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Abstract. We present proofs for the existence and uniqueness of solutions of Helmholtz and
Laplace problems in unbounded domains with either Dirichlet or Neumann boundary conditions
on finite collections of open arcs (in 2D) or screens (3D). This extends existent results for a single
arc/screen and provides a constructive solution strategy based on boundary integral operators that
is shown to apply to more general second order coercive equations.
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1. Introduction. We study Laplace and time-harmonic wave equations in un-
bounded domains whose boundaries are a finite collection of disjoint open finite-length
arcs or bounded screens when in two- or three-dimensional space, respectively. Since
such problems arise in multiple applications, an extensive survey is impractical and
we simply mention a few. In structural and mechanical engineering, fractures or
cracks are represented as either screens (3D) or slits (2D) inside the volume domain
[41, 42, 6, 28, 1, 5, 38]. Similar models are used in antenna design and acoustic
engineering, wherein wave scattered by such structures is analyzed [24, 25]. Equiva-
lently, thin apertures on unbounded screens can be reformulated into open arcs [44]
or screens [27]. Other applications can be found in medicine such as imaging [2] or
muscular strain detection due to sport injuries [43].

From a theoretical point of view, the main challenge is brought by solving partial
differential equations on unbounded non-Lipschitz domains. One usually reformulates
the infinite volume problem onto the domain boundaries (arcs or screens) via Bound-
ary Integral Equations (BIEs). This leads to the appearance of Boundary Integral
Operators (BIOs) with singular kernels whose analysis can be performed under dif-
ferent functional spaces depending on the regularity of solutions. More precisely, one
could opt for either a classical approach based on Hölder continuous spaces, denoted
Cm,λ(Γ) with m ∈ N0 and λ ∈ (0, 1), or the relatively more recent L2-based Sobolev
or energy space setting, Hs(Γ) for s ∈ R and their duals [34]. Heavily relying on com-
plex analysis, the former has delivered many important results for two-dimensional
problems over single and multiple open arcs such as solutions for Riemann-Hilbert
problems and the Plemelj-Privalov theorem; we refer to the excellent monographs
[32, 7] for detailed explanations. Notwithstanding, the Hölder framework is highly
restrictive: it requires surface densities to be defined point-wise and thus losing con-
nection to their physical interpretation, while for higher-dimensions results cannot be
easily extended. On the other hand, there are special cases where the Hölder or re-
lated framework of continuous functions is able to find solutions while weak ones may
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not exist [26]. Hence, we will pursue our analysis in the Sobolev space framework.
For a single arc and screen, we highlight the work by Stephan et al. [38, 39]

as the present contribution can be seen as extensions of their ideas to multiple
screens. Therein, the authors consider arcs/screens than can be seen as parts of
closed curves/surfaces enclosing Lipschitz domains as they allow the use of Costabel’s
continuity and coercivity results [11] for Lipschitz domains. Similar assumptions have
been used for mixed problems [34] and for scattering by multiple connected screens
in 3D [10]. Still, and to our knowledge, the first rigorous study of screens can be
traced to Feld [13], though similar screen and aperture problems were already ana-
lyzed before [27]. From there, many authors have analyzed the problem introducing:
extensions of the boundary integral formulations, characterizations of the operators
spectra, and numerical discretization schemes (cf. Shestopalov et al. [35, 36]).

More recently, problems dealing with open arcs or screens have continued to re-
ceive attention for different aims. For instance, as the arising first kind BIEs yield
ill-conditioned low-order Galerkin matrices, several preconditioning ideas have been
put forward. For instance, strategies based on opposite order operator [31] and recent
extensions of Calderón identities in two [20, 21] and three dimensions [19, 18, 33] have
dramatically improved iteration counts for iterative solvers. In parallel, Bruno and
collaborators [29, 9, 8] have contributed with similar ideas for Nyström-type strate-
gies. Another line of research concerns the choice of approximation bases. Specif-
ically, for Dirichlet problems with sufficiently smooth arcs/screens Γ, the solutions
of the BIE –Neumann jumps– display singularities at the boundaries ∂Γ of the form
O(dist(x,Γ)−1/2) [12, 14, 23]. Hence, standard low-order methods tend to fail at
capturing these singularities if not properly meshed or if not embedded with bases
portraying such behavior. Consequently, several methods have been proposed to either
augment the standard discretization basis [40] or to include higher-order polynomials,
portraying improved convergence rates [22, 16].

Yet, and to our knowledge, the question of existence and uniqueness of multi-
ple arcs/screens has not been clearly stated, and to this we dedicate the present
manuscript. In fact, the well-posedness result will be key for a series of works that
dealing with the numerical resolution of both forward and inverse problem versions.
Our paper is organized as follows. Section 2 puts forward formal definitions and
properties needed throughout. In particular, uniqueness of the volume problem is
given in Section 3. We then formulate the problem as a BIE (cf. Section 4) and pro-
vide conditions under which it can be uniquely solved, and how the volume solution
can be recovered. Finally, Section 5 addresses the extensions to general second-order
differential problems in two and three dimensions as well as the Neumann problem.

2. Matematical Tools.

2.1. General Notation. Extended integers are denoted by N
∗ = N ∪ {∞} and

non-negative ones by N0 = N ∪ {0}. We employ the standard O(·), and o(·) notation
for asymptotics. Vectors are indicated by boldface symbols with Euclidean norm
written as ‖ · ‖2 while other norms are indicated by subscripts.

Let G ⊆ R
d, for d = 1, 2, 3, be an open domain. The spaces Ck(G), for k ∈

N0, denote the set of continuous functions over G, along with their k derivatives.
Compactly supported Ck(G) functions are designated by Ck

0 (G). Let D(G) ≡ C∞
0 (G)

be the space of infinitely differentiable functions with compact support on a non-
empty measurable set G. Its dual, the so-called distributional space, is denoted by
D∗(G).

The class of p-integrable functions over G is written Lp(G). Duality pairings are
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denoted by 〈·, ·〉 with subscripts indicating the domain involved, if not clear from
the context. Similarly, inner products are written as (·, ·), only requiring integration
domains as subscript. Finally, quantities defined over volume domains will be written
in capital case whereas those on boundaries in small one, e.g., U ∈ G while u ∈ ∂G.

