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Multilevel QMC Uncertainty Quantification
for Advection-Reaction-Diffusion

Lukas Herrmann and Christoph Schwab

Abstract We survey the numerical analysis of a class of deterministic, higher-

order QMC integration methods in forward and inverse uncertainty quantification

algorithms for advection-reaction-diffusion (ARD) equations in polygonal domains

D ⊂ R
2 with distributed uncertain inputs. We admit spatially heterogeneous material

properties. For the parametrization of the uncertainty, we assume at hand systems of

functions which are locally supported in D. Distributed uncertain inputs are written

in countably parametric, deterministic form with locally supported representation

systems. Parametric regularity and sparsity of solution families and of response

functions in scales of weighted Kontrat’ev spaces in D is quantified using analytic

continuation.

1 Introduction

Computational uncertainty quantification (UQ) addresses the efficient, quantitative

numerical treatment of differential- and integral equation models in engineering

and in the sciences. In the simplest setting, such models need to be analyzed for

parametric input data with sequences yyy = (y j) j≥1 of parameters y j which range in a

compact, metric space U . In [15] the authors proposed and analyzed the convergence

rates of higher order Quasi-Monte Carlo (HoQMC) approximations of conditional ex-

pectations which arise in Bayesian Inverse problems for partial differential equations

(PDEs). We studied broad classes of parametric operator equations with distributed

uncertain parametric input data. Typical examples are elliptic or parabolic partial

differential equations with uncertain, spatially heterogeneous coefficients, but also

differential and integral equations in uncertain physical domains of definition. Upon

suitable uncertainty parametrization and, in inverse uncertainty quantification, with

Lukas Herrmann · Christoph Schwab
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2 Lukas Herrmann and Christoph Schwab

a suitable Bayesian prior measure placed on the, in general, infinite-dimensional

parameter space, the task of numerical evaluation of statistical estimates for quantities

of interest (QoI’s) becomes numerical computation of parametric, deterministic

integrals over a high-dimensional parameter space.

The method of choice in many current inverse computational UQ is the Markov

chain Monte Carlo (MCMC) method and its variants ([27, 5]). Due to its Monte Carlo

character, it affords a generally low convergence rate. As an alternative to the MCMC

method, in [40, 41, 7] recently developed, dimension-adaptive Smolyak quadrature

techniques were applied to the evaluation of the corresponding integrals. In [15, 14]

a convergence theory for HoQMC integration for the numerical evaluation of the

corresponding integrals was developed, based on earlier work [16] on these methods

in forward UQ. In particular, it was shown in [14] that convergence rates of order

> 1/2 in terms of the number N of approximate solves of the forward problem that are

independent of the dimension can be achieved with judiciously chosen, deterministic

HoQMC quadratures instead of Monte Carlo or MCMC sampling of the Bayesian

posterior. The achievable, dimension-independent rate of HoQMC is, in principle,

only limitted by the sparsity of the forward problem. Moreover, the execution of the

algorithm is “embarrassingly parallel”, since for QMC algorithms, unlike MCMC

and sequential Monte Carlo (SMC) methods, the forward problem may be solved

simultaneously and in parallel. The error analysis in [14] was extended in [15] to

the multilevel setting. As is well known in the context of Monte Carlo methods,

multilevel strategies can lead to substantial gains in accuracy versus computational

cost, see also the survey [24] on MLMC methods. Multilevel discretizations for QMC

integration were explored first for parametric, linear forward problems in [31, 29]

and, in the context of HoQMC for parametric operator equations, in [15]. For the

use of multilevel strategies in the context of MCMC methods for Bayesian inverse

problems we refer to [20, 27] and the references there. The purpose of the present

paper is to extend the convergence analysis of deterministic Bayesian inversion

algorithms for forward problems given by PDEs with distributed random input data,

which are based on Quasi-Monte Carlo integration from [15] and the references

there, to uncertainty parametrization with basis functions which are locally supported

in the physical domain D. Let us mention in passing that while we consider here

conforming Finite Element (FEM) discretization, other discretizations in D could

equally be considered. We mention only discontinuous Galerkin FEM which have

been introduced for advection-diffusion-reaction (“ADR”) equations as considered

here in [28]. The duality argument in weighted function spaces for these methods

has been developed in [32].

The principal contributions of the present work are as follows: we prove, for a

class of linear ADR problems in a polygon D with uncertain diffusion coefficients,

drift coefficient and reaction coefficient, the well-posedness of the corresponding

Bayesian inverse problem. We establish optimal convergence of FE discretizations

of the forward problem, with judicious mesh refinement towards the corners C

of D, allowing in particular also corner singularities in the uncertain input data;

these appear typically in Karhunen-Loève eigenfunctions corresponding to principal
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components of covariance operators which are negative fractional powers of the

precision operator given as the Dirichlet Laplacean.

We show that a singularity-adapted uncertainty parametrization with locally sup-

ported in D spline-wavelet functions allows for optimal (in the sense of convergence

rate) parametrization of the uncertain input data.

The structure of this paper is as follows. In Section 2, we present a class of

linear, second order diffusion problems in bounded, polygonal domains. Particular

attention is paid to regularity in weighted function spaces which account for possible

singularities at the corners of the physical domain; we base our presentation on the

recent reference [4] where the corresponding regularity theory has been developed.

In Section 5, we review the general theory of well-posed Bayesian inverse prob-

lems in function spaces, from [12]. The presentation and the setup is analogous to

what was used in [15], but in technical details, there are important differences: unlike

the development in [15], the uncertainty parametrization employed in the present

paper will be achieved by locally supported functions ψ j in the physical domain

D. In particular, we shall admit biorthogonal, piecewise polynomial multiresolution

analyses in D. These allow, as we show, to resolve uncertain inputs with corner and

interface singularities at optimal rates, and their local supports enable the use of

Higher order QMC integration with so-called SPROD (“smoothness driven, prod-

uct”) weights. To this end, and as in [15], we require a novel, combined regularity

theory of the parametric forward maps in weighted Kondrat’ev-Sobolev spaces in D.

In particular, we present an error vs. work analysis of the combined ML HoQMC

Petrov–Galerkin algorithms.

2 UQ for advection-reaction-diffusion equations in polygons

We review the notation and mathematical setting of forward and inverse UQ for a

class of smooth, parametric operator equations. We develop here the error analysis

for the multilevel extension of the algorithms in [22] for general linear, second order

advection-reaction-diffusion problems in an open, polygonal domain D ⊂ R
2, see

also [21]. We assume that the uncertain inputs comprise the operators’ coefficients

u = ((ai j(x),bi(x),c(x)) to belong to a separable Banach space X being a weighted

or Hölder space in the physical domain D. As in [15], uncertainty parametrization

with an unconditional basis of X will result in a countably-parametric, deterministic

boundary value problem. Unlike the Karhunen-Loève basis which is often used

for uncertainty parametrization in UQ, we consider here the use of representation

systems whose elements have well-localized supports contained in D; one example

are spline wavelets.

Upon adopting such representations, both forward and (Bayesian) inverse prob-

lems become countably parametric, deterministic operator equations. In [40],

Bayesian inverse UQ was expressed as countably-parametric, deterministic quadra-

ture problem, with the integrand functions appearing in the Bayesian estimation

problems stemming from a (Petrov–)Galerkin discretization of the parametric for-

Page:3 job:HerrmannSchwab macro:svmult.cls date/time:17-Jan-2019/15:47



4 Lukas Herrmann and Christoph Schwab

ward problem in the physical domain. Contrary to widely used MCMC algorithms

(e.g. [20] and the references there), high-dimensional, deterministic quadratures

of Smolyak type for numerical integration against the (Bayesian) posterior were

proposed in [40, 41]. In the present paper, we review this approach for forward and

(Bayesian) inverse UQ for ADR in planar, polygonal domains D. We consider in

detail high order FEM discretization of the ADR problem on meshes with local

corner-refinement in D. We review the use of deterministic, HoQMC integration

methods, from [16, 17, 19] and the references there, in multilevel algorithms for

Bayesian estimation in ADR models with uncertain input.

2.1 Model advection-reaction-diffusion problem in D

We present the parametric ADR model problem in a plane, polygonal domain D and

recapitulate its well-posedness and regularity, following [4]. There, in particular, reg-

ularity in weighted function spaces in D and holomorphy of the data-to-solution map

for this problem in these weighted spaces was established. Optimal FE convergence

rates result for FEM in D with locally refined meshes near the singular points of

the solution (being either corners of D or boundary points where the nature of the

boundary condition changes) [1] and references there.

In the bounded, polygonal domain D with J corners C = {ccc1, . . . ,cccJ}, for some

J ∈ N, we consider the forward problem being the mixed boundary value problem

for the linear, second order divergence form differential operator

L (u)q :=−
2

∑
i, j=1

∂i(ai j∂ jq)+
2

∑
i=1

bi∂iq−
2

∑
i=1

∂ j(b2+iq)+ cq = f in D,

q

∣∣∣
Γ1

= 0,
2

∑
i=1

2

∑
j=1

(
ai j∂ jq+bd+ jq

)
ni

∣∣∣
Γ2

= 0,

(1)

where n denotes the unit normal vector of the domain D and /0 6= Γ1 ⊂ ∂D denotes

the Dirichlet boundary and Γ2 = ∂D\Γ1 denotes the Neumann boundary. We shall

assume that C ⊂ Γ1.

Define further

V := {v ∈ H1(D) : v|Γ1
= 0},

where v|Γ1
∈ H1/2(Γ1) has to be understood in the sense of a trace of v ∈ H1(D). In

(1), the differential operator L depends on the uncertain, parametric coefficients

u(yyy) := ((ai j(yyy
0)1≤i, j≤2,(bi(yyy

1))1≤i≤4,c(yyy
2)), yyyi ∈

[
−

1

2
,

1

2

]N
, i = 0,1,2,

where we have used the notation yyy := (yyy0,yyy1,yyy2) and further introduce the parameter

set
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U := ∏
i=0,1,2

[
−

1

2
,

1

2

]N
.

The uncertain coefficient functions u(yyy) may also depend on the spatial coordinate

x ∈ D, and for each yyy ∈ U are assumed to belong to weighted Sobolev spaces

W m,∞(D) of integer order m ≥ 0 being given by

W
m,∞(D) := {v : D → C : r

|α|
D ∂ α v ∈ L∞(D), |α| ≤ m} . (2)

Specifically, for m ∈ N0, we assume that

u ∈ Xm := {u : ai j ∈ W
m,∞(D), rDbi ∈ W

m,∞(D), r2
Dc ∈ W

m,∞(D)} . (3)

Here, D ∋ x 7→ rD(x) denotes a “regularized” distance to the corners C of D, i.e.

rD(x)≃ dist(x,C ) for x ∈ D. We equip Xm, m ∈ N0, with the norm

‖u‖Xm := max{‖ai j‖W m,∞(D),‖rDbi‖W m,∞(D),‖r2
Dc‖W m,∞(D)} . (4)

We introduce the parametric bilinear form

A(u(yyy))(w,v) := 〈L (u(yyy))w,v〉V ∗,V , ∀w,v ∈V.

The variational formulation of the parametric, deterministic problem reads: given

yyy ∈U , find q(yyy) ∈V such that

A(u(yyy))(q(yyy),v) = 〈 f ,v〉V ∗,V , ∀v ∈V .

