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ANALYSIS OF MULTILEVEL MCMC-FEM

FOR BAYESIAN INVERSION OF LOG-NORMAL DIFFUSIONS

VIET HA HOANG1 AND JIA HAO QUEK1 AND CHRISTOPH SCHWAB2

Abstract. We develop the Multilevel Markov Chain Monte Carlo Finite Ele-
ment Method (MLMCMC-FEM for short) to sample from the posterior density
of the Bayesian inverse problems. The unknown is the diffusion coefficient of a
linear, second order divergence form elliptic equation in a bounded, polytopal
subdomain of Rd. We provide a convergence analysis with absolute mean con-
vergence rate estimates for the proposed modified MLMCMC method, showing
in particular error vs. work bounds which are explicit in the discretization pa-

rameters. This work generalizes the MLMCMC algorithm and the error vs.
work analysis for uniform prior measure from [21] which we also review here,

to Gaussian priors. In comparison to [21], we show by mathematical proofs
and numerical examples that the unboundedness of the parameter range un-
der gaussian prior and the nonuniform ellipticity of the forward model require
essential modifications in the MCMC sampling algorithm and in the error
analysis. The proposed novel multilevel MCMC sampler applies to general
Bayesian inverse problems with log-normal coefficients. It only requires a nu-

merical forward solver with essentially optimal complexity for producing an
approximation of the posterior expectation of a quantity of interest within a

prescribed accuracy. Numerical examples using independence and pCN sam-
plers confirm our error vs. work analysis.

1. Introduction

In recent years, the field of computational uncertainty quantification (UQ for
short) has emerged as a broad area of computational science and engineering. It
addresses the efficient computational analysis of responses of partial differential
equations (PDEs for short) in science and engineering for input data which are
either unknown or for which only partial, statistical information is available. Un-
certainty propagation is, in this situation, aiming at producing computable sta-
tistical information of the PDE responses. It is a part of so-called forward UQ,
where uncertain measurement data and incomplete information on material prop-
erties and physical domains are to be converted into quantitative information on
the corresponding PDE solutions.

The present paper addresses so-called inverse UQ where, for random or stati-
tistical PDE input, quantities of interest (QoI’s for short) are to be computed. In
a Bayesian framework, this amounts to numerical estimation of mathematical ex-
pectations of PDE responses over all admissible input data, conditional on noisy
observation of measurement data.

Numerous papers have appeared with mathematical and computational inves-
tigations of a number of methodologies for the Bayesian inversion of PDEs with
uncertain inputs; we mention [10, 9] and the references there for a presentation of
MCMC methods for PDEs which account explicitly for the dependence on PDE
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discretization parameters. MCMC methods for Bayesian PDE inversion can be
prohibitively expensive. Accordingly, many attempts have been made to reduce
computational complexity. We mention exemplarily the works of Lieberman et al.
[24] and Martin et al. [25] on Bayesian inverse problems with log-gaussian priors.

Multi-level versions of SMC, Particle Filters, EnKF etc. for data assimilation and
inference under PDE constraints have been recently proposed and analyzed. We
refer to [23, 4, 3, 22] and the references there for recent contributions on this. Recent
work on multi-level algorithms in uncertainty quantification for PDEs includes in
particular the numerical analysis of multilevel methods for the filtering problem,
see, e.g. [11, 23, 30]. In these works, while also admitting noisy data, uncertain
input of the PDE is limited to the forcing term, similar to the setting of [8].

In [28], MLMCFEM and (single-level)QMC FEM for Bayesian PDE inversion un-
der log-gaussian diffusion coefficient and under gaussian prior measure have been
considered; ratio estimators as proposed in [29] were investigated there with MLMC
integration to directly estimate the expectation of the QoI under the posterior ex-
pectation and the normalization constant of the posterior measure. It was assumed
in [28, Appendix] that the log-gaussian diffusion coefficient is bounded away from
zero by a positive constant.

To the best of our knowledge, none of these references address the problem of
sign-indefiniteness in the exponent of posterior densities in the telescoping sums
of multi-level Bayesian estimators under gaussian priors, and with log-gaussian
diffusion coefficients which may become, with positive probability, arbitrary close to
zero. This, however, entails mathematical issues (posterior densities of increments
between discretization levels may not be integrable w.r. to the gaussian prior
measure), and can, as we show in the present paper with numerical examples, foil
practical realizations of the MLMCMC FEM methods.

In Section 4 of the present paper, we resolve this mathematical issue by a novel
redesign of our MLMCMC FE algorithm for uniform prior measure from [21]. We
present a complete error vs. work analysis of the independence sampler, and propose
a corresponding version of the pCN-based MLMCMC.

Although we detail in the present paper the design of the MLMCMC and its
analysis for the Metropolis Hastings type MCMC, the mentioned integrability issue
and our proposed modification of the algorithm apply equally well to other variants
of MCMC; we mention only sequential MC (see [2, 5] and the references there),
and geometric MCMC (see [1] and the references there). The presently proposed
modification may therefore also facilitate convergence proofs of these methods.

The principal contributions of the present note are as follows: we give the first
complete numerical analysis of a MLMCMC-FEM for Baysian inverse problems for
elliptic PDEs with log-gaussian, uncertain coefficient, and under gaussian prior.
While the MLMCMC algorithm developed here is similar to our previous work in
[21] for uniform prior measure, there are essential differences both to the MLMCMC
algorithms and analysis for uniform prior measure as well as to the SLMCMC
algorithm for gaussian prior which was analyzed in [19] and also in [13].

The structure of this paper is as follows. In Section 2, we introduce the general
class of MCMC samplers which we consider here, and the model linear diffusion
problem in a bounded, polytopal domain D ⊂ R

d. In Section 3, we review our
results from [21] on the Bayesian inverse problem for uniform prior, and present
several key estimates for the log-gaussian diffusion problem, its parametric solution,
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and its Galerkin FE discretization, from [7, 14, 15]. In part to motivate our analysis
for the gaussian prior, we re-derive the MLMCMC for the uniform prior in Section
3.3, and briefly recapitulate from [21] the key convergence and error vs. work
statements. We then proceed in Section 4 to the derivation of the MLMCMC FEM
for the Bayesian PDE inversion under gaussian prior on the log-gaussian diffusion
coefficient. To minimize technicalities in our presentation, we do not work under the
weakest conceivable assumptions on the isotropic gaussian diffusion coefficient a =
exp(Z) with a scalar gaussian random field (GRF for short) Z, or on the source term
f or the domain D. For example, to minimize FE technicalities, we assume that
realizations of Z are Lipschitz in D almost sure w.r. to the prior measure, that f ∈
L2(D) and that the domain D is convex. This ensures pathwise H2(D) regularity
of the parametric PDE solution, and obviates discussion and use of FEM with
corner- and edge mesh refinement etc. We repeat that these assumptions were only
made to simplify the present exposition; they are not essential in the mathematical
arguments which we present here. Extending the analysis to weakest conditions
(e.g. bounded Lipschitz domain, anisotropic diffusion, source term f which is also
random and of lower regularity than L2(D), etc.) is possible verbatim, albeit at the
expense of further “FE-discretization related parameters and technicalities” (such
as weighted spaces, fractional convergence orders of the FEM, graded meshes, etc.).
For clarity of exposition, and as the line of argument of our convergence rate analysis
is not affected by these, we do not detail them here.

2. Bayesian inverse problems for elliptic equations

We present in this section the setting of the Bayesian inverse problem for infer-
ring the unknown coefficient K of an elliptic equation, given noisy observations of
the solution in the form of a finite number of linear functionals of this function,
perturbed by additive, centered gaussian observation noise.

2.1. Model Problem. Let (U,Θ, γ) be a probability space of parameters u and let
D be a bounded polytopal domain in R

d. The dimension d of the physical domain
D is assumed to equal 1, 2, 3. Assume further that K : U → L∞(D) is strongly
measurable such that for every u ∈ U there exist constants c1(u) and c2(u) such
that

(2.1) 0 < c1(u) ≤ K(x, u) ≤ c2(u),

almost everywhere with respect to the Lebesgue measure in R
d. We consider the

parametric diffusion problem

(2.2) −∇ · (K(·, u)∇P (u, ·)) = f, P (u, x) = 0, when x ∈ ∂D,

where f ∈ V ′ with V := H1
0 (D). Let O1, . . . ,Ok ∈ V ′. Then, the forward data to

observation map G(u) : U → R
k is defined as

(2.3) G(u) = (O1(P (·, u)), . . . ,Ok(P (·, u))).
We assume at hand observation data δ of the response G corrupted by additive,
centered gaussian observation noise, i.e.

δ = G(u) + ϑ

where ϑ is a random variable with value in R
k which follows the normal distribution

N(0,Σ) where Σ is a known k×k symmetric and positive definite covariance matrix.
Our aim is to compute approximate expectations under the Bayesian posterior
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probability measure γδ, i.e., the conditional probability γ(u|δ). In particular, we
wish to approximate the expectation with respect to the measure γδ of “quantities
of interest”, being continuous, linear functionals of the parametric solution.

We first recall the following standard result on the existence and well-posedness
of the posterior γδ. To this end, we define the Bayesian data “misfit” (or “Bayesian
potential”) functional

(2.4) Φ(u; δ) =
1

2
|δ − G(u)|2Σ =

1

2
(δ − G(u))⊤Σ−1(δ − G(u)).

Cotter et al. [8] prove the following general result on the existence of the posterior
γδ (see also [33])

Proposition 2.1. If, in (2.4), the parametric forward map G : U → R
k is mea-

surable on (U,Θ), then the posterior γδ is absolutely continuous with respect to the
prior γ. The Radon-Nikodym derivative is given by

(2.5)
dγδ

dγ
∝ exp(−Φ(u; δ)).

For the well-posedness of expectation under the posterior measure, we recall the
following results in [20] and [21] which slightly generalize [8] in allowing the function
G below to be only square summable. We work under the following assumption.

Assumption 2.2. The potential function Φ in (2.4) satisfies:

(i) For each λ > 0 there is a constant Λ(λ) > 0 such that if |δ| < λ where | · |
denotes the Euclidean norm in R

k

∫

U

Φ(u; δ)dγ(u) < Λ.

(ii) There is a function G : R×U → R so that for each λ > 0, G(λ, ·) ∈ L2(U, γ)
and for all δ, δ′ ∈ R

k with |δ|, |δ′| < λ we have

|Φ(u; δ)− Φ(u; δ′)| ≤ G(λ, u)|δ − δ′|.
There holds Lipschitz-continuous dependence of the data-to-posterior map δ 7→

γδ.

Proposition 2.3. Under Assumption 2.2 the posterior γδ is locally Lipschitz with
respect to the Hellinger distance, i.e. for each λ > 0, there is a positive constant
C = C(λ) so that

(2.6) dHell(γ
δ, γδ

′

) ≤ C|δ − δ′| ∀|δ|, |δ′| < λ.

2.2. MCMC. Let g : U → R be γδ-measurable. The expectation E
γδ

[g] can
be approximated numerically by Metropolis-Hastings MCMC sampling. Here, a
Markov chain {u(k)}∞k=1 ⊂ U is constructed as follows: given the current state

u(k), we draw a proposal v(k) from a probability distribution q(u(k), dv(k)). Let
{w(k)}k≥1 denote an i.i.d sequence with w(1) ∼ U [0, 1] and with w(k) independent

of both u(k) and v(k). The next state u(k+1) is determined by

(2.7) u(k+1) = 1
(

α(u(k), v(k)) ≥ w(k)
)

v(k) +
(

1− 1
(

α(u(k), v(k)) ≥ w(k)
)

)

u(k)

where the acceptance probability is

α(u, v) = min(1,
dν⊤(u, v)

dν(u, v)
)
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with ν(du, dv) = q(u, dv)γδ(du) and ν⊤(du, dv) = q(v, du)γδ(dv). We suppose that
the transition kernel q is chosen so that ν⊤ << ν, and in particular,

(2.8)
dν⊤(u, v)

dν(u, v)
= exp(Φ(u; δ)− Φ(v; δ))

so that

(2.9) α(u, v) = min(1, exp(Φ(u; δ)− Φ(v; δ))) .

