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Abstract

Such problems as computation of spectra of spin chains and vibrational spectra of
molecules can be written as high-dimensional eigenvalue problems, i.e., when the eigen-
vector can be naturally represented as a multidimensional tensor. Tensor methods have
proven to be an efficient tool for the approximation of solutions of high-dimensional
eigenvalue problems, however, their performance deteriorates quickly when the number
of eigenstates to be computed increases. We address this issue by designing a new
algorithm motivated by the ideas of Riemannian optimization (optimization on smooth
manifolds) for the approximation of multiple eigenstates in the tensor-train format,
which is also known as matrix product state representation. The proposed algorithm
is implemented in TensorFlow, which allows for both CPU and GPU parallelization.

1. Introduction

The paper aims at the approximate computation of b lowest eigenvalues ǫ(i) and
corresponding eigenvectors x(i) of a high-dimensional Hamiltonian H ∈ R

nd×nd

:

Hx(i) = ǫ(i)x(i), i = 1, . . . , b. (1)

Such problems arise in different applications of solid state physics and quantum chem-
istry problems including, but not restricted to the computation of spectra of spin chains
(n = 2) or vibrational spectra of molecules (usually n < 20).

High-dimensional problems are known to be computationally challenging due to the
curse of dimensionality, which implies exponential growth of the number of parameters
with respect to the dimensionality d of the problem. For example, storage of a single
eigenvector for a spin chain with d = 50 spins requires approximately 10 Pb of computer
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memory, which is far beyond available RAM on modern supercomputers. One way to
deal with the curse of dimensionality is to utilize tensor decompositions of vectors x(i),
i = 1, . . . , b represented as multidimensional arrays X (i) of size n× · · · × n also known
as tensors. Tensor decompositions have appeared to be useful for a long time both
in solid states physics and molecular dynamics communities where different kinds of
tensor decompositions have been used. Recently, the tensor method has also attracted
the attention in the numerical analysis community, where new ideas such as cross
approximation method [1, 2, 3] have been developed.

In this work we introduce a new method for solving problem (1) using the tensor-
train (TT) format [4], also known as matrix product state (MPS) representation, which
has been used for a long time in quantum information theory and solid state physics to
approximate certain wavefunctions [5, 6] (DMRG method), see the review [7] for more
details. One of the peculiarities of the proposed method is that it utilizes ideas of opti-
mization on smooth manifolds (Riemannian optimization). This is possible due to the
fact that the set of tensors of a fixed TT-rank2 forms a smooth nonlinear manifold [8].
For small TT-ranks the manifold is low-dimensional and hence all computations are
inexpensive.

To find a single eigenpair (ǫ(1),x(1)) Riemannian optimization allows to naturally
avoid the rank growth of the method (Sec. 2). This is essential for fast computations
as the complexity of the tensor method usually has strong rank dependence. However,
for finding several eigenvalues, the generalization is not straightforward and leads to a
significant complexity increase. Alternatively, one can compute eigenpairs using Rie-
mannian optimization one-by-one, i.e. using deflation techniques, but such an approach
is known to have slow convergence if the spectra is clustered [9]. To avoid this we pro-
pose a modification of the method (Sec. 3) that on the one hand keeps the benefits of
efficient single eigenstate computation using Riemannian approach, and on the other
hand inherits faster convergence properties of block methods.

The idea of the proposed method is as follows. We suggest projecting all the eigen-
vectors at each iteration onto a single specifically chosen tangent space3. However,
there is no reason to believe that all eigenvectors can be approximated using tangent
space of a single eigenvector. Thus, in our algorithm, we always treat the projection
as a correction to the current iterate. Overall, this leads to a small, but non-standard
optimization procedure for the coefficients of the iterative process (Sec. 5).

The main contributions of this paper are:

• We develop a low-rank Riemannian alternating projection (LRRAP) concept for
block iterative methods and apply it to the locally optimal block preconditioned
conjugate gradient (LOBPCG) method.

• We implement the proposed LRRAP LOBPCG solver using TensorFlow4 library,
which allows for parallelization on both CPUs and GPUs.

2TT-rank controls the number of parameters in the decomposition (Sec. 2.1).
3In a nutshell, tangent space is a linearization of the manifold at a given point (Sec. 2.2).
4If you are unfamiliar with TensorFlow, see Appendix A for introduction.
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• We accurately calculate vibrational spectra of acetonitrile (CH3CN) and ethylene
oxide (C2H4O) molecules as well as spectra of one-dimensional spin chains. The
comparison with the state-of-the-art methods in these domains indicates that we
obtain comparable accuracy with a significant acceleration (up to 20 times) for
large b thanks to the design of the method and the GPU support.

2. Riemannian optimization on TT manifolds

In this section we provide a brief description of TT-decomposition and Rieman-
nian optimization essentials on the example of a single eigenvalue computation using
LOBPCG method. In Section 3 the approach described here will be generalized to the
computation of several eigenvalues.

2.1. TT representation

Recall that we consider problem (1) and represent each eigenvector of size nd as
a n × · · · × n tensor. This allows for compression using tensor decompositions of
multidimensional arrays, and particularly the TT decomposition. For tensor X =
{Xi1,...,id}

n
i1,...,id=1 ∈ R

n×···×n its TT decomposition reads

Xi1,...,id = G1(i1)G2(i2) . . . Gd(id), (2)

where Gk(ik) are rk−1× rk matrices, k = 2, . . . , d−1. For the product of matrices to be
a number we require that G1(i1) be row matrices 1× r1 and Gd(id) be column matrices
rd−1 × 1, which means r0 = rd = 1. For simplicity we force r1 = · · · = rd−1 = r and
call r the TT-rank. The same value of rk for all k = 1, . . . , d− 1 implies that for some
modes rk can be overestimated. Note that in order to store TT representation of array
X one needs O(dnr2) elements compared with nd elements of the initial array. The TT
representation of Hamiltonian5 is defined by analogy. We will denote the maximum
rank of a Hamiltonian by R.

It rarely happens that some tensor can be represented with small TT-rank r ex-
actly. Therefore, to keep ranks small the tensor is approximated with some accuracy
by another tensor with a small TT-rank. In the considered numerical experiments we
expect exponential decay of the introduced error with respect to r.

From now on we say that vector x of length nd is of TT-rank r implying that being
reshaped into a n×· · ·×n multidimensional array X : x = vec(X ) it can be represented
with TT-rank equal to r.

2.2. Rayleigh quotient minimization using Riemannian optimization

Consider the problem of finding the smallest eigenvalue ǫ(1) (assuming it is simple)
and the corresponding eigenvector x(1). Suppose we are given an a priori knowledge

5 Matrix H ∈ R
nd

×nd

can also be naturally considered as a multidimensional array H of dimension
2d. The TT decomposition of H reads Hi1,...,id,j1,...,jd = H1(i1, j1)H2(i2, j2) . . . Hd(id, jd), where
i1, . . . , id represent row indexing of H, while j1, . . . , jd represent its column indexing, Hk(ik, jk) are
Rk−1 ×Rk matrices, k = 2, . . . , d− 1 and R0 = Rd = 1.
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that x(1) can be accurately approximated by a TT representation of a small TT-rank
r, i.e. it lies on the manifold of tensors of fixed TT-rank r:

Mr ≡ {x ∈ R
nd

|TT-rank(x) = r}.

To obtain the eigenpair (ǫ(1),x(1)) we pose a Rayleigh quotient R(x) minimization
problem on the low-parametric manifold Mr instead of the full Rnd

space:

min
x∈Mr

R(x), R(x) ≡
〈x,Hx〉

〈x,x〉
, (3)

where we assume that H is symmetric. Since Mr forms a smooth manifold [8] one can
utilize the so-called methods of Riemannian optimization, i.e. optimization on smooth
manifolds.

