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Abstract

In this article we establish a new formula for the difference of a test function of the solution of a stochastic
differential equation and of the test function of an It0 process. The introduced formula essentially generalizes
both the classical Alekseev-Grobner formula from the literature on deterministic differential equations as well
as the classical It6 formula from stochastic analysis. The proposed It6-Alekseev-Grébner formula is a powerful
tool for deriving strong approximation rates for perturbations and approximations of stochastic ordinary and
partial differential equations.
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1 Introduction

The linear integration-by-parts formula states in the simpliest case that for all a,b € R, t € [0, 00) it holds that

t t
eat _ ebt _ _/ %(ea(t—s)ebs) ds = / ea(t—s) (CL _ b)ebs ds. (1)
0 0

The nonlinear integration-by-parts formula, which is also referred to as Alekseev-Grobner formula or as nonlinear
variation-of-constants formula, generalizes this relation to nonlinear ordinary differential equations and has been
established in Alekseev [I] and Grébner [1I]. More formally, the Alekseev-Grébner formula (cf., e.g., Hairer et
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al. [13, Theorem 1.14.5)) asserts that for all d € N, T' € (0,00), u € C%'([0,T] x R*, R?), Y € C'([0,T],RY),
and all X = (XZ,)sci0mseioroer € C({(5,1) € [0,T]?: s < ¢} x RELRY) with Vs € [0,T), ¢ € [5,T), « € R%:
X2, =x+ [l p(r, X2,)dr it holds that

X({OT—YT:/OT(%XZTT)( (r,Y;) = 47, ) dr. 2)

Informally speaking, the Alekseev-Grobner formula expresses the global error (the term ng 9 — Yr in @) in

terms of the infinitesimal error (the term u(r,Y,) — d%YT, in (2) which corresponds to the difference of time
derivatives). For this reason, the Alekseev-Grobner formula is a powerful tool for studying perturbations of
ordinary differential equations; see, e.g., Norsett & Wanner [35, Theorem 3|, Lie & Norsett [31, Theorem 1],
Iserles & Soederlind [22], Theorem 1], and Iserles [21, Theorem 3.7].

In this article we generalize the Alekseev-Grobner formula to a stochastic setting and derive the nonlinear
integration-by-parts formula for stochastic differential equations (SDEs). Informally speaking, one key difficulty
in this generalization is that the integrand on the right-hand side of (2)) (and a similar integrand appears in the
stochastic integral in () below) depends both on the past (e.g. the term p(r,Y;)) and on the future (e.g. the
term %Xﬁj 7). This precludes a generalization which is solely based on Ito calculus. In this article we apply
Malliavin calculus and express anticipating stochastic integrals as Skorohod integrals. The following theorem,
Theorem [[1] formulates our main contribution and establishes — what we call — the It6-Alekseev-Grobner
formula.

Theorem 1.1 (It6-Alekseev-Grébner formula). Let d,m,k € N, T, c € (0,00), p € (4,00), ¢ € [0,5-2), £ € RY,
e1 = (1,0,...,0),....,eqg = (0,...,0,1) € R?, let (Q, F,P) be a probability space, let W: [0,T] x Q@ — R™ be a
standard Brownian motion with continuous sample paths, let N' = {A € F: P(A) = 0}, let p: [0,T] x R* — R,
o: [0,T] x RT — R™™ be continuous functions, let X = (X5t sefo,0,0c0,1,zerd: {(s:1) € [0,T)%: s <t} x

% Q — R? be a continuous random field, assume that for all s € [0,T], w € Q it holds that (R? > 2
Xir(w) € RY) € C%(RY,RY), assume that for all w € Q it holds that (%X.‘7T(w) e LORY,RY)) € C([0,T] x
R, L3 (R RY)), assume that for all s € [0,T], = € R? the stochastic process [s,T] x Q 3 (t,w) XZ(w) e RY
is (S(NUS(W, — Wy: r € [s,t])))ie(s 1)-adapted, assume that for all s € [0, T, t € [s,T], x € R? it holds P-a.s.
that

t t
Xsm,t =T+ flu’(r7 Xsm,r) dr + fO'(’f’, Xsm,r) dWT7 (3)

assume that for all s,t € [0,T], x € R? with s <t it holds P-a.s. that Xi(:,;t = X{p, let A,Y: [0,T] x Q — R,
B:[0,T] x Q@ — R™™ pe (SN US(W;: r € [0,1])))sejo,1)-predictable stochastic processes, assume that Y has

continuous sample paths, assume that fOTE[HASH%d + [[Ysllga + 11Bs HHS - Rd)} ds < oo, assume that for all
t € [0,T] it holds P-a.s. that

t t
:€+fAsd3+stdW57 (4)
0 0
assume that
P
B[l (1 35) [+ o (6 x30) <o, 5
s,tselg?T] [,u st Rd+ S| Hs(rRm RY) > (5)
s<t
assume that )
sup E HXXX’; XS TG ‘a_z x| | (6)
rys,t€[0,T] R Lreprd) 07Tl L) (Ra e ’

r<s<t



and let f € C?(RY,RF) satisfy that for all x € R? it holds that

Then
(i)
(it)

f(x
ax { s 1 @)l e oy 1 @) gy b < 1+ ). (7)

the stochastic process (f’(Xg/Cf) %Xﬁp(a(r, Y,) — BT))re[o 1) 18 Skorohod-integrable and

it holds P-a.s. that

T T
X0 — (V) = ({f’ (X)X (1 ¥2) = A) dr 1 1(X)5) 32 XY (010, Y0) = B, ) oW,
d_r
£330 (o Yo Yo = ByIB,T ) (£(05) (X 5 X00) + 1/ (X)) §e X)) (e ) dr:
2,7=1 ’

(8)

Theorem [[1] follows immediately from Theorem B.I] (applied with Fy = &(N), O = R? in the notation of
Theorem [BI]). Here and throughout this article we denote by &(A) the smallest o-algebra generated by
A C P(Q). Theorem [[T] essentially generalizes the following results from the literature:

(i)

(i)

(iii)

Theorem [[T] essentially generalizes the Alekseev-Grobuner formula. More formally, Theorem [[1] (applied
with 0 = 0, B = 0, k¥ = d, = Idga in the notation of Theorem [[T]) implies the Alekseev-Grobner
formula in ([2)) (cf., e.g., Hairer et al. [13] Theorem 1.14.5]) in the case where the solution process is twice
continuously differentiable in the space variable.

Theorem [[1] essentially generalizes the Itd formula. More formally, Theorem [[1] (applied with p = 0,
o = 0 in the notation of Theorem [[T]) implies the It6 formula for It6 processes (cf., e.g., Revuz & Yor [37,
Theorem IV.3.3]) in the case where the It6 process Y, its drift process A, and its diffusion process B satisfy
. T . . X

infpe(s,00) (SuPseio. ) E[I1YellRal + fo ElllAs|Ba + HBSH%S(Rde)] ds) < oco. This moment requirement is
due to the fact that we use the Skorohod integral. An approach with rough path integrals (cf., e.g.,

Hairer & Friz [9]) might be suitable to generalize Theorem [I.T] so that this moment condition would not
be needed.

Theorem [ T]essentially generalizes the Alekseev-Grobner formula in (2) (cf., e.g., Hairer et al. [13], Theorem
1.14.5]) even in the deterministic case (¢ = 0 and B = 0 in the notation of Theorem [[T]) from f = Idga to
general test functions. In Proposition 2] below we prove the Ito-Alekseev-Grébner formula in ([2]) in the
deterministic case with the test function f: R? — R¥ being only in C'(R%, RF) instead of in C?(R%,R*) as
in Theorem [[.T] above. The proof of Proposition 2.1l below is also illustrative to understand the structure
of the It6-Alekseev-Grobner formula in (8]).

Theorem [[T] essentially provides a pathwise version of the well-known weak error expansion (cf., e.g.,
Graham & Talay [10, (7.48) and the last Display on page 182] or related weak error estimates in [38],[8, 39]).
More precisely, in the notation of Theorem [[T] taking expectation of (8]), using that the expectation of the
Skorohod integral vanishes, and exchanging expectations and temporal integrals results in the standard
representation of the weak error E[f (XS/%)] —E[f(Y7)].

Theorem [LTimplies immediately an L?-estimate. For example the L?-norm of the right-hand side of (§) can
be bounded by the triangle inequality. The L?-norm of the Skorohod integral on the right-hand side of (8)) can
then be calculated by applying the It6 isometry for Skorohod integrals (see, e.g., Alos & Nualart [2, Lemma 4]).



Another approach for obtaining L?-estimates is to apply the It6 formula for Skorohod processes to the squared
norm of the right-hand side of (8). However this seems to require additional regularity. To demonstrate the
applicability of Theorem [[LT], we apply Theorem [I1] to the stochastic van-der-Pol oscillator in Section [l below
and obtain in Lemma that the stochastic van-der-Pol oscillator can be approximated with L2-rate %

Theorem [[.T] can be applied to any approximation of an SDE which is an It6 process with respect to the
same Wiener process driving the SDE. Possible applications include, in the notation of Theorem [I.1]

(i) strong convergence rates for time-discrete numerical approzimations of SDEs (e.g., the Euler-Maruyama
approximation with IV € N time discretization steps is given by A; = u(%, Yir) and By = a(%, Yir) for
N N

all t € [EL EIITY ) No N [0, N)),

(ii) strong convergence rates for Galerkin approximations for stochastic evolution equations (SEEs) (choose
Ay = P(u(t,Yy)) and Byu = P(o(t,Y;)u) for all w € R™, ¢t € [0,7] and some suitable projection operator
P ¢ L(R?) where d,m € N; Theorem [Tl is applied to a finite-dimensional approximation of the exact
solution of the SEE of which convergence in probability is known), and

(iii) strong convergence rates for small noise perturbations of solutions of deterministic differential equations
(choose 0 = 0, A; = pu(t,Y;) and By = e6(t,Y;) for all t € [0, T] where &: [0,7] x RY — R¥™ is a suitable
Borel measurable function and where € > 0 is a sufficiently small parameter).