We note that (2.8) is not strictly necessary, although the independence and the pCN
samplers satisfy (2.8), for example. Thus we choose to move from u(k) to v(k) with
probability α(u(k), v(k)), and to remain at u(k) with probability 1− α(u(k), v(k)).

2.3. Uniform prior. Affine-parametric coefficient K. Uniform prior proba-
bility measures are considered in detail in Hoang et al. [21]. We consider (2.2) with
uncertain diffusion coefficients K of affine-parametric form

(2.10) K(x, u) = K̄(x) +

∞
∑

j=1

ujψj(x) , x ∈ D, u = (uj)j≥1 ∈ U ,

where K̄, ψj ∈ L∞(D) for j ∈ N, and where the parameters uj in u = (uj)j≥1 are
assumed to be independent and uniformly identically distributed in [−1, 1]. This is
phrased mathematically by the product probability space (U,Θ, γ) given by

(2.11) U = [−1, 1]N, Θ =

∞
⊗

i=1

B([−1, 1]) and γ =

∞
⊗

i=1

dui
2

where B([−1, 1]) is the Borel σ-algebra in [−1, 1], and where dui denotes the
Lebesgue measure in R

1. Unless explicitly stated otherwise, we assume the set
U to be endowed with the product topology.

For the coefficient K to be uniformly coercive and bounded for all u ∈ U , and
for convergence rate bounds of the FE approximation of the solution P of (2.2), we
impose the following assumption on the decay of the sequence (ψj)j≥1.

Assumption 2.4. The functions K̄, ψj ∈ L∞(D). Further, there exists a constant
κ > 0 such that

∞
∑

j=1

‖ψj‖L∞(D) ≤
κ

1 + κ
K̄min

where K̄min = essinfK̄ > 0.

With Assumption 2.4,

∀u ∈ U :
1

1 + κ
K̄min ≤ K(x, u) ≤ K̄max +

κ

1 + κ
K̄min

where K̄max = esssupx∈DK̄(x). Under Assumption 2.4, for each u ∈ U the para-
metric forward problem (2.2) admits a unique solution. The parametric solution
map P : U → V : u 7→ K(·, u) is continuous as U is endowed with the product
topology. Hoang et al. [21] show that under Assumption 2.4, the forward functional
G in (2.3) is measurable and Assumption 2.2 holds. Thus, from Propositions 2.1
and 2.3 we have:
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Proposition 2.5. For the coefficient K in (2.10), under Assumption 2.4, with
the probability space (U,Θ, γ) of the prior γ as defined in (2.11), the posterior γδ

is absolutely continuous with respect to the prior γ. Moreover, it depends locally
Lipschitz on the data δ ∈ R

k.
The Radon-Nikodym derivative admits a density as in (2.5) and the Lipschitz

estimate (2.6) holds.

2.4. Gaussian prior. Log-affine coefficient K. In this section, we present the
Bayesian inverse problem with gaussian prior, for diffusion problems with “log-
normal coefficients”, i.e., K in (2.2) is such that logK is a gaussian random field.
The gaussian measure on realizations of the GRF Z = logK will serve as prior in
the corresponding Bayesian inverse problem. The numerical analysis of the forward
problem (2.2) for Z = logK a GRF was studied in detail in Galvis and Sarkis [14],
Hoang and Schwab [19], Gittelson [15], Charrier [7] and in the references there. We
review some of the results in these references to the extent that they are needed
in our ensuing MLMCMC-FEM convergence analysis. Denote by R

N the set of
all infinite sequences (u1, u2, . . .) of real numbers. Let {ψj}j≥1 ⊂ L∞(D) be such
that

∑∞
j=1 ‖ψj‖L∞(D) is finite. Ignoring for now the questions of convergence, we

formally introduce the parametric, deterministic coefficient K : D × R
N → R as

(2.12) K(·, u) = K∗(·) + exp



K̄(·) +
∞
∑

j=1

ujψj(·)





for u = (u1, u2, . . .) ∈ R
N. To specify a prior probability measure on the coefficient

space, we assume that the coordinates uj are independently, identically distributed
according to the standard Gaussian measure, i.e. uj ∼ N(0, 1). We denote by γ1
the standard Gaussian measure in R

1. We equip R
N with the product σ-algebra

⊗∞
j=1B(R) where B denotes the Borel σ-algebra on R. The gaussian probability

measure γ on (RN,B(RN)) is the product measure (see, e.g., [35, 6]), i.e.

(2.13) γ =

∞
⊗

j=1

γ1 .

For K to be a valid diffusion coefficient, γ-a.s., we impose the following assumption
on the functions K∗, K̄ and ψi.

Assumption 2.6. The functions K̄, K∗ and ψj in (2.12) are in L∞(D) and there
holds 0 ≤ essinfK∗(x) ≤ esssupK∗(x) < ∞. Furthermore, b := (‖ψj‖L∞(D))j≥1 ∈
ℓ1(N).

We emphasize that in Assumption 2.6, K∗ = 0 is admissible. Assumption 2.6
implies

(2.14) Γb := {u ∈ R
N,

∞
∑

j=1

bj |uj | <∞} ∈ B(RN)

has full Gaussian measure, i.e. γ(Γb) = 1 (see, e.g., [35, p. 153] or [31, Lemma
2.28]). For every u ∈ Γb, the coefficient (2.12) is well-defined as an element of
L∞(D).

We observe that Γb is in general not a cartesian product of intervals. Let Ab

denote the restriction of the product σ algebra B(RN) to Γb ∈ B(RN) and let γb
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denote the restriction of the Gaussian Measure γ to Γb. For u ∈ Γb, we define

(2.15) K̂(u) = esssupx∈DK∗(x) + exp(‖K̄‖L∞(D) +
∞
∑

j=1

‖ψj‖L∞(D)|uj |),

and

(2.16) Ǩ(u) = essinfx∈DK∗(x) + exp(essinfx∈D K̄(x)−
∞
∑

j=1

‖ψj‖L∞(D)|uj |) .

For u ∈ Γb and for x ∈ D\N where N ⊂ D is a (Lebesgue) nullset, 0 < Ǩ(u) ≤
K(x, u) ≤ K̂(u) < ∞. We observe that K̂(u) and Ǩ(u) are (Γb,Ab) measurable.
For every u ∈ Γb, the diffusion problem (2.2) admits a unique solution P (·, u) ∈ V .

The solution P of (2.2), when interpreted as a map from (Γb,Ab) to (V,B(V )),
is strongly measurable (see, for example, in [15] and [14, 7]) so that the forward
functional G is measurable in the measurable space (Γb,Ab). Further, Hoang and
Schwab [19] show that under Assumption 2.6, Assumption 2.2 holds. From Propo-
sitions 2.1 and 2.3, we have

Proposition 2.7. Under Assumption 2.6, for the log-normal coefficient K defined
in (2.12) and with the prior probability space (Γb,Ab, γb), the posterior probability
measure γδ is absolutely continuous with respect to the prior measure γ. The map
δ 7→ γδ is locally Lipschitz. The formula (2.5) for the Radon-Nikodym derivative
and the local Lipschitz estimate (2.6) hold.

3. Multilevel Markov Chain Monte Carlo FEM for uniform prior

We recall in this section the MLMCMC FEM developed in Hoang et al. in
[21]. We first summarize the approximation of the forward problem (2.2) with the
coefficient (2.10) obtained by a finite truncation of the infinite series representation
of K and by subsequent numerical solution of the finite-parametric PDE by finite
element discretization.

3.1. Finite element discretization of the forward problem. For each J ∈ N,
we consider the J-term truncated, parametric coefficient

(3.1) KJ(·, u) = K̄(·) +
J
∑

j=1

ujψj(·).

The forward problem (2.2) with the coefficient K in (2.10) is approximated by the
“dimension-truncated”, finite-parametric problem

(3.2) −∇ · (KJ(·, u)∇P J(·, u)) = f, P J ∈ V.

We approximate the solution of (3.2) numerically by a standard, primal FE dis-
cretization. To this end, we assume that D is a bounded polytope with plane sides
(if d = 2) resp. plane faces (if d = 3). We consider in D a nested sequence {T l}∞l=0

of regular, simplicial triangulations of D; each triangulation T l is obtained by uni-
form refinement, i.e., by dividing each simplex in T l−1 into 4 congruent triangles
when d = 2 or into 8 congruent tedrahedra when d = 3. We define a nested sequence
{V l}l≥1 of spaces of continuous, piecewise linear functions on T l as

V l = {w ∈ V : w|T ∈ P
1(T ) ∀ T ∈ T l},



8 V.H. HOANG, J. H. QUEK AND CH. SCHWAB

where P1(T ) is the set of linear polynomials in T . The finite element approximation
is then defined by Galerkin projection: for u ∈ U , find P J,l ∈ V l such that

(3.3)

∫

D

KJ(x, u)∇P J,l(x, u) · ∇φ(x)dx =

∫

D

f(x)φ(x)dx, ∀ φ ∈ V l.

For the solution P J(·, u) of the parametric PDE (3.2) to belong to H2(D), we
impose the folowing regularity on the coefficients in the expansion (2.10).

Assumption 3.1. The functions K̄ and ψj (j = 1, 2, . . .) in (2.10) belong to
W 1,∞(D) and

∑∞
j=1 ‖ψj‖W 1,∞(D) is finite. Moreover, there exist constants C > 0

and s > 1 so that ‖ψj‖L∞ < Cj−s for all j ∈ N.

Under Assumption 3.1, for f ∈ L2(D) and D a convex polygon, Hoang et al. [21]
show that P J(·, u) ∈ H2(D)∩V , with supu∈U supJ ‖P J(·, u)‖H2(D) being bounded.
This allows establishing the following error estimate for the approximate solution
P J,l in (3.3).

Proposition 3.2. Assume that the domain D is convex, and that f ∈ L2(D).
Under Assumption 3.1, there exists a constant C > 0 such that for every J, l ∈ N

(3.4) ‖P − P J,l‖V ≤ C(J−q + 2−l)‖f‖L2(D)

where q = s− 1.

Remark 3.3. Assumption 3.1 could be weakened considerably, with error bounds
such as (3.4) still valid: we could admit non-convex polytopal D ⊂ R

d, with ap-
propriately refined triangulations T l in D, and suitable assumptions on higher reg-
ularity of the ψj; this would require introduction of weighted Sobolev and Hölder
spaces in order to state regularity and FE error estimates. All subsequent results
have straightforward extensions in these more general settings. As the focus of the
present paper is on the analysis of the MLMCMC algorithms, we chose to impose
the rather restrictive conditions in Assumption 3.1 to keep the PDE error analysis
as simple as possible.

3.2. Finite element approximation of the Bayesian posterior. With the ap-
proximate solution P J,l(·, u) of problem (3.3) we associate the approximate forward
map

(3.5) GJ,l(u) = (O1(P
J,l(·, u)), . . . ,Ok(P

J,l(·, u))).
The approximate Bayesian potential is defined as

(3.6) ΦJ,l(δ, u) =
1

2
|δ − GJ,l(u)|2Σ,

and the approximate posterior on (U,Θ) is given by

(3.7)
dγJ,l,δ

dγ
∝ exp(−ΦJ,l(δ, u)).

Hoang et al. [21] in Proposition 10 prove the following result on the approximation
property of the measure γJ,l.

Proposition 3.4. Under Assumptions 2.4 and 3.1, if the domain D is a convex
polyhedron and f ∈ L2(D), then there is a constant C which only depends on the
data bound λ in Assumption 2.2 so that for every l, q ∈ N holds

dHell(γ
δ, γJ,l,δ) ≤ C(J−q + 2−l)‖f‖L2(D).
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To balance the two errors stemming from truncating the coefficient K and from
finite element approximation, respectively, for each level l of finite element dis-
cretization we choose J = Jl = ⌈2l/q⌉.

