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Abstract

In recent years deep artificial neural networks (DNNs) have very success-
fully been employed in numerical simulations for a multitude of computational
problems including, for example, object and face recognition, natural language
processing, fraud detection, computational advertisement, and numerical ap-
proximations of partial differential equations (PDEs). Such numerical sim-
ulations indicate that DNNs seem to admit the fundamental flexibility to
overcome the curse of dimensionality in the sense that the number of real pa-
rameters used to describe the DNN grows at most polynomially in both the
reciprocal of the prescribed approximation accuracy ε > 0 and the dimension
d ∈ N of the function which the DNN aims to approximate in such compu-
tational problems. There is also a large number of rigorous mathematical
approximation results for artificial neural networks in the scientific literature
but there are only a few special situations where results in the literature can
rigorously explain the success of DNNs when approximating high-dimensional
functions. The key contribution of this article is to reveal that DNNs do
overcome the curse of dimensionality in the numerical approximation of Kol-
mogorov PDEs with constant diffusion and nonlinear drift coefficients. We
prove that the number of parameters used to describe the employed DNN
grows at most polynomially in both the reciprocal of the prescribed approx-
imation accuracy ε > 0 and the PDE dimension d ∈ N. A crucial ingredient
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in our proof is the fact that the artificial neural network used to approximate
the solution of the PDE is indeed a deep artificial neural network with a large
number of hidden layers.

Contents

1 Introduction 2

2 Existence of a realization on a suitable artificial probability space 6
2.1 Markov-type estimates . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Existence of a realization with the desired approximation properties . 7

3 The Feynman-Kac formula revisited 8

4 Stochastic differential equations (SDEs) 9
4.1 A priori bounds for SDEs . . . . . . . . . . . . . . . . . . . . . . . . 9
4.2 A priori bounds for Brownian motions . . . . . . . . . . . . . . . . . 10
4.3 Strong perturbations of SDEs . . . . . . . . . . . . . . . . . . . . . . 10
4.4 Weak perturbations of SDEs . . . . . . . . . . . . . . . . . . . . . . . 13

5 Deep artificial neural network (DNN) calculus 20
5.1 Sums of DNNs with the same architecture . . . . . . . . . . . . . . . 22
5.2 Compositions of DNNs involving artificial identities . . . . . . . . . . 24
5.3 Representations of the d-dimensional identities . . . . . . . . . . . . . 29

6 DNN approximations for partial differential equations (PDEs) 30
6.1 DNN approximations with general activation functions . . . . . . . . 31
6.2 Rectified DNN approximations . . . . . . . . . . . . . . . . . . . . . . 39
6.3 Rectified DNN approximations on the d-dimensional unit cube . . . . 41

1 Introduction

In recent years deep artificial neural networks (DNNs) have very successfully been
employed in numerical simulations for a multitude of computational problems includ-
ing, for example, object and face recognition (cf., e.g., [37, 41, 60, 62, 64] and the ref-
erences mentioned therein), natural language processing (cf., e.g., [15, 25, 31, 36, 39,
65] and the references mentioned therein), fraud detection (cf., e.g., [12, 56] and the
references mentioned therein), computational advertisement (cf., e.g., [63, 68] and
the references mentioned therein), and numerical approximations of partial differen-
tial equations (PDEs) (cf., e.g., [4, 5, 6, 17, 19, 20, 23, 26, 28, 30, 40, 46, 48, 55, 61]).
Such numerical simulations indicate that DNNs seem to admit the fundamental
flexibility to overcome the curse of dimensionality in the sense that the number
of real parameters used to describe the DNN grows at most polynomially in both
the reciprocal of the prescribed approximation accuracy ε > 0 and the dimension
d ∈ N of the function which the DNN aims to approximate in such computational
problems. There is also a large number of rigorous mathematical approximation
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results for artificial neural networks in the scientific literature (see, for instance,
[1, 2, 3, 7, 8, 9, 10, 11, 13, 14, 16, 18, 20, 21, 22, 24, 26, 29, 32, 33, 34, 35, 42, 43,
44, 45, 47, 49, 50, 51, 52, 53, 54, 57, 58, 59, 61, 66, 67] and the references mentioned
therein) but there are only a few special situations where results in the literature
can rigorously explain the success of DNNs when approximating high-dimensional
functions.

The key contribution of this article is to reveal that DNNs do overcome the
curse of dimensionality in the numerical approximation of Kolmogorov PDEs with
constant diffusion and nonlinear drift coefficients. More specifically, the main result
of this article, Theorem 6.3 in Subsection 6.2 below, proves that the number of
parameters used to describe the employed DNN grows at most polynomially in
both the reciprocal of the prescribed approximation accuracy ε > 0 and the PDE
dimension d ∈ N and, thereby, we establish that DNN approximations do indeed
overcome the curse of dimensionality in the numerical approximation of such PDEs.
To illustrate the statement of Theorem 6.3 below in more details, we now present
the following special case of Theorem 6.3.

Theorem 1.1. Let Ad = (ad,i,j)(i,j)∈{1,...,d}2 ∈ R
d×d, d ∈ N, be symmetric positive

semidefinite matrices, for every d ∈ N let ‖·‖
Rd : Rd → [0,∞) be the d-dimensional

Euclidean norm, let f0,d : R
d → R, d ∈ N, and f1,d : R

d → R
d, d ∈ N, be functions, let

Ad : R
d → R

d, d ∈ N, be the functions which satisfy for all d ∈ N, x = (x1, . . . , xd) ∈
R

d that Ad(x) = (max{x1, 0}, . . . ,max{xd, 0}), let
N = ∪L∈{2,3,4,... } ∪(l0,l1,...,lL)∈NL+1 (×L

n=1(R
ln×ln−1 × R

ln)), (1)

let P : N → N and R : N → ∪k,l∈NC(R
k,Rl) be the functions which satisfy for all

L ∈ {2, 3, 4, . . .}, l0, l1, . . . , lL ∈ N, Φ = ((W1, B1), . . . , (WL, BL)) ∈ (×L
n=1(R

ln×ln−1×
R

ln)), x0 ∈ R
l0, . . ., xL−1 ∈ R

lL−1 with ∀n ∈ N ∩ [1, L) : xn = Aln(Wnxn−1 + Bn)
that P(Φ) =

∑L
n=1 ln(ln−1 + 1), R(Φ) ∈ C(Rl0 ,RlL), and

(RΦ)(x0) = WLxL−1 +BL, (2)

let T, κ ∈ (0,∞), (φm,d
ε )(m,d,ε)∈{0,1}×N×(0,1] ⊆ N , assume for all d ∈ N, ε ∈ (0, 1],

x, y ∈ R
d that R(φ0,d

ε ) ∈ C(Rd,R), R(φ1,d
ε ) ∈ C(Rd,Rd), |f0,d(x)| +

∑d
i,j=1 |ad,i,j| ≤

κdκ(1+‖x‖κ
Rd), ‖f1,d(x)−f1,d(y)‖Rd ≤ κ‖x−y‖Rd , ‖(Rφ1,d

ε )(x)‖Rd ≤ κ(dκ+‖x‖Rd),
∑1

m=0P(φm,d
ε ) ≤ κdκε−κ, |(Rφ0,d

ε )(x) − (Rφ0,d
ε )(y)| ≤ κdκ(1 + ‖x‖κ

Rd + ‖y‖κ
Rd)‖x −

y‖Rd, and

|f0,d(x)− (Rφ0,d
ε )(x)|+ ‖f1,d(x)− (Rφ1,d

ε )(x)‖Rd ≤ εκdκ(1 + ‖x‖κ
Rd), (3)

and for every d ∈ N let ud : [0, T ] × R
d → R be an at most polynomially growing

viscosity solution of

( ∂
∂t
ud)(t, x) = ( ∂

∂x
ud)(t, x) f1,d(x) +

d
∑

i,j=1

ad,i,j (
∂2

∂xi∂xj
ud)(t, x) (4)

with ud(0, x) = f0,d(x) for (t, x) ∈ (0, T ) × R
d. Then for every p ∈ (0,∞) there

exist (ψd,ε)(d,ε)∈N×(0,1] ⊆ N , c ∈ R such that for all d ∈ N, ε ∈ (0, 1] it holds that
P(ψd,ε) ≤ c dcε−c, R(ψd,ε) ∈ C(Rd,R), and

[
∫

[0,1]d
|ud(T, x)− (Rψd,ε)(x)|p dx

]1/p

≤ ε. (5)
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Theorem 1.1 is an in immediate consequence from Corollary 6.4 in Subsection 6.3
below. Corollary 6.4, in turn, is a special case of Theorem 6.3. Next we add some
comments regarding the mathematical objects appearing in Theorem 1.1. Theo-
rem 1.1 is an approximation result for rectified DNNs and for every d ∈ N the
function Ad : R

d → R
d in Theorem 1.1 above describes the d-dimensional rectifier

function. The set N in (1) in Theorem 1.1 above is a set of tuples of real numbers
which, in turn, represents the set of all artificial neural networks. For every artificial
neural network Φ ∈ N in Theorem 1.1 above we have that R(Φ) ∈ ∪k,l∈NC(R

k,Rl)
represents the function associated to the artificial neural network Φ (cf. (2) in The-
orem 1.1). The function R : N → ∪k,l∈NC(R

k,Rl) from the set N of all artificial
neural networks to the union ∪k,l∈NC(R

k,Rl) of continuous functions thus describes
the realizations associated to the artificial neural networks. Moreover, for every
artificial neural network Φ ∈ N in Theorem 1.1 above we have that P(Φ) ∈ N repre-
sents the number of real parameters which are used to describe the artificial neural
network Φ. In particular, for every artificial neural network Φ ∈ N in Theorem 1.1
we can think of P(Φ) ∈ N as a quantity related to the amount of memory storage
which is needed to store the artificial neural network. The real number κ > 0 in The-
orem 1.1 is an arbitrary constant used to formulate the hypotheses in Theorem 1.1
(cf. (3) in Theorem 1.1 above) and the real number T > 0 in Theorem 1.1 describes
the time horizon under consideration. Our key hypothesis in Theorem 1.1 is the
assumption that both the possibly nonlinear initial value functions f0,d : R

d → R,
d ∈ N, and the possibly nonlinear drift coefficient functions f1,d : R

d → R
d, d ∈ N, of

the PDEs in (4) can be approximated without the curse of dimensionality by means
of DNNs (see (3) above for details). Simple examples for the functions f0,d : R

d → R,
d ∈ N, and f1,d : R

d → R
d, d ∈ N, which fulfill the hypotheses of Theorem 1.1 above

are, for instance, provided by the choice that for all d ∈ N, x = (x1, x2, . . . , xd) ∈ R
d

it holds that f0,d(x) = max{x1, x2, . . . , xd} and f1,d(x) = x [1 + ‖x‖2
Rd ]

−1. A natu-
ral example for the matrices Ad = (ad,i,j)(i,j)∈{1,...,d}2 ∈ R

d×d, d ∈ N, fulfilling the
hypotheses in Theorem 1.1 above is, for instance, provided by the choice that for
all d ∈ N it holds that Ad ∈ R

d×d is the d-dimensional identity matrix in which
case the second order term in (4) reduces to the d-dimensional Laplace operator.
Roughly speaking, Theorem 1.1 above proves that if both the initial value functions
and the drift coefficient functions in the PDEs in (4) can be approximated with-
out the curse of dimensionality by means of DNNs, then the solutions of the PDEs
can also be approximated without the curse of dimensionality by means of DNNs
(see (5) above for details). In numerical simulations involving DNNs for computa-
tional problems from data science (e.g., object and face recognition, natural language
processesing, fraud detection, computational advertisement, etc.) it is often not en-
tirely clear how to precisely describe what the involved DNN approximations should
achieve and it is thereby often not entirely clear how to precisely specify the ap-
proximation error of the employed DNN. The recent articles [17, 28] (cf., e.g., also
[4, 5, 6, 19, 20, 23, 26, 30, 40, 46, 48, 55, 61]) suggest to use machine learning algo-
rithms which employ DNNs to approximate solutions and derivatives of solutions,
respectively, of PDEs and in the framework of these references it is perfectly clear
what the involved DNN approximations should achieve as well as how to specify
the approximation error: the DNN should approximate the unique deterministic
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function which is the solution of the given deterministic PDE (cf., e.g., Han et al.
[28, Neural Network Architecture on page 5] and Beck et al. [4, Proposition 2.7 and
(103)]. The above named references thereby open up the possibility for a complete
and rigorous mathematical error analysis for the involved deep learning algorithms
and Theorems 1.1 and 6.3, in particular, provide some first contributions to this
new research topic. The statements of Theorems 1.1 and 6.3 and their strategies of
proof, respectively, are inspired by the article Grohs et al. [26] (cf., e.g., Theorem 1.1
in [26]) in which similar results as Theorems 1.1 and 6.3, respectively, but for Kol-
mogorov PDEs with affine linear drift and diffusion coefficient functions have been
proved. The main difference of the arguments in [26] to this paper is the deepness of
the involved artificial neural networks. Roughly speaking, the affine linear structure
of the coefficients of the Kolmogorov PDEs in [26] allowed the authors in [26] to es-
sentially employ a flat artificial neural network for approximating the solution flow
mapping of such PDEs. In this work the drift coefficient is nonlinear and, in view
of this property, we employ in our proofs of Theorem 1.1 and Theorem 6.3, respec-
tively, iterative Euler-type discretizations for the underlying stochastic dynamics
associated to the PDEs in (4). The iterative Euler-type discretizations result in
multiple compositions which, in turn, result in deep artificial neural networks with
a large number of hidden layers. In particular, in our proof of Theorem 1.1 and
Theorem 6.3, respectively, the artificial neural networks ψd,ε ∈ N , d ∈ N, ε ∈ (0, 1],
approximating the solutions of the PDEs in (4) (see (5) above) are also deep artifi-
cial neural networks with a large number of hidden layers even if the artificial neural
networks approximating or representing f0,d : R

d → R, d ∈ N, and f1,d : R
d → R

d,
d ∈ N, are flat with one hidden layer only. Moreover, our proofs of Theorem 1.1
and Theorem 6.3, respectively, reveal that the number of hidden layers increases to
infinity as the prescribed approximation accuracy ε > 0 decreases to zero and the
PDE dimension increases to infinity, respectively (cf. (149) and (168) below).