In the literature, nearly all estimates of perturbation errors exploit the popular global monotonicity assumption
which, in the notation of Theorem [[LI] assumes existence of a real number ¢ € R such that for all z,y € RY,
t € [0,77] it holds that

<‘T - yaﬂ(th) - N(t7y)>Rd + %”U(tax) - U(t7y)|’%{S(Rm,Rd) S C”.’,Z' - yH]?Qd (9)

cf. also [I5] and the references therein. We emphasize that many SDEs from the literature do not satisfy ()
and that Theorem [[T] does not require that the global monotonicity assumption is fulfilled.

Our main motivation for the It6-Alekseev-Grobner formula are strong convergence rates for time-discrete
numerical approximations of SEFEs. In the literature, positive strong convergence rates have been established
for SEEs with monotone nonlinearities; see, e.g., [12] 26], 23 4 3| [6, [5, [33], 40] for the case of additive noise
and [34] 32] for the case of multiplicative noise. To the best of our knowledge, strong convergence rates for
time-discrete approximations of SEEs with non-monotone superlinearly growing nonlinearities remain an open
problem. This problem becomes now feasible by applying our perturbation result in Theorem [Tl The details
hereof are deferred to future publications. Summarizing, we believe that Theorem [I.1] is an appropriate tool to
analyze temporal approximations of semilinear SEEs.

A crucial assumption in Theorem [[T] is existence of a solution of the SDE (3] which is twice continuously
differentiable in the starting point since in the proof of Theorem [I.1] we apply It6’s formula for independent
random fields to the random functions R% 3 z — ngT eRt e [0,7]. This assumption is not satisfied in
a number of cases. For example Li & Scheutzow [30] construct a two-dimensional example with smooth and
globally bounded coefficient functions which is not even strongly complete (that is, the exceptional subset of
Q where (3] fails to hold can not be chosen independently of the starting point); cf. also Hairer et al. [14]
Theorem 1.2]. Under suitable assumptions on the coefficients, however, strong completeness and existence of
a solution of (B]) which is continuous in the starting point can be ensured; see, e.g., [7, 41, 29]. Existence of a
solution of (B]) which satisfies the assumptions of Theorem [l is currently known essentially only in the case
of twice continuously differentiable coefficient functions whose derivatives up to second order are bounded; see,
e.g., in Kunita [28, Theorem 1.4.1]. In future research we will generalize this to unbounded twice continuously
differentiable coefficient functions which satisfy certain growth conditions at infinity.

We prove Theorem [[T] as follows. First, we rewrite the left-hand side of equation (&) as telescoping sum;
see (2I) below. Then we apply Itd’s formula to the random functions R 5 2 — XgT e Rt e [0,7] in

4



order to expand the local errors. Thereby we obtain It6 integrals which we rewrite as Skorohod integrals by
applying Proposition [A.8 below. These Skorohod integrals are non-standard since the integrands are in general
not measurable with respect to a Wiener process. For this reason we introduce an extended Skorohod integral
in the appendix. Moreover, the integrands in the It6 integrals are adapted to different filtrations. We apply
Proposition below in order to carefully rewrite the sum of these integrals as a single Skorohod integral.

1.1 Notation

The following notation is used throughout this article. We denote by N and by Ny the sets satisfying that
N = {1,2,3,...} and Ny = NU {0}. For all ¢ € (0,00) let 0°, 8, 5> o> 0-00, 0-(—00), 00® denote the
extended real numbers 00 = 1, g =0,5§=00, 5F =-00,0-00=0,0-(-00) =0, and 00 = co. For all
T € [0,00) let Ap C [0,7]? denote the subset with the property that Ap = {(s,t) € [0,7]?: s < t} and denote
by T/N the set T/N = {T/n: n € N}. For all h € (0,00), r € [0,00) let [r]p, [r|n, [7]o,[r]o € [0,00) be the
real numbers with the properties that [r|, = inf{nh € [r,c0): n € Ny}, |r]|n = sup{nh € [0,7]: n € Ny},
[1]o =, and |r]o = r. For a real vector space V and a subset S C V let span(S) C V denote the set with the
property that span(S) = {3 rivi: n € Ny, 7, € Ryvg, ..o v, € VL For all (s,t) € Ar let A be the
Lebesgue-measure restricted to the Borel—sigma—algebra of [s,t]. For all d € N, x € R? we write ||z|/gs for the
Euclidean norm of z and for all i € {1,...,d} let e ) denote the i-th unit vector in RZ. For all measurable spaces
(Q,F), (Y,B) let M(F,B) be the set ./\/l(]: B) = {f QO — Q: fis F/B-measurable}. For every measure space
(Q, F, ), every normed vector space (V, |- ||v), and all p € [1,00) let B(V') denote the Borel-sigma-algebra on
V, let £P(u; V') be the set with the property that LP(u; V) = {f € M(F,B(V)): [q Hf”p dp < oo}, let LP(u; V)
be the set with the property that LP(u, V) = {{f € LP(u,V): f=g pae}:ge LP(uV } and let

I Mze vy : (MEF,BWV))U{{f e M(F,B): f=g pae}: ge MF,B)})—[0,00] (10)

be the function which Satisﬁes for all f € (M(F,B(V))U{{h € M(F,B): h=g p-ae}: g€ M(F,B)}) that
1l zequvy = (Ja lIFIIE d,u) For all d,m € N and all A € R¥™ we denote by A* the transpose of A. For every

measurable space (§2, F) and every n € N let C‘ZO (R™ x Q,R) be the set which satisfies that

CT (R x Q,R) =

{f:R”XQ—)R: Vw e Q: f(-,w) € Cp°(R™,R), } (11)

Vo € RY: f(x,-) is F/B(R)-measurable

For all d € N we denote by L®(R? R9) the set of bilinear functions from (R%)? to R%.

2 The Ito-Alekseev-Grobner formula in the deterministic case

The following proposition, Proposition 2.1} generalizes the Alekseev-Grobner formula (cf., e.g., Hairer et al. [13
Theorem 1.14.5]) (which is the special case k = d, f = Idga of Proposition [21]) to general test functions.

Proposition 2.1 (Deterministic It6-Alekseev-Grébner formula). Let d,k € N, T € (0,00), let O C R? be a
non-empty open set, let p € COH([0,T] x O,RY), Y € CH([0,T],0), X.. = (XZ)sep.g.c(0.1].0c0 € C({(s,t) €
0,T)?: 5 <t} x 0,0), f € CY(O,R¥), and assume for all s € [0,T], t € [s,T], x € O that X%, = = +
f p(r, XZ,) dr. Then

FX0%) — F(¥r) = /fXYé 2 X5 (s, ¥) — &Y:) ds. (12)

Proof of Proposition [2.1. The assumptions and the fundamental theorem of calculus imply for all s € [0,7),
€ [s,T], € O that ([s,T] 3 u— XZ, € O) € C}(0,0) and that 9 5 Xet = pu(t, X7;). This, the assumptions,



and Hairer et al. [13, Theorem 1.14.3]) prove that for all s € [0,77, t € [s,T] it holds that (O >z +— X7, € O) €
C1(0,0) and that %X}’_ € C({(s,t) €[0,T)?: s <t} x O, L(R% R?)). Moreover, the assumptions, and Hairer
et al. [13, Theorem 1.14.4]) show that for all 2 € O it holds that ([0,T] > s — X, € O) € C1([0,T],0), that
2 X7 € C([0,T] x O,R?), and that for all s € [0,T], 2 € O it holds that

T Xp = —F X rp(s, o). (13)

Therefore, the chain rule implies that ([0,7] > s — X:ﬁr € 0) € CY([0,T],0). Moreover, the fundamental
theorem of calculus, the chain rule, and (I3]) yield that

FX3%) = F(vr) = - / "4 (£(x25))ds

(o
T v v
—— [ reei ((8xe)| L, + &g o

r Y. Y. Y- (14)
= [ O (= ANl V) £ Y. ds

T
= /0 P & XY (s, Y2) = ) ds.

This finishes the proof of Proposition 2.1l O

3 The Ito-Alekseev-Grobner formula in the general case

The following theorem, Theorem [B.1] is the main result of this article. We note that throughout this article we
use notation introduced in Subsection [Tl in the Appendix.