3.3. Multilevel Markov Chain Monte Carlo for the uniform prior. We
recapitulate from Hoang et al. [21] the derivation of the Multilevel MCMC FEM
for the uniform prior. For conciseness, with the choice Jl = ⌈2l/q⌉, we denote γJl,l,δ

simply as γl and P Jl,l as P l. For every L ∈ N, there holds the telescoping sum

E
γL

[ℓ(P (·, u))] =

L
∑

l=1

(

E
γl

[ℓ(P (·, u))]− E
γl−1

[ℓ(P (·, u))] + E
γ0

[ℓ(P (·, u))]
)

=
L
∑

l=1

(

E
γl − E

γl−1
)

[ℓ(P (·, u))] + E
γ0

[ℓ(P (·, u))] .(3.8)

For each l, with a discretization level L′(l) ≤ L to be determined subsequently, we

approximate E
γL

[ℓ(P (·, u))] by (omitting the arguments of P and its approxima-
tions for brevity of notation) the telescoping sum

(3.9)

L
∑

l=1

(

E
γl − E

γl−1
)

[ℓ(PL′(l))] + E
γ0

[ℓ(PL′(0))].

For each l, this results in
(3.10)

(

E
γl − E

γl−1
)

[ℓ(PL′(l))] =

L′(l)
∑

l′=1

(

E
γl − E

γl−1
)

[ℓ(P l′)−ℓ(P l′−1)]+
(

E
γl − E

γl−1
)

[ℓ(P 0)] .

Similarly,

E
γ0

[ℓ(PL′(0))] =

L′(0)
∑

l′=1

E
γ0

[ℓ(P l′)− ℓ(P l′−1)] + E
γ0

[ℓ(P 0)].

Thus, for each level L of approximation, there holds
(3.11)

L
∑

l=1

(

E
γl − E

γl−1
)

[ℓ(PL′(l))] + E
γ0

[ℓ(PL′(0))]

=
L
∑

l=1

L′(l)
∑

l′=1

(

E
γl − E

γl−1
)

[ℓ(P l′)− ℓ(P l′−1)] +
L
∑

l=1

(

E
γl − E

γl−1
)

[ℓ(P 0)]

+

L′(0)
∑

l′=1

E
γ0

[ℓ(P l′)− ℓ(P l′−1)] + E
γ0

[ℓ(P 0)].

To obtain a computable MLMCMC estimator we approximate each term in (3.11)
by sample averages of Mll′ many realizations, upon choosing L′(l) judiciously. To
select Mll′ and L′(l), we observe that, for any measurable function Q : U → R

which is integrable with respect to the approximate posterior measures γl, there
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holds

(

E
γl − E

γl−1
)

[Q]

=
1

Zl

∫

U

exp(−Φl(u; δ))Q(u)dγ(u)− 1

Zl−1

∫

U

exp(−Φl−1(u; δ))Q(u)dγ(u)

=
1

Zl

∫

U

exp(−Φl(u; δ))
(

1− exp(Φl(u; δ)− Φl−1(u; δ))
)

Q(u)dγ(u)

+

(

Zl−1

Zl
− 1

)

1

Zl−1

∫

exp(−Φl−1(u; δ))Q(u)dγ(u) ,

where Φl denotes the approximate potential defined in (3.6) and Zl denotes the
approximate normalizing constant in (3.7) with J = Jl. We remark that under
Assumptions 2.2 and 2.4, the normalization constants Zl are uniformly (with respect
to l) bounded from below away from zero. We note further that

Zl−1

Zl
− 1 =

1

Zl

∫

U

(

exp(Φl(u; δ)− Φl−1(u; δ))− 1
)

exp(−Φl(u; δ))dγ(u) .

Thus an approximation for Zl−1/Zl − 1 can be computed by running MCMC
with respect to the approximate posterior γl to sample the potential difference
exp(Φl(u; δ) − Φl−1(u; δ)) − 1. To estimate the expectation with respect to the
approximated posteriors γl and γl−1, we apply the MCMC algorithm introduced in
Section 2. The acceptance probability α(u, v) in (2.9) is, however, replaced by that
derived from the FE solution of the finitely-parametric forward problem. In partic-

ular, we define by Eγl

Mll′
the MCMC FEM estimator obtained with the acceptance

probability in (2.9) replaced by

(3.12) αl(u, v) = min(1, exp(Φl(u; δ)− Φl(v; δ))).

for the MCMC procedure to sample the target probability measure γl.
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This led in [21] to the Multilevel Markov Chain Monte Carlo Finite Element

(MLMCMC-FEM for short) estimator EMLMCMC
L [ℓ(P )] of Eγδ

[ℓ(P )] defined by
(3.13)

EMLMCMC
L [ℓ(P )] =

L
∑

l=1

L′(l)
∑

l′=1

Eγl

Mll′

[(

1− exp(Φl(u; δ)− Φl−1(u; δ))
)

(ℓ(P l′)− ℓ(P l′−1))
]

+

L
∑

l=1

L′(l)
∑

l′=1

Eγl

Mll′

[

exp(Φl(u; δ)− Φl−1(u; δ))− 1
]

· Eγl−1

Mll′

[

ℓ(P l′)− ℓ(P l′−1)
]

+

L
∑

l=1

Eγl

Ml0

[(

1− exp(Φl(u; δ)− Φl−1(u; δ))
)

(ℓ(P 0))
]

+

L
∑

l=1

Eγl

Ml0

[

exp(Φl(u; δ)− Φl−1(u; δ))− 1
]

· Eγl−1

Ml0

[

ℓ(P 0))
]

+

L′(0)
∑

l′=1

Eγ0

M0l′

[

ℓ(P l′)− ℓ(P l′−1)
]

+ Eγ0

M00
[ℓ(P 0)].

As in Hoang et al. [21], we choose the parameters

(3.14) L′(l) = L− l, Mll′ = 22(L−(l+l′)).

When evaluating the MLMCMC estimator for each approximation level l, we gener-
ate a Markov chain Cl ⊂ R

Jl . In this way, we realize L pairwise uncorrelated chains.
We denote the probability space of these LMarkov chains byCL = {C1, C2, . . . , CL},
and let Pγ,Jl,l denote the probability measure in the space of all Markov chains on
the discretized PDE at mesh level l with parameter dimension Jl, running from the
initial sample u(0) which we assume to be distributed according to the prior γ. By
pairwise independence of the chains Cl, the probability measure on CL is

PL = Pγ,J1,1 ⊗ Pγ,J2,2 ⊗ . . .⊗ Pγ,JL,L.

Let EL be the expectation in CL with respect to PL. The multilevel MCMC
method achieves an approximation with a prescribed absolute mean error using
an essentially optimal number of degrees of freedom for any fixed basis of the FE
space V l. A Riesz basis of the V l affords essentially linear complexity per MCMC
sample of the discretized PDE. Then, Hoang et al. [21] show in the case of uniform
prior that the MLMCMC FEM uses an essentially optimal number of floating point
operations.

To develop corresponding results under gaussian prior, we impose the following
assumption on the availability of a Riesz finite element basis. This assumption is
valid for polytopal domains in space dimensions s = 1, 2, 3. Construction of the
Riesz basis can be found in [27] and [34].

Assumption 3.5. For l ∈ N, there is a set of indices I l ⊂ N
d of cardinality

Nl = O(2−dl) and a family of basis functions wl
k ∈ V with k ∈ Il such that V l is
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the linear span of wl
k for k ∈ Il. Furthermore, there are positive constants c1 and

c2 which are independent of l such that for w =
∑

k∈Il clkw
l
k ∈ V l holds

c1
∑

k∈Il

(clk)
2 ≤ ‖w‖2V ≤ c2

∑

k∈Il

(clk)
2.

For all l ∈ N0 and all k ∈ Il, for each l′ ∈ N0, supp(w
l
k)∩supp(wl′

k′) has positive

mesure for at most O(max(1, 2l
′−l)) functions wl′

k′ for k′ ∈ Il′ .

Hoang et al. [21] establish the following result on the error and complexity of
the MLMCMC procedure for sampling the posterior measure γδ corresponding to
uniform prior probability measure γ, using the independence sampler.

Theorem 3.6. For d = 2, 3, under Assumption 3.1, and with the parameter choices
(3.14), there exists a constant c(δ) > 0 such that for all L ≥ 1 there holds

(3.15) EL[|Eγ(δ)[P ]− EMLMCMC
L [P ]|] ≤ C(δ)L22−L .

The total number of degrees of freedom in the FE discretization that is used in
running the MLMCMC sampler is bounded by O(L22L) for d = 2 and O(23L) for
d = 3.

Under Assumption 3.5 on the availability of a Riesz finite element basis, the total
number of floating point operations required for computing the MLMCMC estimator
is bounded by O(Ld−12(d+1/q)L).

Denoting the total number of degrees of freedom which enter in running the chain
on all discretization levels by N , the error of the MLMCMC estimator is bounded
by O((logN)3/2N−1/2) for d = 2 and by O((logN)2N−1/3) for d = 3.

The total number of floating point operations used in running the MLMCMC-
FEM algorithm to termination is bounded by O((logN)−1/(2q)N1+1/(2q)) for d = 2
and by O((logN)2N1+1/(3q)) for d = 3.

The logarithmic factor L2 in the error bound, may be reduced by slightly in-
creasing the sample numbers Mll′ . The following error bounds are a refinement of
those in [21]: choosing in (3.13) the sample numbers Mll′ = (l + l′)α22(L−(l+l′))

when l ≥ 1 and l′ ≥ 1, the error due to the first two terms of (3.13) is bounded

by an absolute multiple of 2−L
∑L

l,l′=1(l+ l′)−α/2. The following table collects the
resulting asymptotic bounds, for various values of α.

α Mll′ , l, l
′ > 1 Ml0 =M0l M00 Total error

0 22(L−(l+l′) 22(L−l)/L2 22L/L4 O(L22−L)

2 (l + l′)222(L−(l+l′)) 22(L−l) 22L/L2 O(L logL2−L)

3 (l + l′)322(L−(l+l′)) l22(L−l) 22L/L O(L1/22−L)

4 (l + l′)422(L−(l+l′)) l222(L−l) 22L/(logL2) O(logL2−L)

Table 1.

4. Multilevel Markov Chain Monte Carlo Finite Element Method
(MLMCMC-FEM) for Gaussian prior

We develop the MLMCMC for sampling the posterior measure γδ when the
coefficient K is of the form (2.12) with the probability space U = Γb defined in
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(2.14) and prior probability γ = γb. We show by a numerical example in Section
5 that the MLMCMC algorithm in the previous section may diverge for problems
with coefficients of the log-normal form. Essential modifications in the algorithm
are necessary for the MLMCMC method to work in the case of Gaussian prior.

4.1. FE approximation of diffusion problem with log-gaussian coefficients.

We again approximate the forward equation (2.2) by truncating the coefficient and
by discretizing the resulting, finitely-parametric equation by the FEM. To this end,
we review the results established by Hoang and Schwab in [19] and refer to [19,
Section 4] for proofs.

For u = (u1, u2, . . .) ∈ R
N, for J ∈ N, we denote by uJ = (u1, u2, . . . , uJ , 0, 0, . . .),

i.e., the “J-term anchored” parameter sequence. We define

(4.1) KJ(·, u) = K(·, uJ) = K∗(·) + exp



K̄(·) +
J
∑

j=1

ujψj(·)



 .

For each u ∈ Γb, the parametric equation with J-term truncated coefficient reads

(4.2) P J ∈ V : −∇ · (KJ(·, u)∇P J(·, u)) = f in H−1(D).

We approximate (4.2): Find P J,l ∈ V so that

(4.3)

∫

D

KJ(x, u)∇P J,l(x, u) · ∇φ(x)dx =

∫

D

f(x)φ(x)dx ∀φ ∈ V

where KJ is the J-term truncated coefficient in (4.1). This problem has a unique
solution that satisfies: there exists a constant c > 0 such that for every J ∈ N and
for every u ∈ Γb holds

(4.4) ‖P J,l(·, u)‖V ≤ ‖f‖V ∗

Ǩ(uJ)
≤ c exp(

∞
∑

j=1

bj |uj |).

From Cea’s lemma, we obtain

(4.5) ‖P J(·, u)− P J,l(·, u)‖V ≤ K̂(uJ)

Ǩ(uJ)
inf

Q∈V l
‖P J(·, u)−Q‖V .

To obtain first order convergence rates of continuous, piecewise linear FEM in D,
we impose the following regularity assumption on the parametric coefficient.

Assumption 4.1. The functions K∗, K̄ and ψj in the expansion (2.12) belong to
W 1,∞(D) and b̄ := (‖ψj‖W 1,∞(D))j≥1 ∈ ℓ1(N).