Theorem 1.1 above and Theorem 6.3, respectively, are purely deterministic ap-
proximation results for DNNs and solutions of a class of deterministic PDEs. Our
proofs of Theorem 1.1 and Theorem 6.3, respectively, are, however, heavily rely-
ing on probabilistic arguments on a suitable artificial probability space. Roughly
speaking, in our proof of Theorem 6.3 we

(I) design a suitable random DNN on this artificial probability space,

(II) show that this suitable random DNN is in a suitable sense close to the solution
of the considered deterministic PDE, and

(III) employ items (I)–(II) above to establish the existence of a realization with the
desired approximation properties on the artificial probability space.

The specific realization of this random DNN is then a deterministic DNN approxi-
mation of the solution of the considered deterministic PDE with the desired approx-
imation properties. The main work of the paper is the construction and the analysis
of this random DNN. For the construction of the random DNN we need suitable
general flexibility results for rectified DNNs which, roughly speaking, demonstrate
how rectified DNNs can be composed with a moderate growth of the number of
involved parameters (see Subsection 5.2 below for details). The construction of the
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random DNN (cf. (I) above) is essentially performed in Section 5 and Section 6
and the analysis of the random DNN (cf. (II) above) is essentially the subject of
Section 3, Section 4, and Subsection 6.1. The argument for the existence of the
realization with the desired approximation properties on the artificial probability
space (cf. (III) above) is provided in Section 2 and Subsection 6.1.

2 On the existence of a realization with the de-

sired approximation properties on a suitable ar-

tificial probability space

In this section we establish in Corollary 2.4 in Subsection 2.2 below on a very ab-
stract level, roughly speaking, the argument that good approximation properties of
the random DNN (cf. items (I)–(II) in Section 1 above) imply the existence of a real-
ization with the desired approximation properties on the artificial probability space
(cf. item (III) in Section 1 above). The function u : Rd → R in Corollary 2.4 will
essentially take the role of the solution of the considered deterministic PDE and the
random field X : Rd×Ω → R will essentially take the role of the random DNN. Our
proof of Corollary 2.4 is based on an application of Proposition 2.3 in Subsection 2.2
below. Proposition 2.3 is, very loosely speaking, an abstract generalized version of
Corollary 2.4. Our proof of Proposition 2.3 is based on an application of the ele-
mentary Markov-type estimate in Lemma 2.2 in Subsection 2.1 below. Lemma 2.2,
in turn, follows from the Markov inequality in Lemma 2.1 in Subsection 2.1 be-
low. For completeness we also provide the short proof of the Markov inequality in
Lemma 2.1. Results related to Lemma 2.2 and Proposition 2.3 can, e.g., be found in
Grohs et al. [26, Subsection 3.1]. In particular, Lemma 2.2 is somehow an elementary
extension of [26, Proposition 3.3 in Subsection 3.1].

2.1 Markov-type estimates

Lemma 2.1 (Markov inequality). Let (Ω,F , µ) be a measure space, let ε ∈ (0,∞),
and let X : Ω → [0,∞] be an F/B([0,∞])-measurable function. Then

µ
(

X ≥ ε
)

≤
∫

Ω
X dµ

ε
. (6)

Proof of Lemma 2.1. Note that the fact that X ≥ 0 proves that

1{X≥ε} =
ε · 1{X≥ε}

ε
≤ X · 1{X≥ε}

ε
≤ X

ε
. (7)

Integration with respect to µ hence establishes (6). The proof of Lemma 2.1 is thus
completed.

Lemma 2.2. Let (Ω,F ,P) be a probability space, let X : Ω → [−∞,∞] be a random
variable, and let ε, q ∈ (0,∞). Then

[

P
(

|X| ≥ ε
)]1/q ≤

(

E
[

|X|q
])1/q

ε
. (8)
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Proof of Lemma 2.2. Observe that Lemma 2.1 ensures that

[P(|X| ≥ ε)]
1/q = [P(|X|q ≥ εq)]

1/q ≤
[

E
[

|X|q
]

εq

]1/q

=

(

E
[

|X|q
])1/q

ε
. (9)

The proof of Lemma 2.2 is thus completed.

2.2 Existence of a realization with the desired approxima-
tion properties

Proposition 2.3. Let ε ∈ (0,∞), let (Ω,F ,P) be a probability space, and let
X : Ω → [−∞,∞] be a random variable which satisfies that

infq∈(0,∞)

(

E
[

|X|q
])1/q

< ε. (10)

Then there exists ω ∈ Ω such that |X(ω)| < ε.

Proof of Proposition 2.3. First, observe that Lemma 2.2 assures that for all q ∈
(0,∞) it holds that

[

P
(

|X| ≥ ε
)]1/q ≤

(

E
[

|X|q
])1/q

ε
. (11)

Next note that the hypothesis that infq∈(0,∞)

(

E
[

|X|q
])1/q

< ε demonstrates that
there exists q ∈ (0,∞) such that

(

E
[

|X|q
])1/q

< ε. (12)

Combining this with (11) proves that
[

P
(

|X| ≥ ε
)]1/q

< 1. (13)

Hence, we obtain that
P
(

|X| ≥ ε
)

< 1. (14)

This shows that
P
(

|X| < ε
)

= 1− P
(

|X| ≥ ε
)

> 0. (15)

Therefore, we obtain that

{|X| < ε} =
{

ω ∈ Ω: |X(ω)| < ε
}

6= ∅. (16)

The proof of Proposition 2.3 is thus completed.

Corollary 2.4 (Existence of approximating realizations of a random field). Let
d ∈ N, p, ε ∈ (0,∞), let u : Rd → R be B(Rd)/B(R)-measurable, let (Ω,F ,P) be a
probability space, let ν : B(Rd) → [0, 1] be a probability measure on R

d, let X : Rd ×
Ω → R be (B(Rd)⊗ F)/B(R)-measurable, and assume that

[
∫

Rd

E
[

|u(x)−X(x)|p
]

ν(dx)

]1/p

< ε. (17)

Then there exists ω ∈ Ω such that
[
∫

Rd

|u(x)−X(x, ω)|p ν(dx)
]1/p

< ε. (18)
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Proof of Corollary 2.4. Throughout this proof let Y : Ω → [−∞,∞] be the random
variable given by

Y =

[
∫

Rd

|u(x)−X(x)|p ν(dx)
]1/p

. (19)

Observe that Fubini’s theorem and (17) ensure that

(

E
[

|Y |p
])1/p

=

(

E

[
∫

Rd

|u(x)−X(x)|p ν(dx)
])1/p

=

(
∫

Rd

E
[

|u(x)−X(x)|p
]

ν(dx)

)1/p

< ε.

(20)

Hence, we obtain that

inf
q∈(0,∞)

(

E
[

|Y |q
])1/q ≤

(

E
[

|Y |p
])1/p

< ε. (21)

This allows us to apply Proposition 2.3 to obtain that there exists ω ∈ Ω such that

|Y (ω)| < ε. (22)

Combining this with (19) establishes (18). The proof of Corollary 2.4 is thus com-
pleted.

3 The Feynman-Kac formula revisited

Theorem 6.3 in Subsection 6.2 below (the main result of this article) and Theorem 1.1
in the introduction, respectively, are, as mentioned above, purely deterministic ap-
proximation results for DNNs and a class of deterministic PDEs. In contrast, our
proofs of Theorem 6.3 and Theorem 1.1, respectively, are based on a probabilistic
argument on a suitable artificial probability space on which we, roughly speaking,
design random DNNs. Our construction of the random DNNs is based on suitable
Monte Carlo approximations of the solutions of the considered deterministic PDEs.
These suitable Monte Carlo approximations, in turn, are based on the link between
deterministic Kolmogorov PDEs and solutions of SDEs which is provided by the fa-
mous Feynman-Kac formula. In this section we recall in Theorem 3.1 below a special
case of this famous formula (cf., e.g., Hairer et al. [27, Subsection 4.4]). Theorem 3.1
below will be used in our proof of Theorem 6.3 below (cf. (145) and (150) in the
proof of Proposition 6.1, Proposition 6.1, Corollary 6.2, and Theorem 6.3).

Theorem 3.1. Let (Ω,F ,P) be a probability space, let T ∈ (0,∞), d ∈ N, B ∈
R

d×m, let W : [0, T ]×Ω → R
m be a standard Brownian motion, let ‖·‖ : Rd → [0,∞)

be the d-dimensional Euclidean norm, let 〈·, ·〉 : Rd × R
d → R be the d-dimensional

Euclidean scalar product, let ϕ : Rd → R be a continuous function, let µ : Rd → R
d

be a locally Lipschitz continuous function, and assume that

inf
p∈(0,∞)

sup
x∈Rd

[ |ϕ(x)|
(1 + ‖x‖p) +

‖µ(x)‖
(1 + ‖x‖)

]

<∞. (23)

Then
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(i) there exist unique stochastic processes Xx : [0, T ] × Ω → R
d, x ∈ R

d, with
continuous sample paths which satisfy for all x ∈ R

d, t ∈ [0, T ] that

Xx
t = x+

∫ t

0

µ(Xx
s ) ds+BWt, (24)

(ii) there exists a unique function u : [0, T ] × R
d → R such that for all x ∈ R

d it

holds that u(0, x) = ϕ(x), such that infp∈(0,∞) sup(t,x)∈[0,T ]×Rd
|u(t,x)|
1+‖x‖p < ∞, and

such that u is a viscosity solution of

( ∂
∂t
u)(t, x) =

〈

(∇xu)(t, x), µ(x)
〉

+ 1
2
Trace

(

BB∗(Hessxu)(t, x)
)

(25)

for (t, x) ∈ (0, T )× R
d, and

(iii) it holds for all t ∈ [0, T ], x ∈ R
d that E

[

|ϕ(Xx
t )|
]

<∞ and

u(t, x) = E
[

ϕ(Xx
t )
]

. (26)

4 Stochastic differential equations (SDEs)

In our proofs of Theorem 1.1 above and Theorem 6.3 below (the main result of this
article), respectively, we design and analyse (cf. items (I)–(II) in Section 1 above)
a suitable random DNN. The construction of this suitable random DNN is based
on Euler-Maruyama discretizations of solutions of the SDEs associated to the Kol-
mogorov PDEs in (4) and for our error analysis of this suitable random DNN we
employ appropriate weak error estimates for Euler-Maruyama discretizations of so-
lutions of SDEs. These weak error estimates are established in Lemma 4.5 and
Proposition 4.6 in Subsection 4.4 below. Our proofs of Lemma 4.5 and Proposi-
tion 4.6, respectively, use suitable strong error estimates for Euler-Maruyama dis-
cretizations. These strong error estimates are the subject of Proposition 4.4 in Sub-
section 4.3 below. Proposition 4.4 follows from an application of the deterministic
perturbation-type inequality in Lemma 4.3 in Subsection 4.3 below. Perturbation
estimates which are related to Lemma 4.3 and Proposition 4.4 can, e.g., be found
in Hutzenthaler et al. [38, Proposition 2.9 and Corollary 2.12]. In particular, our
proof of Lemma 4.3 is inspired by the proof of Proposition 2.9 in Hutzenthaler et
al. [38]. Furthermore, our proof of Proposition 4.6 employs the elementary a priori
estimate in Lemma 4.1 in Subsection 4.1 below. Lemma 4.1, in turn, is a straight-
forward consequence from Gronwall’s integral inequality (see, e.g., Grohs et al. [26,
Lemma 2.11]) and its proof is therefore omitted. In our proof of Theorem 6.3 we
will also employ the elementary a priori estimate for standard Brownian motions in
Lemma 4.2 in Subsection 4.2 below. Lemma 4.2 is a straightforward consequence
from Itô’s formula and its proof is therefore also omitted.