Theorem 3.1 (Ito-Alekseev-Grobner formula). Let d,m,k € N, T,c € (0,00), p € (4,00), ¢ € [0,5 —2), let
(Q, F,P) be a probability space, let W: [0,T] x Q — R™ be a standard Brownian motion with continuous sample
paths, let N = {A € F: P(A) = 0}, let F = (Fy)cor be a filtration on (2, F) which satisfies that Fo and
S(Ws: s €[0,T]) are independent and which satisfies for all t € [0,T] that Fy = S(FoUS(Ws: s € [0,t]) UN),
let O C R be a non-empty open set, let p: [0,T] x O — R%, o: [0,T] x O — R¥>*™ be continuous functions, let
X ApxOxQ =0, X [0,T]x 0 xQ = LRYRY), and X752 [0,T] x O x Q — LO(RL,RY) be continuous
random fields, assume that for all s € [0,T], w € Q it holds that (O 2 z — X%, (w) € O) € C*(0,0), assume
that for all s € [0,T], x € O the stochastic process [s,T] x Q3 (t,w) = X7, € O is (Ft)se[s,m -adapted, assume
that for all s € [0,T], t € [s,T], x € O it holds P-a.s. that

t t
X;E,t =T+ fﬂ(ra Xsm,r) dr + fO'(T, Xsm,r) dWT7 (15)

assume that for all (s,t) € Ap, © € O it holds P-a.s. that Xi(:f?’t = X, assume that for all (s,z,w) €
[0,T] x O x Q it holds that X} 7(w) = & (XZp(w)) and X25(w) = 25 (X2pw)), let Y € LP(A\gz) @ P;0),
A€ LP(Nor @ P RY), B € LP (Mo, @ P; R be stochastic processes, assume that Y has continuous sample
paths, assume that' Y and B are F-predictable, assume that for all t € [0,T] it holds P-a.s. that

t t
Yi=Yo+ [Asds+ [ Bs dWs, (16)
0 0
assume that

o |l )

ot o)

[tIn.t HS(R™,R4) dt:| < 00, (17)



assume that

2p
XYT 1 X 2(q+2 2,XYT —2(q+2
Sup E H T,S + H r,s ||P— ((I ) H o r,5 ||P (a+2) < OO, (18)
8 te 0 T R L(RdJRd) ’ L(2) (Rdde)
r<s<t

and let f € C?(O,R*) satisfy that for all x € O it holds that

f(x
max { TS /()| e gy 1 @) o oy | < o1+ 2. (19)

Then
(i) the stochastic process (f’(XZ?F)Xi’}/T (o(r,Y,) — B"))re[o 1) 18 Skorohod-integrable and

(ii) it holds P-a.s. that

T T
F(X5%) = F(0r) = [ F(XV) X237 (u(r.Yo) = Ar) dr o+ [ £/(X) X} (0. Ye) = B, ) oW,

d 7
DI (oY)l Y))" BT[BT]*)U(f"(X:gF) (X007 X007) + 1 (X)) X2 ) (e, el ar.
i,j=1 ’

(20)
Proof of Theorem [3.1. The fact that for all w € Q the function O > z — X7 p(w) € O is continuous and

equation ([I5]) imply that it holds P-a.s. that X%/TT = Yr. Moreover, we rewrite the left-hand side of equation (20])
as telescoping sum and obtain that for all n € N, h € {%} it holds P-a.s. that

n—1
Y Y Y, Y; Y
F(X%5) = £ (V) = FX3) = F(X03) = D (F(0) - £ n)
=0 - (21)
Y; Y; Y(it1)n Y;
- z (£ (65) = 1 (X)) = 2 (£ = £ (X))
First, we analyze the second sum on the right-hand side of equation (2I)). For allt € [0,77], z € O,
i € {1,2} the functions Q > w = X77(w) € 0, Q3w X7(w) € LO(RY,RY) are G(NUGS(W, — Wi: s €
[t,T]))-measurable. This together with the fact that for all w € Q, ¢ € [0, T it holds that <O >z f(XPrp(Ww)) €
Rk) € C?(0,R¥) implies that for all ¢ € [0, 7] the function Q 3 w + (O >z f(Xfr(w)) € Rk> € C?(O,R¥)
is independent of the sigma-algebra F;. It6’s formula for independent random fields (e.g., Klenke [25 Theorem
25.30 and Remark 25.26]) (applied with the functions Q 5 w +— (O S f(X(xZ.H)h’T(w)) € Rk> € C%(0,RF)
forneN,ie{0,1,...,n—1}, h € {%}) yields that for all n € N, i € {0,1,...,n— 1}, h € {%} it holds P-a.s.
that

Yii f
f(X(i(—I—JS;L}:T) o f(X()2/+h1)h T)

@k 1 D g . @ (@
- {L %(f(X(zH)h T))‘x =Y, dYr + 3 Z f 9z (f(X(i+1)h,T))‘x:YT(el 1€ )d(<Y>7“)l,j
‘ Li=1
(i+1)h (i41)h
Y, LY, Y, LY,
= Z{L X nr) X rAr dr + Z{L P X)Xy onr Br dW,
| <& (DR . (Y, LY, LY, % 2, @ (d)
T3 Z {L (B [B;] )l,j <f (X(zzrl)h T)(X(z"—i-rl)mT’X(z—i-rl hT) f (X 111 hT)X({JrTl)h,T) (el 1 €5 ) dr.
lj=1 "

(22)



Inequalities (I9) and (8] imply for all ¢ € {1,2} that

q
sup Hf X”) p . <c sup H1+H »
r,5,t€[0,T] La (L) (RY,RF)) r,5,t€[0,T] RAIIL4(PR)
r<s<t T’<8<t
. (23)
c{1+ sup HX e < 00.
7,5,t€[0,T] Lp(P;R%)

r<s<t

Holder’s inequality, inequalities (I8]), (23)), and the assumption B € LP(Aj 1) ® P; R¥™) imply that for all
neN,ie{0,1,...,n—1}, h € {L} it holds that

(X1

Y.
(X B

) LY. ‘
(i+1)h,T

X B.
['1h7T L20‘[0,T]®P§kam)

1,Y.
)X B

L2(P; L2 (Ajih, (i4+1)h] ;R’“X’")) -

(24)

Y. LY.
< HHf,(X[~]h,T)HL(Rd,R’V)HXHh,THL R4, RY) ”B'”HS(R’",W)‘ L2(Ao,7®P;R)

> Hf (X[';|h7T)HL%()\[O)T](@]P’;L(Rd,Rk))H f]h,TH W(A[O | ®F; L(RY, Rd))”BHLP()‘[OVT]@)P;RdX’”)

ng%z(( sup || F"(X27) |

sup HXl X
r,s)EAT

L% (]P’;L(Rd,Rk))) < (r,s)EAD Lﬁg;rl) (P;L(Rd7Rd)))

||B||LP()\[0YT]®P;Rd><m) < 0.

is

For all n € N, i € {0,1,...,n— 1}, h € {%} the stochastic process (f (X():fH)h T)X(llﬁ)h +Br )Te[ih (i+1)1]

predictable with respect to the filtration

(S(F, US{Ws = Wiirayn: s € [0 + DI T1))) ycin i400m (25)

Proposition [A.§ together with inequality (24]), Proposition [A.7] and linearity of the Skorohod integral yield
that for all h € T/N it holds that (f’ (X e )X LYr B;)refo,1) is Skorohod integrable and that for all n € N,

[r1p, T/ [, T
h e {%} it holds P-a.s. that

n—1(;
(i+1)h
Yy 1Yy
{L f' (X(H—l)h T)X(z'+1)h,TBT AW,
i=0
n=l(G+1)h

SFpUS{Ws—W(ip1yn: s€[(i+1)h,T1}))

I
.MI

Yr 1LYy
/ f' (X(z—i-l)hT)X(i—i-l)hTB oWy

~
Il
o
~
>
—~
[\)
=2}
~

i
L

T
4 1Y, F
= 2 Tnaeom (X5, 0) Xy Br OV
=0
—ff’(XY’ ) XD B 6w,
= A r) Ay B O

Equations ([22) and (26) imply that for all n € N, h € {£} it holds P-a.s. that
n—1 v,
(i+1)h Y;
> (P = St

0
T T
é’f’(XF;ﬁh’ )X " A, dr+gf(XY*

LY,
[T i) X1r 2 Br OWr (27)

d 7
£330 TBAB N (£, ) (K51, X ) + £ (X0, ) X0 ) 6l )
J=1

o~



Next we analyze the first sum on the right-hand side of equation ([2I]). For all (s,t) € Ay, z € O

it holds that IP’(X;‘/;T = X;X :,‘Z‘ft) = 1. This and the fact that X is a continuous random field imply for all

(s,t) € Ar that IP’(X;TST = ngst) =1. For allt € [0,T], z € O, i € {1,2} the functions Q2 > w — X7 (w) € O,
Q53w XZ;(w) e LOR? RY) are S(N US(W, — W;: s € [t, T]))-measurable. This together with the fact
that for all w € Q, t € [0,7] it holds that <O >z f(Xfr(w)) € Rk)) € C%(0,R¥) implies that for all
t € [0,T] the function 5> w +— <O Sz f(Xfr(Ww)) € Rk)) € C?(0,RF¥) is independent of the sigma-algebra
;. It6’s formula for independent random fields (e.g., Klenke [25, Theorem 25.30 and Remark 25.26]) (applied
with the functions Q 3 w — (O >z f(X(””Z.H)h’T(w)) € Rk> € C*(O,RF) forn € N, i € {0,1,...,n — 1},
h e {%}) yields that for all n € N, i € {0,1,...,n— 1}, h € {%} it holds P-a.s. that

F(Xi) = f(X(Yiil)h,T) = f<Xf:jZ’§lh+})h) B f(X(Yﬁl)h’T)
O )
33 T () (e i) o (2 ) (0 i),
l,j=1
P X+ (S e
P P ),

x Ly XN 2N )
" Ty ,T ’ Ty ,T ’ Ty ,T / Ty, ’ Ty,
’ <f <Xf7‘]h,}7L“ > <Xf7‘]h,Th ’th,Th ) +f <th} )th,Th ) (el 1€ ) dr.