Under Assumption 4.1, following the procedure in [19], Hoang and Schwab [19,
Section 4.2] prove that when the domain D is convex and when f ∈ L2(D), there
exists C > 0 such that, for every u ∈ Γb and J ∈ N holds

‖P J(·, u)‖H2(D) ≤ C
1

Ǩ(uJ)
(‖∇KJ(·, u)‖L∞(D)

‖f‖V ∗

Ǩ(uJ)
+ ‖f‖L2(D))

≤ C exp



3

J
∑

j=1

bj |uj |







1 +

J
∑

j=1

b̄j |uj |



 .
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There exists a constant C > 0 such that for every finite J, l ∈ N and every u ∈ Γb

(4.6) ‖P J(·, u)− P J,l(·, u)‖V ≤ C exp



5

J
∑

j=1

bj |uj |







1 +

J
∑

j=1

b̄j |uj |



 2−l

where C is independent of u, J and l. There holds the following bound on the error
due to truncating the log-normal coefficient at a finite number J of parameters and
including FE discretization of the forward model at level l.

Proposition 4.2. Under Assumption 4.1, if D is convex and f ∈ L2(D), there
exists a constant C > 0 such that, for every J, l ∈ N and for every u ∈ Γb holds
(4.7)

‖P (·, u)−P J,l(·, u)‖V ≤ C exp



5

J
∑

j=1

bj |uj |







2−l(1 +

J
∑

j=1

b̄j |uj |) +
∞
∑

j=J+1

bj |uj |



 .

We refer to [19] (Lemma 4.4) for the proof. To estimate the complexity of solving
the linear system in (4.3), we note the following result of [19, Section 4.5].

Lemma 4.3. Fix C > 0 arbitrary. Then, under Assumption 3.5, for any u ∈ Γb

and for every l ∈ N, the number j∗(u, l) of pcg-iterations in the approximate, iter-
ative solution of the parametric linear system of equations in (4.3) for the corre-
sponding iteration error to be bounded by 2−l (in euclidean norm and, by the norm
equivalence Assumption 3.5, in the norm H1(D)) is bounded from below by

(4.8) j∗(u, l) ≥ C(l + | log Ǩ(u)|)
√

K̂(u)

Ǩ(u)
.

We remark that (4.8) depends on the realization u ∈ Γb of the GRF Z, so that
error vs. work estimates based on (4.8) will only hold “in expectation”, or “in the
mean”. We also point out that in [19] availability of a particular preconditioner
was assumed which is constructed via Riesz-basis of the FE spaces. An alternative
approach, based on multilevel preconditioning in standard FE bases with estimates
similar to (4.8) and admitting gaussian prior distribution on the parameters was
developed in [18].

4.2. Finite element approximation of the posterior measure. For the FE
solution P J,l in (3.3) with the parameter-truncated log-gaussian coefficient KJ in
(4.1), the approximate forward operator GJ,l is denoted as

(4.9) GJ,l(u) = (O1(P
J,l(u)), . . . ,Ok(P

J,l(u))) : Γb → R
k

with the FE solution P J,l of equation (3.3) for the log-gaussian, dimension-truncated
parametric coefficient KJ in (4.1). With this approximate forward mapping, the
approximate Bayesian potential ΦJ,l is

(4.10) ΦJ,l :=
1

2
|δ − GJ,l|2Σ

and the corresponding approximate Bayesian posterior (3.6) is

(4.11)
dγJ,l,δ

dγb
(u) ∝ exp(−ΦJ,l(u; δ)).

To quantify the error in approximating the Bayesian posterior γδ by γJ,l,δ, we make
the following assumption on the decay rate of ‖ψj‖L∞(D).
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Assumption 4.4. There are c > 0 and s > 1 such that ‖ψj‖L∞(D) ≤ cj−s.

We then have

Proposition 4.5. Under Assumption 4.4, for q = s − 1 > 0 there is a positive
constant c depending on δ such that for every J, l ∈ N holds

dHell(γ
δ, γJ,l,δ) ≤ c(J−q + 2−l).

For proofs of these results we refer to [19, Section 4.6]. Choosing J = Jl = ⌈2l/q⌉,
we obtain that the Hellinger distance between the Bayesian posteriors of the exact
forward solution and its FE approximation converges as the FE discretization error:
dHell(γ

δ, γJ,l,δ) ≤ c2−l. For the Multilevel MCMC method that we will develop
ahead, we estimate |ΦJl,l(u; δ)− ΦJl−1,l−1(u; δ)|.
Lemma 4.6. For every λ > 0, there is a constant c(λ) that depends only on λ such
that, for every l ∈ N and for every |δ| < λ,

|ΦJl,l(u; δ)−ΦJl−1,l−1(u; δ)| ≤ c(λ) exp



6

Jl
∑

j=1

bj |uj |







2−l(1 +

Jl
∑

j=1

b̄j |uj |) +
Jl
∑

j=Jl−1+1

bj |uj |



 .

Proof The proof follows the argument in the analysis of [19] e.g. the proof of
Lemma 4.4 of [19]. From (3.6), we obtain the existence of a constant c > 0 such
that for every u ∈ Γb and for every l ∈ N holds

|ΦJl,l(u; δ)−ΦJl−1,l−1(u; δ)| ≤ c(|δ|+|GJl,l(u)|+|GJl−1,l−1(u)|)|GJl,l(u)−GJl−1,l−1(u)|.
We note that

|GJl,l(u)− GJl−1,l−1(u)| ≤ cmax{‖Oi‖V ∗}‖P Jl,l(·, u)− P Jl−1,l−1(·, u)‖V .
We have from (4.2) that

−∇·(KJl(·, u)∇(P Jl(·, u)−P Jl−1(·, u)) = −∇·((KJl(·, u)−KJl−1(·, u))∇P Jl(·, u)).
Therefore

‖P Jl(·, u)− P Jl−1(·, u)‖V ≤ 1

Ǩ(uJl)
‖KJl(·, u)−KJl−1(·, u)‖L∞(D)‖P Jl(·, u)‖V

≤ 1

Ǩ(uJl)Ǩ(uJl)
‖KJl(·, u)−KJl−1(·, u)‖L∞(D)‖f‖V ∗ .

Using the inequality |ex − ey| ≤ |x− y|(ex + ey) for x, y ∈ R, we have

‖KJl(·, u)−KJl−1(·, u)‖L∞(D) ≤ 2 exp(b0 +

Jl
∑

j=1

bj |uj |)
Jl
∑

j=Jl−1+1

bj |uj |.

Thus there exists a constant C such that for all J, l ∈ N

‖P Jl(·, u)− P Jl−1(·, u)‖V ≤ C exp



3

Jl
∑

j=1

bj |uj |





Jl
∑

j=Jl−1+1

bj |uj |.

From this and (4.6) we deduce that
(4.12)

‖P Jl,l(·, u)−P Jl−1,l−1(·, u)‖V ≤ C exp



5

Jl
∑

j=1

bj |uj |







2−l(1 +

Jl
∑

j=1

b̄j |uj |) +
Jl
∑

j=Jl−1+1

bj |uj |



 .

Together with (4.4) this gives the conclusion. �
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4.3. Multilevel Markov Chain Monte Carlo FEM. The proof of Theorem 3.6
for the Multilevel MCMC FEM for uniform prior in [21] uses in an essential way
that the potential Φ(u, δ) and its approximation ΦJl,l(u, δ) are uniformly bounded
for all u ∈ U = [−1, 1]N. For the log-normal coefficient K in (2.12) this is no longer
true. We derive the MLMCMC FEM for the gaussian Bayesian prior. While the
algorithm is structured as for the uniform prior in Section 3, there are essential
differences to it and to the plain (i.e., single-level) MCMC-FEM for gaussian prior.
This is due to the fact that the differences Φ(u, δ) for different discretization levels l
which arise naturally in MLMCMC grow, generally, exponentially as |u| → ∞. This
is due to the (sharp) bounds (2.15), (2.16). This exponential growth and the struc-
ture of the Bayesian posterior density (2.5) imply a possibly doubly-exponential
growth of this density on increments in the MLMCMC for gaussian prior which
results in a parametric density which is not integrable against the gaussian prior.
This issue does not arise in the MCMC-FEM for the single-level discretization un-
der gaussian prior which was analyzed in [19] and, under stronger assumptions than
Assumption 2.6, in [28].

Let us turn to the derivation of the MLMCMC-FEM strategy. We run the
MCMC as in the uniform case, but in this case of Gaussian prior, we consider
both the independence and pCN samplers, with acceptance probability α in (2.9),
evaluated with the FE discretization (3.3) of the forward problem. We use the
acceptance probability

(4.13) αJ,l = 1 ∧ exp(ΦJ,l(u, δ)− ΦJ,l(v, δ))

where ΦJ,l is determined from the FE solution of the truncated forward equa-
tion with the diffusion equation with log-normal input in (4.10). We denote the
MCMC sample average for approximating the posterior expectation of a function

g as EγJ,l

Mll′
[g]. In this section, we always choose J = Jl where Jl = ⌈2l/q⌉. Again, to

simplify notation, we denote γJl,l,δ by γl, P Jl,l by P l and ΦJl,l by Φl. Let ℓ ∈ V ∗.
The derivation of the MLMCMC FEM to approximate the expectation of ℓ(P (·))
with respect to the posterior probability measure γδ on U is as follows.

From Proposition 4.5, we obtain the existence of a constant c > 0 such that, for
every L ∈ N, there holds

∣

∣

∣E
γδ

[ℓ(P (u))]− E
γL

[ℓ(P (u))]
∣

∣

∣ ≤ c2−L.

We recall the telescoping sum (3.11). To obtain convergence rate bounds for
the multilevel MCMC strategy under uniform prior in Section 3.3, it essential that
|Φl(u; δ) − Φl−1(u; δ)| be uniformly bounded. For the presently considered log-
gaussian coefficient and for the gaussian prior measure, this is no longer the case:
under Assumption 2.6 (which admits K∗ ≡ 0 in (2.12)), in the multilevel algorithm
for uniform prior in Section 3.3, this quantity may not even be integrable with
respect to the gaussian prior measure γ.

As we show with a numerical example in Section 5 under gaussian prior and
under Assumption 2.6, the MLMCMC-FEM estimator (3.13) diverges, in general.
Therefore, even the design of the MLMCMC FE algorithm will require essential
modifications as compared to the case of uniform prior. To address this, we propose
a new method for sampling the terms in (3.11). To this end, we denote by

(4.14) I l(u) =

{

1 if Φl(u; δ)− Φl−1(u; δ) ≤ 0,
0 otherwise
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Let Q be a measurable function from U to R. There holds, for l ≥ 2,

E
γl

[Q(u)]− E
γl−1

[Q(u)]

=
1

Zl

∫

U

exp(−Φl(u; δ))Q(u)I l(u)dγ(u)− 1

Zl−1

∫

U

exp(−Φl−1(u; δ))Q(u)I l(u)dγ(u)

+
1

Zl

∫

U

exp(−Φl(u; δ))Q(u)(1− I l(u))dγ(u)

− 1

Zl−1

∫

U

exp(−Φl−1(u; δ))Q(u)(1− I l(u))dγ(u)

=
1

Zl

∫

U

(

exp(−Φl(u; δ))− exp(−Φl−1(u; δ))
)

Q(u)I l(u)dγ(u)

+

(

1

Zl
− 1

Zl−1

)∫

U

exp(−Φl−1(u; δ))Q(u)I l(u)dγ(u)

− 1

Zl−1

∫

U

(

exp(−Φl−1(u; δ))− exp(−Φl(u; δ))
)

Q(u)(1− I l(u))dγ(u)

+

(

1

Zl
− 1

Zl−1

)∫

U

exp(−Φl(u; δ))Q(u)(1− I l(u))dγ(u).

With the notation Al
1 = (1− exp(Φl(u; δ)− Φl−1(u; δ))Q(u)I l(u), we have

1

Zl

∫

U

(

exp(−Φl(u; δ))− exp(−Φl−1(u; δ))
)

Q(u)I l(u)dγ(u)

= E
γl

[(1− exp(Φl(u; δ)− Φl−1(u; δ))Q(u)I l(u)] = E
γl

[Al
1].

