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Abstract

Deep neural networks and other deep learning methods have very successfully been
applied to the numerical approximation of high-dimensional nonlinear parabolic partial
differential equations (PDEs), which are widely used in finance, engineering, and natu-
ral sciences. In particular, simulations indicate that algorithms based on deep learning
overcome the curse of dimensionality in the numerical approximation of solutions of semi-
linear PDEs. For certain linear PDEs this has also been proved mathematically. The
key contribution of this article is to rigorously prove this for the first time for a class of
nonlinear PDEs. More precisely, we prove in the case of semilinear heat equations with
gradient-independent nonlinearities that the numbers of parameters of the employed deep
neural networks grow at most polynomially in both the PDE dimension and the recip-
rocal of the prescribed approximation accuracy. Our proof relies on recently introduced
multilevel Picard approximations of semilinear PDEs.
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1 Introduction

Deep neural networks (DNNs) have revolutionized a number of computational problems; see,
e.g., the references in Grohs et al. [11]. In 2017 deep learning-based approximation algorithms
for certain parabolic partial differential equations (PDEs) have been proposed in Han et al. [5,
12] and based on these works there is now a series of deep learning-based numerical approxi-
mation algorithms for a large class of different kinds of PDEs in the scientific literature; see,
e.g., [1, 2, 3, 8, 9, 10, 11, 13, 17, 18, 19, 22, 23]. There is empirical evidence that deep learning-
based methods work exceptionally well for approximating solutions of high-dimensional PDEs
and that these do not suffer from the curse of dimensionality ; see, e.g., the simulations in
[5, 12, 2, 1]. There exist, however, only few theoretical results which prove that DNN approxi-
mations of solutions of PDEs do not suffer from the curse of dimensionality: The recent articles
[11, 4, 16, 9] prove rigorously that DNN approximations overcome the curse of dimensionality
in the numerical approximation of solutions of certain linear PDEs.

The key contribution of this article is to rigorously prove for the first time that DNN ap-
proximations overcome the curse of dimensionality in the numerical approximation of solutions
of semilinear heat equations with gradient-independent nonlinearities.

Next we introduce our notation for DNNs. Throughout this article we use the so-called
multilayer feedforward perceptron model which is a parametrized class of functions constructed
by successive applications of affine mappings and coordinatewise nonlinearities (see Section
2 in Pinkus [21]), we use R ∋ x 7→ max{x, 0} ∈ R as activation function and Rd ∋ x =
(x1, . . . , xd) 7→ Ad(x) = (max{x1, 0}, . . . ,max{xd, 0}) ∈ Rd, d ∈ N, as DNN nonlinearities,
and we follow the mathematical formulation of Peterson & Voigtlaender [20] and, especially, of
Jentzen, Salimova & Welti [16]. The set of neural networks is denoted by

N =
⋃

H∈N

⋃

(k0,k1,...,kH ,kH+1)∈NH+2

H+1∏

n=1

(
R

kn×kn−1 ×Rkn
)
. (1)

A neural network Φ = ((W1, B1), . . . , (WH+1, BH+1)) ∈ ∏H+1
n=1

(
R

kn×kn−1 ×Rkn
)
with H ∈ N

so-called hidden layers and vector L(Φ) = (k0, k1, . . . , kH+1) ∈ NH+2 of layer dimensions then
defines a function R(Φ) ∈ C(Rk0 ,RkH+1) which satisfies that for all x0 ∈ Rk0 , . . . , xH ∈ RkH ,
n ∈ N∩[1, H ] : xn = Akn(Wnxn−1+Bn) it holds that (R(Φ))(x0) = WH+1xH+BH+1. Moreover,
the number of parameters of a neural network Φ ∈ N is denoted by P(Φ) ∈ N.

The main result of this article, Theorem 4.1 below, proves for semilinear heat equations
with gradient-independent nonlinearities that the number of parameters of the approximating
DNN grows at most polynomially in both the PDE dimension d ∈ N and the reciprocal of
the prescribed accuracy ε > 0. Thereby we establish for the first time that there exist DNN
approximations of solutions of such PDEs which indeed overcome the curse of dimensionality.
To illustrate Theorem 4.1, we formulate the following special case of Theorem 4.1 using the
above notation on DNNs and the notation from Subsection 1.1.

Theorem 1.1. Let T, L ∈ (0,∞), B ∈ [0,∞), p, p̃ ∈ N, q ∈ N, α, β ∈ [0,∞), f ∈ C(R,R), for
every d ∈ N let gd ∈ C(Rd,R), ud ∈ C1,2([0, T ]×Rd,R), for every d ∈ N let νd : B(Rd) → [0, 1]
be a probability measure on (Rd,B(Rd)), for every ε ∈ (0, 1], d ∈ N let Φf

ε ,Φ
gd
ε ∈ N , assume

for all d ∈ N, v, w ∈ R, x ∈ Rd, ε ∈ (0, 1], t ∈ (0, T ) that R(Φf
ε ) ∈ C(R,R), R(Φgd

ε ) ∈
C(Rd,R),

∣
∣(R(Φf

ε ))(w)− (R(Φf
ε ))(v)

∣
∣ ≤ L |w − v|,

∣
∣(R(Φf

ε ))(0)
∣
∣ ≤ B, |(R(Φgd

ε ))(x)| ≤
Bdp(1 + ‖x‖)p,

∣
∣f(v)− (R(Φf

ε ))(v)
∣
∣ ≤ εB(1 + |v|q), |gd(x)− (R(Φgd

ε ))(x)| ≤ εBdp(1 + ‖x‖)pq,
max

{
dim

(
L
(
Φf

ε

))
, dim (L (Φgd

ε ))
}

≤ dpε−βB, max
{∥
∥L(Φf

ε )
∥
∥
∞ , ‖L(Φgd

ε )‖∞
}

≤ dpε−αB,
(∫

R

d ‖y‖2pq νd(dy)
)1/(2pq) ≤ Bdp̃, sups∈[0,T ] supy∈Rd

(
|ud(s,y)|
1+‖y‖p

)

<∞, ud(T, x) = gd(x), and

( ∂
∂t
ud)(t, x) +

1
2
(∆xud)(t, x) + f(ud(t, x)) = 0. (2)
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Then there exist (Ψd,ε)d∈N,ε∈(0,1] ⊆ N , η ∈ (0,∞), C : (0, 1] → (0,∞) such that for all d ∈ N,
ε ∈ (0, 1], γ ∈ (0, 1] it holds that

P(Ψd,ε) ≤ C(γ)dηε−(4+2α+β+γ), (3)

R(Ψd,ε) ∈ C(Rd,R), and

(∫

R

d

|ud(0, x)− (R(Ψd,ε))(x)|2 νd(dx)
)1/2

≤ ε. (4)

Theorem 1.1 is an in immediate consequence of Theorem 4.1 below. In the manner of the
proof of Theorem 3.14 in [11] and the proof of Theorem 6.3 in [16], the proof of Theorem 4.1
below uses probabilistic arguments on a suitable artificial probability space. Moreover, the proof
of Theorem 4.1 relies on recently introduced (full history) multilevel Picard approximations
which have been proved to overcome the curse of dimensionality in the numerical approximation
of solutions of semilinear heat equations at single space-time points; see [6, 7, 15, 14]. A key
step in our proof is that realizations of these random approximations can be represented by
DNNs; see Lemma 3.10 below.

The remainder of this article is organized as follows. In Section 2 we provide auxiliary results
on multilevel Picard approximations ensuring that these approximations are stable against
perturbations in the nonlinearity f and the terminal condition g of the PDE (2). In Section 3
we show that multilevel Picard approximations can be represented by DNNs and we provide
bounds for the number of parameters of the representing DNN. We use the results of Section 2
and Section 3 to prove the main result Theorem 4.1 in Section 4.

1.1 Notation

Let ‖ · ‖ : ⋃d∈NR
d → [0,∞) be the function that satisfies for all d ∈ N, x = (x1, . . . , xd) ∈ Rd

that ‖x‖ =
√
∑d

i=1(xi)
2. Let ‖ · ‖∞ :

⋃

d∈NR
d → [0,∞) be the function that satisfies for all

d ∈ N, x = (x1, . . . , xd) ∈ Rd that ‖x‖∞ = maxi∈[1,d]∩N |xi|.

2 A stability result for multilevel Picard approximations

Setting 2.1. Let d ∈ N, T, L, δ, B ∈ (0,∞), p, q ∈ [1,∞), f1, f2 ∈ C
(
[0, T ]×Rd ×R,R

)
,

g1, g2 ∈ C(Rd,R), assume for all t ∈ [0, T ], x ∈ Rd, w, v ∈ R, i ∈ {1, 2} that

|fi(t, x, w)− fi(t, x, v)| ≤ L |w − v| , (5)

max
{
|fi(t, x, 0)| , |gi(x)|

}
≤ B

(
1 + ‖x‖

)p
, (6)

and

max
{
|f1(t, x, v)− f2(t, x, v)| , |g1(x)− g2(x)|

}
≤ δ

((
1 + ‖x‖

)pq
+ |v|q

)

, (7)

let F1, F2 : C
(
[0, T ]×Rd,R

)
→ C

(
[0, T ]×Rd,R

)
be the functions which satisfy for all v ∈

C
(
[0, T ]×Rd,R

)
, t ∈ [0, T ], x ∈ Rd, i ∈ {1, 2} that

(Fi(v))(t, x) = fi(t, x, v(t, x)), (8)

let (Ω,F ,P) be a probability space, let W : [0, T ]×Ω → R

d be a standard Brownian motion with
continuous sample paths, let u1, u2 ∈ C([0, T ] × Rd,R), assume for all i ∈ {1, 2}, s ∈ [0, T ],
x ∈ Rd that

E

[
∣
∣gi (x+WT−s)

∣
∣ +

∫ T

s

|(Fi(ui)) (t, x+Wt−s)| dt
]

<∞ (9)
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and

ui(s, x) = E

[

gi (x+WT−s) +

∫ T

s

(Fi(ui)) (t, x+Wt−s) dt

]

, (10)

let Θ =
⋃

n∈NZ
n, let u

θ : Ω → [0, 1], θ ∈ Θ, be independent random variables which are
uniformly distributed on [0, 1], let Uθ : [0, T ]×Ω → [0, T ], θ ∈ Θ, satisfy for all t ∈ [0, T ], θ ∈ Θ
that Uθ

t = t + (T − t)uθ, let W θ : [0, T ]× Ω → R

d, θ ∈ Θ, be independent standard Brownian
motions, assume that (uθ)θ∈Θ, (W

θ)θ∈Θ, and W are independent, and let Uθ
n,M : [0, T ]×Rd×Ω →

R, n,M ∈ Z, θ ∈ Θ, be functions such that for all n,M ∈ N, θ ∈ Θ, t ∈ [0, T ], x ∈ Rd it holds
that Uθ

−1,M(t, x) = Uθ
0,M(t, x) = 0 and

Uθ
n,M(t, x) =

1

Mn

Mn
∑

i=1

g2

(

x+W
(θ,0,−i)
T −W

(θ,0,−i)
t

)

+

n−1∑

l=0

(T − t)

Mn−l





Mn−l
∑

i=1

(

F2

(
U

(θ,l,i)
l,M

)
− 1

N

(l)F2

(
U

(θ,−l,i)
l−1,M

))(

U (θ,l,i)
t , x+W

(θ,l,i)

U(θ,l,i)
t

−W
(θ,l,i)
t

)



 .