2.2. Geometry. As explained, we carry out our analysis in two-dimensional
space, leaving definitions for R

3 extensions in Section 5. We denote by the canonical
segment by Γ̂ := (−1, 1). First, we formalize the notion of open arcs as follows:

Definition 2.1 (Jordan arc). We say that Λ ⊂ R
2 is a regular Jordan arc of

class Cm, for m ∈ N
∗, if there exists a bijective parametrization denoted by r = (r1, r2),

such that its components are Cm(Γ̂)-functions; r : Γ̂ → Λ and ‖r′(t)‖2 > 0, ∀ t ∈ Γ̂.

Directly from this definition follows that Λ has to be a closed topological set in R
2

while being open geometrically, i.e. not having self-intersection points, or equivalently
∂Λ 6= ∅. We also define the normal vector of an arc as n = (−r′2, r

′
1)/‖r

′‖2. For the
class of problems of interest, we will assume the following condition on Jordan arcs.

Assumption 2.2. For any Λ regular Jordan arc of class Cm, there exists an exten-
sion of Λ to Λ̃, with a Cm-parametrization r̃ : [0, 2π] → Λ̃, that is bijective in [0, 2π)
and satisfies r̃(0) = r̃(2π) and ‖r̃′(t)‖2 > 0, ∀ t ∈ [0, 2π]. We also assume that the
extension has the same orientation than Λ, and the normal vector of Λ is a restriction
of the exterior normal of Λ̃.

We will also define Λc := Λ̃ \ Λ.

Lemma 2.3. Let Λ be a regular Jordan arc of class Cm. Then, there exists a

bounded domain DΛ with boundary Λ̃, that is also of class Cm.

Proof. As existence follows from the Jordan curve theorem [15], we only need to
prove the smoothness of the domain. For a given x ∈ Λ̃, as ‖r̃′‖2 > 0 we can find an
ǫ > 0 and a function g ∈ Cm(R) such that DΛ ∩ Bǫ(x) is the hypograph of g by the
implicit function theorem. Finally, we can find a finite cover of Λ̃ with open sets of
the form Bǫ(x), because Λ̃ is compact.

Now consider a finite number M ∈ N of arcs {Γi}
M
i=1, each one of class Cm, m ≥ 1,

such that their closures {Γ̃i}
M
i=1, defined as in Assumption 2.2, are disjoint and set

Γ :=

M⋃

i=1

Γi and Ω := R
2 \ Γ.

Clearly, Ω is an open unbounded non-Lipschitz domain. Furthermore, by Lemma
2.3, for each Γi there is at least one domain Ωi whose boundary contains Γi. For
i ∈ {1, . . . ,M}, let us also define the complement domains Ωc

i := R
2 \ Ωi If the arcs

are disjoint, the domains Ωi can also be disjointly selected. In fact, this will be our
next working assumption.

Assumption 2.4. The M domains Ωi originated by arcs Γi are mutually disjoint
for all i = 1, . . . ,M , i.e. Ωi ∩ Ωj = ∅ for i 6= j.

2.3. Sobolev spaces. Let G ⊆ R
d, d = 1, 2, 3, be an open domain. For s ∈ R,

we denote by Hs(G) the standard Sobolev spaces and by Hs
loc(G) their local integrable

counterparts [34, Section 2.3]. We also define

Hs
∆(G) := {U ∈ Hs(G) : ∆U ∈ L2(G)},(1)

Hs
∆,loc(G) := {U ∈ Hs

loc(G) : ∆U ∈ L2
loc(G)}.(2)
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As in [21, Section 2.3], for any Lipschitz open arc Λ that can be extended to a

closed curve Λ̃, we define tilde spaces H̃s(Λ) as

(3) H̃s(Λ) := {u ∈ D∗(Λ) : ũ ∈ Hs(Λ̃)}, s > 0,

where ũ denotes the extension by zero of u to Λ̃. For s > 0 we can identify

H̃−s(Λ) = (Hs(Λ))∗, and H−s(Λ) = (H̃s(Λ))∗.(4)

We will also need the family zero-mean Sobolev spaces:

(5) H̃s
〈0〉(Λ) = {u ∈ H̃s(Λ) : 〈u, 1〉 = 0}.

Particular attention will be paid to the case s = 1
2 . The Sobolev-Slobodeckii definition

is

(6) H
1

2 (Λ) =

{
u ∈ L2(Λ) :

∫

Λ

∫

Λ

|u(x)− u(y)|2

‖x− y‖22
dydx < ∞

}
.

This space can also be characterized in the following way [4, Section 5.1]:

(7) H
1

2 (Λ) =
{
u ∈ L2(Λ) : ∃ v ∈ H

1

2 (Λ̃), v|Λ = u
}
,

with norm

(8) ‖u‖
H

1
2 (Λ)

= inf
{v∈H

1
2 (Λ̃) : v|Λ=u}

‖v‖
H

1
2 (Λ̃)

.

2.3.1. Norm Equivalences. For our forthcoming analysis, we require the fol-
lowing technical lemmas concerning H± 1

2 - and H̃± 1

2 -spaces whose proofs are provided
in Section A.

Lemma 2.5. If u ∈ H̃− 1

2 (Λ) then ũ ∈ H− 1

2 (Λ̃).

Lemma 2.6. For u ∈ H̃− 1

2 (Λ), it holds ‖ũ‖
H− 1

2 (Λ̃)
= ‖u‖

H̃− 1
2 (Λ)

.

Though the following result is not used for the current analysis, it will turn to be
helpful to the error estimation of numerical methods and we include it for completeness
of exposition.

Lemma 2.7. Let ζ ∈ H
1

2 (Γi) and recall that Γ̂ := (−1, 1)× {0} with ri : Γ̂ → Γi.

Then, the following bounds hold

(9) C1 ‖ζ ◦ ri‖
H

1
2 (Γ̂)

≤ ‖ζ‖
H

1
2 (Γi)

≤ C2 ‖ζ ◦ ri‖
H

1
2 (Γ̂)

,

where C1 = min

{∥∥∥
∥∥r′i ◦ r−1

i

∥∥−1

2

∥∥∥
− 1

2

L∞(Γi)
, 1

}
and C2 = max

{
‖r′i‖

1

2

L∞(Γ̂)
, 1
}
.