One of the key concepts for the Riemannian optimization is tangent space, which
consists of all tangent vectors to Mr at a given point x [10]. We will denote tangent
space of Mr at x by TxMr. tangent space can be viewed as the linearization of
a manifold at the given point x. It has the same dimension as the manifold [10] and
assuming that r is small, it allows to locally replace the manifold with a low-dimensional
linear space.

Provided a tangent space at hand we can discuss the simplest optimization method
on Mr — the Riemannian gradient descent method, which consists of several steps
and is illustrated in Fig. 1. Given the starting point xk, the first step is to calculate
the Riemannian gradient, which in this case is projection of the standard Euclidean
gradient: Pxk

∇R(xk), where Pxk
denotes the orthogonal projection on Txk

Mr. This is
simply the Rayleigh quotient steepest descent direction at xk, restricted to the tangent
space Txk

Mr. The second step is, given the search direction from TxMr, map it back
to the manifold to obtain xk+1 of the iterative process. This is done by the smooth
mapping T̃r(x, ·) : TxMr → Mr called retraction. Note that in case of fixed-rank

manifold Mr we use the retraction satisfying T̃r(x, ξ) ≡ Tr(x + ξ) [11] and call it
truncation.

Similarly to the original gradient descent method, the convergence of such method
can be slow and preconditioning has to be used. There are different ways how to
account for a preconditioner in the Riemannian version of the iteration. We will use
the idea considered in [12], where the preconditioner acts on the gradient and the result
is projected afterwards

xk+1 = Tr

(
xk − Pxk

B−1∇R(xk)
)
, (4)

which for eigenvalue computations can be viewed as Riemannian generalization6 of the
preconditioned inverse iteration (PINVIT). Indeed, one iteration of a classical version
of PINVIT reads

xk+1 = xk −B−1rk,

6The search direction Pxk
B

−1∇R(xk) is usually additionally multiplied by a constant τk to be found
from the line search procedure R(xk − τkPxk

B
−1∇R(xk)) → minτk . This ensures the convergence in

the presence of the nonlinear mapping Tr.
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Mr

Txk
Mr

−∇R(xk)

−Pxk
∇R(xk)

xk+1

xk

Figure 1: Illustration of the Riemannian gradient descent method. Mr denotes the smooth manifold of
vectors of fixed TT-rank and Txk

Mr its tangent space at xk. The gradient is projected on the tangent
space and then xk is moved in the direction of the projected gradient and afterwards is retracted to
the manifold: xk+1 = Tr (xk − Pxk

∇R(xk)).

where rk = Hxk −R(xk)xk denotes the residual, which is proportional to the gradient
of the Rayleigh quotient:

∇R(x) =
2

〈x,x〉
(Hx−R(x)x) .

Note that to avoid growth of ‖xk‖ additional normalization xk := xk/‖xk‖ is done after
each iteration to ensure 〈xk,xk〉 = 1.

We could have restricted ourselves to the case of PINVIT (4), but to get faster
convergence we utilize a superior method — locally optimal preconditioned conjugate
gradients (LOPCG) and its block version (LOBPCG) to calculate several eigenvalues
(see Sec. 3). To our knowledge the Riemannian version of LOPCG was not considered
in the literature, so we provide it here. According to the classical LOBPCG the search
direction pk is a linear combination of the preconditioned gradient and pk−1. In the
Riemannian setting instead of the preconditioned gradient B−1∇R(xk) we consider
its projected analog Pxk

B−1∇R(xk) ∈ Txk
Mr. However, the problem is that pk−1 6∈

Txk
Mr, so similarly to [13] we use another important concept from the differential

geometry – vector transport, which is a mapping from Txk−1
Mr to Txk

Mr satisfying

certain properties [14]. Since Mr is an embedded submanifold of Rnd

, the orthogonal
projection from Txk−1

Mr to Txk
Mr can be used as a vector transport [14], so that

pk+1 = c1 Pxk
B−1∇R(xk) + c2 Pxk

pk, (5)

and
xk+1 = Tr (xk + pk+1) (6)
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where c1, c2 are constants to be found from

(c1, c2) = argmin
(ζ1,ζ2)

R(xk + ζ1 Pxk
B−1∇R(xk) + ζ2 Pxk

pk) (7)

Note that we have omitted Tr in the optimization procedure. This allows to solve (7)
exactly. Although in numerical computations we have never faced the problem of func-
tional increase with the omitted Tr, additional line-search procedure could be introduced
to ensure convergence.

2.3. Complexity reduction for computations on Mr

One of the key benefits of the Riemannian optimization on Mr is that it allows
to avoid the rank growth. This is particularly important in low-rank tensor computa-
tions due to the strong rank dependence of tensor methods, which sometimes is called
the curse of the rank. The crucial property that allows for a significant speed-up of
computations in the Riemannian approach is that TT-ranks of any vector from a tan-
gent space of Mr has ranks at most 2r. Since tangent space is a linear space, linear
combination of any number of vectors from one tangent space also has rank at most
2r. As a result, pk+1 in (5) is of rank at most 2r and for the already computed pk+1

the computation of (6) is inexpensive. By contrast, if in (6) we omit Pxk
, i.e. no Rie-

mannian optimization approach is used, then this leads to complexity increase since
matrix-vector multiplications considerably increase TT-ranks. Moreover, one can show
that in (7) to find c1 and c2 scalar products of TT-tensors have to be computed. The
calculation of scalar products of two vectors belonging to the same tangent space is of
less complexity than of two general TT-tensors of the same rank. We provide details
about the implementation of the Riemannian optimization for TT-manifolds in Sec. 4
after general description of the proposed method.

3. The proposed method

The main goal of the paper is to consider a problem of finding several eigenvalues
and the corresponding eigenvectors. For convenience we rewrite (1) in the block form

HX = XΛ, X = [x(1), . . . ,x(b)], Λ = diag(ǫ(1), . . . , ǫ(b)),

additionally assuming ǫ(1) ≤ ǫ(2) ≤ · · · ≤ ǫ(b) 6= ǫ(b+1). Then the problem under the
TT-rank constraint on x(α), α = 1, . . . , b can be reformulated as trace minimization:

minimize
X∈Rnd

×b

Tr(X⊺HX)

subject to X⊺X = Ib

x(i) ∈ Mr, i = 1, . . . , b,

(8)

where Tr(·) denotes trace of a matrix. We address this problem by means of Riemannian
optimization. To do so, in Section 3.1 we consider block method with all vectors pro-
jected to the tangent plane of the first eigenvector. Then in Section 3.2 we present the
LRRAP concept where tangent planes of different eigenvectors are chosen alternatively.
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3.1. Speeding-up computation of the smallest eigenvalue
As a starting point to generalize (6) to the block case assume that we are first aiming

at finding the first eigenvalue by only using tangent space of the first eigenvector. The
iteration (6) can be improved by performing additional subspace acceleration by using

more vectors in the tangent space of Mr at x
(1)
k . In particular, we suggest using the

LOBPCG method and project all arising vectors to the tangent space7 at x
(1)
k :

Rk = HXk −XkΛk, Λk = diag
(
R

(
x
(1)
k

)
, . . . ,R

(
x
(b)
k

))

Pk+1 = P
x
(1)
k

B−1RkC2 + P
x
(1)
k

PkC3

Xk+1 = Tr

(
P
x
(1)
k

XkC1 +Pk+1

)
,

(9)

where the truncation operator Tr is applied independently to each column of the ma-
trix and Ci ∈ R

b×b, i = 1, 2, 3 are matrices of coefficients to be found from trace
minimization. In particular, introducing notation

Vk = P
x
(1)
k

[
Xk Rk Pk

]
∈ R

nd×3b, C =




C1

C2

C3



∈ R

3b×b,

we have
minimize

C
Tr(C⊺(V⊺

kHVk)C),

subject to C⊺(V⊺

kVk)C = Ib,
(10)

which reduces to a classical generalized eigenvalue problem of finding b smallest eigen-
values θ1, . . . , θb and corresponding eigenvectors of the matrix pencil V⊺

kHVk − θV⊺

kVk

of size 3b× 3b.
Since we project all the vectors on the same tangent space, there is no rank growth

even for large b and hence the application of Tr is inexpensive. Moreover, we expect
that to achieve a given accuracy of ǫ(1) the number of iterations for (9) is less than the
number of iterations for (6) thanks to the additional subspace acceleration.