(28)

Holder’s inequality and inequalities (23], (I8), (I7) imply that for all n € N, i € {0,1,...,n — 1}, h € {L} it



holds that
LIn\ 1 x Lln v
L] XL Ip -]
f (Xmﬁ >th,T" "( XLJJ)
L2(P; L2 (Ajin, (i4-1)n)sREX™))

LIn\ 1 x Lin v
L] [ RN L]
< ||f (Xﬂh,h )th,Th U(**"Mﬁ)

L2 (Ao, ) ®P;RFXm)

th 1XE/5Jh YLJ
/ Inoe h h
L(R4 RF) L(R4R4) L2(X\jo,r®P;R)
x Lln 1.x b
<l x X dn L-Jp- HJ<' XYL-Jh)‘
=~ []hv D (—lhv 2p ) |_Jh7 Lp()\[O T]@]}D;Rdxm)
L (Ao, 1) ®P; L(R%,RF)) LP=20aFT) (A 7 ®P;L(RY,RY)) ’

LX)

)

X

X
()

p—2
<T2 | sup
r,8,t€[0,7T
r<s<t

, sup 2p
La (P;L(R4,RF)) 7,8 26[0 vy Lp=2(a+1) (P;L(R4,R4))

(o5
X Yin X Yin

. T ih,r ih,r )/7, 3
For all n € N, i € {0,1,...,n — 1}, h € {--} the process <f <X(Z+h1)h T>X(z+1glh Ta(r, Xih?))re[ih,(i—l—l)h} is
predictable with respect to the filtration (25). Proposition [A-8] together with 1nequahty (29), Proposition [A7]

< oQ.

LP(A[O’T] ®]P7]Rd><m))

Yuh Y01

17
and linearity of the Skorohod integral assert that the process f’ ( 1th” >X Hhuh 0( Huh) is Skorohod
integrable and that for all n € N, h € {Z} it holds P-a.s. that

n—1; Yir) Yir)
(i+1)h X, 1LX, o
Z / LTJhVT )y ’ L'rJh'r >:‘ LTJh M/
=0 zjf; / ( [71n,T > [71n,T ( L7]n T> Wy

; Yirlp, Yiryy, .
ZH st | PN (x| sy S EnUSWa=Wiasay s s€li+Dh,T))
Wh,T [r]n,T i Ll P r

I
“M

(30)

Y
Ly X lLTJh 1,X Yirlp
g]lzh (z‘+1)h}(7’)f/<XmLh{hT' )XM i a(r XLTLJJ’;> swko

=0
T X, \_]Jh 1 XE’L]J;L Vil
_ / rlp.T ? TlpT rlp
=l (th,T >th,T 7(r Xn) oW

10



Equations (28) and (B0) imply that for all n € N, h € {£} it holds P-a.s. that

n—1
S (£ — 1 (X))
i=0
T X lrlp 1 XYLTJh T XYLTJh 1 XYLTJh
_ [rlpr el pr lr] Lrlpr el L]
B ({f/ <th} >XMh’Th <T XVth’“) dr+ ({f/ <th} >th7Th <T XLTthL) oW,
G T Yir) Yir) (31)

3 (o X ) o X0,

lv]:]- ’

X X XN 22X g

1 Ty, r r ’ Ty, / Ty, ’ Ty,

\/ <thf5'f ><thTh K > 7 (thffr )Xm,Th (e ¢7) dr-
Equations (2I)), (3I), and (27) imply that for all » € T/n it holds P-a.s. that

f(Xofy) = f(¥r)

Yir) Yir)
f LTJh,:" L LTJh’:" (,,,, X LTJh) _f (XYT ) IYT A dr
0 [T’]h, r]hT [7|n,T [r]n,T [71n,T
+}Ff/ LTLJT;ihf Lrﬁhr <T X mh) _f/(XYT )Xer B, §W,
5 Wh, ﬂ T L7 |nr [P0, T/ [r]n,T T
d
Yir) Yirp 1%
+%lzlf< P XL e XS], (32
7]:
x ik Lx e x s x N g x L
Lrlp.r Lrlpor ) Lrlpor rlpr (d) (d)
‘(f"<X(r1hf5'r ><thTh X T >+f'<X[r1hffr >th,Th (" e”) dr
d
T
* Y- 1Y 1Y, Y, 2,Yr d d
=30 [ (BB, (770X, ) X7 2 X5 ) + 8 (X0, ) XEAT 1) e e dr
.

1

)

Next we want to let 7/N 5 h — 0 in (B2) in a suitable sense and first justify this.
inequalities (23), (I8)), (I7), and the fact that A € LP(Ap 1) @ IP; R%) imply that

xR\ x e v
Ldps lpe (. LJn Y. 1Y
f( o )me “(’th,) F(XE, o) X7, rA

i Xt
<1 (s |(x0)
r,8,t€[0,T
r<s<t

. < sup
heT/N

Holder’s inequality,

sup
heT/N

L2 (Ao, 7 ®P;RF)

1LXY%

sup HX
r,5,t€[0,T
r<s<t

L (P;L(Rd,Rk))) ( (33)

2
LT (P;L(Rd,Rd))>

n( LJL;j,h)

Mg onas) <
LP(A[O,T]®P;Rd) + || ||LP(A[07T]®IP’,Rd)

11



Holder’s inequality and inequalities (23]) and (I8]) imply that for all [, € {1, ...

U (0 Y () Y
17 h» ) Jha / Jno ) Jno
hsel}}/)N f XHm XHhT ’X[‘]th +/f XHh,T Xﬂth (el ’ej) 2p
Lr—2%
Y1 Y1
< " XXL'thl' )(1 X|. th
sup || /7 Xy, 1 [T
heT/n L® (R, RF) L(R? RA)
s
ho' h
* f<Xm ) X[t .
L(R4,RF) L@ (R4,RY) || LP=7 (A 1) ®P;R)

f// X \_lj}ih
[1n,T
Y

v Xln
f (th:’fr

—4
S P2p < sup ‘
r,8,t€[0,7T

r<s<t

+< sup ‘
r,s,t€[0,T
r<s<t

7(
and, analogously, that for all ¢

sup
heT/N

The fact that for all C' € R™™ it holds that > ¢

XX
X))

X
X35

b
La (Ao, r)®P;L) (R, RF))

L% (Ao, ®F;L(RY,RF))

L,j=

1XL5J’1
X h>
[Tn,T

2,X Y
X L-1p»

L1 (P;L(2)(Rd,Rk))> <
D
La (P;L(Rd7Rk))> <

jed{l, ...,

(X, ) (X XE )+ (X, )X

[1n,T

XYT 2
sup HX e 4p >
r,8,t€[0,T Lp=2(a+2) (P;L(R%,R?))
r<s<t
Yr
ap [ )
7,5,t€[0,T] Lp=2(a+2) (P;L(2) (R?,R4))
r<s<t

d} it holds that

2

4p
Lp=20aF2) (X(o 1) ®P;L(R4,R4))

2p >
LP=20F2) (X ) ®@P; L) (R4,RY))

X2V (d) _(d)
[1n,T )( 1€

,d} it holds that

(Ao, ©P;RF)

2p
LP=T (Ao, r|®P;RF)

(34)

(35)

L(CC*) 4] < dHCHHS(Rm Ra)) Holder’s inequality, assump-

12



tion (I7) and inequality (B4]) imply that

> (ot (i),

= ),

X g il b XU 250 @) @
/" g, e T e T / - s ,
'(f (Xmﬁ ) (th,Th X1 )*f (th,h >XﬂhT" >(ez ve;”)

sup %
heT/N

L2(Ajg, 1) ®P;RE)

< swp o (- x|
o (1 A CENNPD | N
d 5 Lln 1x b T ln IR\ g x Ln
1" L] L] g L] P ledpe | (@) (d)
’ Z f <X[]h§1 ) (Xﬂm " Xﬂthh ) +f ( 1h§“ )Xﬂh,Th ( 106 )
l,j=1 L2 (Ao, 7 ®P;RE)

o ()
hET/N \_ th Lp()\[O,T] ®]P>;Rd><m)

X\ ax e ax e Xfi“‘ 2X M\
,/ . , b . y b . , bl . e

g (X”’“% ) <XHthh Xt )+f< i )Xﬂh?h >(el €
l?]e{lvvd}

< Q.
Analogously, the fact that for all C € R%*™ it holds that ZZ =1 1(CC) 5 < d||IC ||HS R R Holder’s inequality,
the assumption B € LP(A 7] ® P;R™™), and inequality [B5) yield that

2p )
Lr=% (Ao, 1) ®P;RF)

(36)

d

1 * 1" yY. 1,Y. 1,Y. 2,Y. (d) ()
sup 3 (BB.]"); (f1( Xy, o)Xy X + (XY X ;€5
herp? g:% l’J< ) K Xr) 1T HhT)(l ) L? (Ao, 1 @P;R¥)
< §||B||iP(A[07T]®P;RdX'm) (37)

Y. LY. LY. 2,Y. (d) (d)
sup | (#7373, 1) (XE X000 2) + PO, DXE ) (o) o, < co.
Ljell,....dy "€/ LP=T (o, ) ®P;RF)

Next Klenke [25, Corollary 6.21 and Theorem 6.25] together with the uniform L2-bounds in (33)), (36)), and (37),
continuity of f" and of f”, path continuity of Y and of Az x O > (s,t,x) = X7, € O, and inf,¢jo ) P(X; ] =