This parametric problem is well-posed if u(yyy) ∈ X0 is such that there exists a positive

constant c > 0

inf
yyy∈U

R(A(u(yyy))(v,v))> c‖v‖2
V , ∀v ∈V, (5)

where R(z) denotes the real part of z ∈ C. We observe that (5) precludes implicitly

that the ADR operator in (1) is singularly perturbed. This, in turn, obviates in the

ensuing FE approximation theory in Section 3 the need for boundary layer resolution

or anisotropic mesh refinements. As a consequence of (5) and of the Lax–Milgram

lemma, for every yyy ∈ U the parametric solution q(yyy) ∈ V exists and satisfies the

uniform a-priori estimate

sup
yyy∈U

‖q(yyy)‖V ≤ c−1‖ f‖V ∗ . (6)

We introduce weighted Sobolev spaces of Kondrat’ev type K m
a (D), m ∈ N0 ∪{−1},

a ∈ R, as closures of C∞(D;C) with respect to the homogeneous weighted norm

given by

‖v‖2
K m

a (D) := ∑
|α|≤m

‖r
|α|−a

D ∂ α v‖2
L2(D). (7)
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We observe that (up to equivalence of norms) V = {v ∈ K 1
1 (D) : v|Γ1

= 0}, which

is a consequence of the Hardy inequality (see e.g. [37, Theorem 21.3]). In [4], the

authors proved regularity shifts of L (u). Specifically, if A(u) satisfies (5) and if

u ∈ Xm, then by [4, Corollary 4.5 and Theorem 4.4] there exists a constant C > 0,

a0 > 0 such that for every a ∈ (−a0,a0), f ∈ K
m−1

a−1 (D), q(yyy) ∈ K
m+1

a+1 (D) and

sup

yyyi∈[− 1
2 ,

1
2 ]

N
,i=0,1,2

‖q(yyy)‖
K

m+1
a+1 (D) ≤C‖ f‖

K
m−1

a−1 (D). (8)

Note that the dependence of the constant C on the coefficients u can also be made

explicit, see cp. [4].

2.2 Uncertainty parametrization

For uncertainty parametrization, the data space X is assumed to be a separable,

infinite-dimensional Banach space with norm ‖ · ‖X (separably valued data u in a

otherwise non-separable space are equally admissible). We suppose that we have at

hand representation systems (ψ i
j) j≥1 ⊂ L∞(D;Rki), i ∈ {0,1,2} of locally supported

functions in D which parametrize the uncertain coefficient functions u = (a,b,c) for

integers k0,k1,k2 ∈ N.

The smoothness scale {Xm}m≥0 defined in (3) for m ≥ 1 with X = L∞(D)8 = X0 ⊃
X1 ⊃ X2 ⊃ ..., and a smoothness order t ≥ 1 is being given as part of the problem

specification. We restrict the uncertain inputs u to sets Xt with “higher regularity”

in order to obtain convergence rate estimates for the discretization of the forward

problem. Note that for u ∈ Xt and which ψ j being Fourier or multiresolution analyses,

higher values of t correspond to stronger decay of the ψ i
j, i ∈ {0,1,2}.

For the numerical analysis of a FE discretization in D, we have to slightly

strengthen the norm of Xm. To this end, we define the spaces W
m,∞
δ

(D), δ ∈ [0,1],
m ∈ N, as a subspace of W m,∞(D) equipped with the norm

‖v‖W
m,∞
δ

(D) := max
|α|≤m

{‖r
max{0,δ+|α|−1}
D ∂ α v‖L∞(D)}.

Note that W
m,∞
1 (D) = W m,∞(D). For δ ∈ [0,1), we define Xm,δ by the norm

‖u‖Xm,δ
:= max{‖ai j‖W

m,∞
δ

(D),‖rDbi‖W
m,∞
δ

(D),‖r2
Dc‖W

m,∞
δ

(D)} .

It is easy to see that the embedding Xm,δ ⊂ Xm is continuous, m ≥ 1, δ ∈ [0,1). We

assume that the {ψ i
j} j≥1, i ∈ {0,1,2}, are scaled such that for some δ ∈ [0,1), τ ∈N,

and positive sequences (ρ i
r, j) j≥1,

max
|ααα|≤r

∥∥∥∥∥∑
j≥1

ρ i
r, jr

max{0,δ+|α|−1}
D |∂ ααα

x ((rD)
iψ i

j)|

∥∥∥∥∥
L∞(D)

< ∞, r = 0, . . . ,τ. (9)

Page:6 job:HerrmannSchwab macro:svmult.cls date/time:17-Jan-2019/15:47



Multilevel QMC Uncertainty Quantification for Advection-Reaction-Diffusion 7

Lemma 1. Let w∈W m,∞(D;Ck) for some m,k ∈N and let v : D×C
k ⊃D×w(D)→

C be a function that is W m,∞-regular in the first argument and analytic in the second.

Then, [x 7→ v(x,w(x))] ∈ W m,∞(D).

Proof. Let ṽ := [w(D) ∋ z 7→ v(x,z)] for arbitrary x ∈ D such that ṽ is well-defined.

By an application of the Faà di Bruno formula [11, Theorem 2.1],

r
|ααα|
D ∂ ααα

x (ṽ◦w)= ∑
1≤|λλλ |≤n

∂ λλλ
y ṽ

n

∑
ι=1

∑
pι (ααα,λλλ )

ααα!
ι

∏
j=1

1

ννν( j)!(ννν( j)!)|ννν( j)|

k

∏
i=1

(r
|ννν( j)|
D ∂ ννν( j)wi)

ν( j)i ,

where n = |ααα|, w = (w1, . . . ,wk), and

pι(ααα,λλλ ) =

{
(ννν(1), . . . ,ννν(ι);ννν(1), . . . ,ννν(ι)) : |ννν(i)|> 0,

000 ≺ ννν(1)≺ . . .≺ ννν(ι),
ι

∑
i=1

ννν(i) = λλλ ,and
ι

∑
i=1

|ννν(i)|ννν(i) = ααα

}
,

where the multiindices ννν are k-dimensional and the multiindices ννν are d-dimensional

(here d = 2, since the domain D is a polygon). The symbol ≺ for multiindices ννν and

ν̃νν is defined by ννν ≺ ν̃νν (here for d = 2) if either (i) |ννν | < |ν̃νν | or (ii) |ννν | = |ν̃νν | and

ν1 < ν̃1. Since L∞(D) is an algebra and |ααα|= ∑
ι
i=1 |ννν(i)||ννν(i)|, (ṽ◦w) ∈ W m,∞(D).

The claim of the lemma now follows by another application of the Faà di Bruno

formula. ⊓⊔

Remark 1. The statement of Lemma 1 also holds if we replace W m,∞(D) with

W
m,∞
δ

(D), δ ∈ [0,1), at all places.

Define the complex-parametric sets of admissible data

U i :=

{

∑
j≥1

z j|ψ
i
j(x)| : zzz ∈ C

N, |z j| ≤ ρ i
0, j, j ≥ 1,x ∈ D

}
⊂ C

ki , i ∈ {0,1,2},

where | · | denotes component-wise absolute value. Let g : D×U0 ×U1 ×U2 → C
8

be a function such that (z1,z2,z2) 7→ g(x,z0,z1,z2) is holomorphic for almost every

x ∈ D and such that [x 7→ g(x,z0,z1,z2)] ∈ Xm for some m ≥ 1 and every (z0,z1,z2) ∈
U0 ×U1 ×U2. The uncertain coefficient u = (a,b,c) is then parametrized by

u(x,yyy) =
(
a(x,yyy0),b(x,yyy1),c(x,yyy2)

)

= g

(
x, ∑

j≥1

y0
jψ

0
j , ∑

j≥1

y1
jψ

1
j , ∑

j≥1

y2
jψ

2
j

)
, a.e. x ∈ D,yyyi ∈U, i = 0,1,2.

(10)

Hence, u = (a,b,c) is given through the coordinates of the function g via a11 = g1,

a22 = g2, a21 = a12 = g3, bi = gi+3, i = 1, . . . ,4, c = g8.

Page:7 job:HerrmannSchwab macro:svmult.cls date/time:17-Jan-2019/15:47



8 Lukas Herrmann and Christoph Schwab

Elements in the space Xm,δ may have singularities in the corners, but can be

approximated in the X0-norm at optimal rates for example by biorthogonal wavelets

with suitable refinements near vertices of D.

Proposition 1. Let δ ∈ [0,1) and m ∈N be given. Assume further at hand a biorthog-

onal, compactly supported spline wavelet basis with sufficiently large number (de-

pending on m) vanishing moments and compactly supported dual basis. Then, there

exists a constant C > 0 and, for every L ∈ N projection operators PL into a biorthog-

onal wavelet basis such that

‖w−PLw‖X0
≤CN

−m/2
L ‖w‖Xm,δ

, ∀w ∈ Xm,δ ,

where NL denotes the number of terms in the expansion PLw.

The proof of this (in principle, well-known) proposition is given in Section 6.2, where

also further details on biorthogonal wavelets are presented.

3 Finite Element discretization

We introduce conforming Finite Element discretizations in the physical domain D

and review an approximation property as a preparation for the analysis of the impact

of numerical integration on locally refined meshes in D. Let T denote a family of

regular, simplicial triangulations of the polygon D. We assume that T is obtained

from a coarse, initial triangulation by newest vertex bisection, cp. [23]. In this section

we will omit the parameter vector yyy in our notation with the understanding that all

estimates depend on the parameter vector yyy only via dependencies on the coefficients

u = (a,b,c). We assume there exists a constant C > 0 independent of h such that for

every T ∈ T and every K ∈ T :

(i) If K ∩C = /0, then C−1hr
β
D(x)≤ hK ≤Chr

β
D(x) for every x ∈ K.

(ii) If K ∩C 6= /0, then C−1hsup
x∈K

{r
β
D(x)} ≤ hK ≤Chsup

x∈K

{r
β
D(x)},

(11)

where

hK := diam(K),K ∈ T , and h := max
K∈T

{hK}.

Such a mesh can be achieved with the algorithm proposed in [23, Section 4.1]

with input values the global meshwidth h, the polynomial degree k, and the weight

exponent γ = (1+ k)(1−β ), assuming (1+ k)(1−β ) < 1. There are also graded

meshes that satisfy (11), which were introduced in [2]. We define the Finite Element

spaces of order k ∈ N by

V k
T := {v ∈V : v|K ∈ Pk(K),K ∈ T }, T ∈ T ,
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Multilevel QMC Uncertainty Quantification for Advection-Reaction-Diffusion 9

where Pk(K) denotes the polynomials of degree smaller or equal to k on element

K ∈ T .

Proposition 2. Let k ∈ N and 0 < δ < β < 1 be such that (1−δ )/(1−β )> k and

set a = 1−δ . There exists a constant C > 0 independent of the global mesh width h

such that for every w ∈ K
k+1

a+1 (D) there exist wT ∈ Ṽ k
T

⊂V k
T

such that

‖w−wT ‖H1(D) ≤Chk‖w‖
K

k+1
a+1 (D)

.

This result is, in principle, known; e.g. [1, 34] and references there.