4.1 A priori bounds for SDEs

Lemma 4.1. Let d,m ∈ N, ξ ∈ R
d, p ∈ [1,∞), c, C, T ∈ [0,∞), B ∈ R

d×m, let
‖·‖ : Rd → [0,∞) be the d-dimensional Euclidean norm, let (Ω,F ,P) be a probability
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space, let W : [0, T ]× Ω → R
m be a standard Brownian motion, let µ : Rd → R

d be
a B(Rd)/B(Rd)-measurable function which satisfies for all x ∈ R

d that ‖µ(x)‖ ≤
C + c‖x‖, let χ : [0, T ] → [0, T ] be a B([0, T ])/B([0, T ])-measurable function which
satisfies for all t ∈ [0, T ] that χ(t) ≤ t, and let X : [0, T ]× Ω → R

d be a stochastic
process with continuous sample paths which satisfies for all t ∈ [0, T ] that

P

(

Xt = ξ +

∫ t

0

µ
(

Xχ(s)

)

ds+BWt

)

= 1. (27)

Then it holds that

sup
t∈[0,T ]

(

E[‖Xt‖p]
)1/p ≤

(

‖ξ‖+ CT +
(

E
[

‖BWT ‖p
])1/p

)

ecT . (28)

4.2 A priori bounds for Brownian motions

Lemma 4.2. Let d,m ∈ N, T ∈ [0,∞), p ∈ (0,∞), B ∈ R
d×m, let ‖·‖ : Rd → [0,∞)

be the d-dimensional Euclidean norm, let (Ω,F ,P) be a probability space, and let
W : [0, T ]×Ω → R

m be a standard Brownian motion. Then it holds for all t ∈ [0, T ]
that

(

E
[

‖BWt‖p
])1/p ≤

√

max{1, p− 1}Trace(B∗B) t. (29)

4.3 Strong perturbations of SDEs

Lemma 4.3. Let d ∈ N, L, T ∈ [0,∞), δ ∈ (0,∞), p ∈ [2,∞), let ‖·‖ : Rd → [0,∞)
be the d-dimensional Euclidean norm, let µ : Rd → R

d be a function which satisfies
for all v, w ∈ R

d that
‖µ(v)− µ(w)‖ ≤ L‖v − w‖, (30)

let X, Y : [0, T ] → R
d be continuous functions, let a : [0, T ] → R

d be a B([0, T ])/B(Rd)-
measurable function, and assume for all t ∈ [0, T ] that

∫ t

0
‖as‖ ds <∞ and

Xt − Yt = X0 − Y0 +

∫ t

0

[

µ(Xs)− as
]

ds. (31)

Then it holds for all t ∈ [0, T ] that

‖Xt − Yt‖p

≤ exp
([

L+ (1−1/p)
δ

]

p t
)

(

‖X0 − Y0‖p + δ(p−1)

∫ t

0

‖as − µ(Ys)‖p ds
)

.
(32)

Proof of Lemma 4.3. Throughout this proof let 〈·, ·〉 : Rd × R
d → R be the d-di-

mensional Euclidean scalar product and let α ∈ (0,∞) be the real number given
by

α =
[

L+ (1−1/p)
δ

]

p. (33)
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Note that (31) ensures that the function ([0, T ] ∋ t 7→ (Xt − Yt) ∈ R
d) is absolutely

continuous. The fundamental theorem of calculus and the chain rule hence prove
that for all t ∈ [0, T ] it holds that

‖Xt − Yt‖p
exp(αt)

= ‖X0 − Y0‖p +
∫ t

0

p ‖Xs − Ys‖p−2〈Xs − Ys, µ(Xs)− as〉
exp(αs)

ds

−
∫ t

0

α‖Xs − Ys‖p
exp(αs)

ds

= ‖X0 − Y0‖p +
∫ t

0

p ‖Xs − Ys‖p−2〈Xs − Ys, µ(Xs)− µ(Ys)〉
exp(αs)

ds

+

∫ t

0

p ‖Xs − Ys‖p−2〈Xs − Ys, µ(Ys)− as〉 − α‖Xs − Ys‖p
exp(αs)

ds.

(34)

Next observe that (30) and the Cauchy-Schwartz inequality ensure that for all s ∈
[0, T ] it holds that

〈Xs − Ys, µ(Xs)− µ(Ys)〉 ≤ ‖Xs − Ys‖‖µ(Xs)− µ(Ys)‖ ≤ L‖Xs − Ys‖2. (35)

This and (34) demonstrate that for all t ∈ [0, T ] it holds that

‖Xt − Yt‖p
exp(αt)

≤ ‖X0 − Y0‖p +
∫ t

0

pL‖Xs − Ys‖p
exp(αs)

ds

+

∫ t

0

p ‖Xs − Ys‖p−2〈Xs − Ys, µ(Ys)− as〉 − α‖Xs − Ys‖p
exp(αs)

ds (36)

= ‖X0 − Y0‖p +
∫ t

0

p ‖Xs − Ys‖p−2〈Xs − Ys, µ(Ys)− as〉 − (α− pL)‖Xs − Ys‖p
exp(αs)

ds

= ‖X0 − Y0‖p +
∫ t

0

p ‖Xs − Ys‖p−2〈Xs − Ys, µ(Ys)− as〉 − (p−1)
δ

‖Xs − Ys‖p
exp(αs)

ds.

Next observe that the Cauchy-Schwartz inequality and Young’s inequality prove that
for all s ∈ [0, T ] it holds that

‖Xs − Ys‖p−2〈Xs − Ys, µ(Ys)− as〉 ≤ ‖Xs − Ys‖p−1‖µ(Ys)− as‖
= δ

(1−p)/p‖Xs − Ys‖p−1δ
(p−1)/p‖µ(Ys)− as‖

≤ (p−1)
p

[

δ
(1−p)/p‖Xs − Ys‖p−1

]p/(p−1)
+ 1

p

[

δ
(p−1)/p‖µ(Ys)− as‖

]p

= (p−1)
δp

‖Xs − Ys‖p + δ(p−1)

p
‖µ(Ys)− as‖p.

(37)

Combining this with (36) assures that for all t ∈ [0, T ] it holds that

‖Xt − Yt‖p
exp(αt)

≤ ‖X0 − Y0‖p +
∫ t

0

(p−1)
δ

‖Xs − Ys‖p + δ(p−1)‖µ(Ys)− as‖p − (p−1)
δ

‖Xs − Ys‖p
exp(αs)

ds

= ‖X0 − Y0‖p +
∫ t

0

δ(p−1)‖µ(Ys)− as‖p
exp(αs)

ds (38)

≤ ‖X0 − Y0‖p +
∫ t

0

δ(p−1)‖µ(Ys)− as‖p ds.
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This implies (32). The proof of Lemma 4.3 is thus completed.

Proposition 4.4 (Perturbation). Let d,m ∈ N, x, y ∈ R
d, L, T ∈ [0,∞), δ ∈

(0,∞), p ∈ [2,∞), B ∈ R
d×m, let ‖·‖ : Rd → [0,∞) be the d-dimensional Euclidean

norm, let (Ω,F ,P) be a probability space, let W : [0, T ] × Ω → R
m be a standard

Brownian motion, let µ : Rd → R
d be a function which satisfies for all v, w ∈ R

d

that
‖µ(v)− µ(w)‖ ≤ L‖v − w‖, (39)

let X, Y : [0, T ]× Ω → R
d be stochastic processes with continuous sample paths, let

a : [0, T ]×Ω → R
d be a (B([0, T ])⊗F)/B(Rd)-measurable function, and assume for

all t ∈ [0, T ] that
∫ t

0
‖as‖ ds <∞, Yt = y +

∫ t

0
as ds+BWt, and

Xt = x+

∫ t

0

µ(Xs) ds+BWt. (40)

Then it holds for all t ∈ [0, T ] that

(

E
[

‖Xt − Yt‖p
])1/p

≤ exp
([

L+ (1−1/p)
δ

]

t
)

(

‖x− y‖+ δ(1−1/p)

[
∫ t

0

E
[

‖as − µ(Ys)‖p
]

ds

]1/p
)

.
(41)

Proof of Proposition 4.4. First, note that for all t ∈ [0, T ] it holds that

Xt − Yt = x− y +

∫ t

0

[

µ(Xs)− as
]

ds. (42)

Lemma 4.3 hence ensures that for all t ∈ [0, T ] that

‖Xt − Yt‖p

≤ exp
([

L+ (1−1/p)
δ

]

p t
)

(

‖x− y‖p + δ(p−1)

∫ t

0

‖as − µ(Ys)‖p ds
)

.
(43)

This implies that for all t ∈ [0, T ] it holds that

E
[

‖Xt − Yt‖p
]

≤ exp
([

L+ (1−1/p)
δ

]

p t
)

(

‖x− y‖p + δ(p−1)

∫ t

0

E
[

‖as − µ(Ys)‖p
]

ds

)

.
(44)

The fact that ∀ b, c ∈ R : |b + c|1/p ≤ |b|1/p + |c|1/p hence demonstrates that for all
t ∈ [0, T ] it holds that

(

E
[

‖Xt − Yt‖p
])1/p

≤ exp
([

L+ (1−1/p)
δ

]

t
)

(

‖x− y‖+ δ(1−1/p)

[
∫ t

0

E
[

‖as − µ(Ys)‖p
]

ds

]1/p
)

.
(45)

The proof of Proposition 4.4 is thus completed.
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4.4 Weak perturbations of SDEs

Lemma 4.5. Let d,m ∈ N, ξ ∈ R
d, h, T, ε0, ε1, ς0, ς1, L0, L1, ℓ ∈ [0,∞), δ ∈ (0,∞),

B ∈ R
d×m, p ∈ [2,∞), q ∈ (1, 2] satisfy 1/p + 1/q = 1, let ‖·‖ : Rd → [0,∞) be the d-

dimensional Euclidean norm, let (Ω,F ,P) be a probability space, let W : [0, T ]×Ω →
R

m be a standard Brownian motion, let φ0 : R
d → R, f1 : R

d → R
d, φ2 : R

d → R
d,

and χ : [0, T ] → [0, T ] be functions, let f0 : R
d → R be a B(Rd)/B(R)-measurable

function, let φ1 : R
d → R

d be a B(Rd)/B(Rd)-measurable function, assume for all
t ∈ [0, T ], x, y ∈ R

d that

|φ0(x)− f0(x)| ≤ ε0(1 + ‖x‖ς0), ‖φ1(x)− f1(x)‖ ≤ ε1(1 + ‖x‖ς1), (46)

|φ0(x)− φ0(y)| ≤ L0

(

1 +

∫ 1

0

[

r‖x‖+ (1− r)‖y‖
]ℓ
dr

)

‖x− y‖ , (47)

‖f1(x)− f1(y)‖ ≤ L1‖x− y‖, and χ(t) = max({0, h, 2h, . . . } ∩ [0, t]) , (48)

and let X, Y : [0, T ]× Ω → R
d be stochastic processes with continuous sample paths

which satisfy for all t ∈ [0, T ] that Yt = φ2(ξ) +
∫ t

0
φ1

(

Yχ(s)
)

ds+BWt and

Xt = ξ +

∫ t

0

f1(Xs) ds+BWt. (49)

Then it holds that
∣

∣E
[

f0(XT )
]

− E
[

φ0(YT )
]∣

∣ (50)

≤ ε0 (1 + E[‖XT‖ς0 ])
+ L0 2

max{ℓ−1,0} exp
([

L1 +
(1−1/p)

δ

]

T
)[

1 +
(

E
[

‖XT‖ℓq
])1/q

+
(

E
[

‖YT‖ℓq
])1/q

]

·
[

‖ξ − φ2(ξ)‖+ ε1 δ
(1−1/p) T

1/p

[

1 + sup
t∈[0,T ]

(

E
[

‖Yt‖pς1
])1/p

]

+ h δ(1−
1/p) T

1/pL1

[

sup
t∈[0,T ]

(

E
[

‖φ1(Yt)‖p
])1/p

]

+ δ(1−
1/p) T

1/pL1

(

E
[

‖BWh‖p
])1/p

]

.

Proof of Lemma 4.5. First, note that the triangle inequality ensures that
∣

∣E
[

f0(XT )
]

− E
[

φ0(YT )
]∣

∣

≤
∣

∣E
[

f0(XT )
]

− E
[

φ0(XT )
]∣

∣+
∣

∣E
[

φ0(XT )
]

− E
[

φ0(YT )
]∣

∣

≤ E
[

|f0(XT )− φ0(XT )|
]

+ E
[

|φ0(XT )− φ0(YT )|
]

≤ ε0 E[1 + ‖XT‖ς0 ] + E
[

|φ0(XT )− φ0(YT )|
]

.

(51)

This implies that
∣

∣E
[

f0(XT )
]

− E
[

φ0(YT )
]∣

∣

≤ ε0 E[1 + ‖XT‖ς0]

+ L0 E

[(

1 +

∫ 1

0

[

r‖XT‖+ (1− r)‖YT‖
]ℓ
dr

)

‖XT − YT‖
]

≤ ε0 E[1 + ‖XT‖ς0]

+ L0 E

[(

1 + 2max{ℓ−1,0}
∫ 1

0

‖rXT‖ℓ + ‖(1− r)YT‖ℓ dr
)

‖XT − YT‖
]

.

