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Abstract

Approximation rate bounds for emulations of real-valued functions on intervals by deep neural networks
(DNNs for short) are established. The approximation results are given for DNNs based on ReLU activation
functions. The approximation error is measured with respect to Sobolev norms. It is shown that
ReLU DNNs allow for essentially the same approximation rates as nonlinear, variable-order, free-knot
(or so-called “hp-adaptive”) spline approximations and spectral approximations, for a wide range of
Sobolev and Besov spaces. In particular, exponential convergence rates in terms of the DNN size for
piecewise Gevrey functions with point singularities are established. Combined with recent results on
ReLU DNN approximation of rational, oscillatory, and high-dimensional functions, this corroborates
that continuous, piecewise affine ReLU DNNs afford algebraic and exponential convergence rate bounds
which are comparable to “best in class” schemes for several important function classes of high and infinite
smoothness.

Keywords: Deep neural networks, finite element methods, exponential covergence, Gevrey regularity,
singularities

Subject Classification: 41A25, 41A46, 65N30

1 Introduction

Recent years have seen a dramatic increase in the application of deep neural networks (DNNs for short)
in a wide range of problems. We mention only machine learning, including applications from speech
recognition to image classification [25]. In scientific computing, computational experiments with DNNs for
the numerical solution of partial differential equations (PDEs for short) have been reported to be strikingly
successful, in a wide range of applications (e.g. [3, 4, 16, 17, 22, 38, 49]). The present paper aims at
contributing to a mathematical understanding of these observations. Specifically, we investigate DNN
approximation rates of concrete architectures of DNNs for a number of widely used approximation spaces
in numerical analysis. We present DNN architectures with ReLU activation which emulate a wide range
of fixed- and free-knot spline approximations, spectral- and hp-approximations. Moreover, we will show
that the so-constructed DNNs yield approximation properties (algebraic, (sub)exponential) comparable
to the best available approximations with the same numbers of degrees of freedom. As (realizations of)
ReLU DNNs are continuous, piecewise affine functions, the presently proved results not only shed light
on the (exponential) expressive power of DNNs as compared to (possibly nonlinear) approximation rate
bounds, but conversely indicate exponential expressivity of iterated systems of classical (Courant-type)
linear spline spaces for piecewise analytic functions.

Early mathematical work on approximation by neural networks (NNs for short) focused on universality
results (e.g. [1, 2, 24, 41] and the references there). In these references, universality was established already
for so-called shallow NNs, thereby implying universality also for DNNs, for many activation functions.
These early universality results parallel, in a sense, density results for polynomial approximations such
as the Stone-Weierstrass theorem. Moreover, this universality of shallow NNs paradoxically led to the
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belief that depth in NN architectures would, in practice, be of little benefit. In recent years, dramatic
empirical evidence fuelled by the ubiquitous availability of massive computing power and training data
shattered this folklore [25]. At the same time, and in response, mathematical analysis started to address
the interplay of depth and architecture of DNNs with specific function classes and it was shown that
DNNs afford significant quantitative advantages over their shallow counterparts in terms of approximation
rates for a wide range of function spaces.

Among these are approximation rate bounds for analytic functions (e.g. [15, 32, 33]), differentiable
functions (e.g. [26, 54]), piecewise differentiable functions (e.g. [39]) and high-dimensional approximation
(e.g. [17, 47, 34]), oscillatory functions (e.g. [19]), cartoon functions in image segmentation (e.g. [20, 19]),
manifold approximation (e.g. [9, 48, 11]), rational function approximations (e.g. [50]), continuous,
piecewise affine finite elements [23], radial functions (e.g. [29, 10]), spatially sparse functions (e.g. [27])
and multivariate functions which have a sparse polynomial expansion (e.g. [43, 47]). The standard
approach employed in all the proofs of results above is to first demonstrate that DNNs are capable of
efficiently emulating other existing (linear or nonlinear) approximation architectures such as B-splines
(e.g. [32, 8]), wavelets (e.g. [5, 48]) and high degree polynomials (e.g. [26, 54, 43]). By this argument,
approximation rate bounds for these classical architectures are then transferred to DNN approximation.

Main Results

Most approximation theoretical results on DNNs assess approximation fidelity with respect to Lp norms,
p ∈ [1,∞]. However, in view of applications in numerical PDE approximation, it is more appropriate to
measure the accuracy of approximation with respect to Sobolev norms. Indeed, if the approximations
of the solution of a PDE have a small Lp-error but remain very rough, then any attempt to learn these
approximations to the solution of a PDE based on minimizing a derivative-based energy functional is
futile because the approximants produce an excessive energy.

In the present work, we study DNN approximation rate bounds of functions f ∈ W s,p([−1, 1]),
p ∈ [1,∞], s > 1 with respect to stronger Besov and Sobolev norms. Specifically, we establish ReLU
DNN approximation rate bounds in the strongest norms which are admissible by the ReLU activation.
As it is an important special case of wide interest, in Section 3 we address the ReLU DNN approximation
rates achieveable by emulation of continuous, piecewise linear functions.

For example, in Corollary 3.3 we establish ReLU approximation rate bounds in Besov norms Bs
′

q′,t′(I)
in the unit interval I = (0, 1) with weak differentiation order s′ ∈ (1, 2) (the precise range depending on
the summability and fine indices q, q′, t, t′ in the assumptions of these results). We emphasize that these
bounds hold for ReLU activations despite the nondifferentiability of the ReLU activation.

To extend these results to higher polynomial degrees, in Section 4, we address the ReLU DNN
emulation of polynomials with approximation rate bounds and NN size estimates which are explicit in
the polynomial degree. As we work with Taylor representations of polynomials, the sizes of weights in our
(constructive) NN emulations of polynomials tend to grow quickly with the polynomial degree, and the
presently obtained bounds may not be best suited for quantization of NNs.

In Section 5, we address ReLU DNN approximation rates for the emulation of so-called hp-finite
element spaces (corresponding to so-called “free-knot, variable degree” spline approximation). Here,
we obtain ReLU approximation rate bounds for analytic or Gevrey-regular functions in I = (0, 1) with
possibly a point singularity in I (or a finite number thereof). In Section 5.5, we finally address rates of
ReLU DNN emulation of so-called (exponential) “boundary layer functions” of the type x 7→ exp(−x/ε)
for x ∈ I with the length scale ε > 0 determined by physical parameters of the phenomenon of interest.
We show, based on the corresponding approximation result for finite elements in [46] in Theorem 5.14,
that ReLU DNNs afford exponential convergence rates which are uniform with respect to the boundary
layer scale parameter ε.

The present exposition is focussed on univariate results. Due to the closedness of ReLU NNs under
composition, their scope is considerably wider. To illustrate this, we demonstrate in Section 6 how our
univariate results imply straightforwardly ReLU NN approximation rates for multivariate, possibly radial
functions. Not only do the results in Section 6 constitute novel high-dimensional approximation rate
bounds, the proofs also outline a general recipe to relate all presently obtained approximation rate bounds
in the univariate setting to anisotropic radial basis function systems with corresponding high-dimensional
NN approximation rate results, with moderate (polylogarithmic in d) NN depth.

Based on these results, we then show that DNNs can emulate high-order h–FEM on general partitions
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of a bounded interval, as well as high-order, spectral and so-called p– and hp–FEM. In terms of the
NN size (“number of degrees of freedom” in finite element terminology) and from an approximation
theoretical point of view, ReLU DNNs perform as well as the best available finite element approximation
for a number of function classes which arise as solutions of elliptic (partial) differential equations. This
observation explains, to some extent, the at times dramatic success that deep learning methodologies
display in computational mathematics such as the aforementioned numerical approximations of PDEs.

Outline

The structure of this article is as follows: In Section 2, we start this exposition by presenting a formal
definition of a neural network as well as a formal description of some basic operations on neural networks.
In Section 3, we present—as a motivation—a simple connection between ReLU approximations and
continuous, piecewise affine (free-knot) spline approximation. Section 4 provides the emulation of
polynomials by ReLU networks as well as associated error estimates with respect to Sobolev norms. This
construction is then the basis for the emulation of a range of FE spaces in Section 5. In Section 6, we
extend these results to the multivariate setting of isotropic and anisotropic radial basis functions.

Notation

Throughout this paper, C denotes a generic constant which may be different at each appearance, even
within an equation. Dependence of C on parameters is indicated explicitly by C(·), e.g. C(η, θ).

For d ∈ N and for x, y ∈ R
d, 〈x, y〉 ∈ R denotes the standard Euclidean inner product on R

d. The
Euclidean norm on R

d is denoted by ‖x‖2,Rd .
When denoting the norm of a function, we will sometimes write the argument of the function explicitly.

For example, we will write
∥∥mxm−1 − f(x)

∥∥2
L2(I)

for m ∈ N, some bounded domain I and f ∈ L2(I).

Here, x ∈ I is the variable of integration.
For continuous, piecewise polynomial functions, we will use the following notation: Let T be a partition

of the interval I := (0, 1) with nodes 0 = x0 < x1 < . . . < xN−1 < xN = 1, elements Ii := (xi−1, xi) and
element sizes hi := xi − xi−1 for i ∈ {1, . . . , N}. Let h := maxi∈{1,...,N} hi. For a polynomial degree
distribution p = (pi)i∈{1,...,N} ⊂ N on T , we define the maximal degree pmax := maxNi=1 pi and the
corresponding approximation space

Sp(I, T ) := {v ∈ H1(I) : v|Ii ∈ Ppi(Ii) for all i ∈ {1, . . . , N}}.

For N, p ∈ N, we define the space of free-knot splines with less than N interior knots on I := (0, 1)
which are continuous, piecewise polynomial functions of degree p by

SNp (I) :=
⋃

{Sp(I, T ) : T partition of I with N elements} ,

where p = (p, . . . , p). These are often referred to as free-knot splines of degree p+ 1.

2 Neural Networks and ReLU Calculus

Following standard practice, we differentiate between a NN as a set of parameters and the so-called
realization of the network. The realization is an associated function resulting from repeatedly applying
affine linear transformations—defined through the parameters—and a so-called activation function,
denoted generically by ̺.

Definition 2.1. Let d, L ∈ N. A neural network Φ with input dimension d and L layers is a sequence of
matrix-vector tuples

Φ =
(
(A1, b1), (A2, b2), . . . , (AL, bL)

)
,

where N0 := d and N1, . . . , NL ∈ N, and where Aℓ ∈ R
Nℓ×Nℓ−1 and bℓ ∈ R

Nℓ for ℓ = 1, ..., L.
For a NN Φ and an activation function ̺ : R → R, we define the associated realization of the NN Φ as

R(Φ) : Rd → R
NL : x 7→ xL =: R(Φ)(x),
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where the output xL ∈ R
NL results from

x0 := x,

xℓ := ̺(Aℓ xℓ−1 + bℓ) for ℓ = 1, . . . , L− 1,

xL := AL xL−1 + bL.

Here ̺ is understood to act component-wise on vector-valued inputs, i.e., for y = (y1, . . . , ym) ∈ R
m,

̺(y) := (̺(y1), . . . , ̺(ym)). We call N(Φ) := d+
∑L
j=1Nj the number of neurons of the NN Φ, L(Φ) := L

the number of layers or depth, Mj(Φ) := ‖Aj‖ℓ0 + ‖bj‖ℓ0 the number of weights in the j-th layer, and
M(Φ) :=

∑L
j=1Mj(Φ) the number of weights of Φ, also referred to as its size. The number of weights in

the first layer is also denoted by Mfi(Φ), the number of weights in the last layer by Mla(Φ). We refer to
NL as the dimension of the output layer of Φ.

In this work, the only activation function that we will consider is the so-called rectified linear unit
(ReLU for short) defined by

̺ : R → R : x 7→ max{0, x}.
One fundamental ingredient of this work is to establish the approximation of piecewise polynomials by
deep ReLU neural networks. Our results will imply, in view of classical results on approximation by
continuous, piecewise polynomial functions, DNN expression rate bounds for functions in a collection
of classical function spaces, in particular of Sobolev, Besov, and Hölder type. We will accomplish this
construction of approximate piecewise polynomials by first demonstrating how to approximate certain
universal building blocks by realizations of DNNs. Then, we invoke a so-called calculus of ReLU NNs,
as introduced in [39]. This is a formal framework describing how to concatenate, parallelize, or extend
DNNs. Using this framework, we can assemble complex functions from the fundamental building blocks.

Below, we recall three results of [39] which also serve as definitions of the associated procedures. We
provide bounds on the number of weights in the first layer and in the last layer. They can be derived
from the definitions in [39]. We start with the concatenation of NNs.

Proposition 2.2 (NN concatenation [39, Remark 2.6] ). Let L1, L2 ∈ N, and let Φ1,Φ2 be two NNs of
respective depths L1 and L2 such that N1

0 = N2
L2

=: d, i.e., the input layer of Φ1 has the same dimension
as the output layer of Φ2.

Then, there exists a NN Φ1 ⊙ Φ2, called the sparse concatenation of Φ1 and Φ2, such that Φ1 ⊙ Φ2

has L1 + L2 layers, R(Φ1 ⊙ Φ2) = R(Φ1) ◦ R(Φ2),

Mfi(Φ
1 ⊙ Φ2) ≤

{
2Mfi(Φ

2) if L2 = 1,

Mfi(Φ
2) else,

Mla(Φ
1 ⊙ Φ2) ≤

{
2Mla(Φ

1) if L1 = 1,

Mla(Φ
1) else,

and

M
(
Φ1 ⊙ Φ2) ≤M

(
Φ1)+Mfi

(
Φ1)+Mla

(
Φ2)+M

(
Φ2) ≤ 2M

(
Φ1)+ 2M

(
Φ2) . (2.1)

The second fundamental operation on NNs is parallelization. This can be achieved with the following
construction.

Proposition 2.3 (NN parallelization [39, Definition 2.7] ). Let L, d ∈ N and let Φ1,Φ2 be two NNs with
L layers and with d-dimensional input each. Then there exists a network P(Φ1,Φ2) with d-dimensional
input and L layers, which we call the parallelization of Φ1 and Φ2, such that

R
(
P
(
Φ1,Φ2)) (x) =

(
R
(
Φ1) (x),R

(
Φ2) (x)

)
, for all x ∈ R

d,

M(P(Φ1,Φ2)) =M(Φ1) +M(Φ2), Mfi(P(Φ
1,Φ2)) =Mfi(Φ

1) +Mfi(Φ
2) and Mla(P(Φ

1,Φ2)) =Mla(Φ
1) +

Mla(Φ
2).

Proposition 2.3 only enables us to parallelize NNs of equal depth. To make two NNs have the same
depth one can extend the shorter of the two by concatenating with a network that implements the identity.
One possible construction of such a NN is presented next.

Proposition 2.4 (DNN emulation of Id [39, Remark 2.4] ). For every d, L ∈ N there exists a NN ΦId
d,L

with L(ΦId
d,L) = L, M(ΦId

d,L) ≤ 2dL, Mfi(Φ
Id
d,L) ≤ 2d and Mla(Φ

Id
d,L) ≤ 2d such that R(ΦId

d,L) = IdRd .

Finally, we sometimes require a parallelization of NNs that do not share inputs.
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Proposition 2.5 (Full parallelization of NNs with distinct inputs [17, Setting 5.2] ). Let L ∈ N and let

Φ1 =
((
A1

1, b
1
1

)
, . . . ,

(
A1
L, b

1
L

))
, Φ2 =

((
A2

1, b
2
1

)
, . . . ,

(
A2
L, b

2
L

))

be two NNs with L layers each and with input dimensions N1
0 = d1 and N2

0 = d2, respectively.
Then there exists a NN, denoted by FP(Φ1,Φ2), with d = d1+d2-dimensional input and L layers, which

we call the full parallelization of Φ1 and Φ2, such that for all x = (x1, x2) ∈ R
d with xi ∈ R

di , i = 1, 2

R
(
FP
(
Φ1,Φ2)) (x1, x2) =

(
R
(
Φ1) (x1),R

(
Φ2) (x2)

)
,

M(FP(Φ1,Φ2)) = M(Φ1) + M(Φ2), Mfi(FP(Φ
1,Φ2)) = Mfi(Φ

1) + Mfi(Φ
2) and Mla(FP(Φ

1,Φ2)) =
Mla(Φ

1) +Mla(Φ
2).

Proof. Set FP
(
Φ1,Φ2

)
:=
((
A3

1, b
3
1

)
, . . . ,

(
A3
L, b

3
L

))
where, for j = 1, . . . , L, we define

A3
j :=

(
A1
j 0
0 A2

j

)
and b3j :=

(
b1j
b2j

)
.

The four operations: concatenation, extension, parallelization with and without shared inputs; will be
used to assemble more complex networks out of fundamental building blocks.

3 ReLU Network Approximation and Linear Splines

In this section, we analyze the connection between shallow ReLU networks and linear splines. The goal of
this simple analysis is to identify the functional roles of the hidden parameters of a network. Concretely,
we will see that approximation by shallow ReLU networks, where one is only varying the parameters in the
output layer, corresponds to linear spline approximation with fixed nodes. On the other hand, an adaptive
choice of the internal parameters of a network corresponds to free-knot linear spline approximation. This
motivation highlights a first functional role of the hidden parameters. In Section 4 and after, we also
identify further, more high-level roles of hidden parameters for deeper networks such as controlling the
degree of the emulated polynomial approximation.

We begin by describing a network with exact emulation of continuous, piecewise affine-linear functions
on arbitrary partitions of I.

Lemma 3.1. For every partition T of I = (0, 1) with N elements and every v ∈ S1(I, T ) there exists a
NN Φv such that

R(Φv) = v, L (Φv) = 2, M (Φv) ≤ 3N + 1, Mfi (Φ
v) ≤ 2N, and Mla (Φ

v) ≤ N + 1. (3.1)

Proof. We set Φv := ((Av1 , b
v
1), (A

v
2 , b

v
2)) such that

Av1 := [1, . . . , 1]T ∈ R
N×1, bv1 := [−x0,−x1, . . . ,−xN−1]

T ∈ R
N , bv2 := v(x0) ∈ R,

and, for i ∈ {1, . . . , N},

Av2 ∈ R
1×N , (Av2)1,i :=

{
v(xi)−v(xi−1)

xi−xi−1
− v(xi−1)−v(xi−2)

xi−1−xi−2
if i > 1

v(xi)−v(xi−1)

xi−xi−1
if i = 1.