3.1 Numerical integration

An essential component in the numerical analysis of the considered class of prob-

lems is the efficient numerical evaluation of the mass and stiffness matrices which

contain the inhomogeneous, parametric coefficients. Owing to their origin as path-

wise realizations of random fields, these coefficients have, in general, only finite

Sobolev regularity. Furthermore, for covariances in bounded domains which result

from precision operators which include boundary conditions such as the Dirichlet

Laplacean, these realizations can exhibit singular behaviour near corners of D. This is

accomodated by the weighted Sobolev spaces W m,∞(D) comprising the data spaces

Xm as defined above in (3). Efficient numerical quadrature for the evaluation of the

stiffness and mass matrices which preserves the FE approximation properties on

locally refined meshes is therefore needed. The numerical analysis of the impact

of quadrature on FEM on locally refined meshes for uncertain coefficients in Xm is

therefore required.

The impact of numerical integration in approximate computation of the stiffness

matrix and load vector on the convergence rates of the FE solution is well understood

for uniform mesh refinement, cp. for example [9, Section 4.1]. We extend this theory

to regular, simplicial meshes with local refinement toward the singular points, and to

possibly singular coefficients which belong to weighted spaces, i.e., u = (a,b,c) ∈
Xm,δ , δ ∈ [0,1), as defined in (3). We provide a strategy to numerically approximate

the stiffness matrix by quadrature so that the resulting additional consistency error is

consistent with the FE approximation error, uniformly with respect to the parameter

sequences which characterize the uncertain inputs. We denote by Ã on VT ×VT the

bilinear form, which has been obtained with numerical integration, i.e., for quadrature

weights and nodes (ωK,k,xK,k)K∈T ,k∈I ⊂ (0,∞)×D

Ã(w,v)

:= ∑
K∈Tℓ

∑
k∈I

ωK,k

(
2

∑
i, j=1

ai j∂ jw∂iv+
2

∑
i=1

bi∂iwv+
2

∑
i=1

b2+iw∂ jv+ cwv

)
(xK,k),
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10 Lukas Herrmann and Christoph Schwab

for every w,v∈VT . Let us denote by FK : K̂ →K the affine element mappings that are

given by ξ 7→FK(ξ )=BKξ +bK , K ∈T . Let (ω̂k, x̂k)k∈I be a set of positive weights

and nodes for quadrature on the reference element K̂. Then, ωK,k := det(BK)ωk > 0

and xK,k := FK(xk) ∈ K, K ∈ T , k ∈ I . We define the element quadrature error for

every K ∈ T and integrable φ such that point evaluation is well-defined by

EK(φ) =
∫

K
φdx− ∑

k∈I

ωK,kφ(xK,k).

The quadrature error E
K̂

on the reference element K̂ is defined analogously.

Under these assumptions, it can be shown as in the proof of [9, Theorem 4.1.2]]

(which covers the case that bi ≡ 0 and c ≡ 0 in u in (3)), that the corresponding

approximate sesquilinear form Ã(u)(·, ·) : V k
T
×V k

T
→ C satisfies coercivity (5) with

a positive coercivity constant c̃, possibly smaller than c> 0 in (5) but still independent

of yyyi ∈ [−1/2,1/2]N, i = 0,1,2.

Let us denote the FE solution with respect to the bilinear form Ã(u) : V k
T
×V k

T
→

C by q̃T ∈V k
T

, i.e.,

Ã(u)(q̃,v) = 〈 f ,v〉V ∗,V , ∀v ∈V k
T .

The error incurred by employing numerical quadrature is consistent with the FE

approximation rate, as demonstrated in the following theorem.

Theorem 1. For k ≥ 1, suppose that E
K̂
(φ̂) = 0 for every φ̂ ∈ P2k−1. Let 0 < δ <

β < 1 satisfy (1−δ )/(1−β )> k. There exists a constant C > 0 independent of h

and of u = (a,b,c) ∈ Xk,δ such that

‖q− q̃T ‖V ≤Chk
(

1+‖u‖Xk,δ

)
‖q‖

K
k+1

a+1 (D)
.

The impact of numerical integration in linear functionals of the solution shall

has been studied in the case of uniform refinement and unweighted Sobolev space

in [3]. We shall extend their result to solutions to ADR problems in polygons in the

following corollary.

Corollary 1. Let 0 ≤ k′ ≤ k be integers. Suppose that E
K̂
(φ̂) = 0 for every φ̂ ∈ P2k.

Let 0 < δ < β < 1 satisfy (1−δ )/(1−β ) > k+ k′. There exists a constant C > 0

that does not depend on h such that for every G ∈ K
k′−1

a−1 (D),

|G(q)−G(q̃T )| ≤Chk+k′
(

1+‖u‖Xk,δ

)(
1+‖u‖Xk+k′ ,δ

)
‖q‖

K
k+1

a+1 (D)
‖G‖

K
k′−1

a−1 (D)
.

The proofs of Theorem 1 and Corollary 1 are given in Section 6.1.
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3.2 Finite Element approximation of parametric solution

To this end we suppose that we have a sequence of FE triangulations {Tℓ}ℓ≥0 such

that Tℓ satisfies the assumption in (11) with constants that are uniform in ℓ≥ 0. The

global mesh widths are denoted by (hℓ)ℓ≥0. We denote by V k
ℓ , ℓ≥ 0, the respective

FE spaces for some k ≥ 1 and define

Mℓ := dim(V k
ℓ ), ℓ≥ 0.

Recall the bilinear form Ã(u(yyy)) on V k
ℓ ×V k

ℓ that results from the application of

numerical integration in the previous section. The Galerkin approximation q̃Tℓ(yyy) ∈
V k
ℓ is the unique solution to

Ã(u(yyy))(q̃Tℓ(yyy),v) = 〈 f ,v〉V ∗,V , ∀v ∈V k
ℓ . (12)

We recall the sparsity assumption in (9) for postive sequences (ρ i
r, j) j≥1, r = 0, . . . ,τ .

This assumption and Lemma 1 imply that ai, j(yyy
0),b j(yyy

1),c(yyy2) ∈W
τ,∞
δ

(D) for every

yyy0,yyy1,yyy2 ∈ [−1/2,1/2]N and admissible i, j. We assume that f ∈ K
t−1

a−1 (D), G ∈

K
t ′−1

a−1 (D) for integers t, t ′ ≥ 0 satisfying t + t ′ ≤ τ . Then, by Corollary 1 and (8),

sup
yyy∈U

|G(q(yyy))−G(q̃Tℓ(yyy))| ≤CM
−(min{t,k}+min{t ′,k})/2

ℓ ‖ f‖
K

t−1
a−1 (D)‖G‖

K
t′−1

a−1 (D)
,

(13)

where we applied that Mℓ = O(h−d
ℓ ), ℓ≥ 0.

The parametric solution may be approximated consistently up to any order of

hℓ by preconditioned conjugate gradient in work O(Mℓ log(Mℓ)). Admissible pre-

conditioners in the symmetric case, i.e., bi(yyy
(i))≡ 0, for Γ2 = /0 are so called BPX

and symmetric V-cycle. Respective condition numbers for local mesh refinement by

newest vertex bisection for BPX and symmetric V-cycle has been studied for the

Dirichlet Laplacean in [6]. These results are applicable, since the Dirichlet Laplacean

is spectrally equivalent to L (u). For notational convenience, the PCG approximation

of q̃Tℓ(yyy) will be denoted by the same symbol. Since PCG is an iterative method,

holomorphic dependence on the parameters yyy is preserved.

We also consider parameter dimension truncation to obtain a finite dimensional

parameter set and denote by s0,s1,s2 ∈ N the corresponding parameter numbers. We

denote the triple of those by sss := (s0,s1,s2). Let us introduce

q̃sss,Tℓ(yyy) := q̃Tℓ(yyy0
{1:s0}

,yyy1
{1:s1},yyy

2
{1:s2}), yyyi ∈

[
−

1

2
,

1

2

]N
, i = 0,1,2,

where we have used the notation (yyyi
{1:s1}

) j = yi
j for j ∈ {1 : s1} := {1, . . . ,s1} and

zero otherwise, i = 0,1,2. We define usss and qsss analogously.

Lemma 2. Let u1 =(a1,b1,c1),u2 =(a2,b2,c2)∈X0 and q1,q2 ∈V satisfy L (ui)qi =
f , i = 1,2. Assume that the bilinear forms A(u1)(·, ·),A(u2)(·, ·) are coercive with
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12 Lukas Herrmann and Christoph Schwab

coercivity constants c1,c2 > 0 in the sense of (5). Then, there exists a constant C > 0

independent of q1,q2,u1,u2 such that

‖q1 −q2‖V ≤
C

c1c2
‖u1 −u2‖X0

‖ f‖V ∗

Proof. We observe that ‖q1−q2‖
2
V c−1

1 ≤A(u1)(q1−q2,q1−q2)=A(u2−u1)(q2,q1−
q2). By the Hardy inequality (see e.g. [37, Theorem 21.3]) there exists a constant

C > 0 such that for every v ∈V

‖r−1
D v‖L2(D) ≤C‖|∇v|‖L2(D). (14)

As a consequence,

|A(u2 −u1)(q2,q1 −q2)|

≤C

(
2

∑
i, j=1

‖a1
i j −a2

i j‖L∞(D)+
4

∑
j=1

‖rD(b
1
j −b2

j)‖L∞(D)+‖r2
D(c

1 − c2)‖L∞(D)

)

×‖q2‖V‖q1 −q2‖V ,

where C > 0 is the constant from the Hardy inequality. In the previous step, we used

multiplication by one, i.e., by rDr−1
D for the advection terms and by r2

Dr−2
D for the

reaction term. The claim now follows with (6). ⊓⊔
It is easy to see that since g as introduced in (10) is in particular locally Lipschitz

continuous, by Lemma 2 there exists a constant C > such that

sup
yyy∈U

‖u(yyy)−usss(yyy)‖L∞(D) ≤C

(
sup
j>s0

{(ρ0
0, j)

−1}+ sup
j>s1

{(ρ1
0, j)

−1}+ sup
j>s2

{(ρ2
0, j)

−1}

)
.

Thus, by (13)

sup
yyy∈U

|G(q(yyy))−G(q̃sss,Tℓ(yyy))| ≤C

(
M

−(min{t,k}+min{t ′,k})/2

ℓ + max
i=0,1,2

sup
j>si

{(ρ i
0, j)

−1}

)
.

(15)

4 Forward UQ

In this section we discuss the consistent approximation of the expectation of G(q),
where G ∈ V ∗ is a linear functional. The expectation is taken with respect to the

uniform product measure on U , which is denoted by dyyy :=
⊗

i=0,1,2

⊗
j≥1 dy j. The

expectation of G(q) will be denoted by

E(G(q)) :=
∫

U
G(q(yyy))dyyy.
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4.1 Higher order QMC integration

Quadrature by QMC approximates integrals over the s∈N dimensional unit cube with

equal quadrature weights, i.e., for a suitable integrand function F (possibly Banach

space valued) and judiciously chosen, deterministic QMC points {yyy(0), . . . ,yyy(N−1)}⊂
[0,1]s

Is(F) :=
∫

[− 1
2 ,

1
2 ]

s
F(yyy)dyyy ≈

1

N

N−1

∑
i=0

F

(
yyy(i)−

111

222

)
=: Qs,N(F),

where ( 111
222
) j = 1/2, j = 1, . . . ,s.