3.2. Riemannian alternating projection method
Similarly to (9) all column vectors of [Xk,B

−1Rk,Pk] can be projected to the tan-

gent space T
x
(tk)

k

Mr of x
(tk)
k for some integer 1 ≤ tk ≤ b, which not necessarily equals

1. However, there is no evidence that all eigenvectors except for the tk-th one can be
accurately approximated using T

x
(tk)

k

Mr. Therefore, we propose to use T
x
(tk)

k

Mr to

search for the correction to the already found approximations of Xk as follows:

Rk = HXk −XkΛk,

Pk+1 = P
x
(tk)

k

B−1RkC2 + P
x
(tk)

k

PkC3

Xk+1 = Tr

(
Xk diag(c) + P

x
(tk)

k

XkC1 +Pk+1

)
,

(11)

7Note that P
x
(1)
k

x
(1)
k = x

(1)
k .
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where c ∈ R
b an diag(c) denotes diagonal b×b matrix with the vector c on the diagonal.

By forcing Xk to be multiplied by a diagonal matrix diag(c) instead of a general square
matrix, we reduce computational cost of the method. Indeed, in this case we avoid
calculating linear combinations of the columns of Xk which do not belong to the same
tangent space.

Note that we may also write

Xk+1 = Tr (Xk diag(c) +VkC) ,

where
Vk = P

x
(tk)

k

[
Xk,B

−1Rk,Pk

]
,

and the matrices of coefficients

C =




C1

C2

C3



, Cj ∈ R

b×b, j = 1, 2, 3

and c ∈ R
b are to be found from the trace minimization problem

minimize
c,C

Tr [(Xk diag(c) +VkC)⊺H(Xk diag(c) +VkC)]

subject to (Xk diag(c) +VkC)⊺(Xk diag(c) +VkC) = Ib

(12)

or equivalently

minimize
c,C

Tr






diag(c)

C




⊺


X

⊺

kHXk X
⊺

kHVk

V
⊺

kHXk V
⊺

kHVk






diag(c)

C







subject to



diag(c)

C




⊺


X

⊺

kXk X
⊺

kVk

V
⊺

kXk V
⊺

kVk






diag(c)

C


 = Ib

(13)

which because of the diagonal constraint does not boil down to a standard generalized
eigenvalue problem. Due to the description technicality of solution of (13), we postpone
it to Section 5.

The convergence of the proposed method depends on the choice of the integer se-
quence {t1, t2, . . . , tn, . . . }. We call the strategy that in a certain way chooses the
tangent space on each iteration the tangent space schedule. Note that we could have
found all eigenvalues one by one, i.e. t1 = · · · = tkδ1 = 1, then tkδ1+1 = · · · = tkδ1+kδ2

= 2

and so on, where kδ
α is the number of iterations for R(x(α)) to achieve accuracy δ.

This strategy, however, for a large number of eigenvalues b requires a lot of iterations
to be done. Therefore, we utilize strategies that do not require all tangent spaces to
be chosen at least ones. We found that although the random choice (discrete uniform
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distribution) of ti: 1 ≤ ti ≤ b already ensures convergence in most of the cases, the
strategy

tk = argmax
i

∣∣∣∣∣
R(x

(i)
k−1)−R(x

(i)
k )

R(x
(i)
k )

∣∣∣∣∣ (14)

in which we choose eigenvalue with the current slowest convergence, yields more reliable
results for larger number of eigenvalues. Before running the adaptive strategy for tk we
choose t1 = · · · = tk0 = 1 while convergence criteria for R(x(1)) is not fulfilled. This
corresponds to (9) instead of (11) and hence, speeds up computations. The implemen-
tation details of the iteration (11) will be given in the next section and the algorithm
for the computation of coefficients will be described later in Section 5.

4. Implementation of tensor operations

In this section we provide a brief description of implementation details for Rieman-
nian optimization on Mr with complexity estimates and summarize the algorithm.

4.1. Representation of tangent space vectors
We start with the description of vectors from tangent spaces, as they are the main

object we are working with. Let x be given by its TT decomposition (2). It is known [4]
that by a sequence of QR decomposition of cores, (2) can be represented both as

Xi1...id = U1(i1)U2(i2)U3(i3) . . . Ud(id), (15)

where Uk = {Uk(ik)}
n
ik=1 ∈ R

rk−1×n×rk , k = 1, . . . , d − 1 being reshaped into matrices
M L

k (Vk) of size rk−1n×rk have orthogonal columns, r1 = · · · = rd−1 = r and r0 = rd = 1.
Here M L

k : Rrk−1×n×rk → R
rk−1n×rk denotes the matricization operator, that maps first

two indices of considered three-dimensional arrays into a single one. Similarly, we may
have

Xi1...id = V1(i1)V2(i2)V3(i3) . . . Vd(id), (16)

where Vk = {Vk(ik)}
n
ik=1 ∈ R

rk−1×n×rk , k = 2, . . . , d being reshaped into matrices
M R(Vk) of size rk−1 × nrk have orthogonal rows. Representations (15) and (16)
are called correspondingly left- and right-orthogonalizations of TT-representation (2),
which can be performed with O(dnr3) complexity. Using these notations, one possible
way to parametrise tangent space TxMr is as follows. Any ξ = vec(Ξ) ∈ TxMr can be
represented as

Ξi1...id =δG1(i1)V2(i2)V3(i3) . . . Vd(id) +

U1(i1)δG2(i2)V3(i3) . . . Vd(id) + · · ·+

U1(i1)U2(i2)U3(i3) . . . δGd(id),

(17)

where cores δGk = {δGk(ik)}
n
ik=1 ∈ R

rk−1×n×rk additionally satisfy the following gauge
conditions to ensure uniqueness8 of the representation:

(
M

L (δGk)
)⊺

M
L (Uk) = 0, k = 1, . . . , d− 1. (18)

8To see that the tangent space is overparametrized by (17) note that the number of parameters in
all the Gk(ik) is (d− 2)nr2 + 2nr, while the dimension of the manifold Mr and hence of the tangent
space is smaller: dim(TxMr) = (d− 2)nr2 + 2nr − (d− 1)r2 [8].
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To show that any vector from a tangent space has TT-rank not greater than 2r we note
that for (17) the explicit formula holds:

Ξi1...id = S1(i1)S2(i2) . . . Sd(id),

where for k = 2, . . . , d− 1

S1(i1) =

[
δG1(i1) U1(i1)

]
, Sk(ik) =




Vk(ik)

δGk(ik) Uk(ik)


 , Sd(id) =




Vd(id)

δGd(id)


 ,

which can be verified by direct multiplication of all Sk(ik). From (17) it is also sim-

ply noticeable that if ξ(1), ξ(2) ∈ TxMr given by δG
(1)
k (ik) and δG

(2)
k (ik), k = 1, . . . , d

correspondingly, then their linear combination (αξ(1) + βξ(2)) ∈ TxMr is given by

(α δG
(1)
k (ik) + β δG

(2)
k (ik)), α, β ∈ R.