(11)

Lemma 2.2 (q-th moment of the exact solution). Assume Setting 2.1 and let x ∈ Rd, i ∈ {1, 2}.
Then it holds that

sup
t∈[0,T ]

(

E

[

|ui(t, x+Wt)|q
])1/q

≤ eLT (T + 1)B



 sup
t∈[0,T ]

(

E

[(

1 + ‖x+Wt‖
)pq
])1/q



 . (12)

Proof of Lemma 2.2. Throughout this proof let µt : B(Rd) → [0, 1], t ∈ [0, T ] be the probability
measures which satisfy for all t ∈ [0, T ], B ∈ B(Rd) that

µt(B) = P(x+Wt ∈ B). (13)

The integral transformation theorem, (10), and the triangle inequality show for all t ∈ [0, T ]
that

(

E

[

|ui(t, x+Wt)|q
])1/q

=

(∫

R

d

|ui(t, z)|q µt(dz)

)1/q

=

(∫

R

d

∣
∣
∣
∣
E

[

gi(z +WT−t) +

∫ T

t

(Fi(ui))(s, z +Ws−t) ds

]∣
∣
∣
∣

q

µt(dz)

)1/q

≤
(∫

R

d

∣
∣E
[
gi(z +WT−t)

]∣
∣
q
µt(dz)

)1/q

+

∫ T

t

(
∫

R

d

∣
∣E
[
(Fi(ui))(s, z +Ws−t)

]∣
∣q µt(dz)

)1/q

ds.

(14)

Next, Jensen’s inequality, Fubini’s theorem, (13), the fact that W has independent and sta-
tionary increments, and (6) demonstrate that for all t ∈ [0, T ] it holds that

∫

R

d

∣
∣E
[
gi(z +WT−t)

]∣
∣q µt(dz) ≤

∫

R

d

E

[

|gi(z +WT −Wt)|q
]

µt(dz)

= E

[

|gi (x+Wt +WT −Wt)|q
]

= E

[

|gi (x+WT )|q
]

≤ E

[

Bq
(

1 + ‖x+WT‖
)pq
]

.

(15)
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Furthermore, Jensen’s inequality, Fubini’s theorem, (13), the fact that W has independent and
stationary increments, the triangle inequality, (5), and (6) demonstrate for all t ∈ [0, T ] that

∫ T

t

(∫

R

d

∣
∣E
[
(Fi(ui))(s, z +Ws−t)

]∣
∣q µt(dz)

)1/q

ds

≤
∫ T

t

(∫

R

d

E

[∣
∣(Fi(ui))(s, z +Ws −Wt)

∣
∣
q
]

µt(dz)

)1/q

ds

=

∫ T

t

(

E

[∣
∣ (Fi(ui)) (s, x+Wt +Ws −Wt)

∣
∣
q
])1/q

ds

≤
∫ T

t

(

E

[

|(Fi(0))(s, x+Ws)|q
]
)1/q

ds+

∫ T

t

(

E

[

|(Fi(ui)− Fi(0))(s, x+Ws)|q
]
)1/q

ds

≤ T sup
s∈[0,T ]

(

E

[

Bq
(

1 + ‖x+Ws‖
)pq
])1/q

+

∫ T

t

(

E

[

Lq |ui(s, x+Ws)|q
])1/q

ds.

(16)

Combining this with (14) and (15) implies that for all t ∈ [0, T ] it holds that

(

E

[∣
∣ui(t, x+Wt)

∣
∣q
])1/q

≤ (T + 1)B sup
s∈[0,T ]

(

E

[(

1 + ‖x+Ws‖
)pq
])1/q

+ L

∫ T

t

(

E

[

|ui(s, x+Ws)|q
])1/q

ds.

(17)

Next, [14, Corollary 3.11] shows that

sup
s∈[0,T ]

sup
y∈Rd

|ui(s, y)|
(1 + ‖y‖)p ≤ sup

s∈[0,T ]

sup
y∈Rd

|ui(s, y)|
1 + ‖y‖p <∞. (18)

This, the triangle inequality, and the fact that E[‖WT‖pq] <∞ show that

∫ T

0

(

E

[

|ui(s, x+Ws)|q
])1/q

ds ≤
[

sup
s∈[0,T ]

sup
y∈Rd

|u(s, y)|
(1 + ‖y‖)p

]
∫ T

0

(

E

[(

1 + ‖x+Ws‖
)pq
])1/q

ds

≤
[

sup
s∈[0,T ]

sup
y∈Rd

|u(s, y)|
(1 + ‖y‖)p

]

T

(

1 + ‖x‖ +
(

E

[

‖WT‖pq
])

1
pq

)p

<∞.

(19)

This, Gronwall’s integral inequality, and (17) establish for all t ∈ [0, T ] that

(

E

[

|ui(t, x+Wt)|q
])1/q

≤ eLT (T + 1)B sup
s∈[0,T ]

(

E

[(

1 + ‖x+Ws‖
)pq
])1/q

. (20)

The proof of Lemma 2.2 is thus completed.

Lemma 2.3. Assume Setting 2.1. Then it holds for all t ∈ [0, T ], x ∈ Rd that

E

[

|u1(t, x+Wt)− u2(t, x+Wt)|
]

≤ δ
(
eLT (T + 1)

)q+1
(Bq + 1)

(

1 + ‖x‖+
(

E

[

‖WT‖pq
])

1
pq

)pq

.
(21)

5



Proof of Lemma 2.3. First, (10), the triangle inequality, and the fact that W has stationary
increments show for all s ∈ [0, T ], z ∈ Rd that

|u1(s, z)− u2(s, z)|

=

∣
∣
∣
∣
E

[

(g1 − g2) (z +WT−s) +

∫ T

s

(
F1(u1)− F1(u2) + F1(u2)− F2(u2)

)
(t, z +Wt−s) dt

]∣
∣
∣
∣

≤ E

[∣
∣(g1 − g2) (z +WT −Ws)

∣
∣

]

+

∫ T

s

E

[∣
∣
(
F1(u1)− F1(u2)

)
(t, z +Wt −Ws)

∣
∣

]

dt

+

∫ T

s

E

[
∣
∣
(
F1(u2)− F2(u2)

)
(t, z +Wt −Ws)

∣
∣

]

dt.

(22)

This, Fubini’s theorem, the fact that W has independent increments, and the Lipschitz condi-
tion in (5) ensure that for all s ∈ [0, T ], x ∈ Rd it holds that

E

[∣
∣(u1 − u2) (s, x+Ws)

∣
∣

]

= E

[∣
∣u1(s, z)− u2(s, z)

∣
∣
∣
∣
z=x+Ws

]

≤ E

[

E

[∣
∣(g1 − g2) (z +WT −Ws)

∣
∣

]∣
∣
∣
z=x+Ws

]

+

∫ T

s

E

[

E

[∣
∣
(
F1(u1)− F1(u2)

)
(t, z +Wt −Ws)

∣
∣

]∣
∣
∣
z=x+Ws

]

dt

+

∫ T

s

E

[

E

[
∣
∣
(
F1(u2)− F2(u2)

)
(t, z +Wt −Ws)

∣
∣

]∣
∣
∣
∣
z=x+Ws

]

dt

= E

[∣
∣(g1 − g2) (x+WT )

∣
∣

]

+

∫ T

s

E

[∣
∣
(
F1(u1)− F1(u2)

)
(t, x+Wt)

∣
∣

]

dt

+

∫ T

s

E

[
∣
∣
(
F1(u2)− F2(u2)

)
(t, x+Wt)

∣
∣

]

dt

≤ E

[∣
∣(g1 − g2) (x+WT )

∣
∣

]

+

∫ T

s

E

[

L
∣
∣
(
u1 − u2

)
(t, x+Wt)

∣
∣

]

dt

+ T sup
t∈[0,T ]

E

[∣
∣
(
F1(u2)− F2(u2)

)
(t, x+Wt)

∣
∣

]

.

(23)

This, Gronwall’s lemma, and Lemma 2.2 yield for all x ∈ Rd that

sup
t∈[0,T ]

E

[∣
∣(u1 − u2) (t, x+Wt)

∣
∣

]

≤ eLT (T + 1) sup
t∈[0,T ]

max
{

E

[∣
∣(g1 − g2) (x+WT )

∣
∣

]

,E

[∣
∣
(
F1(u2)− F2(u2)

)
(t, x+Wt)

∣
∣

]}

.
(24)

Furthermore, (7), the triangle inequality, and Lemma 2.2 imply for all x ∈ Rd that

sup
t∈[0,T ]

max
{

E

[∣
∣(g1 − g2) (x+WT )

∣
∣

]

,E
[∣
∣
(
F1(u2)− F2(u2)

)
(t, x+Wt)

∣
∣

]}

≤ δ sup
t∈[0,T ]

E

[(

1 + ‖x+Wt‖
)pq

+ |u2(x+Wt)|q
]

≤ δ sup
t∈[0,T ]

E

[(

1 + ‖x+Wt‖
)pq
]

+ δ sup
t∈[0,T ]

E

[

|u2(x+Wt)|q
]

.