Integration by QMC methods is able to achieve convergence rates that are inde-

pendent of the dimension of integration and are higher than Monte Carlo sampling;

we refer to the surveys [30, 18]. In particular, interlaced polynomial lattice rules

are able to achieve even convergence rates, which can be of arbitrary order if the

integrand satisfies certain conditions, cp. [16]. The analysis in this work will be for

QMC by interlaced polynomial lattice rules. As in our previous works [22, 21], we

will justify the application of interlaced polynomial lattice rules with product weights,

which implies that the construction cost of the respective QMC points by the fast

CBC construction is O(sN log(N)), where s is the dimension of integration and N

the number of QMC points, cp. [16, 35, 36]. We state the main approximation result

for interlaced polynomial lattice rules from [16] for product weights given in [16,

Equation (3.18)].

Theorem 2 ([16, Theorem 3.2]). Let s ∈ N and N = bm for m ∈ N and b a prime

number. Let βββ = (β j) j≥1 be a sequence of positive numbers and assume that βββ ∈
ℓp(N) for some p ∈ (0,1]. Define the integer α = ⌊1/p⌋+1 ≥ 2. Suppose the partial

derivatives of the integrand F : [−1/2,1/2]s → R satisfy

∀yyy ∈ [−1/2,1/2]s, ∀ννν ∈ {0, . . . ,α}s : |∂ ννν
yyy F(yyy)| ≤ cννν!

s

∏
j=1

β
τ j

j ,

for some constant c > 0 which is independent of s and of ννν .

Then, there exists an interlaced polynomial lattice rule which can be constructed

with the CBC algorithm and product weights (γu)u⊂N given by γ /0 = 1 and

γu = ∏
j∈u

(
Cα,bbα(α−1)/2

α

∑
ν=1

2δ (ν ,α)β ν
j

)
, u⊂ N, |u|< ∞, (16)

(δ (ν ,α) = 1 if ν = α and zero otherwise ) in O(αsN log(N)) operations such that

∀N ∈ N : |Is(F)−Qs,N(F)| ≤Cα,βββ ,b,pN−1/p,

where Cα,βββ ,b,p < ∞ is independent of s and N.

The value for the Walsh constant Cα,b is given in [16, Equation (3.11)]. An improved

bound for Cα,b is derived in [46].
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14 Lukas Herrmann and Christoph Schwab

4.2 Parametric regularity

For the applicability of higher order integration methods such as QMC for UQ, the

assumption on the partial derivatives with respect to the parameter yyy in Theorem 2 of

the solution q(yyy) or of functionals composed with q(yyy) have to be verified. In [4] the

authors proved analytic dependence of the solution on the coefficient in the complex

valued setting. Hence, holomorphy is a direct consequence. By (5), (9), and Lemma 1,

for every truncation sss = (s0,s1,s2) the coefficients

u : D
sss
ρρρr

→ Xr

is holomorphic for r = 0, . . . , t, where

D
sss
ρρρr

:= {zzz = (zzz0,zzz1,zzz2) : zzzi ∈ C
si , |zi

j| ≤ ρ i
r, j/2, i = 0,1,2}.

As a composition of holomorphic mappings by [4, Corollary 5.1], the map

u : D
sss
ρρρr

→ K
r+1

a+1 (D), r = 0, . . . , t,

is holomorphic and

sup
sss∈N3

sup
zzz∈Dsss

ρρρr

‖q(zzz)‖
K

r+1
a+1 (D) < ∞, r = 0, . . . , t.

The following lemma is a version of [19, Lemma 3.1].

Lemma 3 ([19, Lemma 3.1]). For a Banach space B and ρρρ = (ρ j) j≥1 ∈ (1,∞)N,

s ∈N, let F : D s
ρρρ → B be holomorphic, where D s

ρρρ := {zzz ∈C
s : |z j| ≤ ρ j, j = 1, . . . ,s}.

Then, for every yyy ∈ [−1,1]N,

∀ννν ∈ N
N
0 , |ννν |< ∞ : ‖∂ ννν

yyy F(yyy)‖B ≤ sup
zzz∈Ds

ρρρ

{‖F(zzz)‖B}∏
j≥1

ρ j

(ρ j −1)ν j+1
.

The argument used in the proof of this lemma is based on the Cauchy integral formula

for holomorphic functions (see also [8, 10]).

Theorem 3. There exists a constant C > 0 such that for every ννν = (ννν0,ννν1,ννν2),
ννν i ∈N

N
0 , |ννν i|< ∞, sss = (s0,s1,s2), si ∈N, i = 0,1,2, ℓ≥ 0, 0 ≤ t ′ ≤ t ≤ k, θ ∈ [0,1],

and every yyy ∈U,

|∂ ννν
yyy (G(q(yyy))−G(q̃sss,Tℓ(yyy)))|

≤C‖G‖V ∗‖ f‖V ∗ max
i=0,1,2

sup
j>si

{(ρ i
0, j)

−θ} ∏
i=0,1,2

∏
j≥1

(ρ i
0, j/2)−ν i

j(1−θ)

+C‖G‖
K

t′−1
a−1

‖ f‖
K

t−1
a−1

M
−(t+t ′)/d

ℓ ∏
i=0,1,2

∏
j≥1

(ρ i
t+t ′, j/2)−ν i

j .
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Proof. The estimate will follow by a twofold application of Lemma 3 and the holomor-

phic dependence of the solution on the parametric input. By the triangle inequality,

|G(q(yyy))−G(q̃sss,Tℓ(yyy))| ≤ |G(q(yyy))−G(qsss(yyy))|+ |G(qsss(yyy))−G(q̃sss,Tℓ(yyy))|.

By the assumption in (9) and [4, Corollary 5.1], the mapping zzz 7→ G(q(zzz))−G(qsss(zzz))
is holomorphic on D sss

(ρρρ0)
1−θ and by Lemma 2 it holds that

sup
zzz∈Dsss

(ρρρ0)
1−θ

|G(q(zzz))−G(qsss(zzz))| ≤C‖G‖V ∗‖ f‖V ∗ max
i=0,1,2

sup
j>si

{(ρ i
0, j)

−θ}.

Hence, by Lemma 3, where we scale the parameter vectors by a factor of 1/2

|∂ ννν
yyy (G(q(yyy))−G(qsss(yyy)))|

≤C‖G‖V ∗‖ f‖V ∗ max
i=0,1,2

sup
j>si

{(ρ i
0, j)

−θ} ∏
i=0,1,2

∏
j≥1

(ρ i
0, j/2)−τ i

j(1−θ).

Furthermore by the assumption in (9) and [4, Corollary 5.1], the mapping zzz 7→
qsss(zzz) is holomorphic from D sss

ρρρt
to K

t+1
a+1 (D) and

sup
zzz∈Dsss

ρρρt

‖q(zzz)‖
K

t+1
a+1 (D) < ∞.

Thus, by (13), there exists C > 0 such that for all sss and all ℓ holds

sup
zzz∈Dsss

ρρρt

|G(qsss(zzz))−G(q̃sss,Tℓ(zzz))| ≤C‖G‖
K

t′−1
a−1

‖ f‖
K

t−1
a−1

M
−(t+t ′)/d

ℓ .

The second part of the estimate now also follows by Lemma 3. ⊓⊔

4.3 Multilevel QMC error estimates

Multilevel integration schemes offer a reduction in the overall computational cost,

subject to suitable regularity (see, e.g., [17, 29, 26]). For sssℓ=0,...,L, Nℓ=0,...,L, L ∈ N0,

define the multilevel QMC quadrature

QL(G(q̃L)) :=
L

∑
ℓ=0

Q|sss|ℓ,Nℓ
(G(q̃ℓ)−G(q̃ℓ−1)),

where we used the notation q̃ℓ := q̃sssℓ,Tℓ , ℓ= 0, . . . ,L, and q̃−1 := 0. The QMC weights

are obtained from (16) with input

β j(k,i) := 2max{(ρ i
0,k)

−(1−θ),(ρ i
τ,k)

−1}, (17)

Page:15 job:HerrmannSchwab macro:svmult.cls date/time:17-Jan-2019/15:47



16 Lukas Herrmann and Christoph Schwab

where τ = t + t ′ and j(k, i) := 3k− i, k ∈ N, i = 0,1,2, is an enumeration of N with

elements in N×{0,1,2}.

Theorem 4. Suppose that the weight sequence in (17) satisfies βββ = (β j) j≥1 ∈ ℓp(N)
for some p ∈ (0,1]. Then, with an interlaced polynomial lattice rules of order α =
⌊1/p⌋+1 and product weights (16) with weight sequence (17) there exists a constant

C > 0 such that for sssℓ=0,...,L, Nℓ=0,...,L, L ∈ N0,

|E(G(q))−QL(G(q̃L))| ≤C

(
M

−(t ′+t)/d

L + max
i=0,1,2

sup
j>si

{(ρ i
0, j)

−1}

+
L

∑
ℓ=0

N
−1/p

ℓ


M

−(t ′+t)/d

ℓ−1 + max
i=0,1,2

sup
j>si

ℓ−1

{(ρ i
0, j)

−θ}




 .

Proof. By the triangle inequality, we obtain the deterministic error estimate

|E(G(q))−QL(G(q̃L))|

≤ |E(G(q))−QL(G(q̃L))|+
L

∑
ℓ=0

|(I|sssℓ|−Q|sssℓ|,Nℓ
)(G(q̃ℓ)−G(q̃ℓ−1))|,

where |sssℓ|= s0
ℓ + s1

ℓ + s2
ℓ . Then, Theorems 2 and 3 and (15) imply the claim. ⊓⊔

4.4 Error vs. work analysis

In this section we analyze the overall computational complexity of the multilevel

QMC algorithm with product weights for function systems (ψ i
j) j≥1, i = 0,1,2. Let

us assume that the function systems (ψ i
j) j≥1, i = 0,1,2, have a multilevel structure

with control of the overlaps of the supports. Suppose for i = 0,1,2, there exist

enumerations ji : ▽→N, where elements of λ ∈▽i are tuples of the form λ = (ℓ,k),
where k ∈ ▽i

ℓ. Also define |λ | = |(ℓ,k)| = ℓ for every λ ∈ ▽. We assume that

|▽i
ℓ |=O(2dℓ), |supp(ψλ )|=O(2−dℓ), λ = (ℓ,k) ∈▽, and there there exists K > 0

such that for every x ∈ D and every ℓ ∈ N0,

∣∣{λ ∈▽i : |λ |= ℓ,ψ i
λ (x) 6= 0

}∣∣≤ K. (18)

Moreover, we assume that

ρ i
r,λ . 2−|λ |(α̂−r), λ ∈▽i,r = 0, . . . , t, i = 0,1,2,

for α̂ > t. Note that ρ i
r, j(λ ) . j−(α̂−r)/d , j ≥ 1. We equilibrate the sparsity contribution

of the sequences (ρ i
0,λ )λ∈▽i and (ρ i

t,λ )λ∈▽i in the weight sequence in (17). Hence,

we choose θ = τ/α̂ . Furthermore, with this choice of θ we also equilibrate the errors

in the multilevel QMC estimate from Theorem 4, where the truncation dimension sssℓ
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is still a free parameter. The error contributions in Theorem 4 are equilibrated for the

choice

si
ℓ ∼ Mℓ, i = 0,1,2.