The claimed properties follow directly.

We remark that the (simple) construction (3.1) contains both, fixed-knot spline approximations, as
well as free-knot spline approximations. The former are obtained by constraining the NN parameters xj
in the hidden layer, the latter by allowing these hidden layer parameters to adapt during training of the
NN. Then, the NN (3.1) is “h-adaptive”, by design.

Lemma 3.1 can be combined with the following result on free-knot spline approximations. For
definitions and basic properties of Besov spaces we refer to [51, 52].
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Proposition 3.2 ([37, Theorem 3]). Let s < max{2, 1 + 1/q}, let 0 < q < q′ ≤ ∞ and 0 < s′ <
min{1+1/q′, s−1/q+1/q′}, and let 0 < t, t′ ≤ ∞. Then there exists a constant C := C(q, q′, t, t′, s, s′) > 0,
such that for every N ∈ N and every f ∈ Bsq,t(I) there exists hN ∈ SN1 (I) such that

∥∥∥f − hN
∥∥∥
Bs′

q′,t′
(I)

≤ CN−(s−s′)‖f‖Bs
q,t(I)

.

For comparison, the approximation error for fixed-knot continuous, piecewise linear spline approxima-
tion on uniform partitions is of the order O(N−(s−s′−1/q+1/q′)).

As a consequence of Proposition 3.2 and Lemma 3.1 we conclude the following corollary.

Corollary 3.3. Let s < max{2, 1 + 1/q}, let 0 < q < q′ ≤ ∞ and 0 < s′ < min{1 + 1/q′, s− 1/q+ 1/q′},
and let 0 < t, t′ ≤ ∞. Then for some C := C(q, q′, t, t′, s, s′) > 0, for every N ∈ N and every f ∈ Bsq,t(I)
there exists a NN ΦNf such that

∥∥∥f − R
(
ΦNf

)∥∥∥
Bs′

q′,t′
(I)

≤ C
(
M
(
ΦNf

))−(s−s′)
‖f‖Bs

q,t(I)
.

Corollary 3.3 shows that ReLU NNs achieve the same convergence rate in terms of the network size as
the convergence rate in terms of the number N of the partition size in Proposition 3.2.

The weights of the networks constructed in Lemma 3.1 have two types of degrees of freedom: first, the
weights depend nonlinearly on the nodes {xi}Ni=0 of the partition T . Second, the weights in the output
layer depend linearly on the function values {v(xi)}Ni=0.

Fixing the weights in the first layer corresponds to fixing the partition, i.e. optimizing only the weights
in the output layer corresponds to fixed-knot continuous, piecewise linear spline approximation. Exploiting
the linearity of the output layer, the weights of the output layer can be determined by linear optimization.

4 Emulation of Polynomials by ReLU Networks

In this section, we present an emulation of polynomials of arbitrary degrees by ReLU NNs. Here, we
analyze the approximation error with respect to Sobolev norms. In the sequel, it will prove to be important
to have control of the emulated polynomials on the end points of the reference interval. Therefore, we
present a construction of a polynomial emulation which is exact at the endpoints in Proposition 4.6.

The results below are based on a construction of DNNs emulating the multiplication function with
two-dimensional input which has been derived in [54]. We recall here a version of this result and provide
an estimate of the error with respect to the W 1,∞ norm, from [47], as required in approximation rate
bounds for PDEs.

Proposition 4.1 ( [47, Proposition 3.1] [54, Proposition 3] ). There exist constants CL, C
′
L, CM , C

′
M > 0

such that, for every κ > 0 and δ ∈ (0, 1/2), there exists a NN ×̃δ,κ with two-dimensional input and such
that

sup
|a|,|b|≤κ

∣∣ab− R
(
×̃δ,κ

)
(a, b)

∣∣ ≤ δ and

esssup
|a|,|b|≤κ

max

{∣∣∣∣a−
d

db
R
(
×̃δ,κ

)
(a, b)

∣∣∣∣ ,
∣∣∣∣b−

d

da
R
(
×̃δ,κ

)
(a, b)

∣∣∣∣
}

≤ δ,

where d/da and d/db denote weak derivatives. Furthermore, for every κ > 0 and for every δ ∈ (0, 1/2)

M
(
×̃δ,κ

)
≤ CM

(
log2

(
max{κ, 1}

δ

))
+ C′

M and L
(
×̃δ,κ

)
≤ CL

(
log2

(
max{κ, 1}

δ

))
+ C′

L.

Moreover, for all a, b ∈ R,

R
(
×̃δ,κ

)
(a, 0) = R

(
×̃δ,κ

)
(0, b) = 0. (4.1)

We now prove results on the approximation of polynomials on the reference interval Î := (−1, 1) by
realizations of NNs, using the networks from Proposition 4.1.
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Proposition 4.2. For each n ∈ N0 and each polynomial v ∈ Pn([−1, 1]), such that v(x) =
∑n
ℓ=0 ṽℓx

ℓ,
for all x ∈ [−1, 1] with C0 :=

∑n
ℓ=2 |ṽℓ|, there exist NNs {Φvβ}β∈(0,1) with input dimension one and output

dimension one which satisfy

∥∥v − R(Φvβ)
∥∥
W1,∞(Î)

≤β,

R(Φvβ)(0) = v(0),

L(Φvβ) ≤CL(1 + log2(n)) log2(C0/β) +
1
3
CL(log2(n))

3 + C(1 + log2(n))
2,

M(Φvβ) ≤ 4CMn log2(C0/β) + 8CMn log2(n) + 4CL(1 + log2(n))
2 log2(C0/β) + C(1 + n),

Mfi(Φ
v
β) ≤ 4 log2(n) + 4,

Mla(Φ
v
β) ≤ 4n+ 2

if C0 > β. If C0 ≤ β the same estimates hold, but with C0 replaced by 2β.

Remark 4.3. As will become apparent in the proof, for given n ∈ N0 only the weights {ṽℓ}nℓ=0 in the
output layer of Φvβ depend on v (which are the Legendre coefficients of v, depending linearly on v). Due to
the linearity of the output layer of NNs (cf. Definition 2.1), the approximation depends linearly on v. In
particular, the network weights depend continuously on v with respect to the L2(Î)-norm, hence also with
respect to stronger norms such as the L∞(Î)-norm.

Remark 4.4. An alternative approach for the expression of polynomials by ReLU NNs, is to use networks
of finite width, as proposed for example in [54, 15]. Both the networks constructed in these references and
the network from Proposition 4.2 have network size bounds growing only logarithmically in the accuracy,
and are of the order O(n log n) in terms of the polynomial degree n. For finite width networks, the network
size is proportional to the depth. Here, by allowing varying widths, we obtain smaller bounds on the
network depth.

To prove the proposition, we use the following technical lemma. For k ∈ N, this lemma produces a
tree-structured network with 2k−1 + 1 outputs, which correspond to high-order monomials of degrees
2k−1, ..., 2k. This network is constructed by repeatedly applying the product network introduced in
Proposition 4.1.

Lemma 4.5. For every k ∈ N there exist NNs {Ψkδ}δ∈(0,1) with input dimension one and output dimension

2k−1 + 1 such that with X̃ℓ
δ := R(Ψkδ )1+ℓ−2k−1 for ℓ ∈ {2k−1, . . . , 2k} it holds that

R(Ψkδ )(x) =
(
X̃2k−1

δ (x), . . . , X̃2k

δ (x)
)
, x ∈ Î ,

∥∥∥xℓ − X̃ℓ
δ(x)

∥∥∥
W1,∞(Î)

≤ δ, ℓ ∈ {2k−1, . . . , 2k}, (4.2)

X̃ℓ
δ(0) = 0, ℓ ∈ {2k−1, . . . , 2k}, (4.3)

L(Ψkδ ) ≤CL
(
1
3
k3 + 2k2 + k log2(1/δ)

)
+ (4CL + C′

L + 1)k, (4.4)

C1 := 7CM + C′
M + Cfi + 1

2
Cla + 8,

C2 := 2C′
L + 8CL + 8,

M(Ψkδ ) ≤ 2CMk2
k + CM2k log2(1/δ) + 2kCL log2(1/δ)

+ C12
k + 2

3
CLk

3 + 3CLk
2 + C2k, (4.5)

Mfi(Ψ
k
δ ) ≤Cfi + 2, (4.6)

Mla(Ψ
k
δ ) ≤Cla2

k−1 + 2. (4.7)

Proof. We prove the lemma by induction over k ∈ N.
Induction basis. For arbitrary δ ∈ (0, 1) let L1 := L(×̃δ/2,1), let A := [1, 1]⊤ be a 2× 1-matrix and let

×̃δ/2,1 =: ((A1, b1), . . . , (AL1 , bL1)) according to Proposition 4.1. Then we define

Ψ1
δ := P

(
ΦId

1,L1
, ((A1A, b1), . . . , (AL1 , bL1))

)
.

For all x ∈ Î it holds that X̃1
δ (x) := [R(Ψ1

δ)(x)]1 = x and X̃2
δ (x) := [R(Ψ1

δ)(x)]2 = R(×̃δ/2,1)(x, x), which
with (4.1) shows that Equation (4.3) holds for k = 1.
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We now estimate the depth and the size of Ψ1
δ .

L(Ψ1
δ) =L1 ≤ CL log2(2/δ) + C′

L,

M(Ψ1
δ) =M(ΦId

1,L1
) +M(((A1A, b1), . . . , (AL1 , bL1)))

≤ 2L1 +
(
CM log2(2/δ) + C′

M

)

≤
(
2CL + CM

)
log2(2/δ) + 2C′

L + C′
M ,

Mfi(Ψ
1
δ) =Mfi(Φ

Id
1,L1

) +Mfi(((A1A, b1), . . . , (AL1 , bL1)))

≤Cfi + 2,

Mla(Ψ
1
δ) =Mla(Φ

Id
1,L1

) +Mla(((A1A, b1), . . . , (AL1 , bL1)))

≤Cla + 2.

Finally, it follows from Proposition 4.1 that

∣∣∣x2 − X̃2
δ (x)

∣∣∣
W1,∞(Î)

≤
∥∥2x− [D×̃δ/2,1]1(x, x)− [D×̃δ/2,1]2(x, x)

∥∥
L∞(Î)

≤ δ
2
+ δ

2
= δ,

∥∥∥x2 − X̃2
δ (x)

∥∥∥
W1,∞(Î)

≤ δ,

where the last inequality follows from Poincaré’s inequality and Equation (4.3). This shows that Equation
(4.2) holds for k = 1. This finishes the proof of the induction hypothesis.

Induction hypothesis (IH). For some δ ∈ (0, 1) and some k ∈ N define θ := 2−k−3δ and assume that
there exists a network Ψkθ for which Equations (4.2)–(4.7) hold with θ instead of δ.

Induction step. We show that Equations (4.2)–(4.7) hold with δ as in (IH) and with k+1 instead of k.
We note that, for all ℓ ∈ {2k−1, . . . , 2k},

∥∥∥X̃ℓ
θ

∥∥∥
L∞(Î)

≤
∥∥∥xℓ
∥∥∥
L∞(Î)

+
∥∥∥xℓ − X̃ℓ

θ(x)
∥∥∥
W1,∞(Î)

≤ 1 + θ < 2. (4.8)

Hence, we may use X̃ℓ
θ(x) as input of ×̃θ,2. For Φ1,k and Φ2,k

δ introduced below, we define

Ψk+1
δ := Φ2,k

δ ⊙ Φ1,k ⊙Ψkθ . (4.9)

Here, Φ1,k is a NN of depth one which implements the linear map

R
2k−1+1 → R

2k+1+1 :
(
z1, . . . , z2k−1+1) 7→ (z2k−1+1, z1, z2, z2, z2, z2, z3, z3, z3, z3, z4, z4, z4,

. . . , z2k−1 , z2k−1+1, z2k−1+1, z2k−1+1

)
.

The network ((A1,k, b1,k)) := Φ1,k satisfies b1,k = 0 and

(A1,k)m,i =





1 if m = 1, i = 2k−1 + 1,

1 if m ∈ {2, . . . , 2k+1 + 1}, i = ⌈m+2
4

⌉,
0 else.

Moreover,

L(Φ1,k) = 1, Mfi(Φ
1,k) =Mla(Φ

1,k) =M(Φ1,k) ≤ 1 + 2k+1.

With Lθ := L(×̃θ,2) we define the network Φ2,k
δ as

Φ2,k
δ := FP

(
ΦId

1,Lθ
, ×̃θ,2, . . . , ×̃θ,2

)
,
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which contains 2k ×̃θ,2-networks. It holds that

L(Φ2,k
δ ) =L(×̃θ,2) ≤ CL

(
log2(2/θ)

)
+ C′

L

=CL
(
k + 4 + log2(1/δ)

)
+ C′

L,

M(Φ2,k
δ ) ≤M(ΦId

1,Lθ
) + 2kM(×̃θ,2)

≤ 2L(×̃θ,2) + 2kM(×̃θ,2)
≤ (2CL + CM2k) log2(2/θ) + 2C′

L + C′
M2k

≤ (2CL + CM2k)(k + 4 + log2(1/δ)) + 2C′
L + C′

M2k,

Mfi(Φ
2,k
δ ) =Mfi(Φ

Id
1,Lθ

) + 2kMfi(×̃θ,2)
≤Cfi2

k + 2,

Mla(Φ
2,k
δ ) =Mla(Φ

Id
1,Lθ

) + 2kMla(×̃θ,2)
=Cla2

k + 2.

The realization of Ψk+1
δ , defined in Equation (4.9), is given by

[R(Ψk+1
δ )(x)]1 = X̃2k

θ (x), for x ∈ Î , (4.10)

[R(Ψk+1
δ )(x)]ℓ+1−2k = R(×̃θ,2)

(
X̃

⌈ℓ/2⌉
θ (x), X̃

⌊ℓ/2⌋
θ (x)

)
, for x ∈ Î , ℓ ∈ {2k + 1, . . . , 2k+1}. (4.11)

We define, for x ∈ Î and ℓ ∈ {2k + 1, . . . , 2k+1}

X̃ℓ
δ(x) := [R(Ψk+1

δ )(x)]ℓ+1−2k .

Equation (4.3) for k + 1 follows from the induction hypothesis and Equations (4.1) and (4.11).
We bound the depth and the size of Ψk+1

δ .

L(Ψk+1
δ ) =L(Φ2,k

δ ) + L(Φ1,k) + L(Ψkθ)

≤
(
CL
(
k + 4 + log2(1/δ)

)
+ C′

L

)
+ 1

+
(
CL
(
1
3
k3 + 2k2 + k log2(2

k+3/δ)
)
+ (4CL + C′

L + 1)k
)

≤CL
(
1
3
(k + 1)3 + 2(k + 1)2 + (k + 1) log2(1/δ)

)
+ (4CL + C′

L + 1)(k + 1),

M(Ψk+1
δ ) ≤M(Φ2,k

δ ) +Mfi(Φ
2,k
δ ) +Mla(Φ

1,k ⊙Ψkθ) +M(Φ1,k ⊙Ψkθ)

≤M(Φ2,k
δ ) +Mfi(Φ

2,k
δ ) + 2Mla(Φ

1,k) +M(Φ1,k) +Mfi(Φ
1,k) +Mla(Ψ

k
θ) +M(Ψkθ)

≤
(
(2CL + CM2k)(k + 4 + log2(1/δ)) + 2C′

L + C′
M2k

)
+ (Cfi2

k + 2)

+ 2(1 + 2k+1) + (1 + 2k+1) + (1 + 2k+1) + (Cla2
k−1 + 2)

+
(
2CMk2

k + CM2k log2(2
k+3/δ) + 2kCL log2(2

k+3/δ) + C12
k + 2

3
k3CL + 3k2CL + C2k

)

≤ 2CM (k + 1)2k+1 + CM2k+1 log2(1/δ) + 2(k + 1)CL log2(1/δ)

+ C12
k+1 + 2

3
CL(k + 1)3 + 3(k + 1)2CL + C2(k + 1),

C1 := 7CM + C′
M + Cfi + 1

2
Cla + 8,

C2 := 2C′
L + 8CL + 8,

Mfi(Ψ
k+1
δ ) =Mfi(Ψ

k
θ) ≤ Cfi + 2,

Mla(Ψ
k+1
δ ) =Mla(Φ

2,k
δ ) = Cla2

k + 2.

This finishes the proof of Equations (4.4)–(4.7) for k + 1. We now estimate the NN expression error.
Because θ < δ, it follows from the induction hypothesis and Equation (4.10) that Equation (4.2) holds for
ℓ = 2(k+1)−1. For ℓ ∈ {2k + 1, . . . , 2k+1}, with ℓ0 := ⌈ℓ/2⌉, we use that, analogous to Equation (4.8), it
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holds that for m ∈ {ℓ0, ℓ− ℓ0}
∥∥∥X̃m

θ

∥∥∥
L∞(Î)

≤ 1 + θ < 2,

∥∥∥ d
dx
X̃m
θ (x)

∥∥∥
L∞(Î)

≤
∥∥mxm−1

∥∥
L∞(Î)

+
∥∥∥xm − X̃m

θ (x)
∥∥∥
W1,∞(Î)

≤ m+ θ < m+ 1.