(52)
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Therefore, we obtain that

∣

∣E
[

f0(XT )
]

− E
[

φ0(YT )
]∣

∣

≤ ε0E[1 + ‖XT‖ς0 ]

+ L0 E

[(

1 + 2max{ℓ−1,0}
[
∫ 1

0

rℓ dr

]

[

‖XT‖ℓ + ‖YT‖ℓ
]

)

‖XT − YT‖
]

= ε0 E[1 + ‖XT‖ς0]

+ L0 E

[(

1 +

[

2max{ℓ−1,0}

(ℓ+ 1)

]

[

‖XT‖ℓ + ‖YT‖ℓ
]

)

‖XT − YT‖
]

.

(53)

Hölder’s inequality hence demonstrates that

∣

∣E
[

f0(XT )
]

− E
[

φ0(YT )
]∣

∣

≤ ε0 (1 + E[‖XT‖ς0 ]) (54)

+ L0

(

1 +

[

2max{ℓ−1,0}

(ℓ+ 1)

]

[

(

E
[

‖XT‖ℓq
])1/q

+
(

E
[

‖YT‖ℓq
])1/q

]

)

(E[‖XT − YT‖p])1/p .

Next observe that Proposition 4.4 (with d = d, m = m, x = ξ, y = φ2(ξ), L = L1,
T = T , δ = δ, p = p, B = B, (Ω,F ,P) = (Ω,F ,P), W = W , µ = f1, X = X , Y =
Y , a = ([0, T ]× Ω ∋ (t, ω) 7→ φ1(Yχ(t)(ω)) ∈ R

d) in the notation of Proposition 4.4)
ensures that

(E[‖XT − YT‖p])1/p

≤ exp
([

L1 +
(1−1/p)

δ

]

T
)

·
(

‖ξ − φ2(ξ)‖+ δ(1−
1/p)

[
∫ T

0

E
[

‖φ1(Yχ(s))− f1(Ys)‖p
]

ds

]1/p
)

≤ exp
([

L1 +
(1−1/p)

δ

]

T
)

·
(

‖ξ − φ2(ξ)‖+ δ(1−
1/p)

[
∫ T

0

E
[

‖φ1(Yχ(s))− f1(Yχ(s))‖p
]

ds

]1/p
)

(55)

+ exp
([

L1 +
(1−1/p)

δ

]

T
)

(

δ(1−
1/p)

[
∫ T

0

E
[

‖f1(Yχ(s))− f1(Ys)‖p
]

ds

]1/p
)

≤ exp
([

L1 +
(1−1/p)

δ

]

T
)

(

‖ξ − φ2(ξ)‖+ ε1 δ
(1−1/p)

[
∫ T

0

E
[

(1 + ‖Yχ(s)‖ς1)p
]

ds

]1/p
)

+ exp
([

L1 +
(1−1/p)

δ

]

T
)

L1 δ
(1−1/p)

[
∫ T

0

E
[

‖Yχ(s) − Ys‖p
]

ds

]1/p

.
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This shows that

(E[‖XT − YT‖p])1/p

≤ exp
([

L1 +
(1−1/p)

δ

]

T
)

‖ξ − φ2(ξ)‖

+ exp
([

L1 +
(1−1/p)

δ

]

T
)

ε1 δ
(1−1/p)

[

T
1/p +

[∫ T

0

E
[

‖Yχ(s)‖pς1
]

ds

]1/p
]

+ exp
([

L1 +
(1−1/p)

δ

]

T
)

L1 δ
(1−1/p)

·
[
∫ T

0

E

[

∥

∥ ∫ sχ(s) φ1(Yχ(u)) du+B(Ws −Wχ(s))
∥

∥

p
]

ds

]1/p

.

(56)

Moreover, observe that the triangle inequality assures that

[
∫ T

0

E

[

∥

∥ ∫ sχ(s) φ1(Yχ(u)) du+B(Ws −Wχ(s))
∥

∥

p
]

ds

]1/p

≤
[
∫ T

0

E

[

∥

∥ ∫ sχ(s) φ1(Yχ(u)) du
∥

∥

p
]

ds

]1/p

+

[
∫ T

0

E

[

∥

∥B(Ws −Wχ(s))
∥

∥

p
]

ds

]1/p

=

[∫ T

0

E

[

|s− χ(s)|p‖φ1(Yχ(s))‖p
]

ds

]1/p

+

[∫ T

0

E

[

∥

∥B(Ws−χ(s))
∥

∥

p
]

ds

]1/p

≤ h

[
∫ T

0

E

[

‖φ1(Yχ(s))‖p
]

ds

]1/p

+

[
∫ T

0

E

[

∥

∥B(Ws−χ(s))
∥

∥

p
]

ds

]1/p

.

(57)

This and (56) show that

(E[‖XT − YT‖p])1/p

≤ exp
([

L1 +
(1−1/p)

δ

]

T
)

‖ξ − φ2(ξ)‖

+ exp
([

L1 +
(1−1/p)

δ

]

T
)

ε1 δ
(1−1/p)

[

T
1/p + T

1/p

[

sup
t∈[0,T ]

(

E
[

‖Yt‖pς1
])1/p

]]

+ exp
([

L1 +
(1−1/p)

δ

]

T
)

hL1 δ
(1−1/p) T

1/p

[

sup
t∈[0,T ]

(

E
[

‖φ1(Yχ(t))‖p
])1/p

]

+ exp
([

L1 +
(1−1/p)

δ

]

T
)

L1 δ
(1−1/p)

[∫ T

0

E

[

∥

∥B(Ws−χ(s))
∥

∥

p
]

ds

]1/p

.

(58)
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Therefore, we obtain that

(E[‖XT − YT‖p])1/p

≤ exp
([

L1 +
(1−1/p)

δ

]

T
)

‖ξ − φ2(ξ)‖

+ ε1 δ
(1−1/p) T

1/p exp
([

L1 +
(1−1/p)

δ

]

T
)

[

1 + sup
t∈[0,T ]

(

E
[

‖Yt‖pς1
])1/p

]

+ h δ(1−
1/p) T

1/p L1 exp
([

L1 +
(1−1/p)

δ

]

T
)

[

sup
t∈[0,T ]

(

E
[

‖φ1(Yt)‖p
])1/p

]

+ δ(1−
1/p) T

1/p L1 exp
([

L1 +
(1−1/p)

δ

]

T
)

(

E
[

‖BWh‖p
])1/p

.

(59)

Combining this with (54) demonstrates that
∣

∣E
[

f0(XT )
]

− E
[

φ0(YT )
]∣

∣

≤ ε0 (1 + E[‖XT‖ς0])

+ L0

(

1 +

[

2max{ℓ−1,0}

(ℓ+ 1)

]

[

(

E
[

‖XT‖ℓq
])1/q

+
(

E
[

‖YT‖ℓq
])1/q

]

)

(60)

· exp
([

L1 +
(1−1/p)

δ

]

T
)

[

‖ξ − φ2(ξ)‖+ ε1 δ
(1−1/p) T

1/p

[

1 + sup
t∈[0,T ]

(

E
[

‖Yt‖pς1
])1/p

]

+ h δ(1−
1/p) T

1/pL1

[

sup
t∈[0,T ]

(

E
[

‖φ1(Yt)‖p
])1/p

]

+ δ(1−
1/p) T

1/pL1

(

E
[

‖BWh‖p
])1/p

]

.

The proof of Lemma 4.5 is thus completed.

Proposition 4.6. Let d,m ∈ N, ξ ∈ R
d, T ∈ (0,∞), c, C, ε0, ε1, ε2, ς0, ς1, ς2, L0, L1,

ℓ ∈ [0,∞), h ∈ [0, T ], B ∈ R
d×m, p ∈ [2,∞), q ∈ (1, 2] satisfy 1/p + 1/q = 1, let

‖·‖ : Rd → [0,∞) be the d-dimensional Euclidean norm, let (Ω,F ,P) be a probability
space, let W : [0, T ] × Ω → R

m be a standard Brownian motion, let φ0 : R
d → R,

f1 : R
d → R

d, φ2 : R
d → R

d, and χ : [0, T ] → [0, T ] be functions, let f0 : R
d → R be

a B(Rd)/B(R)-measurable function, let φ1 : R
d → R

d be a B(Rd)/B(Rd)-measurable
function, assume that ‖ξ−φ2(ξ)‖ ≤ ε2(1+‖ξ‖ς2), assume for all t ∈ [0, T ], x, y ∈ R

d

that

|φ0(x)− f0(x)| ≤ ε0(1 + ‖x‖ς0), ‖φ1(x)− f1(x)‖ ≤ ε1(1 + ‖x‖ς1), (61)

|φ0(x)− φ0(y)| ≤ L0

(

1 +

∫ 1

0

[

r‖x‖+ (1− r)‖y‖
]ℓ
dr

)

‖x− y‖ , (62)

‖f1(x)− f1(y)‖ ≤ L1‖x− y‖, χ(t) = max({0, h, 2h, . . . } ∩ [0, t]) , (63)

and ‖φ1(x)‖ ≤ C+c‖x‖, let ̟r ∈ R, r ∈ (0,∞), satisfy for all r ∈ (0,∞) that ̟r =
(

E
[

‖BWT‖r
])1/r

, and let X, Y : [0, T ]×Ω → R
d be stochastic processes with continu-

ous sample paths which satisfy for all t ∈ [0, T ] that Yt = φ2(ξ)+
∫ t

0
φ1

(

Yχ(s)
)

ds+BWt

and

Xt = ξ +

∫ t

0

f1(Xs) ds+BWt. (64)
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Then it holds that
∣

∣E
[

f0(XT )
]

− E
[

φ0(YT )
]∣

∣ ≤
[

ε0 + ε1 + ε2 + (h/T )
1/2
]

· e(ℓ+3+2L1+[ℓmax{L1,c}+cmax{ς1,1}+L1 max{ς0,1}+2]T )
[

‖ξ‖+max{1, ε2}(1 + ‖ξ‖ς2)
+ max{1, C, ‖f1(0)‖}max{1, T}+̟max{ς0,ς1p,p,ℓq}

]max{1,ς0,ς1}+ℓ
max{1, L0}.

(65)

Proof of Proposition 4.6. First, observe that Lemma 4.5 shows that

∣

∣E
[

f0(XT )
]

− E
[

φ0(YT )
]∣

∣

≤ ε0 (1 + E[‖XT‖ς0])
+ L0 2

max{ℓ−1,0} e[L1+(1−1/p)]T
[

1 +
(

E
[

‖XT‖ℓq
])1/q

+
(

E
[

‖YT‖ℓq
])1/q

]

·
[

‖ξ − φ2(ξ)‖+ ε1T
1/p

[

1 + sup
t∈[0,T ]

(

E
[

‖Yt‖pς1
])1/p

]

+ hT
1/pL1

[

sup
t∈[0,T ]

(

E
[

‖φ1(Yt)‖p
])1/p

]

+ T
1/pL1

(

E
[

‖BWh‖p
])1/p

]

.

(66)

Hence, we obtain that

∣

∣E
[

f0(XT )
]

− E
[

φ0(YT )
]∣

∣

≤ ε0 (1 + E[‖XT‖ς0])
+ L0 2

max{ℓ−1,0} e[L1+(1−1/p)]T
[

1 +
(

E
[

‖XT‖ℓq
])1/q

+
(

E
[

‖YT‖ℓq
])1/q

]

·
[

‖ξ − φ2(ξ)‖+ ε1T
1/p

[

1 + sup
t∈[0,T ]

(

E
[

‖Yt‖pς1
])1/p

]

+ hT
1/pL1ε1

[

sup
t∈[0,T ]

(

E
[

(1 + ‖Yt‖ς1)p
])1/p

]

+ hT
1/pL1

[

sup
t∈[0,T ]

(

E
[

‖f1(Yt)‖p
])1/p

]

+ L1̟ph
1/2T

1/p−1/2

]

.

(67)

In addition, note that for all x ∈ R
d it holds that

‖f1(x)‖ ≤ ‖f1(x)− f1(0)‖+ ‖f1(0)‖ ≤ ‖f1(0)‖+ L1‖x‖. (68)
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This and (67) ensure that
∣

∣E
[

f0(XT )
]

− E
[

φ0(YT )
]∣

∣

≤ ε0
(

1 + E
[

‖XT‖ς0
])

+ L0 2
max{ℓ−1,0} e[L1+1−1/p]T

[

1 +
(

E
[

‖XT‖ℓq
])1/q

+
(

E
[

‖YT‖ℓq
])1/q

]

·
[

‖ξ − φ2(ξ)‖+ ε1T
1/p

[

1 + sup
t∈[0,T ]

(

E
[

‖Yt‖pς1
])1/p

]

+ hT
1/pL1ε1

[

1 + sup
t∈[0,T ]

(

E
[

‖Yt‖pς1
])1/p

]

+ hT
1/pL1

[

‖f1(0)‖+ L1

[

sup
t∈[0,T ]

(

E
[

‖Yt‖p
])1/p

]]

+ L1̟ph
1/2T

1/p−1/2

]

= ε0
(

1 + E
[

‖XT‖ς0
])

+ L0 2
max{ℓ−1,0} e[L1+1−1/p]T

[

1 +
(

E
[

‖XT‖ℓq
])1/q

+
(

E
[

‖YT‖ℓq
])1/q

]

·
[

‖ξ − φ2(ξ)‖+ ε1T
1/p [1 + hL1]

[

1 + sup
t∈[0,T ]

(

E
[

‖Yt‖pς1
])1/p

]

+ hT
1/pL1

[

‖f1(0)‖+ L1

[

sup
t∈[0,T ]

(

E
[

‖Yt‖p
])1/p

]]

+ L1̟ph
1/2T

1/p−1/2

]

.