13



Y,) = 1 imply that

ff X[r'tlrlihf' Xl’XLTLJT}JLI:" (,r. X Yiry, ) _ f (XYT ) 1 Y A, dr
T/Ngh\‘() [T’]th [r1n,T [rlnr [r1n, T/ [r1n,T
ff () X0 (u(ry2) = Ar) ar
1 o mh Yirin \1*
+ 2 Z ({ < T XrJh, (T’XLrJh,r)] >l,j
Yirln Lx e x s e\ o x lrin
Lr)p.r el el Lrlp.r T lrlpor (d) (d)
(f//< r1h7h > < ’—r-lthh 7X|VT‘|h7Th + f/ X““lh}} X[T]thh (el 76.7 )dr
d
T
Yy LY: LY, Y, 2,Yr (d) (d)
_% Z({ r[Br]") <f (th, )(th,TvXﬂh, )+ S (X[r]hT)X[r]hT>(l ve; ) dr

d
—éZ;ﬂo(r,m[o(r,m*—BT[BM,J (7" () (X X000 + 7 (X)X ) (ef el ar

1j=1 LY (P;R¥)
=0.
(38)
Inequality (I9) implies that for all z,y € O it holds that
1 (@) = f@)llre < If(@)l[re + [1f @)llre < (L + [[#]lga) (X + [[2[ga)? + (L + [[yllra) (L + l[yllra)?.  (39)
x)0
Inequality ([B9), Holder’s inequality, the fact that 2¢ + 2 < p, the fact that ]P’<X8f o = X07%°> =1= ]P’(YT -
x)T
X, ?T), and inequality (I8]) show that
1 (Xo5) = £ V)| 2o
(
Y, 1+q 1+¢
<cf(1+ HXOQFHRd) HL2(IP’;R) +ef (1 + Y7 lga) HL2(IP;R) (40)
+1 +1
< C(l + HX THLQQH(P Rd))q + C(l + ||YT||L2q+2(p;Rd))q
xYr q+1
<  sup 2c<1 + || X, ° ) < 00.
r,5,t€[0,T "l Le(eRY)

r<s<t

Equation (32)) and inequalities ([40), (33), [Ba), and [B7) imply that there exists a constant K € [0,00) such

14



that for all A € T/n it holds that

Y| Y|
T X lrln 1.X [7]h v
! Lrlpor | x0T Lo LrJ 18%es LY
H ({f (th}} ) T a(r,XL,,th;) - f <th’T)th7TBT SW,.

L2(P;RF)
Ye T X TLJTJh LX TLJTJh Yirg Y, LY,
! rly,r ’ r|y,T T ! r s Xr
= Hf(Xo,OT) - f (Y1) HLZ(]P’;]Rk) + H gf <th,]% >th,:rh IU‘(T7XL7*thLr) —f (th,T)th,TAT’ dT‘

d T Y’r Yr *
53 1ol X (X050,
l,j=1 ’

Xftjwh 1 Xftjwh 1 XE/LJTJh Xftjwh 9 XE/LJTJh @ (@
Zi rly,r ’ rly,r ’ T, / rlp,r ’ g,
| f th,’i;“ XWh,Th ’XWmTh +f th} XWmTh (el 1 €5 )

— (BB, (f//(Xﬁ/ﬁh,T) (X X ) + f/(Xﬁﬁh,T)X?;ﬁ,J (e e dr

L2(P;RF)

_l’_

< K.
L2(P;RF)

(41)

The fact that Y, X, X! are continuous random fields, continuity of f’, and the fact that inf,.cjo,7) ]P’(XX r
Y,) =1 yield that for all » € [0,7] it holds P-a.s. that

X E/LJTJh LX E/Ljﬂh Yir) Y, LY,
. / rlpT ’ rlp.r rlp _ gl S s Y
ot S X | X pr o(r X 5n) = £ (X0,0) X050 o Br

(42)
= (X)X (o(nYe) = By).
This, Fatou’s lemma, and the inequalities (29]) and (24)) yield that the sequence
X W\ px e v
(5 (e i o ntie) = o ()5t SO (o) 8) )
heT/n

is bounded in L2(A[07T} ® P;RF*™).  This, the fact that every bounded sequence in the separable Hilbert
space LQ()\[O,T] ® P;R*¥*™) has a weakly converging subsequence (e.g., Kato [24, Lemma 5.1.4]), and the con-

vergence ([42)) ensure that the sequence (43)) converges to 0 in the weak topology of LQ(A[07T} ® P;RF*X™) as
T/N > h N\ 0. This, the fact that the processes

X ?LJTJ ") vt XE/[J”h Yirg Y, Ly,
!/ TpT “rlrlp,r T / . ,Yr
P (Xt )X o (r X0 ) = 10, ) XA 2B, , heT/N, (44)
rel0,T]
are Skorohod-integrable, ([I]), and Lemma imply that the stochastic process
T 1Y
(F (X)X (0(r, V) = Bo)) oy (45)

is Skorohod-integrable and that for every Fr/B([—1, 1]¥)-measurable function Z: Q — [~1,1]* it holds that

lim E

Y, Y
T X lrlp 1.X lrIn v
/ [rjh,r ’ L'rJh,r [rjh gl Y- 17Y»,n
o <Z=({f<Xfr1h,T )th,T o(r X050 ) = 1 (X8, 1) X Br 6

(46)
T ! Yr 1Y, ! Yr 1,Yr
— ({f (XT’T)XT;T o(r,Y,)—f (XT’T)XT;T B, W, = 0.
RE
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Equation ([32) and the convergences ([B8) and [{@B) imply that for every Fr/B([—1,1]¥)-measurable function
Z: Q — [~1,1)% it holds that

E

T T
<Z, [ 105X (w0 Y) = A) dr [ /(X)X (o(r,Y2) = B, ) oW,
0 ’ ’ 0 ’ ’

d 7
3 (A ot = BB) (7 (X2) 7 X)) X8 (0, ) o

lj=1
— F(X)5) + f(YT)> = 0.
RFE
This implies equation (20). The proof of Theorem [B.1]is thus completed. O

4 Stochastic van-der-Pol oscillators with additive random forcing

In this subsection we illustrate the power of the It6-Alekseev-Grobner formula by applying it to a numerical
approximation process to prove that the approximation processes (@) converge with L2-rate 1/2 to the exact
solution of the stochastic van-der-Pol oscillator which is given by the SDE (@9). Our proof is considerably
shorter than the analysis in [I5] [20] which is needed to prove the analogous statement with the approach of [15].
Here, we assume for simplicity of exposition that the diffusion coefficient is constant (but this is not the reason
for the much simpler analysis compared to [15]). First, we introduce the setting for the stochastic van-der-Pol
oscillator with additive noise, then we provide three auxiliary results (Lemma[4.2] Lemma[L3] and Lemma [£.4]),
and finally we prove Lemma [£.5] the main result of this section, by an application of Theorem [Tl

Setting 4.1. Let T € (0,00), let (2, F,P) be a probability space, let W: [0,T] x Q — R be a standard Brownian
motion with continuous sample paths, let N = {A € F: P(A) = 0}, let o, 3,7,6 € (0,00), let p: R? — R? be
the function which satisfies for all (w1, x9) € R? that p(x1,x9) = (2, (v — ax?)wy — dx1), let £ = (£1,&) € R2,
let YN:[0,T] x Q@ = R?, N € N, be stochastic processes such that for all N €N, k € {0,...,N —1}, e € [0, %]
1t holds that YON = £ and that

N _ v N N 0
Yir | =Yir +u(Viz)elgup oz, <5y + (Wer o = Wir) (), (48)

~
and let X Ap x R? x Q — R?, X7: Ap x R? x @ — L(R?,R?), and X' : Ay x R? x Q@ — L?)(R%,R?) be
continuous random fields such that for all s € [0,T], w € Q the function (R? > z Xip(w) € R?) € C%(R%, R?),
such that for all (s,z) € [0,T] x R?, i € {1,2} the stochastic processes [s,T] x Q 3 (t,w) — X, € R?
[s, T] x> (t,w) — X;f € LO(R? R?) are (BINUGS(W, —W,: r € [8,])))te(s,T)-adapted and for allt € [s,T]
it holds P-a.s. that

t t

sr=a+ [ (X3, dr + [ (5) AW, (49)
such that for all r,s,t € [0,T], x € R? with the property that r < s < t it holds P-a.s. that inf’s = X, and
such that for all (s,t,z,w) € A x R? x Q it holds that Xsltx(w) = %Xﬁt(w) and sttx(w) = aa—;Xﬁt(w).

We note that we can not employ the classical Fuler-Maruyama scheme since the Euler-Maruyama approxi-
mations diverge in the strong and weak sense for one-dimensional SDEs with superlinearly growing coefficient
functions and possibly also in the case of the stochastic van-der-Pol oscillator; see [17), 19]. Instead we consider
a tamed Euler scheme. A first tamed Euler scheme was introduced in [I8] and a large class of tamed Euler
schemes (including ([8])) was investigated in [16].
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Lemma 4.2. Let (2, F,P) be a probability space, let X: Q — R be a standard normally distributed F/B(R)-
measurable function, and let a,b, ¢ € R satisfy that 2b%c < 1. Then it holds that

2\ | _ 1 2 2(be)
E | exp(cla +0X)?) | = \/ﬁe@(a (c+T—am2)) (50)
Proof of Lemma[{.2 It holds for all y € R that
cla+by)® — 4 = ca® + 2abey —y*(157¢) = o (e + 25) — (v~ 2405) " (37). (51)

This, the definition of the standard normal distribution, equation (5II), and the substitution rule imply that

E[exp( (a—l—bX / \/_exp< (a+ by)? ——>dy
2
o (v-2%05) )
= exp c+ —Tc / exp dy
(e 2589) [ o~ -
= ‘/1_121)20 eXp< <C—|— 12(b2cb)2 >> /—oo \/12_7rexp<Ty)dy
c 2
- ﬁexp(cﬂ(c—l— %))
The proof of Lemma is thus completed. O

Lemma 4.3. Assume Setting @1} let ¢ € (0,exp(=T(1 + 382 + 6 +2v))], and let N € N satisfy that N >
max {6827, T}. Then it holds for all r € [0,7] that

E [ exp (el| v 12:)] < exp((262 + DT + ]2 (53)

Proof of Lemma[4.3. Throughout the proof of Lemma [£3] let (Hk)ke{07___,N} C (0,00) satisfy that for all k €