≤ δ sup
t∈[0,T ]

E

[(

1 + ‖x+Wt‖
)pq
]

+ δ(eLT (T + 1)B)q sup
t∈[0,T ]

E

[(

1 + ‖x+Wt‖
)pq
]

≤ δ
(
eLT (T + 1)

)q
(Bq + 1) sup

t∈[0,T ]

E

[(

1 + ‖x+Wt‖
)pq
]

.

(25)
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This, (24), and the triangle inequality yield that

sup
t∈[0,T ]

E

[∣
∣(u1 − u2) (t, x+Wt)

∣
∣

]

≤ δ
(
eLT (T + 1)

)q+1
(Bq + 1) sup

t∈[0,T ]

E

[(

1 + ‖x+Wt‖
)pq
]

≤ δ
(
eLT (T + 1)

)q+1
(Bq + 1)

(

1 + ‖x‖+
(

E

[

‖WT‖pq
])

1
pq

)pq

.

(26)

This completes the proof of Lemma 2.3.

Corollary 2.4. Assume Setting 2.1, let x ∈ Rd, N,M ∈ N, and assume that q ≥ 2. Then it
holds that
(

E

[∣
∣U0

N,M(0, x)− u1(0, x)
∣
∣
2
])1/2

≤
(
eLT (T + 1)

)q+1
(Bq + 1)

(

δ +
eM/2(1 + 2LT )N

MN/2

)(

1 + ‖x‖+
(

E

[

‖WT‖pq
])

1
pq

)pq

.

(27)

Proof of Corollary 2.4. First, Lemma 2.2 implies that
∫ T

0

(
E
[
|ui(t, x+Wt)|2

])1/2
dt <∞. This,

[14, Theorem 3.5] (applied with ξ = x, F = F2, g = g2, and u = u2 in the notation of [14,
Theorem 3.5]), (6), and the triangle inequality ensure that

(

E

[∣
∣U0

N,M(0, x)− u2(0, x)
∣
∣
2
])1/2

≤ eLT





(

E

[∣
∣g2(x+WT )

∣
∣
2
])1/2

+ T

(

1

T

∫ T

0

E

[

|(F2(0))(t, x+Wt)|2
]

dt

)1/2



eM/2(1 + 2LT )N

MN/2

≤ eLT (T + 1) sup
t∈[0,T ]

(

E

[

B2
(

1 + ‖x+Wt‖
)2p
])1/2

eM/2(1 + 2LT )N

MN/2

≤ eLT (T + 1)B

(

1 + ‖x‖+
(

E

[

‖WT‖2p
])1

2p

)p
eM/2(1 + 2LT )N

MN/2
.

(28)

Furthermore, Lemma 2.3 shows that

|u2(0, x)− u1(0, x)| ≤ δ
(
eLT (T + 1)

)q+1
(Bq + 1)

(

1 + ‖x‖ +
(

E

[

‖WT‖pq
])

1
pq

)pq

. (29)

This, the triangle inequality, (28), the fact that B ≤ Bq + 1, the assumption that q ≥ 2, and
Jensen’s inequality show that

(

E

[∣
∣U0

N,M (0, x)− u1(0, x)
∣
∣2
])1/2

≤
(

E

[∣
∣U0

N,M(0, x)− u2(0, x)
∣
∣
2
])1/2

+
∣
∣u2(0, x)− u1(0, x)

∣
∣

≤
(
eLT (T + 1)

)q+1
(Bq + 1)

(

δ +
eM/2(1 + 2LT )N

MN/2

)(

1 + ‖x‖ +
(

E

[

‖WT‖pq
])

1
pq

)pq

.

(30)

The proof of Corollary 2.4 is thus completed.
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3 Deep neural networks representing multilevel Picard

approximations

The main result of this section, Lemma 3.10 below, shows that multilevel Picard aproximations
can be well represented by DNNs. The central tools for the proof of Lemma 3.10 are Lemmas 3.8
and 3.9 which show that DNNs are stable under compositions and summations. We formulate
Lemmas 3.8 and 3.9 in terms of the operators defined in (39) and (40) below, whose properties
are studied in Lemmas 3.3, 3.4, and 3.5.

3.1 Results on deep neural networks

Setting 3.1 (Artificial neural networks). Let Ad : R
d → R

d, d ∈ N, be the functions such that
for all d ∈ N, x = (x1, . . . , xd) ∈ Rd it holds that

Ad(x) = (max{x1, 0}, . . . ,max{xd, 0}) , (31)

let N and D be the sets which satisfy that

N =
⋃

H∈N

⋃

(k0,k1,...,kH ,kH+1)∈NH+2

H+1∏

n=1

(
R

kn×kn−1 ×Rkn
)

and D =
⋃

H∈N
N

H+2, (32)

let

L : N → D and R : N →
⋃

k,l∈N
C(Rk,Rl) (33)

be the functions which satisfy that for all H ∈ N, k0, k1, . . . , kH , kH+1 ∈ N,

Φ = ((W1, B1), . . . , (WH+1, BH+1)) ∈
H+1∏

n=1

(
R

kn×kn−1 ×Rkn
)
, (34)

x0 ∈ Rk0 , . . . , xH ∈ RkH with ∀n ∈ N ∩ [1, H ] : xn = Akn(Wnxn−1 +Bn) it holds that

L(Φ) = (k0, k1, . . . , kH , kH+1), R(Φ) ∈ C(Rk0,RkH+1), and

(R(Φ))(x0) = WH+1xH +BH+1,
(35)

let ⊙ : D ×D → D be the binary operation with the property that for all H1, H2 ∈ N,

α = (α0, α1, . . . , αH1 , αH1+1) ∈ NH1+2, β = (β0, β1, . . . , βH2 , βH2+1) ∈ NH2+2 (36)

it holds that

α⊙ β = (β0, β1, . . . , βH2 , βH2+1 + α0, α1, α2, . . . , αH1+1) ∈ NH1+H2+3, (37)

let

⊞ :
⋃

H,k,l∈N

(
{k} ×NH × {l}

)2 →
⋃

H,k,l∈N

(
{k} ×NH × {l}

)
(38)

be the function which satisfies that for all H, k, l ∈ N,

α = (k, α1, α2, . . . , αH , l) ∈ {k} ×NH × {l},
β = (k, β1, β2, . . . , βH , l) ∈ {k} ×NH × {l}

(39)

it holds that

α⊞ β = (k, α1 + β1, . . . , αH + βH , l) ∈ {k} ×NH × {l}, (40)

and let nn ∈ D, n ∈ [3,∞) ∩N, satisfy for all n ∈ [3,∞) ∩N that

nn = (1, 2, . . . , 2
︸ ︷︷ ︸

(n−2)-times

, 1) ∈ Nn. (41)
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Remark 3.2. The set N can be viewed as the set of all artificial neural networks. For each
network Φ ∈ N the function R(Φ) is the function represented by Φ and the vector L(Φ) describes
the layer dimensions of Φ.

Lemma 3.3 (⊙ is associative). Assume Setting 3.1 and let α, β, γ ∈ D. Then it holds that
(α⊙ β)⊙ γ = α⊙ (β ⊙ γ).

Proof of Lemma 3.3. Throughout this proof let H1, H2, H3 ∈ N, let (αi)i∈[0,H1+1]∩N0
∈ NH1+2,

(βi)i∈[0,H2+1]∩N0 ∈ NH2+2, (γi)i∈[0,H3+1]∩N0 ∈ NH3+2 satisfy that

α = (α0, α1, . . . , αH1+1), β = (β0, β1, . . . , βH2+1), and

γ = (γ0, γ1, . . . , γH3+1).
(42)

The definition of ⊙ in (37) then shows that

(α⊙ β)⊙ γ = (β0, β1, β2 . . . , βH2, βH2+1 + α0, α1, α2, . . . , αH1+1)⊙ (γ0, γ1, . . . , γH3+1)

= (γ0, . . . , γH3, γH3+1 + β0, β1, . . . , βH2, βH2+1 + α0, α1, α2, . . . , αH1+1)

= (α0, α1, . . . , αH1+1)⊙ (γ0, γ1, . . . , γH3, γH3+1 + β0, β1, β2, . . . , βH2+1)

= α⊙ (β ⊙ γ).

(43)

The proof of Lemma 3.3 is thus completed.

Lemma 3.4 (⊞ and associativity). Assume Setting 3.1, let H, k, l ∈ N, and let α, β, γ ∈
(
{k} ×NH × {l}

)
. Then

i) it holds that α⊞ β ∈
(
{k} ×NH × {l}

)
,

ii) it holds that β⊞ γ ∈
(
{k} ×NH × {l}

)
, and

iii) it holds that (α⊞ β)⊞ γ = α⊞(β⊞ γ).

Proof of Lemma 3.4. Throughout this proof let αi, βi, γi ∈ N, i ∈ [1, H ] ∩ N, satisfy that
α = (k, α1, α2, . . . , αH , l), β = (k, β1, β2, . . . , βH , l), and γ = (k, γ1, γ2, . . . , γH , l). The definition
of ⊞ (see (38)–(40)) then shows that

α⊞ β = (k, α1 + β1, α2 + β2, . . . , αH + βH , l) ∈ {k} ×NH × {l},
β⊞ γ = (k, β1 + γ1, β2 + γ2, . . . , βH + γH , l) ∈ {k} ×NH × {l},

(44)

and

(α⊞ β)⊞ γ = (k, (α1 + β1) + γ1, (α2 + β2) + γ2, . . . , (αH + βH) + γH , l)

= (k, α1 + (β1 + γ1), α2 + (β2 + γ2), . . . , αH + (βH + γH), l) = α⊞(β⊞ γ).
(45)

The proof of Lemma 3.4 is thus completed.

Lemma 3.5 (Triangle inequality). Assume Setting 3.1, let H, k, l ∈ N, and let α, β ∈ {k} ×
N

H × {l}. Then it holds that ‖α⊞ β‖∞ ≤ ‖α‖∞ + ‖β‖∞.