(69)

Next observe that Lemma 4.1 and (68) demonstrate that for all r ∈ [1,∞), t ∈ [0, T ]
it holds that

sup
t∈[0,T ]

(

E
[

‖Yt‖r
])1/r ≤

(

‖φ2(ξ)‖+ CT +
(

E
[

‖BWT ‖r
])1/r

)

ecT

= (‖φ2(ξ)‖+ CT +̟r) e
cT

(70)

and

sup
t∈[0,T ]

(

E
[

‖Xt‖r
])1/r ≤

(

‖ξ‖+ ‖f1(0)‖T +
(

E
[

‖BWT‖r
])1/r

)

eL1T

= (‖ξ‖+ ‖f1(0)‖T +̟r) e
L1T .

(71)

Combining this with (69) shows that
∣

∣E
[

f0(XT )
]

− E
[

φ0(YT )
]∣

∣

≤ ε0

(

1 +
[

‖ξ‖+ ‖f1(0)‖T +̟max{ς0,1}
]ς0eς0L1T

)

+ L0 2
max{ℓ−1,0} e[L1+1−1/p]T

·
(

1 +
[

‖ξ‖+ ‖f1(0)‖T +̟max{ℓq,1}
]ℓ
eℓL1T +

[

‖φ2(ξ)‖+ CT +̟max{ℓq,1}
]ℓ
eℓcT

)

·
[

‖ξ − φ2(ξ)‖+ ε1T
1/p[1 + hL1]

(

1 +
[

‖φ2(ξ)‖+ CT +̟max{ς1p,1}
]ς1eς1cT

)

+ hT
1/pL1

(

‖f1(0)‖+ L1

[

‖φ2(ξ)‖+ CT +̟p

]

ecT
)

+ L1̟ph
1/2T

1/p−1/2

]

. (72)
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Hence, we obtain that

∣

∣E
[

f0(XT )
]

− E
[

φ0(YT )
]∣

∣

≤ ε0

(

1 +
[

‖ξ‖+ ‖f1(0)‖T +̟max{ς0,1}
]ς0 eς0L1T

)

+ L0 2
max{ℓ−1,0} e[max{ℓL1,ℓc}+cmax{ς1,1}+L1+1−1/p]T max{1, T 1/p}

·
(

1 +
[

‖ξ‖+ ‖f1(0)‖T +̟max{ℓq,1}
]ℓ
+
[

‖φ2(ξ)‖+ CT +̟max{ℓq,1}
]ℓ
)

·
[

‖ξ − φ2(ξ)‖+ ε1[1 + hL1]
(

1 +
[

‖φ2(ξ)‖+ CT +̟max{ς1p,1}
]ς1
)

+ hL1

(

‖f1(0)‖+ L1

[

‖φ2(ξ)‖+ CT +̟p

]

)

+ (h/T )
1/2L1̟p

]

.

(73)

This implies that

∣

∣E
[

f0(XT )
]

− E
[

φ0(YT )
]∣

∣

≤ ε0

(

1 +
[

‖ξ‖+ ‖f1(0)‖T +̟max{ς0,1}
]ς0 eς0L1T

)

+ L0 2
max{ℓ−1,0} e[max{ℓL1,ℓc}+cmax{ς1,1}+L1+1]T (74)

·
(

1 +
[

‖ξ‖+ ‖f1(0)‖T +̟max{ℓq,1}
]ℓ
+
[

‖ξ‖+ ε2(1 + ‖ξ‖ς2) + CT +̟max{ℓq,1}
]ℓ
)

·
[

ε2(1 + ‖ξ‖ς2) + ε1[1 + TL1]
(

1 +
[

‖ξ‖+ ε2(1 + ‖ξ‖ς2) + CT +̟max{ς1p,1}
]ς1
)

+ (h/T )
1/2TL1

(

‖f1(0)‖+ L1

[

‖φ2(ξ)‖+ CT +̟p

]

)

+ (h/T )
1/2L1̟p

]

.

Therefore, we obtain that

∣

∣E
[

f0(XT )
]

− E
[

φ0(YT )
]∣

∣ (75)

≤ ε0

(

1 +
[

‖ξ‖+ ‖f1(0)‖T +̟max{ς0,1}
]ς0 eς0L1T

)

+ L0 2
max{ℓ−1,0} e[max{ℓL1,ℓc}+cmax{ς1,1}+L1+1]T

·
(

1 +
[

‖ξ‖+ ‖f1(0)‖T +̟max{ℓq,1}
]ℓ
+
[

‖ξ‖+ ε2(1 + ‖ξ‖ς2) + CT +̟max{ℓq,1}
]ℓ
)

·
[

[ε1 + ε2]max{1, T}[1 + L1]

·
(

1 +
[

‖ξ‖+max{1, ε2}(1 + ‖ξ‖ς2) + CT +̟max{ς1p,1}
]max{1,ς1}

)

+ (h/T )
1/2 max{1, T}[1 + L1]

(

‖f1(0)‖+ L1

[

‖ξ‖+ ε2(1 + ‖ξ‖ς2) + CT +̟p

]

)

]

.
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This and the fact that ∀ x ∈ [0,∞) : max{x, 1} ≤ x+ 1 ≤ ex demonstrate that

∣

∣E
[

f0(XT )
]

− E
[

φ0(YT )
]∣

∣

≤ ε0

(

1 +
[

‖ξ‖+ ‖f1(0)‖T +̟max{ς0,1}
]ς0
eς0L1T

)

+ L0 2
max{ℓ−1,0} e(L1+[max{ℓL1,ℓc}+cmax{ς1,1}+L1+2]T )

[

ε1 + ε2 + (h/T )
1/2
]

(76)

·
(

1 +
[

‖ξ‖+ ‖f1(0)‖T +̟max{ℓq,1}
]ℓ
+
[

‖ξ‖+ ε2(1 + ‖ξ‖ς2) + CT +̟max{ℓq,1}
]ℓ
)

·
[

max{1, ‖f1(0)‖}

+max{1, L1}
[

‖ξ‖+max{1, ε2}(1 + ‖ξ‖ς2) + CT +̟max{p,ς1p}
]max{1,ς1}

]

.

Hence, we obtain that

∣

∣E
[

f0(XT )
]

− E
[

φ0(YT )
]∣

∣

≤ 2max{ℓ−1,0} e(L1+[max{ℓL1,ℓc}+cmax{ς1,1}+max{ς0,1}L1+2]T )
[

ε0 + ε1 + ε2 + (h/T )
1/2
]

·
(

1 +
[

‖ξ‖+ ‖f1(0)‖T +̟max{ℓq,1}
]ℓ
+
[

‖ξ‖+ ε2(1 + ‖ξ‖ς2) + CT +̟max{ℓq,1}
]ℓ
)

·max{1, L0}
[

max{1, ‖f1(0)‖}+max{1, L1}
[

‖ξ‖+max{1, ε2}(1 + ‖ξ‖ς2)

+ max{C, ‖f1(0)‖}T +̟max{p,ς1p,ς0}
]max{1,ς0,ς1}

]

. (77)

This and the fact that ∀ x ∈ [0,∞) : max{x, 1} ≤ x+ 1 ≤ ex show that

∣

∣E
[

f0(XT )
]

− E
[

φ0(YT )
]∣

∣

≤ 2max{ℓ,1} e(2L1+[ℓmax{L1,c}+cmax{ς1,1}+L1 max{ς0,1}+2]T )
[

ε0 + ε1 + ε2 + (h/T )
1/2
]

·
(

1 +
[

‖ξ‖+ ‖f1(0)‖T +̟max{ℓq,1}
]ℓ
+
[

‖ξ‖+ ε2(1 + ‖ξ‖ς2) + CT +̟max{ℓq,1}
]ℓ
)

·max{1, L0}
[

‖ξ‖+max{1, ε2}(1 + ‖ξ‖ς2)
+ max{1, C, ‖f1(0)‖}max{1, T}+̟max{ς0,ς1p,p}

]max{1,ς0,ς1}. (78)

Therefore, we obtain that
∣

∣E
[

f0(XT )
]

− E
[

φ0(YT )
]∣

∣

≤ e(ℓ+3+2L1+[ℓmax{L1,c}+cmax{ς1,1}+L1 max{ς0,1}+2]T )

·
[

ε0 + ε1 + ε2 + (h/T )
1/2
]

max{1, L0}
[

‖ξ‖+max{1, ε2}(1 + ‖ξ‖ς2)
+ max{1, C, ‖f1(0)‖}max{1, T}+̟max{ς0,ς1p,p,ℓq}

]max{1,ς0,ς1}+ℓ
.

(79)

The proof of Proposition 4.6 is thus completed.

5 Deep artificial neural network (DNN) calculus

In Section 6 below we establish the existence of a DNN approximating the solution
of the PDE without the curse of dimensionality. To demonstrate the existence of
such a DNN, we need a few properties about representation flexibilities of DNNs,
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which we establish in this section. In particular, we state in the elementary and
essentially well-known result in Lemma 5.1 in Subsection 5.1 below that every linear
combination of realizations of DNNs with the same architecture is again a realization
of a suitable DNN. Results similar to Lemma 5.1 can, e.g., be found in Yarotsky [66].

Moreover, in Proposition 5.2 in Subsection 5.2 below we demonstrate under suit-
able hypotheses that the composition of the realizations of two DNNs is again a
realization of a suitable DNN and the number of parameters of this suitable DNN
grows at most additively in the number of parameters of the composed DNNs. For
the construction of this suitable DNN in Proposition 5.2 we plug an artificial identity
in between the two DNNs and for this we employ in Proposition 5.2 the hypothesis
that the identity can within the class of considered fully-connected neural networks
(see (93)–(94) in Proposition 5.2 below) be described by a suitable flat artificial
neural network. In Proposition 5.2 the tuples φ1 and φ2 represent the DNNs which
we intend to compose (where the realization of φ1 is a function from R

d2 to R
d3 and

where the realization of φ2 is a function from R
d1 to R

d2), the tuple I represents the
artificial neural network which describes the identity on R

d2 , and the tuple ψ repre-
sents the DNN whose realization coincides with the composition of the realizations
of φ1 and φ2 (the realization of ψ is thus a function from R

d1 to R
d3). The hy-

pothesis of the existence of the artificial neural network I can, roughly speaking, be
viewed as a hypothesis on the activation function a : R → R used in Proposition 5.2.
Proposition 5.2, loosely speaking, then asserts that the number of parameters of ψ
can up to a constant be bounded by the sum of the number of parameters of φ1

and of the number of parameters of φ2. A straightforward DNN construction of
the composition of φ1 and φ2 (without artificially plugging the identity on R

d2 in
between φ1 and φ2) would possibly result in a DNN whose number of parameters is
essentially equal to the product of the number of parameters of φ1 and of the number
of parameters of φ2. Such a construction, in turn, would in our proof of the main
result of this article (Theorem 6.3 below) not allow us to conclude that DNNs do
indeed overcome the curse of dimensionality in the numerical approximation of the
considered PDEs (see (177) in the proof of Proposition 6.1 for details). Moreover,
in Proposition 5.3 in Subsection 5.2 below we establish under similar hypotheses as
in Proposition 5.2 a result similar to Proposition 5.2 which is tailor-made to the
DNNs which we design in the proof of our main result in Theorem 6.3 below. In
particular, (109) in Proposition 5.3 is tailor-made to construct a DNN which is based
on an Euler discretization of a (stochastic) differential equation. We refer to (147)
and (175) in the proof of Proposition 6.1 below for further details.