We can conclude from Lemma 2.7 that the spaces H
1

2 (Γi) and H
1

2 (Γ̂) are isomor-

phic as well as their duals H̃− 1

2 (Γi) and H̃− 1

2 (Γ̂).
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2.3.2. Cartesian Product Spaces. For the finite union of disjoint open arcs
Γ, as defined in Section 2.2, we define piecewise spaces as

(10) H
s(Γ) := {u ∈ D∗(Γ) : u|Γi

∈ Hs(Γi), i = 1, . . . ,M} .

From this definition, the identification:

H
s(Γ) ∼= Hs(Γ1)×Hs(Γ2)× · · · ×Hs(ΓM )

follows. The norm and dual products are naturally extended by the previous iden-
tification. The spaces H̃

s(Γ) and H̃
s
〈0〉(Γ) are defined in similar fashion, imposing

their components to be in {H̃s(Γj)}
M
j=1 and {H̃s

〈0〉(Γj)}
M
j=1, respectively. Also, spaces

H
s(Γ̂) are to be understand as the Cartesian product

∏M
i=1 H

s(Γ̂).
For unbounded domains it is customary to use local Sobolev spaces. Notwith-

standing, as these are not Hilbert spaces, we rather use weighted spaces as in [21,
Section 2.5]1

(11) W (G) :=

{
U ∈ D∗(G) :

U(x)√
1 + ‖x‖22 log(2 + ‖x‖22)

∈ L2(G),∇U ∈ L2(G)

}
,

where G is assumed to be an unbounded open domain in R
2.

Lemma 2.8. The inclusion W (G) ⊂ H1
loc(G) holds.

Proof. For any compact set K ⊂ R
d there is a finite R ∈ R+, with R > log 2 such

that

log 2 <
(
1 + ‖x‖22

) 1

2

log(2 + ‖x‖22) < R,

for every x ∈ R
2 in the given compact, thus bounding the H1-norm in K.

2.4. Dirichlet and Neumann traces. Given the family of arcs {Γi}
M
i=1 defined

as in Section 2.2, we will need a Dirichlet trace operator γi over each Γi. Again, we
recall that the three-dimensional version will be given in Section 5. In general, there
are two possible versions of this operator. For a given arc Γi, consider the induced
bounded domain Ωi with boundary Γ̃i = ∂Ωi as defined in Section 2.2. Then, for
U ∈ C∞(R2) we can set

(12) γ̃±
i = U(x) := lim

ǫ↑0
U(x± ǫni), ∀ x ∈ Γ̃i,

where ni denotes the outward unitary normal vector to the closed curve Γ̃i. We will
denote by γ±

i the restriction to Γi of the operator γ̃±, i.e. γ±
i U := γ̃±

i U |Γi
. These

definitions can be extended from continuous functions to more general Sobolev spaces
by density. In particular, we have

Lemma 2.9. For i = 1, . . . ,M , the operators γ±
i : W (Ω) → H

1

2 (Γi) are bounded.

Proof. As W (Ω) ⊂ H1
loc(Ω) (cf. Lemma 2.8), by Theorem 2.21 in [37] we have

that γ̃±
i : W (Ω) → H

1

2 (Γ̃i). Using the definition of Sobolev spaces on a subset as
in [17], which implies the continuity of the restriction operator, we derive the stated
mapping property.

1For the sake of clarity, we have dropped superindices W
1,−1 used in the original work. There

will no need to introduce a three-dimensional version of these spaces as explained in Section 5.
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In the following, we will denote by γ+
ic (resp. γ−

ic ) the restriction to the arc Γc
i of

the interior (resp. exterior) Dirichlet trace with respect to the domain Ωi. Moreover,
we define Neumann traces for smooth functions as

(13) γ̃±
N,iU := lim

ǫ↑0
ni · ∇U(x± ǫni), ∀ x ∈ Γ̃i.

For any function U ∈ H1
∆,loc(Ω

c
i ) ∪H1

∆(Ωi), its Neumann traces can be extended to

linear mappings with range in H− 1

2 (Γ̃i) (cf. [34, Section 2.7], [30, Lemma 4.3]). We
will also require the following result:

Lemma 2.10. Let F ∈ L2
loc(Ω), and U ∈ W (Ω) such that ∆U = F in Ω. Then,

the normal traces γ̃±
N,iU belong to H− 1

2 (∂Ωi).

Proof. By Lemma 2.8, it is direct that U ∈ H1
∆,loc(Ω) Hence, as Ωi ⊂ Ω we

get that U ∈ H1
∆,loc(Ω

c
i ) ∪ H1

∆(Ωi) and the result follows from the Neumann trace
definition (13).

For a function U defined as in the previous lemma, we will denote by γ±
N,iU the

restriction of γ̃±
N,iU to Γi and by γ±

N,icU the restriction to Γc
i . With these definitions,

we can finally define the Neumann trace jumps on parts of the boundary:

[γNU ]i := γ+
N,iU − γ−

N,iU on Γi,(14)

[γNU ]ic := γ+
N,icU − γ−

N,icU on Γc
i .(15)

3. Model Problem. In what follows, we present the specific volume boundary
value problem we aim to solve as well as some of its characteristics.

Problem 3.1. Let g = (g1, . . . , gM ) ∈ H
1

2 (Γ) and consider a time-harmonic exci-
tation ω > 0, leading to a bounded wavenumber k real and non-negative. We seek
U ∈ H1

loc(Ω) such that

−∆U − k2U = 0 in Ω,(16)

γ±
i U = gi for i = 1, . . . ,M,(17)

Condition at infinity(k)(18)

The behavior at infinity (18) depends on k in the following way. If k > 0, we employ
the classical Sommerfeld condition:

(19)
∂U

∂r
− ikU = o

(
R− 1

2

)
for R → ∞,

where R = ‖x‖2. If k = 0, we seek for solutions U ∈ W (Ω) and which we will discuss
in detail later.

Remark 3.2. In Problem 3.1, it is also possible to have wavenumbers with non-
zero imaginary part. As this would render the above problem elliptic, many results
are easily derived via the Lax-Milgram theorem and we forgo the associated analysis.

