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Abstract

We construct a family of numerical methods for the Pauli equation of spinless,
charged particles in a time-dependent, homogeneous magnetic field. These methods
are described in a general setting comprising systems of multiple particles. The
main idea is to split the Pauli equation in three parts, which are solved separately
before being merged to a solution of the original problem. In order to decide for
a smart way of splitting the Pauli equation, the theory of Lie algebras and their
representations is used.

1 The Mathematical Model

Consider a particle of mass m > 0 and charge e ∈ R living in R
d subject to a real-valued

potential V (x) and a magnetic potential 1-form A(x, t) = Ak(x, t)dx
k, where x ∈ R

d. We
assume the corresponding magnetic field 2-form dA to be independent of x. Therefore we
choose

A(x, t) :=
1

2
Bjk(t)x

jdxk (1.1)

where B(t) = (Bjk(t))16j,k6d is a real, skew-symmetric matrix. The corresponding mag-
netic field 2-form is given by

dA =
∑

16j<k6d

Bjk(t) dx
j ∧ dxk.

We introduce for j, k ∈ {1, . . . , d} the operators [6, Eq (14)], [2, Eq (3.21)]

pk := −i~∂k (components of linear momentum)

Ljk := xjpk − xkpj. (generalized angular momentum)

Our system is then described by the Pauli Hamiltonian

HP (t) :=
1

2m

d
∑

k=1

(

pk − eAk(x, t)
)2

+ V (x)

=
1

2m

(

~
2(−∆)− e

∑

16j<k6d

Bjk(t)Ljk +
e2

4
‖B(t)x‖2

Rd

)

+ V (x).

(1.2)
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Upon redefining t, x, B and V , we may instead consider the new Hamiltonian

H(t) := −∆+HB(t) + V ( · , t) (1.3)

on1 L2(Rd), where (now ~ = 1)

pk = −i∂k
Ljk = xjpk − xkpj

HB(t) := −
∑

16j<k6d

Bjk(t)Ljk

with associated Schrödinger equation

i∂tψ( · , t) = H(t)ψ( · , t), ψ( · , 0) = ψ0. (H)

Remark 1.1. If we choose in (1.3)

V (x, t) = ‖B(t)x‖2
Rd + V (x),

we recover (up to scaling) the potential terms in the physical Pauli Hamiltonian (1.2).

The paper is organized as follows: Section 2 describes a numerical method for (H), where
each subsection deals with one subproblem. Physical applications and concrete examples
of the abstract setting above are in Section 3.

2 The Numerical Method

We split (H) into the three simpler equations:

i∂tψ( · , t) = −∆ψ( · , t) (K)

i∂tψ( · , t) = HB(t)ψ( · , t) (M)

i∂tψ( · , t) = V ( · , t)ψ( · , t) (P)

The main steps of our method are:

1. Solve the kinetic equation (K) using Fourier transform (FFT).

2. Reduce the magnetic equation (M) to the linear ODE1

d

dt
y(t) = B(t) y(t), (B)

where y : R → R
d. This is achieved using a Lie algebra isomorphism relating B(t)

and HB(t). We then use Magnus expansion to solve (B).

3. Using that −∆ and HB(t) (and thus their flow maps) commute, combine the previ-
ous solutions to a solution of

i∂tψ = (−∆+HB(t))ψ. (K+M)

1We write L2(Rd) := L2(Rd;C) for the complex-valued, square-integrable functions.
1After multiplication by i on both sides, (B) becomes a Schrödinger equation with Hamiltonian iB(t).
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4. Solve the potential equation (P) using pointwise multiplication by e
−i

∫
t

t0
V ( · ,s)ds

.