4.2. Projection to a tangent space

Representation (17) allows to obtain explicit formulas for δGk(ik) of ξ = PTxMr
z

without inversions of possibly ill-conditioned matrices [12]:

vec(δGk) =
(
Irk−1 ⊗ (Inrk − M

L (Uk)M
L (Uk)

⊺)
)
(X⊺

>k ⊗ In ⊗X
⊺

<k) z,

vec(δGd) = (In ⊗X
⊺

<d) z,

where k = 1, . . . , d− 1 and

X<k = [G1(i1) . . . Gk−1(ik−1)] ∈ R
nk−1×r,

X>k = [Gk+1(ik+1) . . . Gd(id)] ∈ R
nd−k×r.

Matrices X<k, X>k are never formed explicitly and used here for the ease of nota-
tion. The complexity of projecting a vector z given by its TT decomposition with
TT-rank(z) = rz is O(dnrr2z).

One of the most time-consuming operations arising in the algorithm is a projection
to a tangent space of a matrix-vector product. Suppose that both H and y are given
in the TT format with TT-ranks R and ry. Then z = Hy can also be represented in
the TT format with the TT-rank bounded from above as ryR [4] since

Zi1,...,id = Z1(i1) . . . Zd(id),

Zk(ik) =
n∑

jk=1

Hk(ik, jk)⊗Gk(ik) ∈ R
Rk−1(ry)k−1×Rk(ry)k .

Calculation of Zk(ik) can be done in O(n2R2r2y) complexity. Once Zk(ik) k = 1, . . . , d
are calculated, complexity of finding the TT representation of PTxMr

z is O(dnrr2z) =
O(dnrr2yR

2) as rz = ryR. This complexity can be additionally reduced down to
O(dn2rryR

2) if we take care of the Kronecker-product structure of Zk(ik). Moreover,
since it does not require computation of Zk(ik) explicitly, the storage is also less in this
case.
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4.3. Computation of inner products

Next thing that arises in the method, in particular in (13) is the computation of
Gram matrices V⊺V, V⊺HV, X⊺X, V⊺X, V⊺HV, V⊺HX and as we will see in Sec. 5
solution to (13) will involve only diag(X⊺HX) instead of the full X⊺HX. Here V

consists of columns that belong to a single tangent space TxMr and X are general
tensors of TT-rank r.

Let us first discuss the computation of V⊺V. Let v(α) be the α-th column of V,
α = 1, . . . , 3b and be given by δGk(ik) ≡ δG

(α)
k (ik) from (17). Then, thanks to gauge

conditions (18), left orthogonality of U and right orthogonality of V , we have

〈
v(α),v(β)

〉
=

d∑

k=1

〈
δG(α)

k , δG(β)
k

〉
F
, (19)

where 〈A,B〉F ≡ vec(A)⊺ vec(B) is the Frobenius inner product. Therefore, the com-
plexity of computing V⊺V is O(b2dnr2). The computation of V⊺HV is done using the
following trick. Note that all columns of V belong to a single tangent space TxMr.
Hence,

V⊺HV = (PTxMr
V)⊺HV = V⊺(PTxMr

HV). (20)

As a result, we first compute PTxMr
HV using the procedure described in Section 4.2.

Then we compute the inner product of two vectors from the same tangent space as
in (19). Thus, the complexity of finding V⊺HV is O(bdn2r2R2 + b2dr2). Similarly
to (20) we have V⊺HX = V⊺(PTxMr

HX) and V⊺X = V⊺(PTxMr
X).

Computation of X⊺X is a standard procedure, which consists of b2 inner products
of TT tensors. Since the complexity of inner product of two tensors of TT-rank r is
O(dnr3) [4], computing b2 of inner products requireO(b2dnr3) floating point operations.

Finally, the computation of x(α)⊺Hx(α), α = 1, . . . , b arising in diag(X⊺HX) costs
O(ndRr2(r+R)). Eventually, computation of diag(X⊺HX) has complexityO(bndRr2(r+
nR)).

4.4. Retraction computation

The final thing remains to compute to proceed to the next iteration after we have
found the coefficients c,C and Vk, is to retract the obtained vectors Xkdiag(c) +VkC

to the manifold Mr. All columns Vk are from the same tangent space at x
(tk)
k , so the

correction (VkC)[:, i] to each x
(i)
k , i = 1, . . . , b is of rank 2r. Therefore, x

(i)
k c[i]+(VkC)[:

, i] is of rank at most 2r for i = tk and 3r otherwise. The retraction is done by the TT-
SVD algorithm [4] that consists of a sequence of QR and SVD decompositions applied
to the unfolded tensor cores. It has complexity O(dnr3).

Note that the retraction is properly defined only for i = tk, but we formally apply
it to other vectors as well, as the coefficients c,C were obtained to ensure the descent
direction for all vectors. The descent direction is, however, chosen without regard to
the retraction. This can be accounted for by introducing approximate line search, but
numerical experiments showed this is in general redundant and c,C already provide
good enough approximation.

11



4.5. The algorithm description

Let us now discuss the iteration (11) step-by-step. For simplicity let us denote
Pk ≡ P

x
(tk)

k

. First, assuming we are given Pk, the calculation of PkPk is done in

O(bdnr3) complexity.
To calculate PkB

−1Rk term we split it into two parts:

PkB
−1Rk = PkB

−1HXk − PkB
−1XkΛk.

The PkB
−1Xk is a projected matrix vector product, which is calculated as described in

Section 4.2 and costs O(bdn2r2R2) operations. The term PkB
−1HXk is more difficult

to compute as it involves two sequential matrix-vector products. To deal with this term
efficiently, we use the trick from [12] and assume that

B−1 = B1 + · · ·+BρB , (21)

where Bi, i = 1, . . . , ρB are of TT-rank 1. This trick helps us thanks to the fact the
multiplication of a TT-matrix of TT-rank 1 by a general TT-matrix does not change
the rank of the latter. The assumption (21) holds for the preconditioner we use for the
calculation of vibrational spectra of molecules, while for spin chains computation no
preconditioner is used. Thus,

PkB
−1HXk = PkB1HXk + · · ·+ PkBρBHXk (22)

and hence the complexity of computing PkB
−1HXk is O(bdn2r2R2ρB). The truncation

operation costs O(bdnr3), which is negligible compared to other operations. The overall
algorithm is summarized in Algorithm 1.

5. Trace minimization problem for coefficients

Let us rewrite the problem (13) omitting index k for simplicity

minimize
c,C

Tr






diag(c)

C




⊺


X⊺HX X⊺HV

V⊺HX V⊺HV






diag(c)

C







subject to



diag(c)

C




⊺


X⊺X X⊺V

V⊺X V⊺V






diag(c)

C


 = Ib

(23)

Unfortunately, this problem can not be reduced to a generalized eigenvalue problem,
which can be solved by means of a reliable and optimized software packages. Therefore,
to solve it we propose an iterative method. It is derived using the Lagrange multiplier
method formally applied to the minimization problem. The Lagrange function of (23)

12



Algorithm 1 Low-Rank Riemannian Alternating Projection LOBPCG.

