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Multilevel Quasi-Monte Carlo
Uncertainty Quantification for

Advection-Diffusion-Reaction

Lukas Herrmann and Christoph Schwab

Abstract We survey the numerical analysis of a class of deterministic, higher-

order QMC integration methods in forward and inverse uncertainty quantification

algorithms for advection-diffusion-reaction (ADR) equations in polygonal domains

D⊂R2 with distributed uncertain inputs. We admit spatially heterogeneous material

properties. For the parametrization of the uncertainty, we assume at hand systems

of functions which are locally supported in D. Distributed uncertain inputs are writ-

ten in countably parametric, deterministic form with locally supported representa-

tion systems. Parametric regularity and sparsity of solution families and of response

functions in scales of weighted Kontrat’ev spaces in D are quantified using analytic

continuation.

1 Introduction

Computational uncertainty quantification (UQ) addresses the efficient, quantitative

numerical treatment of differential- and integral equation models in engineering and

in the sciences. In the simplest setting, such models need to be analyzed for para-

metric input data with sequences yyy = (y j) j≥1 of parameters y j which range in a

compact, metric space U . In [15] the authors proposed and analyzed the conver-

gence rates of higher-order Quasi-Monte Carlo (HoQMC) approximations of con-

ditional expectations which arise in Bayesian Inverse problems for partial differen-

tial equations (PDEs). We studied broad classes of parametric operator equations

with distributed uncertain parametric input data. Typical examples are elliptic or

parabolic partial differential equations with uncertain, spatially heterogeneous coef-

ficients, but also differential- and integral equations in uncertain physical domains

of definition. Upon suitable uncertainty parametrization and, in inverse uncertainty
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quantification, with a suitable Bayesian prior measure placed on the, in general,

infinite-dimensional parameter space, the task of numerical evaluation of statistical

estimates for quantities of interest (QoI’s) becomes numerical computation of para-

metric, deterministic integrals over a high-dimensional parameter space.

The method of choice in many current inverse computational UQ is the Markov

chain Monte Carlo (MCMC) method and its variants ([30, 6]). Due to its Monte-

Carlo character, it affords a generally low convergence rate and, due to the intrinsi-

cally sequential nature of, e.g., the independence sampler, MCMC meet with diffi-

culties for parallelization. As an alternative to the MCMC method, in [43, 44, 8] re-

cently developed, dimension-adaptive Smolyak quadrature techniques were applied

to the evaluation of the corresponding integrals. In [15, 16] a convergence theory for

HoQMC integration for the numerical evaluation of the corresponding integrals was

developed, based on earlier work [17] on these methods in forward UQ. In particular,

it was shown in [16] that convergence rates of order > 1/2 in terms of the number

N of approximate solves of the forward problem that are independent of the dimen-

sion can be achieved with judiciously chosen, deterministic HoQMC quadratures

instead of Monte Carlo or MCMC sampling of the Bayesian posterior. The achiev-

able, dimension-independent rate of HoQMC is, in principle, only limited by the

sparsity of the forward problem. Moreover, the execution of the algorithm is “embar-

rassingly parallel”, since for QMC algorithms, unlike MCMC and sequential Monte

Carlo (SMC) methods, the forward problem may be solved simultaneously and in

parallel. The error analysis in [16] was extended in [15] to the multilevel setting. As

is well known in the context of Monte Carlo methods, multilevel strategies can lead

to substantial gains in accuracy versus computational cost, see also the survey [26]

on MLMC methods. Multilevel discretizations for QMC integration were explored

first for parametric, linear forward problems in [34, 32] and, in the context of Ho-

QMC for parametric operator equations, in [15]. For the use of multilevel strategies

in the context of MCMC methods for Bayesian inverse problems we refer to [21, 30]

and the references there. The purpose of the present paper is to extend the conver-

gence analysis of deterministic Bayesian inversion algorithms for forward problems

given by PDEs with distributed random input data, which are based on Quasi-Monte

Carlo integration from [15] and the references there, to uncertainty parametrization

with basis functions which are locally supported in the physical domain D. Let us

mention in passing that while we consider here conforming Finite Element (FE) dis-

cretization, other discretizations in D could equally be considered. We mention only

discontinuous Galerkin Finite Element methods (FEM) which have been introduced

for advection-diffusion-reaction (ADR) equations as considered here in [31]. The

duality argument in weighted function spaces for these methods has been developed

in [35].

The principal contributions of the present work are as follows: we prove, for a

class of linear ADR problems in a polygon D with uncertain diffusion coefficients,

drift coefficient and reaction coefficient, the well-posedness of the corresponding

Bayesian inverse problem. We establish optimal convergence rate bounds of FE

discretizations of the parametric forward problem, with judicious mesh refinement

towards the corners C of D, allowing in particular also corner singularities in the
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uncertain input data; these appear typically in Karhunen-Loève eigenfunctions cor-

responding to principal components of covariance operators which are negative frac-

tional powers of elliptic precision operators in D with boundary conditions on ∂D.

We show that a singularity-adapted uncertainty parametrization with locally sup-

ported in D spline-wavelet functions allows for optimal (in the sense of convergence

rate) parametrization of the uncertain input data. We establish that higher order,

quasi-Monte Carlo rules of IPL (“interlaced, polynomial lattice rules”) type from

[17] admit, for the considered boundary value problems with high-dimensional,

parametric inputs a dimension-independent convergence rate which is limited only

by sparsity of the parametric input data.

The structure of this paper is as follows. In Section 2, we present a class of

linear, second order diffusion problems in bounded, polygonal domains. Particular

attention is paid to regularity in weighted function spaces which account for pos-

sible singularities at the corners of the physical domain; we base our presentation

on the recent reference [5] where the corresponding regularity theory has been de-

veloped. In Section 3, an analysis of the consistency error of FE-discretization of

the parametric ADR model in polygons is presented. The analysis is uniform w.r.

to the uncertain input and accounts for the impact of numerical integration in the

presence of local mesh refinement to obtain a fully discrete FE approximation. Parts

of the somewhat technical proofs are postponed to Section 7. So-called forward

UQ is studied in some detail in Section 4 including estimates of the ε-complexity

of the proposed QMC-FE algorithm, which are free of the curse of dimensionality.

In Section 5, we review elements of the general theory of well-posed Bayesian in-

verse problems in function spaces, as presented e.g. in [13]. The presentation and

the setup is analogous to what was used in [15], but in technical details, there are

important differences: unlike the development in [15], the uncertainty parametriza-

tion employed in the present paper will be achieved by locally supported functions

ψ j in the physical domain D. In particular, we shall admit biorthogonal, piecewise

polynomial multiresolution analyses in D. These allow us, as we show, to resolve un-

certain inputs with corner and interface singularities at optimal rates, and their local

supports enable the use of HoQMC integration with so-called SPROD (“Smoothness

driven PRODuct”) weights. To this end, and as in [15], we require a novel, combined

regularity theory of the parametric forward maps in weighted Kondrat’ev-Sobolev

spaces in D. In particular, we present an error vs. work analysis of the combined ML

HoQMC Petrov–Galerkin algorithms.

2 UQ for Advection-Diffusion-Reaction Equations in Polygons

We review the notation and mathematical setting of forward and inverse UQ for a

class of smooth, parametric operator equations. We develop here the error analysis

for the multilevel extension of the algorithms in [23] for general linear, second or-

der advection-diffusion-reaction problems in an open, polygonal domain D ⊂ R2,

see also [22]. We assume the uncertain inputs comprising the operators’ coefficients
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u = ((ai j(x),bi(x),c(x)) to belong to a separable Banach space X being a weighted

or Hölder space in the physical domain D. As in [15], uncertainty parametrization

with an unconditional basis of X will result in a countably-parametric, deterministic

boundary value problem. Unlike the Karhunen-Loève basis which is often used for

uncertainty parametrization in UQ, we consider here the use of representation sys-

tems whose elements have well-localized supports contained in D; one example are

spline wavelets.

Upon adopting such representations, both forward and (Bayesian) inverse prob-

lems become countably parametric, deterministic operator equations. In [43], Bayesian

inverse UQ was expressed as countably-parametric, deterministic quadrature prob-

lem, with the integrand functions appearing in the Bayesian estimation problems

stemming from a (Petrov–)Galerkin discretization of the parametric forward prob-

lem in the physical domain. Contrary to widely used MCMC algorithms (e.g. [21]

and the references there), high-dimensional, deterministic quadratures of Smolyak

type for numerical integration against the (Bayesian) posterior were proposed in

[43, 44]. In the present paper, we review this approach for forward and (Bayesian)

inverse UQ for ADR in planar, polygonal domains D. We consider in detail high or-

der FEM discretization of the ADR problem on meshes with local corner-refinement

in D. We review the use of deterministic, HoQMC integration methods, from

[17, 18, 20] and the references there, in multilevel algorithms for Bayesian esti-

mation in ADR models with uncertain input.

2.1 Model Advection-Diffusion-Reaction Problem in D

We present the parametric ADR model problem in a plane, polygonal domain D and

recapitulate its well-posedness and regularity, following [5]. There, in particular,

regularity in weighted function spaces in D and holomorphy of the data-to-solution

map for this problem in these weighted spaces was established. Optimal FE conver-

gence rates result for Lagrangean FEM in D with locally refined meshes near the

singular points of the solution (being either corners of D or boundary points where

the nature of the boundary condition changes) by invoking suitable approximation

results from [1] and references there.

In the bounded, polygonal domain D with J corners C = {ccc1, . . . ,cccJ}, for some

J ∈ N, we consider the forward problem being the mixed boundary value problem

for the linear, second order divergence form differential operator

L (u)q :=−
2

∑
i, j=1

∂i(ai j∂ jq)+
2

∑
i=1

bi∂iq−
2

∑
i=1

∂i(b2+iq)+ cq = f in D,

q

∣∣∣
Γ1

= 0,
2

∑
i=1

(
2

∑
j=1

ai j∂ jq+ b2+iq

)
ni

∣∣∣
Γ2

= 0,

(1)
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where n denotes the unit normal vector of the domain D and /0 6= Γ1 ⊂ ∂D denotes

the Dirichlet boundary and Γ2 = ∂D\Γ1 denotes the Neumann boundary. We shall

assume that C ⊂ Γ1.

Define further

V := {v ∈ H1(D) : v|Γ1
= 0},

where v|Γ1
∈ H1/2(Γ1) has to be understood in the sense of trace of v ∈ H1(D).

Here, for a subset Γ1 ⊂ Γ of positive arclength, H1/2(Γ1) denotes the Sobolev-

Slobodeckij space of order 1/2 on Γ1, being the space of all restrictions of functions

from H1/2(Γ ) to Γ1.

In (1), the differential operator L depends on the uncertain, parametric coeffi-

cients

u(yyy) := ((ai j(yyy
0)1≤i, j≤2,(bi(yyy

1))1≤i≤4,c(yyy
2)), yyyi ∈

[
−

1

2
,

1

2

]N
, i = 0,1,2,

where ai j = a ji and where we have used the notation yyy := (yyy0,yyy1,yyy2) and further

introduce the parameter set

U := ∏
i=0,1,2

[
−

1

2
,

1

2

]N
.

The uncertain coefficient functions u(yyy) may also depend on the spatial coordi-

nate x ∈ D, and for each yyy ∈ U are assumed to belong to weighted Sobolev spaces

W m,∞(D) of integer order m ≥ 0 being given by

W
m,∞(D) := {v : D →C : r

|α |
D ∂ α v ∈ L∞(D), |α| ≤ m} . (2)

Specifically, for m ∈ N0, we assume that

u∈ Xm := {u : ai j ∈W
m,∞(D), rDbi ∈W

m,∞(D), r2
Dc ∈W

m,∞(D), i, j = 1,2} . (3)

Here, D ∋ x 7→ rD(x) denotes a “regularized” distance to the corners C of D, i.e.,

rD(x)≃ dist(x,C ) for x ∈ D. We equip Xm, m ∈ N0, with the norm

‖u‖Xm := max{‖ai j‖W m,∞(D),‖rDbi‖W m,∞(D),‖r2
Dc‖W m,∞(D), i, j = 1,2} . (4)

We introduce the parametric bilinear form

A(u(yyy))(w,v) := 〈L (u(yyy))w,v〉V ∗,V , ∀w,v ∈V.