5. A splitting scheme merges the solutions from steps 3 and 4 to a solution of (H).

In the rest of this section, we will discuss the steps 2, 3 and 5 in more detail. The following
notation will be useful in this regard: Given a Hamiltonian H̃(t) we denote by ΦH̃(t, t0)
the unitary flow associated to the time-dependent Schrödinger equation

i∂tψ( · , t) = H̃(t)ψ( · , t), ψ0 = ψ( · , 0),

i.e. ΦH̃(t, t0)ψ0 satisfies
d

dt
ΦH̃(t, t0) = −iH̃(t)ΦH̃(t, t0). (2.1)

2.1 Step 2: Solving Equation (M)

The equations (B) and (M) are closely related by the unitary representation

ρ : SO(d) −→ U(L2(Rd))

defined as the map satisfying

(ρ(R)ψ)(x) = ψ(R−1x) (2.2)

for all R ∈ SO(d), ψ ∈ L2(Rd) and all x ∈ R
d. We investigate this relation by considering

the Lie algebra
so(d) := {Ω ∈ R

d×d | ΩT = −Ω}
of SO(d). Note that B(t) ∈ so(d) for all t ∈ R. The derivative of ρ is the Lie algebra
isomorphism (compare [2, Eq (2.14)] and [2, Eq (3.28)])

ρ∗ : so(d) −→ l(L2(Rd)), Ω 7−→ −iHΩ,

where
l(L2(Rd)) := spanR{iLjk | 1 6 j < k 6 d}

is endowed with the usual commutator. Then the following diagram commutes:

so(d)
ρ∗−−−→ l(L2(Rd))

exp





y





y

exp

SO(d) −−−→
ρ

U(L2(Rd))

Moreover, [8, Thm X.69] yields existence of a flow map U(t, t0) ∈ SO(d) solving (B), i.e.

d

dt
U(t, t0) = B(t)U(t, t0), U(t0, t0) = id . (2.3)

This discussion motivates the following.

Lemma 2.1. The flow map U(t, t0) of (B) gives rise to a flow map of (M) by

ΦHB
(t, t0) = ρ(U(t, t0))

for all t, t0 ∈ R.
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Proof. Observe that

− iHB(t) =
d
∑

j,k=1

Bjk(t)xj∂k. (2.4)

and fix t, t0 ∈ R. For all j, k ∈ {1, . . . , d} and all x ∈ R
d, we have

xj∂kψ0(U
−1(t, t0)x) = dψ0

∣

∣

U−1(t,t0)x
· xj∂kU−1(t, t0)x = dψ0

∣

∣

U−1(t,t0)x
· U−1(t, t0)xj∂kx.

Hence by (2.4) and linearity

−iHB(t)ψ0(U
−1(t, t0)x) = dψ0

∣

∣

U−1(t,t0)x
· U−1(t, t0)(−iHB(t)x).

Anti-symmetry of B(t) and (2.4) yield similarly for all x ∈ R
d

−iHB(t)x = −B(t)x.

We take the transpose on both sides of (2.3) and use anti-symmetry of B(t) again in order
to get

d

dt
U−1(t, t0) = (−1)U−1(t, t0)B(t).

Fix some initial data ψ0 ∈ L2(R). Using the last three equations, we compute

−iHB(t)ψ0(U
−1(t, t0)x) = dψ0

∣

∣

U−1(t,t0)x
· U−1(t, t0)(−iHB(t)x)

= dψ0

∣

∣

U−1(t,t0)x
· (−1)U−1(t, t0)B(t)x

= dψ0

∣

∣

U−1(t,t0)x
· d

dt
U−1(t, t0)x

=
d

dt
ψ0(U

−1(t, t0)x).

Hence ρ(U(t, t0)) is a flow map for (M).

2.2 Step 2: Solving Equation (B) by Magnus Expansion

We approximate the exact flow U(t, t0) ∈ SO(d) of (B) by a Magnus expansion (see [7]
or [4, Ch IV.7] for details), i.e.

U(t, t0) ≈ Un(t, t0) := eΩ
[n](t,t0), Ω[n](t, t0) :=

n
∑

m=1

Ωm(t, t0), (2.5)

for some Ωm(t, t0) ∈ so(d) and the first two terms of the truncated series are

Ω1(t, t0) =

t
∫

t0

B(s1)ds1, Ω2(t, t0) =
1

2

t
∫

t0

s1
∫

t0

[

B(s1), B(s2)
]

ds2ds1.

The Magnus expansion yields a unitary approximation of ΦHB
(t, t0) = ρ(U(t, t0)) as stated

in the next lemma.

