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Abstract. The ability to manipulate the propagation of waves on subwavelength scales is im-
portant for many different physical applications. In this paper, we consider a honeycomb lattice of
subwavelength resonators and prove, for the first time, the existence of a Dirac dispersion cone at
subwavelength scales. As shown in [H. Ammari et al., A high-frequency homogenization approach
near the Dirac points in bubbly honeycomb crystals, arXiv:1812.06178], near the Dirac points, hon-
eycomb crystals of subwavelength resonators has a great potential to be used as near-zero materials.
Here, we perform the analysis for the example of bubbly crystals, which is a classic example of sub-
wavelength resonance, where the resonant frequency of a single bubble is known as the Minnaert
resonant frequency. Our first result is an asymptotic formula for the quasi-periodic Minnaert res-
onant frequencies. We then prove the linear dispersion relation of a Dirac cone. Our findings in
this paper are numerically illustrated in the case of circular bubbles, where the multipole expansion
method provides an efficient technique for computing the band structure.

Key words. Honeycomb lattice, Dirac cone, bubble, Minnaert resonance, subwavelength
bandgap
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1. Introduction. Subwavelength crystals are based on locally resonant struc-
tures with large material contrasts, repeated periodically. They are a novel group of
synthetic materials which enables manipulation of waves on very small spatial scales,
known as subwavelength scales. In this setting, a crystal refers to a large structure
with a periodically repeated microstructure. Due to their small scales, subwavelength
crystals are very useful in physical applications, especially situations where the oper-
ating wavelengths are very large. They have been investigated both numerically and
experimentally in [23, 24, 27, 28, 29, 31, 42].

Recently, there have been many discoveries involving materials that exhibit in-
triguing wave propagation properties due to the presence of a Dirac cone in their band
structures [14, 17, 18, 20, 21, 26, 34, 36, 37]. A Dirac cone is a linear intersection of
two curves in the dispersion diagram, and is a consequence of non-trivial symmetry of
the lattice. Dirac cones have typically been studied in the context of electron bands
in graphene, where peculiar effects such as Klein tunnelling and Zitterbewegung have
been observed. Moreover, Dirac cones have been demonstrated in acoustic analogues
of graphene, which can give effective zero refractive index materials [34, 30, 16, 41].
Typically, by breaking the symmetry of the lattice, the Dirac cone can be opened to
a bandgap. This is a fundamental mechanism to create topologically robust guiding
of waves [17, 18, 19, 25, 37, 38].

In this work, the acoustic resonant structure is an inclusion embedded in a sur-
rounding material with significantly higher density. Inspired by an air bubble in
water, which possesses a resonant frequency known as the Minnaert resonant fre-
quency [2, 3, 32], we think of the system as a periodic array of bubbles. Physically,
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such systems can be stabilized (preserving the resonant behaviour) by replacing the
liquid with a soft, elastic medium [28, 29]. The high density contrast is crucial for
the resonance to occur at subwavelength scales. Due to its simplicity, the Minnaert
bubble is an ideal component for constructing subwavelength scale metamaterials,
and has been studied, for instance, in [2, 3, 6, 7, 8, 11]. In particular, it was proved
in [6] that a bubbly crystal features a bandgap opening in the subwavelength regime.
Similarly, it is possible to create materials with Dirac cones at subwavelength scales,
resulting in small scale metamaterials with Dirac singularities. Such materials have
been experimentally and numerically studied in [36, 37, 39]. General overviews of
acoustic metamaterials are presented in [15, 31, 40].

The goal of this work is to study an acoustic analogue of graphene, composed
of bubbles in a hexagonal honeycomb structure. Wave propagation in the crystal is
modelled by a high-contrast Helmholtz problem. The main objective is to rigorously
prove the existence of a Dirac cone in the subwavelength scale in a bubbly honeycomb
crystal.

The mathematical analysis of the band structure of graphene was originally based
on a tight-binding model under certain nearest-neighbour approximations [33, 35], and
later generalized to a broad class of Schrödinger operators with honeycomb lattice po-
tentials [19, 20, 25, 26]. In this work, using layer potential theory and Gohberg-Sigal
theory, we demonstrate an original and powerful method for analysing metamate-
rials with honeycomb structures. The method is well-suited for investigating wave
propagation in media with discontinuous material parameters. Such materials arise
naturally when designing subwavelength metamaterials, but are mathematically chal-
lenging to analyse. We consider a general shape of the scatterer, only assuming some
natural symmetry assumptions. This generalizes previous works done with circular
scatterers [34]. Moreover, we derive an original formula for the slope of the Dirac cone
in a bubbly honeycomb crystal and give explicitly the behaviour of the error term in
terms of the contrast in the material parameters.

The paper is organised as follows. In Section 2, we define the geometry of the
bubbly honeycomb crystal and formulate the spectral resonance problem. We also
introduce some well-known results regarding the quasi-periodic Green’s function on
the honeycomb lattice. The computation of the Dirac cone is performed in Section 3
and Section 4. In Section 3, we derive an asymptotic formula for the quasi-periodic
Minnaert resonant frequency in terms of the density contrast. In Section 4, we rig-
orously show the existence of a Dirac dispersion cone. The two sections complement
each other in the following way: in Section 3 we compute explicit approximations
of the band functions, but cannot prove the existence of an exact Dirac cone. Con-
versely, in Section 4 we a prove the existence of a Dirac cone, but we cannot explicitly
compute the slope and centre of the cone with the method used here. Also, it is worth
emphasizing that the high-contrast condition is needed to guarantee the two-fold de-
generacy found in a Dirac cone, which could fail without this condition. Thus, having
high-contrast parameters is not required due to a limitation of the proof, but should
be viewed as a method to create subwavelength Dirac cones. In Section 5, we nu-
merically compute the Dirac cones in the case of circular bubbles using the multipole
expansion method. The paper ends with some concluding remarks in Section 6.

2. Problem statement and preliminaries. In this section, we formulate the
resonance problem for the honeycomb crystal and briefly describe the layer potential
theory that will be used in the subsequent analysis.
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Fig. 2.1: Illustration of the bubbly honeycomb crystal and quantities in the fundamen-
tal domain Y .

2.1. Problem formulation. In order to formulate the problem under consid-
eration, we start by describing the bubbly honeycomb crystal depicted in Figure 2.1.
We consider a two-dimensional, infinite crystal in two dimensions. In possible physical
realisations, this corresponds to a structure that is invariant along the third spatial
dimension. Define a hexagonal lattice Λ as the lattice generated by the lattice vectors:

l1 = a

(√
3

2
,
1

2

)
, l2 = a

(√
3

2
,−1

2

)
.

Here, a denotes the lattice constant. Denote by Y a fundamental domain of the given
lattice. Here, we take

Y := {sl1 + tl2 | 0 ≤ s, t ≤ 1} .

We decompose the fundamental domain Y into two parts:

Y = Y1 ∪ Y2,

where

Y1 = {sl1 + tl2 | 0 ≤ s, t, and t+ s ≤ 1} , Y2 = Y \ Y1.

We denote the centres of Y , Y1, and Y2, respectively, by x0, x1, and x2, i.e.,

x0 =
l1 + l2

2
, x1 =

l1 + l2
3

, x2 =
2(l1 + l2)

3
.

We assume that the bubbles are static and placed in a periodic crystal. Physically,
this is achievable by placing the bubbles in a soft elastic medium [28, 29]. We will
assume that each bubble in the crystal has a three-fold rotational symmetry and that
each pair of adjacent bubbles has a two-fold rotational symmetry. More precisely, let
R1 and R2 be the rotations by −2π/3 around x1 and x2, respectively, and let R0 be
the rotation by π around x0. These rotations can be written as

R1x = Rx+ l1, R2x = Rx+ 2l1, R0x = 2x0 − x,
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Fig. 2.2: Different representations of the Brillouin zone, generating vectors α1, α2,
and the Dirac points α∗

1, α
∗
2.

where R is the rotation by −2π/3 around the origin. Assume that each fundamental
domain Yj , j = 1, 2 contains one bubble Dj , which is a connected domain of Hölder
class ∂Dj ∈ C1,s, 0 < s < 1, satisfying

R1D1 = D1, R2D2 = D2, R0D1 = D2.