Introducing Al
2 = (exp(Φl−1(u; δ)− Φl(u; δ))− 1)Q(u)(1− I l(u)), we may write

− 1

Zl−1

∫

U

(

exp(−Φl−1(u; δ))− exp(−Φl(u; δ))
)

Q(u)(1− I l(u))dγ(u)

= E
γl−1

[(exp(Φl−1(u; δ)− Φl(u; δ))− 1)Q(u)(1− I l(u))] = E
γl−1

[Al
2] .

We note that

1

Zl
− 1

Zl−1

=
1

ZlZl−1

∫

U

(

exp(−Φl−1(u; δ))− exp(−Φl(u; δ))
)

(I l(u) + 1− I l(u))dγ(u)

=
1

ZlZl−1

∫

U

exp(−Φl(u; δ))(exp(Φl(u; δ)− Φl−1(u; δ))− 1)I l(u)dγ(u)

+
1

ZlZl−1

∫

U

exp(−Φl−1(u; δ))(1− exp(Φl−1(u; δ)− Φl(u; δ)))(1− I l(u))dγ(u)

=
1

Zl−1
E
γl

[(exp(Φl(u; δ)− Φl−1(u; δ))− 1)I l(u)] +

+
1

Zl
E
γl−1

[(1− exp(Φl−1(u; δ)− Φl(u; δ)))(1− I l(u))].
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Thus

(

1

Zl
− 1

Zl−1

)∫

U

exp(−Φl−1(u; δ))Q(u)I l(u)dγ(u)

= E
γl

[(exp(Φl(u; δ)− Φl−1(u; δ))− 1)I l(u)] ·
1

Zl−1

∫

U

exp(−Φl−1(u; δ))Q(u)I l(u)dγ(u) +

E
γl−1

[(1− exp(Φl−1(u; δ)− Φl(u; δ)))(1− I l(u))] ·
1

Zl

∫

U

exp(−Φl(u; δ)) exp(Φl(u; δ)− Φl−1(u; δ))Q(u)I l(u)dγ(u)

= E
γl

[Al
3]E

γl−1

[Al
4] + E

γl−1

[Al
5]E

γl

[Al
6]

where we defined

Al
3 = (exp(Φl(u; δ)− Φl−1(u; δ))− 1)I l(u),

Al
4 = Q(u)I l(u),

Al
5 = (1− exp(Φl−1(u; δ)− Φl(u; δ)))(1− I l(u)),

Al
6 = exp(Φl(u; δ)− Φl−1(u; δ))Q(u)I l(u).

Similarly, defining for l ≥ 1

Al
7 = Q(u)(1− I l(u)) and Al

8 = exp(Φl−1(u; δ)− Φl(u; δ))Q(u)(1− I l(u)) ,

there holds

(

1

Zl
− 1

Zl−1

)∫

U

exp(−Φl(u; δ))Q(u)(1− I l(u))dγ(u)

= E
γl−1

[(1− exp(Φl−1(u; δ)− Φl(u; δ)))(1− I l(u))] ·
1

Zl

∫

U

exp(−Φl(u; δ))Q(u)(1− I l(u))dγ(u) +

E
γl

[(exp(Φl(u; δ)− Φl−1(u; δ))− 1)I l(u)] ·
1

Zl−1

∫

U

exp(−Φl−1(u; δ)) exp(Φl−1(u; δ)− Φl(u; δ))Q(u)(1− I l(u))dγ(u)

= E
γl−1

[Al
5]E

γl

[Al
7] + E

γl

[Al
3]E

γl−1

[Al
8] .

We conclude that, for every l ≥ 1, there holds

E
γl

[Q(u)]− E
γl−1

[Q(u)]

= E
γl

[Al
1] + E

γl−1

[Al
2] + E

γl

[Al
3] · Eγl−1

[Al
4 +Al

8] + E
γl−1

[Al
5] · Eγl

[Al
6 +Al

7].

In (3.11), when Q = ℓ(P l′ − P l′−1), we denote Al
1 as All′

1 , Al
2 as All′

2 , Al
4 as All′

4 ,

Al
6 as All′

6 , Al
7 as All′

7 and Al
8 as All′

8 . In the case of Q = ℓ(P 0), we denote Al
1

as Al0
1 , A

l
2 as Al0

2 , A
l
4 as Al0

4 , A
l
6 as Al0

6 , A
l
7 as Al0

7 and Al
8 as Al0

8 . We therefore
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approximate E
γL

[ℓ(P (u))] as

L
∑

l=1

L′(l)
∑

l′=1

E
γl

[All′

1 ] + E
γl−1

[All′

2 ] + E
γl

[Al
3] · Eγl−1

[All′

4 +All′

8 ] + E
γl−1

[Al
5] · Eγl

[All′

6 +All′

7 ]

+

L
∑

l=1

E
γl

[Al0
1 ] + E

γl−1

[Al0
2 ] + E

γl

[Al
3] · Eγl−1

[Al0
4 +Al0

8 ] + E
γl−1

[Al
5] · Eγl

[Al0
6 +Al0

7 ]

+

L′(0)
∑

l′=1

E
γ0

[ℓ(P l′ − P l′−1)] + E
γ0

[ℓ(P 0)].(4.15)

As usual, the Multilevel Markov Chain Monte Carlo estimator is defined by re-
placing the mathematical expectations in the preceding expression by finite sample
averages, i.e.

EMLMCMC
L (ℓ(P ))

:=
L
∑

l=1

L′(l)
∑

l′=1

Eγl

Mll′
[All′

1 ] + Eγl−1

Mll′
[All′

2 ] + Eγl

Mll′
[Al

3] · Eγl−1

Mll′
[All′

4 +All′

8 ] + Eγl−1

Mll′
[Al

5] · Eγl

Mll′
[All′

6 +All′

7 ]

+
L
∑

l=1

Eγl

Ml0
[Al0

1 ] + Eγl−1

Ml0
[Al0

2 ] + Eγl

Ml0
[Al

3] · Eγl−1

Ml0
[Al0

4 +Al0
8 ] + Eγl−1

Ml0
[Al

5] · Eγl

Ml0
[Al0

6 +Al0
7 ]

+

L′(0)
∑

l′=1

Eγ0

M0l′
[ℓ(P l′ − P l′−1)] + Eγ0

M00
[ℓ(P 0)].

To obtain convergence rate bounds, for each discretization level l ∈ N0, we introduce
the Markov chain Cl = {u(k)}k∈N0 ⊂ R

Jl which is seeded with u(0) ∈ R
Jl and

subsequently generated by the MCMC sampler with the acceptance probability
αJ,l in (4.13) with the parameter choice

(4.16) ∀l ∈ N : J = Jl = ⌈2l/q⌉ .
From (4.4), there are positive constants c1 and c2 such that for every J, l ∈ N holds

∀u ∈ Γb : ΦJ,l(u) ≤ c1 + c2 exp



2
∞
∑

j=1

bj |uj |



 .

We define

κ =

∫

U

exp



−c2 exp(2
∞
∑

j=1

bj |uj |)



 dγb(u).

As shown in [19, Lemma 4.9], κ is strictly positive. Following [19], we define the
probability measure γ̄ by

(4.17) ∀u ∈ Γb : dγ̄(u) =
1

κ
exp(−c2 exp(2

∞
∑

j=1

bj |uj |))dγb(u) .

Then, there exists a constant c > 0 (independent of l) such that

(4.18) sup
u∈Γb

sup
J,l∈N

dγ̄

dγJ,l,δ
(u) ≤ 1

κ
< c <∞ .
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We denote by P γ̄,l the probability measure of the probability space that describes
the randomness of this Markov chain when the initial state u(0) is distributed
arcording to γ̄. Then, for each discretization level l = 1, 2, ..., the chains Cl are
pairwise independent under γ̄. For every fixed discretization level L, we denote
by CL = {C1, C2, . . . , CL} the collection of Markov chains obtained from running
the MCMC sampling procedure with the discretizations at level l = 0, 1, 2, ..., L.
We denote further by PL the product probability measure on the probability space
generated by the collection of these L independent Markov chains. For each fixed
discretization level L, the measure PL describes the law of CL = {Cl}Ll=0:

PL := P γ̄,0 ⊗ P γ̄,1 ⊗ P γ̄,2 ⊗ . . .⊗ P γ̄,L .

Let EL denote the expectation over all realizations of the collection CL of chains
{Cl}Ll=0 with respect to the product measure PL.

With the parameter choice

(4.19)
L′(l) = L− l, Mll′ = 22(L−(l+l′)) for l ≥ 1, l′ ≥ 1,

M0l =Ml0 = 22L/L2, M00 = 22L/L4,

we have the following result.

Theorem 4.7. Assume that the domain D is convex and f ∈ L2(D). Under As-
sumptions 4.1, and A.2 for d = 2, 3, with the choices (4.19) there exists a constant
C(δ) > 0 such that for every L ∈ N holds

(4.20) EL[|Eγδ

[P ]− EMLMCMC
L [P ]|] ≤ C(δ)L22−L .

The total number of degrees of freedom used in running the MLMCMC sampler,
is bounded by O(L22L) for d = 2 and O(23L) for d = 3. Further, with the
availability of a Riesz finite element basis as in 3.5, the expectation of the total
number of floating point operations in the probability space of all the proposals is
bounded by O(Ld−12(d+1/q)L). Denoting the expectation of the total number of de-
grees of freedom which enter in running the Markov chain on all discretization
level by N , the error in (4.20) is bounded by O((logN)3/2N−1/2) for d = 2 and
by O((logN)2N−1/3) for d = 3. The expectation of the total number of float-
ing point operations is bounded by O((logN)−1/(2q)N1+1/(2q)) for d = 2 and by
O((logN)2N1+1/(3q)) for d = 3.

We prove this theorem in Appendix A.
We repeat that the assumption on availability of a Riesz basis in H1

0 (D) can
be weakened, while obtaining the same error vs. work bounds, by resorting to a
probabilistic convergence analysis of multilevel iterative solvers. We refer to [18]
for details.

As for the uniform prior, we can reduce the multiplying logarithmic factor L2

by increasing Mll′ as in Table 1.

Remark 4.8. The MLMCMC method is developed to approximate the expectations
in (4.15). If we use other sampling methods such as HMC or SMC to approxi-
mate these expectations, we can develop corresponding multilevel methods for these
sampling procedures.
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5. Numerical experiment

First we consider an example where the MLMCMC method developed for the
uniform prior case in [21] presented in Section 3.3 fails to approximate the posterior
expectation of problems with the Gaussian prior. We consider the one dimensional
Dirichlet problem in the domain D = (0, 1) where

− d

dx
(K(x, u)

dP

dx
) = f, x ∈ (0, 1)

where P (0) = P (1) = 0. The coefficient

K(x, u) = exp(u sin(4πx))

where u ∼ N(0, 1); and f(x) = 200. The observation is

G(u) =
∫ 1

0

x
dP

dx
dx;

and the quantity of interest is

ℓ(P (u)) =

∫ 1

0

x1.5
dP

dx
(x, u)dx.

The data is generated again by solving the equation exactly for one randomly chosen
realization of u and by generating the noise by the MATLAB random generator.
Here δ = −16.5384. The reference posterior expectation is computed by solving the
equation exactly and by using many Gauss-Hermite quadrature points. The tables
below show the arithmetic average of the errors for 64 runs of the MLMCMC using
independent sampler. In Table 2, we present the error for the MLMCMC sampler
developed for uniform prior measure in [21]. While a few of the 64 runs produce
reasonable approximations for the posterior expectation, the table shows that in
general the method does not converge. In Table 3, we present the average error of
64 runs of the MLMCMC sampler developed in Section 4. The results clearly shows
that the MLMCMC method for Gaussian prior converges as proved theoretically.
Indeed, the slope of the best fit straightline is 0.95 which is in agreement with the
theory.