The variational formulation of the parametric, deterministic problem reads: given

yyy ∈U , find q(yyy) ∈V such that

A(u(yyy))(q(yyy),v) = 〈 f ,v〉V ∗,V , ∀v ∈V .
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Here, f ∈V ∗ and 〈·, ·〉V ∗,V denotes the V ∗×V duality pairing, with V ∗ denoting the

Hilbertian (anti-) dual of V 1. This parametric problem is well-posed if u(yyy) ∈ X0,

yyy ∈U , is such that there exists a positive constant c > 0

inf
yyy∈U

R(A(u(yyy))(v,v)) ≥ c‖v‖2
V , ∀v ∈V, (5)

where R(z) denotes the real part of z ∈ C. We observe that (5) precludes implicitly

that the ADR operator in (1) is singularly perturbed. This, in turn, obviates in the

ensuing FE approximation theory in Section 3 the need for boundary layer resolution

or anisotropic mesh refinements. As a consequence of (5) and of the Lax–Milgram

lemma, for every yyy ∈ U the parametric solution q(yyy) ∈ V exists and satisfies the

uniform a-priori estimate

sup
yyy∈U

‖q(yyy)‖V ≤ c−1‖ f‖V∗ . (6)

We introduce weighted Sobolev spaces of Kondrat’ev type K m
a (D), m ∈N0 ∪{−1},

a ∈ R, as closures of C∞(D;C) with respect to the homogeneous weighted norm

given by

‖v‖2
K m

a (D) := ∑
|α |≤m

‖r
|α |−a

D ∂ α v‖2
L2(D). (7)

We observe that (up to equivalence of norms) V = {v ∈ K 1
1 (D) : v|Γ1

= 0}, which

is a consequence of the Hardy inequality (see e.g. [40, Theorem 21.3]). In [5], the

authors proved regularity shifts of L (u). Specifically, if A(u) satisfies (5) and if

u ∈ Xm, then by [5, Corollary 4.5 and Theorem 4.4] there exist constants C > 0,

a0 > 0 such that for every a ∈ (−a0,a0), for every f ∈ K
m−1

a−1 (D), and for every

yyyi ∈
[
− 1

2
, 1

2

]N
, i = 0,1,2, there holds q(yyy) ∈ K

m+1
a+1 (D) and

sup

yyyi∈[− 1
2 ,

1
2 ]

N
,i=0,1,2

‖q(yyy)‖
K

m+1
a+1 (D) ≤C‖ f‖

K
m−1

a−1 (D). (8)

Note that the dependence of the constant C on the coefficients u can also be made

explicit, cp. [5].

2.2 Uncertainty Parametrization

For uncertainty parametrization, the data space X is assumed to be a separable,

infinite-dimensional Banach space with norm ‖ · ‖X (separably valued data u in an

otherwise non-separable space are equally admissible). We suppose that we have at

1 For spaces V of real-valued functions, V ∗ denotes the Hilbertian dual; in the case that solutions

q(yyy) are complex-valued, e.g. for Helmholtz problems, V ∗ denotes the antidual of V . Even for

parametric models with real valued solutions, complexification is required for analytic continuation

to complex parameters [5].
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hand representation systems (ψ i
j) j≥1 ⊂ L∞(D;Rki), i ∈ {0,1,2} of locally supported

functions in D which parametrize the uncertain coefficient functions u = (a,b,c) for

integers k0,k1,k2 ∈ N.

The smoothness scale {Xm}m≥0 defined in (3) for m≥ 1 with X = L∞(D)8 =X0 ⊃
X1 ⊃X2 ⊃ ... (we recall ai j = a ji) and a smoothness order t ≥ 1 is being given as part

of the problem specification. We restrict the uncertain inputs u to sets Xt with “higher

regularity” in order to obtain convergence rate estimates for the discretization of the

forward problem. Note that for u ∈ Xt and with ψ j being Fourier or multiresolution

analyses, higher values of t correspond to stronger decay of the ψ i
j, i ∈ {0,1,2}.

For the numerical analysis of a FE discretization in D, we have to slightly

strengthen the norm of Xm. To this end, we define the weighted spaces W
m,∞
δ (D)

for δ ∈ [0,1], m ∈ N, as subspaces of W m,∞(D) equipped with the norm

‖v‖W
m,∞
δ

(D) := max
|α |≤m

{‖r
max{0,δ+|α |−1}
D ∂ α v‖L∞(D)}.

Note that W
m,∞
1 (D) = W m,∞(D). For δ ∈ [0,1), we define Xm,δ by the norm

‖u‖Xm,δ
:= max{‖ai j‖W

m,∞
δ

(D),‖rDbi‖W
m,∞
δ

(D),‖r2
Dc‖W

m,∞
δ

(D) : 1 ≤ i, j ≤ 2} . (9)

It is easy to see that the embedding Xm,δ ⊂ Xm is continuous, m ≥ 1, δ ∈ [0,1). We

assume that the {ψ i
j} j≥1, i∈ {0,1,2}, are scaled such that for some δ ∈ [0,1), τ ∈N,

and positive sequences (ρ i
r, j) j≥1,

max
|ααα|≤r

∥∥∥∥∥∑
j≥1

ρ i
r, jr

max{0,δ+|α |−1}
D |∂ ααα

x ((rD)
iψ i

j)|

∥∥∥∥∥
L∞(D)

< ∞, r = 0, . . . ,τ. (10)

Lemma 1. Let w∈W m,∞(D;Ck) for some m,k ∈N and let v : D×Ck ⊃D×w(D)→
C be a function that is W m,∞-regular in the first argument and analytic in the second.

Then, [x 7→ v(x,w(x))] ∈ W m,∞(D).

Proof. Let ṽ := [w(D) ∋ z 7→ v(x,z)] for arbitrary x ∈ D such that ṽ is well-defined.

By an application of the Faà di Bruno formula [12, Theorem 2.1],

r
|ααα |
D ∂ ααα

x (ṽ◦w)

= ∑
1≤|λλλ |≤n

∂ λλλ
y ṽ

n

∑
ι=1

∑
pι (ααα,λλλ )

ααα!
ι

∏
j=1

1

ννν( j)!(ννν( j)!)|ννν( j)|

k

∏
i=1

(r
|ννν( j)|
D ∂ ννν( j)wi)

ν( j)i ,

where n = |ααα|, w = (w1, . . . ,wk), and

Page:7 job:HerrmannSchwabR1 macro:svmult.cls date/time:24-Jun-2019/8:36



8 Lukas Herrmann and Christoph Schwab

pι (ααα,λλλ) =

{
(ννν(1), . . . ,ννν(ι);ηηη(1), . . . ,ηηη(ι)) : |ννν(i)|> 0,

000 ≺ ηηη(1)≺ . . .≺ ηηη(ι),
ι

∑
i=1

ννν(i) = λλλ ,and
ι

∑
i=1

|ννν(i)|ηηη(i) = ααα

}
,

where the multiindices ννν are k-dimensional and the multiindices ηηη are d-dimensional

(here d = 2, since the domain D is a polygon). The symbol ≺ for multiindices

ηηη and η̃ηη is defined by ηηη ≺ η̃ηη (here for d = 2) if either (i) |ηηη | < |η̃ηη | or (ii)

|ηηη | = |η̃ηη| and η1 < η̃1, where |ηηη | = ∑ j≥1 η j. Since L∞(D) is an algebra and

|ααα|= ∑ι
i=1 |ννν(i)||ννν(i)|, (ṽ◦w) ∈W m,∞(D). The claim of the lemma now follows by

another application of the Faà di Bruno formula. ⊓⊔

Remark 1. The statement of Lemma 1 also holds if we replace W m,∞(D) with

W
m,∞
δ

(D), δ ∈ [0,1), at all places.

Define the complex-parametric sets U i for i ∈ {0,1,2} of admissible data

U i :=

{

∑
j≥1

z j|ψ
i
j(x)| : zzz ∈ C

N, |z j | ≤ ρ i
0, j, j ≥ 1,x ∈ D

}
⊂ C

ki ,

where | · | denotes component-wise absolute value. Let g : D×U0 ×U1 ×U2 → C8

be a function such that (z0,z1,z2) 7→ g(x,z0,z1,z2) is holomorphic for almost every

x ∈ D and such that [x 7→ g(x,z0,z1,z2)]∈ Xm for some m ≥ 1 and every (z0,z1,z2) ∈
U0 ×U1 ×U2. The uncertain coefficient u = (a,b,c) is then parametrized by

u(x,yyy) =
(
a(x,yyy0),b(x,yyy1),c(x,yyy2)

)

= g

(
x, ∑

j≥1

y0
jψ

0
j , ∑

j≥1

y1
jψ

1
j , ∑

j≥1

y2
jψ

2
j

)
, a.e. x ∈ D,yyyi ∈U, i = 0,1,2.

(11)

Hence, u = (a,b,c) is given through the coordinates of the function g via a11 = g1,

a22 = g2, a21 = a12 = g3, bi = gi+3, i = 1, . . . ,4, c = g8.

Elements in the space Xm,δ may have singularities in the corners, but can be

approximated in the X0-norm at optimal rates for example by biorthogonal wavelets

with suitable refinements near vertices of D.

Proposition 1. Let δ ∈ [0,1) and m∈N be given. Assume further at hand a biorthog-

onal, compactly supported spline wavelet basis with sufficiently large number (de-

pending on m) of vanishing moments and compactly supported dual basis. Then,

there exists a constant C > 0 and, for every L ∈ N, projection operators PL into a

biorthogonal wavelet basis such that

‖w−PLw‖X0
≤CN

−m/2
L ‖w‖Xm,δ

, ∀w ∈ Xm,δ ,

where NL denotes the number of terms in the expansion PLw.
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The proof of this (in principle, well-known) proposition is given in Section 7.2,

where also further details on biorthogonal wavelets are presented.

3 Finite Element Discretization

We introduce conforming Finite Element discretizations in the physical domain D

and review an approximation property as a preparation for the analysis of the impact

of numerical integration on locally refined meshes in D. Let T denote a family of

regular, simplicial triangulations of the polygon D. We assume that T is obtained

from a coarse, initial triangulation by newest vertex bisection, cp. [25]. In this sec-

tion we will omit the parameter vector yyy in our notation with the understanding that

all estimates depend on the parameter vector yyy only via dependencies on the coeffi-

cients u = (a,b,c). We assume that there exists a constant C > 0 independent of h

and β ∈ (0,1) such that for every T ∈ T and for every K ∈ T :

(i) If K ∩C = /0, then C−1hr
β
D(x)≤ hK ≤Chr

β
D(x) for every x ∈ K.

(ii) If K ∩C 6= /0, then C−1hsup
x∈K

{r
β
D(x)} ≤ hK ≤Chsup

x∈K

{r
β
D(x)},

(12)

where

hK := diam(K),K ∈ T , and h := max
K∈T

{hK}.

Such a mesh can be achieved with the algorithm proposed in [25, Section 4.1] with

input values the global meshwidth h, the polynomial degree k, and the weight expo-

nent γ = (1+k)(1−β ), assuming (1+k)(1−β )< 1. There are also graded meshes

that satisfy (12), which were introduced in [3]. We define the spaces of Lagrangean

Finite Elements of order k ∈ N by

V k
T := {v ∈V : v|K ∈ Pk(K),K ∈ T }, T ∈ T ,

where Pk(K) denotes the polynomials of total degree smaller than or equal to k ≥ 1

on element K ∈ T .

Proposition 2. Let k ∈ N and let 0 < δ < β < 1 be such that (1− δ )/(1−β )> k

and set a = 1− δ . There exists a constant C > 0 independent of the global mesh

width h such that for every w ∈ K
k+1

a+1 (D) there exist wT ∈V k
T

such that

‖w−wT ‖H1(D) ≤Chk‖w‖
K

k+1
a+1 (D)

.

This result is, in principle, known; e.g. [1, 37] and references there.
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3.1 Numerical Integration

An essential component in the numerical analysis of the considered class of prob-

lems is the efficient numerical evaluation of the mass and stiffness matrices which

contain the inhomogeneous, parametric coefficients. Owing to their origin as sample-

wise realizations of random fields, these coefficients have, in general, only finite

Sobolev regularity. Furthermore, for covariances in bounded domains which result

from precision operators which include boundary conditions such as the Dirich-

let Laplacean, these realizations can exhibit singular behaviour near corners of D.