We find
∣∣∣xℓ − X̃ℓ

δ(x)
∣∣∣
W1,∞(Î)

≤
∥∥∥ℓ0xℓ−1 − [DR(×̃θ,2)]1

(
X̃ℓ0
θ (x), X̃ℓ−ℓ0

θ (x)
)

d
dx
X̃ℓ0
θ (x)

∥∥∥
L∞(Î)

+
∥∥∥(ℓ− ℓ0)x

ℓ−1 − [DR(×̃θ,2)]2
(
X̃ℓ0
θ (x), X̃ℓ−ℓ0

θ (x)
)

d
dx
X̃ℓ−ℓ0
θ (x)

∥∥∥
L∞(Î)

≤
∥∥∥ℓ0xℓ0−1(xℓ−ℓ0 − X̃ℓ−ℓ0

θ (x)
)∥∥∥
L∞(Î)

+
∥∥∥X̃ℓ−ℓ0

θ (x)
(
ℓ0x

ℓ0−1 − d
dx
X̃ℓ0
θ (x)

)∥∥∥
L∞(Î)

+
∥∥∥
(
X̃ℓ−ℓ0
θ (x)− [DR(×̃θ,2)]1

(
X̃ℓ0
θ (x), X̃ℓ−ℓ0

θ (x)
))

d
dx
X̃ℓ0
θ (x)

∥∥∥
L∞(Î)

+
∥∥∥(ℓ− ℓ0)x

ℓ−ℓ0−1(xℓ0 − X̃ℓ0
θ (x)

)∥∥∥
L∞(Î)

+
∥∥∥X̃ℓ0

θ (x)
(
(ℓ− ℓ0)x

ℓ−ℓ0−1 − d
dx
X̃ℓ−ℓ0
θ (x)

)∥∥∥
L∞(Î)

+
∥∥∥
(
X̃ℓ0
θ (x)− [DR(×̃θ,2)]2

(
X̃ℓ0
θ (x), X̃ℓ−ℓ0

θ (x)
))

d
dx
X̃ℓ−ℓ0
θ (x)

∥∥∥
L∞(Î)

(4.8),(IH)

≤ ℓ0θ + 2θ + (ℓ0 + 1)θ + (ℓ− ℓ0)θ + 2θ + (ℓ− ℓ0 + 1)θ

≤ (2ℓ+ 6)θ ≤ δ,

where [DR(×̃δ,2)] is the Jacobian and where we have used that 3 ≤ ℓ ≤ 2k+1, which implies that 2ℓ+ 6 ≤
4ℓ ≤ 2k+3. Because X̃ℓ

δ(0) = 0 = 0ℓ it follows with Poincaré’s inequality that
∥∥∥xℓ − X̃ℓ

δ(x)
∥∥∥
W1,∞(Î)

≤ δ.

For k satisfying the induction hypothesis and arbitrary δ ∈ (0, 1), we have constructed Ψk+1
δ and

have shown that Equations (4.2)–(4.7) hold for k + 1 instead of k and with δ as in (IH). This finishes
the induction step. The lemma now follows by induction, as the induction basis shows the induction
hypothesis for k = 1.

Note that the number of consecutive concatenations in Ψkδ depends on k. Therefore, we have to use
the sharper bound in Equation (2.1) involving Mfi(·) and Mla(·). Using the second inequality in (2.1)
instead would introduce factors of 2, resulting in an extra k-dependent factor in the bound on the network
size.

Proof of Proposition 4.2. Below, we consider the case C0 > β. The proof of the case C0 ≤ β is analogous.
The distinction is needed to ensure that we do not invoke Lemma 4.5 with δ ≥ 1.

In case n ∈ {0, 1}, for all β ∈ (0, 1) we define Φvβ := ((A, b)), where A = ṽ1 ∈ R
1×1 and b = ṽ0 ∈ R

1.
It holds that

∥∥v − R(Φvβ)
∥∥
W1,∞(Î)

= 0, R(Φvβ)(0) = ṽ0 = v(0), L(Φvβ) = 1 and M(Φvβ) = Mfi(Φ
v
β) =

Mla(Φ
v
β) ≤ 2.

In case n ≥ 2, we define k := ⌈log2(n)⌉ and δ := β/C0 and use Lemma 4.5. Let {ℓj}kj=1 ⊂ R be such

that L
(
Ψkδ
)
+ 1 = L

(
Ψjδ
)
+ ℓj for j = 1, . . . , k, hence it holds that ℓj ≤ L

(
Ψkδ
)
. We define

Φvβ := Φ3,n ⊙ P
(
Ψ1
δ ⊙ ΦId

1,ℓ1 , . . . ,Ψ
k
δ ⊙ ΦId

k,ℓk

)
,

where Φ3,n is a NN which implements the affine map

R
2k+k−1 → R : (z1, . . . , z2k+k−1) 7→ ṽ0 + ṽ1z1 + ṽ2z2 +

k∑

j=2

2j∑

ℓ=2j−1+1

ṽℓzℓ+j−1.

It satisfies L(Φ3,n) = 1 and M(Φ3,n) =Mfi(Φ
3,n) =Mla(Φ

3,n) ≤ 2k + 1.
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The realization of Φvβ is

R(Φvβ)(x) = ṽ0 +

2k∑

ℓ=1

ṽℓX̃
ℓ
δ(x), x ∈ Î .

From Equation (4.3) we conclude that R(Φvβ)(0) = ṽ0 = v(0).

Using 2k ≤ 2n, we can bound the depth and the size of Φvβ as follows:

L
(
Φvβ
)
=L

(
Φ3,n)+ L

(
Ψkδ

)

≤ 1 +
(
CL
(

1
3
k3 + k log2

(
C0
β

))
+ Ck2

)

≤CL(1 + log2(n)) log2

(
C0
β

)
+ 1

3
CL log32(n) + C log22(n),

M
(
Φvβ
)
≤M

(
Φ3,n)+Mfi

(
Φ3,n)+

k∑

j=1

Mla

(
Ψjδ ⊙ ΦId

1,ℓj

)
+

k∑

j=1

M
(
Ψjδ ⊙ ΦId

1,ℓj

)

≤M
(
Φ3,n)+Mfi

(
Φ3,n)+

k∑

j=1

Mla

(
Ψjδ

)
+

k∑

j=1

M
(
Ψjδ

)
+

k∑

j=1

Mfi

(
Ψjδ

)
+

k∑

j=1

Mla

(
ΦId

1,ℓj

)

+
k∑

j=1

M
(
ΦId

1,ℓj

)

≤
(
2k + 1

)
+
(
2k + 1

)
+

k∑

j=1

(
2k−1Cla + 2

)

+

k∑

j=1

(
2CM j2

j + CM2j log2

(
C0

β

)
+ 2jCL log2

(
C0

β

)
+ C2j

)
+

k∑

j=1

(Cfi + 2)

+ 2k + 2k
(
CL
(

1
3
k3 + k log2

(
C0
β

))
+ Ck2

)

≤ 4CMn log2

(
C0

β

)
+ 8CMn log2(n) + 4CL(1 + log2(n))

2 log2

(
C0

β

)
+ Cn,

Mfi

(
Φvβ
)
=

k∑

j=1

Mfi

(
Ψjδ ⊙ ΦId

1,ℓj

)
≤

k∑

j=1

2Mfi

(
ΦId

1,ℓj

)
= 4k ≤ 4 log2(n) + 4,

Mla

(
Φvβ
)
=2Mla

(
Φ3,n) ≤ 4n+ 2.

Finally, we estimate the error.

∥∥v − R
(
Φvβ
)∥∥
W1,∞(Î)

≤
2k∑

ℓ=1

|ṽℓ|
∥∥∥xℓ − X̃ℓ

δ(x)
∥∥∥
W1,∞(Î)

≤
2k∑

ℓ=2

|ṽℓ|δ ≤ β.

This finishes the proof of the proposition.

Later, we will consider approximations of piecewise polynomial functions by realizations of NNs. For
the results in Section 5, it is important that we can approximate polynomials on an interval with exactness
in the endpoints. After subtracting an affine function, it suffices to approximate polynomials which vanish
at the endpoints by NNs the realizations of which vanish at the endpoints. This is the aim of the following
proposition.

In Section 5, we will mainly restrict our attention to estimates of the error in the H1-norm. The error
estimates in the following proposition are with respect to more general W 1,q′(Î) norms.

Proposition 4.6. [ReLU approximation rate bounds of polynomials of degree q in Î] For all q ∈ N≥2

and all w ∈ (Pq ∩H1
0 )(Î) there exist NNs (Φw,0ε )ε∈(0,1) with input dimension one and output dimension
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one which satisfy R(Φw,0ε )|
R\Î = 0 and for all 1 ≤ q′ ≤ ∞

∥∥w − R(Φw,0ε )
∥∥
W1,q′ (Î)

≤ 2
2
q′

−1
ε |w|H1(Î) ,

L
(
Φw,0ε

)
≤CL(1 + log2(q)) (2q + log2 (1/ε)) + CL log2 (1/ε) + C log32(q),

M
(
Φw,0ε

)
≤ 4CM

(
2q2 + q log2 (1/ε)

)
+
(
6CL (1 + log2(q))

2 + 2CM
)
log2 (1/ε)

+ Cq log22(q),

Mfi

(
Φw,0ε

)
≤ 4 log2(q) + 8,

Mla(Φ
w,0
ε ) =Cla.

In the hilbertian case q′ = 2 it holds that
∥∥w − R(Φw,0ε )

∥∥
H1(Î)

≤ ε |w|H1(Î).

Proof. The main observation in the proof is the fact that the polynomial w is divisible by ψ, known as
quadratic bubble function and defined by ψ(x) := (1 + x)(1 − x) = 1 − x2 for x ∈ Î and ψ(x) = 0 for
x ∈ R\Î. In addition, we use that ψ can be approximated with W 1,∞(Î)-error at most η > 0 by a NN Φψη
which satisfies R(Φψη )|R\Î = 0 and we approximate Q := w/ψ ∈ Pq−2(Î) using Proposition 4.2. We use
the product network from Proposition 4.1 to multiply the approximation of ψ with the approximation
of Q. In order to apply Proposition 4.2 for the approximation of Q, we need to bound the sum of the
absolute values of the Taylor coefficients of Q. In the first step of the proof we will derive such a bound.
In the second step we construct networks which satisfy the desired properties.

Step 1. We first estimate the sum of the absolute values of the Taylor coefficients of the L2(Î)-
normalized Legendre polynomials {Lj}j∈N0 . For j ∈ N0, it holds that Lj(x) =

∑j
ℓ=0 c

j
ℓx
ℓ for x ∈ R,

where, for ℓ ∈ N0 and m := (j − ℓ)/2, (see e.g. [18, Section 10.10, Equation (16)])

cjℓ :=





0 for j − ℓ ∈ {0, . . . , j} ∩ 2Z+ 1,

(−1)m2−j
(
j
m

)(
j+ℓ
j

)√
j + 1

2
for j − ℓ ∈ {0, . . . , j} ∩ 2Z,

0 for ℓ > j.

The sum of these coefficients can be estimated using the following inequalities (cf. [42]):

∀n ∈ N :
√
2πnn+

1
2 e−ne

1
12n+1 < n! <

√
2πnn+

1
2 e−ne

1
12n . (4.12)

In addition, we will use that for all j ∈ N and all m ∈ {0, . . . , ⌊j/2⌋}
(
2j − 2m

j

)
≤
(
2j − 2m

j

)
2m−1∏

i=0

2j − i

j − i
=

(
2j

j

)
.

It follows, from (4.12) that, for all j ∈ N,

(
2j

j

)
≤

√
2π(2j)2j+

1
2 e−2je

1
24j

√
2πjj+

1
2 e−je

1
12j+1

√
2πjj+

1
2 e−je

1
12j+1

≤ 4j√
πj

e
1

24j

e
2

12j+1

<
4j√
πj

and as a result that

j∑

ℓ=0

|cjℓ | =
∑

m∈{0,...,⌊j/2⌋}
|cjj−2m|

≤ 2−j
(

j∑

m=0

(
j

m

))
⌊j/2⌋
max
m=0

(
2j − 2m

j

)√
j +

1

2

≤
√
j +

1

2

(
2j

j

)
≤

4j
√
j + 1

2√
πj

≤ 4j . (4.13)
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We now consider a general polynomial v ∈ Pn of degree n ∈ N0. We denote the Legendre expansion of
v by v =

∑n
j=0 vjLj . We find the following expression for the Taylor expansion of v at x = 0:

v(x) =

n∑

j=0

vjLj(x) =

n∑

j=0

vj

j∑

ℓ=0

cjℓx
ℓ =

n∑

ℓ=0

(
n∑

j=0

vjc
j
ℓ

)
xℓ =:

n∑

ℓ=0

ṽℓx
ℓ, x ∈ Î .

It follows that

n∑

ℓ=0

|ṽℓ| =
n∑

ℓ=0

∣∣∣∣∣

n∑

j=0

vjc
j
ℓ

∣∣∣∣∣ ≤
(

n
max
j=0

|vj |
) n∑

ℓ=0

n∑

j=0

|cjℓ | =
(

n
max
j=0

|vj |
) n∑

j=0

(
n∑

ℓ=0

|cjℓ |
)

(∗)
≤ ‖v‖L2(Î)

n∑

j=0

4j ≤ 1
3
4n+1 ‖v‖L2(Î) . (4.14)

At (*) we used Equation (4.13) and

n
max
j=0

|vj | ≤
∥∥(vj)nj=0

∥∥
ℓ2

= ‖v‖L2(Î) . (4.15)

We now consider w ∈ (Pq ∩H1
0 )(Î) of degree q ≥ 2 and write w = ψQ, where Q ∈ Pq−2(Î). We recall

Hardy’s inequality: for all functions g ∈ H1((0, 1)) satisfying g(0) = 0, it holds that
∥∥∥ g(x)x

∥∥∥
L2((0,1))

≤
2 ‖g′‖L2((0,1)). It follows that

‖Q‖2L2(Î) =

∥∥∥∥
w(x)

1− x2

∥∥∥∥
2

L2(Î)

=

∥∥∥∥
w(x)

1− x2

∥∥∥∥
2

L2((−1,0))

+

∥∥∥∥
w(x)

1− x2

∥∥∥∥
2

L2((0,1))

≤
∥∥∥∥
w(x)

1 + x

∥∥∥∥
2

L2((−1,0))

+

∥∥∥∥
w(x)

1− x

∥∥∥∥
2

L2((0,1))

=

∥∥∥∥
w(y − 1)

y

∥∥∥∥
2

L2((0,1))

+

∥∥∥∥
w(1− z)

z

∥∥∥∥
2

L2((0,1))

≤ 22
∥∥w′(y − 1)

∥∥2
L2((0,1))

+ 22
∥∥w′(1− z)

∥∥2
L2((0,1))

= 22
∥∥w′∥∥2

L2((−1,0))
+ 22

∥∥w′∥∥2
L2((0,1))

=22 |w|2H1(Î) . (4.16)

Writing Q(x) =
∑q−2
ℓ=0 Q̃ℓx

ℓ for x ∈ Î, it follows from Equation (4.14) with v = Q, ṽℓ = Q̃ℓ and n = q − 2
that

q−2∑

ℓ=0

|Q̃ℓ| ≤ 1
6
4q |w|H1(Î) . (4.17)

We now estimate the W 1,∞(Î)-norm of Q. Writing Q =
∑q−2
j=0 QjLj it follows from Equation (4.15)

for v = Q and vj = Qj and from Equation (4.16) that for all j ∈ {0, . . . , q − 2}

|Qj | ≤ 2 |w|H1(Î) .

Using that for all j ∈ N0 : ‖Lj‖L∞(Î) =
√
j + 1/2 ≤ √

j + 1 ≤ 1 + j/2, we find

‖Q‖L∞(Î) ≤
q−2∑

j=0

|Qj | ‖Lj‖L∞(Î) ≤ 2 |w|H1(Î)

q−2∑

j=0

(1 + j
2
)

≤ 2 |w|H1(Î)

(
q − 1 +

(q − 1)(q − 2)

4

)
= 1

2

(
q2 + q − 2

)
|w|H1(Î) ≤ (q2 − 1) |w|H1(Î) .

By Markov’s inequality (e.g. [14, Chapter 4, Theorem 1.4]), we get

|Q|W1,∞(Î) ≤ (q − 2)2 ‖Q‖L∞(Î) ≤ (q − 2)2
(
q2 − 1

)
|w|H1(Î)

and hence, since q ≥ 2, ‖Q‖W1,∞(Î) ≤ (q4 − 1) |w|H1(Î).

Step 2. Let ε ∈ (0, 1). We first assume that |w|H1(Î) = 1 and define β := ε/36 and η := ε(12q4)−1.
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We write w = ψQ and approximate ψ by a NN whose realization is supported in Î. To approximate
Q we use ΦQβ from Proposition 4.2, with C0 ≤ 1

6
4q according to Equation (4.17). We will use that

∥∥∥R
(
ΦQβ

)∥∥∥
W1,∞(Î)

≤ ‖Q‖W1,∞(Î) + β ≤ (q4 − 1) |w|H1(Î) + β ≤ q4.

With the 2 × 2 identity matrix Id2, the vector c := (0, 0)⊤, the 2 × 1-matrix A := [1,−1]⊤ and
the vector b := (1, 1)⊤ we define Φψη := ×̃ η

2
,1 ⊙ ((Id2, c), (A, b)), which has realization R(Φψη )(x) =

R
(
×̃ η

2
,1

) (
̺(1 + x), ̺(1− x)

)
for x ∈ R. By Equation (4.1), it follows that R(Φψη )|R\Î = 0. It holds that

L(Φψη ) = CL log2(2/η) + C′
L + 2,

M(Φψη ) ≤M
(
×̃ η

2
,1

)
+Mfi

(
×̃ η

2
,1

)
+Mla(((Id2, c), (A, b))) +M(((Id2, c), (A, b)))

≤
(
CM log2

(
2

η

)
+ C′

M

)
+ Cfi + 2 + 6,

Mfi(Φ
ψ
η ) ≤Mfi(((Id2, c), (A, b))) = 4, and Mla(Φ

ψ
η ) = Cla. The error can be estimated as follows:

∣∣∣ψ − R(Φψη )
∣∣∣
W1,∞(Î)

=
∥∥∥ d

dx
ψ(x)− d

dx

(
R
(
×̃ η

2
,1

)
(1 + x, 1− x)

)∥∥∥
L∞(Î)

≤
∥∥∥
(
(1− x)−

[
DR

(
×̃ η

2
,1

)]

1
(1 + x, 1− x)

)
d
dx

(1 + x)
∥∥∥
L∞(Î)

+
∥∥∥
(
(1 + x)−

[
DR

(
×̃ η

2
,1

)]

2
(1 + x, 1− x)

)
d
dx

(1− x)
∥∥∥
L∞(Î)

≤ η
2
+ η

2
= η.

Because R(Φψη )(±1) = 0 = ψ(±1), it follows from Poincaré’s inequality that
∥∥ψ − R(Φψη )

∥∥
L∞(Î)

≤ η. As

a result,

∥∥∥R
(
Φψη

)∥∥∥
W1,∞(Î)

≤ ‖ψ‖W1,∞(Î) +
∥∥∥ψ − R

(
Φψη

)∥∥∥
W1,∞(Î)

≤ 2 + η ≤ 3.

