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Abstract

The aim of this paper is to understand the behaviour of a large number

of coupled subwavelength resonators. We use layer potential techniques in

combination with numerical computations to study the acoustic pressure

field due to scattering by a graded array of subwavelength resonators.

Our set-up is designed to model the structure of cochlear hair cells on

the surface of the basilar membrane. We compute the resonant modes

of the system and explore the model’s ability to decompose incoming sig-

nals. Significantly, we are able to offer a mathematical explanation for the

cochlea’s so-called “travelling wave” behaviour and tonotopic frequency

map.

Mathematics subject classification: 35R30, 35C20
Keywords: subwavelength resonance, cochlear mechanics, coupled resonators,
hybridisation, passive cochlea, signal processing

1 Introduction

The development of the understanding of the cochlea has largely been a di-
chotomy between two classes of models [11]. The first, proposed by Hermann
von Helmholtz in the 1850s, are based on resonators tuned to different audible
frequencies being distributed along the length of the cochlea [25]. Later, Georg
von Békésy demonstrated that when the cochlea is stimulated a wave travels
from the base to the apex along the basilar membrane [24]. This discovery won
him a Nobel Prize in 1961 and lead to the creation of models based on each
receptor cell being excited in sequence as the signal travels through the cochlea.

More recent developments have put Helmholtz’ resonance model back in the
spotlight by identifying bundles of cells known as inner hair cells as candidate
resonant elements. These cells are 20-70µm tall and are distributed along the
basilar membrane increasing in size from base to apex [15, 22]. It is now known
that the displacement of a hair cell bundle leads to a change in the distribution
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of electrical charge in the cell membrane [17], offering a mechanism for the
production of a signal in the auditory nerve.

It is also known that the cochlea is an active organ and emits sounds (known
as otoacoustic emissions) as part of its response to a signal [13, 18, 19]. We shall
only consider a passive system of resonators here, but will present a model that
can be readily modified to include active elements in future work.

In this paper, we apply boundary integral techniques to understand the
complex interactions between the hair cell bundles [5, 10]. A human cochlea has
around 3500 inner hair cells and is approximately 30mm long [20]. Compare this
to the wavelength of audible sound (a few centimetres to several metres) and
it is clear that complex interactions will occur between the resonant elements,
the mathematical complexity of which has been the main barrier to developing
Helmholtz’ resonance models.

In order to study the coupling interactions between hair cell bundles we will
model the acoustic pressure on the surface of the basilar membrane. We will
thus consider the problem of acoustic wave scattering by compressible elements
in two-dimensional space. In [12, Chap. 8] Bell presents a thorough discussion
of the evidence supporting modelling (living) hair cells as compressible elements
that have material parameters closer to that of air than water. In particular,
the high Poisson ratio of hair cells is cited as compelling evidence against the
assumption that hair cells are incompressible [1, §3.2.2]. The assumption that
there is a high contrast between both the material parameters of the cell bundles
and the cochlear fluid is central to our analysis. Similar techniques have previ-
ously been applied to other high-contrast materials that exhibit subwavelength
resonance, the classical example being the Minnaert resonance of air bubbles
in water [3, 5]. This analysis (in Sections 2.2 & 2.3) relies on the use of layer
potential techniques [4, 7, 9].

It is found that a graded array of hybridised resonators has a set of resonant
frequencies that becomes increasingly dense (within a finite range) as the num-
ber of resonators is increased. We study the eigenmodes and present a scheme
(in Section 2.4) for how the model processes incoming signals, filtering them
into the system’s resonant frequencies. Finally, in Sections 2.5 & 2.6 we present
the significant observations that our (resonance) model predicts the existence
of a travelling wave in the pressure field and a basis for the tonotopic map.
This acoustic pressure wave is complementary to the wave seen in the motion
of the basilar membrane by Békésy and has been observed experimentally [21].
It is important to note that these observations are based solely on modelling
the acoustic pressure on the surface of the basilar membrane, the motion of the
membrane itself is not considered in this work.
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Figure 1: An array of eight (circular) subdomains D = D1 ∪ · · · ∪ D8 graded in size and
arranged linearly along x2 = 0.

2 Response of the coupled resonators

2.1 Preliminaries

We consider a domainD in R
2 which is the disjoint union of N ∈ N bounded and

simply connected subdomains {D1, . . . , DN} such that, for each n = 1, . . . , N ,
there is 0 < s < 1 so that ∂Dn ∈ C1,s (that is, each ∂Dn is locally the graph of a
differentiable function whose derivatives are Hölder continuous with exponent s).
These disjoint subdomains represent the N hair cell bundles. We will consider
the bundles arranged in a straight line since the curvature of the cochlea does
not contribute to its mechanical behaviour [15]. Figure 1 shows an example of
such an arrangement (in the special case of circular subdomains, which we will
consider from Section 2.3 onwards).

