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Abstract. We study explicit inverses of the variational electric field boundary integral operator on
orientable topologically simple Lipschitz screens. We describe them as solution operators of variational
problems set in low-regularity standard trace spaces. On flat disks these variational problems do not
involve the inversion of any non-local operators and supply an inverse up to a compact perturbation.
This result lays the foundation for operator preconditioning for the discretized electric field integral
equation.
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1. Introduction

1.1. “Simple” Lipschitz Screens

A simple Liptschitz screen in the sense of this article is a compact orientable two-dimensional Lipschitz
manifold Γ ⊂ R

3 with boundary ∂Γ, which is the image of the unit disk

D := {x ∈ R
3 x3 = 0 and ‖x‖ < 1}

under a bi-Lipschitz mapping. In particular, Γ need not be smooth; shapes with corners and kinks are
admitted. Nevertheless, Γ has a tangent plane and an unit normal vector n almost everywhere. We point
out that simple Lipschitz screens are a special case of the Lipschitz screens considered in [7], and, of
course, of the even more general class of screens introduced in [14].

1.2. Electric Field Integral Equation on Screens

For a simple Lipschitz screen Γ the Electric Field Integral Equation (EFIE) in variational form reads:

For fixed wave number k > 0 and given g ∈ (H̃−1/2(divΓ,Γ))
′
seek ξ ∈ H̃−1/2(divΓ,Γ) such that [7,

Sect. 2.2]

ak(ξ,η) := 〈Vk ξ , η〉Γ −
1

k2
〈Vk divΓ ξ , divΓ η〉Γ = 〈g , η〉Γ , (1.1)

for all η ∈ H̃−1/2(divΓ,Γ). Here 〈· , ·〉Γ denotes the duality pairing extending the L2(Γ) inner product,

Vk : H̃−1/2(Γ) → H1/2(Γ) the weakly singular boundary integral operator for the Helmholtz operator

∆+ k2, and Vk : H̃
−1/2(Γ) → H1/2(Γ) its extension to surface vector fields. Notations for and properties

of the trace spaces will be explained later in Section 2.
We are interested in the EFIE because it models frequency-domain electromagnetic scattering at

perfectly electrically conducting objects, see [7, Sect. 3.1]. It is a mathematical foundation for the widely
used boundary element method (BEM) in computational electromagnetics.

1.3. Motivation and Objectives

In this paper, we pursue the construction of bounded linear operators

Nk : (H̃
−1/2(divΓ,Γ))

′
→ H̃−1/2(divΓ,Γ)

which provide compact-equivalent inverses of the EFIE operator on simple screens in the sense that

Nk Ak = Id+Ck in H̃−1/2(divΓ,Γ), (1.2)



where Ak : H̃−1/2(divΓ,Γ) → (H̃−1/2(divΓ,Γ))
′
is the EFIE operator induced by the bilinear form ak,

and Ck : H̃
−1/2(divΓ,Γ) → H̃−1/2(divΓ,Γ) is a compact operator.

In addition we demand that the evaluation of Nk g for any g ∈ (H̃−1/2(divΓ,Γ))
′

(A) does not entail solving any integral equation, but merely the evaluation of integral operators on Γ,
and

(B) entirely relies on solving variational equations in low-regularity trace spaces.

Remark 1.1. Recall from [12, Sect. 6] that the so-called Calderón identities on closed surfaces Γ = ∂Ω,
with Ω ⊂ R

3 a bounded Lipschitz domain, imply

RAk RAk = Id+Mk, (1.3)

where R : H−1/2(divΓ,Γ) → (H−1/2(divΓ,Γ))
′
is the π

2 -rotation operator and Mk the Magnetic Field

Integral operator, which is compact on (closed) C2-surfaces. Thus, for closed C2 surfaces we can choose
Nk := RAk R.

Remark 1.2. The rationale behind (A) and (B) above is the use of (1.2) as basis for operator precondi-
tioning of the linear systems of equations arising from low-order boundary element discretization of (1.1).
This approach, harnessing the Calderón identity (1.3), has been successfully applied on closed surfaces [3]
and scalar boundary integral equations on screens, and yields methods that are robust with respect to
mesh refinement.