In conclusion, the overall error of multilevel QMC with L ∈ N0 levels satisfies for

every p > d/(α̂ − τ),

errorL = O

(
M

−(t ′+t)/d

L +
L

∑
ℓ=0

N
−1/p

ℓ M
−(t ′+t)d
ℓ−1

)
. (19)

We assume that we have a procedure at hand that approximates the solution of a

parameter instance up to accurary, which is consistent with the discretization error,

in computational cost

workPDE solver,ℓ = O(Mℓ log(Mℓ)), ℓ≥ 0.

Recall from Section 3.2 that in the self-adjoint case with homogeneous Dirichlet

boundary conditions, i.e., bi(yyy
1) = 0 and Γ2 = /0, this can be achieved by PCG with

BPX or symmetric V-cycle as preconditioners. The total computational cost of the

multilevel QMC algorithm is the sum of the cost of the CBC construction, the cost

of assembling the stiffness matrix plus the cost of approximating the solution of the

linear systems multiplied by the number of QMC points. Specifically,

workL = O

(
L

∑
ℓ=0

MℓNℓ log(Nℓ)+Nℓ(Mℓ log(Mℓ)+Mℓ)

)
,

where we remind that the dimension of integration on each level ℓ is O(Mℓ). Since

the QMC convergence rate 1/p satisfies the strict inequality χ := 1/p < (α̂ − τ)/d,

also the rate χ(1+ ε) is admissible for sufficiently small ε > 0. This way the sample

numbers can be reduced to N
1/(1+ε)
ℓ , which allows us to estimate N

1/(1+ε)
ℓ log(Nℓ)≤

N
1/(1+ε)
ℓ N

ε/(1+ε)
ℓ (1+ ε)/(eε)≤ Nℓ(1+ ε)e/(ε), where we used the elementary es-

timate log(N)≤ Nε ′/(eε ′) for every N ≥ 1, ε ′ > 0. Thus, we obtain the estimate of

the work

workL = O

(
L

∑
ℓ=0

Mℓ log(Mℓ)Nℓ

)
. (20)

By [23, Lemma 4.9], it holds that Mℓ = O(2dℓ). The sample numbers are now

obtained by optimizing the error versus the computational work, cp. [31, Section 3.7].

For the error and work estimates in (19) and in (20), sample numbers are derived in

[21, Section 6]. Specifically, by [21, Equations (26) and (27)],

Nℓ :=
⌈

N0(M
−1−τ/d

ℓ log(Mℓ)
−1)p/(1+p)

⌉
, ℓ= 1, . . . ,L, (21)

where
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18 Lukas Herrmann and Christoph Schwab

N0 :=





M
τ p/d

L if d < pτ,

M
τ p/d

L log(ML)
p(p+2)/(p+1) if d = pτ,

M
(1+τ/d)p/(p+1)
L log(ML)

p/(p+1) if d > pτ.

(22)

The corresponding work satisfies (see for example [21, p. 22])

workL =





O(M
τ p/d

L ) if d < pτ,

O(M
τ p/d

L log(ML)
p+2) if d = pτ,

O(ML log(ML)) if d > pτ.

We summarize the preceding discussion in the following theorem stating the ε-

complexity of the multilevel QMC algorithm.

Theorem 5. For p ∈ (d/(α̂ − τ),1], assuming d < α̂ − τ , an error threshold ε > 0,

i.e.,

|E(G(q))−QL(G(q̃L))|= O(ε)

can be achieved with

workL =





O(ε−p) if d < pτ,

O(ε−p log(ε−1)p+2) if d = pτ,

O(ε−d/τ log(ε−1)) if d > pτ.

5 Bayesian inverse UQ

The preceding considerations pertained to so-called forward UQ for the ADR problem

(1) with uncertain input data u = ((ai j),(b j),c) taking values in certain subsets of

the function spaces Xm in (3). The goal of computation is the efficient evaluation of

ensemble averages, i.e. the expected response over all parametric inputs u as in (10)

with respect to a probability measure on the parameter domains U i.

In Bayesian inverse UQ, we are interested in similar expectations of a QoI of the

forward response of the ADR PDE, conditional to noisy observations of functional

of the responses. Again, a (prior) probability measure on the uncertain (and assumed

nonobservable) parametric ADR PDE inputs u in (10) is prescribed. As explained

in [12, 40], in this setting Bayes’ theorem provides a formula for the conditional

expectation as high-dimensional, parametric deterministic integral which, as shown in

[39, 15, 17], is amenable to deterministic HoQMC integration affording convergence

rates which are superior to those of, e.g., MCMC methods [27, 20].

Page:18 job:HerrmannSchwab macro:svmult.cls date/time:17-Jan-2019/15:47



Multilevel QMC Uncertainty Quantification for Advection-Reaction-Diffusion 19

5.1 Formulation of the BIP

Specifically, assume at hand noisy observations of the ADR PDE response q =
(L (u))−1 f subject to additive Gaussian observation noise ηηη , i.e.

δδδ = GGG(q)+ηηη . (23)

In (23), q denotes the response of the uncertain input u, GGG = (G1, . . . ,GK) is a vector

of K (linear) observation functionals, i.e., Gi ∈V ∗, the additive noise ηηη is assumed

centered and normally distributed with positive covariance Γ , i.e.,ηηη ∼ N (0,Γ ),
and the data δδδ ∈ R

K is supposed to be available. We introduce the so-called prior

measure πππ on X0 as the law of U ∋ yyy 7→ u(yyy)∈ X0 with respect to the uniform product

measure dyyy on U . The density of the posterior distribution with respect to the prior is

given by [12, Theorem 14]

U ∋ yyy 7→
1

Z
exp(−ΦΓ (q(yyy);δδδ )) , (24)

where the negative log-likelihood ΦΓ is given by

ΦΓ (q(yyy);δδδ ) :=
1

2
(δδδ −GGG(q(yyy)))⊤Γ −1(δδδ −GGG(q(yyy))) ∀yyy ∈U.

Since (6) implies supyyy∈U ‖q(yyy)‖V < ∞, the normalization constant in (24) satisfies

Z :=
∫

X0

exp(−ΦΓ (q;δδδ ))πππ(du) =
∫

U
exp(−ΦΓ (q(yyy);δδδ ))dyyy > 0.

The posterior measure will be denoted by πππδδδ and the posterior with respect to q̃sss,Tℓ

will be denoted by π̃ππ
δδδ
sss,Tℓ

. The QoI being assumed bounded linear functionals applied

to q ∈V (which could be weakened [20]) admit a unique representer φ ∈V ∗. For any

QoI φ ∈V ∗, denote the expectation with respect to the posterior of φ by

E
πππδδδ
(φ) :=

∫

X0

φ(q)πππδδδ (du) =
1

Z

∫

U
φ(q(yyy))exp(−ΦΓ (q(yyy);δδδ ))dyyy.

Here, ΦΓ (q(yyy);δδδ ) is Lipschitz continuous with respect to δδδ and with respect to q(yyy),
yyy ∈U . As a consequence of (15), for every sss ∈ N

3 and ℓ≥ 0,

|Eπππδδδ
(φ)−E

π̃ππ
δδδ
sss,Tℓ (φ)| ≤C

(
M

−(min{t,k}+min{t ′,k})/2

ℓ + max
i=0,1,2

sup
j>si

{(ρ i
0, j)

−1}

)
, (25)

where we also used that ΦΓ (q(yyy);δδδ ) and ΦΓ (q̃
sss,Tℓ(yyy);δδδ ) are uniformly upper

bounded with respect to yyy ∈U . See also the discussion in [14, Section 3.3]. Here, the

abstract assumptions made in [14, Section 3.3], stemming from [12], may be verified

concretely. The estimate in (25) is not just a restatement of the results of [14, 15].

Here, a general parametric ADR forward problem on polygonal domains is con-
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sidered and higher order FE is admitted based on regularity in weighted spaces

of Kondrat’ev type. The corresponding FE approximation results are proved in

Section 6.

5.2 Multi-Level HoQMC-FE Discretization

The expectation with respect to the posterior measure π̃ππ
δδδ
sss,Tℓ

is an integral over a |sss|-
dimensional parameter space and may therefore be approximated by multilevel QMC.

We recall the FE spaces Tℓ and suppose a sequence of sssℓ of dimension truncations,

ℓ= 0, . . . ,L, where L ∈ N is the maximal level. The error analysis will be along the

lines of [15, Section 4], see also [40, 41]. Following the notation in [15], define for

ℓ= 0, . . . ,L,

E
π̃ππ

δδδ
sssℓ,Tℓ (φ) =

∫
[−1/2,1/2]|sss| φ(q̃

sssℓ,Tℓ(yyy))Θℓ(yyy)dyyy
∫
[−1/2,1/2]|sss| Θℓ(yyy)dyyy

=:
Z′
ℓ

Zℓ
,

where Θℓ(yyy) := exp(−ΦΓ (q̃
sssℓ,Tℓ(yyy);δδδ )). In [15, Sec.4.2], multilevel QMC ratio and

splitting estimators were proposed for the deterministic approximation of Z′
L/ZL.

They are, for a sequence of numbers of QMC points (Nℓ)ℓ=0,...,L and dimension

truncations (sssℓ)ℓ=0,...,L defined by

QL,ratio :=
QL(φ(q̃

L)ΘL)

QL(ΘL)
(26)

and

QL,split :=
Q|sss|0,N0

(φ(q̃0)Θ0)

Q|sss|0,N0
(Θ0)

+
L

∑
ℓ=1

Q|sss|ℓ,Nℓ
(φ(q̃ℓ)Θℓ)

Q|sss|ℓ,Nℓ
(Θℓ)

−
Q|sss|ℓ,Nℓ

(φ(q̃ℓ−1)Θℓ−1)

Q|sss|ℓ,Nℓ
(Θℓ−1)

.

(27)

The error analysis of these estimators requires that the integrands satisfy certain

parametric regularity estimates. In Section 4.2, parametric regularity estimates of

q(yyy)− q̃sss,Tℓ(yyy) were shown using analytic continuation. The integrands φ(q̃ℓ)Θℓ and

Θℓ depend analytically on q̃ℓ and are as compositions and products of holomorphic

mappings again holomorphic.

The error of the ratio and splitting estimators are analyzed in [15, Sections 4.3.2

and 4.3.3] in the setting of globally supported function systems. However, the proofs

of [15, Theorem 4.1 and Theorem 4.2] are applicable.

Proposition 3. Let the assumptions and the setting of steering parameters θ , p, t ′, t,

sssℓ, Nℓ, Mℓ, ℓ= 0, . . . ,L of QL in Theorem 4 be satisfied. Suppose that there exists a

constant C0 > 0, which does not depend on L, such that QL(ΘL)≥C0. Then,
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|Eπππδδδ
(φ)−QL,ratio| ≤C

(
M

−(t ′+t)/d

L + max
i=0,1,2

sup
j>si

{(ρ i
0, j)

−1}

+
L

∑
ℓ=0

N
−1/p

ℓ


M

−(t ′+t)/d

ℓ−1 + max
i=0,1,2

sup
j>si

ℓ−1

{(ρ i
0, j)

−θ}




 .