Proof of Lemma 3.5. Throughout this proof let αi, βi ∈ N, i ∈ [1, H ] ∩ N satisfy that α =
(k, α1, α2, . . . , αH , l) and β = (k, β1, β2, . . . , βH , l). The definition of ⊞ (see (38)–(40)) then
shows that α⊞ β = (k, α1+β1, α2+β2, . . . , αH+βH , l). This together with the triangle inequality
implies that

‖α⊞ β‖∞ = sup {|k|, |α1 + β1| , |α2 + β2| , . . . , |αH + βH | , |l|}
≤ sup {|k|, |α1| , |α2| , . . . , |αH | , |l|}+ sup {|k|, |β1| , |β2| , . . . , |βH | , |l|}
= ‖α‖∞ + ‖β‖∞ .

(46)

This completes the proof of Lemma 3.5.
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The following result, Lemma 3.6, is a variant of [16, Lemma 5.4].

Lemma 3.6 (Existence of DNNs with H ∈ N hidden layers for the identity in R). Assume
Setting 3.1 and let H ∈ N. Then it holds that Id

R

∈ R({Φ ∈ N : L(Φ) = nH+2}).
Proof of Lemma 3.6. Throughout this proof letW1 ∈ R2×1,Wi ∈ R2×2, i ∈ [2, H ]∩N,WH+1 ∈
R

1×2, Bi ∈ R2, i ∈ [1, H ] ∩N, BH+1 ∈ R1 satisfy that

W1 =

(
1
−1

)

, ∀i ∈ [2, H ] ∩N : Wi =

(
1 0
0 1

)

, WH+1 =
(
1 −1

)
,

∀i ∈ [1, H ] ∩N : Bi =

(
0
0

)

, BH+1 = 0,

(47)

let φ ∈ N satisfy that φ = ((W1, B1), (W2, B2), . . . , (WH , BH), (WH+1, BH+1)), for every a ∈
R let a+ ∈ [0,∞) be the non-negative part of a, i.e., a+ = max{a, 0}, and let x0 ∈ R,
x1, x2, . . . , xH ∈ R2 satisfy for all n ∈ N ∩ [1, H ] that

xn = A2(Wnxn−1 +Bn). (48)

Note that (47) and the definition of L (see (33)–(35)) imply that L(φ) = nH+2. Furthermore,
(47), (48), and an induction argument show that

x1 = A2(W1x0 +B1) = A2

((
x0
−x0

))

=

(
x+0

(−x0)+
)

,

x2 = A2(W2x1 +B2) = A2(x1) = A2

((
x+0

(−x0)+
))

=

(
x+0

(−x0)+
)

,

...

xH = A2(WHxH−1 +BH) = A2(xH−1) = A2

((
x+0

(−x0)+
))

=

(
x+0

(−x0)+
)

.

(49)

The definition of R (see (33)–(35)) hence ensures that

(R(φ))(x0) = WH+1xH +BH+1 =
(
1 −1

)
(

x+0
(−x0)+

)

= x+0 − (−x0)+ = x0. (50)

The fact that x0 was arbitrary therefore proves that R(φ) = Id
R

. This and the fact that
L(φ) = nH+2 demonstrate that Id

R

∈ R({Φ ∈ N : L(Φ) = nH+2}). The proof of Lemma 3.6 is
thus completed.

Lemma 3.7 (DNNs for affine transformations). Assume Setting 3.1 and let d,m ∈ N, λ ∈ R,
b ∈ Rd, a ∈ Rm, Ψ ∈ N satisfy that R(Ψ) ∈ C(Rd,Rm). Then it holds that

λ
((
R(Ψ)

)
(·+ b) + a

)

∈ R
(

{Φ ∈ N : L(Φ) = L(Ψ)}
)

. (51)

Proof of Lemma 3.7. Throughout this proof let H, k0, k1, . . . , kH+1 ∈ N satisfy that

H + 2 = dim (L(Ψ)) and (k0, k1, . . . , kH , kH+1) = L(Ψ), (52)

let ((W1, B1), (W2, B2), . . . , (WH , BH), (WH+1, BH+1)) ∈
∏H+1

n=1

(
R

kn×kn−1 ×Rkn
)
satisfy that

(

(W1, B1), (W2, B2), . . . , (WH , BH), (WH+1, BH+1)
)

= Ψ, (53)

let φ ∈ N satisfy that

φ =
(

(W1, B1 +W1b), (W2, B2), . . . , (WH , BH), (λWH+1, λBH+1 + λa)
)

, (54)
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and let x0, y0 ∈ Rk0 , x1, y1 ∈ Rk1 , . . . , xH , yH ∈ RkH satisfy for all n ∈ N ∩ [1, H ] that

xn = Akn(Wnxn−1 +Bn), yn = Akn(Wnyn−1 +Bn + 1{1}(n)W1b) and x0 = y0 + b. (55)

Then it holds that

y1 = Ak1(W1y0 +B1 +W1b) = Ak1(W1(y0 + b) +B1) = Ak1(W1x0 +B1) = x1. (56)

This and an induction argument prove for all i ∈ [2, H ] ∩N that

yi = Aki(Wiyi−1 +Bi) = Aki(Wixi−1 +Bi) = xi. (57)

The definition of R (see (33)–(35)) hence shows that

(R(φ))(y0) = λWH+1yH + λBH+1 + λa = λWH+1xH + λBH+1 + λa

= λ(WH+1xH +BH+1 + a) = λ((R(Ψ))(x0) + a) = λ(R(Ψ))(y0 + b) + a.
(58)

This and the fact that y0 was arbitrary prove that R(φ) = λ((R(Ψ))(·+ b) + a). This and the
fact that L(φ) = L(Ψ) imply that λ ((R(Ψ))(·+ b) + a) ∈ R({Φ ∈ N : L(Φ) = L(Ψ)}). The
proof of Lemma 3.7 is thus completed.

Lemma 3.8 (Composition). Assume Setting 3.1 and let d1, d2, d3 ∈ N, f ∈ C(Rd2 ,Rd3),
u ∈ C(Rd1 ,Rd2), α, β ∈ D satisfy that f ∈ R({Φ ∈ N : L(Φ) = α}) and u ∈ R({Φ ∈
N : L(Φ) = β}). Then it holds that (f ◦ u) ∈ R({Φ ∈ N : L(Φ) = α⊙ β}).

Proof of Lemma 3.8. Throughout this proof letH1, H2, α0, . . . , αH1+1, β0, . . . , βH2+1 ∈ N, Φf ,Φu ∈
N satisfy that

(α0, α1, . . . , αH1+1) = α, (β0, β1, . . . , βH2+1) = β, R(Φf ) = f,

L(Φf) = α, R(Φu) = u, and L(Φu) = β.
(59)

Lemma 5.4 in [16] shows that there exists I ∈ N such that L(I) = d2n3 = (d2, 2d2, d2) and
R(I) = Id

R

d2 . Note that 2d2 = βH2+1 + α0. This and [16, Proposition 5.2] (with φ1 = Φf ,
φ2 = Φu, and I = I in the notation of [16, Proposition 5.2]) show that there exists Φf◦u ∈ N
such that R(Φf◦u) = f ◦ u and L(Φf◦u) = L(Φf) ⊙ L(Φu) = α ⊙ β. Hence, it holds that
f ◦ u ∈ R({Φ ∈ N : L(Φ) = α⊙ β}). The proof of Lemma 3.8 is thus completed.

The following result, Lemma 3.9, essentially generalizes [16, Lemma 5.1] to the case where
the DNNs have different hidden layer dimensions.

Lemma 3.9 (Sum of DNNs of the same length). Assume Setting 3.1 and let M,H, p, q ∈ N,
h1, h2, . . . , hM ∈ R, ki ∈ D, fi ∈ C(Rp,Rq), i ∈ [1,M ] ∩N, satisfy for all i ∈ [1,M ] ∩N that

dim (ki) = H + 2 and fi ∈ R
({

Φ ∈ N : L(Φ) = ki
})

. (60)

Then it holds that

M∑

i=1

hifi ∈ R
({

Φ ∈ N : L(Φ) =
M

⊞
i=1

ki

})

. (61)

Proof of Lemma 3.9. Throughout this proof let φi ∈ N , i ∈ [1,M ] ∩ N, and ki,n ∈ N, i ∈
[1,M ] ∩N, n ∈ [0, H + 1] ∩N0, satisfy for all i ∈ [1,M ] ∩N that

L(φi) = ki = (ki,0, ki,1, ki,2, . . . , ki,H, ki,H+1) and R(φi) = fi, (62)
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for every i ∈ [1,M ] ∩ N let ((Wi,1, Bi,1), . . . , (Wi,H+1, Bi,H+1)) ∈ ∏H+1
n=1

(
R

ki,n×ki,n−1 ×Rki,n
)

satisfy that

φi = ((Wi,1, Bi,1), . . . , (Wi,H+1, Bi,H+1)) , (63)

let k⊞n ∈ N, n ∈ [1, H ] ∩N, k⊞ ∈ NH+2 satisfy for all n ∈ [1, H ] ∩N that

k⊞n =
M∑

i=1

ki,n and k⊞ = (p, k⊞1 , k
⊞

2 , . . . , k
⊞

H , q), (64)

let W1 ∈ Rk⊞1 ×p, B1 ∈ Rk⊞1 satisfy that

W1 =








W1,1

W2,1
...

WM,1








and B1 =








B1,1

B2,1
...

BM,1







, (65)

let Wn ∈ Rk⊞n×k⊞n−1, Bn ∈ Rk⊞n , n ∈ [2, H ] ∩N, satisfy for all n ∈ [2, H ] ∩N that

Wn =








W1,n 0 0 0
0 W2,n 0 0

0 0
. . . 0

0 0 0 WM,n








and Bn =








B1,n

B2,n
...