Denote the pair of bubbles, the bubble dimer, by D = D1 ∪ D2. Moreover, the full
honeycomb crystal C is given by

C =
⋃

m∈Λ

D +m.

The dual lattice of Λ, denoted Λ∗, is generated by α1 and α2 satisfying

αi · lj = 2πδij for i, j = 1, 2.

Then

α1 =
2π

a

(
1√
3
, 1

)
, α2 =

2π

a

(
1√
3
,−1

)
.

The Brillouin zone Y ∗ is defined as the torus Y ∗ := R
2/Λ∗ and can be represented

either as the unit cell

Y ∗ ≃ {sα1 + tα2 | 0 ≤ s, t ≤ 1} ,

or as the first Brillouin zone, which is the hexagon depicted in Figure 2.2. As usual,
for equivalence classes α, β ∈ Y ∗, with representatives α0, β0 ∈ R

2, we write α = β to
denote α0 = β0 + q for some q ∈ Λ∗. The points

α∗
1 =

2α1 + α2

3
, α∗

2 =
α1 + 2α2

3
,

in the Brillouin zone are called Dirac points. Observe that, since Λ∗ is invariant under
R, we have that R : Y ∗ → Y ∗ is a well-defined map. Moreover, we have

Rα∗
1 =

−α1 + α2

3
=

2α1 + α2

3
= α∗

1,

where the second equality follows due to the periodic nature of Y ∗. Similarly,

Rα∗
2 = α∗

2.
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Having defined the geometry, we now define the wave scattering problem in the
bubbly honeycomb crystal. We denote by

ρ(x) = ρ0χR2\C(x) + ρbχC(x), κ(x) = κ0χR2\C(x) + κbχC(x),

where ρ0, κ0 and ρb, κb denote the densities and bulk moduli outside and inside the
bubbles, respectively. Here, χA denotes the characteristic function of a set A ∈ R

2.
For a quasi-periodicity α ∈ Y ∗, we will study the α-quasi-periodic Floquet component
u of the total wave field. We therefore consider the following α-quasi-periodic acoustic
wave problem in Y :





∇ · 1

ρ(x)
∇u(x) + ω2

κ(x)
u(x) = 0 in R

2,

u(x+ l) = eiα·lu(x) for all l ∈ Λ.

(2.1)

The differential equation in (2.1) is the acoustic wave equation applied to time-
harmonic waves of frequency ω. The values of ω with positive real part such that
there is a non-zero solution to (2.1) are known as Bloch resonant frequencies, or, seen
as functions of α, as band functions. Since (2.1) correspond to the Floquet transform
of a self-adjoint operator, it is well-known that the band functions are real (see, for
example, [5, Chapter 5.2] for an introduction to Floquet theory with applications to
scattering problems). Let

v :=

√
κ0
ρ0
, vb :=

√
κb
ρb
, k :=

ω

v
, kb :=

ω

vb
, δ :=

ρb
ρ0
.

The parameter δ describes the contrast in the density and will be the key asymptotic
parameter. We assume that ρb is small compared to ρ0 while the wave speeds are
comparable and of order 1, i.e.,

δ ≪ 1 and v, vb = O(1).

In the case of air bubbles in water, δ ≈ 10−3. The subwavelength frequency regime
corresponds to frequencies ω which are considerably smaller than the lattice constant
a. The motivation for studying systems of high-contrast bubbles is that such systems
have resonant frequencies ω satisfying ω → 0 as δ → 0. In this work we say that a
frequency ω is a subwavelength frequency if ω scales as ω = O(δ1/2).

With the notation as above, (2.1) reads





∆u+ k2u = 0 in R
2\C,

∆u+ k2bu = 0 in C,
u+ − u− = 0 on ∂C,

δ
∂u

∂ν

∣∣∣∣
+

− ∂u

∂ν

∣∣∣∣
−
= 0 on ∂C,

u(x+ l) = eiα·lu(x) for all l ∈ Λ.

(2.2)

Here, ∂
∂ν denotes the normal derivative on ∂C, and the subscripts + and − indicate

the limits from outside and inside of C, respectively.
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2.2. Quasi-periodic Green’s function for the honeycomb lattice. In this
section, we introduce the Green’s function and the layer potentials that will be used
in the sequel. A more detailed discussion can, for example, be found in [5, Chapter
2.12].

Define the α-quasi-periodic Green’s function Gα,k to satisfy

∆Gα,k + k2Gα,k =
∑

n∈Λ

δ(x− n)eiα·n.

If k 6= |α+ q| for all q ∈ Λ∗, it can be shown [5, 10] that Gα,k is given by

Gα,k(x) =
1

|Y |
∑

q∈Λ∗

ei(α+q)·x

k2 − |α+ q|2 .

From now on, we assume that the lattice constant a is chosen so that |Y | = 1.
For a given bounded domain D in Y , with Lipschitz boundary ∂D, the single

layer potential of the density function ϕ ∈ L2(∂D) is defined by

Sα,k
D [ϕ](x) :=

∫

∂D

Gα,k(x− y)ϕ(y) dσ(y), x ∈ R
2.

The following jump relations are well-known [5, 10]:

∂

∂ν
Sα,k
D [ϕ]

∣∣∣∣
±
(x) =

(
±1

2
I + (K−α,k

D )∗
)
[ϕ](x), x ∈ ∂D, (2.3)

where the Neumann-Poincaré operator (K−α,k
D )∗ is defined by

(K−α,k
D )∗[ϕ](x) = p.v.

∫

∂D

∂

∂νx
Gα,k(x− y)ϕ(y) dσ(y), x ∈ ∂D.

From [5, Lemma 2.9], we know that Sα,ω
D : L2(∂D) → H1(∂D) is invertible when

α 6= 0 and for ω small enough.
In the rest of this work, we will assume that α is bounded away from zero. For

some fixed α0 > 0, α0 ∈ R, we denote by Y ∗
0 = {α ∈ Y ∗ : |α| ≥ α0}. For α ∈ Y ∗

0 and
k small enough, we have k 6= |α + q| for all q ∈ Λ∗. Then, we can expand Gα,k with
respect to k as follows:

Gα,k = Gα,0 +

∞∑

j=1

k2jGα,0
j , where Gα,0

j (x) := −
∑

q∈Λ∗

ei(α+q)·x

|α+ q|2(j+1)
.

Using this expansion, we can expand the single layer potentials and the Neumann-
Poincaré operators as

Sα,k
D = Sα,0

D +

∞∑

j=1

k2jSα,0
D,j , where Sα,0

D,j [φ](x) :=

∫

∂D

Gα,0
j (x− y)φ(y) dσ(y),

and

(K−α,k
D )∗ = (K−α,0

D )∗ +
∞∑

j=1

k2jKα,0
D,j ,
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where

Kα,0
D,j [φ](x) :=

∫

∂D

∂

∂νx
Gα,0

j (x− y)φ(y) dσ(y).

SinceGα,0
j is uniformly bounded for x ∈ R

2, α ∈ Y ∗
0 and j = 1, 2, ..., the operators Sα,0

D,j

and Kα,0
D,j are bounded operators for all j, and we have that ‖Sα,0

D,j‖B(L2(∂D),H1(∂D)) and

‖Kα,0
D,j‖B(L2(∂D),L2(∂D)) are uniformly bounded for α ∈ Y ∗, j = 1, 2, ... Here, B(A,B)

denotes the space of bounded operators between the normed spaces A,B together
with corresponding operator norm. We therefore have asymptotic expansions

Sα,k
D = Sα,0

D + k2Sα,0
D,1 +O(k4), (K−α,k

D )∗ = (K−α,0
D )∗ + k2Kα,0

D,1 +O(k4), (2.4)

uniformly for α ∈ Y ∗
0 , where the error terms are with respect to corresponding oper-

ator norm. For α ∈ Y ∗
0 , let ψi ∈ L2(∂D) be given by

ψi =
(
Sα,0
D

)−1

[χ∂Di
], i = 1, 2. (2.5)

In the following lemma, we collect some key properties of the layer potentials. The
proof is analogous to proofs of similar results, in slightly different settings, found for
example in [5].

Lemma 2.1. We assume α ∈ Y ∗
0 .

(i) We denote the L2(∂D)-adjoint of the Neumann-Poincaré operator by Kα,0
D .