To apply Proposition 5.2 and Proposition 5.3, respectively, we need to verify that
the class of considered ANNs does indeed enjoy the property to be able to represent
the identity on R

d2 . Fortunately, ANNs with the rectifier function as the activation
function do indeed admit this property. This fact is verified in the elementary result
in Lemma 5.4 in Subsection 5.3 below. In particular, Lemma 5.4 shows for every
d ∈ N that the d-dimensional identity can be explicitly represented by a suitable flat
rectified ANN (with one hidden layer with 2d neurons and the rectifier function as
the activation function in front of the 2d-dimensional hidden layer).
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5.1 Sums of DNNs with the same architecture

Lemma 5.1. Let An : R
n → R

n, n ∈ N, and a : R → R be continuous functions
which satisfy for all n ∈ N, x = (x1, . . . , xn) ∈ R

n that An(x) = (a(x1), . . . , a(xn)),
let

N = ∪L∈{2,3,4,... } ∪(l0,l1,...,lL)∈NL+1 (×L
n=1(R

ln×ln−1 × R
ln)), (80)

let P : N → N and R : N → ∪k,l∈NC(R
k,Rl) be the functions which satisfy for all

L ∈ {2, 3, 4, . . .}, l0, l1, . . . , lL ∈ N, Φ = ((W1, B1), . . . , (WL, BL)) ∈ (×L
n=1(R

ln×ln−1×
R

ln)), x0 ∈ R
l0, . . ., xL−1 ∈ R

lL−1 with ∀n ∈ N ∩ [1, L) : xn = Aln(Wnxn−1 + Bn)
that P(Φ) =

∑L
n=1 ln(ln−1 + 1), R(Φ) ∈ C(Rl0 ,RlL), and

(RΦ)(x0) = WLxL−1 +BL, (81)

let L ∈ {2, 3, 4, . . .},M , L0,L1, . . . ,LL ∈ N, h1, h2, . . . , hM ∈ R, and let (φm)m∈{1,2,...,M}
⊆ (×L

n=1(R
Ln×Ln−1 × R

Ln)). Then there exists ψ ∈ N such that for all x ∈ R
L0 it

holds that R(ψ) ∈ C(RL0 ,RLL), P(ψ) ≤M2P(φ1), and

(Rψ)(x) =
M
∑

m=1

hm(Rφm)(x). (82)

Proof of Lemma 5.1. Throughout this proof let ((Wm,1, Bm,1), . . . , (Wm,L, Bm,L)) ∈
(×L

n=1(R
Ln×Ln−1 × R

Ln)), m ∈ {1, 2, . . . ,M}, satisfy for all i ∈ {1, 2, . . .M} that
φi = ((Wi,1, Bi,1), . . . , (Wi,L, Bi,L)), let (l0, l1, . . . , lL) ∈ N

L+1 satisfy for all i ∈
{1, 2, . . . ,L−1} that l0 = L0, li =MLi, and lL = LL, let ((W1, B1), . . . , (WL, BL)) ∈
(×L

n=1(R
ln×ln−1 × R

ln)) satisfy that

W1 =











W1,1

W2,1
...

WM,1











∈ R
(ML1)×L0 = R

l1×l0 , B1 =











B1,1

B2,1
...

BM,1











∈ R
(ML1) = R

l1 , (83)

WL =
(

h1W1,L h2W2,L · · · hMWM,L

)

∈ R
LL×(MLL−1) = R

lL×lL−1 , (84)

and BL =

M
∑

m=1

hmBm,L ∈ R
LL = R

lL, (85)

assume for all i ∈ {2, 3, 4, . . .} ∩ [0,L− 1] that

Wi =











W1,i 0 · · · 0

0 W2,i · · · ...
...

...
. . . 0

0 · · · 0 WM,i











∈ R
(MLi)×(MLi−1) = R

li×li−1 (86)

and Bi =











B1,i

B2,i
...

BM,i











∈ R
(MLi) = R

li, (87)
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and let ψ = ((W1, B1), . . . , (WL, BL)) ∈ N . Note that for all x ∈ R
l0 it holds that

W1x+B1 =











W1,1x+B1,1

W2,1x+B2,1
...

WM,1x+BM,1











. (88)

Moreover, observe that for all i ∈ N ∩ [0,L− 2], x1, x2, . . . , xM ∈ R
li it holds that

Wi+1











x1
x2
...
xM











+Bi+1 =











W1,i+1 0 · · · 0

0 W2,i+1 · · · ...
...

...
. . . 0

0 · · · 0 WM,i+1





















x1
x2
...
xM











+











B1,i+1

B2,i+1
...

BM,i+1











=











W1,i+1x1 +B1,i+1

W2,i+1x2 +B2,i+1
...

WM,i+1xM +BM,i+1











.

(89)

Next note that for all x1, x2, . . . , xM ∈ R
lL−1 it holds that

WL











x1
x2
...
xM











+BL =
(

h1W1,L h2W2,L · · · hMWM,L

)











x1
x2
...
xM











+

M
∑

m=1

hmBm,L

=

[

M
∑

m=1

hmWm,Lxm

]

+

[

M
∑

m=1

hmBm,L

]

=
M
∑

m=1

hm
(

Wm,Lxm +Bm,L

)

.

(90)

This, (88), and (89) ensure that for all x ∈ R
L0 it holds that R(ψ) ∈ C(RL0 ,RLL)

and

(Rψ)(x) =
M
∑

m=1

hm(Rφm)(x). (91)

Moreover, observe that the assumption that for all i ∈ {1, 2, . . . ,L−1} it holds that
l0 = L0, li =MLi, and lL = LL assures that

P(ψ) =

L
∑

n=1

ln(ln−1 + 1) = l1(l0 + 1) + lL(lL−1 + 1) +

L−1
∑

n=2

ln(ln−1 + 1)

=ML1(L0 + 1) + LL(MLL−1 + 1) +

L−1
∑

n=2

MLn(MLn−1 + 1)

≤ M2

[

L
∑

n=1

Ln(Ln−1 + 1)

]

=M2P(φ1).

(92)

Combining this with (91) establishes (82). The proof of Lemma 5.1 is thus com-
pleted.
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5.2 Compositions of DNNs involving artificial identities

Proposition 5.2 (Composition of neural networks). Let d1, d2, d3 ∈ N, letAn : R
n →

R
n, n ∈ N, and a : R → R be continuous functions which satisfy for all n ∈ N,

x = (x1, . . . , xn) ∈ R
n that An(x) = (a(x1), . . . , a(xn)), let

N = ∪L∈{2,3,4,... } ∪(l0,l1,...,lL)∈NL+1 (×L
n=1(R

ln×ln−1 × R
ln)), (93)

let P : N → N, L : N → ∪L∈{2,3,4,... }N
L+1, and R : N → ∪k,l∈NC(R

k,Rl) be the
functions which satisfy for all L ∈ {2, 3, 4, . . .}, l0, l1, . . . , lL ∈ N, Φ = ((W1, B1), . . . ,
(WL, BL)) ∈ (×L

n=1(R
ln×ln−1 × R

ln)), x0 ∈ R
l0, . . ., xL−1 ∈ R

lL−1 with ∀n ∈ N ∩
[1, L) : xn = Aln(Wnxn−1+Bn) that P(Φ) =

∑L
n=1 ln(ln−1+1), R(Φ) ∈ C(Rl0,RlL),

L(Φ) = (l0, l1, . . . , lL), and

(RΦ)(x0) = WLxL−1 +BL, (94)

and let φ1, φ2, I ∈ N , L1, L2 ∈ {2, 3, 4 . . .}, i, l1,0, l1,1, . . . , l1,L1 , l2,0, l2,1, . . . , l2,L2 ∈ N

satisfy for all x ∈ R
d2, i ∈ {1, 2} that R(φ1) ∈ C(Rd2 ,Rd3), R(φ2) ∈ C(Rd1 ,Rd2),

R(I) ∈ C(Rd2,Rd2), L(φi) = (li,0, li,1, . . . , li,Li
) ∈ N

Li+1, L(I) = (d2, i, d2) ∈ N
3,

and (R I)(x) = x. Then there exists ψ ∈ N such that for all x ∈ R
d1 it holds that

R(ψ) ∈ C(Rd1 ,Rd3), L(ψ) = (l2,0, l2,1, . . . , l2,L2−1, i, l1,1, l1,2, . . . , l1,L1) ∈ N
L1+L2+1,

P(ψ) ≤ max{1, 2−1(d2)
−2P(I)}(P(φ1) + P(φ2)), and

(Rψ)(x) = (Rφ1)
(

(Rφ2)(x)
)

=
(

(Rφ1) ◦ (Rφ2)
)

(x). (95)

Proof of Proposition 5.2. Throughout this proof let (W3,1, B3,1) ∈ R
i×d2 ×R

i, (W3,2,

B3,2) ∈ R
d2×i×R

d2 , and ((Wj,1, Bj,1), . . . , (Wj,Lj
, Bj,Lj

)) ∈ (×Lj

n=1(R
lj,n×lj,n−1×R

lj,n)),
j ∈ {1, 2}, satisfy for all j ∈ {1, 2} that I = ((W3,1, B3,1), (W3,2, B3,2)) and φj =
((Wj,1, Bj,1), . . . , (Wj,Lj

, Bj,Lj
)), let L4 = L1 + L2, let l4,0, l4,1, . . . , l4,L4 ∈ N satisfy

for all i ∈ {0, 1, . . . , L2 − 1}, j ∈ {1, 2, . . . , L1} that

l4,i = l2,i, l4,L2 = i, and l4,L2+j = l1,j , (96)

let ((W4,1, B4,1), . . . , (W4,L4, B4,L4)) ∈ (×L4
n=1(R

l4,n×l4,n−1 × R
l4,n)) satisfy for all i ∈

{1, 2, . . . , L2 − 1}, j ∈ {2, 3, . . . , L1} that

(W4,i, B4,i) = (W2,i, B2,i), (97)

(W4,L2 , B4,L2) = (W3,1W2,L2 ,W3,1B2,L2 + B3,1), (98)

(W4,L2+1, B4,L2+1) = (W1,1W3,2,W1,1B3,2 +B1,1), (99)

and (W4,L2+j, B4,L2+j) = (W1,j, B1,j), and let ψ = ((W4,1, B4,1), . . . , (W4,L4, B4,L4)) ∈
N . Observe that for all x ∈ R

l4,L2−1 = R
l2,L2−1 , y ∈ R

l4,L2 = R
i it holds that

W4,L2x+B4,L2 =W3,1W2,L2x+W3,1B2,L2+B3,1 = W3,1(W2,L2x+B2,L2)+B3,1 (100)

and

W4,L2+1y+B4,L2+1 =W1,1W3,2y+W1,1B3,2+B1,1 = W1,1(W3,2y+B3,2)+B1,1. (101)
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This ensures that for all x ∈ R
d1 it holds that R(ψ) ∈ C(Rd1 ,Rd3) and

(Rψ)(x) = (Rφ1)
(

(R I)
(

(Rφ2)(x)
)

)

= (Rφ1)
(

(Rφ2)(x)
)

. (102)

Moreover, note that

P(ψ) =

L4
∑

n=1

l4,n(l4,n−1 + 1) =

L1+L2
∑

n=1

l4,n(l4,n−1 + 1)

=

[

L2−1
∑

n=1

l4,n(l4,n−1 + 1)

]

+

[

L1+L2
∑

n=L2+2

l4,n(l4,n−1 + 1)

]

+ l4,L2(l4,L2−1 + 1) + l4,L2+1(l4,L2 + 1)

=

[

L2−1
∑

n=1

l2,n(l2,n−1 + 1)

]

+

[

L1
∑

n=2

l4,L2+n(l4,L2+n−1 + 1)

]

+ i (l2,L2−1 + 1) + l1,1(i+ 1).

(103)

Hence, we obtain that

P(ψ) =

[

L2−1
∑

n=1

l2,n(l2,n−1 + 1)

]

+

[

L1
∑

n=2

l1,n(l1,n−1 + 1)

]

+ i (l2,L2−1 + 1) + l1,1(i+ 1)

=

[

L2−1
∑

n=1

l2,n(l2,n−1 + 1)

]

+

[

L1
∑

n=2

l1,n(l1,n−1 + 1)

]

+
i

d2
· l2,L2(l2,L2−1 + 1) + l1,1

(

l1,0 ·
i

d2
+ 1

)

≤ max{1, i/d2}
([

L2
∑

n=1

l2,n(l2,n−1 + 1)

]

+

[

L1
∑

n=1

l1,n(l1,n−1 + 1)

])

= max{1, i/d2}
(

P(φ1) + P(φ2)
)

.

(104)

Next observe that

P(I) = i (d2 + 1) + d2(i+ 1) = 2 i d2 + i+ d2 > 2 i d2. (105)

This and (104) ensure that

P(ψ) ≤ max{1, 2−1(d2)
−2P(I)}

(

P(φ1) + P(φ2)
)

. (106)

Combining this with (102) establishes (95). The proof of Proposition 5.2 is thus
completed.