Require: TT-matrix H, initial guess X1 = [x
(1)
1 . . .x

(b)
1 ], where x

(1)
i are TT-tensors,

TT-rank r, convergence tolerance ε
Ensure: Xk = [x

(1)
k . . .x

(b)
k ]

1: Initialize Pk = 0 ·X1

2: Set t1 = 1
3: for k = 1, 2, . . . until converged do

4: if ‖P
x
(1)
k

(
Hx

(1)
k −R(x

(1)
k )x

(1)
k

)
‖ > ε) then

5: Set tk = 1
6: else

7: Choose tk randomly or according to (14)

8: Calculate PkXk and PkPk ⊲ Pk ≡ P
(tk)
xk

9: Calculate R(x
(i)
k ), i = 1, . . . , b

10: Calculate PkB
−1Rk using (21) and (22)

11: Set Vk = Pk [Xk,B
−1Rk,Pk] and calculate V

⊺

kVk, V
⊺

kHVk, X
⊺

kXk, V
⊺

kXk,
V

⊺

kHVk, V
⊺

kHXk, diag(X
⊺

kHXk) as described in Sec. 4.3
12: for i = 1, . . . , b do
13: r

(i)
k = Hx

(i)
k −R(x

(i)
k )x

(i)
k

14: c,C = find coefficients(V⊺

kVk, V
⊺

kHVk, X
⊺

kXk, V
⊺

kXk, V
⊺

kHVk, V
⊺

kHXk,
diag(X⊺

kHXk)), see Alg. 1.
15: Pk+1 = [PkB

−1Rk,PkPk]C[:, b : 3b]
16: Calculate Xk+1 = Xk diag(c) + PkXkC1 +Pk+1

17: Calculate Xk+1 := Tr(Xk+1)

reads

L(c,C,Λ) =
1

2
Tr






diag(c)

C




⊺


X⊺HX X⊺HV

V⊺HX V⊺HV






diag(c)

C





−

1

2
Tr


Λ






diag(c)

C




⊺


X⊺X X⊺V

V⊺X V⊺V






diag(c)

C


− Ib







Thanks to the symmetry of the constraint matrix we can consider Λ⊺ = Λ without the
loss of generality. Then, the gradient of the Largangian reads

∇c L = diag(X⊺HX)c+ diag((X⊺HV)C− (X⊺V)CΛ)1− (Λ⊙X⊺X)c,

∇C L = (V⊺HV)C+ (V⊺HX)diag(c)− (V⊺X)diag(c)Λ− (V⊺V)CΛ,

where diag(A) denotes a diagonal matrix with the same diagonal as A, 1 — vector of
all ones of the corresponding size and A⊙B — elementwise product of matrices A,B

13



of the same size. Thus, the critical point of the Lagrangian can be found from

diag(X⊺HX)c+ diag((X⊺HV)C)1 = diag((X⊺V)CΛ)1+ (Λ⊙X⊺X)c,

(V⊺HV)C+ (V⊺HX)diag(c) = (V⊺X)diag(c)Λ+ (V⊺V)CΛ,

(X diag(c) +VC)⊺(X diag(c) +VC) = Ib,

(24)

We put emphasis on the fact that the latter equation does not depend on the whole
X⊺HX which is present in (23), but only on diag(X⊺HX) instead. This significantly
reduces complexity of computations.

Equations (24) can be rewritten in the following form



(x(α))⊺Hx(α) (x(α))⊺HV

V⊺Hx(α) V⊺HV






ζα

cα


 = λαα



(x(α))⊺x(α) (x(α))⊺V

V⊺x(α) V⊺V






ζα

cα




+
b∑

β=1,
β 6=α

λαβ



(x(α))⊺x(β) (x(α))⊺V

V⊺x(β) V⊺V






ζβ

cβ




[
ζα c⊺α

]


(x(α))⊺x(β) (x(α))⊺V

V⊺x(β) V⊺V






ζβ

cβ


 = δαβ, α, β = 1, . . . , b,

(25)

where δαβ is the Kronecker delta and c =

[
ζ1 . . . ζb

]
⊺

. For convenience we introduce

the following notations:

Aα =



(x(α))⊺Hx(α) (x(α))⊺HV

V⊺Hx(α) V⊺HV


 ,

Gαβ =



(x(α))⊺x(β) (x(α))⊺V

V⊺x(β) V⊺V


 ,

sα =



ζα

cα


 .

(26)

Using these notations (25) reads

Aαsα = λααGααsα +
b∑

β=1,
β 6=α

λαβGαβsβ,

s⊺αGαβsβ = δαβ, α, β = 1, . . . , b.

(27)
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To solve (27) we propose the following iterative process:

Aαs
(k+1)
α = λ(k+1)

αα Gαα s
(k+1)
α +

∑

β<α

λ
(k+1)
αβ Gαβ s

(k+1)
β +

b∑

β>α

λ
(k)
αβGαβ s

(k)
β ,

(
s(k+1)
α

)⊺
Gαβ s

(k+1)
β = δαβ, α ≤ β,

(
s(k+1)
α

)⊺
Gαβ s

(k)
β = 0, α > β.

(28)

To reduce (28) to a sequence of generalized eigenvalue problems let us start with α = 1
and proceed to α = b. For α = 2, . . . , b− 1 define

S(k)
α =

[
Gα,1 s

(k+1)
1 . . . Gα,α−1 s

(k+1)
α−1 Gα,α+1 s

(k)
α+1 . . . Gα,b s

(k)
b

]
,

S
(k)
1 =

[
G1,2 s

(k)
2 . . . G1,b s

(k)
b

]
,

S
(k)
b =

[
Gb,1 s

(k+1)
1 . . . Gb,b−1 s

(k+1)
b−1

]
,

with null spaces

N (k)
α = Null

(
S(k)
α

⊺
)
.

We also introduceQα of size (3b+1)×dim(N (k)
α ) whose columns form an orthonormal

basis in N (k)
α . Accounting for the fact that s

(k+1)
α ∈ N (k)

α , multiplying the first equation
of (28) by Q

⊺

1 and introducing z
(k+1)
α : s

(k+1)
α = Qαz

(k+1)
α we arrive at the sequence of

generalized eigenvalue problems

(Q⊺

αAαQα) z
(k+1)
α = λ(k+1)

αα (Q⊺

αGααQα) z
(k+1)
α ,

(
z(k+1)
α

)⊺
(Q⊺

αGααQα) z
(k+1)
α = 1,

(29)

in which we are searching for the smallest eigenvalue λ
(k+1)
αα and the corresponding

eigenvector z
(k+1)
α .

The matrix Qα is calculated using SVD of S
(k)
α = UΣV ⊺ by choosing b plus number

of zero singular values of last columns of U . The algorithm described above is sum-
marized in Algorithm 2. Given matrices V⊺V, V⊺HV, X⊺X, V⊺X, V⊺HV, V⊺HX,
diag(X⊺HX) the overall complexity to find the coefficients is O(b4). This is due to the
fact that we calculate full eigendecomposition that costs O(b3) for each α = 1, . . . , b.
Note that we only need one eigenvalue and one eigenvector for each α. This does not
significantly increase the complexity of the overall algorithm (including tensor opera-
tions) for moderate b up to 100. Arguably O(b4) complexity may be reduced down to
O(b3) using low-rank update of matrix decompositions. We, however, do not consider
it here as it does not significantly influence overall performance of the method on the
considered range of b and requires a lot of technical details to be presented.
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Algorithm 2 find coefficients function from Algorithm 1

Require: Matrices V⊺V, V⊺HV, X⊺X, V⊺X, V⊺HV, V⊺HX, diag(X⊺HX), initial

guesses s
(1)
β ∈ R

3b+1, β = 2, . . . , b, maximum number of iterations K
Ensure: c,C that approximate the solution to (23)
1: Assemble Aα, Gαβ, α, β = 1, . . . , b according to (26)

2: S
(1)
1 =

[
G1,2 s

(1)
2 . . . G1,b s

(1)
b

]

3: for k = 1, 2, . . . , K do

4: for α = 1, 2, . . . , b do
5: Compute SVD: S

(k)
α = Udiag(σ)V ⊺

6: Set Qα := U [:, 2b+ 1−#zeros(σ) : 3b+ 1],
7: Compute Q⊺

αAαQα, Q
⊺

αGααQα

8: Find z
(k+1)
α from (29)

9: Compute s
(k+1)
α = Qαz

(k+1)
α

10: if α 6= b then

11: Calculate S
(k)
α+1 =

[
Gα+1,βz

(k+1)
β

]b

β=1,β 6=α+1

12: S
(k+1)
1 =

[
G1,2 s

(k+1)
2 . . . G1,b s

(k+1)
b

]

6. Numerical experiments

In this section, we numerically assess the proposed method. For all experiments we
use NVIDIA DGX-1 station with 8 V100 GPUs (only one of which is used at a time)
and Intel(R) Xeon(R) CPU E5-2698 v4 @ 2.20GHz with 80 logical cores.