Then

ker

(
−1

2
I + (K−α,0

D )∗
)

= span{ψ1, ψ2},

and

ker

(
−1

2
I +Kα,0

D

)
= span{χ∂D1

, χ∂D2
};

(ii) For any φ ∈ L2(∂D) and for j = 1, 2, we have

∫

∂Dj

(
−1

2
I + (K−α,0

D )∗
)
[φ] dσ = 0; (2.6)

(iii) For any φ ∈ L2(∂D) and for j = 1, 2, we have
∫

∂Dj

Kα,0
D,1[φ](y) dσ(y) = −

∫

Dj

Sα,0
D [φ](x) dx. (2.7)

Proof. To prove (i), we first observe that the jump relation (2.3) implies that

span{ψ1, ψ2} ⊂ ker
(
− 1

2I + (K−α,0
D )∗

)
. Conversely, if

(
− 1

2I + (K−α,0
D )∗

)
[ψ] = 0, we

define u(x) = Sα,0
D [ψ] and conclude from the jump relations that




∆u = 0 in D,
∂u

∂ν
= 0 on ∂D.

It follows that u|Di
is constant, so u|∂D = a1χ∂D1

+ a2χ∂D2 . Therefore ψ = a1ψ1 +

a2ψ2, which proves ker
(
− 1

2I + (K−α,0
D )∗

)
⊂ span{ψ1, ψ2}. The second equality of
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(i) follows from the first, combined with the well-known Calderón identity (see, for
instance, [5])

Sα,0
D (K−α,0

D )∗ = Kα,0
D Sα,0

D .

For the proof of (ii), we use the jump relation (2.3) and integration by parts.
Then

∫

∂Dj

(
−1

2
I + (K−α,0

D )∗
)
[φ] dσ =

∫

∂Dj

∂Sα,0
D

∂ν

∣∣∣∣∣
−
[φ] dσ =

∫

Dj

∆Sα,0
D [φ] dx = 0.

To prove (iii), we use (ii) to conclude that on one hand
∫

∂Dj

(
−1

2
I + (K−α,k

D )∗
)
[φ] dσ = k2

∫

∂Dj

Kα,0
D,1[φ](y) dσ(y) +O(k4‖φ‖L2(∂D)).

On the other hand, as in the proof of (ii) we have
∫

∂Dj

(
−1

2
I + (K−α,k

D )∗
)
[φ] dσ = −k2

∫

Dj

Sα,k
D [φ] dx

= −k2
∫

Dj

Sα,0
D [φ] dx+O(k3‖φ‖L2(∂D)),

where we have used the expansion (2.4). Combined, we have
∫

∂Dj

Kα,0
D,1[φ](y) dσ(y) = −

∫

Dj

Sα,0
D [φ](x) dx+O(k‖φ‖L2(∂D)),

and since the leading orders on the left-hand side and right-hand side are independent
of k, they must coincide.

Next, we derive asymptotic expansions for α near a Dirac point α∗. From [5],
we know that Gα,k(x)−Gα∗,k(x) is continuously differentiable in α for α ∈ Y ∗

0 , and
bounded for x ∈ Y and for k in a neighbourhood of 0. We therefore have the following
asymptotic expansion of Gα,k

Gα,k(x) = Gα∗,k(x) +
∑

q∈Λ∗

ei(α
∗+q)·x

k2 − |α∗ + q|2
(
ix · (α− α∗) + 2

(α∗ + q) · (α− α∗)

k2 − |α∗ + q|2
)

+O(|α− α∗|2), (2.8)

uniformly for k in a neighbourhood of 0 and for x ∈ Y . We define Gk
1 by

Gk
1(x) :=

∑

q∈Λ∗

ei(α
∗+q)·x

k2 − |α∗ + q|2
(
ix+

2(α∗ + q)

k2 − |α∗ + q|2
)
.

and the integral operators Sk
1 , Kk

1 as

Sk
1 [φ](x) :=

∫

∂D

Gk
1(x− y)φ(y) dσ(y), Kk

1 [φ](x) :=

∫

∂D

∂

∂νx
Gk

1(x− y)φ(y) dσ(y).

We then have the expansions

Sα,k
D = Sα∗,k

D + Sk
1 · (α− α∗) +O(|α− α∗|2), (2.9)

(K−α,k
D )∗ = (K−α∗,k

D )∗ +Kk
1 · (α− α∗) +O(|α− α∗|2), (2.10)

uniformly for k in a neighbourhood of 0, where the error terms are with respect to
corresponding operator norm.
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2.3. Quasi-periodic capacitance matrix. Let V α
i , i = 1, 2, be the solution

to




∆V α
i = 0 in R

2 \ C,
V α
i = δij on ∂Dj ,

V α
i (x+ l) = eiα·lV α

i (x) ∀l ∈ Λ.

The intuitive idea for defining these functions is as follows. In the asymptotic limit
δ → 0, the differential problem (2.2) decouples into a Neumann problem inside D
and a Dirichlet problem outside D. In the subwavelength limit ω → 0, this Neumann
problem is solved by constant functions, and thus the Dirichlet data will be constant
on ∂D. Therefore, outside D, a solution u to (2.2) can be approximated by a linear
combination of V α

1 and V α
2 . The fact that u is approximately constant on D, and

is thus determined by these constant values, turns the continuous spectral problem
(2.2) into a discrete eigenvalue problem in terms of the capacitance matrix Cα defined
below. This underlying idea is made precise in the proof of Theorem 3.2, in order to
compute the Bloch resonant frequencies.

We define the quasi-periodic capacitance coefficients (Cα
ij) by

Cα
ij :=

∫

Y \D
∇V α

i · ∇V α
j dx, i, j = 1, 2.

Here, quasi-periodic refers to the fact that (Cα
ij) depend on the quasi-periodicity

α ∈ Y ∗. In related work [3, 4], analogous quantities, without the quasi-periodic
assumption of V α

i , have been used to study the resonant frequencies of finite systems
of resonators. The quasi-periodic capacitance matrix Cα is defined as

Cα =

(
Cα

11 Cα
12

Cα
21 Cα

22

)
.

The following lemma gives an equivalent description of Cα
ij .

Lemma 2.2. For α ∈ Y ∗
0 , the quasi-periodic capacitance coefficients Cα

ij are given
by

Cα
ij = −

∫

∂Di

ψj dσ, i, j = 1, 2, (2.11)

with ψj as defined in (2.5).
Proof. We will use the general fact that for quasi-periodic functions v1, v2 we have

[5, eq. (2.298)]
∫

∂Y

∂v1
∂ν

v2 dσ = 0. (2.12)

With ψi as defined in (2.5), we have V α
i = Sα,0

D [ψi] outside C. Then, using integration
by parts, we have

Cα
ij = −

(∫

∂Y

∂V α
j

∂ν
V α
i dσ +

∫

∂Dj

∂V α
j

∂ν
V α
i dσ +

∫

∂Di

∂V α
j

∂ν
V α
i dσ

)
.

The first integral vanishes due to (2.12) while the second integral vanishes since V α
i = 0

on ∂Dj . Then, since V α
i = 1 on ∂Di,

Cα
ij = −

∫

∂Di

∂V α
j

∂ν
dσ.
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From Lemma 2.1 we have
(

1
2I + (Kα,0

D )∗
)
[ψj ] = ψj . Then, using the jump relations

(2.3), we find the desired expression for Cα
ij .

3. High-contrast subwavelength bands. In this section, we investigate the
asymptotic behaviour of the band structure in the case of small δ. As we shall see, this
asymptotic limit enables explicit, approximate, computations of the band functions.
The main results are given in Theorem 3.2 and in equation (3.15). Throughout this
section, we fix α∗ = α∗

1 = 2α1+α2

3 and consider α ∈ Y ∗
0 .