1.4. Related Work, Novelty and Outline

Our main new contribution is the explicit construction of a suitable operator Nk complying with (1.2)
and (A) and (B) under the assumption that (compact-equivalent) inverses of the single-layer and hy-
persingular boundary integral operators (BIOs) on Γ for the Laplacian −∆ are available in the form
of concrete BIOs. In [17] we verified this assumption for the disk D. Thus, for this particular simple
Lipschitz screen we have fully achieved the goals advertised above, but we hope that such inverses will
be discovered for more general shapes in the future.

Therefore, we have decided to elaborate the construction of Nk in Section 3 for general simple

Lipschitz screens. The key tool is the Hodge decomposition of the trace space H̃−1/2(divΓ,Γ), which we
recall in Section 2.2. The proper realization of Nk through variational equations is presented in Section 4.

Another important feature of the operator Nk is uniform stability in the low-frequency limit k → 0,
as will be shown in Section 3.

The idea to tackle the EFIE by means of Hodge decompositions is well established, see [12, Sect. 6]
also for screen problems [4, Sect. 3]. In these works, it was used as an analysis tool. In other works, most
prominently [10] and [16], the Hodge decomposition served to convert the EFIE into boundary equations
for scalar traces. Our policy for constructing Nk also draws on this trick. Similar ideas, though in a BEM
setting, have recently been proposed for the construction of preconditioners in [1].

2. Function Space Framework

2.1. Trace Operators and Trace Spaces

From [19, Ch. 3] we adopt standard notations and definitions for Sobolev spaces Hs(Γ) and H̃s(Γ),
−1 ≤ s ≤ 1, on the simple Lipschitz screen Γ. Bold font will mark corresponding Sobolev spaces Hs(Γ)

and H̃s(Γ) of vector fields on Γ. We point out that in the case of screens the vector Sobolev spaces satisfy
duality relations analogous to the scalar case, i.e.

H̃−1/2(Γ) ≡
(
H1/2(Γ)

)′

and H−1/2(Γ) ≡
(
H̃1/2(Γ)

)′

, (2.1)

with L2(Γ) as pivot space.
The variational EFIE (1.1) is set in a jump trace space forH(curl,R3\Γ). Theoretical investigations

of these traces spaces started with [8] and [9] and were further developed in [11] and, for screens, in [7,
Sect. 2] and [14]. For a very brief review, let us introduce the space of tangential square-integrable vector
fields on the simple Lipschitz screen Γ

L2
t (Γ) := {u ∈ L2(Γ) |u · n = 0 a.e. on Γ}, (2.2)

endowed with the L2-inner product. We define the tangential trace γt as the operator that suitably
extends

γt(U) = n× (U|Γ × n), U ∈ (C∞
0 (R3))3. (2.3)
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We will make use of the following tangential trace space

H
1/2
t (Γ) := γt(H

1(R3)), (2.4)

together with its dual space (relying on L2
t (Γ) as pivot space)

H̃
−1/2
t (Γ) := (H

1/2
t (Γ))

′
.

Next, we recall the space of divΓ-conforming tangential surface vector fields with vanishing in-Γ normal
component on ∂Γdefined in [7, Sect. 2,Def. 1] (there denoted as X)

H̃−1/2(divΓ,Γ) :=
{
η ∈ H̃

−1/2
t (Γ) | divΓ η ∈ H̃−1/2(Γ) and

〈η , gradΓ v〉Γ + 〈divΓ η , v〉Γ = 0 ∀v ∈ C∞
0 (R3)|Γ

}
, (2.5)

and its dual space (with respect to L2
t (Γ))

H−1/2(curlΓ,Γ) = (H̃−1/2(divΓ,Γ))
′.

In addition, we define the spaces

H
1/2
∗ (Γ) := {g ∈ H1/2(Γ) | 〈g , 1〉Γ = 0}, (2.6)

H̃
−1/2
∗ (Γ) := {ϕ ∈ H̃−1/2(Γ) | 〈ϕ , 1〉Γ = 0}, (2.7)

that are dual to each other.

Proposition 2.1. The following duality relation holds

(H
1/2
∗ (Γ))′ = H̃

−1/2
∗ (Γ) (2.8)

with L2(Γ) as pivot space.