This is accomodated by the weighted Sobolev spaces W m,∞(D) comprising the data

spaces Xm as defined above in (3). Efficient numerical quadrature for the evaluation

of the stiffness and mass matrices which preserves the FE approximation properties

on locally refined meshes is therefore needed. The numerical analysis of the impact

of quadrature on FEM on locally refined meshes for uncertain coefficients in Xm is

therefore required.

The impact of numerical integration in approximate computation of the stiffness

matrix and load vector on the convergence rates of the FE solution is well understood

for uniform mesh refinement, cp. for example [10, Section 4.1]. We extend this

theory to regular, simplicial meshes with local refinement toward the singular points,

and to possibly singular coefficients which belong to weighted spaces, i.e., u =
(a,b,c) ∈ Xm,δ , m ∈ N, δ ∈ [0,1), as defined in (9), (10). We provide a strategy

to numerically approximate the stiffness matrix by quadrature so that the resulting

additional consistency error is consistent with the FE approximation error, uniformly

with respect to the parameter sequences which characterize the uncertain inputs. We

denote by Ã on V k
T
×V k

T
the bilinear form, which has been obtained with numerical

integration, i.e., for quadrature weights and nodes (ωK,k,xK,k)K∈T ,k∈I ⊂ (0,∞)×D

Ã(w,v)

:= ∑
K∈Tℓ

∑
k∈I

ωK,k

(
2

∑
i, j=1

ai j∂ jw∂iv+
2

∑
i=1

bi∂iwv+
2

∑
i=1

b2+iw∂iv+ cwv

)
(xK,k),

for every w,v ∈VT . Let us denote by FK : K̂ → K the affine element mappings that

are given by ξ 7→ FK(ξ ) = BKξ + bK , K ∈ T . Let (ω̂k, x̂k)k∈I be a set of positive

weights and nodes (indexed elements of the finite set I ) for quadrature on the

reference element K̂. Then, ωK,k := det(BK)ω̂k > 0 and xK,k := FK(x̂k) ∈ K, K ∈T ,

k ∈ I . We define the element quadrature error for every K ∈ T and integrable φ
such that point evaluation is well-defined by

EK(φ) =
∫

K
φ dx− ∑

k∈I

ωK,kφ(xK,k).

The quadrature error E
K̂

on the reference element K̂ is defined analogously.

Under these assumptions, it can be shown as in the proof of [10, Theorem 4.1.2]

(which covers the case that bi ≡ 0 and c ≡ 0 in u in (1)) that the corresponding ap-
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proximate sesquilinear form Ã(u)(·, ·) : V k
T
×V k

T
→C satisfies coercivity (5) with a

positive coercivity constant c̃, possibly smaller than c> 0 in (5) but still independent

of yyyi ∈ [−1/2,1/2]N, i = 0,1,2.

Let us denote the FE solution with respect to the bilinear form Ã(u) : V k
T
×V k

T
→

C by q̃T ∈ V k
T

, i.e., the solution of the Galerkin-projected, parametric variational

formulation

Ã(u)(q̃T ,v) = 〈 f ,v〉V ∗,V , ∀v ∈V k
T .

The error incurred by employing numerical quadrature is consistent with the FE

approximation rate, as demonstrated in the following theorem.

Theorem 1. For k ≥ 1, suppose that E
K̂
(φ̂ ) = 0 for every φ̂ ∈ P2k−1. Let 0 < δ <

β < 1 satisfy (1− δ )/(1−β )> k. There exists a constant C > 0 independent of h

and of u = (a,b,c) ∈ Xk,δ such that

‖q− q̃T ‖V ≤Chk
(

1+ ‖u‖Xk,δ

)
‖q‖

K
k+1

a+1 (D)
.

The impact of numerical integration on linear functionals of the solution has been

studied in the case of FEM with uniform mesh refinement for solutions belonging to

a higher-order, unweighted Sobolev spaces for example in [4]. We extend the result

in [4] to solutions to the parametric ADR problems in polygons in the following

corollary.

Corollary 1. Let 0 ≤ k′ ≤ k be integers. Suppose that E
K̂
(φ̂) = 0 for every φ̂ ∈ P2k.

Let 0 < δ < β < 1 satisfy (1− δ )/(1− β )> k+ k′. Then, there exists a constant

C > 0 that does not depend on h such that for every G ∈ K
k′−1

a−1 (D),

|G(q)−G(q̃T )| ≤Chk+k′
(

1+ ‖u‖Xk,δ

)(
1+ ‖u‖Xk+k′,δ

)
‖q‖

K
k+1

a+1 (D)
‖G‖

K
k′−1

a−1 (D)
.

The proofs of Theorem 1 and Corollary 1 are given in Section 7.1.

3.2 Finite Element Approximation of the Parametric Solution

To this end we suppose that we have a sequence of FE triangulations {Tℓ}ℓ≥0 such

that Tℓ satisfies the assumption in (12) with constants that are uniform in ℓ≥ 0. The

global mesh widths are denoted by (hℓ)ℓ≥0. We denote by V k
ℓ , ℓ≥ 0, the respective

FE spaces of polynomial order k ≥ 1 and define

Mℓ := dim(V k
ℓ ), ℓ≥ 0.

Recall the bilinear form Ã(u(yyy)) on V k
ℓ ×V k

ℓ that results from the application of

numerical integration in the previous section. The Galerkin approximation q̃Tℓ(yyy) ∈
V k
ℓ is the unique solution to
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12 Lukas Herrmann and Christoph Schwab

Ã(u(yyy))(q̃Tℓ(yyy),v) = 〈 f ,v〉V ∗,V , ∀v ∈V k
ℓ . (13)

We recall the sparsity assumption in (10) for positive sequences (ρ i
r, j) j≥1, r =

0, . . . ,τ . This assumption and Lemma 1 imply that ai j(yyy
0),rDb j(yyy

1),r2
Dc(yyy2) ∈

W
τ,∞
δ (D) for every yyy0,yyy1,yyy2 ∈ [−1/2,1/2]N and admissible i, j. Specifically, Lemma 1

is applied coordinatewise to [(x,z0,z1,z2) 7→ g(x,z0,z1,z2)] composed with ∑ j≥1 zi
jψ

i
j,

zzzi ∈ U i, i = 0,1,2, see also (11). Note that ri
D ∑ j≥1 zi

jψ
i
j ∈ W

τ,∞
δ

(D), zzzi ∈ U i,

i = 0,1,2 by (10). Here, and throughout, we understand function spaces to be de-

fined over the complex scalars. We assume that f ∈ K
t−1

a−1 (D), G ∈ K
t′−1

a−1 (D) for

integers t, t ′ ≥ 0 satisfying t + t ′ ≤ τ . Then, by Corollary 1 and (8),

sup
yyy∈U

|G(q(yyy))−G(q̃Tℓ(yyy))| ≤CM
−(min{t,k}+min{t′,k})/2

ℓ ‖ f‖
K

t−1
a−1 (D)‖G‖

K
t′−1

a−1 (D)
,

(14)

where we applied that Mℓ = O(h−d
ℓ ), ℓ≥ 0.

The parametric solution may be approximated consistently up to any order of

hℓ by preconditioned, relaxed Richardson iteration in work O(Mℓ log(Mℓ)). Admis-

sible preconditioners in the symmetric case, i.e., bi(yyy
1) ≡ 0, for i = 1, ...,4 and for

Γ2 = /0 are the so-called BPX preconditioner and the symmetric V-cycle, respectively.

Respective condition numbers for local mesh refinement by newest vertex bisection

for BPX and symmetric V-cycle have been studied for the Dirichlet Laplacean in [7].

These results are applicable, since the Dirichlet Laplacean is spectrally equivalent

to L (u). For notational convenience, approximation of q̃Tℓ(yyy) by preconditioned,

relaxed Richardson iteration, cp. [49, Proposition 2.3] will be denoted by the same

symbol. Since the result after a finite number of steps of a Richardson iteration

depends polynomially on the system matrix and since the preconditioner is indepen-

dent of the parameter, holomorphic dependence on the parameters yyy is preserved.

We also consider parameter dimension truncation to obtain a finite-dimensional

parameter set and denote by s0,s1,s2 ∈ N the corresponding parameter dimensions.

We denote the triple of those parameter dimensions by sss := (s0,s1,s2). Let us intro-

duce further

q̃sss,Tℓ(yyy) := q̃Tℓ(yyy0
{1:s0}

,yyy1
{1:s1},yyy

2
{1:s2}), yyyi ∈

[
−

1

2
,

1

2

]N
, i = 0,1,2,

where we have used the notation (yyyi
{1:si}

) j = yi
j for j ∈ {1 : si} := {1, . . . ,si} and

zero otherwise, i = 0,1,2. We define usss and qsss analogously.

Lemma 2. Let u1 =(a1,b1,c1),u2 =(a2,b2,c2)∈X0 and q1,q2 ∈V satisfy L (ui)qi =
f , i = 1,2. Assume that the bilinear forms A(u1)(·, ·),A(u2)(·, ·) are coercive with

coercivity constants c1,c2 > 0 in the sense of (5). Then, there exists a constant C > 0

independent of q1,q2,u1,u2 such that

‖q1 − q2‖V ≤
C

c1c2

‖u1 − u2‖X0
‖ f‖V∗ .
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Proof. We observe ‖q1−q2‖
2
V c1 ≤ A(u1)(q1−q2,q1−q2) =A(u2−u1)(q2,q1−q2).

By the Hardy inequality (see e.g. [40, Theorem 21.3]) there exists a constant C > 0

such that for every v ∈V

‖r−1
D v‖L2(D) ≤C‖|∇v|‖L2(D). (15)

As a consequence,

|A(u2 − u1)(q2,q1 − q2)|

≤C

(
2

∑
i, j=1

‖a1
i j − a2

i j‖L∞(D)+
4

∑
j=1

‖rD(b
1
j − b2

j)‖L∞(D)+ ‖r2
D(c

1 − c2)‖L∞(D)

)

×‖q2‖V‖q1 − q2‖V ,

where C > 0 is the constant from the Hardy inequality. In the previous step, we used

multiplication by one, i.e., by rDr−1
D for the advection terms and by r2

Dr−2
D for the

reaction term. The claim now follows with (6). ⊓⊔
It is easy to see that since g as introduced in (11) is in particular locally Lipschitz

continuous. By Lemma 2, there exists a constant C > 0 such that

sup
yyy∈U

‖q(yyy)− qsss(yyy)‖V ≤C

(
sup
j>s0

{(ρ0
0, j)

−1}+ sup
j>s1

{(ρ1
0, j)

−1}+ sup
j>s2

{(ρ2
0, j)

−1}

)
.

Thus, by (14),

sup
yyy∈U

|G(q(yyy))−G(q̃sss,Tℓ(yyy))| ≤C

(
M

−(min{t,k}+min{t′ ,k})/2

ℓ + max
i=0,1,2

sup
j>si

{(ρ i
0, j)

−1}

)
.

(16)

4 Forward UQ

In this section we discuss the consistent approximation of the expectation of G(q),
where G ∈ V ∗ is a linear functional. The expectation is taken with respect to the

uniform product measure on U , which is denoted by dyyy :=
⊗

i=0,1,2

⊗
j≥1 dyi

j. The

expectation of G(q) will be denoted by

E(G(q)) :=
∫

U
G(q(yyy))dyyy.

4.1 Higher Order QMC Integration
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14 Lukas Herrmann and Christoph Schwab

For a finite integration dimension s ∈ N, QMC quadrature approximates integrals

over the s-dimensional unit cube with equal quadrature weights, i.e., for a suitable

integrand function F (possibly Banach space valued) and judiciously chosen, deter-

ministic QMC points {yyy(0), . . . ,yyy(N−1)} ⊂ [0,1]s

Is(F) :=
∫

[− 1
2 ,

1
2 ]

s
F(yyy)dyyy ≈

1

N

N−1

∑
i=0

F

(
yyy(i)−

111

222

)
=: Qs,N(F),

where ( 111
222
) j = 1/2, j = 1, . . . ,s.