From [5, Theorem 5.13], we know that the solution to (2.2) can be represented

using the single layer potentials Sα,kb

D and Sα,k
D as follows:

u(x) =

{
Sα,kb

D [φ](x), x ∈ D,

Sα,k
D [ψ](x), x ∈ Y \D,

(3.1)

where, due to the jump conditions (2.3), the pair (φ, ψ) ∈ L2(∂D)× L2(∂D) satisfies





Sα,kb

D [φ]− Sα,k
D [ψ] = 0(

−1

2
I + (K−α,kb

D )∗
)
[φ]− δ

(
1

2
I + (K−α,k

D )∗
)
[ψ] = 0

on ∂D. (3.2)

We denote by

Aα,ω
δ :=

(
Sα,kb

D −Sα,k
D

− 1
2I + (K−α,kb

D )∗ −δ
(

1
2I + (K−α,k

D )∗
)
)
. (3.3)

We emphasise that Aα,ω
δ is a function of ω, since k and kb depends on ω. With this

definition, (2.2) is equivalent to

Aα,ω
δ

(
φ
ψ

)
= 0. (3.4)

It is well-known that the above integral equation has non-trivial solutions for some dis-
crete frequencies ω. These can be viewed as the characteristic values of the operator-
valued analytic function Aα,ω

δ (with respect to ω); see [5, 10] for the definition and
properties of characteristic values. The Bloch resonant frequencies ωα

j are precisely
the positive characteristic values. Moreover, from the original differential problem
(2.2), we observe that the characteristic values are symmetric around the origin: if ω
is a characteristic value, we have that −ω is also a characteristic value.

3.1. Asymptotic computation of the band structure. Here we compute
the asymptotic band structure for a general α ∈ Y ∗

0 , not necessarily close to a Dirac
point.

Lemma 3.1. For α ∈ Y ∗
0 , there are precisely two Bloch resonant frequencies

ωα
j = ωα

j (δ), j = 1, 2, such that ωα
j (0) = 0 and ωα

j depends on δ continuously.
Proof. In order to prove the lemma, we will apply the Gohberg-Sigal theory (see,

for example, [5, 10, 22]). We will use the terminology and refer to the results presented
in [5, Chapter 1].

It is clear that ω = 0 is a characteristic value of Aα,ω
0 because

Aα,0
0 =

(
Sα,0
D −Sα,0

D

− 1
2I + (K−α,0

D )∗ 0

)

10



has a non-trivial kernel of two dimensions, which is generated by

Ψ1 =

(
ψ1

ψ1

)
and Ψ2 =

(
ψ2

ψ2

)
, (3.5)

where ψ1 and ψ2 are defined in (2.5). From (2.4), we have that
(
−1

2
I + (K−α,kb

D )∗
)
[ψi](x) = ω2h(x, ω), x ∈ ∂D, i = 1, 2, (3.6)

for some function h which is holomorphic as a function of ω in a neighbourhood of 0.
Since ∫

Di

Sα,0
D [ψi](x) dx 6= 0, i = 1, 2,

it follows from (2.7) that h(x, 0) is not identically zero. Therefore, the rank of both
Ψ1 and Ψ2 is 2. Since Ψ1 and Ψ2 are linearly independent, the multiplicity of the
characteristic value ω = 0 is 4.

The Neumann-Poincaré operator (K−α,0
D )∗ : L2(∂D) → L2(∂D) is well-known

to be a compact operator [5], so − 1
2I + (K−α,0

D )∗ is Fredholm of index zero. Since

Sα,0
D is invertible, also Aα,0

0 is Fredholm of index zero. Since (K−α,ω
D )∗ and Sα,ω

D are
holomorphic as functions of ω in a neighbourhood of 0, it follows that Aα,ω

0 is of
Fredholm type.

Let V ⊂ C be a disk around 0 with a small enough radius, chosen such that Aα,ω
0

is invertible on ∂V and ω = 0 is the only characteristic value in V . From [5, Lemma
1.11], it follows that Aα,ω

0 is normal with respect to ∂V .
Now, we turn to the full operator Aα,ω

δ . It is clear that

Aα,ω
δ =Aα,ω

0 +

(
0 0

0 −δ
(

1
2I + (K−α,k

D )∗
)
)

:=Aα,ω
0 +A(1)(ω, δ),

where A(1)(ω, δ), as a function of ω, is holomorphic in V and continuous up to ∂V .
For small enough δ we have

∥∥∥(Aα,ω
0 )

−1
A(1)(ω, δ)

∥∥∥
B
(
(L2(∂D))2,(L2(∂D))2

) < 1, ω ∈ ∂V.

Hence, the generalization of Rouché’s theorem [5, Theorem 1.15] shows that Aα,ω
δ has

4 characteristic values inside V , for small enough δ. Since the characteristic values
are symmetric around the origin, is clear that two of these, namely ωα

1 and ωα
2 , have

positive real parts, while two characteristic values have negative real parts.
The fact that ωα

1 (δ) and ωα
2 (δ) are continuous in δ can be deduced in a similar

way: if U ∈ C is a neighbourhood of ωα
i (δ1), i = 1, 2, we can write

Aα,ω
δ2

= Aα,ω
δ1

+ (δ1 − δ2)

(
0 0

0 1
2I + (K−α,k

D )∗

)
,

and from the generalization of Rouché’s theorem it follows that ωα
i (δ2) ∈ U when

|δ1 − δ2| is small enough.
Theorem 3.2. The band functions ωα

j = ωα
j (δ), j = 1, 2 of Aα,ω

δ can be approx-
imated as

ωα
j =

√
δλαj
|D1|

vb +O(δ),

11



uniformly for α ∈ Y ∗
0 , where |D1| is the volume of one resonator and λαj , j = 1, 2 are

the eigenvalues of the quasi-periodic capacitance matrix Cα.

Proof. We seek solutions (φ, ψ) to the integral equation (3.4), normalized such
that ‖φ‖L2(∂D) = 1 and ‖ψ‖L2(∂D) = 1. Using the asymptotic expansions (2.4), we
find that φ and ψ satisfy

Sα,0
D [φ]− Sα,0

D [ψ] = O(ω2),
(
−1

2
I + (K−α,0

D )∗ + k2bKα,0
D,1

)
[φ]− δ

(
1

2
I + (Kα,0

D )∗
)
[ψ] = O(ω4 + δ2), (3.7)

uniformly for α ∈ Y ∗
0 , where the error terms are with respect to the norm in L2(∂D).

Observe that Sα,0
D is invertible, and by the inverse mapping theorem together with

the fact that Y ∗
0 is a closed set we have that ‖(Sα,0

D )−1‖B(L2(∂D),H1(∂D)) is uniformly
bounded for α ∈ Y ∗

0 . Then, we get

ψ = φ+O(ω2),

uniformly for α ∈ Y ∗
0 . Inserting the above approximation into (3.7), we obtain that

(
−1

2
I + (K−α,0

D )∗ + k2bKα,0
D,1

)
[φ]− δ

(
1

2
I + (Kα,0

D )∗
)
[φ] = O(ω4 + δ2), (3.8)

uniformly for α ∈ Y ∗
0 . Recall that ker

(
− 1

2I + (K−α,0
D )∗

)
is spanned by ψ1 and ψ2.

Then we write φ as

φ = aψ1 + bψ2 + ϕ, (3.9)

where ϕ is orthogonal to span{ψ1, ψ2} in L2(∂D). We then have from (3.8) that

(
−1

2
I + (K−α,0

D )∗
)
[ϕ] = O(ω2 + δ).

uniformly for α ∈ Y ∗
0 . Since

(
− 1

2I + (K−α,0
D )∗

)
, restricted to the orthogonal com-

plement of span{ψ1, ψ2}, is invertible with bounded inverse, it follows that, in the
L2(∂D)-norm,

ϕ = O(ω2 + δ),

uniformly for α ∈ Y ∗
0 . Moreover, find that |a|+ |b| > 0. Now, we substitute (3.9) into

(3.8) and integrate around ∂Di for i = 1, 2. Then, using (2.7), we get

−ω
2|D1|
v2b

a+ δ(aCα
11 + bCα

12) = O(ω4 + δ2),

−ω
2|D1|
v2b

b+ δ(aCα
21 + bCα

22) = O(ω4 + δ2),

uniformly for α ∈ Y ∗
0 . Therefore, ω2|D|

δv2
b

approximates the eigenvalues of the quasi-

periodic capacitance matrix. This completes the proof.
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3.2. Asymptotic band structure close to Dirac points. Theorem 3.2 gives
an asymptotic formula of the band functions in terms of δ. In this section, we will
investigate the behaviour of this approximation for α close to the Dirac points. For
α ∈ Y ∗, we define two transformations Tα

1 and T2 of α-quasi-periodic functions in Y
by

(Tα
1 f)(x) :=

{
e−iα·l1f(R1x), x ∈ Y1,

e−2iα·l1f(R2x), x ∈ Y2,
(T2f)(x) := f(2x0 − x).