BM,n







, (66)

let WH+1 ∈ Rq×k⊞
H , BH+1 ∈ Rq satisfy that

WH+1 =
(
h1W1,H+1 . . . hMWM,H+1

)
and BH+1 =

M∑

i=1

hiBi,H+1, (67)

let x0 ∈ Rp, x1 ∈ Rk⊞1 , x2 ∈ Rk⊞2 . . . , xH ∈ Rk⊞
H , let x1,0, x2,0, . . . , xM,0 ∈ Rp, xi,n ∈ Rki,n ,

i ∈ [1,M ] ∩N, n ∈ [1, H ] ∩N, satisfy for all i ∈ [1,M ] ∩N, n ∈ [1, H ] ∩N that

x0 = x1,0 = x2,0 = . . . = xM,0,

xi,n = Aki,n(Wi,nxi,n−1 +Bi,n),

xn = Ak⊞n
(Wnxn−1 +Bn),

(68)

and let ψ ∈ N satisfy that

ψ = ((W1, B1), (W2, B2), . . . , (WH , BH), (WH+1, BH+1)) . (69)

First, the definitions of L and R (see (33)–(35)), (62), and the fact that ∀i ∈ [1,M ] ∩N : fi ∈
C(Rp,Rq) show for all i ∈ [1,M ]∩N that ki = (p, ki,1, ki,2, . . . , ki,H, q). The definition of L (see
(33)–(35)), the definition of ⊞ (see (38)–(40)), and (64) then show that

L(ψ) = (p, k⊞1 , . . . , k
⊞

H , q) =
M

⊞
i=1

ki. (70)

Next, we prove by induction on n ∈ [1, H ]∩N that xn = (x1,n, x2,n, . . . , xM,n). First, (65) shows
that

W1x0 +B1 =








W1,1

W2,1
...

WM,1







x0 +








B1,1

B2,1
...

BM,1








=








W1,1x0 +B1,1

W2,1x0 +B2,1
...

WM,1x0 +BM,1







. (71)

12



This implies that

x1 = Ak⊞1
(W1x0 +B1) =








x1,1
x2,1
...

xM,1







. (72)

This proves the base case. Next, for the induction step let n ∈ [2, H ] ∩ N and assume that
xn−1 = (x1,n−1, x2,n−1, . . . , xM,n−1). Then (66) and the induction hypothesis ensure that

Wnxn−1 +Bn

=Wn








x1,n−1

x2,n−1
...

xM,n−1








+Bn =








W1,n 0 0 0
0 W2,n 0 0

0 0
. . . 0

0 0 0 WM,n















x1,n−1

x2,n−1
...

xM,n−1








+








B1,n

B2,n
...

BM,n








=








W1,nx1,n−1 +B1,n

W2,nx2,n−1 +B2,n
...

WM,nxM,n−1 +BM,n







.

(73)

This yields that

xn = Ak⊞n
(Wnxn−1 +Bn) =








x1,n
x2,n
...

xM,n







. (74)

This proves the induction step. Induction now proves for all n ∈ [1, H ] ∩ N that xn =
(x1,n, x2,n, . . . , xM,n). This, the definition of R (see (33)–(35)), and (67) imply that

(R(ψ))(x0) =WH+1xH +BH+1

=WH+1








x1,H
x2,H
...

xM,H








+BH+1 =
(
h1W1,H+1 . . . hMWM,H+1

)








x1,H
x2,H
...

xM,H








+

[
M∑

i=1

hiBi,H+1

]

=

[
M∑

i=1

hiWi,H+1xi,H

]

+

[
M∑

i=1

hiBi,H+1

]

=

M∑

i=1

hi (Wi,H+1xi,H +Bi,H+1)

=
M∑

i=1

hi(R(φi))(x0).

(75)

This, the fact that x0 ∈ Rp was arbitrary, and (62) yield that

R(ψ) =
M∑

i=1

hiR(φi) =
M∑

i=1

hifi. (76)

This and (70) show that

M∑

i=1

hifi ∈ R
({

Φ ∈ N : L(Φ) =
M

⊞
i=1

ki

})

. (77)

The proof of Lemma 3.9 is thus completed.
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3.2 Multilevel Picard approximations

Lemma 3.10. Assume Setting 3.1, let d,M ∈ N, T, c ∈ (0,∞), f ∈ C(R,R), g ∈ C(Rd,R),
Φf ,Φg ∈ N satisfy that R(Φf ) = f , R(Φg) = g, and

c ≥ max
{
2, ‖L(Φf)‖∞ , ‖L(Φg)‖∞

}
, (78)

let (Ω,F ,P) be a probability space, let Θ =
⋃

n∈N Z
n, let uθ : Ω → [0, 1], θ ∈ Θ, be independent

random variables which are uniformly distributed on [0, 1], let Uθ : [0, T ] × Ω → [0, T ], θ ∈ Θ,
satisfy for all t ∈ [0, T ], θ ∈ Θ that Uθ

t = t + (T − t)uθ, let W θ : [0, T ] × Ω → R

d, θ ∈ Θ,
be independent standard Brownian motions with continuous sample paths, assume that (uθ)θ∈Θ
and (W θ)θ∈Θ are independent, let Uθ

n,M : [0, T ]×Rd × Ω → R, n,M ∈ Z, θ ∈ Θ, be functions
such that for all n ∈ N, θ ∈ Θ, t ∈ [0, T ], x ∈ Rd it holds that Uθ

−1,M(t, x) = Uθ
0,M (t, x) = 0 and

Uθ
n,M(t, x) =

1

Mn

Mn
∑

i=1

g
(
x+W

(θ,0,−i)
T −W

(θ,0,−i)
t

)

+
n−1∑

l=0

(T − t)

Mn−l





Mn−l
∑

i=1

(
f ◦ U (θ,l,i)

l,M − 1
N

(l)f ◦ U (θ,−l,i)
l−1,M

)(

U (θ,l,i)
t , x+W

(θ,l,i)

U(θ,l,i)
t

−W
(θ,l,i)
t

)



 ,

(79)

and let ω ∈ Ω. Then for all n ∈ N0 there exists a family (Φθ
n,t)θ∈Θ,t∈[0,T ] ⊆ N such that

i) it holds for all t1, t2 ∈ [0, T ], θ1, θ2 ∈ Θ that

L
(
Φθ1

n,t1

)
= L

(
Φθ2

n,t2

)
, (80)

ii) it holds for all t ∈ [0, T ], θ ∈ Θ that

dim
(
L
(
Φθ

n,t

))
= n

(

dim (L (Φf ))− 1
)

+ dim (L (Φg)) and
∥
∥L(Φθ

n,t)
∥
∥
∞ ≤ c(3M)n,

(81)

and

iii) it holds for all θ ∈ Θ, t ∈ [0, T ] that

Uθ
n,M(t, ·, ω) = R(Φθ

n,t). (82)

Proof of Lemma 3.10. We prove Lemma 3.10 by induction on n ∈ N0. For the base case
n = 0 note that the fact that ∀t ∈ [0, T ], θ ∈ Θ: Uθ

0,M(t, ·) = 0, the fact that the function
0 can be represented by a network with depth dim (L (Φg)), and (78) imply that there exists
(Φθ

0,t)θ∈Θ,t∈[0,T ] ⊆ N such that it holds for all t1, t2 ∈ [0, T ], θ1, θ2 ∈ Θ that L
(
Φθ1

0,t1

)
= L

(
Φθ2

0,t2

)

and such that it holds for all θ ∈ Θ, t ∈ [0, T ] that dim
(
L(Φθ

0,t)
)
= dim (L (Φg)),

∥
∥L(Φθ

0,t)
∥
∥
∞ ≤

‖L(Φg)‖∞ ≤ c, and Uθ
0,M(t, ·, ω) = R(Φθ

0,t). This proves the base case n = 0.
For the induction step from n ∈ N0 to n + 1 ∈ N let n ∈ N0 and assume that Item (i)–

Item (iii) hold true for all k ∈ [0, n] ∩ N0. The assumption that g = R(Φg) and Lemma 3.7
(applied with d = d, m = 1, λ = 1, a = 0, b = W θ

T (ω) −W θ
t (ω), and Ψ = Φg for θ ∈ Θ,

t ∈ [0, T ] in the notation of Lemma 3.7) show for all θ ∈ Θ, t ∈ [0, T ] that

g
(
·+W θ

T (ω)−W θ
t (ω)

)
= (R(Φg))

(
·+W θ

T (ω)−W θ
t (ω)

)

∈ R
({

Φ ∈ N : L(Φ) = L(Φg)
})

.
(83)

Furthermore, Lemma 3.6 (applied with H = (n + 1) (dim (L(Φf ))− 1) − 1 in the notation of
Lemma 3.6) ensures that

Id
R

∈ R
({

Φ ∈ N : L(Φ) = n(n+1)(dim(L(Φf ))−1)+1

})

. (84)
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This, (83), and Lemma 3.8 (applied with d1 = d, d2 = 1, d3 = 1, f = Id
R

, u = g
(
· +W θ

T (ω)−
W θ

t (ω)
)
, α = n(n+1)(dim(L(Φf ))−1)+1, and β = L(Φg) for θ ∈ Θ, t ∈ [0, T ] in the notation of

Lemma 3.8) show that for all θ ∈ Θ, t ∈ [0, T ] it holds that

g
(
·+W θ

T (ω)−W θ
t (ω)

)
∈ R

({

Φ ∈ N : L(Φ) = n(n+1)(dim(L(Φf ))−1)+1 ⊙L(Φg)

})

. (85)

Next, the induction hypothesis implies for all θ ∈ Θ, t ∈ [0, T ], l ∈ [0, n] ∩N0 that

Uθ
l,M(t, ·, ω) = R(Φθ

l,t) and L
(
Φθ

l,t

)
= L

(
Φ0

l,0

)
. (86)

This and Lemma 3.7 (applied with

d = d, m = 1, a = 0, b = W θ
Uθ
t (ω)

(ω)−W θ
t (ω), and

Ψ = Φη

l,Uθ
t (ω)

for θ, η ∈ Θ, t ∈ [0, T ], l ∈ [0, n] ∩N0

(87)

in the notation of Lemma 3.7) imply that for all θ, η ∈ Θ, t ∈ [0, T ], l ∈ [0, n]∩N0 it holds that

Uη
l,M

(

Uθ
t (ω), ·+W θ

Uθ
t (ω)

(ω)−W θ
t (ω), ω

)

=
(

R
(
Φη

l,Uθ
t (ω)

))(

·+W θ
Uθ
t (ω)

(ω)−W θ
t (ω)

)

∈ R
({

Φ ∈ N : L(Φ) = L
(

Φη

l,Uθ
t (ω)

)})

= R
({

Φ ∈ N : L(Φ) = L
(
Φ0

l,0

)
})

.