Integration by QMC methods is able to achieve convergence rates that are inde-

pendent of the dimension of integration and are higher than for Monte Carlo sam-

pling; we refer to the surveys [33, 19]. In particular, interlaced polynomial lattice

rules are able to achieve convergence rates which can even be of arbitrary, finite

order, independent of the integration dimension s, provided the integrand satisfies

certain conditions, cp. [17]. The analysis in this work will be for QMC by inter-

laced polynomial lattice rules. As in our previous works [23, 22], we will justify

the application of interlaced polynomial lattice rules with product weights, which

implies that the construction cost of the respective QMC points by the fast CBC

construction is O(sN log(N)), where s is the dimension of integration and N the

number of QMC points, cp. [17, 38, 39]. We state the main approximation result

for interlaced polynomial lattice rules from [17] for product weights given in [17,

Equation (3.18)].

Theorem 2 ([17, Theorem 3.2]). Let s ∈ N and N = bm for m ∈ N and b a prime

number. Let βββ = (β j) j≥1 be a sequence of positive numbers and assume that βββ ∈
ℓp(N) for some p ∈ (0,1]. Define the integer α = ⌊1/p⌋+1≥ 2. Suppose the partial

derivatives of the integrand F : [−1/2,1/2]s →R satisfy the product bound

∀yyy ∈ [−1/2,1/2]s, ∀ννν ∈ {0, . . . ,α}s : |∂ ννν
yyy F(yyy)| ≤ cννν!

s

∏
j=1

β
ν j

j ,

for some constant c > 0 which is independent of s and of ννν .

Then, there exists an interlaced polynomial lattice rule which can be constructed

with the CBC algorithm for product weights (γu)u⊂N that are given by γ /0 = 1 and

γu = ∏
j∈u

(
Cα ,bbα(α−1)/2

α

∑
ν=1

2δ (ν,α)β ν
j

)
, u⊂ N, |u|< ∞, (17)

(δ (ν,α) = 1 if ν = α and zero otherwise ) in O(αsN log(N)) operations such that

∀N ∈N : |Is(F)−Qs,N(F)| ≤Cα ,βββ ,b,pN−1/p,

where Cα ,βββ ,b,p < ∞ is independent of s and N.

A numerical value for the Walsh constant Cα ,b is as given in [17, Equation (3.11)].

An improved bound for Cα ,b is derived in [50].

Page:14 job:HerrmannSchwabR1 macro:svmult.cls date/time:24-Jun-2019/8:36



Title Suppressed Due to Excessive Length 15

4.2 Parametric Regularity

For the applicability of higher order integration methods such as QMC for UQ, the

assumption on the partial derivatives with respect to the parameter yyy in Theorem 2

of the solution q(yyy) or of functionals composed with q(yyy) has to be verified. In [5]

the authors proved analytic dependence of the solution on the coefficient in the

complex valued setting. Hence, holomorphy is a direct consequence. By (5), (10),

and Lemma 1, for every truncation dimension sss = (s0,s1,s2), the coefficients

u : D
sss
ρρρr

→ Xr

are holomorphic for r = 0, . . . , t, where

D
sss
ρρρr

:= {zzz = (zzz0,zzz1,zzz2) : zzzi ∈C
si

, |zi
j | ≤ ρ i

r, j/2, i = 0,1,2}.

As a composition of holomorphic mappings by [5, Corollary 5.1], the map

q : D
sss
ρρρr

→ K
r+1

a+1 (D), r = 0, . . . , t,

is holomorphic and

sup
sss∈N3

sup
zzz∈D sss

ρρρr

‖q(zzz)‖
K

r+1
a+1 (D) < ∞, r = 0, . . . , t.

The following lemma is a version of [20, Lemma 3.1].

Lemma 3 ([20, Lemma 3.1]). For a Banach space B and ρρρ = (ρ j) j≥1 ∈ (1,∞)N,

s ∈N, let F : D s
ρρρ →B be holomorphic, where D s

ρρρ := {zzz∈Cs : |z j | ≤ ρ j, j = 1, . . . ,s}.

Then, for every yyy ∈ [−1,1]N,

∀ννν ∈N
N
0 , |ννν|< ∞ : ‖∂ ννν

yyy F(yyy)‖B ≤ sup
zzz∈D s

ρρρ

{‖F(zzz)‖B}∏
j≥1

ρ j

(ρ j − 1)ν j+1
.

The argument used in the proof of this lemma is based on the Cauchy integral for-

mula for holomorphic functions (see also [9, 11]).

Theorem 3. Let the uncertain coefficient u be parametrized according to (11) and

suppose that the assumption in (10) is satisfied for some τ ≥ 1. Let the assumptions

of Corollary 1 be satisfied. There exists a constant C > 0 such that for every ννν =
(ννν0,ννν1,ννν2), ννν i ∈NN

0 , |ννν i|<∞, and for every sss = (s0,s1,s2), si ∈N, i= 0,1,2, ℓ≥ 0,

0 ≤ t ′ ≤ t ≤ k such that t + t ′ ≤ τ , θ ∈ [0,1], and every yyy ∈U,

|∂ ννν
yyy (G(q(yyy))−G(q̃sss,Tℓ(yyy)))|

≤C‖G‖V∗‖ f‖V∗ max
i=0,1,2

sup
j>si

{(ρ i
0, j)

−θ} ∏
i=0,1,2

∏
j≥1

(ρ i
0, j/2)−ν i

j(1−θ)

+C‖G‖
K

t′−1
a−1

‖ f‖
K

t−1
a−1

M
−(t+t′)/d

ℓ ∏
i=0,1,2

∏
j≥1

(ρ i
t+t′ , j/2)−ν i

j .
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Proof. The estimate will follow by a twofold application of Lemma 3 and the holo-

morphic dependence of the solution on the parametric input. By the triangle inequal-

ity,

|G(q(yyy))−G(q̃sss,Tℓ(yyy))| ≤ |G(q(yyy))−G(qsss(yyy))|+ |G(qsss(yyy))−G(q̃sss,Tℓ(yyy))|.

By the assumption in (10) and [5, Corollary 5.1], the mapping zzz 7→ G(q(zzz))−
G(qsss(zzz)) is holomorphic on D sss

(ρρρ0)
1−θ and by Lemma 2 it holds that

sup
zzz∈D sss

(ρρρ0)
1−θ

|G(q(zzz))−G(qsss(zzz))| ≤C‖G‖V∗‖ f‖V∗ max
i=0,1,2

sup
j>si

{(ρ i
0, j)

−θ}.

Hence, by Lemma 3, where we scale the parameter vectors by a factor of 1/2

|∂ ννν
yyy (G(q(yyy))−G(qsss(yyy)))|

≤C‖G‖V∗‖ f‖V∗ max
i=0,1,2

sup
j>si

{(ρ i
0, j)

−θ} ∏
i=0,1,2

∏
j≥1

(ρ i
0, j/2)−νi

j(1−θ).

Furthermore by the assumption in (10) and [5, Corollary 5.1], the mapping zzz 7→
qsss(zzz) is holomorphic from D sss

ρρρ t
to K

t+1
a+1 (D) and

sup
zzz∈D sss

ρρρt

‖q(zzz)‖
K

t+1
a+1 (D) < ∞.

Thus, by (14), there exists C > 0 such that for all sss and all ℓ holds

sup
zzz∈D sss

ρρρt

|G(qsss(zzz))−G(q̃sss,Tℓ(zzz))| ≤C‖G‖
K

t′−1
a−1

‖ f‖
K

t−1
a−1

M
−(t+t′)/d

ℓ .

The second part of the estimate now also follows by Lemma 3. ⊓⊔

4.3 Multilevel QMC Error Estimates

Multilevel integration schemes offer a reduction in the overall computational cost,

subject to suitable regularity (see, e.g., [18, 32, 28]). For sssℓ=0,...,L, Nℓ=0,...,L, L ∈ N0,

define the multilevel QMC quadrature

QL(G(q̃L)) :=
L

∑
ℓ=0

Q|sss|ℓ,Nℓ
(G(q̃ℓ)−G(q̃ℓ−1)),

where we used the notation q̃ℓ := q̃sssℓ,Tℓ , ℓ = 0, . . . ,L, and q̃−1 := 0. The QMC

weights in (17) are obtained from (17) with input

β j(k,i) := 2max{(ρ i
0,k)

−(1−θ),(ρ i
τ,k)

−1}, (18)
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where τ = t + t ′ and j(k, i) := 3k− i, k ∈ N, i = 0,1,2, is an enumeration of N with

elements in N×{0,1,2}.

Theorem 4. Suppose that the weight sequence in (18) satisfies βββ = (β j) j≥1 ∈ ℓp(N)
for some p ∈ (0,1]. Then, with an interlaced polynomial lattice rules of order

α = ⌊1/p⌋+ 1 and product weights (17) with weight sequence (18) there exists

a constant C > 0 such that for sssℓ=0,...,L, Nℓ=0,...,L, L ∈N0,

|E(G(q))−QL(G(q̃L))| ≤C

(
M

−(t′+t)/d

L + max
i=0,1,2

sup
j>si

{(ρ i
0, j)

−1}

+
L

∑
ℓ=0

N
−1/p

ℓ


M

−(t′+t)/d

ℓ−1 + max
i=0,1,2

sup
j>si

ℓ−1

{(ρ i
0, j)

−θ}




 .

Proof. By the triangle inequality, we obtain the deterministic error estimate

|E(G(q))−QL(G(q̃L))|

≤ |E(G(q))− I|sssL|(G(q̃L))|+
L

∑
ℓ=0

|(I|sssℓ|−Q|sssℓ|,Nℓ
)(G(q̃ℓ)−G(q̃ℓ−1))|,

where |sssℓ|= s0
ℓ + s1

ℓ + s2
ℓ . Then, Theorems 2 and 3 and (16) imply the claim. ⊓⊔

4.4 Error vs. Work Analysis

In this section we analyze the overall computational complexity of the multilevel

QMC algorithm with product weights for function systems (ψ i
j) j≥1, i = 0,1,2.

For the analysis, we assume that the function systems (ψ i
j) j≥1, i = 0,1,2, which

appear in the uncertainty parametrization have a multilevel structure with con-

trol of the overlaps of the supports. Suppose for i = 0,1,2, there exist enumera-

tions ji : ▽i → N, where elements of λ ∈ ▽i are tuples of the form λ = (ℓ,k),
where k ∈ ▽i

ℓ. The index sets are related by ▽i =
⋃

ℓ≥0({ℓ} ∪▽i
ℓ), i = 0,1,2.

Also define |λ | = |(ℓ,k)| = ℓ for every λ ∈ ▽i. We assume that | ▽i
ℓ | = O(2dℓ),

|supp(ψλ )| = O(2−dℓ), λ = (ℓ,k) ∈ ▽i, and there exists K > 0 such that for every

x ∈ D and every ℓ ∈ N0,

∣∣{λ ∈▽i : |λ |= ℓ,ψ i
λ (x) 6= 0

}∣∣≤ K. (19)

Moreover, we assume that

ρ i
r,λ . 2−|λ |(α̂−r), λ ∈▽i,r = 0, . . . , t, i = 0,1,2,

for α̂ > t+t ′. Note that ρ i
r, j(λ ) . j−(α̂−r)/d , j ≥ 1. We equilibrate the sparsity con-

tribution of the sequences (ρ i
0,λ )λ∈▽i and (ρ i

t,λ )λ∈▽i in the weight sequence in
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(18). Hence, we choose θ = (t + t ′)/α̂ . Recall that we assume f ∈ K
t−1

a−1 (D) and

G ∈ K
t′−1

a−1 (D). Furthermore, with this choice of θ we also equilibrate the errors in

the multilevel QMC estimate from Theorem 4, where the truncation dimension sssℓ is

still a free parameter. The error contributions in Theorem 4 are equilibrated for the

choice

si
ℓ ∼ Mℓ, i = 0,1,2. (20)

In conclusion, the overall error of multilevel QMC with L ∈ N0 levels satisfies for

every p > d/(α̂ − t + t ′),

errorL = O

(
M

−(t′+t)/d
L +

L

∑
ℓ=0

N
−1/p

ℓ M
−(t′+t)d
ℓ−1

)
. (21)

We assume that we have a procedure at hand that approximates the solution of a

parameter instance up to accurary, which is consistent with the discretization error,

in computational cost

workPDE solver,ℓ = O(Mℓ log(Mℓ)), ℓ≥ 0.