Observe that Tα
1 f is well-defined on ∂Y1 ∩ ∂Y2. For any α ∈ Y ∗ we have that T2f

is α-quasi-periodic, while at α = α∗ we have that Tα∗

1 f is α∗-quasi-periodic. We will
denote T1 := Tα∗

1 , and define τ := e2πi/3.
We remark that the quasi-periodic capacitance matrix Cα is Hermitian for any

α. At Dirac points, the following result holds.
Lemma 3.3. At the Dirac points, the quasi-periodic capacitance matrix is a

constant multiple of the identity matrix.
Proof. Since T2V

α
1 = V α

2 , we have

Cα
11 =

∫

Y \D
∇V α

1 · ∇V α
1 dx =

∫

Y \D
∇T2V α

1 · ∇T2V α
1 dx = Cα

22.

Hence Cα
11 = Cα

22 for any α ∈ Y ∗
0 and in particular Cα∗

11 = Cα∗

22 . We can also check
that

T1V
α∗

1 = τV α∗

1 , T1V
α∗

2 = τ2V α∗

2 .

Then, it follows that

Cα∗

12 =

∫

Y \D
∇V α∗

1 · ∇V α∗

2 dx =

∫

Y \D
∇T1V α∗

1 · ∇T1V α∗

2 dx = τCα∗

12 .

Therefore, we have Cα∗

12 = 0 and so, Cα∗

21 = 0.
Since the quasi-periodic capacitance matrix has a double eigenvalue at Dirac

points, we have that ωα∗

1 = ωα∗

2 +O(δ). The following proposition shows that in fact
ωα∗

1 = ωα∗

2 and that this is a double characteristic value.
Proposition 3.4. At the Dirac point α = α∗ and for δ small enough, the

first Bloch resonant frequency ω∗ := ωα∗

1 is of multiplicity 2, i.e., Aα∗,ω∗

δ has a two
dimensional kernel.

Proof. From Lemma 3.1 we know that there are only two band functions (counted
with multiplicity) converging to 0 as δ → 0. Hence, for small enough δ, the dimension

of ker
(
Aα∗,ω∗

δ

)
is at most 2. Suppose that ω∗ is of multiplicity 1. Suppose also that

Aα∗,ω∗

δ

(
φ
ψ

)
= 0,

for a non-trivial pair (φ, ψ). Denote k∗ = ω∗/v and k∗b = ω∗/vb and let

u(x) =

{
Sα∗,k∗

b

D [φ](x), x ∈ D,

Sα∗,k∗

D [ψ](x), x ∈ Y \D.
13



We can easily check that T1u and T2u also satisfy (2.2). Then u, T1u, and T2u
are linearly dependent and so,

T1u = c1u, T2u = c2u,

for some non-zero constants c1 and c2. Here, we observe that

T 3
1 = I, T 2

2 = I, T1T2f = T2T1f.

Then, it follows that c1 ∈ {1, τ, τ2}, c2 = ±1, and

c1c2u = T1T2u = T2T1u = c̄1c2u.

Therefore, we get c1 = 1, i.e., T1u = u. However, taking the expression for φ in (3.9),
along with the representation (3.1), we find that u is constant on Di, i = 1, 2 up to
an error of order O(δ). This contradicts T1u = u, which completes the proof.

Y

Γ3

Y1 Y2

Γ2Γ1

Fig. 3.1: Fundamental domain Y and the curves Γ1,Γ2 and Γ3 used in the proof of
Lemma 3.5.

We define the curves Γ1,Γ2 and Γ3 illustrated in Figure 3.1 as

Γ1 := ∂Y1 ∩ ∂Y, Γ2 := ∂Y2 ∩ ∂Y, Γ3 := ∂Y1 ∩ ∂Y2.

In the sequel, we will occasionally need the following additional assumption on the
bubble geometry.

Assumption 3.1. D is symmetric with respect to Γ3, i.e. D satisfies R3D =
D, where R3 is the reflection across Γ3. In the next lemma, and throughout the
remainder of this work, we will use bracketed subscripts to denote components of
vectors; as an example we write α =

( α(1)
α(2)

)
for α ∈ Y ∗.

Lemma 3.5. The quasi-periodic capacitance matrix coefficients Cα
11 and Cα

12 are
differentiable with respect to α at α = α∗. Moreover,

∇αC
α
11

∣∣∣
α=α∗

= 0, ∇αC
α
12

∣∣∣
α=α∗

= c

(
1
−i

)
,

where c :=
∂Cα

12

∂α(1)

∣∣∣
α=α∗

. Under Assumption 3.1, we have c 6= 0.

Proof. For a small ǫ ∈ Y ∗, we have from (2.9)

(
Sα∗+ǫ,0
D

)−1

=
(
Sα∗,0
D

)−1

+
(
Sα∗,0
D

)−1 (
S0
1 · ǫ

) (
Sα∗,0
D

)−1

+O(|ǫ|2),

where the error term is with respect to the operator norm. Therefore, from (2.11) it
follows that the quasi-periodic capacitance coefficients are differentiable at α = α∗.

14



We have the relations

V R2α
1 (x) =

{
V α
1 (R1x), x ∈ Y1,

e−iα·l1V α
1 (R2x), x ∈ Y2,

V R2α
2 (x) =

{
eiα·l1V α

2 (R1x), x ∈ Y1,

V α
2 (R2x), x ∈ Y2,

from which it follows that

Cα
11 = CRα

11 = CR2α
11 , CR2α

12 = eiα·l1Cα
12.

Differentiating these expressions, and applying Rα∗ = α∗, we arrive at

∇αC
α
11

∣∣∣
α=α∗

= 0, ∇αC
α
12

∣∣∣
α=α∗

= c

(
1
−i

)
,

where c =
∂Cα

12

∂α(1)

∣∣∣
α=α∗

. It only remains to show that c 6= 0 if D is symmetric with

respect to Γ3. Let V̂j :=
∂V α

j

∂α(1)

∣∣
α=α∗

, which satisfies





∆V̂j = 0 in Y \D,
V̂j = 0 on ∂D,

V̂j(x+ l) = eiα·lV̂j(x) + il(1)e
iα·lV α

j (x), l ∈ Λ,

where l =
(

l(1)
l(2)

)
. Then, using quasi-periodicity of V α

j and V̂j , we have

∂Cα
12

∂α(1)

∣∣∣
α=α∗

=

∫

Y \D

(
∇V α∗

1 · ∇V̂2 +∇V̂1 · ∇V α∗

2

)
dx

=

∫

∂Y

(
∂V α∗

1

∂ν
V̂2 + V̂1

∂V α∗

2

∂ν

)
dσ

= i

√
3a

2

∫

Γ2

(
∂V α∗

1

∂ν
V α∗

2 − V α∗

1

∂V α∗

2

∂ν

)
dσ, (3.10)

where we have used the fact that
√
3a
2 is the l(1)-component of the lattice vectors l1

and l2. Using (2.12), we find that

∫

Γ1

∂V α∗

1

∂ν
V α∗

2 dσ = −
∫

Γ2

∂V α∗

1

∂ν
V α∗

2 dσ = −
∫

Γ2

∂(T2V α∗

2 )

∂ν
T2V

α∗

1 dσ,

and therefore,

∫

Γ1

∂V α∗

1

∂ν
V α∗

2 dσ = −
∫

Γ1

V α∗

1

∂V α∗

2

∂ν
dσ. (3.11)

Assume that
∂Cα

12

∂α(1)

∣∣∣
α=α∗

= 0. Then, from (3.10) and (3.11), we obtain that

∫

Γj

V α∗

1

∂V α∗

2

∂ν
dσ =

∫

Γj

∂V α∗

1

∂ν
V α∗

2 dσ = 0, (3.12)
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for j = 1, 2. Let ν3 = (1, 0). Then it follows from (3.12) and Cα∗

12 = 0 that

∫

Γ3

(
∂V α∗

1

∂ν3
V α∗

2 − V α∗

1

∂V α∗

2

∂ν3

)
dσ =

∫

Y \D
∇V α∗

1 · ∇V α∗

2 dx = 0. (3.13)

If we write α∗ =
(

α∗

(1)

α∗

(2)

)
, then

(−α∗

(1)

α∗

(2)

)
= α∗ in Y ∗. Under Assumption 3.1, i.e. if

D is symmetric with respect to Γ3, we observe that V α∗

1 (x) = V
(−α∗

(1),α
∗

(2))

2 (R3x) =
V α∗

2 (R3x). From this, we have that

V α∗

1 = V α∗

2 ,
∂V α∗

2

∂ν3
= −∂V

α∗

1

∂ν3
on Γ3.