We now aim to prove uniqueness of weak solutions for Problem 3.1; existence will
be obtained by means of boundary integral potentials in the next section. For a single
arc, the result was first established in Sobolev spaces by Stephan and Wendland [40].
Before we proceed, we recall preliminary results from [21, Section 2.4], which are also
based on the ideas of [40]. Let us first define the subspace of W (Ω):

(20) W0(Ω) =
{
U ∈ W (Ω) : γ±

i U = 0, for i = 1, . . . ,M
}
.
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Lemma 3.3 (Lemma 2.2, [21]). The semi-norm |U |W (Ω) := ‖∇U‖L2(Ω) bounds

the W (Ω)-norm for functions in W0(Ω), i.e. there exists a constant c > 0 such that

(21) ‖U‖W (Ω) ≤ c |U |W (Ω) , ∀ U ∈ W0(Ω).

Lemma 3.4 (Proposition 2.6, [21]). Let U belong to W (Ω) and F ∈ L2
loc(Ω),

such that −∆U = F in Ω. For R > 0, denote the ball of radius R centered at the

origin by BR := {x ∈ R
2 : ‖x‖2 < R}. Then,

(22) lim
R→∞

〈γN,RU, γRV 〉∂BR
= 0, ∀ V ∈ W (Ω),

where γR and γN,R denote interior Dirichlet and Neumann traces on ∂BR, respec-

tively, the latter being equivalent to the radial derivative on the boundary.

3.1. Laplace case. We now focus on the case k = 0 with homogeneous Dirichlet
conditions on all interfaces Γi, for all i ∈ {1, . . . ,M} and no source term.

Problem 3.5. Seek U ∈ W0(Ω) such that

−∆U(x) = 0, ∀ x ∈ Ω.(23)

Lemma 3.6 (Theorem 1.7.1, [14]). Let V ∈ W0(Ω). Then, for any Γc
i = Γ̃i\Γi as

defined in Section 2.3, it holds

γ+
icV = γ−

icV.

for i ∈ {1 . . . ,M}.

Hence, we can denote indistinctly by γic the trace defined over Γc
i on W0(Ω).

Lemma 3.7 (Section 2.6.1, [21]). Let a function U ∈ W0(Ω) solve −∆U = 0 in

Ω. Then, the normal jump on Γc
i is null, i.e. [γNU ]ic = 0.

Finally, we can prove the uniqueness of the Laplace Problem 3.5.

Proposition 3.8. Problem 3.5 has at most one solution.

Proof. Let Ω∗ :=
⋃M

j=1 Ωj , where the collection is disjoint by Assumption 2.4, and

choose R > 0 such that Ω∗ ⊂ BR. Set Ω0(R) := BR ∩Ω
c

∗, so that for any V ∈ W0(Ω),
it holds that

(24) 〈−∆U, V 〉BR∩Ω = 〈−∆U, V 〉BR
= 〈−∆U, V 〉Ω0(R) +

M∑

j=1

〈−∆U, V 〉Ωj
,

where the first equality follows directly from the null condition of v in Γ. Performing
integration by parts on both terms on the right-hand side above yields

〈−∆U, V 〉Ω0(R) =(∇U,∇V )Ω0(R) − 〈γN,RU, γRV 〉∂BR

+

M∑

j=1

〈
γ−
N,jU, γ

−
j V
〉
Γj

+
〈
γ−
N,jcU, γ

−
jcV

〉
Γc
j

(25)

and

(26) 〈−∆U, V 〉Ωj
= (∇U,∇V )Ωj

−
〈
γ+
N,jU, γ

+
j V
〉
Γj

−
〈
γ+
N,jcU, γ

+
jcV

〉
Γc
j

.
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Since γ±
jcV = γjcV and γ±

j V = 0, adding terms gives

〈−∆U, V 〉BR∩Ω =(∇U,∇V )BR
− 〈γN,RU, γRV 〉∂BR

−
M∑

j=1

〈[γNU ]jc , γjcV 〉Γc
j

,(27)

where (∇U,∇V )BR
= (∇U,∇V )∪j≥0Ωj

as gradients belong to L2(Ω). By Lemma 3.7,

the terms inside the sum vanish. Thus, we arrive at

(28) 〈−∆U, V 〉BR∩Ω = (∇U,∇V )BR
− 〈γN,RU, γRV 〉∂BR

.

Letting R → ∞, by Lemma 3.4 it holds

(29) 〈−∆U, V 〉Ω = (∇U,∇V )Ω = 0.

Finally, we conclude by the norm equivalence in Lemma 3.3.

Remark 3.9. Uniqueness for the Laplace problem (k = 0) can be proved with the
simpler radiation condition:

(30) |U(x)| = O(1) for ‖x‖2 → ∞.

Yet, and as we will see in the next section, this condition will not be the most conve-
nient for working with the underlying BIEs.

3.2. Helmholtz case. Uniqueness for the Helmholtz problem can be established
by using the variational formulation on BR, derived as before, and by carrying out
the same procedure as in closed domains so as to take into account the radiation
condition.

Proposition 3.10. For k > 0, if g = 0 and if the Sommerfeld radiation condition

(19) is enforced, Problem 3.1 can only have the trivial solution.

Proof. Following the steps of the proof of Proposition 3.8, we have the following
variational formulation:

(31)

∫

BR

(
‖∇U(x)‖22 − k2|U(x)|2

)
dx− 〈γN,RU, γRU〉∂BR

= 0.

From here the proof follows verbatim as in [30, Chapter 9].

Hence, by combining Propositions 3.8 and 3.10, we have proven uniqueness for
Problem 3.1 yet not existence. To this end we now turn our attention.

4. Boundary Integral Equation. Due to the unbounded domain in Problem
3.1, the boundary integral framework turns out to be a good alternative to study and
solve the problem.

4.1. Preliminary results. Let Gk(x,y) denote the free space fundamental solu-
tion associated to the partial differential equation (16). We seek solutions of Problem
3.1 of the form:

(32) U(x) =

M∑

i=1

(SLi[k]λi)(x), ∀ x ∈ Ω,

where

(SLi[k]λ)(x) :=

∫

Γi

Gk(x,y)λ(y)dΓi(y),
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denotes the single layer potential generated at a curve Γi, with a fundamental solution

(33) Gk(x,y) =





−
1

2π
log ‖x− y‖2 if k = 0,

i

4
H1

0 (k‖x− y‖2) if k > 0,

and wherein H1
0 (·) denotes the first kind Hankel function of zeroth-order [3, Chapter

9].
In Ω, Gk is a smooth function such that (−∆x−k2)Gk(x,y) = 0 for y ∈ Γ,x ∈ Ω.