Recall from Section 3.2 that in the self-adjoint case with homogeneous Dirichlet

boundary conditions, i.e., bi(yyy
1) = 0 and Γ2 = /0, this can be achieved by a relaxed

Richardson iteration preconditioned by BPX or symmetric V-cycle as precondition-

ers. The stiffness matrix has O(Mℓ) non-zero entries by using a nodal FE basis.

The finite overlap property (19), the choice in (20), and the fact that the number of

quadrature nodes does not depend on the dimension of the FE space (see assump-

tion of Theorem 1 and Corollary 1) imply that the computation of every matrix entry

has computational cost O(log(Mℓ)). The total computational cost of the multilevel

QMC algorithm is the sum of the cost of the CBC construction, the cost of assem-

bling the stiffness matrix and the cost of approximating the solution of the linear

systems multiplied by the number of QMC points. Specifically,

workL = O

(
L

∑
ℓ=0

MℓNℓ log(Nℓ)+NℓMℓ log(Mℓ)

)
,

where we remind the reader that by (20) the dimension of integration on each dis-

cretization level ℓ in D is O(Mℓ). Since the QMC convergence rate 1/p satisfies the

strict inequality χ := 1/p < (α̂ − t + t ′)/d, also the rate χ(1+ ε) is admissible for

sufficiently small ε > 0. This way the sample numbers can be reduced to N
1/(1+ε)
ℓ ,

which allows us to estimate N
1/(1+ε)
ℓ log(Nℓ) ≤ N

1/(1+ε)
ℓ N

ε/(1+ε)
ℓ (1 + ε)/(eε) ≤

Nℓ(1+ ε)e/(ε), where we used the elementary estimate log(N)≤ Nε ′/(eε ′) for ev-

ery N ≥ 1, ε ′ > 0. Thus, we obtain the estimate of the work

workL = O

(
L

∑
ℓ=0

Mℓ log(Mℓ)Nℓ

)
. (22)
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By [25, Lemma 4.9], it holds that Mℓ = O(2dℓ). The sample numbers are now ob-

tained by optimizing the error versus the computational work, cp. [34, Section 3.7].

For the error and work estimates in (21) and in (22), sample numbers are derived in

[22, Section 6]. Specifically, by [22, Equations (26) and (27)],

Nℓ :=
⌈

N0(M
−1−(t+t′)/d

ℓ log(Mℓ)
−1)p/(1+p)

⌉
, ℓ= 1, . . . ,L, (23)

where

N0 :=





M
(t+t′)p/d

L if d < p(t + t ′),

M
(t+t′)p/d

L log(ML)
p(p+2)/(p+1) if d = p(t + t ′),

M
(1+(t+t′)/d)p/(p+1)
L log(ML)

p/(p+1) if d > p(t + t ′).

(24)

The corresponding work satisfies (see for example [22, p. 396])

workL =





O(M
(t+t′)p/d
L ) if d < p(t + t ′),

O(M
(t+t′)p/d
L log(ML)

p+2) if d = p(t + t ′),

O(ML log(ML)) if d > p(t + t ′).

We summarize the preceding discussion in the following theorem stating the ε-

complexity of the multilevel QMC algorithm.

Theorem 5. For p∈ (d/(α̂−(t + t ′)),1], assuming d < α̂ −(t + t ′), an error thresh-

old ε > 0, i.e.,

|E(G(q))−QL(G(q̃L))|= O(ε)

can be achieved with

workL =





O(ε−p) if d < p(t + t ′),

O(ε−p log(ε−1)p+2) if d = p(t + t ′),

O(ε−d/(t+t′) log(ε−1)) if d > p(t + t ′).

5 Bayesian Inverse UQ

The preceding considerations pertained to so-called forward UQ for the ADR prob-

lem (1) with uncertain input data u = ((ai j),(b j),c) taking values in certain subsets

of the function spaces Xm in (3). The goal of computation is the efficient evaluation

of ensemble averages, i.e. the expected response over all parametric inputs u as in

(11) with respect to a probability measure on the parameter domains U i.

In Bayesian inverse UQ, we are interested in similar expectations of a QoI of

the forward response of the ADR PDE, conditional to noisy observations of func-

tionals of the responses. Again, a (prior) probability measure on the uncertain (and

assumed non-observable) parametric ADR PDE inputs u in (11) is prescribed. As
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explained in [13, 43], in this setting Bayes’ theorem provides a formula for the con-

ditional expectation as high-dimensional, parametric deterministic integral which,

as shown in [42, 15, 18], is amenable to deterministic HoQMC integration affording

convergence rates which are superior to those of, e.g., MCMC methods [30, 21].

5.1 Formulation of the Bayesian Inverse Problem

Specifically, assume at hand noisy observations of the ADR PDE response q =
(L (u))−1 f subject to additive Gaussian observation noise ηηη , i.e.

δδδ = GGG(q)+ηηη . (25)

In (25), q denotes the response of the uncertain input u, GGG = (G1, . . . ,GK) is a vector

of K (linear) observation functionals, i.e., Gi ∈ V ∗, the additive noise ηηη is assumed

centered and normally distributed with positive covariance Γ , i.e.,ηηη ∼ N (0,Γ ),
and the data δδδ ∈ RK is supposed to be available. We introduce the so-called prior

measure πππ on X0 as the law of U ∋ yyy 7→ u(yyy) ∈ X0 with respect to the uniform

product measure dyyy on U . The density of the posterior distribution with respect to

the prior is given by [13, Theorem 14]

U ∋ yyy 7→
1

Z
exp(−ΦΓ (q(yyy);δδδ )) , (26)

where the negative log-likelihood ΦΓ is given by

ΦΓ (q(yyy);δδδ ) :=
1

2
(δδδ −GGG(q(yyy)))⊤Γ −1(δδδ −GGG(q(yyy))) ∀yyy ∈U.

Since (6) implies supyyy∈U ‖q(yyy)‖V < ∞, the normalization constant in (26) satisfies

Z :=

∫

X0

exp(−ΦΓ (q;δδδ ))πππ(du) =

∫

U
exp(−ΦΓ (q(yyy);δδδ ))dyyy > 0,

where we recall that q = L (u)−1 f . The posterior measure will be denoted by πππδδδ

and the posterior with respect to q̃sss,Tℓ will be denoted by π̃ππ
δδδ
sss,Tℓ

. The QoIs, being

assumed bounded linear functionals applied to q ∈ V (which could be weakened

[21]), admit a unique representer φ ∈V ∗. For any QoI φ ∈V ∗, denote the expectation

with respect to the posterior of φ by

E
πππδδδ
(φ) :=

∫

X0

φ(q)πππδδδ (du) =
1

Z

∫

U
φ(q(yyy))exp(−ΦΓ (q(yyy);δδδ ))dyyy.

Here, ΦΓ (q(yyy);δδδ ) is Lipschitz continuous with respect to δδδ and with respect to

q(yyy), yyy ∈U . As a consequence of (16), for every sss ∈ N3 and ℓ≥ 0,
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|Eπππδδδ
(φ)−E

π̃ππ
δδδ
sss,Tℓ (φ)| ≤C

(
M

−(min{t,k}+min{t′,k})/2

ℓ + max
i=0,1,2

sup
j>si

{(ρ i
0, j)

−1}

)
, (27)

where we also used that ΦΓ (q(yyy);δδδ ) and ΦΓ (q̃
sss,Tℓ(yyy);δδδ ) are uniformly upper

bounded with respect to yyy ∈ U . See also the discussion in [16, Section 3.3]. Here,

the abstract assumptions made in [16, Section 3.3], stemming from [13], may be

verified concretely. The estimate in (27) is not just a restatement of the results

of [16, 15]. Here, a general parametric ADR forward problem on polygonal domains

is considered and higher order FE convergence on locally refined triangulations Tℓ

is achieved based on regularity in weighted spaces of Kondrat’ev type. The corre-

sponding FE approximation results are proved in Section 7.

5.2 Multilevel HoQMC-FE Discretization

The expectation with respect to the posterior measure π̃ππ
δδδ
sss,Tℓ

is an integral over a

|sss|-dimensional parameter space and may therefore be approximated by multilevel

QMC. We recall the FE spaces V k
ℓ based on the regular, simplicial triangulations Tℓ

and suppose given a sequence of sssℓ of dimension truncations, ℓ = 0, . . . ,L, where

L ∈ N is the maximal discretization level. The error analysis will be along the lines

of [15, Section 4], see also [43, 44]. Following the notation in [15], we define for

ℓ= 0, . . . ,L,

E
π̃ππ

δδδ
sssℓ,Tℓ (φ) =

∫
[−1/2,1/2]|sss| φ(q̃

sssℓ,Tℓ(yyy))Θℓ(yyy)dyyy
∫
[−1/2,1/2]|sss| Θℓ(yyy)dyyy

=:
Z′
ℓ

Zℓ
,

where Θℓ(yyy) := exp(−ΦΓ (q̃
sssℓ,Tℓ(yyy);δδδ )). In [15, Section 4.2], multilevel QMC ratio

and splitting estimators were proposed for the deterministic approximation of Z′
L/ZL.

They are, for sequences of numbers of QMC points (Nℓ)ℓ=0,...,L and of dimension

truncations (sssℓ)ℓ=0,...,L, defined by

QL,ratio :=
QL(φ(q̃

L)ΘL)

QL(ΘL)
(28)

and, with the notation |sssℓ|= s0
ℓ + s1

ℓ + s2
ℓ ,

QL,split :=
Q|sss0|,N0

(φ(q̃0)Θ0)

Q|sss0|,N0
(Θ0)

+
L

∑
ℓ=1

Q|sssℓ|,Nℓ
(φ(q̃ℓ)Θℓ)

Q|sssℓ|,Nℓ
(Θℓ)

−
Q|sssℓ|,Nℓ

(φ(q̃ℓ−1)Θℓ−1)

Q|sssℓ|,Nℓ
(Θℓ−1)

.

(29)

The error analysis of these estimators requires that the integrands satisfy certain

parametric regularity estimates. In Section 4.2, parametric regularity estimates of

q(yyy)− q̃sss,Tℓ(yyy) were shown using analytic continuation. The integrands φ(q̃ℓ)Θℓ and
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Θℓ depend analytically on q̃ℓ and are, as compositions and products of holomorphic

mappings with compatible domains and ranges, again holomorphic.

The consistency errors of the ratio and splitting estimators are analyzed in [15,

Sections 4.3.2 and 4.3.3] in the setting of globally supported function systems. How-

ever, the proofs of [15, Theorem 4.1 and Theorem 4.2] are applicable.

Proposition 3. Let the assumptions and the setting of steering parameters θ , p, t ′, t,

sssℓ, Nℓ, Mℓ, ℓ= 0, . . . ,L of QL in Theorem 4 be satisfied. Then,

|Eπππδδδ
(φ)−QL,ratio| ≤C

(
M

−(t′+t)/d
L + max

i=0,1,2
sup
j>si

{(ρ i
0, j)

−1}

+
L

∑
ℓ=0

N
−1/p

ℓ


M

−(t′+t)/d

ℓ−1 + max
i=0,1,2

sup
j>si

ℓ−1

{(ρ i
0, j)

−θ}




 .

Proof. The estimate (6) and Theorem 1 imply that ΦΓ (q̃
sssℓ,Tℓ(yyy);δδδ ) can be upper

bounded uniformly with respect to yyy as follows. There exists a constant C0 > 0,

which does not depend on L, such that QL(ΘL) ≥ C0. Now, the assertion follows

as [15, Theorem 4.1]. As mentioned above, φ(q̃ℓ)Θℓ may be analytically extended

to a suitable polydisc as in the proof of Theorem 3. The same line of argument used

in the proof of [15, Theorem 4.1] may be applied here. Further details are left to the

reader. ⊓⊔
The error estimate from Proposition 3 for Bayesian estimation can also be shown

for the splitting estimator QL,split along the lines of the proof of [15, Theorem 4.2].

Since the posterior density depends analytically on the response q, the QMC

sample numbers for ratio and splitting estimators QL,ratio and QL,split are the same

as those for forward UQ in (23) and (24). In particular, also the same ε-complexity

estimates from Theorem 5 hold under the same assumptions on the steering param-

eters.