Together with (3.13), we get

2Re

∫

Γ3

V α∗

1

∂V α∗

1

∂ν3
dσ =

∫

Γ3

(
∂V α∗

1

∂ν3
V α∗

2 − V α∗

1

∂V α∗

2

∂ν3

)
dσ = 0. (3.14)

We recall that T1V
α∗

1 = τV α∗

1 and observe that Γ1 =
(
R1Γ3

)
∪
(
(R1)

2Γ3

)
. Using

these facts and (3.14), we get

Re

∫

Γ1

V α∗

1

∂V α∗

1

∂ν
dσ = 0,

so that
∫

Y2\D2

|∇V α∗

1 |2 dx = 0.

Combined with V α∗

1

∣∣∣
∂D2

= 0, this tells us that V α∗

1 = 0 in Y \D, which is a contra-

diction. Therefore, we can conclude that
∂Cα

12

∂α(1)

∣∣∣
α=α∗

= c 6= 0.

Starting from the asymptotic formula for ωα
j in terms of δ, we can now ascertain

the asymptotic dependence for α close to α∗. From Lemma 3.5, we obtain that

Cα
11 = Cα∗

11 +O(|α− α∗|2), |Cα
12| =

∣∣∣∣
∂Cα

12

∂α(1)

∣∣∣
α=α∗

∣∣∣∣ |α− α∗|+O(|α− α∗|2).

Because Cα is Hermitian with identical diagonal elements, the eigenvalues are given
by λαj = Cα

11 ± |Cα
12|. For α close to α∗, we find the following asymptotic behaviour:

λαj = Cα∗

11 ±
∣∣∣∣
∂Cα

12

∂α(1)

∣∣∣
α=α∗

∣∣∣∣ |α− α∗|+O(|α− α∗|2).

Now, we conclude that λα
∗

1 = λα
∗

2 = Cα∗

11 and

ωα
j (δ) =

√
δCα∗

11

|D| vb


1±

∣∣∣ ∂C
α
12

∂α(1)

∣∣∣
α=α∗

∣∣∣
2Cα∗

11

|α− α∗|+O(|α− α∗|2)


+O(δ). (3.15)

Equation (3.15) gives the asymptotic band structure for small δ, and suggests that
the system has a Dirac cone. However, we do not know the behaviour of the error
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term O(δ), so we can not conclude the existence of a Dirac cone from equation (3.15)
alone. This will be addressed in the following section.

Remark 3.1. Theorem 3.2 shows that (ωα
j )

2 scales like O(δ) for small δ. In
[3], it was found the Minnaert resonant frequency ωM of a single bubble in free space
scales according to ω2

M lnωM = O(δ) in two dimensions. Thus, ωα
j has a different

asymptotic behaviour than ωM . The difference is explained by the quasi-periodic single
layer potential not exhibiting a log-singularity as ω → 0.

4. Conical behaviour of subwavelength bands at Dirac points. In this
section, we prove the main result of the paper, Theorem 4.1. In contrast to the approx-
imations in Section 3, we here prove the existence of an exact Dirac cone. However,
unlike Section 3, the method utilized here does not enable explicit computations of
the slope and centre frequency of the cone. As before, let ω∗ be the Bloch resonant
frequency at α∗ = 2α1+α2

3 .

Theorem 4.1. For sufficiently small δ, the first and second band functions form
a Dirac cone at α∗, i.e.,

ωα
1 (δ) = ω∗ − λ|α− α∗|

[
1 +O(|α− α∗|)

]
, (4.1)

ωα
2 (δ) = ω∗ + λ|α− α∗|

[
1 +O(|α− α∗|)

]
, (4.2)

for some λ independent of α, where the error term O(|α − α∗|) is uniform in δ. As
δ → 0, we have the following asymptotic expansions of ω∗ and λ:

ω∗ =

√
δCα∗

11

|D| vb +O(δ), λ =
1

2

√
δ

|D|Cα∗

11

vb

∣∣∣∣
∂Cα

12

∂α(1)

∣∣∣
α=α∗

∣∣∣∣+O(δ).

Under Assumption 3.1, λ is non-zero for sufficiently small δ. Unlike the method
in Section 3, where the operator Aα,k

δ was asymptotically expanded in terms of ω
and δ, the idea is now to expand this operator for α close to α∗, while keeping the
dependence on ω and δ exact. In Section 4.1 we prove some preliminary results, while
the main proof of Theorem 4.1 is given in Section 4.2.

4.1. Preliminary lemmas. Here, we prove Lemmas 4.2, 4.3, 4.4 and 4.5 needed
for the proof of Theorem 4.1. In the following, we will interchangeably use T1, T2 and

Tα
1 as operators on L2(∂D) and as operators on

(
L2(∂D)

)2
(the latter defined by

applying the operator coordinate-wise).

Lemma 4.2. For every ω, α and δ,

Tα
1 AR2α,ω

δ = Aα,ω
δ Tα

1 , (4.3)

and

T2Aα,ω
δ = Aα,ω

δ T2. (4.4)

Proof. To prove (4.3), recall that RΛ∗ = Λ∗. Therefore, it follows that

GR2α,k(x− y) =
1

|Y |
∑

q∈Λ∗

ei(R
2α+q)·(x−y)

k2 − |R2α+ q|2 =
1

|Y |
∑

q∈Λ∗

eiR(R2α+q)·(Rx−Ry)

k2 − |R (R2α+ q) |2

= Gα,k(Rx−Ry).
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Then, we can check that

Sα,k
D1

[ψ(R1y)](x) =

∫

∂D1

Gα,k(x− y)ψ(R1y) dσ(y)

=

∫

∂D1

GR2α,k(R1x−R1y)ψ(R1y) dσ(y)

= SR2α,k
D1

[ψ(y)](R1x)

=

{
SR2α,k
D1

[ψ(y)](R1x), x ∈ Y1,

e−iα·l1SR2α,k
D1

[ψ(y)](R2x), x ∈ Y2.

Similarly, we obtain that

Sα,k
D2

[ψ(R2y)](x) = SR2α,k
D2

[ψ(y)](R2x)

=

{
eiα·l1SR2α,k

D2
[ψ(y)](R1x), x ∈ Y1,

SR2α,k
D2

[ψ(y)](R2x), x ∈ Y2.

Thus, we get

Sα,k
D [Tα

1 ψ](x) = Tα
1 SR2α,k

D [ψ](x), x ∈ Y.

This proves (4.3). To prove (4.4), we use the fact that

Gα,k(x− y) = Gα,k
(
(2x0 − x)− (2x0 − y)

)
.

Considering this together with the definitions of Sα,k
D and (K−α,k

D )∗, we find these
operators commute with T2, and hence Aα,ω

δ commutes with T2. This concludes the
proof.

Lemma 4.3. There are two normalized elements Φ1 and Φ2 in the kernel of

Aα∗,ω∗

δ which satisfy

T1Φ1 = τΦ1, T1Φ2 = τ2Φ2, T2Φ1 = Φ2,

where τ = e2πi/3.
Proof. Let A be the kernel of Aα∗,ω∗

δ . By Lemma 4.2, T1 and T2 are operators
from A onto itself. Since T 3

1 = I and ker(T1−I) is trivial in A by the same argument as
in the proof of Proposition 3.4, there is an element Φ ∈ A such that either T1Φ = τΦ
or T1Φ = τ2Φ. In the first case we let Φ1 := Φ and Φ2 := T2Φ1. We then have

T1Φ2 = T1(T2Φ1) = T2(T1Φ1) = τ2Φ2.