We denote by ρb and κb the density and bulk modulus of the interior of the
cell bundles, respectively, and denote by ρ and κ the corresponding parameters
for the auditory fluid (which we assume occupies R2 \D).

We consider an incident acoustic pressure wave pin(x, t) (where x = (x1, x2) ∈
R

2 and t ∈ R) that is scattered by D. This problem is given by


































(

∇ · 1
ρ∇− 1

κ
∂2

∂t2

)

p = 0, for (x, t) ∈ R
2 \D × R,

(

∇ · 1
ρb
∇− 1

κb

∂2

∂t2

)

p = 0, for (x, t) ∈ D × R,

p+ − p− = 0, for (x, t) ∈ ∂D × R,
1
ρ

∂p
∂νx

∣

∣

+
− 1

ρb

∂p
∂νx

∣

∣

−
= 0, for (x, t) ∈ ∂D × R,

ps := p− pin = 0, for x ∈ R
2, t≪ 0,

(1)

where ∂
∂νx

denotes the outward normal derivative in x and the subscripts +
and - are used to denote evaluation from outside and inside ∂D respectively.

We then introduce the auxiliary parameters

v =

√

κ

ρ
, vb =

√

κb
ρb
, k =

ω

v
, kb =

ω

vb
,

which are the wave speeds and wavenumbers in R
2 \D and in D respectively.

We also introduce the two dimensionless contrast parameters

δ =
ρb
ρ
, τ =

kb
k

=
vb
v

=

√

ρκb
ρbκ

. (2)
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By rescaling the dimensions of the physical problem we can assume that

v = O(1), vb = O(1), τ = O(1). (3)

We also assume that the rescaled dimensions are such that the subdomains
{D1, . . . , DN} have widths that are O(1). On the other hand, we assume that
there is a large contrast between both the bulk moduli and the density, so that

δ ≪ 1. (4)

Such an assumption is explored at length in [12], relying on experimental de-
terminations of the Poisson ratio of hair cells.

We transform problem (1) into the complex frequency domain by making
the transformation u(x, ω) :=

∫∞

−∞
p(x, t)eiωt dt, ω ∈ C to reach































(

∆+ k2
)

u(x, ω) = 0, in R
2 \D,

(

∆+ k2b
)

u(x, ω) = 0, in D,

u+ − u− = 0, on ∂D,

δ ∂u
∂ν

∣

∣

+
− ∂u

∂ν

∣

∣

−
= 0, on ∂D,

us := u− uin satisfies the SRC, as |x| → ∞.

(5)

‘SRC’ is used to denote the Sommerfeld radiation condition

lim
|x|→∞

|x|1/2
(

∂

∂|x|
− ik

)

u(x, ω) = 0. (6)

The SRC is the condition required to ensure that we select the solution that is
outgoing (rather than incoming from infinity) and gives the well-posedness of
problem (5).

We wish to use layer potential representations for the solutions to the scat-
tering problem (5).

Definition 2.1. We define the Helmholtz single layer potential associated with
the domain D and wavenumber k as

Sk
D[ϕ](x) :=

∫

∂D

Γk(x− y)ϕ(y) dσ(y), x ∈ ∂D,ϕ ∈ L2(∂D), (7)

where Γk is the outgoing (i.e. satisfying the SRC) fundamental solution to the
Helmholtz operator ∆ + k2 in R

2. We similarly define the Neumann-Poincaré
operator associated with D and k as

Kk,∗
D [ϕ](x) =

∫

∂D

∂Γk(x− y)

∂νx
ϕ(y) dσ(y), x ∈ ∂D,ϕ ∈ L2(∂D). (8)

We can then represent the solution to (5) as

u =

{

uin(x) + Sk
D[ψ](x), x ∈ R

2\D,

Skb

D [φ](x), x ∈ D,
(9)
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for some surface potentials (φ, ψ) ∈ L2(∂D)× L2(∂D).
We define the space H1(∂D) := {u ∈ L2(∂D) : ∇u ∈ L2(∂D)} in the usual

way and use Id to denote the identity on L2(∂D). Then, using the representation
(9), problem (5) is equivalent [7, 9] to finding (φ, ψ) ∈ L2(∂D) × L2(∂D) such
that

A(ω, δ)

(

φ
ψ

)

=

(

uin

δ ∂uin

∂νx

)

, (10)

where

A(ω, δ) :=

[

Skb

D −Sk
D

− 1
2Id+Kkb,∗

D −δ( 12Id+Kk,∗
D )

]

. (11)

We now recall from e.g. [3, 4] the main result that will allow us to understand
the leading order behaviour of A in (10).