We define

K := max{2, ‖Q‖L∞(Î) + β} ≤ max{2, (q2 − 1) |w|H1(Î) + β} ≤ max{2, q2} ≤ q2.

The last inequality holds because q ≥ 2. The definition of K is such that
∥∥R(Φψη )

∥∥
L∞(Î)

,
∥∥∥R(ΦQβ )

∥∥∥
L∞(Î)

≤

K. With L∗ := L(ΦQβ )− L(Φψη ) ≤ L(ΦQβ ), we define

Φw,0ε :=





×̃η,K ⊙ P
(
ΦQβ ,Φ

Id
1,L∗

⊙ Φψη

)
, for L∗ > 0,

×̃η,K ⊙ P
(
ΦQβ ,Φ

ψ
η

)
, for L∗ = 0,

×̃η,K ⊙ P
(
ΦId

1,−L∗
⊙ ΦQβ ,Φ

ψ
η

)
, for L∗ < 0.

By Equation (4.1) and the fact that R(Φψη )|R\Î = 0, it follows that R(Φw,0ε )|
R\Î = 0.

For the estimate on the network depth and the network size, we only need to consider the case L(ΦQβ ) >

L(Φψη ), for the following reason. We have two upper bounds: L(Φψη ) ≤ 4CL log2(q) + CL log2(1/ε) + C

and L(ΦQβ ) ≤ 2CLq(1 + log2(q)) + CL log2(q) log2(1/ε) + C(1 + log32(q)). In addition, by Propositions

2.2 and 2.4, it follows that we can increase the depth of the network ΦQβ such that ΦQβ still satisfies the
properties of Proposition 4.2, possibly with a larger universal constant in the estimate on the network size,
and such that L(ΦQβ ) ≥ C(log2(q))

3 for some C > 0. It then follows that L(ΦQβ ) > L(Φψη ) for sufficiently
large q ≥ 2. This implies that bounds on the size and the depth derived under the assumption that
L(ΦQβ ) > L(Φψη ) also hold in case L(ΦQβ ) ≤ L(Φψη ). The latter inequality only holds for finitely many q,
and these cases can be covered by increasing the universal constants.
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Assuming that L(ΦQβ ) > L(Φψη ), it follows that

L
(
Φw,0ε

)
=L

(
×̃η,K

)
+ L

(
ΦQβ

)

≤
(
CL log2

(
K
η

)
+ C′

L

)
+
(
CL(1 + log2(q))

(
2q + log2

(
1
β

))
+ C log32(q)

)

≤CL
(
6 log2(q) + log2

(
12
ε

))
+ CL (1 + log2(q))

(
2q + log2

(
36
ε

))
+ C log32(q)

≤CL (1 + log2(q))
(
2q + log2

(
1
ε

))
+ CL log2

(
1
ε

)
+ C log32(q).

Moreover,

M
(
Φw,0ε

)
≤M

(
×̃η,K

)
+Mfi

(
×̃η,K

)
+Mla

(
ΦQβ

)
+Mla

(
ΦId

1,L∗
⊙ Φψη

)
+M

(
ΦQβ

)
+M

(
ΦId

1,L∗
⊙ Φψη

)

≤M
(
×̃η,K

)
+Mfi

(
×̃η,K

)
+Mla

(
ΦQβ

)
+ 2Mla

(
ΦId

1,L∗

)

+M
(
ΦQβ

)
+M

(
ΦId

1,L∗

)
+Mfi

(
ΦId

1,L∗

)
+Mla

(
Φψη

)
+M

(
Φψη

)

≤
(
CM log2

(
K
η

)
+ C′

M

)
+ Cfi + (4q − 6) + 4

+
(
4CMq

(
2q + log2

(
1
β

))
+ 8CMq log2(q) + 4CL(1 + log2(q))

2
(
2q + log2

(
1
β

))
+ Cq

)

+ 2
(
CL(1 + log2(q))

(
2q + log2

(
1
β

))
+ C log32(q)

)
+ 2 + Cla

+
(
CM log2

(
2
η

)
+ C′

M + Cfi + 8
)

≤CM
(
6 log2(q) + log2

(
12
ε

))
+ 4CM

(
2q2 + q log2

(
36
ε

))
+ 6CL(1 + log2(q))

2 log2
(
36
ε

)

+ CM
(
4 log2(q) + log2

(
24
ε

))
+ Cq log22(q)

≤ 4CM
(
2q2 + q log2

(
1
ε

))
+
(
6CL(1 + log2(q))

2 + 2CM
)
log2

(
1
ε

)
+ Cq log22(q),

Mfi

(
Φw,0ε

)
=Mfi

(
ΦQβ

)
+Mfi

(
Φψη

)
≤ (4 log2(q) + 4) + 4 = 4 log2(q) + 8,

Mla

(
Φw,0ε

)
=Mla

(
×̃η,K

)
= Cla.

The approximation error can be estimated by

2
∣∣w − R

(
Φw,0ε

)∣∣
W1,∞(Î)

=2
∥∥∥ d

dx
(Q(x)ψ(x))− d

dx

(
R
(
×̃η,K

) (
R(ΦQβ )(x),R(Φψη )(x)

))∥∥∥
L∞(Î)

≤ 2
∥∥∥
(
ψ(x)− R

(
Φψη

)
(x)
)

d
dx
Q(x)

∥∥∥
L∞(Î)

+ 2
∥∥∥R
(
Φψη

)
(x) d

dx

(
Q(x)− R

(
ΦQβ

)
(x)
)∥∥∥

L∞(Î)

+ 2
∥∥∥
(
R
(
Φψη

)
(x)−

[
DR

(
×̃η,K

)]
1

(
R
(
ΦQβ

)
(x),R

(
Φψη

)
(x)
))

d
dx

R
(
ΦQβ

)
(x)
∥∥∥
L∞(Î)

+ 2
∥∥∥Q(x) d

dx

(
ψ(x)− R

(
Φψη

)
(x)
)∥∥∥

L∞(Î)

+ 2
∥∥∥
(
Q(x)− R

(
ΦQβ

)
(x)
)

d
dx

R
(
Φψη

)
(x)
∥∥∥
L∞(Î)

+ 2
∥∥∥
(
R
(
ΦQβ

)
(x)−

[
DR

(
×̃η,K

)]
2

(
R
(
ΦQβ

)
(x),R

(
Φψη

)
(x)
))

d
dx

R
(
Φψη

)
(x)
∥∥∥
L∞(Î)

≤ 2η |Q|W1,∞(Î) + 2
∥∥∥R
(
Φψη

)∥∥∥
L∞(Î)

β + 2η
∣∣∣R
(
ΦQβ

)∣∣∣
W1,∞(Î)

+ 2 ‖Q‖L∞(Î) η + 2β
∣∣∣R
(
Φψη

)∣∣∣
W1,∞(Î)

+ 2η
∣∣∣R
(
Φψη

)∣∣∣
W1,∞(Î)

≤ ε
6
+ ε

6
+ ε

6
+ ε

6
q−2 + ε

6
+ ε

2
q−4

(∗)
≤ ε.

At (*) we used that q ≥ 2. It follows from Poincaré’s inequality and Φw,0ε (±1) = 0 = w(±1) that ε/2
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also bounds the L∞(Î)-error. Finally, we get from Hölder’s inequality for all 1 ≤ q′ <∞
∥∥w − R

(
Φw,0ε

)∥∥q′
W1,q′ (Î)

=
∥∥w − R

(
Φw,0ε

)∥∥q′
Lq′ (Î)

+
∣∣w − R

(
Φw,0ε

)∣∣q′
W1,q′ (Î)

≤ 2|Î| ·
∥∥w − R

(
Φw,0ε

)∥∥q′
W1,∞(Î)

≤ 4
(
ε
2

)q′
= 22−q

′

εq
′

.

This finishes the proof in case |w|H1(Î) = 1.

If |w|H1(Î) = 0, then w ∈ H1
0 (Î) implies that w ≡ 0, which can be implemented exactly by a NN of

depth 1 and size 0. If |w|H1(Î) > 0 we can use the linearity of the output layer of NNs: we can approximate
w/ |w|H1(Î) as before, and multiply the weights in the output layer by |w|H1(Î), which gives the desired
result. This finishes the proof of the proposition.

Remark 4.7. We note that by Hölder’s inequality for all 2 ≤ q′ ≤ ∞

|w|H1(Î) ≤ 2
1
2
− 1
q′ |w|W1,q′ (Î) .

Because w′ is a polynomial of degree q − 1, it follows that for all 1 ≤ q′ ≤ 2

|w|H1(Î) ≤
(
(q′ + 1)(q − 1)2

) 1
q′

− 1
2 |w|W1,q′ (Î) ≤ 2(q − 1) |w|W1,q′ (Î) .

5 ReLU emulation of hp-Finite Element Spaces

Based on the ReLU NN approximation rate bounds of univariate polynomials obtained in the previous
section, we can now present an emulation of higher-order spline approximations, approximations by
Chebyshev polynomials, and hp-FEM approximations which correspond to so-called free-knot, variable-
degree spline approximations ([44] and the references there). We discuss in detail several classes of
functions whose relevance derives them appearing as solution components in a wide range of elliptic and
parabolic PDEs. In particular, we study NN approximation of smooth functions with point singularities
which appear in solutions of elliptic boundary value problems on polygonal and polyhedral domains.
Moreover, we address NN approximation of (exponential) boundary layers which are ubiquitous in solutions
of singular perturbation problems in fluid and solid mechanics.

5.1 Approximation of Piecewise Polynomials

We start by demonstrating how to emulate continuous, piecewise polynomial functions in general.

Proposition 5.1. For all p = (pi)i∈{1,...,N} ⊂ N, all partitions T of I = (0, 1) into N open, disjoint,
connected subintervals and for all v ∈ Sp(I, T ), for 0 < ε < 1 exist NNs {Φv,T ,pε }ε∈(0,1) such that for all
1 ≤ q′ ≤ ∞ holds
∥∥∥v − R

(
Φv,T ,pε

)∥∥∥
W1,q′ (I)

≤ ε |v|W1,q′ (I) ,

L
(
Φv,T ,pε

)
≤CL(1 + log2(pmax)) (2pmax + log2 (1/ε)) + CL log2 (1/ε) + C

(
1 + log32(pmax)

)
,

M
(
Φv,T ,pε

)
≤ 8CM

N∑

i=1

p2i + 4CM log2 (1/ε)
N∑

i=1

pi + log2 (1/ε)C

(
1 +

N∑

i=1

log22(pi)

)

+ C

(
1 +

N∑

i=1

pi log
2
2(pi)

)

+ 2N
(
CL(1 + log2(pmax)) (2pmax + log2 (1/ε)) + C

(
1 + log32(pmax)

))
,

Mfi

(
Φv,T ,pε

)
≤ 6N,

Mla

(
Φv,T ,pε

)
≤ 2N + 2.

In addition, it holds that R
(
Φv,T ,pε

)
(xj) = v(xj) for all j ∈ {0, . . . , N}, where {xj}Nj=0 are the nodes of

T .
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Proof. We write v as the sum of its continuous, piecewise affine interpolant v̄ ∈ S1(I, T ) and a function
v − v̄ ∈ Sp(I, T ) which satisfies (v − v̄)(xj) = 0 for j ∈ {0, . . . , N}. The network Φv̄, constructed in
Lemma 3.1, satisfies

R
(
Φv̄
)
= v̄, L

(
Φv̄
)
= 2, M

(
Φv̄
)
≤ 3N + 1, Mfi

(
Φv̄
)
≤ 2N and Mla

(
Φv̄
)
≤ N + 1.

For all i ∈ {1, . . . , N}, we denote by Pi : R → R : x 7→ 2
hi
(x− xi−1+xi

2
) the affine transformation which

satisfies Pi(Ii) = Î, Pi(xi−1) = −1 and Pi(xi) = 1.
Let

γi(q
′) := ε

2
2
1− 2

q′

{
2

1
q′

− 1
2 if 2 ≤ q′ ≤ ∞,

(2pi)
−1 if 1 ≤ q′ < 2.

It follows that 1
γi(q′)

≤ 2
ε
for 2 ≤ q′ ≤ ∞ and 1

γi(q′)
≤ 8pi

1
ε
=: 1

εi
for 1 ≤ q′ ≤ 2, hence 1

γi(q′)
≤ 1

εi
for

1 ≤ q′ ≤ ∞.
For wi := (v − v̄)|Ii ∈ (Ppi ∩H1

0 )(Ii), it holds that ŵi := wi ◦ P−1
i ∈ (Ppi ∩H1

0 )(Î), hence Proposition
4.6 shows the existence of a NN Φŵi,0

εi such that R(Φŵi,0
εi )|

R\Î = 0 and

L
(
Φŵi,0
εi

)
≤CL(1 + log2(pi))

(
2pi + log2

(
1
εi

))
+ CL log2

(
1
εi

)
+ C

(
1 + log32(pi)

)
,

≤CL(1 + log2(pi))
(
2pi + log2

(
1
ε

))
+ CL log2

(
1
ε

)
+ C

(
1 + log32(pi)

)
,

M
(
Φŵi,0
εi

)
≤ 4CM

(
2p2i + pi log2

(
1
εi

))
+
(
6CL(1 + log2(pi))

2 + 2CM
)
log2

(
1
εi

)

+ C
(
1 + pi log

2
2(pi)

)
,

≤ 4CM
(
2p2i + pi log2

(
1
ε

))
+
(
6CL(1 + log2(pi))

2 + 2CM
)
log2

(
1
ε

)

+ C
(
1 + pi log

2
2(pi)

)
,

Mfi

(
Φŵi,0
εi

)
≤ 4 log2(pi) + 8,

Mla

(
Φŵi,0
εi

)
=Cla.

The affine transformation Pi can be implemented exactly by a NN ΦPi of depth 1 satisfying M(ΦPi) =
Mfi(Φ

Pi) =Mla(Φ
Pi) = 2. Now, the concatenation Φŵi,0

εi ⊙ΦPi approximates wi. It holds by Proposition
4.6 that R(Φŵi,0

εi ⊙ ΦPi)|R\Ii = 0 and that

∥∥∥wi − R
(
Φŵi,0
εi ⊙ ΦPi

)∥∥∥
W1,q′ (Ii)

=
(
hi

2

) 1
q′

−1 ∥∥∥ŵi − R
(
Φŵi,0
εi

)∥∥∥
W1,q′ (Î)

≤
(
hi

2

) 1
q′

−1

2
2
q′

−1
γi(q

′) |ŵi|H1(Î)

≤
(
hi

2

) 1
q′

−1

2
2
q′

−1
γi(q

′)
(∣∣(v|Ii) ◦ P−1

i

∣∣
H1(Î)

+
∣∣(v̄|Ii) ◦ P−1

i

∣∣
H1(Î)

)

(∗)
≤
(
hi

2

) 1
q′

−1

2
2
q′

−1
γi(q

′)2
∣∣(v|Ii) ◦ P−1

i

∣∣
H1(Î)

(∗∗)
≤
(
hi

2

) 1
q′

−1

ε
∣∣(v|Ii) ◦ P−1

i

∣∣
W1,q′ (Î)

= ε |(v|Ii)|W1,q′ (Ii)
.

At (*) we used that
∣∣(v̄|Ii) ◦ P−1

i

∣∣
H1(Î)

≤
∣∣(v|Ii) ◦ P−1

i

∣∣
H1(Î)

, which follows e.g. from the fact that

v̄′|Ii ◦ P−1
i is a truncation of the Legendre expansion of v′|Ii ◦ P−1

i . At (**) we used a result similar to
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Remark 4.7, for q = pi and for (v|Ii) ◦ P−1
i ∈ Ppi(Î) instead of w. In addition, it follows that

L
(
Φŵi,0
εi ⊙ ΦPi

)
≤ 1 + CL(1 + log2(pi))

(
2pi + log2

(
1
ε

))
+ CL log2

(
1
ε

)
+ C

(
1 + log32(pi)

)
,

M
(
Φŵi,0
εi ⊙ ΦPi

)
≤M

(
Φŵi,0
εi

)
+Mfi

(
Φŵi,0
εi

)
+Mla

(
ΦPi

)
+M

(
ΦPi

)

≤
(
4CM

(
2p2i + pi log2

(
1
ε

))
+
(
6CL(1 + log2(pi))

2 + 2CM
)
log2

(
1
ε

)

+ C
(
1 + pi log

2
2(pi)

) )
+ (4 log2(pi) + 8) + 2 + 2

≤ 4CM
(
2p2i + pi log2

(
1
ε

))
+
(
6CL(1 + log2(pi))

2 + 2CM
)
log2

(
1
ε

)

+ C
(
1 + pi log

2
2(pi)

)
,

Mfi

(
Φŵi,0
εi ⊙ ΦPi

)
≤ 2Mfi

(
ΦPi

)
= 4,

Mla

(
Φŵi,0
εi ⊙ ΦPi

)
=Mla

(
Φŵi,0
εi

)
= Cla.

Let {ℓj}j∈{1,...,N+1} ⊂ N be such that

ℓ1 + L
(
Φv̄
)
= ℓ2 + L

(
Φŵ1,0
ε1 ⊙ ΦP1

)
= . . . = ℓN+1 + L

(
ΦŵN ,0
εN ⊙ ΦPN

)

=1 +max
{
L
(
Φv̄
)
,
N

max
i=1

L
(
Φŵi,0
εi ⊙ ΦPi

)}

≤ 3 +
N

max
i=1

L
(
Φŵi,0
εi ⊙ ΦPi

)
,

where the inequality follows from L(Φv̄) = 2. In addition, we have

N+1
max
j=1

ℓj ≤ 3 +
N

max
i=1

L
(
Φŵi,0
εi ⊙ ΦPi

)

≤CL(1 + log2(pmax))
(
2pmax + log2

(
1
ε

))
+ CL log2

(
1
ε

)
+ C

(
1 + log32(pmax)

)
.