In the second case we let Φ2 := Φ and Φ1 := T2Φ and similarly find that T1Φ1 = τΦ1.
This proves the claim

Using the expansions (2.9) and (2.10), we decompose Aα,ω
δ into

Aα,ω
δ = Aα∗,ω

δ +

(
Skb

1 −Sk
1

Kkb

1 −δKk
1

)
· (α− α∗) +O(|α− α∗|2)

:= Aα∗,ω
δ +Aω

δ,1 · (α− α∗) +O(|α− α∗|2), (4.5)

uniformly for δ in a neighbourhood of 0, with error term with respect to the operator
norm. Here, · means the standard inner product taken component-wise. As shown
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in the proof of Lemma 3.1, ω∗ is a characteristic value of multiplicity 2, and from

Proposition 3.4 we know that kerAα∗,ω∗

δ is two-dimensional. Consequently, ω∗ is a

pole of order 1 of (Aα∗,ω
δ )−1, and we can write

(Aα∗,ω
δ )−1 =

L

ω − ω∗ + Eω, (4.6)

where L is an operator L :
(
L2(∂D)

)2 → kerAα∗,ω∗

δ and Eω is analytic in ω.
Next, we investigate some properties of L. It is easy to check that L vanishes on

the range of Aα∗,ω∗

δ . By Lemma 4.2, we have

LT1 = T1L, LT2 = T2L.

We also have the following result.
Lemma 4.4. For every α ∈ Y ∗ in a neighbourhood of 0, it holds that

L(Aω∗

δ,1 · α)T1Φ = T1L(Aω∗

δ,1 ·R2α)Φ,

for every Φ in the kernel of Aα∗,ω∗

δ .
Proof. By Lemma 4.2, we have

(Aα,ω
δ )−1Tα

1 = Tα
1 (AR2α,ω

δ )−1. (4.7)

Moreover, since R2α∗ = α∗, we get from Lemma 4.2 that

T1Aα∗,ω
δ = Aα∗,ω

δ T1. (4.8)

Using (4.5) and the Neumann series, we get, for fixed ω, δ,

(Aα,ω
δ )−1 = (Aα∗,ω

δ )−1 + (Aα∗,ω
δ )−1Aω

δ,1 · (α− α∗)(Aα∗,ω
δ )−1 +O(|α− α∗|2),

(4.9)

(AR2α,ω
δ )−1 = (Aα∗,ω

δ )−1 + (Aα∗,ω
δ )−1Aω

δ,1 · (R2α−R2α∗)(Aα∗,ω
δ )−1 +O(|α− α∗|2),

(4.10)

where error terms are in the operator norm. We also expand Tα
1 as

Tα
1 = T1 + T̂1 · (α− α∗) +O(|α− α∗|2), (4.11)

where the error is in the operator norm and T̂1 is given by

(T̂1f)(x) :=

{
−iτ l1f(R1x), x ∈ Y1,

−2iτ2l1f(R2x), x ∈ Y2,

Substituting the asymptotic expansions (4.9), (4.10) and (4.11) into (4.7), and col-
lecting terms of order O(|α− α∗|), we get

(Aα∗,ω
δ )−1T̂1 · (α− α∗) + (Aα∗,ω

δ )−1Aω
δ,1 · (α− α∗)(Aα∗,ω

δ )−1T1

= T̂1 · (α− α∗)(Aα∗,ω
δ )−1 + T1(Aα∗,ω

δ )−1Aω
δ,1 · (R2α−R2α∗)(Aα∗,ω

δ )−1.
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Applying Aα∗,ω
δ on the above identity from the right, and using (4.8), we obtain

(Aα∗,ω
δ )−1T̂1 · (α− α∗)Aα∗,ω

δ + (Aα∗,ω
δ )−1Aω

δ,1 · (α− α∗)T1

= T̂1 · (α− α∗) + T1(Aα∗,ω
δ )−1Aω

δ,1 · (R2α−R2α∗).

Integrating over a small contour around ω∗, we have

LT̂1 · (α− α∗)Aα∗,ω∗

δ + LAω∗

δ,1 · (α− α∗)T1 = T1LAω∗

δ,1 · (R2α−R2α∗).

On the kernel of Aα∗,ω∗

δ , the first term vanishes. Therefore, we get

LAω∗

δ,1 · (α− α∗)T1 = T1LAω∗

δ,1 · (R2α−R2α∗),

on the kernel of Aα∗,ω∗

δ . This completes the proof.

Lemma 4.5. For ω = O(
√
δ) with ω − ω∗ = µ

√
δ for a fixed µ 6= 0, we have

∥∥∥(Aα∗,ω
δ )−1(Aα∗,ω

δ −Aα,ω
δ )

∥∥∥
B
(
(L2(∂D))2,(L2(∂D))2

) = O(|α− α∗|),

uniformly for δ in a neighbourhood of 0.

Proof. The difficulty of the proof arises from the singularity of (Aα∗,ω
δ )−1 as

δ → 0. Since ω = O(
√
δ), it follows from the ω2-factor in (3.6) that

∥∥∥(Aα∗,ω
δ )−1

∥∥∥ = O(δ−1), (4.12)

where we use the shorthand ‖ ·‖ for the norm in B
((
L2(∂D)

)2
,
(
L2(∂D)

)2)
. We know

that L vanishes on the range of Aα∗,ω∗

δ and similarly, the adjoint L∗ vanishes on the

range of
(
Aα∗,ω∗

δ

)∗
. Therefore, L can be written as

L = 〈X1, ·〉Φ1 + 〈X2, ·〉Φ2 (4.13)

for some X1,X2 ∈ ker
(
Aα∗,ω∗

δ

)∗
. Here, 〈·, ·〉 denotes the standard inner product

in
(
L2(∂D)

)2
. Using Lemma 3.1 (i), it is straightforward to check that a basis for

ker
(
Aα∗,ω∗

δ

)∗
is given by

{(
0

χ∂D1

)
+O(δ),

(
0

χ∂D2

)
+O(δ)

}
,

where the error is with respect to the norm in
(
L2(∂D)

)2
. Therefore, from (4.12) and

(4.6) we have

Xi =
1√
δ

(
0
χi

)
+O(

√
δ), i = 1, 2, (4.14)

where χi(x) is a function that is constant for x ∈ ∂Dj , j = 1, 2 and satisfies
‖χi‖L2(∂D) = O(1). Combining Lemma 2.1 (ii) with expansion (2.4), we find us-
ing (4.13) and (4.14) that

‖LAα,ω
δ ‖ = O(

√
δ), (4.15)
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uniformly for α ∈ Y ∗
0 . Since

∥∥∥Aα∗,ω
δ −Aα,ω

δ

∥∥∥ = O(|α − α∗|) uniformly for δ in a

neighbourhood of 0, we obtain that

∥∥∥(Aα∗,ω
δ )−1(Aα∗,ω

δ −Aα,ω
δ )

∥∥∥ =
1

µ
√
δ

∥∥∥L(Aα∗,ω
δ −Aα,ω

δ )
∥∥∥+O(|α− α∗|)

= O(|α− α∗|),

uniformly for δ in a neighbourhood of 0. This concludes the proof.

4.2. Proof of Theorem 4.1. Now, we are ready to prove our main result in this
paper, namely Theorem 4.1. We first observe that we only need to prove (4.1) and
(4.2), the remaining statements then follow from (3.15) and Lemma 3.5. Throughout
the proof, we assume that δ is sufficiently small so that Proposition 3.4 holds.

Let V ⊂ C be a neighbourhood of ω∗ containing only the two characteristic values
ωα
j (δ) for j = 1, 2, and satisfying |∂V | = O(

√
δ). Then the generalized argument

principle [5, Theorem 1.14] tells us that the characteristic values ωα
1 (δ) and ω

α
2 (δ) of

Aα,ω
δ near α∗ satisfy

f(ωα
1 (δ)) + f(ωα

2 (δ)) =
tr

2πi

∫

∂V

(Aα,ω
δ )−1 d

dω
Aα,ω

δ f(ω) dω,

for any analytic function f(ω). As in the proof of [10, Theorem 3.9], we have

f(ωα
1 (δ)) + f(ωα

2 (δ)) = − tr

2πi

∞∑

p=1

∫

∂V

f(ω)

p

d

dω

[
(Aα∗,ω

δ )−1(Aα∗,ω
δ −Aα,ω

δ )
]p

dω.