By the dominated convergence theorem, we can conclude that (−∆−k2)U = 0. Taking
Dirichlet traces in (32) and imposing boundary conditions (17), we are lead to the
system of BIEs:

(34) Lii[k]λi +
∑

j 6=i

Lij [k]λj = gi, ∀ i ∈ {1, . . . ,M},

where have introduced the BIOs:

Lij [k] := γiSLj [k] = γ±
i SLj [k],

with indices i and j in {1, . . . ,M}. These are well defined as the following result

shows. We also recall the classical weakly singular BIO Vi[k] over the closed curve Γ̃i:

(35) Vi[k] :=
1

2

(
γ̃+
i + γ̃−

i

)
SLΓ̃i

[k].

Let us denote RΓi
: H

1

2 (Γ̃i) → H
1

2 (Γi) the restriction operator, which is continuos by
space definitions. Then, we have that

(36) RΓi
Vi[k]ũ = Lii[k]u.

Proposition 4.1. For each arc Γi, with i ∈ {1, . . . ,M}, and k ≥ 0, the single

layer potential SLi[k] : H̃
− 1

2 (Γi) → H1
loc(R

2) is a linear bounded map. For the Laplace

case, it also holds SLi[0] : H̃
− 1

2

〈0〉 (Γi) → W (R2 \ Γi).

Proof. Let k ≥ 0 and choose u ∈ H̃− 1

2 (Γi) for any curve Γi. By Assumption

2.2, there exists a closed curve Γ̃i including Γi and an associated extension-by-zero
denoted by ũ ∈ H− 1

2 (Γ̃i). Furthermore,

SLi[k]u = SLΓ̃i
[k]ũ in R

2 \ Γ̃i.

From classical mapping properties of layer potentials [11, Theorem 1] we know
that SLΓ̃i

[k] ∈ H1
loc(R

2). Thus, it follows that traces on both sides are equal, and so
the BIOs Lij [k] := γiSLj [k] are well defined.

For the case k = 0, we need to show that SLi[0] maps into W (R2 \ Γi), i.e.

(SLi[0]u)(x)√
1 + ‖x‖22 log(2 + ‖x‖22)

∈ L2(R2 \ Γi), and ∇ (SLi[0]u) ∈ L2(R2 \ Γi).

From [30, Corollary 8.11], we know that the asymptotic behavior of the single layer
potential for large arguments is

(37) (SLi[0]u)(x) = −
1

2π
〈u, 1〉 log ‖x‖2 +O(‖x‖−1

2 ), for ‖x‖2 → ∞.
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Hence, if u ∈ H̃
− 1

2

〈0〉 (Γi) then

(38) (SLi[0]u)(x) = O(‖x‖−1
2 ), for ‖x‖2 → ∞.

By using polar coordinates, it can be shown that it is enough to have SLi[0]u ∈
W (R2 \ Γi).

Remark 4.2. In (37), we introduced the behavior at infinity of the single layer
potential for the case k = 0. As stated in Remark 3.9, there are two possibilities to
ensure uniqueness of solutions for the volume Problem 3.1 in this setting:

(i) Ask for the solution to be in U ∈ W (Ω);
(ii) Incorporate the condition U(x) = O(1) for ‖x‖2 → ∞.
When representing U as a single layer potential acting on a surface density λ

in a suitable trace space, we have a different condition, namely, the one stated in
(37). Hence, in order for U to fulfill this condition at infinity, one must require that
〈λ, 1〉 = 0. This condition is indeed stronger as it implies that we are only able to
represent solutions that decay at infinity. Fortunately, this condition ensures invert-
ibility of the weakly singular integral operator Lii[0], for i = 1, . . . ,M (cf. Lemma
4.4). Still, the Dirichlet Laplace problem could be solved with only a boundedness
condition by means of a different integral equation to the one here presented. This
alternative boundary equation and its corresponding analysis are provided in [40],
and its generalization to multiple arcs can be done with the same arguments shown
in this section.

Lemma 4.3. For k ≥ 0, the operator Lii[k] : H̃
− 1

2 (Γi) → H
1

2 (Γi) is linear and

bounded for i ∈ {1, . . . ,M}.

Proof. Let u and v belong to H̃− 1

2 (Γi) and denote by ũ and ṽ in H− 1

2 (Γ̃i) their

suitable extensions by zero over the closed curve Γ̃i. Then, by (35), it holds

〈Lii[k]u, v〉Γi
= 〈Vi[k]ũ, ṽ〉Γ̃i

.

By [11, Theorem 1], we have

〈Lii[k]u, v〉Γi
≤ C(k) ‖ũ‖

H− 1
2 (Γ̃i)

‖ṽ‖
H− 1

2 (Γ̃i)
,

for a positive constant C depending on k. By using Lemma 2.6, we find

〈Lii[k]u, v〉Γi
≤ C(k) ‖u‖

H̃− 1
2 (Γi)

‖v‖
H̃− 1

2 (Γi)

as stated.

Lemma 4.4. For k = 0, let u ∈ H̃
− 1

2

〈0〉 (Γi). Then, there exist constants ce,i > 0

such that

(39) 〈Lii[0]u, v〉Γi
≥ ce,i ‖u‖

2

H̃− 1
2 (Γi)

, i = 1, . . . ,M.

The same inequality holds if u ∈ H̃− 1

2 (Γi) and diam(Ωi) < 1, i.e. if the analytic

capacity of Γi is less than one.

Proof. We follow the proof of Lemma 4.3 and conclude by Theorems 6.22 and
6.23 in [37].
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Remark 4.5. In Remark 4.2 we stated that the condition λi ∈ H
− 1

2

〈0〉 (Γi), is neces-

sary to obtain a decaying solution Ui := SLi[0]λi. Unfortunately, this does not hold if
only the condition diam(Ωi) < 1 is enforced. The most simple case is to consider just
one arc and use as right-hand side gi = Lii[0]1. Thus, the volume solution is given
by Ui = SLi[0]1, which no longer solves the Laplace problem. In other words, we not
only need a condition that ensures the invertibility of the BIOs, but also that ensures
that the volume solution has the correct behavior at infinity. The situation is more
delicate when we consider more than one domain as we will see.