Lemma 2.2. For all t, t0 ∈ R and all n ∈ N, we have

(i) Un(t, t0) ∈ SO(d) and

(ii) ρ(Un(t, t0)) is a unitary map on L2(Rd).

Proof. Part (i) holds since the matrix exponential on a Lie algebra maps to its Lie group.
Moreover, (i) implies (ii) by means of the substitution y := U−1

n (t, t0)x in the integral of
the inner product on L2(Rd).
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2.3 Step 3: Solving Equation (K+M)

The following lemma shows that we can switch the flows and hence the internal steps in
our algorithm in a convenient way. It also justifies the treatment of −∆ and HB together
in one step.

Lemma 2.3. Fix any t, t0 ∈ R. Then

(i) for all R ∈ SO(d) the operators ρ(R) and Φ−∆(t, t0) commute and

(ii) we have Φ−∆+HB
(t, t0) = ΦHB

(t, t0) Φ−∆(t, t0) = Φ−∆(t, t0) ΦHB
(t, t0).

Proof. Fix any R ∈ SO(d). Note that ρ(R) commutes with the Fourier transform F and
that Rd → C, k 7→ e−i(t−t0)k2 is rotation invariant. Hence

ρ(R)e−i(t−t0)(−∆) = ρ(R)F−1e−i(t−t0)k2F
= F−1e−i(t−t0)k2Fρ(R)
= e−i(t−t0)(−∆)ρ(R).

This proves (i), which in turn proves the second equality in (ii) by Lemma 2.1. It remains
to show that the first equality also holds:

d

dt

(

ΦHB
(t, t0)Φ−∆(t, t0)

)

= Φ̇HB
(t, t0)Φ−∆(t, t0) + ΦHB

(t, t0)Φ̇−∆(t, t0)

(2.1)
= −iHB(t)ΦHB

(t, t0)Φ−∆(t, t0)− iΦHB
(t, t0)(−∆)Φ−∆(t, t0)

= −i
(

−∆+HB(t)
)

ΦHB
(t, t0)Φ−∆(t, t0),

where we used rotation invariance of the Laplacian to swap −∆ and ΦHB
(t, t0). It follows

that ΦHB
(t, t0)Φ−∆(t, t0) solves (2.1) for H̃ = −∆+HB, which concludes the proof.

2.4 Step 5: Solving Equation (H) by Splitting

Let U(t, t0) denote the flow map of (B) and ρ the left-regular representation defined in
(2.2). We construct an approximation of the solution of the time-dependent Schrödinger
Equation (H) associated with the full Hamiltonian

H(t) = −∆+HB(t) + V ( · , t) (1.3)

by a splitting with coefficients (ai, bi)i∈{1,...,n}. We start with a few notations. Fix times
t0 < t and introduce for i ∈ {0, . . . , n} the time grids

ti = t0 + (t− t0)
i
∑

j=1

bj and si = t0 + (t− t0)
i
∑

j=1

aj (2.6)

and for any two Hamiltonians H1 and H2 write2

(ΦH2

(a,b)◦ ΦH1)(t, t0) :=
n−1
∏

i=0

ΦH2(ti+1, ti)ΦH1(si+1, si).

2The order of the product is “lowest index first”:
∏

n

i=1
Ai := An · · ·A1
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Our splitting scheme for (H) then reads

ΦH(t, t0) ≈ (Φ−∆+HB

(a,b)◦ ΦV )(t, t0) =
n−1
∏

i=0

Φ−∆(ti+1, ti)ΦHB
(ti+1, ti)ΦV (si+1, si)

where we used part (ii) of Lemma 2.3. The equality

ρ(R)(f · ψ) = (ρ(R)f) · (ρ(R)ψ)

holds for all3 ψ ∈ L2(Rd), f ∈ L∞(Rd) and all R ∈ SO(d). We apply it to the special
choice R = U(t, t′) and f( · ) = ΦV (s, s

′) = e−i
∫
s

s′
V ( · ,s̃)ds̃. Lemma 2.1 yields then

ΦHB
(t, t′)ΦV (s, s

′) = Φρ(U(t,t′))V (s, s
′)ΦHB

(t, t′) (2.7)

for all t, t′, s, s′ ∈ R. This is crucial for proving Lemma 2.4 below, which provides an

expression for (Φ−∆+HB

(a,b)◦ ΦV )(t, t0) in terms of rotated potentials and a single rotation
of the initial data.