Remark 2. Forward and Bayesian inverse UQ for uncertain domains by pullbacks to

a polygonal nominal or reference domain is a straightforward extension of the pre-

sented theory. It requires the extension of the PDE regularity theory to parametric

right hand sides f (yyy). Since this dependence is inherited by the parametric solution

due to linearity, we did not explicitly consider it for the sake of a concise presen-

tation, but refer to [24, 29, 2] for the numerical analysis of domain uncertainty

quantification analysis with QMC.

6 Conclusions

We discussed forward and Bayesian inverse UQ by multilevel QMC for general

ADR problems in polygons allowing the input coefficients and the response, i.e.,

the solution to the ADR problem, to be singular near corners of the domain. A wide
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class of uncertain input coefficients is admissible to our theory. The coefficients are

assumed to depend holomorphically on a series expansion with uncertain, uniformly

distributed parameters and a function system with local support. Locally supported

representation systems are well-known to allow product weights in higher-order

QMC integration [23, 22]. Here, we generalized this principle from isotropic dif-

fusion problems to general ADR problems with not necessarily affine-parametric

uncertainty in all coefficients of the ADR forward model. The presently developed

setting also allows extension to UQ for random domains. Regularity of the uncer-

tain input coefficients and of the response in scales of Kondrat’ev spaces and sparsity

are utilized in the presented multilevel QMC algorithm by combining higher order

QMC in the parametric domain and higher order FEM with mesh refinement in the

physical domain. The overall approximation scheme is fully discrete, since also the

impact of numerical integration in the FEM is analyzed here (to our knowledge for

the first time). In the present setting, general ADR problems with possibly singu-

lar coefficients at the corners (as arise, e.g., from non-stationary covariance models

with elliptic precision operators in the physical domain are admissible. The analy-

sis is shown to extend to the corresponding Bayesian inverse problems, where the

higher order QMC-FE convergence rates from the forward UQ analysis are proved

to be preserved, and to scale linearly with the number of parameters under a-priori,

data-independent truncation of the prior.

7 Proofs

We provide proofs of several results in the main text. They were postponed to this

section to increase readability of the main text.

7.1 Numerical Integration

In the following proofs, we require a nodal interpolant. As preparation, for k ≥ 3,

we introduce certain subsets of T

T
k′ :=



K ∈ T \T k′−1 : K ∩

⋃

K′∈T k′−1

K′ 6= /0



 , k′ = 2, . . . ,k− 1,

where T 1 := {K ∈T : K∩C 6= /0} and T k :=T \T k−1. For k = 2, T 2 :=T \T 1

and T 1 is defined as above. For k = 1, T 1 := T . We define a FE space such that

in the elements abutting at a vertex, P1 FE are used and for the remaining, “interior”

elements, Pk FE are used such that the polynomial degree of neighboring elements

only differs by one, i.e.,

Page:23 job:HerrmannSchwabR1 macro:svmult.cls date/time:24-Jun-2019/8:36



24 Lukas Herrmann and Christoph Schwab

Ṽ k
T := {v ∈V : v|K ∈ Pk′(K),K ∈ T

k′ ,k′ = 1, . . . ,k}.

The potential change of the polynomial degree in neighboring elements near the

singular points constitutes a difficulty in defining a nodal interpolant for k ≥ 2. Let

K1 ∈ T k′−1,K2 ∈ T k′ be neighboring triangles such that K1 ∩K2 =: e denotes the

common edge. To avoid a discontinuity across the edge e, the usual nodal interpolant

Ik′

K2
may need to be corrected. For v ∈C0(K2), the discontinuity (Ik′

K2
v|e − Ik′−1

e v) is

equal to zero at the endpoints of the edge e. By [46, Lemma 4.55], there exists

(Ik′

K2
v|e − Ik′−1

e v)lift,k′,e ∈ Pk′(K2) such that (Ik′

K2
v|e − Ik′−1

e v)lift,k,e = (Ik′

K2
v|e − Ik′−1

e v)

on the edge e, (Ik′

K2
v|e − Ik′−1

e v)lift,k′,e = 0 on the remaining edges of K2, and it holds

‖(Ik′

K2
v|e − Ik′−1

e v)lift,k′,e‖
2
H1(K2)

≤ChK2
‖(Ik′

K2
v)|e − Ik′

e v|e‖
2
H1(e)

≤C′h2k′−1
K2

|Ik′

e v|2
Hk′ (e)

≤C′h2k′−2
K2

|Ik′

K2
v|2

Hk′ (K2)
,

(30)

where we applied the approximation property in dimension d−1= 1, cp. [10, Theo-

rem 3.1.6], the shape regularity of T , and the fact that k′-th order partial derivatives

of Ik′

K2
v are constant on K2.

We will define an interpolant IT : K
k+1

a+1 → Ṽ k
T

⊂V k
T

by

IT v =





I1
Kv if K ∈ T 1,

Ik′

K v− (Ik′

K v|e − Ik′−1
e v)lift,k′,e if K ∈ T k′ ,e := K ∩T k′−1 6= /0,

k′ = 2, . . . ,k,

Ik
Kv if K ∈ T k,K ∩T k−1 = /0,

where Ik′

K is the usual nodal interpolant of order k′ ∈ N on the element K and we

introduced the notation T k′ :=
⋃

K′∈T k′ K′, k′ = 1, . . . ,k. This first paragraph of

Section 7.1 originates from [27, Section 3.2], where also a proof of Proposition 2 is

given.

Proposition 4. Suppose that for some integer k ∈ N, k′ ∈ N0,

Ek

K̂
(φ̂ ) = 0, ∀φ̂ ∈ Pk′+k−1(K̂).

Then, there exists a constant C > 0 such that for every K ∈ T , a ∈ W k,∞(K), v ∈
Pk(K), w ∈ Pk′(K),

|Ek
K(avw)| ≤Chk

K

(
k

∑
j=0

|a|W k− j,∞(K)|v|H j(K)

)
‖w‖L2(K).

Proof. This is a version of [10, Theorem 4.1.4]. The claimed estimate follows by [10,

Equations (4.1.47) and (4.1.46), Theorems 3.1.2 and 3.1.3]. We note that we did not

assume here v ∈ Pk−1(K), which results in the sum over j = 0, . . . ,k. However, if

v ∈ Pk−1(K) for some k ≥ 1, then |v|Hk(K) = 0. ⊓⊔
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Lemma 4. Let K ∈ T be such that ccci ∈ K, i ∈ {1, . . . ,J}. There exists a constant

C > 0 independent of K such that for every v ∈ P1(K) satisfying v(ccci) = 0

‖r−1
D v‖L∞(K) ≤C‖r−1

D v‖L2(K) det(BK)
−1/2.

Proof. We will prove the main step on the reference element K̂. It is easy to see that

‖r−1
D v‖L∞(K) = ‖r̂−1

D v̂‖
L∞(K̂) and ‖r̂−1

D v̂‖
L2(K̂) = ‖r−1

D v‖L2(K) det(BK)
−1/2.

Suppose that K̂ := {x̂ ∈ (0,1)2 : 0 < x̂1 + x̂2 < 1} and wlog. that F−1
K (ccci) = 0.

The space {v̂ ∈ P1(K̂) : v(0) = 0} is spanned by the monomials {x̂1, x̂2}. By [10,

Theorem 3.1.3] and the shape regularity of T , there exist constants C,C′ > 0

independent of K such that ‖BK‖ ≤ ChK and ‖B−1
K ‖ ≤ C′h−1

K , where ‖ · ‖ de-

notes the operator matrix norm induced by the Euclidean norm ‖ · ‖2. Note that

mini=1,2{
∫

K̂

|x̂i |
‖x̂‖2

dx̂} =: C′′ > 0. This implies by elementary manipulations and the

Cauchy–Schwarz inequality

sup
x̂∈K̂

‖x̂‖2

‖BK x̂‖2

= ‖B−1
K ‖ ≤ 2

C′

C′′hK

∫

K̂

|x̂i|

‖x̂‖2

dx̂ ≤ 2
CC′

C′′

∫

K̂

|x̂i|

‖BK‖‖x̂‖2

dx̂

≤ 21/2 CC′

C′′

(∫

K̂

|x̂i|
2

‖BK x̂‖2
2

dx̂

)1/2

.

(31)

On K̂, r̂D(x̂) = rD(FK(x̂)) ∼ ‖BK x̂‖2. Let v̂ = v̂1x̂1 + v̂2x̂2. Thus, by (31) there exist

constants C,C′ > 0 independent of K such that

‖r̂−1
D v̂‖L∞(K) ≤C

(
|v̂1|sup

x̂∈K̂

|x̂1|

‖BK x̂‖2

+ |v̂2|sup
x̂∈K̂

|x̂2|

‖BK x̂‖2

)
≤C′

(∫

K̂

|v̂(x̂)|2

‖BK x̂‖2
2

dx̂

)1/2

.

The proof of the lemma is complete, since r̂D(x̂)∼ ‖BK x̂‖2 on K̂. ⊓⊔

Proposition 5. Let K ∈T be such that ccci ∈ K, for some i ∈ {1, . . . ,J}. Let E1
K(·) de-

note the error from a one point quadrature in the barycenter x̄ of K. Let δ1,δ2,δ3,δ4 ∈

[0,1). Then there exists a constant C > 0 such that for every (r
δ3+δ4
D a) ∈ L∞(K) sat-

isfying r
δ1+δ2
D ‖∇a‖2 ∈ L∞(K) such that point evaluation at x̄ is well defined and for

every v,w ∈ Pk(K) for some k ≥ 0

|E1
K(avw)|

≤Ch
1−δ1
K ‖r

δ1+δ2
D ‖∇a‖2‖L∞(K)‖v‖L2(K)‖r

−δ2
D w‖L2(K)

+Ch
1−δ3
K ‖r

δ3+δ4
D a‖L∞(K)

(
|v|H1(K)‖r

−δ4
D w‖L2(K)+ ‖r

−δ4
D v‖L2(K)|w|H1(K)

)
.

If additionally v,w ∈ P1(K) satisfy that v(ccci) = 0=w(ccci), the above assumption can

be relaxed to r
δ3+i
D a ∈ L∞(K) and r

δ1+1+i
D ‖∇a‖2 ∈ L∞(K), i = 0,1, and it holds that
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|E1
K(avw)| ≤Ch

1−δ1
K ‖r

δ1+1+i
D ‖∇a‖2‖L∞(K)‖r−i

D v‖L2(K)‖r−1
D w‖L2(K)

+Ch
1−δ3
K ‖r

δ3+i
D a‖L∞(K)

(
|v|H1(K)‖r−i

D w‖L2(K)+ ‖r−i
D v‖L2(K)|w|H1(K)

)
.

Proof. We observe that

|E1
K(avw)| ≤

∫

K
|a(x)− a(x̄)||v(x)w(x)|dx

+

∫

K
|a(x̄)|(|v(x)− v(x̄)||w(x)|+ |v(x̄)||w(x)−w(x̄)|)dx.

(32)

For any f ∈W 1,∞(K̃) and any x ∈ K̃ (K̃ a compact subset of K),

| f (x)− f (x̄)| ≤ sup
x̃∈γx,x̄([0,1])

{‖∇ f (x̃)‖2}‖x− x̄‖2,

where γx,x̄ is a suitable smooth path such that γx,x̄(1) = x and γx,x̄(0) = x̄. We will

estimate the two integrals in (32) separately. Since ccci ∈ K, the weight function is

locally rD(x) ≃ ‖x− ccci‖2. Due to the radial monotonicity of x 7→ ‖x− ccci‖2, γx,x̄ can

be chosen such that

inf
x̃∈γx,x̄([0,1])

{‖x̃− ccci‖2} ∈ {‖x− ccci‖2,‖x̄− ccci‖2}.

Hence, there exists a constant C > 0 independent of K such that for every x ∈ K

|a(x)− a(x̄)|

‖x− x̄‖2

min{r
δ1+δ2
D (x),rδ1+δ2

D (x̄)} ≤C‖r
δ1+δ2
D ‖∇a‖2‖L∞(K). (33)

Since all norms on Pk(K̂) are equivalent, there exists a constant C> 0 independent of

K such that ‖v‖L∞(K) = ‖v̂‖
L∞(K̂) ≤ C‖v̂‖

L2(K̂) =C‖v‖L2(K) det(BK)
−1/2. Moreover,

since there exists a constant C > 0 independent of K such that for every x ∈ K,

rD(x)≤CrD(x̄), there exists a constant C > 0 independent of K such that

‖1/min{r
δ1
D ,rδ1

D (x̄)}‖L2(K) ≤Ch
1−δ1
K .