Proof. The assertion follows as [15, Theorem 4.1]. As mentioned above, φ(q̃ℓ)Θℓ

maybe analytically extended to a suitable polydisc as in the proof of Theorem 3. The

same line of argument use in the proof of [15, Theorem 4.1] may be applied here.

Further details are left to reader. ⊓⊔
The error estimate from Proposition 3 for Bayesian estimation can also be shown

for the splitting estimator QL,split along the lines of the proof of [15, Theorem 4.2].

Since the posterior density depends analytically on the response q, the QMC sam-

ple numbers for ratio and splitting estimators QL,ratio and QL,split are the same as those

for forward UQ in (21) and (22). In particular, also the same ε-complexity estimates

from Theorem 5 hold under the same assumptions on the steering parameters.

Remark 2. Forward and Bayesian inverse UQ for uncertain domains is by pullbacks

to a polygonal nominal or reference domain a straightforward extension of the

presented theory. This requires the extension of the regularity theory to parametric

right hand sides f (yyy). Since this dependence is inherited by the parametric solution

due to linearity, we did not explicitly consider it for the sake of a concise presentation.

6 Proofs

We provide proofs of several results in the main text. They were postponed to this

section to increase readability of the main text.

6.1 Numerical integration

In the following proofs, we require a nodal interpolant. As a preparation, for k ≥ 3,

we introduce certain subsets of T

T
k′ :=



K ∈ T \T k′−1 : K ∩

⋃

K′∈T k′−1

K′ 6= /0



 , k′ = 2, . . . ,k−1,

where T 1 := {K ∈T : K∩C 6= /0} and T k :=T \T k−1. For k = 2, T 2 :=T \T 1

and T 1 is defined as above. For k = 1, T 1 := T . We define a FE space such that

in the elements abutting at a vertex, P1 FE is used and for the remaining, “interior”

elements, Pk FE is used such that the polynomial degree of neighboring elements
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only differs by one, i.e.,

Ṽ k
T := {v ∈V : v|K ∈ Pk′(K),K ∈ T

k′ ,k′ = 1, . . . ,k}.

The potential change of the polynomial degree in neighboring elements near the

singular points constitutes a difficulty in defining a nodal interpolant for k ≥ 2. Let

K1 ∈ T k′−1,K2 ∈ T k′ be neighboring triangles such that K1 ∩K2 =: e denotes the

common edge. To avoid a discontinuity across the edge e, the usual nodal interpolant

Ik′

K2
may need to be corrected. For v ∈ C0(K2), the discontinuity (Ik′

K2
v|e − Ik′−1

e v)
is equal to zero at the endpoints of the edge e. By [43, Lemma 4.55], there exists

(Ik′

K2
v|e − Ik′−1

e v)lift,k′,e ∈ P
k′(K2) such that (Ik′

K2
v|e − Ik′−1

e v)lift,k,e = (Ik′

K2
v|e − Ik′−1

e v)

on the edge e, (Ik′

K2
v|e − Ik′−1

e v)lift,k′,e = 0 on the remaining edges of K2, and it holds

‖(Ik′

K2
v|e − Ik′−1

e v)lift,k′,e‖
2
H1(K2)

≤ChK2
‖(Ik′

K2
v)|e − Ik′

e v|e‖
2
H1(e)

≤C′h2k′−1
K2

|Ik′

e v|2
Hk′ (e)

≤C′h2k′−2
K2

|Ik′

K2
v|2

Hk′ (K2)
,

(28)

where we applied the approximation property in dimension d −1 = 1, cp. [9, Theo-

rem 3.1.6], the shape regularity of T , and the fact that k′-th order partial derivatives

of Ik′

K2
v are constant on K2.

We will define an interpolant IT : K
k+1

a+1 →V k
T

by

IT v =





I1
Kv if K ∈ T 1,

Ik′

K v− (Ik′

K v|e − Ik′−1
e v)lift,k′,e if K ∈ T k′ ,e := K ∩T k′−1 6= /0,

k′ = 2, . . . ,k,

Ik
Kv if K ∈ T k,K ∩T k−1 = /0,

where Ik′

K is the usual nodal interpolant of order k′ ∈ N on the element K and we

introduced the notation T k′ :=
⋃

K′∈T k′ K′, k′ = 1, . . . ,k. This first paragraph of

Section 6.1 originates from [25, Section 3.2], where also a proof of Proposition 2 is

given.

Proposition 4. Suppose that for some integer k ∈ N, k′ ∈ N0,

Ek

K̂
(φ̂) = 0, ∀φ̂ ∈ Pk′+k−1(K̂).

Then, there exists a constant C > 0 such that for every K ∈ T , a ∈ W k,∞(K), v ∈
Pk(K), w ∈ Pk′(K),

|Ek
K(avw)| ≤Chk

K

(
k

∑
j=0

|a|W k− j,∞(K)|v|H j(K)

)
‖w‖L2(K).

Proof. This is a version of [9, Theorem 4.1.4]. The claimed estimate follows by [9,

Equations (4.1.47) and (4.1.46), Theorems 3.1.2 and 3.1.3]. We note that we did not
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assume here v ∈ Pk−1(K), which results in the sum over j = 0, . . . ,k. However, if

v ∈ Pk−1(K) for some k ≥ 1, then |v|Hk(K) = 0. ⊓⊔

Lemma 4. Let K ∈ T be such that ccci ∈ K, i ∈ {1, . . . ,J}. There exists a constant

C > 0 independent of K such that for every v ∈ P1(K) satisfying v(ccci) = 0

‖r−1
D v‖L∞(K) ≤C‖r−1

D v‖L2(K) det(BK)
−1/2.

Proof. We will prove the main step on the reference element K̂. It is easy to see that

‖r−1
D v‖L∞(K) = ‖r̂−1

D v̂‖
L∞(K̂) and ‖r̂−1

D v̂‖
L2(K̂) = ‖r−1

D v‖L2(K) det(BK)
−1/2.

Suppose that K̂ := {x̂ ∈ (0,1)2 : 0 < x̂1+ x̂2 < 1} and that F−1
K (ccci) = 0. The space

{v̂ ∈ P1(K̂) : v(0) = 0} is spanned by the monomials {x̂1, x̂2}. By [9, Theorem 3.1.3]

and shape regularity of T , there exists constants C,C′ > 0 independent of K such

that ‖BK‖ ≤ChK and ‖B−1
K ‖ ≤C′h−1

K . Note that mini=1,2{
∫

K̂

|x̂i|
|x̂| dx̂}=: C′′ > 0. This

implies by elementary manipulations and the Cauchy–Schwarz inequality

sup
x̂∈K̂

|x̂|

|BK x̂|
= ‖B−1

K ‖ ≤ 2
C′

C′′hK

∫

K̂

|x̂i|

|x̂|
dx̂ ≤ 2

CC′

C′′

∫

K̂

|x̂i|

‖BK‖|x̂|
dx̂

≤ 23/2 CC′

C′′

(∫

K̂

|x̂i|
2

|BK x̂|2
dx̂

)1/2

.

(29)

On K̂, r̂D(x̂) = rD(FK(x̂)) ∼ |BK x̂|. Let v̂ = v̂1x̂1 + v̂2x̂2. Thus, by (29) there exist

constants C,C′ > 0 independent of K such that

‖r̂−1
D v̂‖L∞(K) ≤C

(
|v̂1|sup

x̂∈K̂

|x̂1|

|BK x̂|
+ |v̂2|sup

x̂∈K̂

|x̂2|

|BK x̂|

)
≤C′

(∫

K̂

|v̂(x̂)|2

|BK x̂|2
dx̂

)1/2

.

The proof of the lemma is complete, since r̂D(x̂)∼ |BK x̂| on K̂. ⊓⊔

Proposition 5. Let K ∈ T be such that ccci ∈ K, for some i ∈ {1, . . . ,J}. Let E1
K(·) de-

note the error from a one point quadrature in the barycenter x̄ of K. Let δ1,δ2,δ3,δ4 ∈

[0,1). Then there exists a constant C > 0 such that for every (r
δ3+δ4
D a) ∈ L∞(K) sat-

isfying r
δ1+δ2
D |∇a| ∈ L∞(K) such that point evaluation at x̄ is well defined and for

every v,w ∈ Pk(K) for some k ≥ 0

|E1
K(avw)|

≤Ch
1−δ1
K ‖r

δ1+δ2
D |∇a|‖L∞(K)‖v‖L2(K)‖r

−δ2
D w‖L2(K)

+Ch
1−δ3
K ‖r

δ3+δ4
D a‖L∞(K)

(
|v|H1(K)‖r

−δ4
D w‖L2(K)+‖r

−δ4
D v‖L2(K)|w|H1(K)

)
.

If additionally v,w ∈ P1(K) satisfy that v(ccci) = 0 = w(ccci), the above assumption can

be relaxed to r
δ3+i
D a ∈ L∞(K) and r

δ1+1+i
D |∇a| ∈ L∞(K), i = 0,1, and it holds that
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|E1
K(avw)| ≤Ch

1−δ1
K ‖r

δ1+1+i
D |∇a|‖L∞(K)‖r−i

D v‖L2(K)‖r−1
D w‖L2(K)

+Ch
1−δ3
K ‖r

δ3+i
D a‖L∞(K)(|v|H1(K)‖r−i

D w‖L2(K)+‖r−i
D v‖L2(K)|w|H1(K)).

Proof. We observe that

|E1
K(avw)| ≤

∫

K
|a(x)−a(x̄)||v(x)w(x)|dx

+
∫

K
|a(x)|(|v(x)− v(x̄)||w(x)|+ |v(x̄)||w(x)−w(x̄)|)dx.

(30)

For any f ∈W 1,∞(K̃) and any x ∈ K̃ (K̃ a compact subset of K),

| f (x)− f (x̄)| ≤ sup
x̃∈γx,x̄([0,1])

{|∇ f (x̃)|}|x− x̄|,

where γx,x̄ is a suitable smooth path such that γx,x̄(1) = x and γx,x̄(0) = x̄. We will

estimate the two integrals in (30) separately. Since ccci ∈ K, the weight function is

locally rD(x)≃ |x− ccci|. Due to the radial monotonicity of x 7→ |x− ccci|, γx,x̄ can be

chosen such that

inf
x̃∈γx,x̄([0,1])

{|x̃− ccci|} ∈ {|x− ccci|, |x̄− ccci|}.

Hence, there exists a constant C > 0 independent of K such that for every x ∈ K

|a(x)−a(x̄)|

|x− x̄|
min{r

δ1+δ2
D (x),rδ1+δ2

D (x̄)} ≤C‖r
δ1+δ2
D |∇a|‖L∞(K). (31)

Since all norms on Pk(K̂) are equivalent, there exists a constant C > 0 independent of

K such that ‖v‖L∞(K) = ‖v̂‖
L∞(K̂) ≤C‖v̂‖

L2(K̂) =C‖v‖L2(K) det(BK)
−1/2. Moreover,

since there exists a constant C > 0 independent of K such that for every x ∈ K,

rD(x)≤CrD(x̄), there exists a constant C > 0 independent of K such that

‖1/min{r
δ1
D ,rδ1

D (x̄)}‖L2(K) ≤Ch
1−δ1
K .