{0,..., N — 1} it holds that On = cand O, = 041 (1 +382L) (1 + £ (14 6 + 27)). Equation @) and the fact

that for all k£ € {0, .. -1}, e €0, ] the sigma-algebras & ( kT) and GS(WWJr - Ww) are independent
N

and the random variables W%T — W%T, \/Eﬁ are identically distributed yield that for all k£ € {0,..., N — 1},

e € [0, %] it holds that

E{exp(9k+1HY%+aH§%2>}

+e

=B (&[0 (G V2L + <105 iz, <yp V) + Wiz = War) ()2

N

e(yg)}

N

—F E[exp(9k+1H”+ (W%T% WkTT)(ﬁ)H[W)} v=Yp+ely LN

- N kT/N

2 W\ 2
=E exp(9k+1fu1)E[exp <6k+1 (U2 + \/EBT;) )] (v1,02)=Y . +el N N (Y, )] .
L AR (SIS 3

(54)

N
12y <§yHVig)

Induction, the fact that Oy = ¢, the fact that for all z € [0, 00) it holds that 1+ 2z < exp(z), and the assumption
c <exp(—=T(1+33%+ §+27)) yield that for all k € {0,..., N} it holds that

0 = On (1 +38°5) (1 + T2+ +27)))N_k < coxp((N — ) L(1+382+6+27))

(55)
<exp(—T(1+38%+0+27)) exp(T(1+38>+5+2y)) = L.
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Inequality (B3]), the fact that for all ¢ € [O, %], k €{0,...,N — 1} it holds that 2(y/e8)%*0r,1 < % < %

Lemma [£2] the fact that Wr is standard normally distributed, and the fact that for all z € [0, 1] it holds that
VT 2

L < exp(2z) imply that for all k € {0,...,N — 1}, £ € [0, %], v = (v1,v2) € R? it holds that

2340

2
xp(Ors1oDE [exp (01 vz + VESUE)")] = St e (Bhraed + (0 + it )
2
< Vexp(4eB20y11) exp <9k+1(1 + Wﬁ%‘%)“””%@) (56)
< exp(256%) exp(0c11(1 + 3625 o3 ).

Equation (54]) and inequality (56]) imply that for all £ € {0,..., N — 1}, € € [0, %] it holds that

N 2 T 32 N |12
< ~ . .
E[exp(QkHHY%T%HRz)} < exp(2NB ) E|exp <9k+1(1+35 “Yk;p —i—&?]l{nu(y%)l@%%}u(y%) R2>] (57)
Young’s inequality shows that for all z = (x1,7) € R? it holds that
(@, p(x))pe = z129 + 22 (v — 02})wy — 621) < iy + a5 — 0m12p < §(1 46+ 27) ||| (58)
This implies that for all k € {0,...,N — 1}, € € (0, %] it holds that
[ NT
‘ Yir + el oy 12, <apYir)|
v
= HYkTHR2 +2E]]'{||M(Y )12 N}<YkT= (YkT)>R2 + ¢ ]l{llu(Y N}H Yir [ (59)
(1+6+2 N N
< ”Y%T”w + 251{||M<Y,§WT>||; Ny EYix [ 1{||M(Y§WT>||§2<¥}T

<O B s ) YA+ E
Inequalities (57), (59), and (5H) imply that for all k € {0,...,N — 1}, € € [0, %] it holds that
B exp (00 V2] I2)] < exp (@B 8E [exp (s (1+35°8) (14 B 1+ 5+ 2) ¥ 2+ 5))]
= exp (267 + 001 (1 + 362 5) % ) E | exp (0] Y2 |3 )| (60)

< exp((?ﬁ2 + 1)%)E[exp(9kHY% Hégﬂ

Next we prove by induction on k € {0,..., N — 1} that for all k € {0,...,N — 1}, r € [%, (k_;\})T] it holds that

B[ exp (B[ V]2 )| < exp((262 + 1) SR ) exp(le3)- (61)

Inequality (60) and 6y < 1 imply the base case. For the induction step {0,...,N—2} > k — k+1 € {0,...,N—1}

note that inequality (60]) and the induction hypothesis imply for all r € [(kH) , (k+2) =] that

< exp((26% + D)) exp((262 + 1) SR ) exp (i) (62)



This finishes the induction step. Induction thus establishes inequality (G1]). Finally inequalities (55]) and (GI)
yield that for all k € {0,...,N — 1}, r € [T, EHDT) ¢ 161ds that

B [exp (e V][22 | < B exp (B[ [3)] < exp((26% + DEFPT) exp(e]2:) )
< exp((26% + DT + €113 )
The proof of Lemma 3] is thus completed. O

Lemma 4.4. Assume Setting BT} let p € [1,00), » € [0,T], ¢ € (0,00), and let Z: Q — R? be an &(N U
&(Ws: s € [0,7]))/B(R?)-measurable function. Then it holds that

El||X i
& 2 K )]

(1602 Ty)P a?6p exp((|0—1[+27+452q)T) 5
< <yES(lOIIZo) exp(qexp(—([0—1]+2v+462%¢)T)y) +exp <6pT(1 + 8aq +7+ 5))) (64)

E[exp(} +alZ]13:).

Proof of Lemma[{7) First, equation ([@J]), the dominated convergence theorem together with continuity of the
functions [r,T] x R? 3 (s,z) %( (X7, (w))) € L(R%,R?), w € €, and the chain rule imply that for all
t € [r,T], x,v € R? it holds P-a.s. that

t t ¢

X)o = (ZX0 o = & (@ + [ u(XE) ds + [ (3) dW, ) (0) = v+ [ £ (w(XE,) Jods
r r T (65)

o ) Kb,

This, the fundamental theorem of calculus together with path continuity, and the chain rule imply that for all
t € [r,T], v € R? it holds P-a.s. that

H t UHRZ - ”U”RQ +./2<X7%,’SZU7M/(st)Xv},7sZU>R2 ds

66
t o( X v (X2 )X v) (66)
IXEZl2,

”U”R2 + [ R2HX1 Z”HRZ ds.

T

This and Gronwall’s inequality together with path continuity imply that for all ¢ € [r, T], v € R? it holds that

XT s ’l) /1/ (XT'Z,S)X”}:SZU>R2 ds)

IXEZ02, (67)

H rt UHRZ < ”U”R2 exp(f 2<

For all (u,v), (z,y) € R?, ¢ € (0,00) with the property that 2 + y? = 1 it holds that

() ' (w,0) (5 )>
< ) ( 20uv — & —1au2> <§> >R2 = (1 = 2auv = d)ay + (v — au®)y? (68)

< (%—l—a|uv|+§)+7§§+(E+€(uv)2)+g+7: (%‘1‘3—24‘7‘1‘%)‘1‘5(“”)2-
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Inequalities (67) and (68)) imply that for all ¢ € [r,T], € € (0,00), v € R? it holds P-a.s. that

1.2,
15 0llfe < llvllfe exp (pf (i ]f;(f(z H)X"’s )z ds)
T8 R2
t 2
= HUHEZ exp(pf (% T ?lé_z o+ %) Te (<ngv e§2)>R2 <X557 652)>R2) ds) (69)

< ol exp(pt(3 + % +7+3)) ex (ps/(< Zoe®) (X262 ) ds).
Observe that

min max{[u} [r]6 — 1] + 2 + 452 ]} < 16— 1]+ 2y +48%. (70)
2aq

Inequality (69) (applied with e = (oIt Ty I the notation of inequality (69)), inequality (70), and
Cox et al. [7, equation (4.4)] imply for all ¢ € [r, T] that

012 ex — 2
E[HXIZHL(RQ g2 ] < eXp<pt(% + CoR(PAHE AT | o %))E[exp(i +Q||ZH1%@2)]- (71)

8aq
Next equation (65), the dominated convergence theorem together with continuity of the functions [r, T] x R? >

(s,x) —~ a = (WXFE (W) € LA)(R2,R?), w € Q, and the chain rule imply that for all ¢ € [r,T], z,v,w € R? it
holds P-a.s. that

t
X2 wow) = (X0 )Jw= g (v Tl (X2 )X] v ds ) (w)
= [ 2 (W(X2) X0 (w) ds (72)
= [ (X2 (X0, Xfw) 4 pf (X5 X2 (0,0) ds.

Equation (72]), the fundamental theorem of calculus together with path continuity, the chain rule, the Cauchy-
Schwarz inequality, Young’s inequality, and inequality (68]) imply that for all ¢ € [r,T], v,w € R2, ¢ € (0,00) it
holds P-a.s. that

HszeZ (0,0)] |z

-y (XPZ (v, w), 1" (X7) (X} F0, X372 w) + 1/ (X)) XPZ (v,w)) o ds

R2

IN

2| X2 (0,10) | a1 (X2, ) (X120, XEZ0)| | s + 2 | (X2E (w,w0), ! (XE) X2Z (0,0) Ve ds (73)

HXQZ (v, w HR2 + H ”(st) (XT{’SZ’U,X#SZQU) 2 ds

P, ds + 2. (X232 (0,0), 1 (XZ,) X22 (0,0))

R2

IN
[e— s I — ﬁ%w

IA

[ (X2) (X0, X2 w) s ds

t 2
(G+i+F+7+8) +e (e )pa(X e )pa ) IXEZ (v, 0)] |3 ds

T

_l_
[\
—

This and Gronwall’s inequality together with path continuity imply that for all ¢ € [r, T], v,w € R?, £ € (0, 00)
it holds that

t
X2 0 0) 2 < ] (X2 (XE 0, X w0) [ ds

(74)
-exp(Zt(l + 2‘—2 + v+ %)) exp(2€f (< s (2)> <XTZS, 52)>R2>2 dS).
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For all (u,v), (z,y), (w, z) € R? with the property that 22 + y> = 1 = w? + 22 it holds that

[ (). = | om0y —2ue) (2)

This, inequality (74]), and inequality (69]) yield that for all ¢t € [r,T], ¢ € (0,00) it holds that

= 2al(vz + uy)w + uxz| < do||(3)||ge - (75)

R2

[Ber HL<2)(R2 R?)
p
< (11007 I 1021 oy ) exm(pt (1 527 ) exm e ] ((X200el?) L (K20e?) ) )

<f 1602 HX H]R2 > exp<3pt(1 + j‘—j + v+ g)) eXp<3p€f <<XZ ,e§2)>R2<XTZs,eg2)>R2>2 ds).