We define ΦSum
N+1 := (([1, . . . , 1], 0)), where [1, . . . , 1] is a 1× (N + 1)-matrix. It holds that L(ΦSum

N+1) = 1
and M(ΦSum

N+1) =Mfi(Φ
Sum
N+1) =Mla(Φ

Sum
N+1) = N + 1. We now define Φv,T ,pε by

Φv,T ,pε := ΦSum
N+1 ⊙ P

(
ΦId

1,ℓ1 ⊙ Φv̄,ΦId
1,ℓ2 ⊙ Φŵ1,0

ε1 ⊙ ΦP1 , . . . ,ΦId
1,ℓN+1

⊙ ΦŵN ,0
εN ⊙ ΦPN

)
.

Because the realization of Φv̄ equals v̄, it holds that R(Φv,T ,pε )|Ii = v̄|Ii + R(Φŵi,0
εi ⊙ ΦPi) for all

i ∈ {1, . . . , N}. The depth and the size of Φv,T ,pε can be estimated as follows:

L
(
Φv,T ,pε

)
≤L

(
ΦSum
N+1

)
+ ℓ1 + L

(
Φv̄
)
≤ 1 +

N+1
max
j=1

ℓj + 1

≤CL(1 + log2(pmax))
(
2pmax + log2

(
1
ε

))
+ CL log2

(
1
ε

)
+ C

(
1 + log32(pmax)

)
,

M
(
Φv,T ,pε

)
≤M

(
ΦSum
N+1

)
+Mfi

(
ΦSum
N+1

)
+Mla

(
ΦId

1,ℓ1 ⊙ Φv̄
)
+

N∑

i=1

Mla

(
ΦId

1,ℓi+1
⊙ Φŵi,0

εi ⊙ ΦPi

)

+M
(
ΦId

1,ℓ1 ⊙ Φv̄
)
+

N∑

i=1

M
(
ΦId

1,ℓi+1
⊙ Φŵi,0

εi ⊙ ΦPi

)

≤M
(
ΦSum
N+1

)
+Mfi

(
ΦSum
N+1

)
+

N∑

i=0

2Mla

(
ΦId

1,ℓi+1

)
+M

(
ΦId

1,ℓ1

)
+Mfi

(
ΦId

1,ℓ1

)
+Mla

(
Φv̄
)

+M
(
Φv̄
)
+

N∑

i=1

(
M
(
ΦId

1,ℓi+1

)
+Mfi

(
ΦId

1,ℓi+1

)
+Mla

(
Φŵi,0
εi

)
+M

(
Φŵi,0
εi

)

+Mfi

(
Φŵi,0
εi

)
+Mla

(
ΦPi

)
+M

(
ΦPi

))

≤ (N + 1) + (N + 1) + 4(N + 1) + 2
N+1
max
j=1

ℓj + 2 + (N + 1) + (3N + 1) + 2N
N+1
max
j=1

ℓj + 2N + ClaN
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+

N∑

i=1

(
4CM

(
2p2i + pi log2

(
1
ε

))
+
(
6CL(1 + log2(pi))

2 + 2CM
)
log2

(
1
ε

)

+ C
(
1 + pi log

2
2(pi)

) )
+N(4 log2(pi) + 8) + 2N + 2N

≤ 8CM

N∑

i=1

p2i + 4CM log2
(
1
ε

) N∑

i=1

pi + log2
(
1
ε

)
C

(
1 +

N∑

i=1

log22(pi)

)
+ C

(
1 +

N∑

i=1

pi log
2
2(pi)

)

+ 2(N + 1)
(
CL(1 + log2(pmax))

(
2pmax + log2

(
1
ε

))
+ C

(
1 + log32(pmax)

))
,

Mfi

(
Φv,T ,pε

)
≤Mfi

(
Φv̄
)
+

N∑

i=1

2Mfi

(
ΦPi

)
≤ 2N + 4N = 6N,

Mla

(
Φv,T ,pε

)
≤ 2Mla

(
ΦSum
N+1

)
= 2N + 2.

To estimate the error we use that R(Φŵi,0
εi ⊙ ΦPi)|Ij = 0 for j 6= i:

∥∥∥v − R
(
Φv,T ,pε

)∥∥∥
q′

W1,q′ (I)
=

∥∥∥∥∥

N∑

i=1

wi −
N∑

i=1

R
(
Φŵi,0
εi ⊙ ΦPi

)∥∥∥∥∥

q′

W1,q′ (I)

=

N∑

i=1

∥∥∥wi − R
(
Φŵi,0
εi ⊙ ΦPi

)∥∥∥
q′

W1,q′ (Ii)

≤
N∑

i=1

εq
′

|(v|Ii)|q
′

W1,q′ (Ii)
= εq

′

|v|q
′

W1,q′ (I)
,

where wi is extended to I such that wi|I\Ii = 0. Finally, because R
(
Φŵi,0
εi ⊙ ΦPi

)
(xj) = 0 for all

i ∈ {1, . . . , N} and all j ∈ {0, . . . , N}, it follows that R
(
Φv,T ,pε

)
(xj) = R

(
Φv̄
)
(xj) = v(xj) for all

j ∈ {0, . . . , N}. This finishes the proof.

5.2 Free-knot Spline Approximation

The following classical result due to Petruchev [40] and Oswald [37] describes the rates of best approxima-
tion of Besov-regular functions on I := (0, 1) by free-knot splines of fixed degree. We refer to [51, 52] for
definitions and basic properties of function spaces. This setting and the corresponding approximation
rate bounds correspond to the so-called “h-adaptive FEM”.

Theorem 5.2 ([37, Theorems 3 and 6]). Let q, q′, t, t′, s, s′ ∈ (0,∞], p ∈ N, and

q < q′, s < p+ 1/q, s′ < s− 1/q + 1/q′.

Then, there exists a C3 := C(q, q′, t, t′, s, s′, p) > 0 and, for every N ∈ N and every f in Bsq,t(I), there
exists hN ∈ SNp (I) such that

∥∥∥f − hN
∥∥∥
Bs′

q′,t′
(I)

≤ C3N
−(s−s′)‖f‖Bs

q,t(I)
. (5.1)

Moreover,

∥∥∥hN
∥∥∥
Bs

q,t(I)
≤ C3‖f‖Bs

q,t(I)
. (5.2)

Equation (5.1) follows from [37, Theorem 3]. We recall the assumptions in [37, Theorem 3], in our
notation: 0 < q < q′ ≤ ∞, 0 < t, t′ ≤ ∞, 0 < s ≤ (p+ 1) + max{0, 1/q − 1} (with equality only if t = ∞)
and 0 < s′ < min{p+ 1/q′, s− 1/q + 1/q′}. For ease of the reader we compared our notation with that in
[37, Theorem 3] in Table 1 below.
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[37, Theorem 3] p p′ q q′ k − 1 λ′ δ N n
Theorem 5.2 q q′ t t′ p p+ 1/q′ max{0, 1/q − 1} 1 N

Table 1: Correspondence in notation between [37, Theorem 3] and Theorem 5.2. In [37], λ′ and δ are defined
in [37, Proposition 1] and [37, Section 1], respectively.

Under the assumptions in [37, Theorem 3], Equation (5.2) follows from [37, Theorem 6], where λ
corresponds with p+ 1/q ([37, Proposition 1]) and under the additional assumption that s < p+ 1/q.

Remark 5.3 ([37]). The approximant hN of Theorem 5.2 is of defect one (or, of minimal defect), i.e.
hN ∈ Cp−1(I).

As a consequence of Theorem 5.2, we obtain the following result describing the approximation of
Besov-regular functions by ReLU NNs.

Theorem 5.4. Let 0 < q < q′ ≤ ∞, q′ ≥ 1, 0 < t ≤ ∞. Let p ∈ N, 0 < s′ ≤ 1 < s < p + 1/q,
1−1/q′ < s−1/q and s′ < 1 if p = 1 and q′ = ∞. Then, there exists a constant C4 := C(q, q′, t, s, s′, p) > 0
and, for every N ∈ N and every f ∈ Bsq,t(I), there exists a NN ΦNf such that

∥∥∥f − R
(
ΦNf

)∥∥∥
Ws′,q′ (I)

≤ C4N
−(s−s′)‖f‖Bs

q,t(I)
(5.3)

and

L
(
ΦNf

)
≤CL(1 + log2(p))

(
2p+ (s− s′) log2(N)

)
+ CL(s− s′) log2(N) + C

(
1 + log32(p)

)
, (5.4)

M
(
ΦNf

)
≤ 8CMNp

2 + 4CM (s− s′)N log2(N)p+ C(s− s′) log2(N)
(
1 +N log22(p)

)

+ C
(
1 +Np log22(p)

)

+ 2N
(
CL(1 + log2(p))

(
2p+ (s− s′) log2(N)

)
+ C

(
1 + log32(p)

))
, (5.5)

Mfi

(
ΦNf

)
≤ 6N, (5.6)

Mla

(
ΦNf

)
≤ 2N + 2. (5.7)

Proof. Let p ∈ N, s, s′, q, q′, t > 0, and f ∈ Bsq,t(I) be as in the statement of the theorem.
The assumptions on p, s, s′, q, q′, and t allow us to apply Theorem 5.2 with t′ := min{q′, 2}. Hence

there exists C(q, q′, t, s, s′, p) > 0 and hN ∈ SNp (I) such that

∥∥∥f − hN
∥∥∥
Bs′

q′,min{q′,2}
(I)

≤ C(q, q′, t, s, s′, p)N−(s−s′)‖f‖Bs
q,t(I)

(5.8)

and
∥∥∥hN

∥∥∥
Bs

q,t(I)
≤ C(q, q′, t, s, s′, p)‖f‖Bs

q,t(I)
. (5.9)

By [37, Equation 6] or [51, Equation (1.3.3/3)], Bs
′

q′,min{q′,2}(I) is continuously embedded in W s′,q′(I).
Hence

‖u‖Ws′,q′ (I) ≤ C(s′, q′)‖u‖
Bs′

q′,min{q′,2}
(I)

for all u ∈ Bs
′

q′,min{q′,2}(I). (5.10)

Applying Equation (5.10) to Equation (5.8) yields that
∥∥∥f − hN

∥∥∥
Ws′,q′ (I)

≤ C(q, q′, t, s, s′, p)N−(s−s′)‖f‖Bs
q,t(I)

. (5.11)

We invoke Proposition 5.1 with ε = N−(s−s′), v = hN and polynomial degree distribution p = (pi)
N
i=1,

where pi = p. This yields a network ΦNf such that

∥∥∥hN − R
(
ΦNf

)∥∥∥
Ws′,q′ (I)

≤ C(s′, q′)
∥∥∥hN − R

(
ΦNf

)∥∥∥
W1,q′ (I)

≤ C(s′, q′)N−(s−s′)
∥∥∥hN

∥∥∥
W1,q′

(5.12)
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and Equations (5.4)–(5.7) hold. Invoking [37, Equation 6] or [51, Equation (1.3.3/3)] again, we obtain
that
∥∥∥hN

∥∥∥
W1,q′ (I)

≤ C(q′)
∥∥∥hN

∥∥∥
B1

q′,min{q′,2}
(I)

≤ C(q, q′, s, t)
∥∥∥hN

∥∥∥
Bs

q,t(I)
≤ C(q, q′, t, s, s′, p)‖f‖Bs

q,t(I)
,

(5.13)

where the second estimate holds by [52, Section 3.3.1, Equation (7)] since s− 1/q > 1− 1/q′ and the last
estimate follows from Equation (5.9).

We have by the triangle inequality and by invoking Equations (5.11), (5.12), and (5.13) that

∥∥∥f − R
(
ΦNf

)∥∥∥
Ws′,q′ (I)

≤
∥∥∥f − hN

∥∥∥
Ws′,q′ (I)

+
∥∥∥hN − R

(
ΦNf

)∥∥∥
Ws′,q′ (I)

≤C(q, q′, t, s, s′, p)N−(s−s′)‖f‖Bs
q,t(I)

.

This yields Equation (5.3) and completes the proof.

Remark 5.5. Note that, if s′ = 1, then we could also obtain the estimate of Equation (5.13) by applying
the inverse triangle inequality to Equation (5.8). Hence, for s′ = 1, Equation (5.2) is not required for the
proof of Theorem 5.4. As is clear from the discussion after Theorem 5.2 the statement of that theorem holds
without Equation (5.2) when replacing the assumption s < p+1/q by the weaker s ≤ p+1+max{0, 1/q−1}.
Hence, in the case s′ = 1, Theorem 5.4 can be improved.

Theorem 5.2 excludes the case s′ = 0, which is treated separately in [37, Theorem 5]. Using that result,
it is not hard to see that Theorem 5.4 can be extended to situations where s′ = 0.

5.3 Spectral Methods

We now study ReLU NN emulations of spectral element approximations. We first show that on a given
partition T of I = (0, 1) spectral FEM for r ∈ N0 and u ∈ Hr+1(I) can be emulated by ReLU NNs. We
will demonstrate that the H1-error decreases algebraically with the network size. Concretely, this decay
happens at least with rate r/2. This is half the convergence rate of spectral FEM in terms of degrees of
freedom, which in Theorem 5.8 equals Np+ 1. This reduction in the convergence rate is caused by the
fact that the size of the networks constructed in Proposition 4.6 depends quadratically on the polynomial
degree, whereas the the number of degrees of freedom depends linearly on the polynomial degree.

Theorem 5.6 ([45, Theorem 3.17]). Let T be a partition of I = (0, 1) with N elements, let r ∈ N0,
u ∈ Hr+1(I) and p ∈ N. Then for p := (p, . . . , p) there exists a v ∈ Sp(I, T ) such that for all s ∈ N0

satisfying s ≤ min{r, p}

‖u− v‖H1(I) ≤C5(r)
(
h
p

)s
|u|Hs+1(I) .

Remark 5.7. Inspection of the proof of Theorem 5.6 reveals that v′|Ii is a truncation of the Legendre
expansion of u′|Ii for all i ∈ {1, . . . , N}, which implies that |v|H1(I) ≤ |u|H1(I).

Theorem 5.8. Let I = (0, 1), r ∈ N0, u ∈ Hr+1(I) and p ∈ N. For all partitions T of I with N elements
there exists a NN Φu,T ,p such that for all s ∈ N0 satisfying s ≤ min{r, p}
∥∥∥u− R(Φu,T ,p)

∥∥∥
H1(I)

≤
(
1 + C5(r)

) (
h
p

)s
‖u‖Hs+1(I) ,

L(Φu,T ,p) ≤ 2CLp log2(p) + CLr(2 + log2(p)) log2
(
p
h

)
+ C(1 + log2(p))

3,

M(Φu,T ,p) ≤N [8CMp
2 + 4CMrp log2

(
p
h

)
+ r log2

(
p
h

)
C(1 + log2(p))

2 + C(1 + p log22(p))],

Mfi(Φ
u,T ,p) ≤ 6N,

Mla(Φ
u,T ,p) ≤ 2N + 2.
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Proof. For v as in Theorem 5.6 and for uniform polynomial approximation order p = (p, . . . , p), we apply

Proposition 5.1 and define Φu,T ,p := Φv,T ,pε with ε =
(
h
p

)r
. Using Remark 5.7, it follows that

∥∥∥u− R(Φu,T ,p)
∥∥∥
H1(I)

≤ ‖u− v‖H1(I) +
∥∥∥v − R(Φv,T ,pε )

∥∥∥
H1(I)

≤C5(r)
(
h
p

)s
|u|Hs+1(I) +

(
h
p

)r
|v|H1(I)

≤
(
1 + C5(r)

) (
h
p

)s
‖u‖Hs+1(I) ,

L(Φu,T ,p) ≤CL(1 + log2(p))
(
2p+ r log2

(
p
h

) )
+ CLr log2

(
p
h

)
+ C(1 + log2(p))

3

≤ 2CLp(1 + log2(p)) + CLr(2 + log2(p)) log2
(
p
h

)
+ C(1 + log32(p)),

M(Φu,T ,p) ≤ 8CMNp
2 + 4CMr log2

(
p
h

)
Np+ r log2

(
p
h

)
NC(1 + log2(p))

2

+NC(1 + p log22(p)) + 2N
(
CL(1 + log2(p))

(
2p+ r log2

(
p
h

) )
+ C(1 + log32(p))

)

≤N
(
8CMp

2 + 4CMrp log2
(
p
h

)
+ r log2

(
p
h

)
C(1 + log2(p))

2 + C(1 + p log22(p))
)
,

Mfi(Φ
u,T ,p) =Mfi(Φ

v,T ,p
ε ) ≤ 6N,

Mla(Φ
u,T ,p) =Mla(Φ

v,T ,p
ε ) ≤ 2N + 2.

This finishes the proof.

We now study exponential expressive power bounds for deep ReLU NN emulation of spectral ap-
proximations of functions which are analytic on Î = (−1, 1) and admit a holomorphic continuation to
the Bernstein ellipse Er ⊂ C for some r > 1. We recall that for r > 1 the Bernstein ellipse Er ⊂ C is

defined as Er := { z+z−1

2
∈ C : 1 ≤ |z| ≤ r}. For neural networks with certain smooth activation functions,

this has been investigated in [32, 33]. We note that the results in [32] are proved even if the activation
function is merely continuous. For the presently considered ReLU activations, the result is (a special case
of) Theorem 3.7 in [36]. A similar result is given in [15], but under considerably stronger assumptions on
the regularity of the function, namely that its Taylor series converges absolutely on [−1, 1], which implies
that it admits a holomorphic continuation to the complex unit disk.

Theorem 5.9 ([36, Theorem 3.7]). Assume that u : [−1, 1] → R admits a holomorphic extension to
Eρ ⊂ C, for ρ ∈ (1,∞). Then, there exist constants C(ρ), Cu(ρ, u) > 0 and NNs {Φu,p}p∈N such that for
all p ∈ N

M(Φu,p) ≤ Cp2 , L(Φu,p) ≤ C(1 + p log2(p)), ‖u− R(Φu,p)‖W1,∞(Î) ≤ Cu exp (− log(ρ)p) .

In addition, Mfi(Φ
u,p) ≤ C(ρ) and Mla(Φ

u,p) ≤ C(ρ).

Theorem 5.9 shows that for every θ > 0 and some c1(ρ, θ) > 0

‖u− R(Φu,p)‖W1,∞(Î) ≤C(ρ, θ, u) exp
(
− c1L(Φ

u,p)1/(1+θ)
)

and that for every θ > 0 and some c2(ρ, θ) > 0

‖u− R(Φu,p)‖W1,∞(Î) ≤C(ρ, θ, u) exp
(
− c2M(Φu,p)1/2

)
.