Similarly, ‖w/min{r
δ2
D ,rδ2

D (x̄)}‖L2(K) ≤C‖r
−δ2
D w‖L2(K). It also holds that |x− x̄| ≤

ChK and det(BK)∼ h2
K . Hence, for a constant C > 0 independent of K,

∫

K
|a(x)−a(x̄)||v(x)w(x)|dx

≤C‖r
δ1+δ2
D |∇a|‖L∞(K)

∫

K
|v(x)|

|w(x)|

r
δ2
D

|x− x̄|

r
δ1
D

dx

≤Chk‖r
δ1+δ2
D |∇a|‖L∞(K)‖v‖L∞(K)‖r

−δ2
D w‖L2(K)‖r

−δ1
D ‖L2(K)

≤Ch
1−δ1
K ‖r

δ1+δ2
D |∇a|‖L∞(K)‖v‖L2(K)‖r

−δ2
D w‖L2(K).

(32)

For the first summand in the second integral in (30), we obtain similarly
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∫

K
|a(x)||v(x)− v(x̄)||w(x)|dx =

∫

K
r

δ3+δ4
D (x)|a(x)||v(x)− v(x̄)||w(x)|dx

≤ ‖r
δ3+δ4
D a‖L∞(K)

∫

K

|v(x)− v(x̄)|

|x− x̄|

|w(x)|

r
δ4
D (x)

|x− x̄|

r
δ3
D (x)

dx

≤C‖r
δ3+δ4
D a‖L∞(K)‖∇v‖L∞(K)

∫

K

|w(x)|

r
δ4
D (x)

|x− x̄|

r
δ3
D (x)

dx

≤Ch
1−δ3
K ‖r

δ3+δ4
D a‖L∞(K)|v|H1(K)‖r

−δ4
D w‖L2(K)

using that there is a constant C > 0 independent of K such that ‖∂xi
v‖L∞(K) =

Ch−1
K ‖∂x̂i

v̂‖
L∞(K̂) ≤ Ch−1

K ‖∂x̂i
v̂‖

L2(K̂) = C‖∂xi
v‖L2(K) det(BK)

−1/2. Also note that

det(BK) ∼ h2
K . The second summand in the second integral in (30) is estimated

analogously.

The second estimate follows since ‖r−1
D v‖L∞(K) < ∞ and ‖r−1

D w‖L2(K) < ∞, which

allows us to conclude similarly as in (32)

∫

K
|a(x)−a(x̄)||v(x)w(x)|dx ≤C‖r

δ1+1+i
D |∇a|‖L∞(K)

∫

K

|v(x)|

ri
D(x)

|w(x)|

rD(x)

|x− x̄|

r
δ1
D (x)

dx

≤Ch
2−δ1
k ‖r

δ1+2
D |∇a|‖L∞(K)‖r−i

D v‖L∞(K)‖r−1
D w‖L2(K)

≤Ch
1−δ1
K ‖r

δ1+2
D |∇a|‖L∞(K)‖r−i

D v‖L2(K)‖r−1
D w‖L2(K),

where we used that ‖r−1
D v‖L∞(K) ≤Ch−1

K ‖r−1
D v‖L2(K) for a constant C > 0 that neither

depend on K nor on v, which follows by Lemma 4. ⊓⊔

Proof.[of Theorem 1] The proof generalizes [9, Theorem 4.1.6] to the case of local

mesh refinement and singularities of the solution and the coefficients. We recall the

first Strang lemma, see for example [9, Theorem 4.1.1]

‖q− q̃T ‖V

≤
umax

umin

inf
vT ∈V k

T



‖q− vT ‖V + sup

0 6=wT ∈V k
T

|A(u)(vT ,wT )− Ã(u)(vT ,wT )|

‖wT ‖V



 ,

where umax and umin are continuity and coercivity constants of A(u), Ã(u). The right

hand side of the first Strang lemma will be upper bounded by choosing vT := IT q ∈
Ṽ k

T
.

We will treat the second, first, and zero order terms separately and start with

the second order term. We decompose A(u) = ∑
2
i, j=1 A(ai j) +∑

4
j=1 A(b j) + A(c)

and Ã(u) = ∑
2
i, j=1 Ã(ai j)+∑

4
j=1 Ã(b j)+ Ã(c). As in the proof of Proposition 2, we

work on the elements. There, we have to treat three cases, K ∈ T 1, K ∈ T k′ and

K ∩T k′−1 6= /0, k′ = 2, . . . ,k, and K ∈ T k and K ∩T k−1 = /0. We observe
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|
2

∑
i, j=1

A(ai j)(IT q,wT )−
2

∑
i, j=1

Ã(ai j)(IT q,wT )|

≤ ∑
K∈T 1

2

∑
i, j=1

|E1
K(ai j∂ jI

1
Kq∂iw

T )|+ ∑
K∈T k,K∩T k−1= /0

2

∑
i, j=1

|Ek
K(ai j∂ jI

k
Kq∂iw

T )|

+
k

∑
k′=2

∑
K∈T k′ ,e:=K∩T k′−1 6= /0

2

∑
i, j=1

|Ek′

K (ai j∂ j(I
k′

K q− (Ik′

K q|e − Ik′−1
e q)lift,k′,e)∂iw

T )|.

By (11), for K ∈ T 1,

h1−δ
K ≤Ch(1−δ )/(1−β ) ≤Chk. (33)

For K ∈ T 1, by Proposition 5 (with δ1 = δ3 = δ , δ2 = δ4 = 0) and (33)

|E1
K(ai j∂ jI

1
Kq∂iw

T )| ≤Chk‖ai j‖W
1,∞
δ

(K)
‖I1

Kq‖H1(K)‖wT ‖H1(K)

and [43, Lemma 4.16] implies with the triangle inequality ‖I1
Kq‖H1(K)≤C(‖q‖H1(K)+

h1−δ
K |q|H2

δ
(K)). For K ∈ T k such that K ∩T k−1 = /0, by Proposition 4

|Ek
K(ai j∂ jI

k
Kq∂iw

T )|

≤Chk
k−1

∑
ℓ=0

inf
x∈K

r
β (k−ℓ)
D (x)|ai j|W k−ℓ,∞(K) inf

x∈K
r

βℓ
D (x)|Ik

Kq|Hℓ+1(K)|w
T |H1(K).

(34)

It follows directly from (11),

hK ≤Ch1/(1−(β−α))r
α/(1−(β−α))
D (x) ∀x ∈ K,∀α ∈ (0,β ).

We choose α := (1−β )(k′−2+δ )/(1−δ ) and apply (1−δ )/(1−β )> k,

hK ≤Chk/(k′−1)r
(δ+k′−2)/(k′−1)
D (x) ∀x ∈ K,k′ = 2, . . . ,k. (35)

For K ∈ T k′ such that e := K ∩T k′−1 6= /0, k′ = 2, . . . ,k, by Proposition 4 and (35)

|Ek′

K (ai j∂ j(I
k′

K q− (Ik′

K q|e − Ik′−1
e q)lift,k′,e)∂iw

T )|

≤Chk′

K

k′−1

∑
ℓ=0

|ai j|W k′−ℓ,∞(K)
|Ik′

K q− (Ik′

K q|e − Ik′−1
e q)lift,k′,e|Hℓ+1(K)|w

T |H1(K)

≤Chk
k′−1

∑
ℓ=0

inf
x∈K

rδ+k′−1
D (x)|ai j|W k′−ℓ,∞(K)

×|Ik′

K q− (Ik′

K q|e − Ik′−1
e q)lift,k′,e|Hℓ+1(K)|w

T |H1(K).

Note that (1−δ )/(1−β )> k implies that βk′ > δ +k′−1, k′ = 1, . . . ,k. We observe

with [9, Theorem 3.1.6]
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|Ik
Kq|Hℓ+1(K) ≤C(|q|Hℓ+1(K)+hk′−1

K |q|
Hk′+1(K)

), ℓ= 0, . . . ,k′−1,

and by a similar argument as in the proof of Proposition 2 for ℓ= 0, . . . ,k′−1,

|Ik′

K q− (Ik′

K q|e − Ik′−1
e q)lift,k′,e|Hℓ+1(K) ≤C(|q|Hℓ+1(K)+hk′−1

K |q|
Hk′+1(K)

).

By the Cauchy–Schwarz inequality we conclude with the previous inequalities

|
2

∑
i, j=1

A(ai j)(IT q,wT )−
2

∑
i, j=1

Ã(ai j)(IT q,wT )|

≤Chk
2

∑
i, j=1

‖ai j‖W
k,∞
δ

(K)
‖q‖

K
k+1

a+1 (D)
‖wT ‖H1(D).

The argument for the advection and reaction terms ∑
4
j=1 A(b j), A(c) is similar.

Here, the additional weight rD for the advection terms and r2
D for the reaction

term needs to be accommodated. For the advection term, by the second part of

Proposition 5 (with δ1 = δ3 = δ , i = 0) and K ∈ T1 for j = 1,2

|E1
K(b j(∂ jI

1
Kq)wT )| ≤Chk‖rδ

Db j‖W
1,∞
δ

(K)
‖I1

Kq‖H1(K)

(
‖r−1

D wT ‖L2(K)+ |wT |H1(K)

)

(36)

and for j = 3,4

|E1
K(b jI

1
Kq∂ jw

T )| ≤Chk‖rδ
Db j‖W

1,∞
δ

(K)

(
‖r−1

D I1
Kq‖L2(K)+ |I1

Kq|H1(K)

)
‖wT ‖H1(K).

For the interior elements K ∈T \T 1, the additional weight rD can be accommodated

by compensating it with ‖r−1
D wT ‖L2(K) as in (36) for j = 1,2. If the partial derivative

is on the trial function, i.e., j = 3,4, the order of the Sobolev semi-norm as for

example in (34) is reduced by one to |Ik
Kq|Hℓ(K). Here, the weight r

β (k−ℓ+1)
D is assigned

to |b j|W k−ℓ,∞(K), if ℓ≥ 1. For ℓ= 0, the additional weight rD can be compensated by

‖r−1
D Ik

Kq‖L2(K). We recall the Hardy inequality from (14), i.e., there exists a constant

C > 0 such that for every v ∈V

‖r−1
D v‖L2(D) ≤C‖|∇v|‖L2(D).

Thus, ‖r−1
D wT ‖L2(D) ≤ C‖wT ‖V and ‖r−1

D Ik
Kq‖L2(D) ≤ C‖Ik

Kq‖V . The rest of the

proof for the advection terms in analogous to the diffusion terms, which were proved

in detail. The argument for the reaction term uses the second part of Proposition 5

with i = 1, we omit the details. ⊓⊔

Proof.[of Corollary 1] The solution g ∈V to the adjoint problem is characterized by

A(u)(w,g) = 〈G,w〉V ∗,V ∀w ∈V.
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The respective FE approximation gT is characterized by A(u)(wT ,g−gT ) = 0 for

every wT ∈ V k
T

. Generally, we will follow the proof of [3, Theorem 3.6)]. By a

version of [3, Lemma 3.1] for non-symmetric blinear forms A(u)(·, ·),

G(q)−G(qT ) = A(u)(q−qT ,g−gT )+ Ã(u)(q̃T ,gT )−A(u)(q̃T ,gT ).