Integrating by parts, we find

f(ωα
1 (δ)) + f(ωα

2 (δ)) =
tr

2πi

∞∑

p=1

∫

∂V

df(ω)

dω

1

p

[
(Aα∗,ω

δ )−1(Aα∗,ω
δ −Aα,ω

δ )
]p

dω.

(4.16)

Using (4.16) twice, with f(ω) = ω − ω∗ and f(ω) = (ω − ω∗)2, and using Lemma 4.5
we have

ωα
1 (δ)− ω∗ + ωα

2 (δ)− ω∗ =
tr

2πi

∫

∂V

(Aα∗,ω
δ )−1Aω

δ,1 · (α− α∗) dω (4.17)

+O(
√
δ|α− α∗|2), (4.18)

(ωα
1 (δ)− ω∗)2 + (ωα

2 (δ)− ω∗)2 =
tr

2πi

∫

∂V

(ω − ω∗)
[
(Aα∗,ω

δ )−1Aω
δ,1 · (α− α∗)

]2
dω

+O(δ|α− α∗|3), (4.19)

where we have used Cauchy’s theorem to conclude that the term corresponding to
p = 1 vanishes in (4.19). Here, the error terms hold uniformly for δ in a neighbourhood
of 0 and α ∈ Y ∗

0 . To finish the proof, it suffices to show that

tr

2πi

∫

∂V

(Aα∗,ω
δ )−1Aω

δ,1 · (α− α∗) dω = 0, (4.20)

tr

2πi

∫

∂V

(ω − ω∗)
[
(Aα∗,ω

δ )−1Aω
δ,1 · (α− α∗)

]2
dω = C|α− α∗|2, (4.21)
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for some C which is constant in α and scales as O(δ) as δ → 0. Indeed, this together
with (4.18) and (4.19) would imply that

ωα
j (δ) = ω∗ ± λ|α− α∗|[1 +O(|α− α∗|)],

uniformly for δ in a neighbourhood of 0, where 2λ2 = C. The expression for λ then
follows from (3.15). We see that

1

2πi

∫

∂V

(Aα∗,ω
δ )−1Aω

δ,1 · (α− α∗) dω = LAω∗

δ,1 · (α− α∗), (4.22)

is an operator that maps the kernel of Aα∗,ω∗

δ onto itself. Similarly, we get

1

2πi

∫

∂V

(ω − ω∗)
[
(Aα∗,ω

δ )−1Aω
δ,1 · (α− α∗)

]2
dω = [LAω∗

δ,1 · (α− α∗)]2. (4.23)

For α̃ =
(

α̃(1)

α̃(2)

)
in a neighbourhood of 0, let

Aω∗

δ,1 · α̃ = Aω∗

δ,11α̃(1) +Aω∗

δ,12α̃(2).

Suppose that

LAω
δ,11[Φ1] = aΦ1 + bΦ2,

LAω
δ,12[Φ1] = cΦ1 + dΦ2.

From (4.15) we know that a, b, c and d scale as O(
√
δ) as δ → 0. Since

R2 =
1

2

(
−1 −

√
3√

3 −1

)

and T1Φ1 = τΦ1, we obtain

L(Aω∗

δ,1 · α̃)T1[Φ1] = τ
(
α̃(1)(aΦ1 + bΦ2) + α̃(2)(cΦ1 + dΦ2)

)

T1L(Aω∗

δ,1 ·R2α̃)[Φ1] = T1

[−α̃(1) −
√
3α̃(2)

2
(aΦ1 + bΦ2)

+

√
3α̃(1) − α̃(2)

2
(cΦ1 + dΦ2)

]

=
−α̃(1) −

√
3α̃(2)

2
(aτΦ1 + bτ2Φ2)

+

√
3α̃(1) − α̃(2)

2
(cτΦ1 + dτ2Φ2).

By Lemma 4.4, it follows that

2a = −a+
√
3c, 2b = −τb+

√
3τd, 2c = −

√
3a− c, 2d = −

√
3τb− τd.

Solving these equations, we obtain a = c = 0, d = −
√
3τ

2+τ b = −ib, which means

LAω∗

δ,11[Φ1] = bΦ2, LAω∗

δ,12[Φ1] = −ibΦ2.
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α1

α2

Y ∗

M

Γ
K

Fig. 5.1: Symmetry points in the reciprocal space, and the path along which the band
structure is numerically computed.

Similarly, putting

LAω
δ,11[Φ2] = ãΦ1 + b̃Φ2,

LAω
δ,12[Φ2] = c̃Φ1 + d̃Φ2.

we carry out the same steps to conclude that

LAω∗

δ,11[Φ2] = ãΦ1, LAω∗

δ,12[Φ2] = iãΦ1,

where ã = O(
√
δ). Now, we arrive at

LAω∗

δ,1 · (α− α∗)[Φ1] = b
(
(α(1) − α∗

(1))− i(α(2) − α∗
(2))
)
Φ2,

LAω∗

δ,1 · (α− α∗)[Φ2] = ã
(
(α(1) − α∗

(1)) + i(α(2) − α∗
(2))
)
Φ1.

Therefore, we can conclude that

trLAω∗

δ,1 · (α− α∗) = 0,

tr [LAω∗

δ,1 · (α− α∗)]2 = 2ãb|α− α∗|2.

This, together with (4.22) and (4.23), proves equations (4.20) and (4.21), which com-
pletes the proof.

5. Numerical illustrations. We consider the bubbly honeycomb crystal as de-
scribed in Section 2, and additionally assume that the bubbles are circular with radius
R. The center-to-center distance between adjacent bubbles is assumed to be one and
the material parameters are such that v = vb = 1. The lattice basis vectors are given
by

l1 =
(
3,
√
3
)
, l2 =

(
3,−

√
3
)
,

and the reciprocal basis vectors are defined as

α1 = 2π

(
1

6
,

1

2
√
3

)
, α2 = 2π

(
1

6
,− 1

2
√
3

)
.

Using the same notation as in Section 2, this corresponds to a = 2
√
3. We also define

the symmetry points in the reciprocal space as follows:

Γ = (0, 0), K =
2α1 + α2

3
, M =

α1

2
.
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We use the multipole expansion method to compute the band diagrams [6]. Be-
cause D has two connected components D1 and D2, we can identify L2(∂D) =

L2(∂D1)×L2(∂D2). This gives the following matrix expressions of Sα,k
D and (K−α,k

D )∗:

Sα,k
D [φ] =

(
Sα,k
D1

Sα,k
D2

Sα,k
D1

Sα,k
D2

)(
φ(1)
φ(2)

)
, (K−α,k

D )∗[φ] =

(
(K−α,k

D1
)∗ ∂

∂νS
α,k
D2

∂
∂νS

α,k
D1

(K−α,k
D2

)∗

)(
φ(1)
φ(2)

)
.

Here, φ ∈ L2(∂D) is represented by φ =
(

φ(1)

φ(2)

)
∈ L2(∂D1) × L2(∂D2). Using these

expressions, the integral operator Aα,ω
δ defined in equation (3.3) can be discretised

with the multipole expansion method as described in [6, Appendix C]. We consider
the band structure along the line MΓKM , illustrated in Figure 5.1, in the following
numerical examples:

(i) (Dilute regime). We set R = 1/50 and δ = 1/9000. The band structure
is given in Figure 5.2. The left subfigure shows the first four bands. The
right subfigure shows the first two bands, which correspond to subwavelength
curves and which cross at K. Observe that the crossing is a linear dispersion
which means that it signifies a Dirac point.

(ii) (Non-dilute regime) We set R = 1/5 and δ = 1/1000. The band structure is
given in Figure 5.3. In this non-dilute regime, there is still a Dirac cone at
the point K.

6. Concluding remarks. In this paper, we have rigorously proven the exis-
tence of a Dirac cone in the subwavelength regime in a bubbly phononic crystal with
a honeycomb lattice structure. We have illustrated our main results with different nu-
merical experiments. In view of the recent results in [1, 12, 13], our original approach
in this work can be extended to plasmonics. In future works, we plan to further study
topological phenomena in bubbly crystals. In particular, we will rigorously show the
existence of localized edge states at the surface of a topologically non-trivial bubbly
crystal. Similar to [11], a high-frequency homogenization of a bubbly honeycomb
phononic crystal is performed in [9].
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