Lemma 4.6. For i ∈ {1, . . . ,M} and k ≥ 0, there exist constants ce,i > 0 and

compact boundary operators Kii[k] : H̃
− 1

2 (Γi) → H
1

2 (Γi), such that

(40) 〈(Lii[k] +Kii[k])u, u〉Γi
≥ ce,i ‖u‖

2

H̃− 1
2 (Γi)

, ∀u ∈ H̃− 1

2 (Γi).

Proof. For any Γi, take a u ∈ H̃− 1

2 (Γi) and its extension by zero to Γ̃i, ũ ∈

H− 1

2 (Γ̃i). By [11, Theorem 2], there exists a positive constant ce,i and a compact

operator Ki : H
1

2 (Γ̃i) → H− 1

2 (Γ̃i), such that

(41) 〈(Vi[k] +Ki[k])ũ, ũ〉Γ̃i
≥ ce,i ‖ũ‖

2

H− 1
2 (Γ̃i)

.

Define the operator Kii := RΓi
Ki. Thus, by the compactness of Ki, we have that

Kii : H̃
− 1

2 (Γi) → H
1

2 (Γi) is also compact, and consequently,

(42) 〈(Lii[k] +Kii[k])u, u〉Γi
= 〈(Vi[k] +Ki[k])ũ, ũ〉Γ̃i

≥ ce,i‖u‖
2

H̃− 1
2 (Γi)

,

concluding the proof.

Proposition 4.7. Assume that k is not an eigenvalue of the Laplace operator,

with Dirichlet conditions, for at least one domain enclosed by Γ̃i, for all i = 1, . . . ,M .

Then, the self-interaction operators Lii[k] : H̃− 1

2 (Γi) → H
1

2 (Γi) are coercive and

injective for k > 0, and elliptic for k = 0 in H̃
− 1

2

〈0〉 (Γi), for i ∈ {1, . . . ,M}.

Proof. Coercivity and ellipticity follow directly from Lemmas 4.4 and 4.6. Injec-
tivity comes from the injectivity on closed curves. Specifically, for any u ∈ H̃− 1

2 (Γi),

we can build an extension by zero ũ ∈ H− 1

2 (Γ̃i), such that

(Lii[k]u)(x) =

∫

Γi

Gk(x,y)u(y)dΓi(y) =

∫

Γ̃i

Gk(x,y)ũ(y)dΓ̃i(y) = 0.

Since k is not an eigenvalue, by Theorem 3.9.1 in [34], it holds ũ = 0, and we conclude
that u = 0.

Remark 4.8. Assumption 2.2 allows us to build an extension Γ̃i for every arc Γi

but it is possible to have several extensions and thus different possibilities for enclosed
domains Ωi. Therefore, if for at least one of these domains k is not eigenvalue of the
Laplace operator with Dirichlet condition, we have injectivity for Lii[k], for every
i = 1, . . . ,M . Furthermore, in [40, Theorem 1.7], it is shown for a single arc that the
integral equation and the volume problem are equivalent for all k > 0.

Proposition 4.9. For k ≥ 0, the cross-interaction operators Lij [k] : H̃
− 1

2 (Γj) →

H
1

2 (Γi) defined over disjoint interfaces are compact for all i, j ∈ {1, . . . ,M} with

i 6= j.
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Proof. Since Γi ∩ Γj = ∅, for any i 6= j, Lij [k] has a smooth kernel function,
as it is the composition of an analytic function Gk –at separate points– and curve

parametrizations are at least C1. Consequently, it holds Lij : H̃
− 1

2

〈0〉 (Γj) → Hs(Γi), for

all s > 1
2 . Then, by the compact embedding theorem [34, Section 2.5] we have the

stated result.

4.2. Multiple Arcs Boundary Integral Equation. We can now state the
BIE associated to Problem 3.1. Based on our the Cartesian identification for H± 1

2 (Γ)
and its tilde counterparts, we introduce the following BIO:

(43) L[k] :=




L11[k] L12[k] . . . L1M [k]
L21[k] L22[k] . . . L2M [k]

...
...

. . .
...

LM1[k] LM2[k] . . . LMM [k]


 : H̃− 1

2 (Γ) → H
1

2 (Γ).

Problem 4.10 (Boundary Integral Problem). For k > 0, let g ∈ H
1

2 (Γ). We seek

λ ∈ H̃
− 1

2 (Γ) such that

(44) L[k]λ = g.

In the case k = 0, we look for λ ∈ H̃
− 1

2

〈0〉 (Γ).

Remark 4.11. Problem 4.10 can be recast in the reference space H
− 1

2 (Γ̂), so as to

find λ̂ ∈ H
− 1

2 (Γ̂) such that

(45) L̂[k]λ̂ = ĝ,

wherein the elements of ĝ, ĝj := gj ◦ rj , L̂ij is the integral operator integrating over

the reference arc Γ̂ with integral kernel Gk(ri(t), rj(s)), and unknown coordinates

λ̂j := (λj ◦ rj)/‖r
′
j‖2.

Proposition 4.12. The weakly singular operator L[k] : H̃
− 1

2 (Γ) → H
1

2 (Γ) is

bounded, coercive and injective for all k > 0. For k = 0, this result holds on the

subspace H̃
− 1

2

〈0〉 (Γ).

Proof. As the case M = 1 was covered in Lemma 4.3 and Proposition 4.7 already,
we focus on the general case M > 1. Boundeness is a direct consequence of the
norm definition for H̃− 1

2 (Γ), Lemma 4.3 and Proposition 4.9. Coercivity follows from

Proposition 4.7 and 4.9 by taking duality product with functions in H̃
− 1

2 (Γ) and
writing the operator matrix as a sum of diagonal coercive and off-diagonal compact
terms. Hence, we only need to show injectivity for k > 0. The proof for the case
k = 0 follows the steps verbatim but on mean-zero spaces.

Let λ = (λ1, . . . , λM ) ∈ Ker(L[k]) ⊂ H̃
− 1

2 (Γ). Then, we have

(46)

M∑

j=1

Lij [k]λj = 0, ∀ i = 1, . . . ,M.

For j ∈ {1, . . . ,M}, define potentials Uj := SLj [k]λj , solutions of individual homoge-

nous Helmholtz problems over R
2 \ Γj as well as the superposition Uσ :=

∑M
j=1 Uj
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defined over Ω. Then,

(47) γiUσ = γi

M∑

j=1

Uj =

M∑

i=1

Lij [k]λj = 0, ∀ i = 1, . . . ,M.