Similarly, ‖w/min{r
δ2
D ,rδ2

D (x̄)}‖L2(K) ≤C‖r
−δ2
D w‖L2(K). It also holds that ‖x− x̄‖2 ≤

ChK and det(BK)∼ h2
K . Hence, for constants C,C′,C′′ > 0 independent of K,

∫

K
|a(x)− a(x̄)||v(x)w(x)|dx

≤C‖r
δ1+δ2
D ‖∇a‖2‖L∞(K)

∫

K
|v(x)|

|w(x)|

r
δ2
D

‖x− x̄‖2

r
δ1
D

dx

≤C′hK‖r
δ1+δ2
D ‖∇a‖2‖L∞(K)‖v‖L∞(K)‖r

−δ2
D w‖L2(K)‖r

−δ1
D ‖L2(K)

≤C′′h
1−δ1
K ‖r

δ1+δ2
D ‖∇a‖2‖L∞(K)‖v‖L2(K)‖r

−δ2
D w‖L2(K).

(34)
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On K such that K contains a corner, there exists a constant Ĉ > 0 that does not

depend on K such that ĈrD(x)≤ rD(x̄) for every x ∈ K. For the first summand in the

second integral in (32), we obtain similarly for constants C,C′ > 0 independent of

K,

∫

K
|a(x̄)||v(x)− v(x̄)||w(x)|dx≤ Ĉ

∫

K

r
δ3+δ4
D (x̄)

r
δ3+δ4
D (x)

|a(x̄)||v(x)− v(x̄)||w(x)|dx

≤ ‖r
δ3+δ4
D a‖L∞(K)

∫

K

|v(x)− v(x̄)|

‖x− x̄‖2

|w(x)|

r
δ4
D (x)

‖x− x̄‖2

r
δ3
D (x)

dx

≤C‖r
δ3+δ4
D a‖L∞(K)‖∇v‖L∞(K)

∫

K

|w(x)|

r
δ4
D (x)

‖x− x̄‖2

r
δ3
D (x)

dx

≤C′h
1−δ3
K ‖r

δ3+δ4
D a‖L∞(K)|v|H1(K)‖r

−δ4
D w‖L2(K)

using that there are constants C̃,C̃′,C̃′′ > 0 independent of K such that ‖∂xi
v‖L∞(K) ≤

C̃h−1
K ‖∂x̂i

v̂‖
L∞(K̂) ≤ C̃′h−1

K ‖∂x̂i
v̂‖

L2(K̂)≤C̃′′‖∂xi
v‖L2(K) det(BK)

−1/2. Also note that by

shape regularity of the triangulations, det(BK)∼ h2
K and by using polar coordinates

∫
K ‖x− x̄‖2r

−δ3
D (x)dx∼ h2−δ3 , where we used that K contains a corner of the domain

D. The second summand in the second integral in (32) is estimated analogously.

The second estimate follows since ‖r−1
D v‖L∞(K) <∞ and ‖r−1

D w‖L2(K) <∞, which

allows us to conclude similarly as in (34)

∫

K
|a(x)− a(x̄)||v(x)w(x)|dx ≤C‖r

δ1+1+i
D ‖∇a‖2‖L∞(K)

∫

K

|v(x)|

ri
D(x)

|w(x)|

rD(x)

‖x− x̄‖2

r
δ1
D (x)

dx

≤C′h
2−δ1
K ‖r

δ1+2
D ‖∇a‖2‖L∞(K)‖r−i

D v‖L∞(K)‖r−1
D w‖L2(K)

≤C′′h
1−δ1
K ‖r

δ1+2
D ‖∇a‖2‖L∞(K)‖r−i

D v‖L2(K)‖r−1
D w‖L2(K),

where we used that ‖r−1
D v‖L∞(K) ≤ C̃h−1

K ‖r−1
D v‖L2(K) for a constant C̃ > 0 that neither

depends on K nor on v, which follows by Lemma 4. Also the constants C,C′,C′′ > 0

neither depend on K nor on v. ⊓⊔

Proof of Theorem 1. The proof generalizes [10, Theorem 4.1.6] to the case of local

mesh refinement and singularities of the solution and the coefficients. Throughout

this proof C,C′ > 0 denote generic constants that neither depend on elements of the

triangulation T nor on functions on D. We recall the first Strang lemma, see for

example [10, Theorem 4.1.1]

‖q− q̃T ‖V

≤
umax

umin

inf
vT ∈V k

T



‖q− vT ‖V + sup

0 6=wT ∈V k
T

|A(u)(vT ,wT )− Ã(u)(vT ,wT )|

‖wT ‖V



 ,
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where umax and umin are continuity and coercivity constants of A(u), Ã(u). The right

hand side of the first Strang lemma will be upper bounded by choosing vT := IT q ∈
Ṽ k

T
.

We will treat the second, first, and zero order terms separately and start with the

second order term. We decompose A(u) = ∑2
i, j=1 A(ai j) +∑4

j=1 A(b j) + A(c) and

Ã(u) = ∑2
i, j=1 Ã(ai j)+∑4

j=1 Ã(b j)+ Ã(c). As in the proof of [27, Proposition 3.2.1],

we discuss the error contributions elementwise. There, we distinguish several cases,

K ∈T 1, K ∈T k′ and K∩T k′−1 6= /0, k′ = 2, . . . ,k, and K ∈T k and K∩T k−1 = /0.

We observe

|
2

∑
i, j=1

A(ai j)(IT q,wT )−
2

∑
i, j=1

Ã(ai j)(IT q,wT )|

≤ ∑
K∈T 1

2

∑
i, j=1

|E1
K(ai j∂ jI

1
Kq∂iw

T )|+ ∑
K∈T k,K∩T k−1= /0

2

∑
i, j=1

|Ek
K(ai j∂ jI

k
Kq∂iw

T )|

+
k

∑
k′=2

∑
K∈T k′ ,e:=K∩T k′−1 6= /0

2

∑
i, j=1

|Ek′

K (ai j∂ j(I
k′

K q− (Ik′

K q|e − Ik′−1
e q)lift,k′,e)∂iw

T )|.

By (12), for K ∈ T 1,

h1−δ
K ≤Ch(1−δ )/(1−β ) ≤Chk. (35)

For K ∈ T 1, by Proposition 5 (with δ1 = δ3 = δ , δ2 = δ4 = 0) and (35)

|E1
K(ai j∂ jI

1
Kq∂iw

T )| ≤Chk‖ai j‖W
1,∞
δ

(K)
‖I1

Kq‖H1(K)‖wT ‖H1(K)

and [46, Lemma 4.16] implies with the triangle inequality the existence of a constant

C > 0 (depending only on the shape regularity of the triangulations {T k}k≥0) such

that for every q ∈ H2
δ (K) holds ‖I1

Kq‖H1(K) ≤C(‖q‖H1(K)+h1−δ
K |q|H2

δ
(K)). For K ∈

T k such that K ∩T k−1 = /0, by Proposition 4

|Ek
K(ai j∂ jI

k
Kq∂iw

T )|

≤Chk
k−1

∑
ℓ=0

inf
x∈K

r
β (k−ℓ)
D (x)|ai j|W k−ℓ,∞(K) inf

x∈K
r

β ℓ
D (x)|Ik

Kq|Hℓ+1(K)|w
T |H1(K).

(36)

It follows directly from (12),

hK ≤Ch1/(1−(β−α))r
α/(1−(β−α))
D (x) ∀x ∈ K,∀α ∈ (0,β ).

We choose α := (1−β )(k′− 2+ δ )/(1− δ ) and apply (1− δ )/(1−β )> k,

hK ≤Chk/(k′−1)r
(δ+k′−2)/(k′−1)
D (x) ∀x ∈ K,k′ = 2, . . . ,k. (37)

For K ∈ T k′ such that e := K ∩T k′−1 6= /0, k′ = 2, . . . ,k, by Proposition 4 and (37)
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|Ek′

K (ai j∂ j(I
k′

K q− (Ik′

K q|e − Ik′−1
e q)lift,k′,e)∂iw

T )|

≤Chk′

K

k′−1

∑
ℓ=0

|ai j|W k′−ℓ,∞(K)
|Ik′

K q− (Ik′

K q|e − Ik′−1
e q)lift,k′,e|Hℓ+1(K)|w

T |H1(K)

≤C′hk
k′−1

∑
ℓ=0

inf
x∈K

rδ+k′−1
D (x)|ai j|W k′−ℓ,∞(K)

×|Ik′

K q− (Ik′

K q|e − Ik′−1
e q)lift,k′ ,e|Hℓ+1(K)|w

T |H1(K).

Note that (1−δ )/(1−β )> k implies that β k′ > δ +k′−1, k′ = 1, . . . ,k. We observe

with [10, Theorem 3.1.6]

|Ik
Kq|Hℓ+1(K) ≤C(|q|Hℓ+1(K)+ hk′−1

K |q|
Hk′+1(K)

), ℓ= 0, . . . ,k′− 1,

and by a similar argument as in the proof of [27, Proposition 3.2.1] for ℓ =
0, . . . ,k′− 1,

|Ik′

K q− (Ik′

K q|e − Ik′−1
e q)lift,k′ ,e|Hℓ+1(K) ≤C(|q|Hℓ+1(K)+ hk′−1

K |q|
Hk′+1(K)

).

By the Cauchy–Schwarz inequality we conclude with the previous inequalities

|
2

∑
i, j=1

A(ai j)(IT q,wT )−
2

∑
i, j=1

Ã(ai j)(IT q,wT )|

≤Chk
2

∑
i, j=1

‖ai j‖W
k,∞
δ

(K)
‖q‖

K
k+1

a+1 (D)
‖wT ‖H1(D).

The argument for the advection and reaction terms ∑4
j=1 A(b j), A(c) is similar.

Here, the additional weight rD for the advection terms and r2
D for the reaction term

needs to be accommodated. For the advection term, by the second part of Proposi-

tion 5 (with δ1 = δ3 = δ , i = 0) and K ∈ T1 for j = 1,2

|E1
K(b j(∂ jI

1
Kq)wT )| ≤Chk‖rδ

Db j‖W
1,∞
δ

(K)
‖I1

Kq‖H1(K)

(
‖r−1

D wT ‖L2(K)+ |wT |H1(K)

)

(38)

and for j = 3,4

|E1
K(b jI

1
Kq∂ jw

T )| ≤Chk‖rδ
Db j‖W

1,∞
δ

(K)

(
‖r−1

D I1
Kq‖L2(K)+ |I1

Kq|H1(K)

)
‖wT ‖H1(K).

For the interior elements K ∈ T \T 1, the additional weight rD can be accommo-

dated by compensating it with ‖r−1
D wT ‖L2(K) as in (38) for j = 1,2. If the partial

derivative is on the trial function, i.e., j = 3,4, the order of the Sobolev semi-norm

as for example in (36) is reduced by one to |Ik
Kq|Hℓ(K). Here, the weight r

β (k−ℓ+1)
D is

assigned to |b j|W k−ℓ,∞(K), if ℓ≥ 1. For ℓ= 0, the additional weight rD can be compen-

sated by ‖r−1
D Ik

Kq‖L2(K). We recall the Hardy inequality from (15), i.e., there exists
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a constant C > 0 such that for every v ∈V

‖r−1
D v‖L2(D) ≤C‖‖∇v‖2‖L2(D).

Thus, ‖r−1
D wT ‖L2(D) ≤ C‖wT ‖V and ‖r−1

D Ik
Kq‖L2(D) ≤ C‖Ik

Kq‖V . The rest of the

proof for the advection terms is analogous to the diffusion terms, which were proved

in detail. The argument for the reaction term uses the second part of Proposition 5

with i = 1. We omit the details. ⊓⊔

Proof of Corollary 1. Throughout this proof C,C′ > 0 denote generic constants that

depend on the shape regularity of the triangulation T , but are independent of ele-

ment sizes or of functions on D. For given uncertain input u, the solution g ∈V to

the adjoint problem is characterized by

A(u)(w,g) = 〈G,w〉V ∗,V ∀w ∈V.

