

ˆ

D

E(y)dy,

K
(0)
D [E] =

ˆ

D

E(y)Γ(x− y)dy = − 1

2π

ˆ

D

E(y) log | · −y|dy.
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Using this expansion the resonance problem of finding ω ∈ C such that there exists a
solution L2(D) ∋ E 6≡ 0 to (3) becomes

(I − ω2τεc(K̂
km
D +K

(0)
D ))[E](x) = O(ω4 log(ω)).

Denote by
Mkm

D := K̂km
D +K

(0)
D ,

which is self-adjoint as it is the sum of bounded self-adjoint operators.
Note that when

ω =
1√
τεcλ0

,

where λ0 belongs to σ(K
(0)
D ), the spectrum of K

(0)
D , the following equation has a non-trivial

solution:
(I − ω2τεcK

(0)
D )[E] = 0.

Analogously, when

ω =
1

√

τεcν(ω)
, (13)

where ν(ω) ∈ σ(Mkm
D ) the following equation, which is an approximation of our resonance

problem up to order O(ω4 log(ω)), has a non-trivial solution:

(I − ω2τεcM
km
D )[E] = 0. (14)

Consider the eigenvalue problem for Mkm
D :

Mkm
D [Ψ] = ν(ω)Ψ,

where Ψ = Ψ(ω) is normalized on L2(D). Using the expansions

Ψ(ω) = Ψ0 +O(
1

logω
),

ν(ω) = log(ω)ν0 + ν1 +O(
1

logω
),

we have

(log(ω)K̂D + log(γ̂
√
εm)K̂D +K

(0)
D )[Ψ0] = (log(ω)ν0 + ν1)[Ψ0] +O(

1

logω
).

Equating terms of O(log(ω)) gives
K̂D[Ψ0] = ν0Ψ0.

As K̂D is independent of x ∈ D, Ψ0 must be a constant function, which we normalize on L2(D),
i.e., Ψ0 = ✶̂D.

This gives

ν0✶̂D = K̂D[✶̂D] = −|D|
2π

✶̂D,

so ν0 = −|D|/(2π). Next, equating terms of O(1) we have

ν1✶̂D = (log(γ̂
√
εm)K̂D +K

(0)
D )[✶̂D]

= −|D|
2π

log(γ̂
√
εm)✶̂D +K

(0)
D [✶̂D],

9



and so, after taking the inner product with ✶̂D we get

ν1 = −|D|
2π

log(γ̂
√
εm) + 〈K(0)

D [✶̂D], ✶̂D〉.

This means that

ν(ω) = −|D|
2π

log(γ̂km) + 〈K(0)
D [✶̂D], ✶̂D〉+O(

1

logω
). (15)

Using the expansion of ν(ω) in (15) we obtain from (13) that

1− ω2
s τεc

(

− |D|
2π

log(ωsγ̂
√
εm) + 〈K(0)

D [✶̂D], ✶̂D〉
)

= O(
ω2

logω
) = o(ω2). (16)

B The resonance for a unit disk

Let D be the unit disk. We can obtain a fully explicit expression for (16) in this case as the
eigenvalues of the Newtonian potential have a direct relationship with the zeros of the Bessel
function of order zero [13]. First we note that 〈K(0)

D [✶̂D], ✶̂D〉 = 1/π〈K(0)
D [✶D],✶D〉. Now, let Jl

be the Bessel function of order l and define µ
(0)
j by

J0(µ
(0)
j ) = 0, j = 1, 2, . . . .

According to [13], the eigenvalues of the Newtonian potential for the unit disk are given by

λ0j =
1

(µ
(0)
j )2

, j = 1, 2, . . . ,

with the associated orthornormal set of eigenfunctions {ej}∞j=1 given by

ej(r) = βjJ0

(

µ
(0)
j r

)

,

where

βj =
1

√
πJ1(µ

(0)
j )

.

Note that

〈✶D, ej〉2 =
4π

(µ
(0)
j )2

.

Then we have

〈K(0)
D [✶D],✶D〉 =

∞
∑

j=1

〈✶D, ej〉2λ0j = 4π
∞
∑

j=1

λ0j

(µ
(0)
j )2

= 4π
∞
∑

j=1

1

(µ
(0)
j )4

=
π

8
,

where we used the identity
∑

∞

j=1 1/(µ
(0)
j )4 = 1/32 [19].

Therefore

〈K(0)
D [✶̂D], ✶̂D〉 =

1

8
,
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and (16) can be written as

1− ω2τεc
2

(

− log(γ̂km) +
1

4

)

= o(ω2). (17)

The precise dependence of ω on the contrast parameter τ can be found by writing the
solution to (17) in terms of the Lambert W function [18].

Proposition B.1. The resonance for a unit disk as the contrast τ → ∞ is given by

ωs(τ) = − 2i
√

τεcW (Φ(τ))
+ o

(

1

τ log(τ)

)

, (18)

where

Φ(τ) = − 4

τεc
exp

(

2 log(
√
εmγ̂)−

1

2

)

,

and W is the lower branch of the Lambert W function defined in the interval [−1/e, 0).