Lemma 2.4. For splitting coefficients (ai, bi)i∈{1,...,n} and times s0, . . . , sn, t0, . . . , tn, t as
in (2.6), we have

(Φ−∆+HB

(a,b)◦ ΦV )(t, t0) =

( n−1
∏

i=0

Φ−∆(ti+1, ti)Φρ(U(tn,ti))V (si+1, si)

)

ΦHB
(tn, t0).

Proof. We proceed by induction on n. For n = 1, the assertion follows immediately from
(2.7). Suppose now that the formula holds for any set of coefficients of length n−1. Using
this hypothesis on the last n− 1 factors and Lemma 2.3, we obtain

(Φ−∆+HB

(a,b)◦ ΦV )(t, t0) =

( n−1
∏

i=1

Φ−∆(ti+1, ti)Φρ(U(tn,ti))V (si+1, si)

)

ΦHB
(tn, t1)× · · ·

· · · × Φ−∆(t1, t0)ΦHB
(t1, t0)ΦV (s1, s0)

=

( n−1
∏

i=1

Φ−∆(ti+1, ti)Φρ(U(ti+1,ti))V (si+1, si)

)

× · · ·

· · · × Φ−∆(t1, t0)ΦHB
(tn, t0)ΦV (s1, s0)

=

( n−1
∏

i=1

Φ−∆(ti+1, ti)Φρ(U(tn,ti))V (si+1, si)

)

× · · ·

· · · × Φ−∆(t1, t0)Φρ(U(tn,t0))V (s1, s0)ΦHB
(tn, t0)

which is exactly the claim for n factors.

We have only treated a single time-step [t0, t] so far. But using Lemma 2.4 and (2.7) we
can generalize the idea to N steps of length h := t− t0 as follows:

ΦH(t0+Nh, t0) ≈
(N−1
∏

j=0

n−1
∏

i=0

Φ−∆(ti+1, ti)Φρ(U(t0+Nh,ti+jh))V (si+1+jh, si+jh)

)

ΦHB
(t0+Nh, t0).

(2.8)
Algorithm 1 provides a pseudo-code for efficient computing of the right-hand side in (2.8).
It only remains to approximate the flow U( · , · ), for instance by a Magnus expansion as
discussed in Lemma 2.2.

3Even if f /∈ L2(Rd) we still define ρ(R)f as in (2.2).
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Remark 2.1. If for all t ∈ R the potential V ( · , t) is spherically symmetric, i.e.

∀R ∈ SO(d) : ρ(R)V ( · , t) = V ( · , t),

then we may replace ρ(U(t0 +Nh, ti + jh))V = V in (2.8).

Algorithm 1 Compute the RHS of (2.8)

Input: first time step [t0, t]; number of time steps N ; meshgrid X; initial wave function
ψ0 at time t0; potential V ; splitting coefficients (ai, bi)i∈{1,...,n}; flow maps Φ−∆,ΦV and U
corresponding to (K),(P) and (B);

Output: Y is the solution at time (t−t0)·N+t0 evaluated onX;

1: h := t− t0
2: ta := t0
3: tb := t0
4: R := U(t0 +N · h, t0)
5: Y := ψ0 ◦R−1(X) {= (ρ(R)ψ0)(X)}
6: for j = 0 to N − 1 do
7: for i = 1 to n do
8: Ṽ := V ◦R−1 {= ρ(R)V }
9: Y = ΦṼ (ta + ai · h, ta)Y

10: R = R · U−1(tb + bi · h, tb)
11: Y = Φ−∆(tb + bi · h, tb)Y
12: ta = ta + ai · h
13: tb = tb + bi · h
14: end for
15: end for
16: return Y

3 Examples

The Pauli Hamiltonian (1.2) (and thus also its abstract version (1.3)) contains many
physically relevant cases. In order to investigate them, it is convenient to introduce the
notation

Ω( ~B) :=





0 −B3 B2

B3 0 −B1

−B2 B1 0



 , ~B =





B1

B2

B3



 ∈ R
3.