As in the previous proof, we begin by estimating the diffusion terms related to ai j. By

a similarly argument that we used to show (34) also using Proposition 5, we obtain

|Ã(ai j)(q̃
T ,gT )−A(ai j)(q̃

T ,gT )|

≤Chk+k′

(

∑
K∈T 1

‖ai j‖W
1,∞
δ

(D)
‖q̃T ‖H1(K)‖gT ‖H1(K)

+ ∑
K∈T \T 1

2

∑
i, j=1

k+k′−1

∑
ℓ=0

inf
x∈K

r
β (k+k′−ℓ)
D (x)|ai j|W k+k′−ℓ,∞(K)

inf
x∈K

r
βℓ
D |∂ jq̃

T ∂ig
T |Hℓ(K)


 .

Note that (∂ jq̃
T )|K ,(∂ig

T )|K ∈ Pk−1(K), which implies that

∂ ααα(∂ jq̃
T )|K = 0 = ∂ ααα(∂ig

T )|K ∀ααα ∈ N
2
0, |ααα|> k−1.

By the product rule and by the Cauchy–Schwarz inequality

|∂ jq̃
T ∂ig

T |Hℓ(K) ≤C
ℓ

∑
ℓ′=0

|∂ jq̃
T |

Hℓ′ (K)
|∂ig

T |
Hℓ−ℓ′ (K)

.

By the inverse inequality and the element-wise approximation property of the

nodal interpolant, e.g. [9, Theorem 3.1.6] we observe that there exist constants

C,C′ > 0 such that for every K ∈ T \T 1,

|∂ jq̃
T |

Hℓ′ (K)
≤ |q|

Hℓ′+1(K)
+ |∂ jq− Ik

K∂ jq|Hℓ′ (K)
+ |Ik

K∂ jq−∂ jq̃
T |

Hℓ′ (K)

≤C|q|
Hℓ′+1(K)

+Ch−ℓ′

K ‖Ik
K∂ jq−∂ jq̃

T ‖L2(K)

≤C|q|
Hℓ′+1(K)

+Ch−ℓ′

K (‖Ik
K∂ jq−∂ jq‖L2(K)+‖∂ jq−∂ jq̃

T ‖L2(K))

≤C′(|q|
Hℓ′+1(K)

+h−ℓ′

K |q− q̃T |H1(K)).

Similarly, it holds that |∂ig
T |

Hℓ−ℓ′ (K)
≤C|gT |

Hℓ−ℓ′+1(K)
. The previous element-wise

estimates allow us to conclude with the Cauchy–Schwarz inequality

|Ã(ai j)(q̃
T ,gT )−A(ai j)(q̃

T ,gT )|

≤Chk+k′‖ai j‖
W

k+k′ ,∞
δ

(D)
(‖q‖

K
k+1

a+1 (D)
+h−k‖q− q̃T ‖V )‖g‖

K
k′+1

a+1 (D)

≤Chk+k′‖ai j‖
W

k+k′ ,∞
δ

(D)
(1+‖u‖Xk,δ

)‖q‖
K

k+1
a+1 (D)

‖g‖
K

k′+1
a+1 (D)

,
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where we used Theorem 1 in the second step. The argument for the advection

and reaction terms A(b j), j = 1, . . . ,4, and A(c) is similar. See also the proof of

Theorem 1. Since Proposition 2 and (8) imply with Céa’s lemma

|A(u)(q−qT ,g−gT )| ≤Chk+k′‖ f‖
K

k−1
a−1 (D)

‖G‖
K

k′−1
a−1 (D)

,

the assertion follows. ⊓⊔

6.2 Approximation of functions with point singularities

In this section we analyze FE approximation rates by biorthogonal wavelet expansions

for functions in D with point singularities. We consider regularity in weighted Hölder

spaces W
m,∞

δ
(D) and more generally in Xm,δ for δ ∈ [0,1). We explicitly define

a-priori truncation of infinite bioorthogonal wavelet expansions of these functions,

mimicking in this way FE mesh refinement in D as in [33] (see also [42]).

Let (ψλ )λ∈▽ be a biorthogonal spline wavelet basis of L2(D) with dual wavelet

system (ψ̃λ )λ∈▽, we refer to [45, 13, 38, 44] for concrete constructions. We suppose

that (ψλ )λ∈▽ and (ψ̃λ )λ∈▽ have the following properties.

1. (biorthogonality)
∫

D ψλ ψ̃λ ′dx = δλλ ′ , λ ,λ ′ ∈▽,

2. (normalization) ‖ψλ‖L∞(D) . 2d|λ |/2 and ‖ψ̃λ‖L∞(D) . 2d|λ |/2 for every λ ∈▽,

3. (compact support) |supp(ψλ )|=O(2−|λ |d) and |supp(ψ̃λ )|=O(2−|λ |d) for every

λ ∈▽,

4. (vanishing moments of order k)
∫

D xααα ψλ dx = 0 and
∫

D xααα ψ̃λ dx = 0 for all multi-

indices ααα ∈ N
2
0 such that |ααα| ≤ k and for every λ ∈▽.

We also suppose that (ψλ )λ∈▽ satisfies the finite overlap property in (18). Denoting

the L2(D) inner product by (·, ·)L2(D), for L ∈N0 and β ∈ [0,1), define the index sets

ΛL,β :=
{

λ ∈▽ : r
β
D(xλ )≤ 2L−|λ |

}
,

where xλ is the barycenter of supp(ψλ ), λ ∈▽. Every function w ∈ L2(D) can be

represented as u = ∑λ∈▽(w, ψ̃λ )L2(D)ψλ with equality in L2(D). With the index set

ΛL,β , we define the interpolant PL,β by

PL,β w := ∑
λ∈ΛL,β

(w, ψ̃λ )L2(D)ψλ . (37)

Proposition 6. For m ∈ N, suppose m > k and 0 < δ < β < 1 satisfy (1−δ )/(1−
β )> m. There exists a constant C > 0 such that for every w ∈W

m,∞
δ

(D)

‖w−PL,β w‖L∞(D) ≤C2−min{k+1,m}L‖w‖W
m,∞
δ

(D).
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Proof. Without loss of generality we assume that k + 1 = m. We distinguish the

cases that infx∈supp(ψ̃λ )
rD(x) = 0 and infx∈supp(ψ̃λ )

rD(x) > 0. In the latter case w ∈

W m,∞(supp(ψ̃λ )). The Taylor sum ∑|ααα|≤k wααα xααα of w in supp(ψ̃λ ) satisfies that there

exists a constant C > 0 independent of w such that for every λ ∈▽,

esssupx∈supp(ψλ )

∣∣∣∣∣w(x)− ∑
|ααα|≤k

wααα xααα

∣∣∣∣∣≤C|diam(supp(ψλ ))|
k+1‖w‖W k+1,∞(supp(ψλ ))

.

(38)

By the vanishing moments property, the L∞(D) bounds and the support property of

ψ̃λ , the Cauchy–Schwarz inequality, and (38),

|(w, ψ̃λ )L2(D)| ≤C2−(k+1)|λ |2−d|λ |/2‖w‖W k+1,∞(supp(ψ̃λ ))
. (39)

This estimate is suitable if infx∈supp(ψλ )
rD(x)> 0. If λ is such that infx∈supp(ψλ )

rD(x)=
0, which essentially implies that supp(ψλ ) abuts at a corner of D, by the estimate

in (31), there exists a constant C > 0 (independent of w and λ ) such that

esssupx∈supp(ψ̃λ )
{rδ

D(x)|w(x)−w(xλ )|} ≤C2−|λ |‖rδ
D|∇w|‖L∞(supp(ψ̃λ ))

.

Thus,

|(w, ψ̃λ )L2(D)|= |(w−w(xλ ), ψ̃λ )L2(D)|

≤C2−|λ |‖r−δ
D ‖L2(supp(ψ̃λ ))

‖rδ
D|∇w|‖L∞(supp(ψ̃λ ))

‖ψ̃λ‖L2(D).
(40)

We note that ‖r−δ
D ‖L2(supp(ψ̃λ ))

≤C2−|λ |(d/2−δ ) for a constant C > 0 independent of λ .

For λ ∈▽\ΛL,β and supp(ψ̃λ )∩C 6= /0, rD(xλ )
β > 2L−|λ | and rD(xλ )

β ≤C2−|λ |β

for a constant independent of λ . Since (1−δ )/(1−β )> k+1,

2−|λ |‖r−δ
D ‖L2(supp(ψ̃λ ))

≤C2−d|λ |/22−L(k+1). (41)

For λ ∈▽\ΛL,β and supp(ψ̃λ )∩C = /0, (1−δ )/(1−β )> k+1 implies that

2−|λ |(k+1) ≤C2−L(k+1)rδ+k
D (xλ ). (42)

Let Λ̃ ⊂ ▽\ΛL,β be an index set such that D ⊂
⋃

λ∈Λ̃
supp(ψλ ) and for every

λ ,λ ′ ∈ Λ̃ , supp(ψλ ) 6⊂ supp(ψ ′
λ ). For λ ′ ∈ Λ̃ such that supp(ψλ )∩C = /0, by (39),

the bounded support overlap property (18) of (ψλ )λ∈▽, and (42) there exist constants

C,C′ > 0 such that

‖w−PL,β w‖L∞(supp(ψλ ′ ))
≤C ∑

ℓ≥|λ ′|

2−(k+1)ℓ‖w‖W k+1,∞(supp(ψ̃λ ′ ))

≤C2−(k+1)|λ ′| ∑
ℓ≥0

2−ℓ‖w‖W k+1,∞(supp(ψ̃λ ′ ))

≤C′2−(k+1)L‖w‖
W

k+1,∞
δ

(supp(ψ̃λ ′ ))
.
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Similarly, for λ ′ ∈ Λ̃ such that supp(ψλ )∩C 6= /0, by (40), the bounded support

overlap property of (ψλ )λ∈▽, and (41) there exists constants C,C′ > 0 such that

‖w−PL,β w‖L∞(supp(ψλ ′ ))

≤C ∑
ℓ≥|λ ′|

2−ℓ ∑
λ∈▽\ΛL,β :|λ |=ℓ

‖r−δ
D ‖L2(supp(ψ̃λ ))

2dℓ/2‖w‖
W

1,∞
δ

(supp(ψ̃λ ′ ))

≤C2−(k+1)L ∑
ℓ≥0

2−ℓ‖w‖W 1,∞(suppδ (ψ̃λ ′ ))
.

Since D ⊂
⋃

λ∈Λ̃
supp(ψλ ), the proof of the proposition is complete. ⊓⊔

The following lemma may be shown as [33, Equations (5) and (13)].

Lemma 5. For every L ∈ N and β ∈ [0,1), |ΛL,β |= O(2dL).

Proof.[of Prop. 1] We denote w = (ai j,b j,c)∈ Xm,δ for some m ≥ 1. We suppose that

the biorthogonal wavelets (ψλ )▽ have vanishing moments of order m−1 = k ≥ 0.

The statement of the theorem follows applying Proposition 6 to ai j, rDb j, and to r2
Dc

together with Lemma 5. ⊓⊔
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