Mesh-Level (L) Average MLMCMC error
8 2.77959E+23
9 1.96933E+46
10 1683671.3
11 2.8192E+19
12 3.29498E+32
13 2.89131E+41

Table 2. MLMCMC error from using MLMCMC sampler devel-
oped in [21], recapitulated in Section 3

Now we considier linear, elliptic PDEs in the domain D = (0, 1) × (0, 1) with
periodic boundary condition, and with a coefficient of the log-normal class with the
Gaussian prior probability measure. The theory developed above holds for periodic
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Mesh-Level (L) Average MLMCMC error
8 1.72670013
9 1.05627325
10 0.5178982
11 0.4255921
12 0.11905266
13 0.06412478

Table 3. MLMCMC error from using new MLMCMC sampler
developed for Gaussian prior in Section 4

boundary condition. The advantage of considering the periodic boundary condition
is that the forward equation can be solved with very high accuracy by the Fourier
collocation method. For u ∈ R, we consider the parametric forward equation

−∇ · (K(x, u)∇P (x))) = f(x) for x ∈ D,

with

K(x, u) = eu(sin(2πx1)+sin(2πx2)), and f(x) = 200 (sin(2πx1) + sin(2πx2))

with x = (x1, x2) ∈ D. The forward observation functional is

G(u) =
∫

D

x1
∂P

∂x1
(u) + x2

∂P

∂x2
(u)dx;

and the quantity of interest is

ℓ(P (u)) =

∫

D

x1.51

∂P

∂x1
(u) + x1.52

∂P

∂x2
(u)dx.

The data is generated by choosing randomly a realization of u by Matlab ran-
dom generator. A numerical value of the centered gaussian observation noise ϑ is
generated randomly by Matlab random number generator. Here the noisy observa-
tion δ = −5.8315 (which was randomly drawn) was used. To compute a reference
posterior expectation, we compute

E
ρδ

[ℓ(P )] =

∫ ∞

−∞
ℓ (P (u)) dρδ(u) =

∫ ∞

−∞
ℓ (P (u)) exp

(

−1

2
|δ −G(u)|2

)

dρ(u)

using 1200 Gauss-Hermite quadrature points. At each quadrature point, the for-
ward equation is solved by a Fourier collocation method with 1024 collocation
points.

First we present the numerical experiments with the independence sampler. In
the figures below, we plot the arithmetic average of the absolute errors of 64 runs
of the MLMCMC approximation versus the finest resolution meshwidth 2−L.

In Figure 1, we plot the error versus the meshsize 2−L for the case where α in
Table 1 equals 0. The gradient of the best fit straight line is 0.9312. In Figure 2,
we plot the MLMCMC error versus the meshwidth 2−L for α = 2. The gradient of
the best fit straight line is 0.93257. Similarly, for α = 3 and α = 4, the MLMCMC
error versus 2−L is plotted in in Figures 3 and 4 with the gradient of the best fit
straight line is 1.0072 and 1.0804 respectively.

We now present the results for the MLMCMC method with the pCN sampler

v(k) =
√

1− β2u(k) + βξ,
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where ξ ∼ N(0, 1) for different values of β. First for β = 1/
√
2, we plot the

MLMCMC error versus the meshwidth 2−L for α = 0, 2, 3 and 4 in Figures 5, 6,
7 and 8 respectively. The slope of the least-squares fit straight lines are 0.73977,
1.0392, 1.0111 and 0.99257 respectively. We see that except when α = 0 (in which
case the method slightly underperforms possibly due to the large L2 multiplying
factor in the error bound), the MLMCMC using the pCN sampler performs as

expected from our theoretical results. For β = 1/
√
10, we plot the results for

α = 0, 2, 3 and 4 in Figures 9, 10, 11 and 12, respectively. The slopes of the
best fit straight lines in the error plots are 0.44129, 0.97061, 0.9058 and 0.92827,
respectively. Again when α = 0 the convergence rate is inferior to the optimal rate
O(2−L) due to the large multiplying factor L2 in the error, but for other values of α,
the observed convergence rate essentially corresponds to the rates in our theorems.

To test the CPU time performance of the method, we record below in tables
4 and 5 the average CPU time for 5 different runs of the MLMCMC for different
values of L (corresponding to the finest meshwidth O(2−L)) for the independence
sampler. The CPU time behaves like O(22L) which is essentially optimal. We
obtained similar results for the pCN sampler.

Next we consider the problem where logK is a stationary random filed. We
can sample the values of the coefficients at all the FE nodes by using circulant
embedding. We consider

−∇ · (K(x)∇P (x)) = cos(2πx1) sin(2πx2), x = (x1, x2) ∈ D = (0, 1)× (0, 1),

P (0, x2) = 0, P (1, x2) = 1,
∂P

∂x2
(x1, 0) = 0,

∂P

∂x2
(x1, 1) = 0.(5.1)

To denote the dependence of the solution on the coefficient K, we denote it also as
P (K). We assume that

K = exp (Z)

where Z is a GRF with mean µ = 0 and with covariance function given by

C(x, y) = exp
(

− |x− y|2
)

, x, y ∈ D .

Here | · | denotes the Euclidean norm. The observation is

G (K) =

∫

D

(0.5− x1)
2 ∂P

∂x1
(K) + (0.5− x2)

2 ∂P

∂x2
(K)dx

and the quantity of interest is

ℓ (P (K)) =

∫

D

P (x)dx.

Following Graham et al. [16], we consider the map ρ : D → D given by ρ(x) =
(1 − x1, 1 − x2). Let Kρ(x) = K(ρ(x)) and Pρ(x) = 1 − P (ρ(x))). Then Pρ is the
solution of problem (5.1) with coefficient K = Kρ. Further

G(K) = G(Kρ).

As K and Kρ define GRFs with the same mean and with homogeneous covariance,
they have the same probability law, which is the prior γ on the space U of continuous
functions. Its law is invariant under the map K → Kρ. We have

Z =

∫

U

exp

(

−1

2
|δ − G(K)|2

)

dγ(K) =

∫

U

exp

(

−1

2
|δ − G(Kρ)|2

)

dγ(Kρ).
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Thus the posterior expectation is

E
γδ

[ℓ(P (K))] =
1

Z

∫

U

ℓ(P (K)) exp

(

−1

2
|δ − G(K)|2

)

dγ(K).

As
∫

D

P (x)dx =

∫

D

P (ρ(x))dx,

and G(K) = G(Kρ), we have that

E
γδ

[ℓ(P (K))] =
1

Z

∫

U

(1− ℓ(P (Kρ)) exp

(

−1

2
|δ − G(Kρ)|2

)

dγ(K).

For any δ, ρδ is invariant under the mapping that maps K to Kρ. Therefore

E
γδ

[ℓ(P (K))] = 1− E
γδ

[ℓ(P (K))]

so
E
γδ

[ℓ(P (K))] = 0.5.

In Figure 13, we plot the error of Eγδ

[ℓ(P (K))] approximated by the MLMCMC
method. The stationary GRF is numerically sampled by circulant embedding (see,
[12], [16]) to generate the samples for the nodes of the finite element mesh in D.
Here we choose α = 3. The slope of the best fit straight line in the error convergence
plot is 0.910. The MLMCMC error plotted is the arithmetic average of the errors
of 64 independent runs of MLMCMC. In Figure 14, we plot the MLMCMC error
for the pCN sampling method where β is chosen as 1/

√
2 and α is also chosen as

3. The slope of the best fit straight line is 0.912. Again, the error plotted is the
arithmetic average of the errors of 64 independent runs of the MLMCMC.
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Figure 1. Independence sampler, α = 0
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Figure 2. Independence sampler, α = 2
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Figure 3. Independence sampler, α = 3
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Figure 4. Independence sampler, α = 4
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Figure 5. pCN sampler, β = 1√
2
, α = 0
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Figure 6. pCN sampler, β = 1√
2
, α = 2
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Figure 7. pCN sampler, β = 1√
2
, α = 3

6. Conclusions

We proposed and analyzed a multi-level MCMC algorithm for numerical ap-
proximation of Bayesian inverse problems for linear, scalar elliptic PDEs with log-
gaussian diffusion coefficient. Our convergence rate results and our results on ε-
complexity are established under Assumption 2.6. In particular, and distinct from
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Figure 8. pCN sampler, β = 1√
2
, α = 4
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Figure 9. pCN sampler, β = 1√
10
, α = 0

other, recent work, such as [28] (Assumption A4, and Appendix), [4], [3], our proofs
did not require the parametric diffusion coefficient K(·, u) in (2.12) to be bounded
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Figure 10. pCN sampler, β = 1√
10
, α = 2
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Figure 11. pCN, β = 1√
10
, α = 3

away from zero. This lack of uniform lower bound required, in turn, essential mod-
ifications in the MLMCMC sampling algorithm, which led to a novel MLMCMC
computational strategy, under gaussian prior. Numerical experiments provided
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Figure 12. pCN, β = 1√
10
, α = 4

Mesh-Level (L) Mean CPU time
2 0.052
3 0.067
4 0.105
5 0.256
6 0.767
7 2.387
8 8.863
9 35.467
10 146.463

Table 4. CPU time for α = 0

Mesh-Level (L) Mean CPU time
2 0.046
3 0.088
4 0.342
5 1.512
6 6.321
7 27.256
8 115.612
9 490.272
10 2097.376

Table 5. CPU time for α = 2
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Figure 13. MLMCMC error for example (5.1): Independence
sampler, α = 3
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Figure 14. MLMCMC error for example (5.1): pCN sampler,
β = 1√

2
, α = 3
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strong indication that the proposed modifications in the MLMCMC sampling strat-
egy are, indeed, necessary to ensure convergence of the MLMCMC process. The
proposed MLMCMC-FEM method achieved essentially optimal error vs. work rela-
tion. The novel truncation argument (cf. Eqn. (4.14)) controlling level differences
in the MLMCMC sampler will also allow mathematical convergence analyses of
multilevel versions of the HMC and SMC algorithms for Bayesian PDE inversion
under gaussian prior, under the weak Assumption 2.6, cp. Remark 4.8.
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Appendix A.

We prove Theorem 4.7 in this Appendix. To perform the error analysis of the
MLMCMC approximation we decompose the error into three terms as follows.

Proposition A.1. We have

(A.1) E
γδ

[ℓ(P )]− EMLMCMC
L [ℓ(P )] = IL + IIL + IIIL

where

IL := E
γδ

[ℓ(P )]− E
γL

[ℓ(P )],

IIL =

L
∑

l=1

(Eγl − E
γl−1

)[ℓ(P )− ℓ(PL′(l))] + E
γ0

[ℓ(P )− ℓ(PL′(0))]

and

IIIL =
L
∑

l=1

L′(l)
∑

l′=1

E
γl

[All′

1 ] + E
γl−1

[All′

2 ] + E
γl

[Al
3] · Eγl−1

[All′

4 +All′

8 ] + E
γl−1

[Al
5] · Eγl

[All′

6 +All′

7 ]

+

L
∑

l=1

E
γl

[Al0
1 ] + E

γl−1

[Al0
2 ] + E

γl

[Al
3] · Eγl−1

[Al0
4 +Al0

8 ] + E
γl−1

[Al
5] · Eγl

[Al0
6 +Al0

7 ]

+

L′(0)
∑

l′=1

E
γ0

[ℓ(P l′ − P l′−1)] + E
γ0

[ℓ(P 0)]

−EMLMCMC
L [ℓ(P )].

Proof From equation (3.8) we have
(A.2)

E
γδ

[ℓ(P )]− E
γL

[ℓ(P )] = E
γδ

[ℓ(P )]−
L
∑

l=1

(

E
γl

[ℓ(P )]− E
γl−1

[ℓ(P )]
)

− E
γ0

[ℓ(P )] .
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It follows that

E
γδ

[ℓ(P )]− E
γL

[ℓ(P )] = E
γδ

[ℓ(P )]

−
L
∑

l=1

(

E
γl

[ℓ(PL′(l))]− E
γl−1

[ℓ(PL′(l))]
)

− E
γ0

[ℓ(PL′(0))]− IIL .

Rearranging and using (3.10) gives

E
γδ

[ℓ(P )] = IL + IIL +

L
∑

l=1

(

E
γl − E

γl−1
)

[ℓ(PL′(l))] + E
γ0

[ℓ(PL′(0))]

= IL + IIL +

L
∑

l=1

L′(l)
∑

l′=1

(

E
γl − E

γl−1
)

[ℓ(P l′)− ℓ(P l′−1)]

+E
γ0

[ℓ(P 0)] +

L
∑

l=1

(Eγl − E
γl−1

)[ℓ(P 0)]

+

L′(0)
∑

l′=1

E
γ0

[ℓ(P l′)− ℓ(P l′−1)] .