Proof. We can rewrite H̃
−1/2
∗ (Γ) as quotient space

H̃
−1/2
∗ (Γ) = H̃−1/2(Γ)/

(
v 7→

∫

Γ

vdS

)
, (2.9)

from where it is clear that

H̃
−1/2
∗ (Γ) = {v 7→ ϕ(v −

∫

Γ

vdS · 1) : ϕ ∈ H̃−1/2(Γ)}. (2.10)

�

As homeomorphic image of the disk D the screen Γ is connected and has trivial co-homology; it has
no holes. As a consequence we have the following result about surface differential operators and related
spaces.

Theorem 2.2. The surface differential operators curlΓ and divΓ generate the following deRham exact

sequence of Hilbert spaces:

{0} → H̃1/2(Γ)
curlΓ−−−→ H̃−1/2(divΓ,Γ)

divΓ−−−→ H̃
−1/2
∗ (Γ) → {0}. (2.11)

Proof. This theorem is the essence of results from [9, Sect. 6], in particular [9, Proposition 4.7] and [9,
Theorem 6.1]. Alternatively, one can pull back everything to the unit disk D and there use the smoothed
Poincaré lifting invented in [15]. �

The exact sequence property implies the existence of surface scalar potentials

ker(divΓ(H̃
−1/2(divΓ,Γ))) = Im (curlΓ(H̃

1/2(Γ))). (2.12)

In addition, we learn that the surface divergence operator

divΓ : H̃−1/2(divΓ,Γ) → H̃
−1/2
∗ (Γ) (2.13)

is continuous and surjective.
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2.2. Hodge Decomposition

Following the developments of [7, Sect. 2.4] we consider the Laplace-Beltrami operator with Neumann
boundary conditions ∆N

Γ in the variational sense. Setting

H1
∗ (Γ) := {v ∈ H1(Γ) : 〈v , 1〉Γ = 0}, (2.14)

we can define −∆N
Γ : H1

∗ (Γ) → H̃−1(Γ) variationally as the operator induced by the bilinear form

(w, v) 7→
∫
Γ
gradΓ w·gradΓ vdΓ, w, v ∈ H1

∗ (Γ). This means that for ψ ∈ H̃−1(Γ) the function (−∆N
Γ )

−1
ψ

∈ H1
∗ (Γ) is the (unique) solution of the following variational problem: seek w ∈ H1

∗ (Γ) such that
∫

Γ

gradΓ w · gradΓ vdΓ =

∫

Γ

ψvdΓ ∀v ∈ H1
∗ (Γ). (2.15)

Based on ∆N
Γ we define the space

H(Γ) := {v ∈ H1
∗ (Γ) : ∆N

Γ v ∈ H̃−1/2(Γ)}, (2.16)

and endow it with the graph norm. It is an ingredient in the definition of the Hodge decomposition.

Definition 2.3 (Hodge decomposition, [7, Sect. 2.4]). We call Hodge decomposition the following direct

decomposition of the trace space H̃−1/2(divΓ,Γ):

H̃−1/2(divΓ,Γ) = Xz(Γ)
⊕

X⊥(Γ), (2.17)

with closed subspaces

Xz(Γ) : = {v ∈ H̃−1/2(divΓ,Γ) : divΓ v = 0} (2.18)

and

X⊥(Γ) = gradΓ H(Γ). (2.19)

Thanks to the trivial topology of Γ, the exact sequence of Theorem 2.2 guarantees the existence of
scalar potentials

Xz(Γ) := {v ∈ H̃−1/2(divΓ,Γ) : divΓ v = 0} = curlΓ(H̃
1/2(Γ)). (2.20)

Therefore, we can rewrite (2.17) as [9, Theorem 6.4]

H̃−1/2(divΓ,Γ) = curlΓ(H̃
1/2(Γ))

⊕
gradΓ H(Γ). (2.21)

Since the mapping curlΓ : H̃1/2(Γ) → Xz(Γ) is bijective, we can view this as a parameterization of

Xz(Γ) over H̃
1/2(Γ). In order to find a parameterization of X⊥(Γ), based on Theorem 2.2 let us introduce

a divergence lifting L : H̃
−1/2
∗ (Γ) → X⊥(Γ) as a right inverse of divΓ in the sense that divΓ ◦ L = Id,

through

L = −gradΓ ◦(−∆N
Γ )

−1
, (2.22)

where (−∆N
Γ )

−1
: H̃−1/2(Γ) → H(Γ) is to be understood in variational sense, cf. (2.15). More concretely,

one computes Lψ for ψ ∈ H̃
−1/2
∗ (Γ) first by solving the variational problem (2.15), and then by applying

−gradΓ.