(76)
The triangle inequality yields that
p
T
[ ( f160% X7 )] < <f 1602 ( [1x2)1% D ) < (16a27) sup E[ | XZ,|%]
r we(r,T) (77)
< (160°T)? [ AT el E [eXp(eXp<<\6—1|+q2v+4ﬁ2q>u> 12 g )] '
Inequality (76 (applied with e = 6p0xp((| — ﬁizw wyEmy for t € [r,T] in the notation of inequality (76])), the fact

that for all a,b € R it holds that ab < a? + b2, inequality (T7), and Cox et al. [7, equation (4.4)] imply for all
t € [r,T] that
2,7
[HXM HL(2> (R2 RQ)}

p _
E[( [1602 || XZ |22 ds )| + exp(2- 3pt(1 + oropPAlEnHStan 4o 4 g))
T

aq

B exp (2 3p etz >>} (<st’€§2)>R2<st’€52)>Rz)2 s))]

(16a>Ty)P a26p exp((|0—1|+27y+4829)t) 5
< < SUP plqexp(—(P—1[+27+452)T)y) + exp <6pt(1 + S +v+ §))>

y€(0,00) “
2aq z (2 z 2 2
: UZ‘;PT] I |:exp<exp((6—1|+q2'y+452 H HR2 eXp((|6—1\+2’y+462q)5) <<Xr,s= €1 >R2 <Xm, €2 >R2> ds)]
(1602 Ty)P a?6p exp((|0—1[+27+45q)T) 5
< <yes(101130) exp(q exp(—(|6—1[+2v+48%2¢)T)y) + exp (6pT(1 + 8ayq +r+ §)>>
E[exp(} + g Z1%)]
(78)
Combining (7I]) and (78]) proves (64]). The proof of Lemma [4.4] is thus completed. O

Lemma 4.5. Assume Setting [AJ] Then there exists a constant x € (0,00) such that for all N € N it holds

that
QT
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Proof of Lemma [{.5 For the rest of the proof let p € [5+ exp(T'(4 + § + 27)),00) be a real number with the
property that for all =,y € R? it holds that

(@) = pW)lre < plle = yllr2 (1 + 125 + [|yllze) (80)

and

() [[r2 < p(L+ [lz[[R2)- (81)
Such a real number exists because p is a polynomial. Lemma [£4] (applied with p =5, r = s, ¢ = gexp(—(]d —
1) +2v +46%q)s), Z = XXQN for r,s € [0,T], N € N with r < s in the notation of Lemma [£4]), Cox et al. [7,

equation (4.4)], and Lemma F3 (applied with ¢ = exp(—T(1 + 3% + 6 + 27)) in the notation of Lemma 3]
imply that there exists a constant C' € [1,00) such that for all N € N, q € {exp(=T(1 + 3% + ¢ + 27))},
r,s,t € [0,T] with the property that » < s < ¢ and that N > max{63T,T} it holds that

2

o]

v,N
max{E [HXX”

4-20
20—4
YN
78

L(i)(R2,R2):| } S CE|:eXp<exp((|6—1-ﬁ2’y+462q)5) A
< CelE [ exp o[V |

< Ol exp (268 + T + €] ) < oo,

20p X T
e
R2 | ie{1,2}

(82)

This together with inequality (1) implies that the assumptions of Theorem [[T] are satisfied. Then the per-
turbation formula in Theorem [T (applied with d = 2, m =1, p = 20, pu(r,z) = p(z), o(r,z) = (2),

A = p L?“JT/N) (v 2, N} = (3) for all r € [0,T], € R? in the notation of Theorem [LI),
T T/

Jensen’s inequality, and Hblder s inequality imply for all N € N with the property N > max{63?T,T} that

T N
E[1X5 7 — Y8 7] = E [ii FX () = (¥R ) L

2
2 N dr
iy e <7 }> RJ (83)

! 37 47\
iL(Rz,RQ)] dr) (({Eiiiﬂ(l’rN)—M(YfrVJT/N)]l{uu(YmT/N)u;ﬁ#}HRZi dr)*.

Moreover, inequality (&II) Holder’s inequality, equation ([8]), the scaling property of Brownian motion, and the
fact that [~ x e~z dx = 105 yields that for all N € N, k € {0,.. — 1}, re [&L, (kH) | it holds that

r(felpy

H(WTN)‘”(Y%” e kT)HRQ<N}iL4<W>

< Ve (L I+ IV 2y
&L R

(14 N 2 + Y2 12.)

L4(P;R)

ng(YT ~Yir)1 {le(v, )\\;2<%}iL8<P;R2> L5 (PR) (84)

07 = W) () ez ) (12 500 [V )

s€[0,T

<o [0 {Hu(YéVWT)Hi%?}i
< p<%\/¥ + (105)56\/@ (1+ 2 sw 1Y o iy ) < oo

L8(P;R2)
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This, inequality (83), Holder’s inequality, and inequality (82)) yield that for all N € N with N > max{64%T, T}
it holds that

1
(B[Ix6r - %))

< \/T(ZCE[HX#}”TN ‘4 RZ,RQ)] dr>‘1* .T%\/%p(1+25)<1+2 sup (E[HY;NH%%”D;O) (85)

L( s€[0,T]

1

< \/%T (061/4 exp((2ﬁ2 + )T + HSH%@)) B p(1+28)3.

This together with maxyenn(o,max{6527.T}+1] E[HXST — YQ{VH;Z] < oo implies (79). The proof of Lemma [£.5] is
thus completed. O

Appendix: The Skorohod integral with respect to Brownian motion and
additional independent information

In this appendix we introduce the Skorohod integral with respect to a Brownian motion W and an additional
sigma-algebra Fy which is independent of W. As a motivation, note that for every probability space (2, F,P)
and every standard Brownian motion W: [0,3] x Q@ — R the It6 integrals [} sin(Wy(Wo — W;))dWy and
J? sin(W, (W3 — Wa)) dW are well-defined (however with respect to different filtrations) but their sum cannot
be written as It6 integral [Z sin(Ws(Wig,41 — Wiep,)) dWs (which is not well-defined). In this appendix we
provide sufficient results to rewrite It6 integrals as Skorohod integrals and then to write the sum of these as a
single Skorohod integral.

Setting A.1. Letd,m € N, let S,T € R satisfy S < T, let (2, F,P) be a probability space, let W: [S,T] x Q —
R™ be a stochastic process such that (Wgiy — Ws)iep,r—s) s a standard Brownian motion with continuous
sample paths, let Fs C F be a sigma-algebra which is independent of S(Wy — Wg: t € [S,T)), let N = {A €
F:P(A) =0}, let Fp C F be the sigma-algebra which satisfies that Fr = S(Fs US(Wy — Wg: t € [S,T]) UN),
let S(P,Fg, W;RY) C L%(P|p,;R?) be the subset with the property that

F € L2(Pl,;RY): 3n € N,3¢n, ..., dn € L2(Njg7; R™),
S(P,Fs,W;RY) ={ 3f € (5°F N (Rn 5 0 R), Ih € RY such that it holds P-a.s. that p,  (86)
F=f([Eoi(r)dW,,.... [T ¢u(r)dW,)h

and for all s,t € [S,T) satisfying that s < t let Fissuier © F be the sigma-algebra with the property that
F[S,s]U[t,T} =6(FsUS(W, —Wg:relS,s])) USW, — Wy: re[t,T]) U./\/)

Definition A.2. Assume Setting[A 1. The extended Malliavin differential operator
D(P,Fs, W;R?): DOA(P, Fg, W;R?Y) — L2(Plr,; L*(Ag.1p: R™)) (87)

is the closed linear operator with the property that for all F € S(P,Fg, W;]Rd) with the property that In € N,
31, 00 € L2 R™), 3f € COFN(®Rn x O R), 3h € RY such that it holds P-a.s. that F —
FUE o1(r)dW,, ... [T ¢n(r) AW, )b it holds Mg ® P-a.e. that
D(P,Fg, W;RY)F =

( y LS, ) ) ; 833‘2

T T
< f ¢1 (S) dWS7 ceey f qbn(s) dWs) qblh (88)
S S
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and where D2 (P, Fg, W;R?) is the closure of span(S(P,Fg, W;R%)) C L%(P|p,; RY) with respect to the norm
1

I hpo @ pewzs = (B[l - 1+ 1D Fs, WiRY - 320, -z ] ). (89)
We write D = D(P,&(N), W;R%) and denote D as the classical Malliavin derivative.

The following lemma, Lemmal[A.3] shows that the extended Malliavin derivative is well-defined (in particular,
the left-hand side of (88]) does not depend on the representative and such a closed linear operator exists). The
proof of Lemma[A.3]is almost literally identical to the proofs of Proposition 4.2 and Proposition 4.4 in Kruse [27]
and therefore omitted.

Lemma A.3. Assume Setting [A.1l Then the operator
D(P,Fs, W; R : DUA(P, Fg, W;R?Y) — L2(Plr,; L*(Ag.7); R™)) (90)
is well-defined.