Lemma 2.2. In the space L(L2(∂D)× L2(∂D), H1(∂D)× L2(∂D)) we have

A(ω, δ) = A0 + ω2 lnωA1,1,0 + ω2A1,2,0 + δA0,1 +O(δω2 lnω) +O(ω4 lnω),

where

A0 :=

[

Ŝkb

D −Ŝk
D

− 1
2Id+K∗

D 0

]

,A1,1,0 :=

[

v−2
b S

(1)
D,1 −v−2S

(1)
D,1

v−2
b K

(1)
D,1 0

]

,

A1,2,0 :=

[

v−2
b (− ln vbS

(1)
D,1 + S

(2)
D,1) −v−2(− ln vS

(1)
D,1 + S

(2)
D,1)

v−2
b (− ln vbK

(1)
D,1 +K

(2)
D,1) 0

]

,

and

A0,1 :=

[

0 0
0 −( 12Id+K∗

D)

]

.

The above operators are defined as

SD[φ](x) :=
1

2π

∫

∂D

ln |x− y|φ(y) dσ(y),

Ŝk
D[φ](x) := SD[φ](x) + ηk

∫

∂D

φ dσ, ηk :=
1

2π
(ln k + γ − ln 2)−

i

4
,

S
(1)
D,1[φ](x) :=

∫

∂D

b1|x− y|2φ(y) dσ(y),

S
(2)
D,1[φ](x) :=

∫

∂D

b1|x− y|2 ln |x− y|φ(y) + c1|x− y|2φ(y) dσ(y),

K
(1)
D,1[φ](x) :=

∫

∂D

b1
∂|x− y|2

∂ν(x)
φ(y) dσ(y),

K
(2)
D,1[φ](x) :=

∫

∂D

b1
∂|x− y|2 ln |x− y|

∂ν(x)
φ(y) + c1

∂|x− y|2

∂ν(x)
φ(y) dσ(y),

where b1 := − 1
8π , c1 := − 1

8π (γ − ln 2 − 1 − iπ
2 ) and γ = 0.5772 . . . is the Euler

constant.
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The operator SD is the Laplace single layer potential associated with D.
Since we are working in two dimensions this is not generally invertible however
the following two lemmas help us understand the extent of its degeneracy.

Lemma 2.3. If for some φ ∈ L2(∂D) with
∫

∂D
φ = 0 it holds that SD[φ](x) = 0

for all x ∈ ∂D, then φ = 0 on ∂D.

Proof. The arguments given in [8, Lemma 2.25] can be easily generalised to
the case where D is the disjoint union of a finite number of bounded Lipschitz
domains in R

2.

Proposition 2.4. Independent of the number N ∈ N of connected components
making up D, we have that

dimkerSD ≤ 1.

Proof. Let ψ ∈ kerSD. Then by Lemma 2.3 if
∫

∂D
ψ = 0 then ψ = 0. Suppose

that
∫

∂D
ψ 6= 0 then take ψ̃ ∈ kerSD with

∫

∂D
ψ̃ 6= 0 and then consider the

function

f =
ψ

∫

∂D
ψ

−
ψ̃

∫

∂D
ψ̃
.

Then f satisfies SD[f ] = 0 and
∫

∂D
f = 0 so by Lemma 2.3 we have that f = 0.

Therefore ψ = (
∫

∂D
ψ/
∫

∂D
ψ̃)ψ̃.

There are two cases to consider, in light of Proposition 2.4:

• Case I: dimkerSD = 1,

• Case II: dimkerSD = 0.

By the Fredholm Alternative Theorem, an equivalent formulation is

• Case I: SD is not invertible,

• Case II: SD is invertible.

as an operator in L(L2(∂D), H1(∂D)). We are now in a position to prove an
important property of the operator Ŝk

D that was defined in Lemma 2.2 and is
the leading order approximation to Sk

D.

Lemma 2.5. For any fixed k ∈ C\{0}, Ŝk
D is invertible in L(L2(∂D), H1(∂D)).