By means of the lifting operator L, we find the following representation

X⊥(Γ) = −gradΓ H(Γ) = L

(
H̃

−1/2
∗ (Γ)

)
= −gradΓ ◦(−∆N

Γ )
−1
H̃

−1/2
∗ (Γ) . (2.23)

From this representation we can draw an important conclusion. We immediately see that X⊥(Γ) is

continuously embedded in L2
t (Γ), which, in turns, is compactly embedded in H̃

−1/2
t (Γ) by Rellich’s theorem

[18, Theorem 4.1.6] and duality.

Lemma 2.4. The space X⊥(Γ) as defined in (2.19) and endowed with the norm of H̃−1/2(divΓ,Γ) is

compactly embedded in H̃
−1/2
t (Γ).
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3. Compact-Equivalent Inverses

As explained in Section 1.3, we aim to find an operator Nk such that

Nk Ak = Id+Ck : H̃−1/2(divΓ,Γ) → H−1/2(curlΓ,Γ), (3.1)

with a compact operator Ck that may also depend on the wave number k.
We begin by considering the scaled Hodge decompositions ξ = ξz + k ξ⊥ and η = ηz + kη⊥ with

(ξz, ξ⊥), (ηz,η⊥) ∈ Xz(Γ)×X⊥(Γ), and plug it into the EFIE variational problem

ak(ξz + k ξ⊥,ηz + kη⊥) = 〈g , ηz + kη⊥〉Γ , ∀(ηz,η⊥) ∈ Xz(Γ)×X⊥(Γ).

We split the terms and get

〈Vk ξz , ηz〉Γ + k {〈Vk ξ⊥ , ηz〉Γ + 〈Vk ξz , η⊥〉Γ

+k 〈Vk ξ⊥ , η⊥〉Γ} − 〈Vk divΓ ξ⊥ , divΓ η⊥〉Γ = 〈g , ηz〉Γ + k 〈g , η⊥〉Γ , (3.2)

where the three “cross-terms” in braces are compact due to Lemma 2.4 and behave like O(k) when k → 0.
Now, let us recall the following result from literature

Lemma 3.1. Vk −V0 : H̃−1/2(Γ) → H1/2(Γ) is compact and admits the asymptotic expansion Vk −V0 =
O(k) as k → 0.

Proof. The first assertion follows from [20, Lemma 3.9.8] [13, Lemma 2.1]. The second is a slight gener-
alization of what has been shown in [2, Appendix A]. �

Then, we exploit the fact that Vk −V0 is compact and rewrite (3.2) as

〈V0 ξz , ηz〉Γ +
〈
C̃k(ξz + ξ⊥) , ηz + η⊥

〉
Γ
− 〈V0 divΓ ξ⊥ , divΓ η⊥〉Γ = 〈g , ηz〉Γ + k 〈g , η⊥〉Γ ,

where the operator C̃k contains all the compact terms from (3.2) plus some containing Vk −V0 and
Vk −V0.

We see that the final expression involves only two terms that are not compact and that they only
act in either Xz(Γ) or X⊥(Γ). This motivates that we define the operators Sz : Xz(Γ) → (Xz(Γ))

′
and

S⊥ : X⊥(Γ) → (X⊥(Γ))
′
induced by them,

〈Sz ξz , ηz〉Γ := 〈V0 ξz , ηz〉Γ for ξz,ηz ∈ Xz(Γ), (3.3)

〈S⊥ ξ⊥ , η⊥〉Γ :=
〈
V0 d̃ivΓ ξ⊥ , d̃ivΓ η⊥

〉
Γ

for ξ⊥,η⊥ ∈ X⊥(Γ), (3.4)

and consider the following variational problem: For g ∈ (H−1/2(curlΓ,Γ))
′
, find ξz ∈ Xz(Γ) and ξ⊥ ∈