Proposition 5.3. Let d ∈ N, let An : R
n → R

n, n ∈ N, and a : R → R be
continuous functions which satisfy for all n ∈ N, x = (x1, . . . , xn) ∈ R

n that
An(x) = (a(x1), . . . , a(xn)), let

N = ∪L∈{2,3,4,... } ∪(l0,l1,...,lL)∈NL+1 (×L
n=1(R

ln×ln−1 × R
ln)), (107)
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let P : N → N, L : N → ∪L∈{2,3,4,... }N
L+1, and R : N → ∪k,l∈NC(R

k,Rl) be the
functions which satisfy for all L ∈ {2, 3, 4, . . .}, l0, l1, . . . , lL ∈ N, Φ = ((W1, B1), . . . ,
(WL, BL)) ∈ (×L

n=1(R
ln×ln−1 × R

ln)), x0 ∈ R
l0, . . ., xL−1 ∈ R

lL−1 with ∀n ∈ N ∩
[1, L) : xn = Aln(Wnxn−1+Bn) that P(Φ) =

∑L
n=1 ln(ln−1+1), R(Φ) ∈ C(Rl0,RlL),

L(Φ) = (l0, l1, . . . , lL), and

(RΦ)(x0) = WLxL−1 +BL, (108)

and let φ1, φ2, I ∈ N , L1, L2 ∈ {2, 3, 4 . . .}, i, l1,0, l1,1, . . . , l1,L1 , l2,0, l2,1, . . . , l2,L2 ∈ N

satisfy for all x ∈ R
d, i ∈ {1, 2} that R(φi) ∈ C(Rd,Rd), L(φi) = (li,0, li,1, . . . , li,Li

) ∈
N

Li+1, L(I) = (d, i, d) ∈ N
3, (R I)(x) = x, and l1,L1−1 ≤ l2,L2−1 + i. Then there

exists ψ ∈ N such that for all x ∈ R
d it holds that R(ψ) ∈ C(Rd,Rd), L(ψ) =

(l1,0, l1,1, . . . , l1,L1−1, l2,1 + i, l2,2 + i, . . . , l2,L2−1 + i, l2,L2) ∈ N
L1+L2, P(ψ) ≤ P(φ1) +

(P(φ2) + P(I))3, and

(Rψ)(x) = (Rφ1)(x) + (Rφ2)
(

(Rφ1)(x)
)

. (109)

Proof of Proposition 5.3. Throughout this proof let (W3,1, B3,1) ∈ (Ri×d×R
i), (W3,2,

B3,2) ∈ (Rd×i×R
d), and ((Wj,1, Bj,1), . . . , (Wj,Lj

, Bj,Lj
)) ∈ (×Lj

n=1(R
lj,n×lj,n−1×R

lj,n)),
j ∈ {1, 2}, satisfy for all j ∈ {1, 2} that I = ((W3,1, B3,1), (W3,2, B3,2)) and φj =
((Wj,1, Bj,1), . . . , (Wj,Lj

, Bj,Lj
)), let L4 = L1+L2−1, let l4,0, l4,1, . . . , l4,L4 ∈ N satisfy

for all i ∈ {0, 1, . . . , L1 − 1}, j ∈ {0, 1, . . . , L2 − 2} that

l4,i = l1,i, l4,L1+j = l2,j+1 + i, and l4,L4 = l2,L2 = d, (110)

let ((W4,1, B4,1), . . . , (W4,L4 , B4,L4)) ∈ (×L4
n=1(R

l4,n×l4,n−1 × R
l4,n)), assume for all i ∈

{1, 2, . . . , L1 − 1} that

(W4,i, B4,i) = (W1,i, B1,i) ∈ (Rl1,i×l1,i−1 × R
l1,i) = (Rl4,i×l4,i−1 × R

l4,i), (111)

W4,L1 =

(

W2,1W1,L1

W3,1W1,L1

)

∈ R
(l2,1+i)×l1,L1−1 = R

l4,L1
×l4,L1−1 , (112)

B4,L1 =

(

W2,1B1,L1 +B2,1

W3,1B1,L1 +B3,1

)

∈ R
(l2,1+i) = R

l4,L1 , (113)

W4,L4 =
(

W2,L2 W3,2

)

∈ R
l2,L2

×(l2,L2−1+i) = R
l4,L4

×l4,L4−1 , (114)

and B4,L4 = B2,L2 +B3,2 ∈ R
l2,L2 = R

l4,L4 , (115)

assume for all j ∈ N ∩ [0, L2 − 2] that

W4,L1+j =

(

W2,j+1 0
0 W3,1W3,2

)

∈ R
(l2,j+1+i)×(l2,j+i) = R

l4,L1+j×l4,L1+j−1 (116)

and B4,L1+j =

(

B2,j+1

W3,1B3,2 +B3,1

)

∈ R
(l2,j+1+i) = R

l4,L1+j , (117)
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and let ψ = ((W4,1, B4,1), . . . , (W4,L4, B4,L4)) ∈ N . Observe that for all x ∈ R
l4,L1−1

it holds that

W4,L1x+B4,L1 =

(

W2,1W1,L1

W3,1W1,L1

)

x+

(

W2,1B1,L1 +B2,1

W3,1B1,L1 +B3,1

)

=

(

W2,1W1,L1x+W2,1B1,L1 +B2,1

W3,1W1,L1x+W3,1B1,L1 +B3,1

)

=

(

W2,1(W1,L1x+B1,L1) +B2,1

W3,1(W1,L1x+B1,L1) +B3,1

)

.

(118)

Moreover, note that for all i ∈ N ∩ [0, L2 − 2], x ∈ R
l2,i , y ∈ R

i it holds that

W4,L1+i

(

x
y

)

+B4,L1+i =

(

W2,i+1 0
0 W3,1W3,2

)(

x
y

)

+

(

B2,i+1

W3,1B3,2 +B3,1

)

=

(

W2,i+1x+B2,i+1

W3,1W3,2y +W3,1B3,2 +B3,1

)

=

(

W2,i+1x+B2,i+1

W3,1(W3,2y +B3,2) +B3,1

)

.

(119)

Next observe that for all x ∈ R
l2,L2−1, y ∈ R

i it holds that

W4,L4

(

x
y

)

+B4,L4 =
(

W2,L2 W3,2

)

(

x
y

)

+B2,L2 + B3,2

= (W2,L2x+B2,L2) + (W3,2y +B3,2).

(120)

Moreover, note that the hypothesis that ∀ y ∈ R
d : (R I)(y) = y ensures that for all

x ∈ R
d it holds that

W3,2Ai(W3,1x+B3,1) +B3,2 = x. (121)

Combining this, (111), (118), (119), and (120) proves that for all x ∈ R
d it holds

that
(Rψ)(x) = (Rφ1)(x) + (Rφ2)

(

(Rφ1)(x)
)

. (122)

Next observe that

P(ψ) =
L4
∑

n=1

l4,n(l4,n−1 + 1) =
L1+L2−1
∑

n=1

l4,n(l4,n−1 + 1)

=

[

L1−1
∑

n=1

l4,n(l4,n−1 + 1)

]

+

[

L1+L2−2
∑

n=L1+1

l4,n(l4,n−1 + 1)

]

+ l4,L1(l4,L1−1 + 1) + l4,L1+L2−1(l4,L1+L2−2 + 1)

=

[

L1−1
∑

n=1

l1,n(l1,n−1 + 1)

]

+

[

L2−2
∑

n=1

l4,L1+n(l4,L1+n−1 + 1)

]

+ (l2,1 + i)(l1,L1−1 + 1) + l2,L2(l2,L2−1 + i+ 1).

(123)
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The hypothesis that l1,L1−1 ≤ l2,L2−1 + i therefore assures that

P(ψ) =

[

L1−1
∑

n=1

l1,n(l1,n−1 + 1)

]

+

[

L2−2
∑

n=1

(l2,n+1 + i)(l2,n + i+ 1)

]

+ (l2,1 + i)(l1,L1−1 + 1) + l2,L2(l2,L2−1 + i+ 1)

≤ P(φ1) +

[

L2−2
∑

n=1

[

l2,n+1(l2,n + 1) + l2,n+1i+ i (l2,n + 1) + i
2
]

]

+ (l2,1 + i)(l2,L2−1 + i+ 1) + l2,L2(l2,L2−1 + i+ 1)

≤ P(φ1) +

[

L2−1
∑

n=2

l2,n(l2,n−1 + 1)

]

+ i

[

L2−2
∑

n=1

(l2,n+1 + l2,n)

]

+ (L2 − 2)(i+ i
2) + (l2,1 + i)(l2,L2−1 + i+ 1)

+ l2,L2(l2,L2−1 + 1) + l2,L2i.

(124)

Hence, we obtain that

P(ψ) ≤ P(φ1) +

[

L2
∑

n=2

l2,n(l2,n−1 + 1)

]

+ i

[

L2−2
∑

n=1

(l2,n+1 + l2,n)

]

+ (L2 − 2)(i+ i
2) + i (l2,1 + l2,L2−1 + l2,L2)

+ l2,1(l2,L2−1 + 1) + i (i+ 1)

≤ P(φ1) + P(φ2) + 2 i

[

L2
∑

n=1

l2,n

]

+ (L2 − 1)(i+ i
2) + l2,1(l2,L2−1 + 1).

(125)

Next observe that

P(φ2) =

L2
∑

n=1

l2,n(l2,n−1 + 1) ≥ 2

[

L2
∑

n=1

l2,n

]

≥ 2L2 (126)

and

P(I) = i (d+ 1) + d (i+ 1) ≥ 2 i+ 2. (127)

This and (125) demonstrate that

P(ψ) ≤ P(φ1) + P(φ2) + iP(φ2) + (i+ i
2)P(φ2) + P(φ2)(P(φ2) + 1)

= P(φ1) + P(φ2)(2 + 2 i+ i
2) + (P(φ2))

2

≤ P(φ1) + P(φ2)(P(I) + (P(I))2) + (P(φ2))
2

≤ P(φ1) + 2P(φ2)(P(I))2 + (P(φ2))
2

≤ P(φ1) + (P(φ2) + P(I))3.

(128)

Combining this with (122) establishes (109). The proof of Proposition 5.3 is thus
completed.
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5.3 Representations of the d-dimensional identities

Lemma 5.4 (Artificial neural networks with rectifier functions). Let d ∈ N, let
An : R

n → R
n, n ∈ N, be the functions which satisfy for all n ∈ N, x = (x1, . . . , xn) ∈

R
n that An(x) = (max{x1, 0}, . . . ,max{xn, 0}), let

N = ∪L∈{2,3,4,... } ∪(l0,l1,...,lL)∈NL+1 (×L
n=1(R

ln×ln−1 × R
ln)), (129)

and let P : N → N, L : N → ∪L∈{2,3,4,... }N
L+1, and R : N → ∪k,l∈NC(R

k,Rl) be the
functions which satisfy for all L ∈ {2, 3, 4, . . .}, l0, l1, . . . , lL ∈ N, Φ = ((W1, B1), . . . ,
(WL, BL)) ∈ (×L

n=1(R
ln×ln−1 × R

ln)), x0 ∈ R
l0, . . ., xL−1 ∈ R

lL−1 with ∀n ∈ N ∩
[1, L) : xn = Aln(Wnxn−1+Bn) that P(Φ) =

∑L
n=1 ln(ln−1+1), R(Φ) ∈ C(Rl0,RlL),

L(Φ) = (l0, l1, . . . , lL), and

(RΦ)(x0) = WLxL−1 +BL. (130)

Then there exists ψ ∈ N such that for all x ∈ R
d it holds that R(ψ) ∈ C(Rd,Rd),

L(ψ) = (d, 2d, d) ∈ N
3, and

(Rψ)(x) = x. (131)

Proof of Lemma 5.4. Throughout this proof let w1 ∈ R
2×1, w2 ∈ R

1×2, (W1, B1) ∈
(R(2d)×d × R

2d), and (W2, B2) ∈ (Rd×(2d) × R
d) satisfy that

w1 =

(

1
−1

)

∈ R
2×1, W1 =















w1 0 0 · · · 0
0 w1 0 · · · 0
0 0 w1 · · · 0
...

...
...

. . .
...

0 0 0 · · · w1















∈ R
(2d)×d, B1 = 0 ∈ R

2d,

(132)

w2 =
(

1 −1
)

∈ R
1×2, W2 =















w2 0 0 · · · 0
0 w2 0 · · · 0
0 0 w2 · · · 0
...

...
...

. . .
...

0 0 0 · · · w2















∈ R
d×(2d), B2 = 0 ∈ R

d

(133)
and let ψ = ((W1, B1), (W2, B2)) ∈ N . Observe that for all x = (x1, x2, . . . , xd) ∈ R

d

it holds that

W1x+B1 = W1x =











w1x1
w1x2
...

w1xd











∈ R
2d. (134)
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This ensures that for all x = (x1, x2, . . . , xd) ∈ R
d it holds that

A(2d)(W1x+B1) =























max{x1, 0}
max{−x1, 0}
max{x2, 0}
max{−x2, 0}

...
max{xd, 0}

max{−xd, 0}.























∈ R
2d. (135)

Hence, we obtain that for all x = (x1, x2, . . . , xd) ∈ R
d it holds that

W2A(2d)(W1x+B1) +B2 = W2























max{x1, 0}
max{−x1, 0}
max{x2, 0}
max{−x2, 0}

...
max{xd, 0}

max{−xd, 0}.























=











max{x1, 0} −max{−x1, 0}
max{x2, 0} −max{−x2, 0}

...
max{xd, 0} −max{−xd, 0}











= x ∈ R
d.

(136)

This demonstrates that for all x ∈ R
d it holds that

(Rψ)(x) = x. (137)

Combining this with the fact that L(ψ) = (d, 2d, d) ∈ N
3 establishes (131). The

proof of Lemma 5.4 is thus completed.