5.4 DNN Emulation of Piecewise Gevrey Functions

We now study expression rates for ReLU NN emulations of hp-approximations of functions on I = (0, 1)
which are singular at x = 0 and which belong to a Gevrey class. We refer to [7] and the references there
for such spaces.

For β ∈ R>0 we define ψβ : I → R : x 7→ xβ . For k, ℓ ∈ N0 we define a seminorm and a norm:

|u|
H

k,ℓ
β

(I)
:=
∥∥∥ψβ+k−ℓDku

∥∥∥
L2(I)

,

‖u‖2
H

k,ℓ
β

(I)
:=





∑k
k′=0 |u|

2

H
k′,0
β

(I)
, if ℓ = 0,

∑k
k′=ℓ |u|

2

H
k′,ℓ
β

(I)
+ ‖u‖2Hℓ−1(I) , if ℓ ∈ N.
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All functions for which this norm is finite form the space Hk,ℓ
β (I). In addition, for δ ≥ 1, ℓ ∈ N0 and

β ∈ (0, 1) the Gevrey class Gℓ,δβ (I) is defined as the class of functions u ∈
⋂
k≥ℓH

k,ℓ
β (I) for which there

exist C∗(u), d(u) > 0 such that

∀k ≥ ℓ : |u|
H

k,ℓ
β

(I)
≤ C∗d

k−ℓ((k − ℓ)!)δ. (5.14)

For N ∈ N and σ ∈ (0, 1), the mesh Tσ,N which is geometrically graded towards x = 0, is defined
as follows: let x0 := 0 and xi := σN−i for i ∈ {1, . . . , N}. Let Tσ,N be the partition of I into intervals
{Iσ,i}Ni=1, where Iσ,i := (xi−1, xi).

The following theorem is a generalization of [45, Theorem 3.36] which, in turn, generalizes earlier
results in [12, 44, 21] in the analytic case. The present analysis covers in particular the original results for
the piecewise analytic case δ = 1, i.e. functions in Gℓ,1β (I) for ℓ ≥ 2, which are analytic on the interval
(0, 1) and may have an algebraic singularity at the left endpoint x = 0. The proof for general δ ≥ 1 is
very similar to the proof for δ = 1. For convenience of the reader, it is provided in the appendix.

Theorem 5.10 (Generalization of [45, Theorem 3.36]). Let σ, β ∈ (0, 1), λ := σ−1 − 1, δ ≥ 1, u ∈ G2,δ
β (I)

and N ∈ N be given. For µ0 := µ0(σ, β, δ, d) := max
{
1, dλe

1−δ

2σ1−β

}
and for µ > µ0 let p = (pi)

N
i=1 ⊂ N be

defined as p1 := 1 and pi := ⌊µiδ⌋ for i ∈ {2, . . . , N}.
Then there exists a continuous, piecewise polynomial function v ∈ Sp(I, Tσ,N ) such that v(xi) = u(xi)

for i ∈ {1, . . . , N} and such that for a constant C7(σ, β, δ, µ, C∗, d) > 0 (where C∗(u) and d(u) are as in
Equation (5.14)) it holds that

‖u− v‖H1(I) ≤C7 exp
(
− (1− β) log(1/σ)N

)
=: C7 exp(−cN).

As N → ∞, M = dim(Sp(I, Tσ,N )) = O(N1+δ).

We present the proof of this assertion in Appendix A.

Remark 5.11. Note that v(0) need not equal u(0). Besides, it follows from the construction of v in the
proof of Theorem 5.10 that |v|H1(I\I1,σ) ≤ |u|H1(I\I1,σ).

Theorem 5.12. For all σ, β ∈ (0, 1), all δ ≥ 1, all u ∈ G2,δ
β (I) and all µ > µ0(σ, β, δ, d(u)) there exist

NNs {Φu,σ,N}N∈N such that, for all N ∈ N,

∥∥∥u− R(Φu,σ,N )
∥∥∥
H1(I)

≤C8 exp
(
− (1− β) log(1/σ)N

)
= C8 exp(−cN),

where C8 := C8(σ, β, δ, µ, C∗(u), d(u), |u|H1(I)) > 0, and such that

L(Φu,σ,N ) ≤CLδ
(
2µNδ log2(N) + cN log2(N)

)
+ C(σ, β, δ, µ)Nδ,

M(Φu,σ,N ) ≤ 4CM
(
2µ2N2δ+1 + cµNδ+2)+ C(σ, β, δ, µ)

(
1 +Nδ+1 log22(N)

)
,

Mfi(Φ
u,σ,N ) ≤ 6N,

Mla(Φ
u,σ,N ) ≤ 2N + 2.

Proof. Let v ∈ Sp(I, Tσ,N ) be as in Theorem 5.10, with p ⊂ N defined by p1 = 1 and pi = ⌊µiδ⌋ for

i ∈ {2, . . . , N}. Let ε := exp(−cN). We define Φu,σ,N := Φ
v,Tσ,N ,p
ε , where Φ

v,Tσ,N ,p
ε is as constructed in

Proposition 5.1.

23



Using that
∥∥v − R(Φu,σ,N )

∥∥
H1(I1,σ)

= 0 because p1 = 1 and using Remark 5.11 it follows that

∥∥∥u− R(Φu,σ,N )
∥∥∥
H1(I)

≤ ‖u− v‖H1(I) +
∥∥∥v − R(Φ

v,Tσ,M ,p
ε )

∥∥∥
H1(I)

≤C7 exp(−cN) + exp(−cN) |v|H1(I\Iσ,1)

≤
(
C7 + |u|H1(I)

)
exp(−cN),

L(Φu,σ,N ) ≤CL(1 + log2(µN
δ))
(
2µNδ + cN

)
+ CLcN + C(1 + log32(µN

δ))

≤CLδ
(
2µNδ log2(N) + cN log2(N)

)
+ C(σ, β, δ, µ)Nδ,

M(Φu,σ,N ) ≤ 8CM

N∑

i=1

(µiδ)2 + 4CMcN
N∑

i=1

(µiδ) + cNC

(
1 +

N∑

i=1

log22(µi
δ)

)

+ C

(
1 +

N∑

i=1

µiδ log22(µi
δ)

)

+ 2N
(
CL(1 + log2(µN

δ))
(
2µNδ + cN

)
+ C(1 + log32(µN

δ))
)

≤ 4CM
(
2µ2N2δ+1 + cµNδ+2)+ C(σ, β, δ, µ)

(
1 +Nδ+1 log22(N)

)
,

Mfi(Φ
u,σ,N ) ≤ 6N,

Mla(Φ
u,σ,N ) ≤ 2N + 2.

This finishes the proof.

Theorem 5.12 shows that for θ > 0 and for c3(σ, β, δ, µ, θ), C9(σ, β, δ, µ, C∗, d, |u|H1(I) , θ) > 0

∥∥∥u− R(Φu,σ,N )
∥∥∥
H1(I)

≤ C9 exp
(
− c3L(Φ

u,σ,N )1/(δ+θ)
)
,

and that for c4(β, σ, δ, µ), C10(σ, β, δ, µ, C∗, d, |u|H1(I)) > 0

∥∥∥u− R(Φu,σ,N )
∥∥∥
H1(I)

≤ C10 exp
(
− c4M(Φu,σ,N )1/(2δ+1)).

Remark 5.13. In Theorem 5.12, we proved exponential expression rate bounds for deep ReLU NNs in
the Sobolev space H1(I) for classes of Gevrey δ-regular functions in I = (0, 1) which exhibit one algebraic
singularity at the endpoint x = 0 of I. It is straightforward to generalize this result to functions with a
finite number of algebraic singularities at singular support sets S = {x1, ..., xJ} ⊂ Ī. Multivariate versions
of Theorem 5.10 also hold [35].

5.5 DNN Emulation of Boundary Layer Functions

Another class of functions for which variable order, free-knot spline approximations (or, “rp-approximations”1)
achieve exponential convergence, are so-called boundary layer functions. Exponential boundary layer
functions are ubiquitous solution components which arise from singularly perturbed elliptic and parabolic
partial differential equations in several space dimensions. We refer to [31] for a regularity analysis in
so-called “elliptic-elliptic” singular perturbation problems, and to [30] for corresponding approximation
results. Importantly, the regularity results in [31] imply that the solution of singular perturbation
problems in one space dimension can be decomposed into a smooth (analytic) part, and into bound-
ary layer functions, the prototypical example of which is the exponential boundary layer function
u1,η(x) = exp(−(x + 1)/η) on the interval Î := (−1, 1) for the length scale parameter η ∈ (0, 1]. The
challenge is to approximate u1,η with error bounds which are uniform in the length scale parameter
η ∈ (0, 1]. Since |u1,η|2H1(Î) = 1

2η
(1 − exp(−4/η)) → ∞ for η → 0, we do not obtain expression error

bounds in H1(Î) that are uniform with respect to the parameter η. Instead, we introduce the η-weighted

1The tag “rp” indicates knot (resp. node) relocation, rather than knot (resp. node) insertion, as done in the hp approach.
Note that the node locations are NN parameters in the hidden layers, so that node relocation will not involve modification of
NN architectures.
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norm ‖u‖η,Î :=
(
‖u‖2L2(Î) + η2 |u|2H1(Î)

)1/2
for u ∈ H1(Î). The error in this parameter-dependent norm

decreases exponentially, with constants bounded independently of η. In [46, 45], this was achieved with a
p- and η-dependent mesh consisting of either one or two elements. We recall the following exponential
approximation rate bounds for continuous, piecewise polynomial approximation of u1,η.

Theorem 5.14 ([46, Theorem 5.1, Corollary 5.1], [45, Theorem 3.74, Corollary 3.77]). For p ∈ N, let the
number of mesh elements N , the mesh T with nodes {xi}Ni=0 and the polynomial degree distribution p be
as follows:

{
N = 2, x0 = −1, x1 = −1 + κp̃η, x2 = 1, p = (p, 1), if κp̃η < 2,

N = 1, x0 = −1, x1 = 1, p = (p), if κp̃η ≥ 2,
(5.15)

for p̃ := p+ 1
2
and constants 0 < κ0 and κ0 ≤ κ < 4/e which are independent of p and η.

Then, there exists up ∈ Sp(Î , T ) with up(±1) = u1,η(±1) and

‖u1,η − up‖L2(Î) ≤ η1/2Cαp̃, |u1,η − up|H1(Î) ≤ η−1/2Cαp̃,

‖u1,η − up‖η,Î ≤ η1/2Cαp̃, ‖u1,η − up‖L∞(Î) ≤ Cαp̃,
(5.16)

with

α(p) :=

{
max{κe/4, e−(κ−ǫ)} if κp̃η < 2,

e/(2p̃η) if κp̃η ≥ 2,

}
< 1, (5.17)

for arbitrary ǫ > log(p)/(2p) and for C depending on κ0 and α, but independent of p and η (except when
κp̃η ≥ 2, then C has a factor (1− α2)−1/2, cf. [45, Theorem 3.64] or [46, Theorem 4.1]).

We note that the η-dependence of the error bounds is natural, as it holds that

‖u1,η‖L2(Î) ≤ (η/2)1/2, |u1,η|H1(Î) ≤ (2η)−1/2, ‖u1,η‖η,Î ≤ η1/2, ‖u1,η‖L∞(Î) ≤ 1. (5.18)

As a direct corollary of Theorem 5.14 and Proposition 5.1 we obtain:

Theorem 5.15. For 0 < κ0 ≤ κ < 4/e, p ∈ N, η ∈ (0, 1], and p̃ := p + 1
2
, let N , T and p be as in

Equation (5.15). Then, there exist neural networks {Φη,p}η∈(0,1],p∈N, such that

‖u1,η − R(Φη,p)‖L2(Î) ≤ η1/2Cαp̃, |u1,η − R(Φη,p)|H1(Î) ≤ η−1/2Cαp̃,

‖u1,η − R(Φη,p)‖η,Î ≤ η1/2Cαp̃, ‖u1,η − R(Φη,p)‖L∞(Î) ≤ Cαp̃,
(5.19)

for α as in Equation (5.17) with arbitrary ǫ > log(p)/(2p) and for C depending on κ0 and α, but
independent of p and η (except when κp̃η ≥ 2, cf. Theorem 5.14). The network size and depth are bounded
as follows:

L (Φη,p) ≤CL(1 + log2 p) (2p+ p log2 (1/α) + log2(1/η)) + C (p+ p log2 (1/α) + log2(1/η)) ,

M (Φη,p) ≤ 4CMp
2 (2 + log2 (1/α)) + 4CMp log2(1/η) + C(1 + log2(p))

2 (p+ p log2 (1/α) + log2(1/η)) ,
(5.20)

Mfi (Φ
η,p) ≤ 4,

Mla (Φ
η,p) ≤ 6.

Proof. We define I := (0, 1). Let P : R → R : x 7→ 2x− 1 denote the affine transformation which satisfies
P (I) = Î, P (0) = −1 and P (1) = 1. The affine transformation P−1 can be implemented exactly by a NN

ΦP
−1

of depth 1 satisfying M
(
ΦP

−1
)
=Mfi

(
ΦP

−1
)
=Mla

(
ΦP

−1
)
= 2.

For up from Theorem 5.14, we apply Proposition 5.1 to up ◦ P ∈ Sp(I, T ′), for T ′ obtained from

T with the transformation P−1. We choose ε = ηαp̃ and obtain the NN Φ
up◦P,T ′,p
ε . Now, we define
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Φη,p := Φ
up◦P,T ′,p
ε ⊙ ΦP

−1

. Using (5.18), it follows that

‖up − R(Φη,p)‖H1(Î) ≤
√
2
∥∥∥up ◦ P − R

(
Φ
up◦P,T ′,p
ε

)∥∥∥
H1(I)

≤
√
2ηαp̃ |up ◦ P |H1(I)

≤
√
2ηαp̃

√
2 |up|H1(Î)

≤ 2ηαp̃
(
|u1,η − up|H1(Î) + |u1,η|H1(Î)

)

(5.16)
(5.18)

≤ 2ηαp̃
(
η−1/2Cαp̃ + (2η)−1/2

)

≤Cη1/2αp̃.

This estimate, combined with Equation (5.16), shows Equation (5.19). By construction, it also holds that
R(Φη,p)(±1) = up(±1) = u1,η(±1).

The bounds on the depth and the size are obtained as follows:

L(Φη,p) =L
(
Φ
up◦P,T ′,p
ε

)
+ L

(
ΦP

−1
)

≤
(
CL(1 + log2 p) (2p+ p log2 (1/α) + log2(1/η)) + C (p log2 (1/α) + log2(1/η))

+ C(1 + log32(p))
)
+ 1

≤CL(1 + log2 p) (2p+ p log2 (1/α) + log2(1/η)) + C (p+ p log2 (1/α) + log2(1/η)) ,

M(Φη,p) ≤M
(
Φ
up◦P,T ′,p
ε

)
+Mfi

(
Φ
up◦P,T ′,p
ε

)
+Mla

(
ΦP

−1
)
+M

(
ΦP

−1
)

≤
(
8CM (p2 + 1) + 4CM (p+ 1) (p log2 (1/α) + log2(1/η))

+ C (1 + log2(p))
2 (p log2 (1/α) + log2(1/η)) + C(1 + p log22(p))

)
+ 12 + 2 + 2

≤ 4CMp
2 (2 + log2 (1/α)) + 4CMp log2(1/η) + C(1 + log2(p))

2 (p+ p log2 (1/α) + log2(1/η)) ,

Mfi(Φ
η,p) ≤ 2Mfi

(
ΦP

−1
)
≤ 4,

Mla(Φ
η,p) ≤Mla

(
Φ
up◦P,T ′,p
ε

)
≤ 6.

Equations (5.20) and (5.19) can be combined to get, for some constants C11, C12 > 0 depending only
on α and κ0, that

M(Φη,p) ≤ C11

(
p log2 (1/α) +

1
2
log2(1/η)

)2
,

‖u1,η − R(Φη,p)‖L2(Î) , ‖u1,η − R(Φη,p)‖η,Î ≤ C12η
1/2αp

= C12 exp

(
−C−1/2

11

(
C11 log

2
2

(
η1/2αp

))1/2)

≤ C12 exp
(
−C−1/2

11 M (Φη,p)1/2
)
.

6 Multivariate Approximation: Radial Basis Functions

The preceding results on NN approximation adressed the univariate case only. One method to extend
these results to the multivariate setting is through concatenation, which is naturally accommodated by
DNNs. We illustrate this for the (widely used) class of isotropic and anisotropic radial basis functions, cf.
[6] and [53] and the references therein. NN approximations of such functions have been considered in e.g.
[28, 29, 10].

For dimension d ∈ N, it was shown in [29] that the Euclidean norm R
d ∋ x 7→ ‖x‖2,Rd can be

approximated efficiently by NNs. To approximate a radially symmetric function R
d ∋ x 7→ g(‖x‖2,Rd),
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with radial profile function g in any function class considered in Section 5, we concatenate the corresponding
NN approximation from Section 5 with the NN approximation for the Euclidean norm R

d ∋ x 7→ ‖x‖2,Rd

based on [29], which we present in Section 6.1. As we shall show in Sections 6.2 and 6.3, the results from
Section 5 then relate the smoothness of the profile function g to the size of the approximating NNs.

In addition, anisotropic radial-like functions can be approximated by concatenating a shallow NN
emulating an affine transformation with a deep NN approximating an isotropic radially symmetric function.

Remark 6.1. We point out that if instead of radial functions of the form x 7→ g(‖x‖2) one only needs to
express with NNs functions of the form x 7→ g(‖x‖22) (i.e., even functions ζ 7→ g(ζ) as arise in several
kernels that are widely used in scattered data approximation, see [53]), the ensuing proofs could be simplified
as one approximates

x 7→ ‖x‖22 =

d∑

k=1

x2i

through d Yarotsky products with a ReLU NN of size O(d log(d/ε)) and depth O(log(d) log(d/ε)), i.e. near
linear scaling with respect to the dimension d and logarithmic scaling with respect to the target accuracy
ε ∈ (0, 1]. The ensuing Proposition 6.2 achieves essentially this result for the euclidean norm x 7→ ‖x‖2,
albeit with a considerably more involved argument based on ideas in [29]. As it will allow us to cover NN
approximation of general profile functions g, we opt to detail the NN emulation of the euclidean norm
x 7→ ‖x‖2.