X⊥(Γ) such that

〈Sz ξz , ηz〉Γ = 〈g , ηz〉Γ , ∀ηz ∈ Xz(Γ), (3.5)

〈S⊥ ξ⊥ , η⊥〉Γ = 〈g , η⊥〉Γ , ∀η⊥ ∈ X⊥(Γ). (3.6)

As we want Nk to be a compact-equivalent inverse of Ak, we point out that it suffices to solve (3.5) and
(3.6). Let us denote the associated inverses by Nz := S

−1
z and N⊥ := S

−1
⊥ . Then, we define

Nk := Nz −k
2
N⊥ = S

−1
z − k

2
S
−1
⊥ . (3.7)

In other words, given g ∈ H−1/2(curlΓ,Γ), we can compute ξ = Nk g = (Nz −k2 N⊥)g as follows:

(I) To compute Nz g we find ξz ∈ Xz(Γ) such that

〈V0 ξz , ηz〉Γ = 〈g , ηz〉Γ ∀ηz ∈ Xz(Γ). (3.8)

Note that unique solvability of (3.8) is ensured by the H̃−1/2(Γ)-ellipticity of V0 [20, Theorem 3.5.9].
Equivalently, we can use the scalar potential representation (2.20) of Xz(Γ) and solve: Find

u ∈ H̃1/2(Γ) such that

〈V0 curlΓ u , curlΓ v〉Γ = 〈g , curlΓ v〉Γ , ∀v ∈ H̃1/2(Γ), (3.9)

which is the weak form of a hypersingular boundary integral equation for the Laplacian [20, Corol-
lary 3.3.24]. Therefore, if we denote the corresponding hypersingular integral operator by W0, we

can use W
−1
0 : H−1/2(Γ) → H̃1/2(Γ) and write

u = W
−1
0 ◦ curl∗Γ g, (3.10)
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where curl∗Γ : (H̃−1/2(divΓ,Γ)
′ → (H̃1/2(Γ))′ = H−1/2(Γ). Finally, we conclude that

Nz = curlΓ ◦W
−1
0 ◦(curlΓ)

∗ (3.11)

(II) The evaluation of N⊥ boils down to solving: Find ξ⊥ ∈ X⊥(Γ) such that

〈V0 divΓ ξ⊥ , divΓ η⊥〉Γ = 〈g , η⊥〉Γ , ∀η⊥ ∈ X⊥(Γ). (3.12)

We again point out that existence and uniqueness of solutions of (3.12) follow by the H̃−1/2(Γ)-

ellipticity of V0 and the bijectivity of divΓ : X⊥(Γ) → H̃
−1/2
∗ (Γ) from Theorem 2.2.

Unfortunately, the space X⊥(Γ) is not a low-regularity trace space and thus (3.12) violates

(B). Nevertheless, (2.23) permits us to write ξ⊥ = Lψ, ψ ∈ H̃
−1/2
∗ (Γ) and recast (3.12) as

〈V0 divΓ Lψ , divΓ Lφ〉Γ = 〈g , Lφ〉Γ ∀φ ∈ H̃
−1/2
∗ (Γ), (3.13)

which reduces to

〈V0 ψ , φ〉Γ = 〈L∗ g , φ〉Γ ∀φ ∈ H̃
−1/2
∗ (Γ), (3.14)

when using divΓ ◦ L = Id and the adjoint operator L∗ : H−1/2(curlΓ,Γ) → H
1/2
∗ (Γ) of L.

Rewriting the above with V
−1
0 : H1/2(Γ) → H̃−1/2(Γ), we have

N⊥ = L ◦V−1
0 ◦ L∗ . (3.15)

Theorem 3.2. For any k > 0, the continuous operators

Nk := Nz −k
2
N⊥ : H−1/2(curlΓ,Γ) → H̃−1/2(divΓ,Γ).

satisfy

Nk Ak = Id+Ck : H̃−1/2(divΓ,Γ) → H̃−1/2(divΓ,Γ), (3.16)

with compact operators Ck that are uniformly bounded as k → 0.