(88)

Moreover, Lemma 3.6 (applied with H = (n− l) (dim (L(Φf ))− 1)− 1 for l ∈ [0, n− 1]∩N0 in
the notation of Lemma 3.6) ensures for all l ∈ [0, n− 1] ∩N0 that

Id
R

∈ R
({

Φ ∈ N : L(Φ) = n(n−l)(dim(L(Φf ))−1)+1

})

. (89)

This, (88), and Lemma 3.8 (applied with

d1 = d, d2 = 1, d3 = 1, f = Id
R

, α = n(n−l)(dim(L(Φf ))−1)+1,

β = L
(
Φ0

l,0

)
, and u = Uη

l,M

(

Uθ
t (ω), ·+W θ

Uθ
t (ω)

(ω)−W θ
t (ω), ω

)

for η, θ ∈ Θ, t ∈ [0, T ], l ∈ [0, n− 1] ∩N0

(90)

in the notation of Lemma 3.8) prove for all η, θ ∈ Θ, t ∈ [0, T ], l ∈ [0, n− 1] ∩N0 that

Uη
l,M

(

Uθ
t (ω), ·+W θ

Uθ
t (ω)

(ω)−W θ
t (ω), ω

)

∈ R
({

Φ ∈ N : L(Φ) = n(n−l)(dim(L(Φf ))−1)+1 ⊙L(Φ0
l,0)

})

.
(91)

This and Lemma 3.8 (applied with

d1 = d, d2 = 1, d3 = 1, f = f, α = L(Φf ),

β = n(n−l)(dim(L(Φf ))−1)+1 ⊙ L(Φ0
l,0), and u = Uη

l,M

(

Uθ
t (ω), ·+W θ

Uθ
t (ω)

(ω)−W θ
t (ω), ω

)

for η, θ ∈ Θ, t ∈ [0, T ], l ∈ [0, n− 1] ∩N0

(92)

in the notation of Lemma 3.8) assure for all η, θ ∈ Θ, t ∈ [0, T ], l ∈ [0, n− 1] ∩N0 that

(
f ◦ Uη

l,M

) (

Uθ
t (ω), ·+W θ

Uθ
t (ω)

(ω)−W θ
t (ω), ω

)

∈ R
({

Φ ∈ N : L(Φ) = L(Φf)⊙ n(n−l)(dim(L(Φf ))−1)+1 ⊙L(Φ0
l,0)

})

.
(93)
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Next, (88) (applied with l = n) and Lemma 3.8 (applied with

d1 = d, d2 = 1, d3 = 1, f = f, α = L(Φf), β = L
(
Φ0

n,0

)
, and

u =
(
Uη
n,M

) (

Uθ
t (ω), ·+W θ

Uθ
t (ω)

(ω)−W θ
t (ω), ω

)

for η, θ ∈ Θ, t ∈ [0, T ]
(94)

in the notation of Lemma 3.8) prove for all η, θ ∈ Θ, t ∈ [0, T ] that

(
f ◦ Uη

n,M

) (

Uθ
t (ω), ·+W θ

Uθ
t (ω)

(ω)−W θ
t (ω), ω

)

∈ R
({

Φ ∈ N : L(Φ) = L(Φf )⊙L(Φ0
n,0)

})

.
(95)

Furthermore, the definition of ⊙ in (37) and the fact that

∀l ∈ [0, n] ∩N0 : dim
(
L(Φ0

l,0)
)
= l (dim (L (Φf))− 1) + dim (L (Φg)) (96)

in the induction hypothesis imply that

dim
(

n(n+1)(dim(L(Φf ))−1)+1 ⊙ L(Φg)
)

=
[

(n + 1)
(

dim (L(Φf))− 1
)

+ 1
]

+ dim (L (Φg))− 1

= (n + 1)
(

dim (L(Φf))− 1
)

+ dim (L (Φg)) ,

(97)

that

dim
(
L(Φf )⊙ L(Φ0

n,0)
)
= dim (L(Φf )) + dim

(
L(Φ0

n,0)
)
− 1

= dim (L(Φf )) +
[

n
(

dim (L (Φf ))− 1
)

+ dim (L (Φg))
]

− 1

= (n+ 1)
(

dim (L(Φf))− 1
)

+ dim (L (Φg)) ,

(98)

and for all l ∈ [0, n− 1] ∩N0 that

dim
(

L(Φf )⊙ n(n−l)(dim(L(Φf ))−1)+1 ⊙ L(Φ0
l,0)
)

= dim (L(Φf )) + dim
(

n(n−l)(dim(L(Φf ))−1)+1

)

+ dim
(
L(Φ0

l,0)
)
− 2

= dim (L(Φf )) +
[

(n− l)
(

dim (L(Φf))− 1
)

+ 1
]

+
[

l
(

dim (L (Φf ))− 1
)

+ dim (L (Φg))
]

− 2

= dim (L(Φf )) + n
(

dim (L(Φf ))− 1
)

+ dim (L (Φg))− 1

= (n+ 1)
(

dim (L(Φf ))− 1
)

+ dim (L (Φg)) .

(99)

This shows, roughly speaking, that the functions in (85), (95), and (93) can be represented by
networks with the same depth (i.e. number of layers): (n+1)(dim (L(Φf ))− 1)+dim (L (Φg)).
Hence, Lemma 3.9 and (79) imply that there exists a family (Φθ

n+1,t)θ∈Θ,t∈[0,T ] ⊆ N such that
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for all θ ∈ Θ, t ∈ [0, T ], x ∈ Rd it holds that

(
R(Φθ

n+1,t)
)
(x)

=
1

Mn+1

Mn+1
∑

i=1

g
(
x+W

(θ,0,−i)
T (ω)−W

(θ,0,−i)
t (ω)

)

+
(T − t)

M

M∑

i=1

(

f ◦ U (θ,n,i)
n,M

)(

U (θ,n,i)
t (ω), x+W

(θ,n,i)

U(θ,n,i)
t (ω)

(ω)−W
(θ,n,i)
t (ω), ω

)

+
n−1∑

l=0

(T − t)

Mn+1−l

Mn+1−l
∑

i=1

(

f ◦ U (θ,l,i)
l,M

)(

U (θ,l,i)
t (ω), x+W

(θ,l,i)

U(θ,l,i)
t (ω)

(ω)−W
(θ,l,i)
t (ω), ω

)

−
n∑

l=1

(T − t)

Mn+1−l

Mn+1−l
∑

i=1

(

f ◦ U (θ,−l,i)
l−1,M

)(

U (θ,l,i)
t (ω), x+W

(θ,l,i)

U(θ,l,i)
t (ω)

(ω)−W
(θ,l,i)
t (ω), ω

)

= Uθ
n+1,M(t, x, ω),

(100)

that

dim
(
L(Φθ

n+1,t)
)
= (n+ 1)(dim (L(Φf ))− 1) + dim (L (Φg)) , (101)

and that

L(Φθ
n+1,t) =

(
Mn+1

⊞
i=1

[

n(n+1)(dim(L(Φf ))−1)+1 ⊙ L(Φg)
])

⊞

(
M

⊞
i=1

(
L (Φf )⊙ L

(
Φ0

n,0

))

)

⊞

(
n−1

⊞
l=0

Mn+1−l

⊞
i=1

[(

L(Φf)⊙ n(n−l)(dim(L(Φf ))−1)+1 ⊙ L(Φ0
l,0)
)
)

⊞

(
n

⊞
l=1

Mn+1−l

⊞
i=1

(

L(Φf)⊙ n(n−l+1)(dim(L(Φf ))−1)+1 ⊙ L(Φ0
l−1,0)

)]
)

.

(102)

This shows for all t1, t2 ∈ [0, T ], θ1, θ2 ∈ Θ that

L
(
Φθ1

n+1,t1

)
= L

(
Φθ2

n+1,t2

)
. (103)

Furthermore, (102), the triangle inequality (see Lemma 3.5), and the fact that

∀l ∈ [0, n] ∩N0 :
∥
∥L(Φ0

l,0)
∥
∥
∞ ≤ c(3M)l (104)

in the induction hypothesis show for all θ ∈ Θ, t ∈ [0, T ] that

∥
∥L(Φθ

n+1,t)
∥
∥
∞ ≤

Mn+1
∑

i=1

∥
∥
∥n(n+1)(dim(L(Φf ))−1)+1 ⊙ L(Φg)

∥
∥
∥
∞
+

M∑

i=1

∥
∥L(Φf)⊙ L(Φ0

n,0)
∥
∥
∞

+

n−1∑

l=0

Mn+1−l
∑

i=1

∥
∥
∥L(Φf)⊙ n(n−l)(dim(L(Φf ))−1)+1 ⊙ L(Φ0

l,0)
∥
∥
∥
∞

+

n∑

l=1

Mn+1−l
∑

i=1

∥
∥
∥L(Φf)⊙ n(n−l+1)(dim(L(Φf ))−1)+1 ⊙ L(Φ0

l−1,0)
∥
∥
∥
∞
.

(105)

Note that for all H1, H2, α0, . . . , αH1+1, β0, . . . , βH2+1 ∈ N, α, β ∈ D with α = (α0, . . . , αH1+1),
β = (β0, . . . , βH2+1), α0 = βH2+1 = 1 it holds that ‖α⊙ β‖∞ ≤ max{‖α‖∞ , ‖β‖∞ , 2} (see (37)).
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This, (105), the fact that ∀H ∈ N : ‖nH+2‖∞ = 2 (see (41)), (78), and (104) prove that
∥
∥L(Φθ

n+1,t)
∥
∥
∞

≤
[
Mn+1
∑

i=1

c

]

+

[
M∑

i=1

c(3M)n

]

+





n−1∑

l=0

Mn+1−l
∑

i=1

c(3M)l



+





n∑

l=1

Mn+1−l
∑

i=1

c(3M)l−1





=Mn+1c+Mc(3M)n +

[
n−1∑

l=0

Mn+1−lc(3M)l

]

+

[
n∑

l=1

Mn+1−lc(3M)l−1

]

=Mn+1c

[

1 + 3n +

n−1∑

l=0

3l +

n∑

l=1

3l−1

]

=Mn+1c

[

1 +

n∑

l=0

3l +

n∑

l=1

3l−1

]

≤ cMn+1

[

1 + 2

n∑

l=0

3l

]

= cMn+1

[

1 + 2
3n+1 − 1

3− 1

]

= c(3M)n+1.