Proof. Since Ŝk
D is Fredholm with index 0 we need only to show that it is

injective. To this end, assume that y ∈ L2(∂D) is such that

Ŝk
D[y] = SD[y] + ηk

∫

∂D

y = 0. (12)

Case I: Let ψ0 be the unique element of kerSD with
∫

∂D
ψ0 = 1 (which exists

as a result of Lemma 2.3). We then find that SD[y] ⊥ ψ0 in L2(∂D) and hence
(12) becomes

ηk

(∫

∂D

y

)(∫

∂D

ψ0

)

= 0.
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Thus
∫

∂D
y = 0. It follows from (12) that SD[y] = 0 and further by Lemma 2.3

we have that y = 0.
Case II: Define ψ0 = S−1

D (1) then (12) gives us that

SD[y] = −ηk

∫

∂D

y,

is constant so, since SD is injective, we find that y = cψ0 for some c. Substituting
back into (12) gives

c+ ηkc

∫

∂D

ψ0 = 0.

Everything here is real with the one exception of ηk (which has nonzero imagi-
nary part) so we must have that c = 0.

2.2 Resonant modes

Definition 2.6. For a fixed δ we define a resonant frequency to be ω ∈ C with
positive real part and negative imaginary part such that there exists a nontrivial
solution to

A(ω, δ)

(

φ
ψ

)

=

(

0
0

)

, (13)

where A(ω, δ) is defined in (11). For each resonant frequency ω we define the
corresponding eigenmode (or resonant mode or normal mode) as

u =

{

Sk
D[ψ](x), x ∈ R

2\D,

Skb

D [φ](x), x ∈ D.
(14)

Remark 2.7. The reason for the choices of sign in Definition 2.6 is to give a
physical meaning to a complex resonant frequency. The real part represents the
frequency of oscillation and the imaginary part describes the rate of attenuation
(hence it should be negative, to give a solution that decays over time).

Remark 2.8. We will see from Figure 4 that Definition 2.6 is equivalent to the
notion that resonant frequencies are those at which the system will oscillate at
much greater amplitude than is generally the case.

We wish to now compute the resonant frequencies and associated eigenmodes
for our system. Manipulating the first entry of (13) we find that

Ŝkb

D [φ]− Ŝk
D[ψ] = Ŝk

D[φ− ψ] +
1

2π
ln

v

vb

∫

∂D

φ,

hence

ψ = φ+
1

2π
ln

v

vb

(∫

∂D

φ

)

(Ŝk
D)−1[χ∂D] +O(ω2), (15)

since an application of (Ŝk
D)−1 rescales like O(1/ lnω). Here, χ∂D is used to

denote the characteristic function of ∂D.
To deal with the second component of (13) we first prove some technical

lemmas.
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Lemma 2.9. For any φ ∈ L2(∂D) and j = 1, . . . , N , we have that
(i)
∫

∂Dj
( 12I −K∗

D)[φ] = 0,

(ii)
∫

∂Dj
( 12I +K∗

D)[φ] =
∫

∂Dj
φ.

Proof. (i) follows from the jump relations for single layer potentials and the fact
SD[φ] is harmonic in D [8, 9]. Then (ii) is immediate.

Lemma 2.10. For any φ ∈ L2(∂D) and j = 1, . . . , N , we have that

(i)
∫

∂Dj
K

(1)
D,1[φ] = 4b1|Dj |

∫

∂D
φ,

(ii)
∫

∂Dj
K

(2)
D,1[φ] = −

∫

Dj
SD[φ] + (4b1 + 4c1)|Dj |

∫

∂D
φ,

where |Di| is the area of Di.

Proof. (i) follows from the divergence theorem

∫

∂Dj

K
(1)
D,1[φ](x) dσ(x) = b1

∫

Dj

∫

∂D

∆x|x− y|2φ(y) dσ(y) dx

= 4b1|Dj |

∫

∂D

φ(y) dσ(y).

Similarly for (ii) we can show that

∫

∂Dj

K
(2)
D,1[φ](x) dσ(x) =

∫

Dj

∫

∂D

∆x[|x− y|2(b1 ln |x− y|+ c1)]φ(y) dσ(y) dx

= −

∫

Dj

SD[φ](x) dx+ (4b1 + 4c1)|Dj |

∫

∂D

φ(y) dσ(y),

making use of the fact that b1 = −1/8π.

Turning now to the second component of (13) we see that

(

−
1

2
Id+K∗

D + v−2
b K

(1)
D,1ω

2 lnω + v−2
b (− ln vbK

(1)
D,1 + S

(2)
D,1)ω

2

)

[φ]

−δ(
1

2
Id+K∗

D)[ψ] = O(δω2 lnω) +O(ω4 lnω).