Proof. For g ∈ H−1/2(curlΓ,Γ) and η ∈ H̃−1/2(divΓ,Γ) we have

ak(Nk g,η) = 〈V0 Nk g , η〉Γ −
1

k2
〈V0 divΓ Nk g , divΓ η〉Γ

+ 〈(Vk −V0)Nk g , η〉Γ −
1

k2
〈(Vk −V0) divΓ Nk g , divΓ η〉Γ ,

where the last two terms are compact due to Lemma 3.1. For short, we gather these terms and write

〈Tk g , η〉Γ = 〈(Vk −V0)Nk g , η〉Γ −
1

k2
〈(Vk −V0) divΓ Nk g , divΓ η〉Γ .

Now, let us plug in Nk = Nz −k2 N⊥ and obtain

ak((Nz −k
2
N⊥)g,η) = 〈V0 Nz g , η〉Γ − k

2 〈V0 N⊥ g , η〉Γ

+ 〈V0 divΓ N⊥ g , divΓ η〉Γ + 〈Tk g , η〉Γ ,

where we have already used the fact that Nz maps to Xz(Γ) and that Xz(Γ) = ker divΓ in H̃−1/2(divΓ,Γ).
Then, by also plugging in the Hodge decomposition η = ηz + η⊥, we arrive to

ak((Nz −k
2
N⊥)g,ηz + η⊥) = 〈V0 Nz g , ηz〉Γ + 〈V0 Nz g , η⊥〉Γ

− k
2 〈V0 N⊥ g , ηz + η⊥〉Γ

+ 〈V0 divΓ N⊥ g , divΓ η⊥〉Γ + 〈Tk g , ηz + η⊥〉Γ ,

where we have again employed Xz(Γ) = ker divΓ.
Finally, let us re-order the right hand side and plug in the definition of N⊥

ak((Nz −k
2
N⊥)g,ηz + η⊥) = 〈V0 Nz g , ηz〉Γ + 〈V0 divΓ LV0 L

∗ g , divΓ η⊥〉Γ

+ 〈Tk g , ηz + η⊥〉Γ

+ 〈V0 Nz g , η⊥〉Γ − k
2 〈V0 N⊥ g , ηz + η⊥〉Γ .

With this it becomes clear that the first line gives us the identity due to the definitions of Nz and N⊥. On
the other hand, we have that the expressions on the last line are compact as a consequence of Lemma 2.4.
Hence, collecting all compact terms as Ck, we find

ak((Nz −k
2
N⊥)g,ηz + η⊥) = 〈g , ηz + η⊥〉Γ + 〈Ck g , ηz + η⊥〉Γ ,

and therefore the desired identity plus compact.
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The compact terms in Ck are

〈Ck g , ηz + η⊥〉Γ = 〈V0 Nz g , η⊥〉Γ + 〈(Vk −V0)Nk g , η〉Γ + 〈(Vk −V0) divΓ N⊥ g , divΓ η⊥〉Γ

− k
2 〈V0 N⊥ g , ηz + η⊥〉Γ

from where it is clear that Ck remains bounded for k → 0. �

Remark 3.3. If one uses compact-equivalent inverses of W0 and V0 in the construction of Nz and N⊥,
then the resulting operator Nk would still be a compact-equivalent inverse of Ak.

4. Mixed Variational formulation for N⊥

This Section is devoted to derive a formulation of Nk that complies with (B). Difficulties arise specifically
from N⊥ and we start by briefly discussing why one cannot use straightforward variational formulations.

Remark 4.1. From (3.15), one is tempted to compute N⊥ g, with g ∈ (H̃−1/2(divΓ,Γ))
′
, through the

four following steps:

I. Seek L
∗ g = u ∈ H1

∗ (Γ) such that
∫

Γ

gradΓ u · gradΓ vdS =

∫

Γ

g · gradΓ vdS, ∀v ∈ H1
∗ (Γ). (4.1)

II. Take µ = V
−1
0 u ∈ H̃

−1/2
∗ (Γ).

III. Find w ∈ H1
∗ (Γ) such that

∫

Γ

gradΓ w · gradΓ vdS =

∫

Γ

µvdS, ∀v ∈ H1
∗ (Γ). (4.2)

IV. Compute N⊥ g = −gradΓ w.

Nevertheless, this is not possible. Problematic is the right hand side of the variational problem (4.1). It

is well-defined only if gradΓ v ∈ H̃−1/2(divΓ,Γ), and thus we need v ∈ H(Γ), with H(Γ) as defined in
(2.16). However, H(Γ) is not a low-regularity trace space and thus violates (B).