As we will see in Section 6.3, combining results from Section 5.4 with the NN approximation of
x 7→ ‖x‖2 allows us to show exponential convergence in L∞-norm of the approximation of x 7→ ‖x‖s2 for
any s > 1

2
. Instead, combining Section 6.3 with the approximation of x 7→ ‖x‖22 would only allow us to

approximate x 7→ ‖x‖s2 for s ≥ 1.

6.1 NN approximation of the euclidean norm R
d ∋ x 7→ ‖x‖2,Rd

We now recall the NN approximation of the Euclidean norm on R
d and derive a bound on the W 1,∞-error.

Then, we formulate our main result on the approximation of anisotropic radial-like functions.

Proposition 6.2 (cf. [29, Lemma 4]). For all dimensions d ≥ 2 and target accuracy δ > 0, there exists a
NN ΦEucl

d,δ with input dimension d and output dimension 1, such that R
(
ΦEucl
d,δ

)
is 1-Lipschitz continuous,

∣∣∣‖x‖2,Rd − R
(
ΦEucl
d,δ

)
(x)
∣∣∣ ≤ δ ‖x‖2,Rd , for all x ∈ R

d, (6.1)
∣∣∣‖·‖2,Rd − R

(
ΦEucl
d,δ

)∣∣∣
W1,∞(Rd)

≤ δ, for a.e. x ∈ R
d, (6.2)

and

L
(
ΦEucl
d,δ

)
≤ log2(d) log2

(
10π

d

δ

)
, M

(
ΦEucl
d,δ

)
≤ 16(d− 1) log2

(
10π

d

δ

)
.

Before we prove Proposition 6.2, we first discuss the proof of [29, Lemma 4]. To approximate the
Euclidean norm on R

d, in [29, Supplementary material, Equation (29)] it is observed that for x ∈ R
d with

n = min{2k : k ∈ N, 2k ≥ d} = 2⌈log2(d)⌉ and with xk = 0 for k = d+ 1, . . . , n

‖x‖2,Rd =
√
x21 + x22 + . . .+ x2d =

√√√
x21 + x22

2

+
√
x23 + x24

2
2

. . .

√
. . .+

√
x2n−1 + x2n

2
2

.

The NN in the proof of [29, Lemma 4] consists of a binary tree of NNs from [29, Lemma 3], which
approximate the Euclidean norm on R

2. For a maximal input size R > 0 and an accuracy δ1 > 0, the
NN constructed in [29, Lemma 3] is the ⌈log2(Rπ/δ1)⌉-fold concatenation of folding networks from [29,
Lemma 2] followed by a projection on the x1-coordinate. We now recall [29, Lemma 2], providing bounds
on the number of nonzero coefficients.

Lemma 6.3 ([29, Lemma 2]). For every unit vector l = (l1, l2)
⊤ ∈ R

2 there exists a folding network
Φl1,l2 with input dimension 2 and output dimension 2 such that

R
(
Φl1,l2

)
(x) =





x if 〈l, x〉 ≥ 0,(
l21 − l22 2l1l2

2l1l2 l22 − l21

)
x otherwise.

(6.3)
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The NN realizes a folding transformation about the line through the origin perpendicular to l, called fold
line.

It holds that

L
(
Φl1,l2

)
= 2, M

(
Φl1,l2

)
= 16, Mfi

(
Φl1,l2

)
= 8, Mla

(
Φl1,l2

)
= 8,

and the hidden layer consists of 4 neurons.

Proof. Equation (6.3) is shown in the proof of [29, Lemma 2] in the supplementary material of [29]. All
network weights are visualized in [29, Supplementary material, Figure 2], from which the bound on the
number of nonzero weights directly follows.

Remark 6.4 (the NN approximation of x 7→ ‖x‖2,R2 is 1-Lipschitz continuous, almost everywhere
the composition of ⌈log2(Rπ/δ1)⌉ folding transformations is locally an isometry). Note that the folding
transformation leaves the Euclidean norm invariant, if the fold line is a line through the origin. In addition,
we note that if two points x, y ∈ R

2 are on the same side of the fold line or if x or y lies on the fold line,
then the folding transformation preserves their distance. If x, y are on opposite sides of the fold line, then
the distance between the images of x, y under the folding transformation is less than the distance between
x and y. We conclude that folding transformations are 1-Lipschitz continuous. In addition, also the
projection onto the x1-coordinate is 1-Lipschitz continuous. The realization of the NN from [29, Lemma 3],
approximating x 7→ ‖x‖2,R2 , is the composition of ⌈log2(Rπ/δ1)⌉ folding transformations and a projection
onto the x1 coordinate, thus 1-Lipschitz continuous.

Moreover, considering a single folding transformation, for all x ∈ R
2 not on the fold line, there exists

an open neighborhood on which the folding transformation equals either the identity or the reflection in
the fold line. In both cases, on this neighborhood the folding transformation is an isometry.

This argument extends to the composition of ⌈log2(Rπ/δ1)⌉ folding transformations. Consider for
each folding transformation the fold line, and the preimage of the fold line under the preceding folding
transformations. Their union consists of 2⌈log2(Rπ/δ1)⌉−1 lines through the origin. If x ∈ R

2 is not element
of any of those lines, then the composition of these folding transformations near x equals a composition of
reflections and identity transformations, which is an isometry. Near almost every x ∈ R

2 the composition
of ⌈log2(Rπ/δ1)⌉ folding transformations is an isometry, because the union of 2⌈log2(Rπ/δ1)⌉−1 lines has
zero Lebesgue measure.

Proof of Proposition 6.2. Similar to the proof of [29, Lemma 4] in the supplementary material of [29], for
δ1 := δ

10d
> 0 we define the NN ΦEucl

d,δ to be a binary tree of NNs ΦEucl
2,δ1

approximating the Euclidean
norm on R

2.
Deviating from [29, Lemma 3], we define the NN ΦEucl

2,δ1
to be the f := ⌈log2(π/δ1)⌉-fold concatenation

of folding networks from Lemma 6.3, followed by a projection onto the x1-coordinate. We denote the
composition of the f folding transformations by Fδ1 . Contrary to [29, Lemma 3], we do not consider a
maximal input size for ΦEucl

2,δ1
. As a result, the error bound will scale linearly with the Euclidean norm of

the input.
In polar coordinates, with each folding transformation the range of the angular coordinate is reduced

by a factor 2, cf. [29, Figure 1a]. After f folding transformations, the angular coordinate of the output is
contained in an interval of length 2−f (2π). If we align the folding transformations such that the image
Fδ1(R

2) is a cone at the origin symmetric around the positive x1-axis, it holds that the angular coordinate
of every point in Fδ1(R

2) is in [−2−fπ, 2−fπ]. To do so, for i = 1, . . . , f we choose the folding directions
as

l(i) = (l1,i, l2,i)
⊤, where l1,i = cos

( π

2i−1
− π

2
− π

2f

)
and l2,i = sin

( π

2i−1
− π

2
− π

2f

)
.

Following the proof of [29, Lemma 3] in the supplementary material of [29], we define ΦEucl
2,δ1

to be the
concatenation (as in [39, Definition 2.2]) of f folding networks from Lemma 6.3 with previously described
folding directions (l(i))i=1,...,f . In addition, for the remainder of this proof we will use the following
notation: for k ∈ N we inductively define

Φkδ1 := ΦEucl
2,δ1 ⊙ FP

(
Φk−1
δ1

,Φk−1
δ1

)
,

and with m := ⌈log2(d)⌉ we finally define ΦEucl
d,δ := Φmδ1 .
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Analogous to the error estimate in the proof of [29, Lemma 3], we find for the error of the approximation
of the Euclidean norm on R

2, for all x ∈ R
2:

0 ≤ ‖x‖2,R2 − R
(
ΦEucl

2,δ1

)
(x) ≤ ‖x‖2,R2 − ‖x‖2,R2 cos(π2

−f ) ≤ ‖x‖2,R2 π2
−f ≤ δ1 ‖x‖2,R2 . (6.4)

The lower bound holds, because the fold operations preserve the Euclidean norm, and the projection onto
the x1-coordinate can only reduce it.

It follows by [29, Supplementary material, Equation (30)] for n = 1 and i = ⌈log2(d)⌉ that, with
m := ⌈log2(d)⌉,

‖x‖2,Rd − R
(
ΦEucl
d,δ

)
(x) ≤ δ1

(
(2⌊

m+1
2

⌋ − 1) +
√
2(2⌊

m
2

⌋ − 1)

)
‖x‖2,Rd , for all x ∈ R

d. (6.5)

The left-hand side is bounded from below by 0, as follows from (6.4) by induction.
With

(
(2⌊

m+1
2

⌋ − 1) +
√
2(2⌊

m
2

⌋ − 1)

)
≤ (2

√
2)2

m
2 ≤ (2

√
2)2

log2(d)+1

2 = 4
√
d

and δ1 = δ
10d

Equation (6.1) follows.

To see that R
(
ΦEucl
d,δ

)
is 1-Lipschitz continuous, we note that it is a binary tree of realizations R

(
ΦEucl

2,δ1

)
.

These are composed of 1-Lipschitz maps (folds and a projection, cf. Remark 6.4), and are thus 1-Lipschitz
continuous. As a result, also R

(
ΦEucl
d,δ

)
is 1-Lipschitz continuous.

To bound the error in the first partial derivative, we note that for all x ∈ R
2 ∂2 ‖·‖2,R2 (x) = 〈e2 , r̂(x)〉,

where e2 denotes the unit vector in the x2-direction and r̂(x) = x/‖x‖ is the unit vector in the radial
direction. Denoting the angle between e2 and r̂(x) by θ1(x), ∂2 ‖·‖2,R2 (x) = cos(θ1(x)).

We now determine the derivative of R
(
ΦEucl

2,δ1

)
(x), defined for almost every x ∈ R

2. We denote
the push-forward of the vectors e2 and r̂(x) at x under the transformation Fδ1 in the point Fδ1(x) by
dFδ1(e2)(Fδ1(x)) and dFδ1(r̂)(Fδ1(x)).

As for the NN from [29, Lemma 3] discussed in Remark 6.4, near almost every x ∈ R
2 the map Fδ1

locally constitutes an isometry. Thus, for almost every x ∈ R
2 it holds

〈e2 , r̂(x)〉 = 〈dFδ1(e2)(Fδ1(x)) , dFδ1(r̂)(Fδ1(x))〉.

Near those x ∈ R
2, the map Fδ1 is a composition of reflections in a line through the origin and the identity.

This means it preserves ‖·‖2,R2 , hence dFδ1(r̂)(Fδ1(x)) = r̂(Fδ1(x)) and

∂ ‖·‖2,R2

∂x2
(x) = cos(θ1(x)) = 〈e2 , r̂(x)〉 = 〈dFδ1(e2)(Fδ1(x)) , r̂(Fδ1(x))〉.

In addition, we note that

∂R
(
ΦEucl

2,δ1

)

∂x2
(x) = 〈dFδ1(e2)(Fδ1(x)) , e1〉 = cos(θ2(x)),

where θ2(x) denotes the angle between dFδ1(e2)(Fδ1(x)) and e1. By construction, for all y ∈ R
2 the

angular coordinate of Fδ1(y) lies in the interval [−δ1, δ1]. This implies that the angle θ3(x) between
r̂(Fδ1(x)) and e1 is at most δ1. Also, note that |θ1(x) − θ2(x)| = θ3(x) ≤ δ1. With the 1-Lipschitz
continuity of cos(·) we obtain that for almost all x ∈ R

2

∣∣∣∣∣∣

∂
(
‖·‖2,R2 − R

(
ΦEucl

2,δ1

))

∂x2
(x)

∣∣∣∣∣∣
≤ | cos(θ1(x))− cos(θ2(x))| ≤ |θ1(x)− θ2(x)| ≤ δ1. (6.6)

The error in the derivative with respect to x1 can be estimated in the same way.
Finally, with the chain rule it follows that

∥∥∥∇‖x‖2,Rd −∇
(
R
(
ΦEucl
d,δ

)
(x)
)∥∥∥

2,Rd
≤ 10dδ1, for a.e. x ∈ R

d. (6.7)
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We show this by induction with respect to the dimension d. For d = 2, the assertion follows from Equation
(6.6). To prove (6.7) for d > 2, we write m = ⌈log2(d)⌉ and we show by induction that

∥∥∥∥
∂

∂xℓ
‖·‖

2,R2i −
∂

∂xℓ
R
(
Φiδ1

)∥∥∥∥
L∞(R2i )

≤
(
i−1∑

j=1

δj + iδ1

)
for all ℓ = 1, . . . , 2i and all i = 1, . . . ,m,

(6.8)

where for j = 1, . . . ,m− 1

δj :=

(
(2⌊

j+1
2

⌋ − 1) +
√
2(2⌊

j
2
⌋ − 1)

)
.

We only consider ℓ = 1, the bounds on the other derivatives are analogous. Assuming that for some k ∈ N

Equation (6.8) holds for all i < k, we estimate for a.e. x ∈ R
2k

∣∣∣∣
∂

∂x1
‖x‖

2,R2k − ∂

∂x1

(
R
(
Φkδ1

)
(x)
)∣∣∣∣

=

∣∣∣∣
(

∂

∂x1
‖·‖2,R2

)
(‖(x1, . . . , x2k−1)‖

2,R2k−1 ,
∥∥(x2k−1+1, . . . , x2k )

∥∥
2,R2k−1 ) · ∂

∂x1
‖(x1, . . . , x2k−1)‖

2,R2k−1

−
(

∂

∂x1
R
(
ΦEucl

2,δ1

))(
R
(
Φk−1
δ1

)
(x1, . . . , x2k−1),R

(
Φk−1
δ1

)
(x2k−1+1, . . . , x2k )

)

· ∂

∂x1

(
R
(
Φk−1
δ1

)
(x1, . . . , x2k−1)

) ∣∣∣∣

≤
∣∣∣∣
(

∂

∂x1
‖·‖2,R2

)
(‖(x1, . . . , x2k−1)‖

2,R2k−1 ,
∥∥(x2k−1+1, . . . , x2k )

∥∥
2,R2k−1 )

−
(

∂

∂x1
‖·‖2,R2

)(
R
(
Φk−1
δ1

)
(x1, . . . , x2k−1),R

(
Φk−1
δ1

)
(x2k−1+1, . . . , x2k )

) ∣∣∣∣

·
∣∣∣∣
∂

∂x1
‖(x1, . . . , x2k−1)‖

2,R2k−1

∣∣∣∣

+

∣∣∣∣
(

∂

∂x1
‖·‖2,R2 − ∂

∂x1
R
(
ΦEucl

2,δ1

))(
R
(
Φk−1
δ1

)
(x1, . . . , x2k−1),R

(
Φk−1
δ1

)
(x2k−1+1, . . . , x2k )

) ∣∣∣∣

·
∣∣∣∣
∂

∂x1
‖(x1, . . . , x2k−1)‖

2,R2k−1

∣∣∣∣

+

∣∣∣∣
(

∂

∂x1
R
(
ΦEucl

2,δ1

))(
R
(
Φk−1
δ1

)
(x1, . . . , x2k−1),R

(
Φk−1
δ1

)
(x2k−1+1, . . . , x2k )

) ∣∣∣∣

·
∣∣∣∣
∂

∂x1
‖(x1, . . . , x2k−1)‖

2,R2k−1 − ∂

∂x1

(
R
(
Φk−1
δ1

)
(x1, . . . , x2k−1)

)∣∣∣∣ . (6.9)

Because the Euclidean norm is 1-Lipschitz continuous, it follows that
∣∣∣ ∂
∂x1

‖(x1, . . . , x2k−1)‖
2,R2k−1

∣∣∣ ≤ 1.

By Equation (6.6), the second term in (6.9) can be estimated by δ1. To estimate the third term, we use
the induction hypothesis and the fact that R

(
ΦEucl

2,δ1

)
is 1-Lipschitz continuous. As a result, the third term

can be estimated by
∑k−2
j=1 δj + (k − 1)δ1.

To estimate the first term in (6.9), define

a := (‖(x1, . . . , x2k−1)‖
2,R2k−1 ,

∥∥(x2k−1+1, . . . , x2k )
∥∥
2,R2k−1 ) =: (a1, a2) ∈ R

2,

b :=
(
R
(
Φk−1
δ1

)
(x1, . . . , x2k−1),R

(
Φk−1
δ1

)
(x2k−1+1, . . . , x2k )

)
=: (b1, b2) ∈ R

2

and denote by θa, θb the angular coordinates of a and b, respectively. Then, with the 1-Lipschitz continuity
of cos(·) it follows that

∣∣∣∣
(

∂

∂x1
‖·‖2,R2

)
(a)−

(
∂

∂x1
‖·‖2,R2

)
(b)

∣∣∣∣ = |cos θa − cos θb| ≤ |θa − θb| .

To estimate this difference, we use the following corollary of Equation (6.4):

0 ≤ ‖(x1, . . . , x2k−1)‖
2,R2k−1−R

(
Φk−1
δ1

)
(x1, . . . , x2k−1) = a1−b1 ≤ δk−1 ‖(x1, . . . , x2k−1)‖

2,R2k−1 = δk−1a1,
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where

δk−1 :=

(
(2⌊

k−1+1
2

⌋ − 1) +
√
2(2⌊

k−1
2

⌋ − 1)

)
.

The upper bound follows from [29, Supplementary material, Equation (30)] with n = 1 and i = k−1, similar
to (6.5). The lower bound follows from (6.4) by induction. Similarly, it holds that 0 ≤ a2 − b2 ≤ δk−1a2.
For arbitrary, fixed a and within the previously given bounds on b1, b2, the difference |θa − θb| is largest
when b1 = a1(1 − δk−1) and b2 = a2 in case |a2

a1
| > 1 or when b1 = a1 and b2 = a2(1 − δk−1) in case

|a2
a1

| ≤ 1. W.l.o.g. we only consider the case that 0 ≤ a2
a1

≤ 1 with a1, a2 ≥ 0. Then, tan(θa) =
a2
a1

and

tan(θb) =
b2
b1

= a2
a1

(1− δk−1). Hence, using that d
dx

tan(x) = (cos(x))−2 ≥ 1 for all x ∈ (−π
2
, π
2
), it follows

that
|θa − θb| ≤ |tan(θa)− tan(θa)| ≤ δk−1 tan(θa) ≤ δk−1.