We substitute expression (15) for ψ to see that φ satisfies the equation

(

−
1

2
Id+K∗

D

)

[φ] +
(

v−2
b K

(1)
D,1ω

2 lnω + v−2
b (− ln vbK

(1)
D,1 +K

(2)
D,1)ω

2
)

[φ]

−δ(
1

2
Id+K∗

D)[φ]−
1

2π
δ ln

v

vb

(∫

∂D

φ

)(

1

2
Id+K∗

D

)

[

(Ŝk
D)−1[χ∂D]

]

= O(δω2 lnω) +O(ω4 lnω).

(16)

At leading order (16) is just (− 1
2Id + K∗

D)[φ] = 0 so it would be useful to
understand this kernel, which we achieve with the following two lemmas.
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Lemma 2.11. If φ ∈ L2(∂D) is such that φ ∈ ker(− 1
2Id+K∗

D) then there exist

constants bj such that SD[φ] =
∑N

j=1 bjX∂Dj
.

Proof. Let u := SD[φ]. Then ∆u = 0 in D and ∂u
∂ν

∣

∣

−
= (− 1

2Id+K∗
D)[φ] = 0 on

∂D (known as a “jump condition”) [7, 9] so u satisfies a homogeneous interior
Neumann problem on each of the N connected components D1, . . . , DN of D.
It is known that such problems are uniquely solvable up to the addition of a
constant.

Lemma 2.12. Fix some k0 ∈ C \ {0}. The set of vectors {ψ1, . . . , ψN} defined
as

ψi :=
(

Ŝk0

D

)−1

[X∂Di
], (17)

forms a basis for the space ker(− 1
2Id+K∗

D).

Proof. The linear independence of {ψ1, . . . , ψN} follows from the linearity and
injectivity of Ŝk0

D , plus the independence of {X∂D1
, . . . ,X∂DN

}.

For φ ∈ L2(∂D) the difference between Ŝk0

D [φ](x) and SD[φ](x) is a constant
(in x) so they will have the same derivatives. In particular, they are both
harmonic and satisfy the same jump conditions across ∂D. Therefore, using
arguments as in Lemma 2.11, we see that if φ ∈ ker(− 1

2Id+K∗
D) then Ŝk0

D [φ] ∈
span{X∂D1

, . . . ,X∂DN
}. Thus φ ∈ span{ψ1, . . . , ψN}.

From Lemma 2.12 we know that ker(− 1
2Id + K∗

D) has dimension equal to
the number of connected components of D (a wider discussion can be found in
e.g. [2]). Thus we can take a basis

{φ1, . . . , φN},

of the null space ker(− 1
2Id + K∗

D). Then, in light of the fact that at leading
order (16) is just (− 1

2Id + K∗
D)[φ] = 0, it is natural to seek a solution of the

form

φ =
N
∑

j=1

ajφj +O(ω2 lnω + δ), (18)

for some non-trivial constants aj with
∑

j |aj | = O(1). The solutions (φ, ψ) to
(13) are determined only up to multiplication by a constant (and hence so are
a1, . . . , aN ). We fix the scaling to be such that the eigenmodes are normalised
in the L2(D)-norm

‖u‖2L2(D) =

∫

D

|Skb

D [φ]|2 = 1. (19)

We now integrate (16) over each ∂Di, i = 1 . . . N and use the results of
Lemmas 2.9 and 2.10 to find that, up to an error of O(δω2 lnω) +O(ω4 lnω),
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B
(i)
δ (ω)[φ] :=

(∫

∂D

φ

)(

ω2 lnω +

((

1 +
c1
b1

− ln vb

)

−
SD[φ]|∂Di

4b1(
∫

∂D
φ)

)

ω2

)

−
v2b

4b1|Di|

[∫

∂Di

φ+
ln(v/vb)

2π

(∫

∂D

φ

)∫

∂Di

(Ŝk
D)−1[χ∂D]

]

δ = 0.

(20)

When we substitute the expression (18) for φ in (20) we find the system of
equations, up to an error of order O(δω2 lnω) +O(ω4 lnω),









B
(1)
δ (ω)[φ1] B

(1)
δ (ω)[φ2] . . . B

(1)
δ (ω)[φN ]

...
...

. . .
...

B
(N)
δ (ω)[φ1] B

(N)
δ (ω)[φ2] . . . B

(N)
δ (ω)[φN ]















a1
...
aN






= 0. (21)

Remark 2.13. Thanks to the linearity of the operators B
(i)
δ , the solutions ω(δ)

to (21) (as well as the associated eigenmodes) are independent of the choice of
basis {φ1, . . . , φN}.

Remark 2.14. One can think of the step where we integrated (16) over each
∂Di, for i = 1 . . . , N , to give (20) as the point where the hybridisation (between
the N resonators) was performed (see also e.g. [5]).