However, Uσ is also the solution of Problem 3.1, with zero Dirichlet boundary con-
dition. Hence, by uniqueness results of Propositions 3.10 (case k > 0) or 3.8 (case
k = 0), we conclude that

(48) Uσ =
M∑

j=1

SLj [k]λj = 0,

and consequently, for all i = 1, . . . ,M, it holds

(49) Ui = SLi[k]λi = −
∑

j 6=i

SLj [k]λj .

Let us now consider the closed curve Γ̃i, and denote by λ̃i ∈ H̃− 1

2 (Γ̃i) the extension
by zero of λi. It holds,

(50) Ui = SLi[k]λi = SLΓ̃i
[k]λ̃i

where the last potential is defined on the closed curve Γ̃i. If we take normal jumps,
by [34, Theorem 3.3.1], we obtain

(51) [γNUi]Γ̃i
= [SLΓ̃i

[k]λ̃i]Γ̃i
= −λ̃i.

Using (49) in the expression above yields

(52) [γNUi]Γ̃i
= −


∑

j 6=i

SLj [k]λj



Γ̃i

= 0

where the last equality comes from the smoothness of the integral kernel since Γ̃i∩Γ̃j =
∅, for j 6= i. Thus, we can conclude that λj = 0 and the same follows for the other
components.

Using the classical Fredholm alternative [34, Theorem 2.1.36], one can easily prove
the next result.

Theorem 4.13. For k > 0, Problem 4.10 has a unique solution λ ∈ H̃
− 1

2 (Γ),

whereas for k = 0 a unique solution exists in the subspace λ ∈ H̃
− 1

2

〈0〉 (Γ). Also, we have

the estimate

(53) ‖λ‖
H̃

− 1
2 (Γ)

≤ C(k)‖g‖
H

1
2 (Γ)

.

Remark 4.14. For k = 0, the condition at infinity described in Problem 3.1, im-
posed on the single layer potential is fulfilled if the global condition:

(54)

M∑

i=1

〈1, λi〉Γi
= 0,

is satisfied. This is less restrictive than searching for a solution in H̃
− 1

2

〈0〉 (Γ), which

implies that each component satisfies 〈1, λi〉Γi
= 0. However, and though coercivity

is retrieved, an injectivity proof for this configuration is missing.
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5. Further extensions. We generalize the above problem by first extending
the notion of open arcs Γi to proper Lipschitz subsets of the boundary of a domain
Ωi ∈ R

d, for d = 2, 3, and whose normal vector is continuous. Define Ω as the
exterior of a finite set of generalized open arcs Γ. As in [30, Chapter 4], consider
any strongly elliptic second-order self-adjoint partial differential operator, denoted
by P, with smooth coefficients, acting on vector fields of C

m. Thus, for a given
Dirichlet or Neumann datum, g ∈ [H

1

2 (Γ)]m or h ∈ [H− 1

2 (Γ)]m, respectively, we seek
for U ∈ [H1

loc(Ω)]
m such that,

PU = 0 in Ω,(55)

γU = g or BnU = h on Γ,(56)

and where the conormal trace Bn defined as in [30, Chapter 4]. The following points
are needed in order to establish the existence and uniqueness of an equivalent bound-
ary integral formulation for Cauchy data.

(i) An adequate condition at infinity that ensures the uniqueness of the volume
problem.

(ii) A fundamental solution G(x,y) , such that PxG(x,y) = δx−yI, where I is the
identity operator in R

m×m.
(iii) Layer potentials:

(SLiλ)(x) :=

∫

Γi

G(x,y)λ(y)dΓi(y) (Dirichlet trace),

(DLiλ)(x) :=

∫

Γi

Bn(y)G(x,y)λ(y)dΓi(y) (conormal trace),

that display the adequate behavior at infinity specified by the first point in

the trace spaces. Specifically, λ ∈
[
H̃

− 1

2 (Γ)
]m

for the Dirichlet problem and

λ ∈
[
H̃

1

2 (Γ)
]m

for the conormal trace case.

With the above, the integral equation is constructed by the imposing the boundary
condition to the following representations:

U =
M∑

i=1

SLiλi (Dirichlet trace),

U =

M∑

i=1

DLiλi (conormal trace).

If the previously stated conditions are satisfied, then the construction of the aris-
ing BIEs as well as their wellposedness proofs is done as in Section 4 for the case k > 0.
It worth notice that the Laplace case presented in this work is slightly different as the
condition at infinity of the potential only holds in a subspace. We now focus in two
specific examples.

5.1. Three-Dimensional case. Consider Γ̂ = {x ∈ R
2 : ‖x‖2 < 1}, the notion

of open arcs, is changed for open surfaces, also called screens. As in the two dimen-
sional case, we restrict ourselves to screens that can be enclosed by a closed surfaces
which is the boundary of a domain as in [39]. Also, we require our screens to be
orientables so that under these assumptions, the only difference between the two and
tree dimensional case occurs for Laplace condition at infinity. The new condition is

(57) U(x) = O(‖x‖−1
2 ) for ‖x‖2 → 0.
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We need to show that using this condition in Problem 3.1 we have unique solution.
The only difference with Proposition 3.8 is the derivation of a similar result to that
Lemma 3.4, but this can be obtained by a direct computation. In fact, for smooth
functions it holds

(58) 〈γN,RU, γRV 〉∂BR
=

∫ 2π

0

∫ π

0

R−1dϕdθ → 0 as R → 0,

and since the new condition implies that ∇U ∈ L2(Ω), uniqueness follows.
Secondly, the integral kernel from in Section 4 has to be changed to

(59) Gk(x,y) =
eik‖x−y‖2

4π‖x− y‖2
.

One can easily show that the single layer potential has the required condition at
infinity ([30, Theorems 8.9, 9.6]). Thus, both cases (Laplace and Helmholtz) can be

considered in H
− 1

2 (Γ) and the sub-space H
− 1

2

〈0〉 (Γ) is not needed. We mention again

that more general cases were considered in the work of Claeys [10].