6.1. Molecule vibrational spectra

One of the applications we consider is the computation of vibrational spectra of
molecules. In particular, we consider Hamiltonians given as

H = −
1

2

d∑

i=1

ωi

∂2

∂q2i
+ V (q1, . . . , qd), (30)

where V denotes potential energy surface (PES). The proposed method is applicable
if the Hamiltonian can be represented in the TT-format with small TT-ranks, which
holds, e.g. for sum-of-product PES. Therefore, we consider PES given in the polynomial
form as is used in [15]:

V (q1, . . . , qd) =
1

2

d∑

i=1

ωiq
2
i +

1

6

d∑

i=1

d∑

j=1

d∑

k=1

φ
(3)
ijkqiqjqk

+
1

24

d∑

i=1

d∑

j=1

d∑

k=1

d∑

l=1

φ
(4)
ijklqiqjqkql.
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Table 1: TT-ranks of the Hamiltonian with ε = 10−12 truncation tolerance.

CH3CN R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11

5 9 14 21 25 26 24 18 15 8 5

C2H4O R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14

5 11 17 21 23 25 27 28 25 23 21 16 11 5

To discretize the problem we use the discrete variable representation (DVR) scheme on
the tensor product of Hermite meshes [16]. The complexity of assembling the discretized
PES V is [17]

O
((

nnz
(
φ
(3)
ijk

)
+ nnz

(
φ
(4)
ijkl

))
dn2R3

)

and is negligibly small compared with the cost of one iteration of the iterative process.
As a preconditioner we use approximate inversion of the harmonic part of (30) using [18]
and formula (22) for efficient computations.

We calculate vibrational spectra of two molecules: acetonitrile (CH3CN) and ethy-
lene oxide (C2H4O) for which d = 12 and d = 15 correspondingly. The potential energy
surfaces for these molecules were kindly provided by the group of Prof. Tucker Car-
rington. Table 1 contains TT-ranks of Hamiltonians of these two molecules with the
mode order sorted in correspondence with the ascending order of ωi, i = 1, . . . , d with
mode sizes chosen according to [19] for CH3CN and n = 15 for all modes for C2H4O.
Initial guess is chosen from the solution of the harmonic part of the Hamiltonian and
can be derived analytically.

Figure 2 represents convergence of each of the eigenvalues when running the pro-
posed method for different choices of tangent space schedules. The following scenarios
are compared. The first one is when the tangent space is the fixed tangent space of the
first eigenvector for all iterations, i.e. t1 = · · · = tK = 1. In this case there is no need
to find corrections using (13) and hence, computations are faster for large b. In this
case we observe that although first ten eigenvalues converge within approximately 25
iterations, most of the eigenvalues do not converge to the desired accuracy even when
the number of iterations is 100. The behaviour is in accordance with the fact that not
necessarily can all eigenvectors be approximated using only one tangent space of the
first eigenvector. In the optimal scenario after every iteration we choose the tangent
space that allows us obtaining the smallest value of the functional in (13). This is
done by checking tangent spaces of all the eigenvectors, which is impractical and hence
is provided only for comparison purposes. Not surprisingly, this scenario yields the
fastest convergence. Finally, in the figure we also provide two practically interesting
cases: tangent space schedule according to (14), which we call here “argmax” and the
random choice of tangent space after each iteration. The “argmax” strategy aims at
speeding up convergence of the eigenvalues with the slowest convergence rate, thus cer-
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Figure 2: CH3CN molecule, r = 10. Convergence plots of 40 eigenvalues for four different tangent
space schedule scenarios: first tangent space is chosen for all the iterations, optimal choice of schedule
(not practical), proposed scheduling by (14) and a random choice of tangent space.

tifying convergence of larger eigenvalues. By contrast, the random choice of tangent
spaces provides faster convergence of the smallest eigenvalues, while the error of larger
eigenvalues fluctuates. In the following numerical experiments we choose the “argmax”
strategy as a more reliable one and combine it with the usage of the first tangent space
for the first 20 iterations.

In Figure 3a we provide computational time of one iteration with respect to the
number of computed eigenvalues b for acetonitrile molecule CH3CN and r = 25. This
figure illustrates that the tensor part of computations described in Section 4 scales
effectively linearly in the given range of b. When b approaches 100, the problem of
finding coefficients (Alg. 2) starts dominating. We plan to improve the complexity of
this part of the method in the future work.

Table 2 represents accuracies of energy levels for different methods for CH3CN and
C2H4O molecules. We measure the mean absolute error (MAE) of energy levels:

MAE =
1

b

b∑

i=1

∣∣∣ǫ̃(i) − ǫ
(i)
ref

∣∣∣ , (31)

where ǫ̃(i), i = 1, . . . , b are the calculated energy levels and ǫ
(i)
ref are accurate energy

levels calculated in [17] for CH3CN and in [20] for C2H4O. For comparison purposes
we also provide timings of the methods. The timings of LRRAP LOBPCG and MP
LOBPCG are measured on the same machine, whereas timings of hierarchical rank
reduced block power method (H-RRBPM) are taken from [21]. We do not provide
timings of H-RRBPM and HI-RRBPM for C2H4O since the calculations in [20] were
done for different b (b = 200) compared with b = 35 for LRRAP LOBPCG and MP
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Figure 3: GPU energy spectra calculation for acetonitrile molecule CH3CN (a) and for spin lattice
with d = 40 spins (b). Time per one iteration vs. b – number of computed eigenvectors, TT-rank for
the both cases is 25. Plot illustrates linear scaling of tensor operations complexity with respect to b.
For large b problem of finding coefficients (Alg. 2) starts dominating.

LOBPCG. Table 2 illustrates that the method is capable of producing accurate re-
sults with speedups up to 20 times on GPU compared with CPU. We note that for
larger molecules additional speedup can be obtained using several GPUs simultane-
ously. In contrast to the MP LOBPCG method [17] the proposed method is capable
of producing comparably accurate results faster both on CPUs and GPUs. The fact is
that for the considered examples the cost of each iteration of the proposed method is
considerably less than the cost of an iteration of the MP LOBPCG method, although
LRRAP LOBPCG requires more iterations. Moreover, MP LOBPCG introduces errors
after such operations as calculation of linear combinations of vectors and matrix-vector
products due to truncation errors, which eventually leads to lower accuracies of the
result. At the same time in the LRRAP approach corrections on each iteration belong
to a single tangent space, so no rank growth occurs. Moreover, before the retraction all
tensor calculations are done with the machine precision. Table 2 also illustrates that
LRRAP LOBPCG for r = 25 is more accurate than the most accurate basis (basis-3
or “b3” for short) considered in [21]. Acceleration on GPUs allows to get additional
gain in time w.r.t. H-RRBPM method. We note, however, that the recently proposed
HI-RRBPM [20] and its improved version [22] are superior to H-RRBPM. We also note
that accuracy of eigenvalues can be additionally improved using the manifold-projected
simultaneous inverse iteration (MP SII) proposed for the TT-format in [17]. This strat-
egy was used to correct eigenvalues obtained using MP LOBPCG with small r.