2.3 Numerical computations of resonant modes

In order to improve computational efficiency, we will assume from here onward
that the cell bundles are circular. This means that we can use the so-called
multipole expansion method, an explanation of which is provided in e.g. [6,
Appendix C]. The method relies on the idea that functions in L2(∂D) are, on
each circular ∂Di, 2π-periodic so we may approximate by the leading order
terms of a Fourier series representation. We found that as few as seven terms
was sufficient to give satisfactory results.

Using such an approach we can find, for each fixed δ > 0, the N values of
ω ∈ C such that there exists a nontrivial solution to (21). For the case where
N = 50 the results are shown in Figure 2. We see that there is a range of
frequencies where the (the real part of the) resonances occur most commonly.
As N is increased, the resonances become increasingly dense in this region. In
fact, with the current arrangement, this range of frequencies does not change as
N increases. Instead, the region becomes increasingly densely filled.

It is also seen from Figure 2 that the imaginary parts of the resonances
is smallest in the region where they are most dense. This means that these
frequencies experience the least significant attenuation, suggesting that tones in
this range will be most easily audible. The reason ω1 = 0.0002284− 0.0000526i
has been omitted from Figure 2 is due to its O(10−4) imaginary part. This is
not only inconvenient for plotting but also means that this resonant mode will
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Figure 2: The resonant frequencies, plotted in the complex plane, of a system of 50 bundles
arranged linearly with each being 1.05 times the size of the previous. The first resonance
ω1 = 0.0002284− 0.0000526i is omitted. We take δ = 1/7000 in this simulation.

suffer much greater attenuation and thus will be a less significant part of the
motion over time.

It is also important to understand the eigenmodes un associated with each
resonant frequency ωn. The six resonant modes for the case of six cell bundles
are shown in Figure 3. They take the form of increasingly oscillating patterns
that inherit the asymmetry of the resonator array.

It is also notable that the solution is approximately constant on each bundle.
This is because the solution, taking the form (9), is given by Ŝkb

D [φ] at leading
order which by Lemma 2.11 is constant for φ ∈ ker(− 1

2Id+K∗
D).

The choice of size factor 1.05 in Figures 2 & 3 is made purely for convenience.
In a real cochlea the number would be somewhat closer to 1 however, since we
lack the computational power to model the full organ (with several thousand hair
cells), a slightly larger value is used in order to make the observable behaviour
clearer to the reader. The data from [22] suggests that in a real cochlea this
value would be approximately† 1.0004.

2.4 Signal processing

We wish to offer an explanation of how, given an incident wave pin(x, t), our
system of coupled resonators is able to classify (and hence identify) the sound.
The system of resonators D is able to decompose the signal over its resonant
modes. It is clear that the N eigenmodes are linearly independent so we may
define the relevant N -dimensional solution spaces.

Definition 2.15. We define the N -dimensional spaces X and Y as

X := span{u1(x), . . . , uN (x)}, (22)

Y := span{u1(x)e
−iω1t, . . . , uN (x)e−iωN t}, (23)

†Based on the assumption that 3500 hair cells increase in size from 20µm to 70µm.
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Figure 3: The acoustic pressure eigenmodes u1, . . . , u6 for a system of six cell bundles arranged
linearly with each being 1.05 times the size of the previous (smallest on the left). Each pair of
plots corresponds to one of the six resonant frequencies. The upper plot shows a contour plot
of the function ℜun(x1, x2). The lower plot shows the cross section of this, taken along the
line x2 = 0 (i.e. through the centres of the bundles). The eigenmodes have been normalised
such that

∫
D

|un|2 dx = 1 for each n = 1, . . . , N .
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We will approximate the solution by a decomposition in the frequency do-
main. The fact that, for n = 1, . . . , N , the Fourier transform of e−iωnt for t > 0
is given by i/(ω − ωn) motivates us to employ the form

u(x, ω) ≃

N
∑

n=1

αn(ω)i

ω − ωn
un(x), (24)

where α1, . . . , αN are complex-valued functions of a real variable.
It is important to understand whether knowing the value of the solution on

each cell bundle (which is the information that a cochlea is able to capture)
means that one can recover the weight functions α1, . . . , αN in (24).

Remark 2.16. The eigenmodes u1, . . . , uN are not orthogonal in L2(D).†

Proposition 2.17. Let {ω1, . . . , ωN} be the resonances of the system D =
D1 ∪ . . . ∪ DN and denote by u1, . . . , uN the corresponding eigenmodes. Then
the matrix γ ∈ C

N×N defined by

γij :=

∫

D

ui(x)uj(x) dx i, j = 1 . . . N, (25)

is invertible.