The following lemma, Lemma [A.4] shows that the set S (IP’,IE‘S,W;Rd) is sufficiently rich. The proof of
Lemma [A.4] is standard and therefore omitted.

Lemma A.4. Assume Setting [A1l Then span (S(P,Fg, W;R?)) is dense in L?(P|r,; R?).

In particular, Lemma [A.4] implies that the extended Malliavin differential operator is densely defined. Next
we introduce the adjoint of the densely defined extended Malliavin differential operator.

Definition A.5. Assume Setting[A 1. The extended Skorohod integral is the linear operator
5(P,Fs,W;R?): Doms(P,Fg, W;RY) — L?(P|p,;R?) (91)

which satisfies that X € L*(Plp,; L*(Ajg7); R™™)) is in the domain Domgs(P,Fg, W;R?) if and only if there
exists a ¢ € [0,00) with the property that for all F € span (S(IP’,IE‘S, W;Rd)) it holds that

E[(D(P,Fs, W;R%)F, X) 2 (s rexm)) < €l F | p2pra) (92)
and which satisfies that for all X € Domg(P,Fg, W;R%), F € S(P,Fg, W;R%) it holds that

EKF (P, Fg, W:; Rd)(X)>Rd] - EKD(P, Fg,W:R%)F, X> (93)

LZ(A[S,T]?Rde)] '

We say that X is (P,Fg, W;R?)-Skorohod integrable if and only if X € Domgs(P,Fg, W;R?). For all X €
Domg (P, Fg, W;R%) we denote by fg X, SWEs the equivalence class satisfying that

T
éX,, SWEs = §(P,Fg, W;RY)(X). (94)
For all X € Domg(P, S(N), W;R?) we denote by [L X, W, the equivalence class satisfying that
T T
éXT SW, = éxr SWEW) (95)

and we refer to fg X, 0W, as the classical Skorohod integral.

The following lemma will be applied in the proof of Proposition
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Lemma A.6. Assume Setting [A.T]l and let s,t € [S, T satisfy that s < ¢. Then
DEA(P,Fg, W;RY) € DU, Fig o) Wlis <0 RY) (96)
and for all F € D(2(P,Fg, W;R?) it holds Als,] ® P-a.e. that

<D(IP>, Fg, W:; Rd)F> = D(P,Fis,suie.r) Wlis g0 RYF. (97)

[s,t] X2

Proof of Lemma[A.d. Throughout this proof let F' € S(P,Fg, W;R%), let n € N, ¢1,...,¢, € £2(A[S7T};Rm),
fe C‘ZO’G(FSUN) (R™ x Q,R), and h € R? satisfy that it holds P-a.s. that

P f<2¢1(r) dWT,...,§¢n(r) 4w, ). (98)

and let g € CEO’F[S’S]U“’T] (R™ x Q,R) be a function such that for all (x1,...,x,) € R™ it holds P-a.s. that

s T s T
g1, sn) = f (1 F LAV AW, + [ o1(r) dWe ot [ Gu(r) AW+ [ 6(r) aw,). (99)
Then it holds P-a.s. that . .
F= g(fgbl(r) AW, ..., [ én(r) dWr>h. (100)
This implies that F' € S(P, Fig qup, 115 W|[S7t}XQ;Rd). Next for all ¢ € {1,...,n} it holds P-a.s. that
of (T T _dg t
o <£¢1(7~) AWy [ 6nlr) aw,) = 8—%@@51(@ AW [ Gu(r) W, ). (101)

It follows that it holds A 5 @ P-a.e. that

<D(1P>, Fg, W; Rd)F>

[s,t] X2

=Y S (Fam . [ ) @) = Y 52 (Forl) Wi ] o) d0,) (B (102)
i=1 " i—1 Yri s £

= D(P, Fis,quip,77, Wlis gx; R) F.
Equation (I02]) implies that

2
1,2 (P.F(s,sjuie, 7] W (s, g x 2 RY)

= E[HFHEW + DR, Fis sjue,17» W’[s,t]xﬂ?Rd)F”%Q()\[s’t];Rd)]

2 103
:E[HFH%@ T H(D(P’FS’W;Rd)F) [5,xQ L2()\[Syt];Rd)] "
< E[||Fllza + |D(P, FSaW§Rd)FH%2(A[S,T];Rd)] = P30 @.rswma):
Since F € S(P,Fg, W;R?) was chosen arbitrarily it follows that
span(S(P,Fgs, W;R?)) C span(S(P, Fig qupe,r)> Wlis,x0; RY). (104)

This and inequality (I03]) yield the inclusion (@6l), and equation (I02]) implies equation (@7)). The proof of
Lemma is thus completed. d
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The following result, Proposition [A.7], shows how to change the domain of integration for Skorohod integrals.

Proposition A.7. Assume Setting[A 1], let X € L°(P; L2(A[S7T};}Rdxm)), and let s,t € [S,T] satisfy that s < t.
Then the following two statements are equivalent:

(i) It holds that X|syxq is (P, Fis gupr), Wlisgxa; RY)-Skorohod integrable.
(ii) It holds that 1 g X is (P,Fg, W;R?)-Skorohod integrable.

If any of these two statements is true, then it holds P-a.s. that
¢ Fis,sjult, 17 T F
J X OWy 250 = [ g (1) X OW,5. (105)
s S

Proof of Proposition [A.7. ‘(i) implies (ii)’: Assume that the process X|; qxq is (P, Fis sup,1; W|[s’t]XQ;Rd)—

Skorohod integrable. This implies that 1js 4y X € L*(Plp,; L*(As7y; R9*™)). Lemma [A.6] the definition of the
Skorohod integral, and the Cauchy-Schwarz inequality imply for all F' € D(1:2) (P,Fg, W;R%) that

EKD

=E

—~

.m™d
P, ]FS; W; R )F7 ]l[s’t]X>L2()\[S,T];Rdxm)i|

od
(D(P,Fg, W; R )F)‘[s,t}xfbX’[s,t]xﬂ>L2(>\[S’t];RdeJ

r r 1
T~

_ md
=E[(D(P,Fisqui,1 Wlisgxa; R )F7X|[s7t}><Q>L2()\[S t];Rdm)] (106)

=E[(F, f X, 6w sy |

< N p2pray < oo

¢ F
fXTs 5Wr [S,s]u[t,T]
S

L2(P;R%)

We conclude that 1, 4 X is (P, Fg, W; R%)-Skorohod integrable.

‘(ii) implies (i)’: Assume, that 1j;4X is (P,Fg, W;R%)-Skorohod integrable. This implies that it holds
that X|, 4«0 € L2(P|p,; LQ()\[&H;Rde)). Lemma and the definition of the Skorohod integral yield for all
F e DLA(P,Fg, W;R?) that F € DUD(P,Fig o 17 Wlisxa; R and that

E [< (D(P, Fis,gui. 1) Wlis.gxas RDF), X | MXQ>

- [<(D(IP’,FS,W;Rd)F)‘[s,t]xQ’X‘[s,tlxﬂ>

E[(D(P,Fs, W;RY)F, 15 4 X )

Lz()‘[s,t]§Rde):|

Lz()‘[s,t]§Rde):|

L2(A\s,1) ;Rdxm)] (107)

T
= EKF,%: ]l[s,t} (T)Xr (5WTI,FS >Rd]

r NFN p2piray < 00

< Z]”S’” (r) X, SV

L2(P;R4)

Lemma [A.4] shows that span(S(P,Fg, W;R%)) is dense in L?(P|p,;RY). This, (I06) (I07), and the definition of
the Skorohod integral imply that X|is g« is (P, F(s suje,m) Wlis,gx0i R%)-Skorohod integrable and that it holds
P-a.s. that

[ Fis,sjult, 17 T F
[ X W, st = é Lig () X OW,S. (108)
S

The proof of Proposition is thus completed. O
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It is well-known (e.g., Nualart [36, Proposition 1.3.11]) that the classical Skorohod-Integral generalizes
the Ito-integral restricted to square-integrable integrands which are adapted to the Brownian filtration. The
following result, Proposition [A.8] generalizes this. The proof of Lemma [A.8 is analogous to the proof of
Nualart [36], Proposition 1.3.11] and is therefore omitted.

Proposition A.8. Assume Setting [A1, let s,t € [S,T] satisfy s < t, let F = (IF‘T),,E[M] be a filtration with
the property that for all r € [s,t] it holds that F, = &(&(W, — Ws:u € [s,7]) UF[gqup,m) and let X €
L2(P; ﬁz()\[s,t]; R¥>™)) be F-predictable. Then X is (P, Fis.sjupe, s Wlis <o R%)-Skorohod integrable and it holds
P-a.s. that . . .

[ X, oW, BT — 1 X AW (109)

The next result, Lemma [A.9] proves that if a sequence of integrals converges weakly and has uniformly
bounded Skorohod integrals, then the limit is Skorohod integrable and the sequence of Skorohod integrals of
the sequence converges weakly. Lemma follows immediately from the definition of the Skorohod integral
and its proof is therefore omitted.

Lemma A.9. Assume Setting [A] let X € L2(Plr,; L*(Aig.77; R¥™)) and let (X;)nen € Domg(P,Fg, W;R?)
be a sequence which satisfies that sup,,cy ||0(P,Fg, W;Rd)(Xn)HLZ(p'IFT;Rd) < 0o and which converges to X in
the weak topology of L?(P|g,; L?(Ajs79; R¥*™)). Then X € Doms(P,Fg, W;R?) and (6(P,Fs, W; R?)(X,,))nen
converges to §(P,Fg, W;R?)(X) in the weak topology of L?(P|r,;R%).
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