Example 3.1 (N particles in three dimensions). Consider a system of N particles of
mass m > 0 and charge e ∈ R where n ∈ {1, . . . , N}, subject to a potential V (~x1, . . . , ~xN)

and a homogeneous magnetic field ~B(t). This system is modeled by the Pauli Hamiltonian

HN =
1

2m

N
∑

n=1

(

~pn − e ~A(~xn, t)
)2

+ V (~x1, . . . , ~xN)

where ~pn := −i~~∇n and the vector potential is given by

~A(~x, t) :=
1

2
~B(t)× ~x.
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By choosing d = 3N and

B(t) = diag
(

Ω(− ~B(t)), . . . ,Ω(− ~B(t))
)

in (1.1) we can obtain this as special case of (1.2).

Example 3.2 (N particles in two dimensions). The setting of Example 3.1 can be adapted
to N particles moving only in the (x, y)-plane. The magnetic field can be assumed perpen-

dicular to the plane of motion, say ~B(t) = (0, 0, B3(t))
T. Thus we have to choose d = 2N

and

B(t) = diag

(

(

0 B3

−B3 0

)

, . . . ,

(

0 B3

−B3 0

)

)

in (1.1) to retrieve this system as a special case of (1.2).

Remark 3.1. By Remark 1.1, we can recover (1.2) (up to scaling) from (1.3) by choosing

V (x, t) = ‖B(t)x‖2
Rd + V (x).

The integral in the associated unitary flow

ΦV (t, t0) = exp

(

− i

∫ t

t0

V (x, s)ds

)

can be computed independently of x ∈ R
d (and thus efficiently) since

∫ t

t0

V (x, s)ds =

∫ t

t0

〈

B(s)x,B(s)x
〉

Rd
ds+ (t− t0)V (x)

=

〈

x,

(

−
∫ t

t0

B2(s)ds

)

x

〉

Rd

+ (t− t0)V (x),

where we used the skew-symmetry of B in the last step.

Remark 3.2. The assumption that all particles share the same mass and charge is only
for simplicity. Redefining the coordinates x, t as well as B and V allows us to reduce the
general case to one of the examples above.

Remark 3.3. Note that the block form of B(t) in the previous examples simplifies the
computation of the exponential in the Magnus expansion (2.5): In the notation of (2.5),

the matrices Ωm(t, t0) inherit the block form. Similarly, Ω[n](t, t0) and Un(t, t0) = eΩ
[n](t,t0)

become block-diagonal.

3.1 Order of Convergence (Harmonic Potential)

We now examine the order of convergence of our method for different splittings (see
step 5). Therefore, we solve (H) for t ∈ [0, 2π] with magnetic field

B(t) = Ω(− ~B(t)), ~B(t) =
cos(t)√

3





1
1
1



 .
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The potential in (1.3) is chosen as4

V (~x, t) = x21 + x22 + x23.

The initial data at time t = 0 shall be the Gaussian

ψ0(~x) =
1

(2πσ2)
3
4

exp

(

− (~x− ~µ)2

4σ2
+ 2ix1

)

, ~µ :=





1
1
1



 , σ2 :=
1

2
(3.1)

of L2-norm one. This setting admits periodic solutions of period 2π. In particular, the
solution ψ(~x, t) to this IVP satisfies ψ0(~x) = ψ(~x, 2π) for all ~x ∈ R. The initial data will
thus serve as reference solution for the convergence plots in Figure 1. They indicate that
the order of our method is equal to the order of the underlying splitting scheme.

2 5 2 4 2 3

step size

10 9

10 7

10 5

10 3

10 1

er
ro

r

Order of Convergence

SS
x2

PRKS6
x4

Y61
x6

2 4 2 3 2 2

step size

10 11

10 9

10 7

10 5

10 3

er
ro

r

Order of Convergence

BM42
x4

KL6
x6

KL8
x8

Figure 1: Order of convergence using different splittings. See Table 1 for the legend.