Proof. We can apply the Gram-Schmidt procedure to produce a basis {v1, . . . , vN}
for X that is orthonormal with respect to (·, ·)L2(D). This procedure produces
a nonsingular lower triangular matrix P ∈ C

N×N such that (v1, . . . , vN )T =
P (u1, . . . , uN )T (superscript T denotes the matrix transpose). If we define
Q ∈ C

N×N as Q := P−1 then Q is also nonsingular and lower triangular.
We can then calculate that
[

u1 . . . uN
]T [

u1 . . . uN
]

= Q
[

v1 . . . vN
]T [

v1 . . . vN
]

Q
T
. (26)

Integrating (26) componentwise gives that, for i, j = 1, . . . , N , it holds that

γij =
[

QINQ
T
]

ij
, (27)

and thus
det(γ) = | det(Q)|2 > 0. (28)

In order to find the weight functions α1, . . . , αN in Equation (24) we must
take the L2(D)-product with un(x) for n = 1, . . . , N and then invert γ. This
gives that









α1(ω)i
ω−ω1

...
αN (ω)i
ω−ωN









= γ−1







(u(·, ω), u1)L2(D)

...
(u(·, ω), uN )L2(D)






. (29)

†It turns out however that they are nearly orthogonal. For example, the normalised
eigenmodes shown in Figure 3 satisfy (un, um)

L2(D) = O(10−3) for n 6= m.
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Figure 4: A system of six cell bundles filters an acoustic signal into the six resonant frequencies.
We consider a system of six linearly arranged circular cell bundles that increase in size by a
factor of 1.05 which is subjected to an incoming plane wave with frequency ωin. The first plot
shows how the norm of the solution u(x, ω) to (5) varies as a function of ωin. We then show
how each coefficient α1(ω1), . . . , αN (ωN ) in (30) varies. The six resonant frequencies of this
system are ω1 = 0.002752−0.000538i, ω2 = 0.008026−0.000009i, ω3 = 0.011659−0.000048i,
ω4 = 0.014703− 0.000004i, ω5 = 0.016976− 0.000009i, ω6 = 0.019096− 0.000004i.

Thanks to its representation (9) in terms of single layer potentials, u(·, ω) is
an analytic function of ω ∈ C. Thus, from (29) we can see that α1, . . . , αN are
analytic and hence we can recover a similar decomposition for p(x, t) using the
Laplace inversion theorem

p(x, t) ≃
1

2π

N
∑

n=1

un(x)

∫ ∞

−∞

αn(ω)i

ω − ωn
e−iωt dω

=

N
∑

n=1

un(x)αn(ωn)e
−iωnt, t > 0.

(30)

Example 2.18. pin(x, t) is a plane wave

We take as an example the case where pin(x, t) is a pulse of a plane wave with
frequency ωin ∈ R travelling in the x1 direction. This is given by

pin(x, t) = eiωin(x1/v−t), 0 < t < 1. (31)

This has Fourier transform

uin(x, ω) = 2e
i
2
(ω−ωin)sinc(ω − ωin)e

iωinx1/v. (32)

We can then compute α1(ω), . . . , αN (ω) as in (29).
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In Figure 4 we show firstly how the L2(D)-norm of the solution to the
scattering problem (5) varies as a function of ωin. As is expected, the response
is (locally) much greater when ωin is close to ℜ(ωn) for some n = 1, . . . , N . We
also show how the weights α1(ω1), . . . , αN (ωN ) in (30) vary as a function of ωin.
Each constant is small except in a region of the associated resonant frequency
when the corresponding eigenmode is excited most strongly.

Figure 5: Our graded resonance model exhibits
travelling wave behaviour in the pressure field.
We show the evolution over time of the acoustic
pressure p = p((x1, 0), t) scattered by 50 evenly
spaced circular cells (with size increasing by a
factor of 1.05 from left to right). The acous-
tic pressure is initially zero then the cells are
simultaneously excited at t = 0. We plot the
cross-section of the field along x2 = 0 (through
the centres of the cell bundles).

It should also be noted that
|αn(ωn)| decreases in n. If we con-
sidered higher order resonances the
corresponding constants would be sig-
nificantly smaller. This justifies our
choice to approximate p as an element
of Y in (30) (i.e. to only consider the
N subwavelength modes).

2.5 Travelling waves

In trying to resolve the differences be-
tween the two main classes of cochlear
model a crucial realisation is that our
(resonance) model for the acoustic
pressure exhibits the travelling wave
behaviour. This is easy to see in mod-
els based on graded arrays of uncou-
pled resonators, since a resonator’s re-
sponse time increases with decreasing
characteristic frequency [11, 16], but
is also true of our hybridised model.