We then get the conclusion.�
To prove Theorem 4.7, we work under the following assumption of geometric

ergodicity. We will discuss sufficient conditions for the validity of this assumption
in Appendix B. Let E γ̄,l denote the expectation with respect to the probability
space generated by the MCMC process with the acceptance probability defined in
(2.9), where Φ is replaced by the potential obtained from the FE approximation
(4.10) of the forward problem, with the initial sample u(0) distributed according to
the probability measure γ̄ defined in (4.17).

Assumption A.2. For each l and l′ in N, we denote by

(A.3) V ll′(u) = exp



11
∞
∑

j=1

(bj + b̄j)|uj |+
1

ε

∑

j>Jl−1

bj |uj |+
1

ε′

∑

j′>Jl′−1

bj′ |uj′ |





where ε =
∑

j>Jl−1
bj and ε′ =

∑

j>Jl′−1
bj. Then if g : Γb → R is a function such

that |g(u)| ≤ V ll′(u) for every u ∈ Γb, there exists C > 0 independent of l such that
for every M ∈ N holds

(

E γ̄,l
[∣

∣

∣E
γl

[g]− Eγl

M [g]
∣

∣

∣

]2
)1/2

≤ CM−1/2 .

Remark A.3 (“Finite-dimensional noise case”). Assume that the expansion in
(2.12) has a-priori only a finite number J of random parameters uj, i.e.

K(·, u) = K∗(·) + exp



K̄(·) +
J
∑

j=1

ujψj(·)





Then we can choose V ll′ as

(A.4) V ll′(u) = exp



11

J
∑

j=1

(bj + b̄j)|uj |



 .
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Proof of Theorem 4.7 We derive an error bound by estimating the three terms
IL, IIL and IIIL in the error (A.1) separately. Throughout we choose Jl = 2⌈l/q⌉.
For the first term IL, from [33], we have

|(Eγδ − E
γL

)[ℓ(P )]| ≤ 2
(

E
γδ

(ℓ(P )2) + E
γL

(ℓ(P )2)
)1/2

dHell(γ
δ, γL).

As the normalizing constant in (4.11) is uniformly (with respect to J, l ∈ N) bounded

from below away from zero, the expections EγL

(ℓ(P )2) are uniformly bounded for
all L ∈ N. Then, there exists a constant c > 0 such that

∀L ∈ N : |(Eγδ − E
γL

)[ℓ(P )]| ≤ c2−L .

We now bound the term IIL. To this end, we note that

|IIL| ≤
L
∑

l=1

2
(

E
γl

(ℓ(P − PL′(l))2) + E
γl−1

(ℓ(P − PL′(l))2)
)1/2

dHell(γ
l, γl−1)

+cEγb [|ℓ(P − PL′(0))|].
From (4.7) we have that

E
γl

(ℓ(P − P JL′(l))2) ≤ cEγ(ℓ(P − PL′(l))2) ≤ c2−2L′(l),

E
γl−1

(ℓ(P − PL′(l))2) ≤ cEγ(ℓ(P − P JL′(l))2) ≤ c2−2L′(l),

and
E
γb

[|ℓ(P − PL′(l0))|] ≤ c2−L′(0).

From Proposition 4.5, there exists a constant c > 0 such that for all l ∈ N

dHell(γ
l, γl−1) ≤ c2−l.

Therefore

|IIL| ≤ c

L
∑

l=0

2−(l+L′(l))

We now estimate IIIL. Using inequalities 1 + x ≤ exp(x) and x ≤ ε exp(x/ε) for
x, ε > 0, we have from (4.12) that there exists a constant C > 0 such that, for every
u ∈ Γb (all sums involving b̄j in the bounds are finite) and for every l, l′, J holds

|ℓ(P Jl′ ,l
′

(u)− P Jl′−1,l
′−1(u))|

≤ C exp



5

∞
∑

j=1

bj |uj |







2−l′(1 +

Jl′
∑

j=1

b̄j |uj |) +
∞
∑

j=Jl′−1+1

bj |uj |





≤ C exp



5
∞
∑

j=1

bj |uj |







2−l′ exp(

Jl′
∑

j=1

b̄j |uj |) + ε′ exp(
1

ε′

∑

j>Jl′−1

bj |uj |)





≤ C2−l′ exp



5
∞
∑

j=1

bj |uj |+
Jl′
∑

j=1

b̄j |uj |+
1

ε′

∑

j>Jl′−1

bj |uj |



(A.5)

where ε′ = B
∑

j>Jl′−1
bj is as in the definition of V ll′ in (A.3). Furthermore, for

every u ∈ Γb,

|1− exp(ΦJl,l(u; δ)− ΦJl−1,l−1(u; δ))|
≤ |ΦJl,l(u; δ)− ΦJl−1,l−1(u; δ)|(1 + exp(ΦJl,l(u; δ)− ΦJl−1,l−1(u; δ))) .
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Therefore

|1− exp(ΦJl,l(u; δ)− ΦJl−1,l−1(u; δ))|I l(u) ≤ 2|ΦJl,l(u; δ)− ΦJl−1,l−1(u; δ)|.
Thus, there exists a constant C > 0 such that for every u ∈ Γb and for every
l, l′, J ∈ N holds

|1− exp(ΦJl,l(u; δ)− ΦJl−1,l−1(u; δ))|I l(u)

≤ C exp



6

∞
∑

j=1

bj |uj |







2−l(1 +

Jl
∑

j=1

b̄j |uj |) +
∞
∑

j=Jl−1+1

bj |uj |





≤ C exp



6

∞
∑

j=1

bj |uj |







2−l exp(

Jl
∑

j=1

b̄j |uj |) + ε exp(
1

ε

∑

j>Jl−1

bj |uj |)





≤ C2−l exp



6

∞
∑

j=1

bj |uj |+
Jl
∑

j=1

b̄j |uj |+
1

ε

∑

j>Jl−1

bj |uj |



 .(A.6)

where we define ε := B
∑

j>Jl−1
bj . We thus obtain a constant c > 0 such that, for

every u ∈ Γb and for every l, l′, J ∈ N holds

|All′

1 (u)|
= |1− exp(ΦJl,l(u; δ)− ΦJl−1,l−1(u; δ))|(ℓ(P Jl′ ,l

′

(u))− ℓ(P Jl′−1,l
′−1(u)))I l(u)

≤ c2−(l+l′) exp



11

∞
∑

j=1

bj |uj |+ 2

JL
∑

j=1

b̄j |uj |+
1

ε

∑

j>Jl−1

bj |uj |+
1

ε′

∑

j>Jl′−1

bj |uj |





≤ c2−(l+l′)V ll′(u).(A.7)

From Assumption A.2, this implies the existence of a constant C > 0 such that, for
every l, l′ ∈ N,

EL

[∣

∣

∣E
γl

[All′

1 ]− Eγl

Mll′
[All′

1 ]
∣

∣

∣

]

≤ CM
−1/2
ll′ 2−(l+l′).

Similarly, for every u ∈ Γb we have |All′

2 (u)| ≤ 2−(l+l′)V ll′(u). Therefore, there
is a constant C > 0 such that for every u ∈ Γb and for every l, l′ ∈ N holds

EL

[∣

∣

∣
E
γl

[All′

2 ]− Eγl

Mll′
[All′

2 ]
∣

∣

∣

]

≤ CM
−1/2
ll′ 2−(l+l′).

To estimate the term |Eγl

[Al
3] · Eγl−1

[All′

4 ]− Eγl

Mll′
[Al

3] · Eγl−1

Mll′
[All′

4 ]|, we observe

EL

[∣

∣

∣E
γl

[Al
3] · Eγl−1

[All′

4 ]− Eγl

Mll′
[Al

3] · El−1
Mll′

[All′

4 ]
∣

∣

∣

]

≤ EL

[∣

∣

∣

(

E
γl

[Al
3]− Eγl

Mll′
[Al

3]
)

· Eγl−1

[|All′

4 |]
∣

∣

∣

]

+EL

[∣

∣

∣

(

E
γl−1

[All′

4 ]− Eγl−1

Mll′
[All′

4 ]
)

· Eγl

Mll′
[Al

3]
∣

∣

∣

]

≤ EL

[

(

E
γl

[Al
3]− Eγl

Mll′
[Al

3]
)2
]1/2

· Eγl−1

[|All′

4 |]

+EL

[

(

E
γl−1

[All′

4 ]− Eγl−1

Mll′
[All′

4 ]
)2
]1/2

·EL

[

Eγl

Mll′
[Al

3]
2
]1/2

.

From (A.5) and (A.6), for every u ∈ Γb and for every l ∈ N holds |Al
3(u)| ≤

c2−lV ll′(u) and |All′

4 (u)| ≤ c2−l′V ll′(u). The geometric ergodicity, Assumption
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A.2, then implies that there exists a constant c > 0 such that for every l, l′ ∈ N

holds

EL

[∣

∣

∣E
γl

[Al
3] · Eγl−1

[All′

4 ]− Eγl

Mll′
[Al

3] · El−1
Mll′

[All′

4 ]
∣

∣

∣

]

≤ cM
−1/2
ll 2−(l+l′).

The remaining expectations in EMLMCMC
L [ℓ(P )] − IIIL are similarly estimated,

resulting in the same bound. We thus have proved
(A.8)

EL[|IIIL|] ≤ c

L
∑

l=1

L′(l)
∑

l′=1

M
−1/2
ll′ 2−(l+l′)+c

L
∑

l=1

M
−1/2
l0 2−l+c

L′(l0)
∑

l′=0

M
−1/2
0l′ 2−l′+cM

−1/2
00 .

We choose

L′(l) := L− l, and Mll′ := 22(L−(l+l′)) for l ≥ 1, l′ ≥ 1,(A.9)

Ml0 =M0l = 22(L−l)/L2 and M00 = 22L/L4.

We then have

EL[|IIIL|] ≤ c

L
∑

l=0

(L− l)2−L + cL22−L + cL22−L ≤ CL22−L .

This bound is, up to logarithmic terms, of the same order as the discretization error
of one instance of the forward problem on the finest mesh level L.

Next, we estimate the total number of degrees of freedom and floating point
operations required to realize the MLMCMC.

For each proposal v(k), the number of degrees of freedom for computing Φl(v(k)) is
O(2dl). The total number of degrees of freedom required for running the MLMCMC
at discretization level L is bounded by

.

L
∑

l=1

L′(l)
∑

l′=0

Mll′(2
dl + 2dl

′

) +

L′(0)
∑

l′=0

M0l′2
dl′

= 22L
L
∑

l=0

L′(l)
∑

l′=0

(

2(d−2)l · 2−2l′ + 2−2l · 2(d−2)l′
)

+ 22L
L′(0)
∑

l′=0

2(d−2)l′

. 22L

(

L
∑

l=0

2(d−2)l +
L
∑

l=0

2−2l
L−l
∑

l′=0

2(d−2)l′ +
L
∑

l′=0

2(d−2)l′

)

.

For space dimension d = 2, the number of degrees of freedom in the MLMCMC at
discretization level L is bounded by

. 22L

(

L+

L
∑

l=0

2−2l(L− l)

)

. L22L.

For d = 3, it is bounded by

. 22L

(

2L +

L
∑

l=0

2−2l2L−l

)

. 22L

(

2L +

L
∑

l=0

2L2−3l

)

. 23L .

From Lemma 4.3, the number of iterations to solve the system in (4.3) is

j∗(v) ≥ C
(

log |h|+ | log Ǩ(v)|
)

√

K̂(v)

Ǩ(v)
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where h denotes the FE meshwidth. With h = 2−l and with the truncation level
Jl = ⌈2l/q⌉, the total work for performing one step of the MCMC process for solving
the linear system for a proposal v ∈ Γb is bounded by

. ld−12l/q+ld + (K̂(v))1/2(Ǩ(v))−1/2(1 + | log Ǩ(v)|)ld2ld.
The expectation of the overall number of floating point operations required to
compute ΦJl,l(v(k); δ) is bounded by

. ld−12l/q+ld + ld2ld . ld−12l/q+ld.

Therefore, the expectation of the total number of floating point operations to run
one step of the MLMCMC-FEM at discretization level l is not larger than

. ld−12l/q+dl + l′
d−1

2l
′/q+dl′ .