Method Order Author(s) Reference(s)

SS 2 Strang [9], [3]: Page 42, Eq. 5.3
PRKS6 4 Blanes/Moan [1]: Page 318, Table 2, ’S6’
BM42 4 Blanes/Moan [1]: Page 318, Table 3, ’SRKNb6’
Y61 6 Yoshida [10], [3]: Page 144, Eq. 3.11
KL6 6 Kahan/Li [5], [3]: Page 144, Eq. 3.12
KL8 8 Kahan/Li [5], [3]: Page 145, Eq. 3.14

Table 1: Legend for the splittings in Figure 1.

3.2 Order of Convergence (Mexican Hat Potential)

Now we consider the more involved example of a Mexican hat potential

V (~x) =
1

32
‖~x‖4

R3 − x21 −
3

2
x22 − 2x23.

4This is not a special case of the Pauli Hamiltonian (1.2) since V (~x, t) is independent of the magnetic
field. Compare to Remark 1.1.
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The magnetic field is given by

B(t) = Ω(− ~B(t)), ~B(t) =
1√
3





cos(t)
sin(t)
1



 .

Thus we arrive at the time-dependent potential (see Remark 1.1)

V (~x, t) = ‖B(t)~x‖2
R3 + V (~x).

We solve the corresponding time-dependent Schrödinger equation (H) on t ∈ [0, 2π] using
different splitting schemes. As before, (3.1) serves as initial data. The accurate KL8
splitting with time steps of size h = 2π · 2−8 provides the reference solution for the results
in Figure 2.

2 5 2 4 2 3

step size

10 9

10 7

10 5

10 3

10 1

er
ro

r

Order of Convergence

SS
x2

PRKS6
x4

Y61
x6

2 4 2 3 2 2

step size

10 11

10 9

10 7

10 5

10 3

10 1

er
ro

r

Order of Convergence

BM42
x4

KL6
x6

KL8
x8

Figure 2: Order of convergence using different splittings. See Table 1 for the legend.

3.3 Norm and Energy Conservation (Morse Potential)

In this example we focus on the conservation of the L2-norm and of the energy. The latter
is conserved if the Hamiltonian is constant in time. We thus consider a modification of
the Example 3.2 to the threefold Morse potential (see Figure 3)

V (x) = 16

(

1− exp

(

− ‖x‖2
R2

32

(

1− cos(3 arctan2(x2, x1))
)2
)

)2

and the constant magnetic field

B(t) =
1

2

(

0 −1
1 0

)

perpendicular to the plane of motion. The overall potential is hence now time-independent
(see Remark 1.1)

V (x, t) = ‖B(t)x‖2
R2 + V (x) =

1

4
‖x‖2

R2 + V (x)
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Figure 3: The threefold Morse potential. We expect a high probability of finding the
particle within the back region, which is confirmed by Figure 5 below.

Finally, we take the Gaussian initial data

ψ0(x) =
1√
2πσ2

exp

(

− (x− µ)2

4σ2
+ 2ix1

)

, µ :=

(

1
1

)

, σ2 :=
1

2

of L2-norm one. Write ψ(t) = ψ( · , t) and denote by 〈 · , · 〉L2 the inner product on L2(Rd).
We consider the energies

Ekin(t) := 〈ψ(t),−∆ψ(t)〉L2 (kinetic energy)

Emag(t) := 〈ψ(t), (H−B(t) + ‖B(t)x‖2
Rd)ψ(t)〉L2 (magetic energy)

Epot(t) := 〈ψ(t), V (x)ψ(t)〉L2 (potential energy)

Etot(t) := Ekin(t) + Emag(t) + Epot(t). (total energy)

for d = 2. Figure 4 indicates that the total energy is preserved, although its components
exhibit non-trivial behavior. Moreover, the L2-norm is approximately constant as well.
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Figure 4: Energies and L2-norm along the solution in the setting above.
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Figure 5: Initial data and solution in the setting above. A complex valued wave-function
φ is plotted as follows: The color at x encodes the phase of φ(x), while we darken the
pixel according to the modulus |φ(x)|. A black pixel indicates a vanishing wave function
at this point and the larger the value of |φ(x)|, the brighter the pixel at x.
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