While it is true that acoustic
waves enter the cochlea at the base
and travel through the fluid to the
apex, the wave observed by Békésy
moves much more slowly than this.
The speed of sound in cochlea fluid is
approximately 1500m s−1 whereas the
travelling wave is observed at speeds
close to 10m s−1[11, 14]. This justi-
fies the assumption that all the hair
cells are excited simultaneously by an
incoming signal (see e.g. [11]). Un-
der this assumption, exciting an ar-
ray initially at rest produces the evo-
lution shown in Figure 5, from which
the existence of a wave travelling from
the small high-frequency resonators
at the base of the cochlea to the larger
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low frequency resonators at the apex is clear. This wave is merely the movement
of the position of maximum acoustic pressure along the array of resonators. It
is a consequence of the asymmetric eigenmodes growing from rest at different
rates.

It is clear from Figure 5 that the amplitude initially increases before quickly
decreasing as the wave moves through the cochlea. This is notably consistent
with Békésy’s waves on the membrane [16, 24] and is to be expected in light
of the e−iωnt factors (ℑ(ωn) < 0) in (30). It is observed (in humans) that the
travelling wave slows down as it moves through the cochlea [14] which is also
witnessed in Figure 5: the position of the wave moves relatively little between
the third and fifth plots.

2.6 Tonotopic map

Von Békésy’s famous experiments further revealed the existence of a relationship
between signal frequency and the position in the cochlea where the sound is
most strongly detected. His results showed that the frequency f(x) giving rise
to maximum excitation at a distance x from the base of the cochlea satisfies a
tonotopic map of the form

f(x) = ae−x/d + c, (33)

for some a, d, c ∈ R [24]. In Figure 6 we show the relationship between the
position of maximum amplitude of each eigenmode and the associated resonant
frequency. We see that, if some of the lowest frequency modes are ignored,
the pattern follows a relationship that is approximately of the form (33) (with
a = 0.0126, d = −0.0117, c = 0.0060). The eigenmodes shown in Figures 6b-d
demonstrate the basis for the tonotopic map. Each features oscillations with a
clear peak followed by a rapid decrease in amplitude.

It is not clear why the lowest frequency modes (e.g. Figure 6a) do not fit
the pattern that is established by the majority of the eigenmodes, or what the
implications of this are. However the relatively large negative imaginary parts of
the associated resonant frequencies mean this phenomenon has a less significant
impact on the evolution of the acoustic pressure field.

The shape of the eigenmodes in Figures 6b-d further provides a basis for
the growth and then rapid decay of the travelling wave that was observed in
Figure 5.

16



a

b
c

d

(a) ω10 = 0.003803− 0.000003i (b) ω20 = 0.006122− 0.000001i

(c) ω30 = 0.007612− 0.000001i (d) ω40 = 0.01049− 0.000002i

Figure 6: The existence of a tonotopic map for a passive system of graded oscillators. The
top plot shows, for each eigenmode, the relationship between the real part of the associated
resonant frequency ℜω and the location (x1-coordinate) of the maximum amplitude. We study
the case of 50 cells, increasing in size by a factor of 1.05 from left to right. A (least squares)
approximation to the relationship exhibited by the blue points is shown, this has equation
0.0126e−0.0117x + 0.0060. The 17 orange points are excluded from this calculation.
(a)-(d) are the eigenmodes corresponding to the points marked on the top plot. We depict
the absolute value of each eigenmode |un| = |un(x1, 0)| along the line x2 = 0 (through the
centres of the cells). It should be noted that the eigenmodes quickly decrease to zero outside
of the region where the cells are located.
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3 Concluding remarks

In this paper, we have computed leading order approximations to the resonant
frequencies and associated eigenmodes for a system of coupled subwavelength
acoustic oscillators that are graded in size. This model has the ability to de-
compose incoming signals into these resonant modes. It is a significant obser-
vation that the graded resonance model predicts the travelling wave behaviour
in the acoustic pressure field, contributing to the unification of Helmholtz’ and
Békésy’s models [11].

On the other hand, it is well known that the cochlea is an active organ
[13, 18–20, 23]. For instance, a key feature that our current model lacks is the
ability to amplify quiet sounds more greatly than louder ones. Such nonlinear
amplification is needed in order to account for the ear’s remarkable ability to
hear sounds over a large range of amplitudes. In future work we will investigate
how introducing appropriate nonlinear forcing terms in (1) can produce the de-
sired amplification as well as further enhance the model’s frequency selectivity.
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