6.2. Spin chains

As a second application, we consider Heisenberg model for one-dimensional lattices
of spins. The goal it to compute minimal energy levels of Hamiltonian

H =
d−1∑

i=1

(
S(i)
x S(i+1)

x + S(i)
y S(i+1)

y + S(i)
z S(i+1)

z

)
, (32)

with
S(i)
α = I⊗ · · · ⊗ I⊗ Sα ⊗ I⊗ · · · ⊗ I, α = x, y, z,
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Table 2: Mean absolute error (MAE) (31) and computation times of different methods. Reference

energies ǫ
(i)
ref are taken from [17] (r = 40) for CH3CN and from [20] (setting D) for C2H4O. b = 84

energy levels are calculated for CH3CN and b = 35 energy levels are calculated for molecule C2H4O.
Note that timings of H-RRBPM method are taken from [21], so computations were performed on a
different machine. MAE error for H-RRBPM and HI-RRBPM is measured for first b eigenvalues.

LRRAP
LOBPCG
(proposed)

MP
LOBPCG

[17]

H-RRBPM
[21]

HI-RRBPM
[20]

CH3CN r=15 r=25 r=15 r=25 b1 b2 b3

MAE, cm−1 0.4 0.05 0.5 0.07 2.6 0.9 0.2

GPU time 51 s 114 s

CPU time 12min 26min 27min 45min 44 s 11min 3.2 h

C2H4O r=25 r=35 r=25 r=35 E (H-RRBPM, [20]) A B C

MAE, cm−1 1.5 0.3 1.7 0.4 0.78 1.0 0.6 0.2

GPU time 92 s 129 s

CPU time 25min 41min 32min 64min

where I is 2× 2 identity matrix and Sα, α = x, y, z are elementary Pauli matrices

Sx =
1

2



1 0

0 −1


 , Sy =

i

2




0 1

−1 0


 , Sz =

1

2



0 1

1 0


 .

It can be verified numerically that TT-rank of the Hamiltonian (32) is bounded from
above by 5.

Similarly to Sec. 6.1 in Figure 4 we plot convergence of each of the eigenvalues
for different choices of tangent space schedules: when only tangent space of the first
eigenvector is used, strategy with the optimal choice of schedule, “argmax” strategy (14)
and a random choice of tangent spaces. The convergence behaviour is similar to the
convergence behaviour of vibrational spectra computation (see Sec. 6.1). The only
difference we observe is that all eigenvectors can be well approximated in the tangent
space of the first eigenvector. This allows to run most of the iterations in one tangent
space. After that only a few iterations of the “argmax” strategy are needed to increase
accuracy, which leads to a significant complexity reduction. Note that by contrast to
the computation of vibrational spectra no preconditioner is used for (32).
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Figure 4: Heisenberg model, b = 30, r = 25, d = 40. Convergence plots of 30 eigenvalues for four
different tangent space schedule scenarios: first tangent space is chosen for all the iterations, optimal
choice of schedule (not practical), proposed scheduling by (14) and a random choice of tangent space.

In Figure 3b time of one iteration on GPU is provided for r = 25 and d = 40. By
contrast to the computation of molecule vibrational energy levels (Fig. 3a), for b = 84
the time spent for tensor operations is less than the time to find coefficients. This is
due to the fact that TT-ranks of molecule Hamiltonians (Tab. 1) are larger than those
of the considered spin lattices, where TT-rank is bounded by 5.

We compare the proposed method with two open source packages. The first one
is eigb method [23] available in the ttpy9 library. The second one is DMRG-based
algorithm implemented in ALPS [24] (algorithms and libraries for physical simulations),
which also allows to compute more than one of eigenstates. We present results of the
comparison in Table 3. We observe that for small b (b = 5) we are not able to be faster
than both eigb and ALPS at comparable accuracies. For larger b (b = 35) the proposed
method is faster on CPU, and GPU provides additional acceleration up to 15 times.
We note that with our method we are capable of calculating larger b (up to 100) with
no problems, while eigb struggles in this range. The point is that due to the usage of
the block TT format, the rank in eigb rapidly grows with b. Therefore, much larger
rank values (more than 1000 for b > 40 [23]) are required for eigb.

7. Related work

The computation of energy levels of multidimensional Hamiltonians using low-rank
tensor approximations has been considered in several communities. In solid state

9https://github.com/oseledets/ttpy
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Table 3: Mean absolute error (MAE) (31) and computation times of different methods for open spin

chains. Reference energies ǫ
(i)
ref are calculated using eigb [23] with δ = 10−5, where δ denotes the

truncation error for both eigb and ALPS.

LRRAP
LOBPCG
(proposed)

eigb
[23]

ALPS
[24]

d = 40, b = 5 r=20 r=35 r=45 δ=10−2 δ=10−3 δ=10−4 δ=10−5

MAE 1.0e-4 1.2e-5 2.2e-6 2.2e-4 2.4e-6 1.0e-2 1.2e-3

GPU time 9 s 25 s 44 s

CPU time 50 s 145 s 251 s 6 s 26 s 35 s 44 s

d = 40, b = 35 r=20 r=35 r=45 δ=10−2 δ=10−3 δ=10−4 δ=10−5

MAE 7.7e-3 1.3e-4 5.1e-6 1.3e-4 3.0e-6 1.4e-2 1.6e-3

GPU time 28 s 51 s 85 s

CPU time 5.6min 12min 21min 18min 31min 24min 41min

physics computation of energy levels of one-dimensional spin lattices using tensor de-
compositions has been known for a long time. For this kind of applications the matrix
product state (MPS) representation [25, 26] is used to approximate eigenfunctions. MPS
is known to be equivalent to the Tensor-Train format [4] used in the current paper. The
classical algorithm to approximate ground state of a one-dimensional spin lattice using
MPS representation is the density matrix renormalization group (DMRG) [5, 6], see
review [7] for details. Although MPS and DMRG are widely used in solid state physics,
they were unknown in numerical analysis.

Calculation of several eigenvalues using two-site DMRG was first considered in pa-
pers by S. White [5, 27]. Alternatively, one can use the numerical renormalization group
(NRG) [28] and its improved version variational NRG [29]. In these methods index,
corresponding to the number of an eigenvalue is present only in the last site (core) of
the MPS representation. The eigb algorithm [23], which is an extension of [30], al-
ternately assigns eigenvalue index to different sites (cores) of the representation, which
allows for rank adaptation. By contrast, in the proposed method we consider every
eigenvector separately, which implies that eigenvectors do not share sites (cores) of the
decomposition. This leads to smaller rank values of eigenvectors. Moreover, thanks to
the Riemannian optimization approach no rank growth occurs at iterations.

Calculation of energy levels using tensor decompositions was also considered for
molecule vibrational spectra computations. CP-decomposition [31] (canonical decom-
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position) of eigenvectors of vibrational problems was considered in [19], where rank
reduced block power method (RRBPM) was used. Its hierarchical version (H-RRBPM)
was later proposed in [21]. The H-RRBPM was improved in [20] and later in [22] (HI-
RRBPM, where “I” stands for “intertwined”). With HI-RRBPM vibrational energy
levels of molecules with more than dozens of atoms such as uracil and naphthalene [22]
were accurately calculated. We note that in [32] a memory efficient eigensolver for
molecular Schoedinger equation is proposed. It is capable of efficiently computing
eigenvalues far in the spectrum with high accuracy, where the tensor approach may
struggle.