With the choice (A.9) for the number of MCMC steps, the total number of floating
point operations required to evaluate the MLMCMC estimator at discretization
level L is bounded by

.

L
∑

l=0

L′(l)
∑

l′=0

Mll′(l
d−12l/q+dl + l′

d−1
2l

′/q+dl′) +

L′(0)
∑

l′=0

M0l′(l
′d−1

2l
′/q+dl′)

. 22L
L
∑

l=0

L′(l)
∑

l′=0

(ld−12(d−2+1/q)l2−2l′ + l′d−12(d−2+1/q)l′2−2l) + 22L
L′(l0)
∑

l′=0

l′
d−1

2(d−2+1/q)l′

. Ld−122L

(

L
∑

l=0

2(d−2+1/q)l +

L
∑

l=0

2(d−2+1/q)(L−l)2−2l

)

. Ld−12(d+1/q)L.

�

Appendix B.

We justify Assumption A.2 in this appendix. We first consider the case of the
independence sampler. We then address the case of pCN sampling method.

Lemma B.1. For the independence MCMC sampler with acceptance probability
αJ,l as defined in (4.13), for the equation with the J-term truncated, parametric co-
efficient (4.1) and at discretization level l, the normalizing constant ZJ,l is bounded
from below away from zero, uniformly for all J and l.

Proof From (4.4) and (3.6), we have

ΦJ,l(u, δ) ≤ c(|δ|2 + |GJ,l(u)|2) ≤ c(|δ|2 + c exp(

J
∑

j=J

(2bj |uj |))).

For simplicity, we denote the restriction of γ and γb on R
J as γ. Therefore

∫

RJ

ΦJ,l(u, δ)dγ(u) < c(δ)

uniformly for all J and l. Thus, for each C > 0

γ({u : ΦJ,l(u; δ) > C}) < c(δ)/C.
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Choosing C sufficiently large,

γ({u : ΦJ,l(u; δ) < C}) > 1− c(δ)/C > c0 > 0.

We have, for every J and l,

ZJ,l =

∫

RJ

exp(−ΦJ,l(v; δ))dγ(v) > exp(−C)(1− c(δ)/C) .

�

Lemma B.2. Let u(j) be the jth draw in the Markov chain generated by the MCMC
independence sampler with the acceptance probability (4.13); let further E γ̄,J,l denote
the expectation with respect to the probability space generated by the Markov chain
with the initial sample u(0) being distributed according to the restriction of γ̄ to R

J ,

still denoted as γ̄. For g ∈ L2(U, γb), let ḡ = g − E
γJ,l

[g]. We have

E γ̄,J,l





∣

∣

∣

∣

∣

1

M

M
∑

k=1

ḡ(u(k))

∣

∣

∣

∣

∣

2


 ≤ cEγb [|g|2]

where c does not depend on g, J and l.

Proof Adopting the notation of [32], we denote for j, l ∈ N and for arbitrary
u ∈ R

J

wJ,l(u) =
dγJ,l,δ(u)

dγ(u)
,

and define, for each w ∈ R+,

(B.1) γ̃J,l,δ(w) = γJ,l,δ({u : wJ,l(u) ≤ w}) .
For conciseness we will drop the superscript δ in γJ,l,δ and γ̃J,l,δ in the remainder
of the proof.

Let pj(u, ·) be the jth iterate of the transition kernel of the Markov chain. When
the current state is u, the probability that a draw is rejected equals

(B.2)

∫

{v:wJ,l(v)≤wJ,l(u)}

{

1− wJ,l(v)

wJ,l(u)

}

dγ(v).

This probability only depends on wJ,l(u). Following [32], we denote this probability
as λJ,l(w) when w = wJ,l(u) ∈ R+.

From Theorem 1 of [32], we have

pj(u, dv) = Tj(w
J,l(u) ∨ wJ,l(v))γJ,l(dv) + λJ,l(wJ,l(u))jδu(dv),

where, for arbitrary w ∈ R+ and j ∈ N, we defined

Tj(w) = 1− λJ,l(w)j

γ̃J,l(w)
+

∫

t>w

λJ,l(t)j

(γ̃J,l(t))2
dγ̃J,l(t) .

We then have

pj(u(0), dv)− γJ,l(dv) =

(

∫

t>wJ,l(u(0))∨wJ,l(v)

(λJ,l(t))j

γ̃J,l(t)γ̃J,l(t)
dγ̃J,l(t)

−λ
J,l(wJ,l(u(0)) ∨ wJ,l(v))j

γ̃J,l(wJ,l(u(0)) ∨ wJ,l(v))

)

γJ,l(dv) + (λJ,l(wJ,l(u(0))))jδu(0)(dv).

As wJ,l(u) = 1
ZJ,l exp(−ΦJ,l(u; δ)) ≤ 1

ZJ,l ≤ a. Here, 1/a denotes the uniform lower

bound of ZJ,l proved in the previous lemma, for w ≥ a, γ̃J,l(w) = 1. As shown in
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[32, Section 3] d
dtλ

J,l(t) = γ̃J,l(t)/t2. In particular, λJ,l(t) is increasing. Moreover,

as wJ,l(u) ≤ a, when t ≥ a, λJ,l(t) = 1 − 1/t. Thus λJ,l(wJ,l(u(0))) ≤ λJ,l(a) =
1− 1/a. Moreover,

∣

∣

∣

∣

∫

RJ

(λJ,l(wJ,l(u(0))))jg(v)δu(0)(dv)

∣

∣

∣

∣

≤
(

1− 1

a

)j

|g(u(0))|.

Therefore
∫

t>wJ,l(u(0))∨wJ,l(v)

(λJ,l(t))j

γ̃J,l(t)γ̃J,l(t)
dγ̃J,l(t)

=

∫ a

wJ,l(u(0))∨wJ,l(v)

(λJ,l(t))j

γ̃J,l(t)γ̃J,l(t)
dγ̃J,l(t)

=

∫ a

wJ,l(u(0))∨wJ,l(v)

(λJ,l(t))jd(− 1

γ̃J,l(t)
)

= − (λJ,l(t))j

γ̃J,l(t)

∣

∣

∣

∣

a

wJ,l(u(0))∨wJ,l(v)

+

∫ a

wJ,l(u(0))∨wJ,l(v)

1

γ̃J,l(t)
d(λJ,l(t))j .

Therefore
∫ a

wJ,l(u(0))∨wJ,l(v)

(λJ,l(t))j

γ̃J,l(t)γ̃J,l(t)
dγ̃J,l(t) = −

(

1− 1

a

)j

+
λJ,l(wJ,l(u(0)) ∨ wJ,l(v))j

γ̃J,l(wJ,l(u(0)) ∨ wJ,l(v))

+

∫ a

wJ,l(u(0))∨wJ,l(v)

j(λJ,l(t))j−1

t2
dt.

From this
∫

t>wJ,l(u(0))∨wJ,l(v)

(λJ,l(t))j

γ̃J,l(t)γ̃J,l(t)
dγ̃J,l(t)− λJ,l(wJ,l(u(0)) ∨ wJ,l(v))j

γ̃J,l(wJ,l(u(0)) ∨ wJ,l(v))

= −
(

1− 1

a

)j

+

∫ a

wJ,l(u(0))∨wJ,l(v)

j(λJ,l(t))j−1

t2
dt.

As dγJ,l(v) = wJ,l(v)dγ(v) and wJ,l(v) ≤ a uniformly for all J and l, there exists a
constant c > 0 such that for every J and l

∫

RJ

(

∫

t>wJ,l(u(0))∨wJ,l(v)

(λJ,l(t))j

γ̃J,l(t)γ̃J,l(v)
dγ̃J,l(t)− (λJ,l(wJ,l(u(0)) ∨ wJ,l(v))j

γ̃J,l(wJ,l(u(0)) ∨ wJ,l(v))

)

g(v)γJ,l(dv)

≤
(

1− 1

a

)j ∫

U

|g(v)|γJ,l(dv) + j

(

1− 1

a

)j−1 ∫

RJ

1

wJ,l(u(0)) ∨ wJ,l(v)
|g(v)|dγJ,l(v)

≤ cj

(

1− 1

a

)j−1

E
γ [|g|] .

This implies

∣

∣

∣(Epj(u(0),·) − E
γJ,l

)[g]
∣

∣

∣ ≤
(

1− 1

a

)j

|g(u(0))|+ cj

(

1− 1

a

)j−1

E
γ [|g|].

Let EγJ,l

be the expectation with respect to the MCMC process with the initial
sample distributed according to γJ,l. Let further Eu(0) denote the expectation with
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respect to the MCMC process starting at u(0). Then we calculate, following [26],

1

M
EγJ,l

[∣

∣

∣

M
∑

k=1

ḡ(u(k))
∣

∣

∣

2]

= E
γJ,l

[ḡ(u(0))2] + 2
1

M

M
∑

k=1

M
∑

j=k+1

EγJ,l

[ḡ(u(k))ḡ(u(j))]

= E
γJ,l

[ḡ(u(0))2] + 2
1

M

M−1
∑

k=0

M−k
∑

j=1

EγJ,l

[ḡ(u(0))ḡ(u(j))]

= E
γJ,l

[ḡ(u(0))2] + 2
1

M

M−1
∑

k=0

M−k
∑

j=1

E
γJ,l

[ḡ(u(0))Eu(0) [ḡ(u(j))]]

≤ E
γJ,l

[ḡ(u(0))2]

+2
1

M

M−1
∑

k=0

M−k
∑

j=1

E
γJ,l

[|ḡ(u(0))||Eu(0) [g(u(j))]− E
γJ,l

[g]|]

≤ E
γJ,l

[ḡ(u(0))2]

+2
1

M

M−1
∑

k=0

M−k
∑

j=1

E
γJ,l

[

|ḡ(u(0))|
(

(

1− 1

a

)j

|g(u(0))|+ cj

(

1− 1

a

)j−1

E
γJ,l

[|g|]
)]

≤ cEγJ,l

[g2] + c(EγJ,l

[|g|])2
≤ cEγ [g2].

From (4.18), we get the conclusion. �

Before justifying Assumption A.2, we recall the following result.

Lemma B.3. [19, Appendix] For any t > 0
∫ ∞

−∞
exp(−z2/2 + |z|t) dz√

2π
≤ exp(t2/2) exp(t

√

2/π).

Proposition B.4. For the independence sampler with the acceptance probability
(4.13), Assumption A.2 holds.

Proof It suffices to show that Eγ [V ll′(·)2] is uniformly bounded with respect to
l and l′. We may assume that Jl−1 ≤ Jl′−1 (the argument in the case Jl−1 > Jl′−1

is similar). From Lemma B.3, we have

E
γ [(V ll′)2]

≤ exp



a2
Jl−1
∑

j=1

(bj + b̄j)
2 +

Jl′−1
∑

j=Jl−1+1

(

a(bj + b̄j) +
1

ε
bj

)2

+
∞
∑

j=Jl′−1+1

(

a(bj + b̄j) +
1

ε
bj +

1

ε′
bj

)2




· exp







a

Jl−1
∑

j=1

(bj + b̄j) +

Jl′−1
∑

j=Jl−1+1

(

a(bj + b̄j) +
1

ε
bj

)

+

∞
∑

j=Jl′−1+1

(

a(bj + b̄j) +
1

ε
bj +

1

ε′
bj

)





√

2

π





≤ exp



c

∞
∑

j=1

(b2j + b̄2j + bj + b̄j) + c
1

ε

∑

j>Jl−1

bj + c
1

ε′

∑

j′>Jl′−1

bj′





which is finite. �
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The preceding analysis established geometric ergodicity of the independence sam-
pler. For the pCN sampler, the proposal v(k) ∈ R

J is chosen as

v(k) =
√

1− β2u(k) + βξ,

where ξ ∼ N(0, 1) in R
J . Although the growth conditions which are necessary for

the L2
µ spectral gap results of Hairer et al. [17] to hold have not been verified for

the forward problem with log-gaussian coefficient (4.1), it is quite straightforward
to show that:

Proposition B.5. Assume that the L2
γδ spectral gap result of [17] holds. Then, the

Assumption A.2 on geometric ergodicity holds for the pCN sampler for the forward
problem (2.2) with log-gaussian coefficient (4.1).
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