As a remedy, we switch to a mixed variational formulation to compute N⊥ g. Recall

N⊥ g = L ◦V−1
0 ◦ L∗ g, L = −gradΓ ◦(−∆N

Γ )−1, and L
∗ = (−∆N

Γ )−∗ ◦ divΓ . (4.3)

Let us define

H̃0,−1/2(divΓ,Γ) := H̃−1/2(divΓ,Γ) ∩ L2
t (Γ), (4.4)

and note that due to the elliptic lifting of the Laplace-Beltrami operator [10, Sect. 5.2.1], we have

X⊥(Γ) = gradH(Γ) ⊂ L2
t (Γ), (4.5)

and therefore X⊥(Γ) ⊂ H̃0,−1/2(divΓ,Γ).
In order to introduce the mixed formulation to compute (4.3), we split the evaluation of N⊥ g,

g ∈ (H̃−1/2(divΓ,Γ))
′
, into two stages: First compute u = L

∗ g, and then N⊥ g = LV
−1
0 u.

We now analyze each of these steps separately:

• u := L
∗ g ∈ H

1/2
∗ (Γ) solves

−∆N
Γ u = divΓ g, (4.6)

which holds, if and only if, divΓ(gradΓ u+ g) = 0. This can be rewritten as a first-order system [6,

Example 1.2,Chapter 2] with a flux variable µ ∈ H̃0,−1/2(divΓ,Γ) such that

µ = gradΓ u+ g

divΓ µ = 0. (4.7)

Integrating by parts we deduce the following mixed variational problem: Find µ ∈ H̃0,−1/2(divΓ,Γ)

and u ∈ H
1/2
∗ (Γ) such that

〈µ , j〉Γ + 〈u , divΓ j〉Γ = 〈g , j〉Γ , ∀j ∈ H̃0,−1/2(divΓ,Γ),

〈divΓ µ , v〉Γ = 0, ∀v ∈ H
1/2
∗ (Γ).

(4.8)
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• w := LV
−1
0 u ∈ H(Γ) is obtained by solving

−∆N
Γ w = V

−1
0 u (4.9)

and taking −gradΓ w. Its first-order formulation is given by:

gradΓ w = η,

divΓ η = V
−1
0 u,

with flux field η ∈ H̃0,−1/2(divΓ,Γ).

From this we get the following mixed variational problem: Find η ∈ H̃0,−1/2(divΓ,Γ), and

w ∈ H
1/2
∗ (Γ) such that

〈η , q〉Γ + 〈w , divΓ q〉Γ = 0, ∀q ∈ H̃0,−1/2(divΓ,Γ),

〈divΓ η , v〉Γ =
〈
V
−1
0 u , v

〉
Γ
, ∀v ∈ H

1/2
∗ (Γ).

(4.10)

Theorem 4.2. The mixed problems (4.8) and (4.10) have unique solutions and are stable.

Proof. This result follows from showing the two assumptions of the abstract theory of variational saddle-
point theory [5, Theorem 4.3]. Therefore, we need to verify that the following two estimates hold:

(c1) |〈q , q〉Γ| ≥ C ‖q‖
2
H̃0,−1/2(divΓ,Γ)

, ∀q ∈ V with C > 0 and

V := {j ∈ H̃0,−1/2(divΓ,Γ) : 〈divΓ j , u〉Γ = 0∀u ∈ H
1/2
∗ (Γ)}.

(c2) The exists cb > 0 such that

sup
j∈H̃0,−1/2(divΓ,Γ)

|〈divΓ j , u〉Γ|

‖j‖
H̃0,−1/2(divΓ,Γ)

≥ cb ‖u‖H1/2(Γ) ∀u ∈ H
1/2
∗ (Γ).