The respective FE approximation gT is characterized by A(u)(wT ,g−gT ) = 0 for

every wT ∈ V k
T

. In the superconvergence analysis, we employ the usual duality ar-

gument as outlined in the proof of [4, Theorem 3.6]. By a version of [4, Lemma 3.1]

for non-symmetric bilinear forms A(u)(·, ·),

G(q)−G(qT ) = A(u)(q− qT ,g− gT )+ Ã(u)(q̃T ,gT )−A(u)(q̃T ,gT ).

As in the previous proof, we begin by estimating the diffusion terms related to ai j.

By a similar argument that we used to show (36) also using Proposition 5, we obtain

|Ã(ai j)(q̃
T ,gT )−A(ai j)(q̃

T ,gT )|

≤Chk+k′

(

∑
K∈T 1

‖ai j‖W
1,∞
δ

(D)
‖q̃T ‖H1(K)‖gT ‖H1(K)

+ ∑
K∈T \T 1

2

∑
i, j=1

k+k′−1

∑
ℓ=0

inf
x∈K

r
β (k+k′−ℓ)
D (x)|ai j|W k+k′−ℓ,∞(K)

inf
x∈K

r
β ℓ
D |∂ jq̃

T ∂ig
T |Hℓ(K)


 .

Note that (∂ j q̃
T )|K ,(∂ig

T )|K ∈ Pk−1(K), which implies that

∂ ααα(∂ jq̃
T )|K = 0 = ∂ ααα (∂ig

T )|K ∀ααα ∈N
2
0, |ααα|> k− 1.

By the product rule and by the Cauchy–Schwarz inequality

|∂ jq̃
T ∂ig

T |Hℓ(K) ≤C
ℓ

∑
ℓ′=0

|∂ jq̃
T |

Hℓ′ (K)|∂ig
T |

Hℓ−ℓ′ (K).

By the inverse inequality and the element-wise approximation property of the

nodal interpolant, e.g. [10, Theorem 3.1.6] we observe that there exist constants

C,C′ > 0 such that for every K ∈ T \T 1,

Page:30 job:HerrmannSchwabR1 macro:svmult.cls date/time:24-Jun-2019/8:36



Title Suppressed Due to Excessive Length 31

|∂ jq̃
T |

Hℓ′ (K)
≤ |q|

Hℓ′+1(K)
+ |∂ jq− Ik

K∂ jq|Hℓ′ (K)
+ |Ik

K∂ jq− ∂ jq̃
T |

Hℓ′ (K)

≤C|q|
Hℓ′+1(K)+Ch−ℓ′

K ‖Ik
K∂ jq− ∂ jq̃

T ‖L2(K)

≤C|q|
Hℓ′+1(K)

+Ch−ℓ′

K (‖Ik
K∂ jq− ∂ jq‖L2(K)+ ‖∂ jq− ∂ jq̃

T ‖L2(K))

≤C′(|q|
Hℓ′+1(K)

+ h−ℓ′

K |q− q̃T |H1(K)).

Similarly, it holds that |∂ig
T |

Hℓ−ℓ′ (K) ≤C|gT |
Hℓ−ℓ′+1(K). The previous elementwise

estimates allow us to conclude with the Cauchy–Schwarz inequality

|Ã(ai j)(q̃
T ,gT )−A(ai j)(q̃

T ,gT )|

≤Chk+k′‖ai j‖
W

k+k′ ,∞
δ

(D)
(‖q‖

K
k+1

a+1 (D)
+ h−k‖q− q̃T ‖V )‖g‖

K
k′+1

a+1 (D)

≤C′hk+k′‖ai j‖
W

k+k′ ,∞
δ

(D)
(1+ ‖u‖Xk,δ

)‖q‖
K

k+1
a+1 (D)

‖g‖
K

k′+1
a+1 (D)

,

where we used Theorem 1 in the second step. The argument for the advection and re-

action terms A(b j), j = 1, . . . ,4, and A(c) is similar. See also the proof of Theorem 1.

Since Proposition 2 and (8) imply with Céa’s lemma

|A(u)(q− qT ,g− gT )| ≤Chk+k′‖ f‖
K

k−1
a−1 (D)

‖G‖
K

k′−1
a−1 (D)

,

the assertion follows. ⊓⊔

7.2 Approximation of Functions with Point Singularities

In this section we analyze approximation rates by biorthogonal spline wavelet expan-

sions with compact supports for functions in the polygon D with point singularities.

We consider regularity in weighted Hölder spaces W
m,∞

δ (D) and more generally in

Xm,δ for δ ∈ [0,1). We explicitly define a-priori truncation of infinite biorthogonal

wavelet expansions of these functions, mimicking in this way FE mesh refinement

in D as in [36] (see also [45]).

Let (ψλ )λ∈▽ be a biorthogonal spline wavelet basis of L2(D) with dual wavelet

system (ψ̃λ )λ∈▽, we refer to [48, 14, 41, 47] for concrete constructions. We suppose

that (ψλ )λ∈▽ and (ψ̃λ )λ∈▽ have the following properties.

1. (biorthogonality)
∫

D ψλ ψ̃λ ′dx = δλ λ ′ , λ ,λ ′ ∈▽,

2. (normalization) ‖ψλ‖L∞(D) . 2d|λ |/2 and ‖ψ̃λ‖L∞(D) . 2d|λ |/2 for every λ ∈▽,

3. (compact support) |supp(ψλ )| = O(2−|λ |d) and |supp(ψ̃λ )| = O(2−|λ |d) for ev-

ery λ ∈▽,

4. (vanishing moments of order k)
∫

D xααα ψλ dx = 0 and
∫

D xααα ψ̃λ dx = 0 for all multi-

indices ααα ∈ N2
0 such that |ααα| ≤ k and for every λ ∈▽.
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We also suppose that (ψλ )λ∈▽ satisfies the finite overlap property in (19). Denoting

the L2(D) inner product by (·, ·)L2(D), for L ∈N0 and β ∈ [0,1), define the index sets

ΛL,β :=
{

λ ∈▽ : r
β
D(xλ )≤ 2L−|λ |

}
,

where xλ is the barycenter of supp(ψλ ), λ ∈ ▽. Every function w ∈ L2(D) can

be represented as u = ∑λ∈▽(w, ψ̃λ )L2(D)ψλ with equality in L2(D). With the finite

index set ΛL,β , we define the quasi-interpolant PL,β by

PL,β w := ∑
λ∈ΛL,β

(w, ψ̃λ )L2(D)ψλ . (39)

Proposition 6. For m ∈ N, suppose m > k and 0 < δ < β < 1 satisfy (1− δ )/(1−
β )> m. Then, there exists a constant C > 0 such that for every w ∈W

m,∞
δ

(D)

‖w−PL,β w‖L∞(D) ≤C2−min{k+1,m}L‖w‖W
m,∞
δ

(D).

Proof. Without loss of generality we assume that k+1=m. We distinguish the cases

infx∈supp(ψ̃λ )
rD(x) = 0 and infx∈supp(ψ̃λ )

rD(x)> 0.

In the latter case w ∈ W m,∞(supp(ψ̃λ )). The Taylor sum ∑|ααα|≤k wααα xααα of w in

supp(ψ̃λ ) satisfies that there exists a constant C > 0 independent of w such that for

every λ ∈▽,

esssupx∈supp(ψλ )

∣∣∣∣∣w(x)− ∑
|ααα |≤k

wααα xααα

∣∣∣∣∣≤C[diam(supp(ψλ ))]
k+1‖w‖W k+1,∞(supp(ψλ ))

.

(40)

By the vanishing moments property, the L∞(D) bounds and the support property of

ψ̃λ , the Cauchy–Schwarz inequality, and (40),

|(w, ψ̃λ )L2(D)| ≤C2−(k+1)|λ |2−d|λ |/2‖w‖W k+1,∞(supp(ψ̃λ ))
. (41)

This estimate is suitable if infx∈supp(ψλ )
rD(x)> 0. If λ is such that infx∈supp(ψλ )

rD(x)=
0, which essentially implies that supp(ψλ ) abuts at a corner of D, by the estimate

in (33), there exists a constant C > 0 (independent of w and λ ) such that

esssupx∈supp(ψ̃λ )
{rδ

D(x)|w(x)−w(xλ )|} ≤C2−|λ |‖rδ
D‖∇w‖2‖L∞(supp(ψ̃λ ))

.

Thus,

|(w, ψ̃λ )L2(D)|= |(w−w(xλ ), ψ̃λ )L2(D)|

≤C2−|λ |‖r−δ
D ‖L2(supp(ψ̃λ ))

‖rδ
D‖∇w‖2‖L∞(supp(ψ̃λ ))

‖ψ̃λ‖L2(D).
(42)
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We note that ‖r−δ
D ‖L2(supp(ψ̃λ ))

≤C2−|λ |(d/2−δ ) for a constant C > 0 independent of

λ . For λ ∈▽\ΛL,β and supp(ψ̃λ )∩C 6= /0, rD(xλ )
β > 2L−|λ | and rD(xλ )

β ≤C2−|λ |β

for a constant independent of λ . Since (1− δ )/(1−β )> k+ 1,

2−|λ |‖r−δ
D ‖L2(supp(ψ̃λ ))

≤C2−d|λ |/22−L(k+1). (43)

For λ ∈▽\ΛL,β and supp(ψ̃λ )∩C = /0, (1− δ )/(1−β )> k+ 1 implies that

2−|λ |(k+1) ≤C2−L(k+1)rδ+k
D (xλ ). (44)

Let Λ̃ ⊂ ▽\ΛL,β be an index set such that D ⊂
⋃

λ∈Λ̃
supp(ψλ ) and for every

λ ,λ ′ ∈ Λ̃ , supp(ψλ ) 6⊂ supp(ψ ′
λ ). For λ ′ ∈ Λ̃ such that supp(ψλ )∩C = /0, by (41),

the bounded support overlap property (19) of (ψλ )λ∈▽, and by (44), there exist

constants C,C′ > 0 such that

‖w−PL,β w‖L∞(supp(ψλ ′ ))
≤C ∑

ℓ≥|λ ′|

2−(k+1)ℓ‖w‖W k+1,∞(supp(ψ̃λ ′ ))

≤C2−(k+1)|λ ′| ∑
ℓ≥0

2−ℓ‖w‖W k+1,∞(supp(ψ̃λ ′ ))

≤C′2−(k+1)L‖w‖
W

k+1,∞
δ

(supp(ψ̃λ ′ ))
.

Similarly, for λ ′ ∈ Λ̃ such that supp(ψλ )∩C 6= /0, by (42), the bounded support

overlap property of (ψλ )λ∈▽, and (43) there exists constants C,C′ > 0 such that

‖w−PL,β w‖L∞(supp(ψλ ′ ))

≤C ∑
ℓ≥|λ ′|

2−ℓ ∑
λ∈▽\ΛL,β :|λ |=ℓ

‖r−δ
D ‖L2(supp(ψ̃λ ))

2dℓ/2‖w‖
W

1,∞
δ

(supp(ψ̃λ ′ ))

≤C2−(k+1)L ∑
ℓ≥0

2−ℓ‖w‖W1,∞(suppδ (ψ̃λ ′ ))
.

Since D ⊂
⋃

λ∈Λ̃
supp(ψλ ), the proof of the proposition is complete. ⊓⊔

The following lemma may be shown as [36, Equations (5) and (13)].

Lemma 5. For every L ∈N and β ∈ [0,1), |ΛL,β |= O(2dL).

Proof of Proposition 1. We write w = (ai j,b j,c)∈ Xm,δ for some m ≥ 1. We suppose

that the biorthogonal wavelets (ψλ )▽ have vanishing moments of order m−1= k ≥
0. The statement of the theorem follows applying Proposition 6 to ai j, rDb j, and to

r2
Dc together with Lemma 5. ⊓⊔
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2019
28. Herrmann, L., Schwab, C.: Multilevel quasi-Monte Carlo integration with product weights for

elliptic PDEs with lognormal coefficients. ESAIM: Math. Model. Numer. Anal. (2019). URL

https://doi.org/10.1051/m2an/2019016
29. Herrmann, L., Schwab, C., Zech, J.: Uncertainty quantification for spectral fractional diffu-

sion: Sparsity analysis of parametric solutions. Tech. Rep. 2018-11, Seminar for Applied
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