The same estimate |θa − θb| ≤ δk−1 can be derived in case |a2
a1

| > 1, with the same argument, measuring
angles with respect to the x2-axis instead of the x1-axis. This finishes the estimate of the first term in
Equation (6.9), which is bounded by δk−1. Combining Equation (6.9) with the estimates for the three
terms gives Equation (6.8) for i = k:

∣∣∣∣
∂

∂x1
‖x‖

2,R2k − ∂

∂x1

(
R
(
Φkδ1

)
(x)
)∣∣∣∣ ≤ δk−1 + δ1 +

(
k−2∑

j=1

δj + (k − 1)δ1

)
=

k−1∑

j=1

δj + kδ1.

Next, we use (6.8) with i = m ≤ log2(d) + 1, and use that (
√
2 − 1) ≥ 2

5
and that m > 1 (because

d > 2). We obtain

m−1∑

j=1

δj +mδ1 ≤
(
m−1∑

j=1

(2
√
2)2

j
2 − 2(m− 1)

)
δ1 +mδ1

≤ δ1(2
√
2)

2
m
2√

2− 1
≤ δ1(5

√
2)2

log2(d)+1

2 = 10
√
dδ1.

It follows that for a.e. x ∈ R
d

∥∥∥∇‖x‖2,Rd −∇
(
R
(
ΦEucl
d,δ

)
(x)
)∥∥∥

2,Rd
≤ 10dδ1.

This finishes the proof of Equation (6.2).
We now provide bounds on the network depth and size. Each NN ΦEucl

2,δ1
is fully connected with 4

neurons in each layer, hence there are at most 16 nonzero coefficients per layer. As a result, the number
of nonzero weights in ΦEucl

d,δ is bounded by four times the number of neurons. Analogous to the proof of
[29, Lemma 4], we obtain the following bounds on the depth and the number of neurons:

L
(
ΦEucl
d,δ

)
≤ log2(d) log2

(π
δ
10d
)
, N

(
ΦEucl
d,δ

)
≤ 4(d− 1) log2

(π
δ
10d
)
.

This gives the following bound on the network size:

M
(
ΦEucl
d,δ

)
≤ 16(d− 1) log2

(π
δ
10d
)
.

6.2 Anisotropic Radial Functions in High Dimension

We now turn to the main result of this section, approximation rate bounds of deep NN aproximations for
anisotropic radial-like functions in high dimension.

Theorem 6.5. Let d ∈ N, R > 0, A ∈ R
d×d, b ∈ R

d, and D := {x ∈ R
d : ‖Ax+ b‖2,Rd ≤ R}. Let

g ∈ W 2,∞([0, R]) be such that for all β ∈ (0, 1) the function g can be approximated by a NN Φgβ,R such
that

∥∥g − R
(
Φgβ,R

)∥∥
W1,∞([0,R])

≤β ‖g‖W1,∞([0,R]) , (6.10)

L
(
Φgβ,R

)
=:Lβ,R,

M
(
Φgβ,R

)
=:Mβ,R.
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Consider the anisotropic radial-like function

f : D → R : x 7→ g(‖Ax+ b‖2,Rd).

Then, for every ε ∈ (0, 1), there exists a NN Φfε,D such that

∥∥∥f − R
(
Φfε,D

)∥∥∥
L∞(D)

≤ ε ‖g‖W1,∞([0,R]) , (6.11)

∥∥∥f − R
(
Φfε,D

)∥∥∥
W1,∞(D)

≤ ε ‖A‖2,Rd ‖g‖W2,∞([0,R]) , (6.12)

L
(
Φfε,D

)
≤Lβ,R + log2(d)log2

(
30πd

√
dmax{R, 1}/ε

)
+ 1,

M
(
Φfε,D

)
≤ 2Mβ,R + 4d2 + 64(d− 1) log2

(
30πd

√
dmax{R, 1}/ε

)
+ 4d.

Remark 6.6. For results in Section 5, if instead of (6.10) the right-hand side of the error bound for Φgβ,R
depends linearly on a stronger norm of g, then a result similar to Theorem 6.5 holds, with the right-hand
sides of (6.11) and (6.12) depending linearly on the stronger norm.

Otherwise, an error bound for Φgβ,R which scales linearly with ‖g‖W1,∞([0,R]) can be obtained as follows:
If g 6≡ 0, then g can be approximated by taking the approximation of g/ ‖g‖W1,∞([0,R]) from Section 5, but
with the weights of the output layer multiplied by ‖g‖W1,∞([0,R]). This NN satisfies an error bound linear
in ‖g‖W1,∞([0,R]) as in (6.10). Note that in all results in Section 5 the bounds on the network size are
independent of ‖g‖W1,∞([0,R]), i.e. these bounds are not affected by this rescaling. On the other hand, if
g ≡ 0, then it can be emulated exactly by a NN of depth 1 and size 0.

Proof of Theorem 6.5. We note that the affine transformation T : D → R
d : x 7→ Ax+ b can be emulated

exactly by a NN ΦA,b of depth 1 and size at most d2 + d. For the approximation of ‖·‖2,Rd , we apply
Proposition 6.2 with δ := ε

3
√
dmax{R,1} . For the approximation of g, we use the assumption of the theorem

with β := ε

3
√
d
. We define

Φfε,D := Φgβ,R ⊙ ΦEucl
d,δ ⊙ ΦA,b.

Its depth and its size can be bounded as follows:

L
(
Φfε,D

)
≤L

(
Φgβ,R

)
+ L

(
ΦEucl
d,δ

)
+ L

(
ΦA,b

)

≤Lβ,R + log2(d) log2

(
30πd

√
dmax{R, 1}/ε

)
+ 1,

M
(
Φfε,D

)
≤ 2M

(
Φgβ,R

)
+ 4M

(
ΦEucl
d,δ

)
+ 4M

(
ΦA,b

)

≤ 2Mβ,R + 4
(
16(d− 1) log2

(
30πd

√
dmax{R, 1}/ε

))
+ 4(d2 + d)

≤ 2Mβ,R + 4d2 + 64(d− 1) log2

(
30πd

√
dmax{R, 1}/ε

)
+ 4d.

Using that the W 1,∞([0, R])-seminorm equals the Lipschitz constant, we estimate the error as follows:

∥∥∥g(‖A ·+b‖2,Rd)− R
(
Φgβ,R

) (
R
(
ΦEucl
d,δ

)
(A ·+b)

)∥∥∥
L∞(D)

≤
∥∥∥g(‖A ·+b‖2,Rd)− g

(
R
(
ΦEucl
d,δ

)
(A ·+b)

)∥∥∥
L∞(D)

+
∥∥∥
(
g − R

(
Φgβ,R

)) (
R
(
ΦEucl
d,δ

)
(A ·+b)

)∥∥∥
L∞(D)

≤ ‖g‖W1,∞([0,R]) δR+ β ‖g‖L∞([0,R])

≤ ε ‖g‖W1,∞([0,R]) .
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In order to estimate the W 1,∞(D)-error, we use that ΦEucl
d,δ is 1-Lipschitz continuous. This implies∥∥∥ ∂

∂x1

(
R
(
ΦEucl
d,δ

)
(A ·+b)

)∥∥∥
L∞(D)

≤ ‖A‖2,Rd . It follows that

∥∥∥∥
∂

∂x1

(
g(‖A ·+b‖2,Rd)

)
− ∂

∂x1

(
R
(
Φgβ,R

) (
R
(
ΦEucl
d,δ

)
(A ·+b)

))∥∥∥∥
L∞(D)

≤
∥∥∥∥
(
∂

∂x
g

)(
‖A ·+b‖2,Rd

)
·
(

∂

∂x1
‖A ·+b‖2,Rd

)

−
(
∂

∂x
g

)(
‖A ·+b‖2,Rd

)
· ∂

∂x1

(
R
(
ΦEucl
d,δ

)
(A ·+b)

)∥∥∥∥
L∞(D)

+

∥∥∥∥
(
∂

∂x
g

)(
‖A ·+b‖2,Rd

)
· ∂

∂x1

(
R
(
ΦEucl
d,δ

)
(A ·+b)

)

−
(
∂

∂x
R
(
Φgβ,R

))(
R
(
ΦEucl
d,δ

)
(A ·+b)

)
· ∂

∂x1

(
R
(
ΦEucl
d,δ

)
(A ·+b)

)∥∥∥∥
L∞(D)

≤
∥∥∥∥
(
∂

∂x
g

)(
‖A ·+b‖2,Rd

)∥∥∥∥
L∞(D)

∣∣∣‖·‖2,Rd − R
(
ΦEucl
d,δ

)∣∣∣
W1,∞(Rd)

‖A‖2

+

∥∥∥∥
(
∂

∂x
g

)(
‖A ·+b‖2,Rd

)
−
(
∂

∂x
R
(
Φgβ,R

))(
R
(
ΦEucl
d,δ

)
(A ·+b)

)∥∥∥∥
L∞(D)

‖A‖2

≤ ‖A‖2
∥∥∥∥
(
∂

∂x
g

)(
‖A ·+b‖2,Rd

)∥∥∥∥
L∞(D)

∣∣∣‖·‖2,Rd − R
(
ΦEucl
d,δ

)∣∣∣
W1,∞(Rd)

+ ‖A‖2
∥∥∥∥
(
∂

∂x
g

)
(‖A ·+b‖2,Rd)−

(
∂

∂x
g

)(
R
(
ΦEucl
d,δ

)
(A ·+b)

)∥∥∥∥
L∞(D)

+ ‖A‖2
∥∥∥∥
(
∂

∂x
g − ∂

∂x
R
(
Φgβ,R

))(
R
(
ΦEucl
d,δ

)
(A ·+b)

)∥∥∥∥
L∞(D)

≤ ‖A‖2 ‖g‖W1,∞([0,R]) δ + ‖A‖2 ‖g‖W2,∞([0,R]) δR+ ‖A‖2 β ‖g‖W1,∞([0,R])

≤ ε ‖A‖2 ‖g‖W2,∞([0,R]) /
√
d,

and hence
∥∥∥∇
(
g(‖A ·+b‖2,Rd)

)
−∇

(
R
(
Φgβ,R

) (
R
(
ΦEucl
d,δ

)
(A ·+b)

))∥∥∥
L∞(D)

≤ ε ‖A‖2 ‖g‖W2,∞([0,R]) .

6.3 Singular Anisotropic Radial Functions in High Dimension

In this section, we derive a variation of Theorem 6.5, with weaker regularity assumptions on g: we only
require g ∈W s,∞([0, R]), s > 0.

Theorem 6.7. Let d ∈ N, s > 0, R > 0, A ∈ R
d×d, b ∈ R

d, and D := {x ∈ R
d : ‖Ax+ b‖2,Rd ≤ R}.

Moreover, let g ∈W s,∞([0, R]) be such that for all β ∈ (0, 1) the function g can be approximated by a NN
Φgβ,R such that

∥∥g − R
(
Φgβ,R

)∥∥
L∞([0,R])

≤β ‖g‖L∞([0,R]) ,

L
(
Φgβ,R

)
=:Lβ,R,

M
(
Φgβ,R

)
=:Mβ,R.

Consider the anisotropic radial-like function

f : D → R : x 7→ g(‖Ax+ b‖2,Rd).
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Then, for every ǫ ∈ (0, 1), there exists a NN Φfε,D such that

∥∥∥f − R
(
Φfε,D

)∥∥∥
L∞(D)

≤ ε ‖g‖Ws,∞([0,R]) ,

L
(
Φfε,D

)
≤Lβ,R + log2(d) log2

(
10πdR(2/ε)1/s

)
+ 1,

M
(
Φfε,D

)
≤ 2Mβ,R + 4d2 + 64(d− 1) log2

(
10πdR(2/ε)1/s

)
+ 4d.

Proof of Theorem 6.7. We proceed as in the proof of Theorem 6.5. Again, let ΦA,b be a NN of depth 1
and size at most d2 + d emulating exactly the affine transformation T : D → R

d : x 7→ Ax+ b. For the
approximation of ‖·‖2,Rd , we apply Proposition 6.2 with δ := ( ε

2
)1/sR−1. For the approximation of g, we

use the assumption of the theorem with β := ε
2
. We define

Φfε,D := Φgβ,R ⊙ ΦEucl
d,δ ⊙ ΦA,b.

The depth and size of Φfε,D can be bounded as follows:

L
(
Φfε,D

)
≤L

(
Φgβ,R

)
+ L

(
ΦEucl
d,δ

)
+ L

(
ΦA,b

)

≤Lβ,R + log2(d) log2

(
10πdR(2/ε)1/s

)
+ 1,

M
(
Φfε,D

)
≤ 2M

(
Φgβ,R

)
+ 4M

(
ΦEucl
d,δ

)
+ 4M

(
ΦA,b

)

≤ 2Mβ,R + 4
(
16(d− 1) log2

(
10πdR(2/ε)1/s

))
+ 4(d2 + d)

≤ 2Mβ,R + 4d2 + 64(d− 1) log2

(
10πdR(2/ε)1/s

)
+ 4d.

Using that the value of the W s,∞([0, R])-seminorm equals the Cs-Hölder constant, we obtain that

∥∥∥g(‖A ·+b‖2,Rd)− R
(
Φgβ,R

) (
R
(
ΦEucl
d,δ

)
(A ·+b)

)∥∥∥
L∞(D)

≤
∥∥∥g(‖A ·+b‖2,Rd)− g

(
R
(
ΦEucl
d,δ

)
(A ·+b)

)∥∥∥
L∞(D)

+
∥∥∥
(
g − R

(
Φgβ,R

)) (
R
(
ΦEucl
d,δ

)
(A ·+b)

)∥∥∥
L∞(D)

≤ ‖g‖Ws,∞([0,R]) (δR)
s + β ‖g‖L∞([0,R])

≤ ε ‖g‖Ws,∞([0,R]) .

Because H1((0, R)) →֒ W s,∞((0, R)) for all s ∈ [0, 1
2
), this means that we can combine Theorem

6.7 with any of the results in Section 5. In particular, with R = 1 we can apply the results of Section
5.4 concerning functions on (0, 1) with a singularity in x = 0: for all β ∈ (0, 1) and all δ ≥ 1 it holds
that G2,δ

β ((0, 1)) ⊂ H1((0, 1)) →֒W s,∞((0, R)), which means that we get exponential convergence of NN

approximations of singular anisotropic radial-like functions, such as x 7→ ‖x‖s2,Rd for any s > 1
2
: we use

that x 7→ xs is an element of G2,1
β ((0, 1)) (e.g. for β = 5−2s

4
∈ (0, 1)).

As noted in Remark 6.1, if instead of Proposition 6.2 a NN approximation of x 7→
∑d
i=1 x

2
i were

combined with results from Section 5.4, then only x 7→ ‖x‖s2,Rd for s ≥ 1 could be approximated.
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A Proof of Theorem 5.10

We note that [45, Lemma 3.41], which is formulated for any β ∈ (0, 1) and any u ∈ G2,1
β (I) =: B2

β(I), also

holds for any δ ≥ 1, any β ∈ (0, 1) and any u ∈ G2,δ
β (I).

Lemma A.1 ([45, Lemma 3.41]). Let I = (0, 1), δ ≥ 1, β ∈ (0, 1) and u ∈ G2,δ
β (I). Let σ ∈ (0, 1), N ∈ N,

λ := σ−1 − 1 and let p = (pi)
N
i=1 ⊂ N be such that p1 = 1 and such that pi ≥ 2 for i ∈ {2, . . . , N}.

Then there exists a v ∈ Sp(I, Tσ,N ) such that

‖u− v‖2H1(I) ≤ C

[
x
2(1−β)
1 |u|2

H
2,2
β

(I)
+

N∑

i=2

x
2(1−β)
i−1

(pi − si)!

(pi + si)!
(λ
2
)2si |u|2

H
si+1,2
β

(I)

]
,

where si ∈ {2, . . . , pi} for all i ∈ {2, . . . , N}.
We will use the following lemma to bound the right-hand side of the inequality in Lemma A.1.

Lemma A.2 ([13, Lemma 4.3.4]). Let N ∈ N, δ ≥ 1, α > 0 and µ0 := max{1, αe1−δ}. For any µ > µ0

let p = (pi)
N
i=1 ⊂ N be defined by pi := ⌊µiδ⌋ for all i ∈ {1, . . . , N}. Then it holds that

N∑

i=1

α2i (pi − i)!

(pi + i+ 1)!
((i+ 1)!)2δ ≤ C(α, µ, δ).

In particular, C(α, µ, δ) is independent of N .

Proof of Theorem 5.10. We use Lemma A.1 with xi = σN−i and si = i + 1 for all i ∈ {1, . . . , N}.
Because u ∈ G2,δ

β (I), it holds that |u|
H

i+2,2
β

(I)
≤ Cdi(i!)δ for all i ∈ {0, . . . , N − 2}. With α := dλ

2σ1−β ,

µ0 = max
{
1, dλe

1−δ

2σ1−β

}
, and C∗ as in Equation (5.14), it follows with Lemma A.2 that there exists a

constant C7(σ, β, δ, µ, C∗, d) > 0 such that for all N it holds that

‖u− v‖2H1(I) ≤C

[
σ2(1−β)(N−1)C2

∗ +
N∑

i=2

σ2(1−β)(N+1−i) (pi − i− 1)!

(pi + i+ 1)!
(λ
2
)2i+2C2

∗d
2i(i!)2δ

]

≤CC2
∗σ

2(1−β)N
[
σ−2(1−β) + (σ1−β λ

2
)2

N∑

i=2

(
dλ

2σ1−β

)2i
(pi − i− 1)!

(pi + i+ 1)!
(i!)2δ

]

≤CC2
∗σ

2(1−β)N
[
σ−2(1−β) + (σ1−β λ

2
)2C(α, µ, δ)

]

≤C2
7σ

2(1−β)N .

This completes the proof.
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