Proof. Denote by

α0(τ) :=
τεc
2
,

α1(τ) := α0

(

log(
√
εmγ̂)−

1

4

)

,

α2(τ) := − 2

α0

exp

(

2α1

α0

)

.

Then we can write (17) as
1 + α0ω

2 log(ω) + α1ω
2 = o(ω)2,

which leads to

−2 log(ω) =
2 + 2α1ω

2

α0ω
2 + o(1).

Then
1

ω2 = exp

(

2 + 2α1ω
2

α0ω
2

)

+ o(1).

Next we have

−2

α0ω
2 exp

(

− 2

α0ω
2

)

= − 2

α0

exp

(

2α1

α0

)

+ o(exp(−1/ω2)).

The Lambert W function is a map zez → W (zez) = z [18] and as the expression above is in
this form, an application of this map leads to

−2

α0ω
2 = W

(

2

α0

exp

(

− 2α1

α0

))

+ o(1)

= W (α2) + o(1).

Note that the Lambert W function is double-valued in the interval [−1/e, 0), which is the
interval we need to consider when τ → ∞, and we should choose the lower branch, denoted by
W−1 in the literature, to obtain a physically meaningful resonance.

Now

ω2 = − 2

α0W (α2)
+ o(ω2),
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and so

ω = ± i
√
2

√

α0W (α2)
+ o(ω2). (19)

Noting that α2 = O(1/τ), as τ → ∞ we have the expansion [18]

W (α2) = log(−α2)− log(− log(−α2)) +
log(− log(−α2))

log(−α2)
+ . . . ,

which implies that W (α2) = O(log(τ)). As α0 = O(τ) this means we have

ω + o(ω2) = O

(

1
√

τ log(τ)

)

,

and squaring both sides gives

ω2 + o(ω3) = O

(

1

τ log(τ)

)

.

Thus, upon taking the term with positive real part in (19) we obtain (18).

A coarser approximation which gives a clearer qualitative indication of the dependence of
the resonance frequency on the system variables is given in the following corollary.

Corollary B.2. As τ → ∞ it holds that

ωs(τ) =
2

√

τεc log(τ)

1

ϕ(τ)
+ o

(

1
√

τ log(τ)

)

,

where

ϕ(τ) =

(

1−
log( εm

εc
γ̂2) + 1

2

2 log(τ)

)

.

Proof. We have

W (α2) = log(−α2) + . . .

= − log(τ) + log

(

εm
εc
γ̂2
)

+
1

2
+ . . . .

Then

√

W (α2) =

√

− log(τδ2)

√

√

√

√

√

(

1−
log

(

εm
εc
γ̂2
)

+ 1
2

log(τδ2)

)

+ . . .

= i
√

log(τ)

(

1−
log

(

εm
εc
γ̂2
)

+ 1
2

2 log(τ)

)

+ . . . .

Substituting this expression for
√

W (α2) into (18) asserts the claim.
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C Proof of Proposition 3.2

We have |D1| = |D2| = πδ2. Since

Kkm
Di

=Mkm
Di

+O(ω2 log(ω)),

Rkm
Di,Dj

= Nkm
Di,Dj

+O(ω2 log(ω)),

it holds that
(

I − τω2εcM
km
Di

−τω2εcN
km
D2,D1

−τω2εcN
km
D1,D2

I − τω2εcM
km
D2

)

(

E|D1

E|D2

)

=

(

O(ω4 log(ω))

O(ω4 log(ω))

)

. (20)

Denote by

ν̂(ω) = −δ
2

2
log(γ̂km) + 〈K(0)

D1

[✶̂D1
], ✶̂D1

〉

= −δ
2

2
log(γ̂km) + 〈K(0)

D2

[✶̂D2
], ✶̂D2

〉,

η̂(ω) = 〈Nkm
D1,D2

[✶̂D1
], ✶̂D2

〉
= 〈Nkm

D2,D1

[✶̂D2
], ✶̂D1

〉,

with these equalities holding due to the symmetry of the dimer. Furthermore, the symmetry
of the dimer also means that

K̂km
Di,Dj

[✶̂Di
] = K̂km

Dj
[✶̂Dj

]. (21)

Denote by ν(ω) the eigenvalues of the operators Mkm
Di

such that

〈Mkm
D1

[ΨD1
],ΨD1

〉 = ν(ω) = 〈Mkm
D2

[ΨD2
],ΨD2

〉,

for eigenfunctions L2(Di) ∋ ΨDi
(ω) = ΨDi,0

+O( 1
logω

) = ✶̂Di
+O( 1

logω
).

From Section A we know that

〈Mkm
Di

[ΨDi
],ΨDi

〉 = ν(ω) = ν̂(ω) + o(1). (22)

Denote by η(ω) = 〈Nkm
Di,Dj

[ΨDi
],ΨDj

〉. Note also that

η(ω) = η̂(ω) + o(1).

Therefore, we have the following implicit equation for the hybridized resonances,

1− ω2τεc

(

− δ2

2
log(ωγ̂

√
εm)(1± 1) + 〈K(0)

D1

[✶̂D1
]✶̂D1

〉 ± 〈R(0)
D2,D1

[✶̂D2
], ✶̂D1

〉
)

= o(ω2).
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