On the one hand, (c1) follows from the definition of V and the graph norm

‖j‖
2
H̃0,−1/2(divΓ,Γ)

= ‖j‖
2
L2(Γ) + ‖divΓ‖

2
L2(Γ) .

On the other hand, (c2) is a consequence of the surjectivity of divΓ : X⊥(Γ) → H̃
−1/2
∗ (Γ) from The-

orem 2.2, since it implies that L : H̃
−1/2
∗ (Γ) → X⊥(Γ) is a continuous mapping from H̃

−1/2
∗ (Γ) to

H̃0,−1/2(divΓ,Γ). Therefore, duality gives

sup
j∈H̃0,−1/2(divΓ,Γ)

|〈divΓ j , u〉Γ|

‖j‖
H̃0,−1/2(divΓ,Γ)

= sup
ϕ∈H̃

−1/2
∗

(Γ)

|〈divΓ Lϕ , u〉Γ|

‖Lϕ‖
H̃0,−1/2(divΓ,Γ)

≥ CL sup
ϕ∈H̃

−1/2
∗

(Γ)

|〈ϕ , u〉Γ|

‖ϕ‖H̃−1/2(Γ)

= CL ‖u‖H1/2(Γ) ∀u ∈ H
1/2
∗ (Γ).

�

By the mixed variational formulations we have found a way to evaluate Nk g, g ∈ (H̃−1/2(divΓ,Γ))
′
,

meeting all requirements listed in Section 1.3, provided that we can realize V−1
0 and W

−1
0 through simply

applying a BIO. Summing up, we remark that we split the evaluation of Nk into the computation of its
two components Nz and N⊥ as follows:

➀ Nz g is obtained by finding u ∈ H̃1/2(Γ) such that

〈u , v〉Γ =
〈
W

−1
0 curl∗Γ g , v

〉
Γ

∀v ∈ H̃1/2(Γ), (4.11)

and applying curlΓ: Nz g := curlΓ u.
➁ The computation of N⊥ g boils down to the following two steps:

(i) Seek µ ∈ H̃0,−1/2(divΓ,Γ), u ∈ H
1/2
∗ (Γ) such that

〈µ , j〉Γ + 〈u , divΓ j〉Γ = 〈g , j〉Γ ∀j ∈ H̃0,−1/2(divΓ,Γ),

〈divΓ µ , v〉Γ = 0 ∀v ∈ H
1/2
∗ (Γ).

(4.12)

(ii) Seek ξ⊥ ∈ H̃0,−1/2(divΓ,Γ), w ∈ H
1/2
∗ (Γ) such that:

〈ξ⊥ , q〉Γ + 〈w , divΓ q〉Γ = 0 ∀q ∈ H̃0,−1/2(divΓ,Γ),

〈divΓ ξ⊥ , v〉Γ =
〈
V
−1
0 u , v

〉
Γ

∀v ∈ H
1/2
∗ (Γ).

(4.13)

Then N⊥ g := ξ⊥ ∈ H̃0,−1/2(divΓ,Γ) ⊂ H̃−1/2(divΓ,Γ)
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5. Conclusion: Compact-equivalent inverse on the disk D

In light of (3.11) and (3.15), it becomes clear that the explicit computation of Nk relies on the availability
of closed-form integral operator formulas for W−1

0 and V
−1
0 . From [17, Eq. (3.1)–(3.4)], we have explicit

formulas for these inverse operators on D and easily computable expressions for the associated symmetric
bilinear forms:

a
V
(υ, φ) :=

2

π2

∫

D

∫

D

υ(y)φ(x)
S(x,y)

‖x− y‖
dD(y)dD(x), ∀υ, φ ∈ H−1/2(D), (5.1)

a
W
(u, v) :=

2

π2

∫

D

∫

D

S(x,y)

‖x− y‖
curlD,x u(x) · curlD,y v(y)dD(x)dD(y)

+
2

π2

∫

D

∫

D

u(x)v(y)

ω(x)ω(y)
dD(x)dD(y), ∀u, v ∈ H1/2(D), (5.2)

with ω(x) :=
√
1− ‖x‖

2
, for x ∈ D, and S ∈ L∞(D×D) given by S(x,y) := tan−1

(
ω(x)ω(y)

‖x− y‖

)
, x 6=

y.
Hence, on D, solving the variational problems (4.11), (4.12) and (4.13) does not entail inverting a

BIO after replacing W
−1
0 by V and V

−1
0 by W.
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