Tensor decompositions were also used in quantum dynamics, and in particular in
the multiconfiguration time dependent Hartree (MCTDH) method [33] as well as in
its multilayer version [34] (ML-MCTDH), which is similar to the Hierarchical Tucker
representation [35].

Finally, a number of methods was developed independently in the mathematical
community. Tensor versions of power and inverse power methods (inverse iteration)
were considered in [36, 37, 38]. For tensor versions of preconditioned eigensolvers such
as preconditioned inverse iteration (PINVIT) and LOBPCG methods see [39, 40, 41,
42, 43]. The generalization of the Jacobi-Davidson method was considered in [44]. The
solvers based on alternating optimization procedures such as ALS [45] or AMEn [46]
are proposed in [47, 48].

8. Conclusion and future work

We propose an eigensolver for high-dimensional eigenvalue problems in the TT for-
mat (MPS). The ability of the solver to efficiently calculate up to 100 eigenstates is
assured by the usage of Riemannian optimization, which allows to avoid the rank growth
naturally. The solver is implemented in TensorFlow, thus allowing both CPU and GPU
parallelization. In the considered numerical examples the GPU version of the solver
produces 15-20 times acceleration compared with the CPU version.

At each iteration of the solver, there arises a small, but nonstandard optimization
problem to find coefficients of the iterative process. The method proposed to address
this problem allows to solve it with the complexity comparable to the complexity of
tensor operations for up to b = 100 eigenvalues. For b > 100 there is still room for
improvement, which we plan to address in the future work.
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Appendix A. TensorFlow implementation overview

In this section, we provide brief introduction into TensorFlow (which we use to
simplify GPU support) and details on how we implement tensor operations.

We implemented the proposed method in Python relying on two libraries: Ten-
sorFlow and T3F. TensorFlow [49] is a library written by Google to use for Machine
Learning research (i.e., fast prototyping) and production alike. The focus is the ease
of prototyping, GPU support, good parallelization abilities, and automatic differentia-
tion10.

10Given a computer program which defines a differentiable function, automatic differentiation gen-
erates another program which can compute the (exact) gradient of the function in the time at most 4
times slower than executing the original function. (In this paper we don’t use automatic differentia-
tion.)
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TensorFlow provides a library of linear-algebra (and some other) functions which
abstract away the hardware details. For example, running the matrix multiplication
function tensorflow.matmul(A, B) would multiply the two matrices on a CPU us-
ing all the available threads. Running the same code on a computer with a GPU will
execute the matrix multiplication on the GPU. When executing a sequence of Tensor-
Flow operations, TensorFlow makes sure that the data is not copied to and from GPU
memory in between the operations. For example, running

A = numpy.random.normal(100, 100)

matmul = tensorflow.matmul(A, A)

print(tensorflow.reduce_sum(matmul))

will generate a random matrix using Numpy on CPU, then copy it to the GPU memory,
perform matrix multiplication on GPU, then compute the sum of all elements in the
resulting matrix on GPU, and only then copy the result back to the CPU memory
for printing. Moreover, TensorFlow allows to easily process pieces of data on multiple
GPUs and then combine the result together on a single master GPU.

Another important TensorFlow feature is vectorization. Almost all functions sup-
port working with batches of objects, i.e. executing the same operations on a set of
different arrays. For example, applying tensorflow.matmul(A, B) to two arrays of
shapes 100× 3× 4 and 100× 4× 5 will return an array C of shape 100× 3× 5 such that
C(i) = A(i)B(i), i = 1, . . . , 100, and all the matrices are multiplied in parallel. This is
especially important on GPUs: because of massive parallel resources of GPUs, running
100 small matrix multiplications sequentially (in a for loop) is almost 100 times slower
than multiplying them all in parallel in a single vectorized operation.

The second library used in this paper is Tensor Train on Tensor Flow (T3F) [50],
which is written on top of TensorFlow and provides many primitives for working with
Tensor Train decomposition. To speed up the computations in the proposed method,
we represent the current approximation to the eigenvectors X = {x(1), . . . ,x(b)} as
a batch of b TT-vectors, letting T3F and TensorFlow vectorize all the operations
w.r.t. the number of TT-vectors. We also treat the basis V on each iteration as a
batch of TT-vectors. T3F library supports batch processing and for example executing
t3f.bilinear form(A, X, X) finds the value of (x(i))⊺Ax(i) for each i = 1, . . . , b in
parallel on a GPU. When dealing with large problems, we also use the multigpu feature
of TensorFlow to use all the available GPUs on a single computer.

Let us consider a detailed example of adding two TT-tensors together. Given two
tensors A,B ∈ R

n×...×n represented in the TT-format

Ai1...id = GA
1 (i1)G

A
2 (i2) . . . G

A
d (id)

Bi1...id = GB
1 (i1)G

B
2 (i2) . . . G

B
d (id)

where for any ik = 1, . . . , n the matrix GA
k (ik) is of size r×r for k = 2, . . . , d−1. GA

1 (i1)
is of size 1× r, and GA

d (id) is of size r× 1. The goal is to find TT-cores {GC
k(ik)}

d
k=1 of
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tensor C = A+ B. The expression for these TT-cores is given by [4]:

GC
k(ik) =



GA

k (ik) 0

0 GB
k (ik)


 , k = 2, . . . , d− 1

GC
1(i1) =

[
GA

1 (i1) GB
1 (i1)

]
, GC

d(id) =



GA

d (id)

GB
d (id)




(A.1)

Note that we also want to support batch processing, e.g. adding 100 TT-tensors
C(i) = A(i)+B(i), i = 1, . . . , 100. The resulting program is similar to any implementation
of summation of TT-tensors with two exceptions: support of batch processing and using
TensorFlow for all elementary operations to allow GPU support.

T3F represents a batch of d-dimensional TT-tensors as a list of d arrays, k-th array
representing k-th TT-core of all the tensors in the batch. The shape of the k-th array
(k = 2, . . . , d− 1) is b× r× n× r, where b is the batch-size, the shape of the first array
(k = 1) is b× 1× n× r, and the shape of the last array (k = d) is b× r × n× 1.

Algorithm 3 Implementation of adding two batches of TT-tensors in T3F
(t3f.add(A, B)).

Require: Arrays representing TT-cores of batches of tensors {A(i)}bi=1 and {B(i)}bi=1

Ensure: Array representing TT-cores of batch {C(i)}bi=1 = {A(i) + B(i)}bi=1

1: Concatenate GA
1 and GB

1 (of shape b× 1× n× r) along the 4-th axis to form array
GC

1 of shape b× 1× n× 2r
2: for k = 2, . . . , d− 1 do

3: Create an array of zeros of size b× r × n× r
4: Concatenate GA

k with array of zeros along 4-th axis into array U of shape b ×
r × n× 2r

5: Concatenate array of zeros with GB
k along 4-th axis into array D of shape b ×

r × n× 2r
6: Concatenate U and D along 2-nd axis into GC

k of shape b× 2r × n× 2r.

7: Concatenate GA
d and GB

d (of shape b× r× n× 1) along the 2-nd axis to form array
GC

d of shape b× 2r × n× 1

To add two TT-tensors, T3F calls TensorFlow functions to create arrays of ap-
propriate sizes filled with zeros and to concatenate the TT-cores of tensors A and B
with each other and with zeros (see Alg. 3). Note that a user of T3F can ignore this
implementation details and just call t3f.add(A, B).
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