5.2. Neumannn Case. The two-dimensional Neumann problem is defined as
follows.

Problem 5.1. Let h = (h1, . . . , hM ) ∈ H
− 1

2 (Γ) and consider a time-harmonic
excitation ω > 0, leading to a bounded wavenumber k real and non-negative. We seek
U ∈ H1

loc(Ω) such that

−∆U − k2U = 0 in Ω,(60)

γ±
N,iU = hi for i = 1, . . . ,M,(61)

condition at infinity(k),(62)

and where the conditions at infinity are those for Problem 3.1.

5.2.1. Uniqueness Result. The uniqueness follows from the variational formu-
lation formulation but with some minors modifications.

Proposition 5.2. For k = 0, Problem 5.1, has a unique solution U ∈ W (Ω)\C.

Proof. We do the same procedure as in the proof of Proposition 3.8, but with
U, V ∈ W (Ω)\C, since the semi-norm is a norm in this subspace the results follows.

For the case k = 0, the proof follows the same steps as for the Dirichlet condition
version (cf. Proposition 3.10).

Proposition 5.3. For k > 0, Problem 5.1 has a unique solution U ∈ H1
loc(Ω).

Remark 5.4. Notice that, in contrast to the classical Neumann problem, compat-
ibility conditions are not required. This can be seen from the variational formulation
(cf. proof of Proposition 3.8), as it involves the jump of the Neumann traces which is
assumed to be zero.

5.2.2. Boundary Integral formulation. In order to obtain an integral equa-
tion for the Neumann problem we define the double layer potential as

(63) (DLi[k]λ)(x) :=

∫

Γi

∂n(y)Gk(x,y)λ(y)dΓi(y).
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We seek solutions of the form:

(64) U(x) =

M∑

i=1

(DLi[k]λi)(x), x ∈ Ω.

We notice that for λ ∈ H̃
1

2 (Γi) from the classical properties of the double layer
potential for Lipchitz domains [11, Theorem 1], and using the zero extension λ̃i ∈

H
1

2 (Γ̃i), we can establish that

(65) DLi[k] : H̃
1

2 (Γi) → H1
∆,loc(R

2 \ Γi), i = 1, . . . ,M,

also, for k = 0 and by using the explicit formula for the fundamental solution, we
can conclude that U ∈ W (Ω)\C. In the Helmholtz case from [30, Theorem 9.6] we
have that u has the desire condition at infinity. Hence, the equivalent of the operator
Lij [k] is

(66) Jij [k] := γN,iDLj [k],

all the properties of this operator can be shown in the similar way of the ones for
Lij [k], but replacing the space H̃− 1

2 (Γi) for H̃
1

2 (Γi).

Appendix A. Proofs of Lemmas in Section 2.3.1.

A.1. Proof of Lemma 2.5. By direct calculation, it holds

‖ũ‖
H− 1

2 (Λ̃)
= sup

v∈H
1
2 (Λ̃)

〈ũ, v〉

‖v‖
H

1
2 (Λ̃)

= sup
v∈H

1
2 (Λ̃)

〈u, v|Λ〉

‖v‖
H

1
2 (Λ̃)

.

It is easy to check that the semi-norm:

|v|Λ|
H

1
2 (Λ)

=

∫

Λ

∫

Λ

|v(x)− v(y)|2

‖x− y‖22
dydx ≤

∫

Λ̃

∫

Λ̃

|v(x)− v(y)|2

‖x− y‖22
dydx = |v|

H
1
2 (Λ̃)

.

Using the same argument for the L2-norm, we can conclude that v|Λ ∈ H
1

2 (Λ), with

‖v|Λ‖
H

1
2 (Λ)

≤ ‖v‖
H

1
2 (Λ̃)

.

By duality between H̃− 1

2 (Λ) and H
1

2 (Λ), we have

‖ũ‖
H− 1

2 (Λ̃)
≤

‖u‖
H̃− 1

2 (Λ)
‖v|Λ‖

H
1
2 (Λ)

‖v‖
H

1
2 (Λ̃)

≤ ‖u‖
H̃− 1

2 (Λ)
< ∞,

as stated.

A.2. Proof of Lemma 2.6. Using the equivalent definition of the space H
1

2 (Λ)

as restrictions of functions in H
1

2 (Λ̃), we have

‖ũ‖
H− 1

2 (Λ̃)
= sup

z∈H
1
2 (Λ̃)

〈u, z|Λ〉Λ
‖z‖

H
1
2 (Λ̃)

≥ sup
v∈H

1
2 (Λ)

〈u, v〉Λ
‖v‖

H
1
2 (Λ)

= ‖u‖
H̃− 1

2 (Λ)
.

Combining this with the estimate from Lemma 2.5 gives the desired result.
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A.3. Proof of Lemma 2.7. We only show the first inequality as for the second
one similar steps are followed. By definition, it holds

(67) ‖ζ ◦ ri‖
2

H
1
2 (Γ̂)

=

∫

Γ̂

|ζ ◦ ri(t)|
2dt+

∫

Γ̂

∫

Γ̂

|ζ ◦ ri(t)− ζ ◦ ri(s)|
2

|t− s|2
dtds.

For the first integral on the right-hand side, we deduce
∫

Γ̂

|ζ ◦ ri(t)|
2dt =

∫

Γ̂

|ζ ◦ ri|
2 ‖r

′
i(t)‖2

‖r′i(t)‖2
dt =

∫

Γi

|ζ|2∥∥r′i ◦ r−1
i

∥∥
2

dΓi

≤
∥∥∥
∥∥r′i ◦ r−1

i

∥∥−1

2

∥∥∥
L∞(Γi)

∫

Γi

|ζ|2dΓi.

(68)

Similarly, by changing variables, the second term in (67) becomes

(69)

∫

Γi

∫

Γi

|ζ(x)− ζ(y)|2

‖x− y‖22

(
‖x− y‖22∥∥r−1

i (x)− r−1
i (y)

∥∥2
2

)
dΓi(x)dΓi(y)∥∥r′i ◦ r−1

i (x)
∥∥
2

∥∥r′i ◦ r−1
i (y)

∥∥
2

.

By using the mean value theorem for r−1
i , we arrive at

∫

Γ̂

∫

Γ̂

|ζ ◦ ri(t)− ζ ◦ ri(s)|
2

|t− s|2
dtds ≤

∫

Γi

∫

Γi

|ζ(x)− ζ(y)|2

‖x− y‖22
dΓi(x)dΓi(y)

and thus, we get the stated result.
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