(106)

Combining (100), (101), (103), and (106) completes the induction step. Induction hence estab-
lishes Item (i)–Item (iii). The proof of Lemma 3.10 is thus completed.

4 Main result

Theorem 4.1. Let T, L ∈ (0,∞), B ∈ [2,∞), p, p̃ ∈ N, q ∈ N ∩ [2,∞), α, β ∈ [0,∞),
f ∈ C(R,R), for every d ∈ N let gd ∈ C(Rd,R), for every d ∈ N let νd : B(Rd) → [0, 1] be
a probability measure on (Rd,B(Rd)), for every d ∈ N let Ad : R

d → R

d be the function such
that for all x = (x1, . . . , xd) ∈ Rd it holds that

Ad(x) = (max{x1, 0}, . . . ,max{xd, 0}) , (107)

let N and D be the sets which satisfy

N =
⋃

H∈N

⋃

(k0,k1,...,kH ,kH+1)∈NH+2

H+1∏

n=1

(
R

kn×kn−1 ×Rkn
)

and D =
⋃

H∈N
N

H+2, (108)

let

P : N → N, L : N → D, and R : N →
⋃

k,l∈N
C(Rk,Rl) (109)

be the functions such that for all H ∈ N, k0, k1, . . . , kH , kH+1 ∈ N,

Φ = ((W1, B1), . . . , (WH+1, BH+1)) ∈
H+1∏

n=1

(
R

kn×kn−1 ×Rkn
)
, (110)

x0 ∈ Rk0 , . . . , xH ∈ RkH with ∀n ∈ N ∩ [1, H ] : xn = Akn(Wnxn−1 +Bn) it holds that

P(Φ) =
H+1∑

n=1

kn(kn−1 + 1), L(Φ) = (k0, k1, . . . , kH, kH+1),

R(Φ) ∈ C(Rk0 ,RkH+1), and (R(Φ))(x0) =WH+1xH +BH+1,

(111)

for every ε ∈ (0, 1], d ∈ N let Φf
ε ,Φ

gd
ε ∈ N , assume for all d ∈ N, v, w ∈ R, x ∈ R

d,
ε ∈ (0, 1] that R(Φf

ε ) ∈ C(R,R), R(Φgd
ε ) ∈ C(Rd,R),

∣
∣(R(Φf

ε ))(w)− (R(Φf
ε ))(v)

∣
∣ ≤

L |w − v|,
∣
∣(R(Φf

ε ))(0)
∣
∣ ≤ B, |(R(Φgd

ε ))(x)| ≤ Bdp(1 + ‖x‖)p,
∣
∣f(v)− (R(Φf

ε ))(v)
∣
∣ ≤ εB(1 +

|v|q), |gd(x)− (R(Φgd
ε ))(x)| ≤ εBdp(1 + ‖x‖)pq, max

{∥
∥L(Φf

ε )
∥
∥
∞ , ‖L(Φgd

ε )‖∞
}

≤ dpε−αB,

max
{
dim

(
L
(
Φf

ε

))
, dim (L (Φgd

ε ))
}
≤ dpε−βB, and

(∫

R

d ‖y‖2pq νd(dy)
)1/(2pq) ≤ Bdp̃. Then

18



i) for every d ∈ N there exists a unique continuous function ud : [0, T ]× Rd → R such that
for every x ∈ Rd, for every s ∈ [0, T ], for every probability space (Ω,F ,P), and for every
standard Brownian motion W : [0, T ]×Ω → R

d with continuous sample paths it holds that

supt∈[0,T ] supy∈Rd

(
|ud(t,y)|
1+‖y‖p

)

<∞ and

ud(s, x) = E

[

gd (x+WT−s) +

∫ T

s

f (ud (t, x+Wt−s)) dt

]

(112)

and

ii) there exist (Ψd,ε)d∈N,ε∈(0,1] ⊆ N , η ∈ (0,∞), C : (0, 1] → (0,∞) such that for all d ∈ N,
ε ∈ (0, 1], γ ∈ (0, 1] it holds that

P(Ψd,ε) ≤ C(γ)dηε−(4+2α+β+γ), (113)

R(Ψd,ε) ∈ C(Rd,R), and

(∫

R

d

|ud(0, x)− (R(Ψd,ε))(x)|2 νd(dx)
)1/2

≤ ε. (114)

Proof of Theorem 4.1. First note that the triangle inequality, the fact that ∀v, w ∈
R, ε ∈ (0, 1] :

∣
∣(R(Φf

ε ))(w)− (R(Φf
ε ))(v)

∣
∣ ≤ L |w − v|, and the fact that ∀v ∈ R, ε ∈

(0, 1] :
∣
∣f(v)− (R(Φf

ε ))(v)
∣
∣ ≤ εB(1 + |v|q) imply for all v, w ∈ R, ε ∈ (0, 1] that

|f(w)− f(v)| ≤
∣
∣f(w)− (R(Φf

ε ))(w)
∣
∣+
∣
∣(R(Φf

ε ))(w)− (R(Φf
ε ))(v)

∣
∣+
∣
∣(R(Φf

ε ))(v)− f(v)
∣
∣

≤ εB(1 + |w|q) + L |w − v|+ εB(1 + |v|q).
(115)

This proves that for all v, w ∈ R it holds that

|f(w)− f(v)| ≤ L |w − v| . (116)

The triangle inequality, the fact that ∀ε ∈ (0, 1] :
∣
∣(R(Φf

ε ))(0)
∣
∣ ≤ B, and the fact that ∀ε ∈

(0, 1] :
∣
∣f(0)− (R(Φf

ε ))(0)
∣
∣ ≤ εB imply for all ε ∈ (0, 1] that

|f(0)| ≤
∣
∣f(0)− (R(Φf

ε ))(0)
∣
∣+
∣
∣(R(Φf

ε ))(0)
∣
∣ ≤ εB +B. (117)

This proves that
|f(0)| ≤ B. (118)

The triangle inequality, the fact that ∀d ∈ N, x ∈ Rd, ε ∈ (0, 1] : |(R(Φgd
ε ))(x)| ≤ Bdp(1+‖x‖)p,

and the fact that ∀d ∈ N, x ∈ Rd, ε ∈ (0, 1] : |gd(x)− (R(Φgd
ε ))(x)| ≤ εBdp(1 + ‖x‖)pq imply

for all d ∈ N, x ∈ Rd, ε ∈ (0, 1] that

|gd(x)| ≤ |gd(x)− (R(Φgd
ε ))(x)|+ |(R(Φgd

ε ))(x)| ≤ εBdp(1 + ‖x‖)pq +Bdp(1 + ‖x‖)p. (119)

This proves for all d ∈ N, x ∈ Rd that

|gd(x)| ≤ Bdp(1 + ‖x‖)p. (120)

Item (i) follows from Corollary 3.11 in [14] together with (116) and (120). It thus remains
to prove Item (ii). To this end let (Ω,F ,P) be a probability space, for every d ∈ N let
Wd : [0, T ] × Ω → R

d be a standard Brownian motion with continuous sample paths, let
Θ =

⋃

n∈NZ
n, let uθ : Ω → [0, 1], θ ∈ Θ, be independent random variables which are uniformly

distributed on [0, 1], let Uθ : [0, T ] × Ω → [0, T ], θ ∈ Θ, satisfy for all t ∈ [0, T ], θ ∈ Θ that
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Uθ
t = t+ (T − t)uθ, for every d ∈ N let W θ,d : [0, T ]×Ω → R

d, θ ∈ Θ, be independent standard
Brownian motions with continuous sample paths, assume for every d ∈ N that (uθ)θ∈Θ and
(W θ,d)θ∈Θ are independent, and let Uθ

n,M,d,δ : [0, T ]×Rd ×Ω → R, n,M ∈ Z, d ∈ N, δ ∈ (0, 1],

θ ∈ Θ, be functions such that for all d, n,M ∈ N, δ ∈ (0, 1], θ ∈ Θ, t ∈ [0, T ], x ∈ Rd it holds
that Uθ

−1,M,d,δ(t, x) = Uθ
0,M,d,δ(t, x) = 0 and

Uθ
n,M,d,δ(t, x) =

1

Mn

Mn
∑

i=1

(R(Φgd
δ ))
(
x+W

(θ,0,−i),d
T −W

(θ,0,−i),d
t

)

+

n−1∑

l=0

(T − t)

Mn−l

[
Mn−l
∑

i=1

(
(R(Φf

δ )) ◦ U
(θ,l,i)
l,M,d,δ − 1N(l)(R(Φf

δ )) ◦ U
(θ,−l,i)
l−1,M,d,δ

)

(

U (θ,l,i)
t , x+W

(θ,l,i),d

U(θ,l,i)
t

−W
(θ,l,i),d
t

)
]

,

(121)

let cd ∈ [1,∞), d ∈ N, be the real numbers that satisfy for all d ∈ N that

cd =
(
eLT (T + 1)

)q+1
((Bdp)q + 1)

[

1 +

(∫

R

d

‖x‖2pq νd(dx)
)1/(2pq)

+

(

E

[∥
∥Wd

T

∥
∥
pq
])1/(pq)

]pq

,

(122)
let kd,ε ∈ N, d ∈ N, ε ∈ (0, 1], be the natural numbers that satisfy for all d ∈ N, ε ∈ (0, 1] that

kd,ε = max
{∥
∥L(Φf

ε )
∥
∥
∞ , ‖L(Φgd

ε )‖∞ , 2
}
, (123)

let C̃ : (0,∞) → (0,∞] be the function that satisfies for all γ ∈ (0,∞) that

C̃(γ) = sup
n∈N∩[2,∞)

[

n(3n)2n
(√

e(1 + 2LT )√
n− 1

)(n−1)(4+γ)
]

, (124)

let Nd,ε ∈ N, d ∈ N, ε ∈ (0, 1], be the natural numbers that satisfy for all d ∈ N, ε ∈ (0, 1] that

Nd,ε = min

{

n ∈ N ∩ [2,∞) : cd

(√
e(1 + 2LT )√

n

)n

≤ ε

2

}

, (125)

and let δd,ε ∈ (0, 1], d ∈ N, ε ∈ (0, 1], be the real numbers that satisfy for all d ∈ N, ε ∈ (0, 1]
that δd,ε =

ǫ
4Bdpcd

.

Note that for all d ∈ N the random variable
∥
∥Wd

T/
√
T

∥
∥
2
is chi-squared distributed with d

degrees of freedom. This and Jensen’s inequality imply that for all d ∈ N it holds that

(
E
[∥
∥Wd

T

∥
∥
pq])2 ≤ E

[∥
∥Wd

T

∥
∥
2pq
]

= (2T )pq
Γ
(
d
2
+ pq

)

Γ
(
d
2

) = (2T )pq
pq−1
∏

k=0

(
d

2
+ k

)

. (126)

This implies for all d ∈ N that

(

E

[∥
∥Wd

T

∥
∥
pq
])1/(pq)

=

(

E

[∥
∥Wd

T

∥
∥
pq
])2/(2pq)

≤
√
2T

(
pq−1
∏

k=0

(
d

2
+ k

))1/(2pq)

≤
√

2T

(
d

2
+ pq − 1

)

.

(127)

This together with the fact that ∀d ∈ N :
(∫

R

d ‖x‖2pq νd(dx)
)1/(2pq) ≤ Bdp̃ implies that there

exist C̄ ∈ (0,∞) such that for all d ∈ N it holds that

cd ≤ C̄dpq

(

1 + dp̃ +
√
d

3

)pq

≤ C̄d(p̃+1)pq. (128)
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Next note that for all γ ∈ (0,∞) it holds that

C̃(γ) = sup
n∈N∩[2,∞)

[

n(3n)2n
(√

e(1 + 2LT )√
n− 1

)(n−1)(4+γ)
]

= sup
n∈N∩[2,∞)

[

(
√
e(1 + 2LT ))(n−1)(4+γ)n332n(n− 1)−(n−1)γ

2

(
n

n− 1

)2(n−1)
]

≤
[

sup
n∈N∩[2,∞)

[

(
√
e(1 + 2LT ))(n−1)(4+γ)n332n(n− 1)−(n−1)γ

2

]
] [

sup
n∈N∩[2,∞)

(
n

n− 1

)2(n−1)
]

<∞.

(129)

The fact that for all d ∈ N, v ∈ R, x ∈ Rd, ε ∈ (0, 1] it holds that
∣
∣f(v)− (R(Φf

ε ))(v)
∣
∣ ≤

εB(1+ |v|q) and |gd(x)− (R(Φgd
ε ))(x)| ≤ εBdp(1+ ‖x‖)pq implies for all d ∈ N, v ∈ R, x ∈ Rd,

ε ∈ (0, 1] that

max
{∣
∣f(v)− (R(Φf

ε ))(v)
∣
∣ , |gd(x)− (R(Φgd

ε ))(x)|
}
≤ max {εB(1 + |v|q), εBdp(1 + ‖x‖)pq}
≤ εBdp((1 + ‖x‖)pq + |v|q).

(130)

This, (116), (118), (120), the fact that for all d ∈ N, w, v ∈ R, x ∈ Rd, ε ∈ (0, 1] it holds that
∣
∣(R(Φf

ε ))(w)− (R(Φf
ε ))(v)

∣
∣ ≤ L |w − v|,

∣
∣(R(Φf

ε ))(0)
∣
∣ ≤ B, |(R(Φgd

ε ))(x)| ≤ Bdp(1 + ‖x‖)p,
and Corollary 2.4 (with f1 = f , f2 = R(Φf

δ ), g1 = gd, g2 = R(Φgd
δ ), L = L, δ = δBdp, B = Bdp,

W = Wd in the notation of Corollary 2.4), imply for all d,N,M ∈ N, δ ∈ (0, 1] that

(∫

R

d

E

[∣
∣U0

N,M,d,δ(0, x)− ud(0, x)
∣
∣
2
]

νd(dx)

)1/2

≤
(
eLT (T + 1)

)q+1
((Bdp)q + 1)

(

δBdp +
eM/2(1 + 2LT )N

MN/2

)

·





∫

R

d

(

1 + ‖x‖ +
(

E

[∥
∥Wd

T

∥
∥
pq
])

1
pq

)2pq

νd(dx)





1/2

. (131)

This and the triangle inequality prove for all d,N,M ∈ N, δ ∈ (0, 1] that

(∫

R

d

E

[∣
∣U0

N,M,d,δ(0, x)− ud(0, x)
∣
∣
2
]

νd(dx)

)1/2

≤
(
eLT (T + 1)

)q+1
((Bdp)q + 1)

(

δBdp +
eM/2(1 + 2LT )N

MN/2

)

·
[

1 +

(∫

R

d

‖x‖2pq νd(dx)
)1/(2pq)

+

(

E

[∥
∥Wd

T

∥
∥
pq
])1/(pq)

]pq

= cd

(

δBdp +
eM/2(1 + 2LT )N

MN/2

)

.

(132)
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This and Fubini’s theorem imply that for all d ∈ N, ε ∈ (0, 1] it holds that

E

[∫

R

d

∣
∣
∣U0

Nd,ε,Nd,ε,d,δd,ε
(0, x)− ud(0, x)

∣
∣
∣

2

νd(dx)

]

=

∫

R

d

E

[∣
∣
∣U0

Nd,ε,Nd,ε,d,δd,ε
(0, x)− ud(0, x)

∣
∣
∣

2
]

νd(dx)

≤



cdδd,εBd
p + cd

(√
e(1 + 2LT )
√
Nd,ε

)Nd,ε





2

≤
(ε

4
+
ε

2

)2

< ε2.

(133)

This implies that for all d ∈ N, ε ∈ (0, 1] there exists ωd,ε ∈ Ω such that
∫

R

d

∣
∣
∣U0

Nd,ε,Nd,ε,d,δd,ε
(0, x, ωd,ε)− ud(0, x)

∣
∣
∣

2

νd(dx) < ε2. (134)

Next, Lemma 3.10 shows that for all d ∈ N, ε ∈ (0, 1] there exists Ψd,ε ∈ N such that for all
x ∈ Rd it holds that R(Ψd,ε) ∈ C(Rd,R), (R(Ψd,ε))(x) = U0

Nd,ε,Nd,ε,d,δd,ε
(0, x, ωd,ε),

dim (L (Ψd,ε)) = Nd,ε

(

dim
(

L
(

Φf
δd,ε

))

− 1
)

+ dim
(

L
(

Φgd
δd,ε

))

, (135)

and

‖L(Ψd,ε)‖∞ ≤ kd,δd,ε(3Nd,ε)
Nd,ε. (136)

This and (134) prove (114). Moreover, this and (111) imply for all d ∈ N, ε ∈ (0, 1] that

P(Ψd,ε) ≤
dim(L(Ψd,ε))
∑

j=1

kd,δd,ε(3Nd,ε)
Nd,ε

(
kd,δd,ε(3Nd,ε)

Nd,ε + 1
)

≤ 2 dim (L (Ψd,ε)) k
2
d,δd,ε

(3Nd,ε)
2Nd,ε

= 2
(

Nd,ε

(

dim
(

L
(

Φf
δd,ε

))

− 1
)

+ dim
(

L
(

Φgd
δd,ε

)))

k2d,δd,ε(3Nd,ε)
2Nd,ε .

(137)

This together with the fact that ∀d ∈ N, ε ∈ (0, 1] : max
{∥
∥L(Φf

ε )
∥
∥
∞ , ‖L(Φgd

ε )‖∞
}
≤ dpε−αB

and the fact that ∀d ∈ N, ε ∈ (0, 1] : max
{
dim

(
L
(
Φf

ε

))
, dim (L (Φgd

ε )) , 1
}
≤ dpε−βB implies

for all d ∈ N, ε ∈ (0, 1] that kd,δd,ε ≤ dpδ−α
d,εB and that

P(Ψd,ε) ≤ 2
(

Nd,ε

(

dim
(

L
(

Φf
δd,ε

))

− 1
)

+ dim
(

L
(

Φgd
δd,ε

))) (
dpδ−α

d,εB
)2

(3Nd,ε)
2Nd,ε

≤ 4dpδ−β
d,εBd

2pδ−2α
d,ε B2Nd,ε(3Nd,ε)

2Nd,ε

= 4B3(4cdBd
p)2α+βd3pε−(2α+β)Nd,ε(3Nd,ε)

2Nd,ε .

(138)

It follows from (125) that for all d ∈ N, ε ∈ (0, 1] it holds that

ε ≤ 2cd

(√
e(1 + 2LT )
√
Nd,ε − 1

)Nd,ε−1

. (139)

This together with (138) implies that for all d ∈ N, ε ∈ (0, 1], γ ∈ (0, 1] it holds that

P(Ψd,ε) ≤ 4B2α+β+3(4cd)
2α+βd(2α+β+3)pε−(2α+β)Nd,ε(3Nd,ε)

2Nd,εε4+γε−(4+γ)

≤ 4B2α+β+3(4cd)
4+2α+β+γd(2α+β+3)pNd,ε(3Nd,ε)

2Nd,ε

(√
e(1 + 2LT )
√
Nd,ε − 1

)(Nd,ε−1)(4+γ)

ε−(4+2α+β+γ)

≤ 4B2α+β+3(4cd)
5+2α+βd(2α+β+3)p sup

n∈N∩[2,∞)

[

n(3n)2n
(√

e(1 + 2LT )√
n− 1

)(n−1)(4+γ)
]

ε−(4+2α+β+γ)

= 4B2α+β+3(4cd)
5+2α+βd(2α+β+3)pC̃(γ)ε−(4+2α+β+γ).

(140)
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Combining this with (128) and (129) proves (113). The proof of Theorem 4.1 is thus completed.
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