6 DNN approximations for partial differential

equations (PDEs)

In this section we establish in our main result in Theorem 6.3 in Subsection 6.2 be-
low that rectified DNNs have the capacity to approximate solutions of second-order
Kolmogorov PDEs with nonlinear drift and constant diffusion coefficients without
suffering from the curse of dimensionality. Our proof of Theorem 6.3 is based on
an application of Corollary 6.2 in Subsection 6.1 below. Corollary 6.2, in turn, fol-
lows immediately from Proposition 6.1 in Subsection 6.1 below. Proposition 6.1
is, roughly speaking, a generalized version of Theorem 6.3 which covers a more
general type of activation function instead of only the rectifier function as the em-
ployed activation function. Proposition 6.1 shows for every p ∈ [2,∞) that the
Lp(νd;R)-distance between the solution of the PDE at the time of maturity and the
DNN is smaller or equal than the prescribed approximation accuracy ε > 0, where
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νd : B(Rd) → [0, 1], d ∈ N, is a suitable sequence of probability measures. Corol-
lary 6.2 slightly generalizes this result, in particular, by assuming that p ∈ (0,∞)
is an arbitrary strictly positive real number instead of assuming that p ∈ [2,∞) is
greater or equal than 2 (cf. Proposition 6.1). Finally, in Corollary 6.4 in Subsec-
tion 6.3 below we specialize Theorem 6.3 in Subsection 6.2 to the case where for
every d ∈ N we have that the probability measure νd is nothing else but the uniform
distribution on the d-dimensional unit cube [0, 1]d. Theorem 1.1 in the introduction
in Section 1 above follows directly from Corollary 6.4 in Subsection 6.3.

6.1 DNN approximations with general activation functions

Proposition 6.1. Let T, κ ∈ (0,∞), η ∈ [1,∞), p ∈ [2,∞), let Ad = (ad,i,j)(i,j)∈{1,...,d}2
∈ R

d×d, d ∈ N, be symmetric positive semidefinite matrices, for every d ∈ N let
‖·‖

Rd : Rd → [0,∞) be the d-dimensional Euclidean norm and let νd : B(Rd) → [0, 1]
be a probability measure, let f0,d : R

d → R, d ∈ N, and f1,d : R
d → R

d, d ∈ N, be
functions, let Ad : R

d → R
d, d ∈ N, and a : R → R be continuous functions which

satisfy for all d ∈ N, x = (x1, . . . , xd) ∈ R
d that Ad(x) = (a(x1), . . . , a(xd)), let

N = ∪L∈{2,3,4,... } ∪(l0,l1,...,lL)∈NL+1 (×L
n=1(R

ln×ln−1 × R
ln)), (138)

let P : N → N, L : N → ∪L∈{2,3,4,... }N
L+1, and R : N → ∪k,l∈NC(R

k,Rl) be the
functions which satisfy for all L ∈ {2, 3, 4, . . .}, l0, l1, . . . , lL ∈ N, Φ = ((W1, B1), . . . ,
(WL, BL)) ∈ (×L

n=1(R
ln×ln−1 × R

ln)), x0 ∈ R
l0, . . ., xL−1 ∈ R

lL−1 with ∀n ∈ N ∩
[1, L) : xn = Aln(Wnxn−1+Bn) that P(Φ) =

∑L
n=1 ln(ln−1+1), R(Φ) ∈ C(Rl0,RlL),

L(Φ) = (l0, l1, . . . , lL), and

(RΦ)(x0) = WLxL−1 +BL, (139)

let (φm,d
ε )(m,d,ε)∈{0,1}×N×(0,1] ⊆ N , (φ2,d)d∈N ⊆ N , and assume for all d ∈ N, ε ∈

(0, 1], x, y ∈ R
d that R(φ0,d

ε ) ∈ C(Rd,R), R(φ1,d
ε ),R(φ2,d) ∈ C(Rd,Rd), |f0,d(x)| +

∑d
i,j=1 |ad,i,j| ≤ κdκ(1+‖x‖κ

Rd), ‖f1,d(x)−f1,d(y)‖Rd ≤ κ‖x−y‖Rd, ‖(Rφ1,d
ε )(x)‖Rd ≤

κ(dκ + ‖x‖Rd), P(φ2,d) +
∑1

m=0P(φm,d
ε ) ≤ κdκε−κ, |(Rφ0,d

ε )(x) − (Rφ0,d
ε )(y)| ≤

κdκ(1+‖x‖κ
Rd+‖y‖κ

Rd)‖x−y‖Rd, L(φ2,d) ∈ N
3, (Rφ2,d)(x) = x,

∫

Rd ‖z‖p(2κ+1)

Rd νd(dz) ≤
ηdη, and

|f0,d(x)− (Rφ0,d
ε )(x)|+ ‖f1,d(x)− (Rφ1,d

ε )(x)‖Rd ≤ εκdκ(1 + ‖x‖κ
Rd). (140)

Then

(i) there exist unique at most polynomially growing functions ud : [0, T ]×R
d → R,

d ∈ N, such that for all d ∈ N, x ∈ R
d it holds that ud(0, x) = f0,d(x) and such

that for all d ∈ N it holds that ud is a viscosity solution of

( ∂
∂t
ud)(t, x) = ( ∂

∂x
ud)(t, x) f1,d(x) +

d
∑

i,j=1

ad,i,j (
∂2

∂xi∂xj
ud)(t, x) (141)

for (t, x) ∈ (0, T )× R
d and
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(ii) there exist (ψd,ε)(d,ε)∈N×(0,1] ⊆ N , c ∈ R such that for all d ∈ N, ε ∈ (0, 1] it
holds that P(ψd,ε) ≤ c dcε−c, R(ψd,ε) ∈ C(Rd,R), and

[
∫

Rd

|ud(T, x)− (Rψd,ε)(x)|p νd(dx)
]1/p

≤ ε. (142)

Proof of Proposition 6.1. Throughout this proof let ι ∈ R be the real number given
by ι = max{κ, 1}, let Ad ∈ R

d×d, d ∈ N, satisfy for all d ∈ N that Ad =
√
2Ad,

let Φ0,d
δ : Rd → R, δ ∈ (0, 1], d ∈ N, and Φ1,d

δ : Rd → R
d, δ ∈ (0, 1], d ∈ N, be the

functions which satisfy for all m ∈ {0, 1}, d ∈ N, δ ∈ (0, 1], x ∈ R
d that

Φm,d
δ (x) = (Rφm,d

δ )(x), (143)

let (Ω,F ,P) be a probability space, let W d,m : [0, T ] × Ω → R
d, d,m ∈ N, be

independent standard Brownian motions, let ̟d,q ∈ R, d ∈ N, q ∈ (0,∞), satisfy
for all q ∈ (0,∞), d ∈ N that

̟d,q =
(

E
[

‖AdW
d,1
T ‖q

Rd

])1/q
, (144)

let Xd,x : [0, T ] × Ω → R
d, d ∈ N, x ∈ R

d, be stochastic processes with continuous
sample paths which satisfy for all x ∈ R

d, d ∈ N, t ∈ [0, T ] that

Xd,x
t = x+

∫ t

0

f1,d(X
d,x
s ) ds+AdW

d,1
t (145)

(cf. Theorem 3.1), let χδ : [0, T ] → [0, T ], δ ∈ (0, 1], be the functions which satisfy
for all δ ∈ (0, 1], t ∈ [0, T ] that

χδ(t) = max
({

0, δ2, 2δ2, 3δ2, . . .
}

∩ [0, t]
)

, (146)

let Y δ,d,m,x : [0, T ] × Ω → R
d, δ ∈ (0, 1], d,m ∈ N, x ∈ R

d, be stochastic processes
with continuous sample paths which satisfy for all x ∈ R

d, d,m ∈ N, δ ∈ (0, 1],
t ∈ [0, T ] that

Y δ,d,m,x
t = x+

∫ t

0

Φ1,d
δ

(

Y δ,d,m,x
χδ(s)

)

ds+AdW
d,m
t , (147)

let Md,ε ∈ N, d ∈ N, ε ∈ (0, 1], be the natural numbers which satisfy for all ε ∈ (0, 1],
d ∈ N that

Md,ε

= min

(

N ∩
[

(

2(κ+4)pκdκeκ
2T

ε

)2[

1 +
(

κdκT +
√

2(pι− 1)κdκT
)pκ

+ ηdη
]2/p

,∞
))

,

(148)

and let Dd,ε ∈ (0, 1], d ∈ N, ε ∈ (0, 1], be the real numbers which satisfy for all
ε ∈ (0, 1], d ∈ N that

Dd,ε = ε
[

max{2κdκ, 1}+ T−1/2
]−1

e−(3+3κ+[κ2+2κι+2]T )
∣

∣max{1, 2κ(κ+ 1)dκ}
∣

∣

−1
2−(2ι+1)

·
[

∣

∣2 + max{1, κdκ, ‖f1,d(0)‖Rd}max{1, T}+
√

2(2ι− 1)κdκT
∣

∣

pι+pκ
+ ηdη

]− 1
p

.

(149)
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Observe that the assumption that for all d ∈ N, ε ∈ (0, 1] it holds that R(φ0,d
ε ) ∈

C(Rd,R) and (140) ensure that f0,d ∈ C(Rd,R). This, the fact that for all d ∈ N

it holds that the function f1,d : R
d → R

d is Lipschitz continuous, and Theorem 3.1
establish item (i). It thus remains to prove item (ii). For this note that the fact that
∀ y, z ∈ R, α ∈ [1,∞) : |y + z|α ≤ 2α−1(|y|α + |z|α) and Theorem 3.1 ensure that for
all M, d ∈ N, δ ∈ (0, 1] it holds that

∫

Rd

E

[

∣

∣

∣

∣

ud(T, x)−
1

M

[

M
∑

m=1

Φ0,d
δ (Y δ,d,m,x

T )

]∣

∣

∣

∣

p
]

νd(dx)

≤ 2p−1

∫

Rd

E

[

∣

∣ud(T, x)− E
[

Φ0,d
δ (Y δ,d,1,x

T )
]∣

∣

p
]

νd(dx)

+ 2p−1

∫

Rd

E

[

∣

∣

∣

∣

E
[

Φ0,d
δ (Y δ,d,1,x

T )
]

− 1

M

[

M
∑

m=1

Φ0,d
δ (Y δ,d,m,x

T )

]∣

∣

∣

∣

p
]

νd(dx)

= 2p−1

∫

Rd

∣

∣E
[

f0,d(X
d,x
T )
]

− E
[

Φ0,d
δ (Y δ,d,1,x

T )
]∣

∣

p
νd(dx)

+ 2p−1

∫

Rd

E

[

∣

∣

∣

∣

E
[

Φ0,d
δ (Y δ,d,1,x

T )
]

− 1

M

[

M
∑

m=1

Φ0,d
δ (Y δ,d,m,x

T )

]∣

∣

∣

∣

p
]

νd(dx).

(150)

The fact that 2
√
p− 1 ≤ p and, e.g., Grohs et al. [26, Corollary 2.5] hence prove

that for all M, d ∈ N, δ ∈ (0, 1] it holds that
∫

Rd

E

[

∣

∣

∣

∣

ud(T, x)−
1

M

[

M
∑

m=1

Φ0,d
δ (Y δ,d,m,x

T )

]∣

∣

∣

∣

p
]

νd(dx)

≤ 2p−1

∫

Rd

∣

∣E
[

f0,d(X
d,x
T )
]

− E
[

Φ0,d
δ (Y δ,d,1,x

T )
]∣

∣

p
νd(dx)

+
2p−1(2

√
p− 1)p

M p/2

∫

Rd

E

[

∣

∣Φ0,d
δ (Y δ,d,1,x

T )− E
[

Φ0,d
δ (Y δ,d,1,x

T )
]∣

∣

p
]

νd(dx)

≤ 2p−1

∫

Rd

∣

∣E
[

f0,d(X
d,x
T )
]

− E
[

Φ0,d
δ (Y δ,d,1,x

T )
]∣

∣

p
νd(dx)

+
2p−1pp

M p/2

∫

Rd

E

[

∣

∣Φ0,d
δ (Y δ,d,1,x

T )− E
[

Φ0,d
δ (Y δ,d,1,x

T )
]∣

∣

p
]

νd(dx).

(151)

The fact that ∀ y, z ∈ R, α ∈ [1,∞) : |y + z|α ≤ 2α−1(|y|α + |z|α) and Jensen’s
inequality therefore assure that for all M, d ∈ N, δ ∈ (0, 1] it holds that

∫

Rd

E

[

∣

∣

∣

∣

ud(T, x)−
1

M

[

M
∑

m=1

Φ0,d
δ (Y δ,d,m,x

T )

]∣

∣

∣

∣

p
]

νd(dx)

≤ 2p−1

∫

Rd

∣

∣E
[

f0,d(X
d,x
T )
]

− E
[

Φ0,d
δ (Y δ,d,1,x

T )
]∣

∣

p
νd(dx)

+
22(p−1)pp

M p/2

∫

Rd

E

[

∣

∣Φ0,d
δ (Y δ,d,1,x

T )
∣

∣

p
]

+ E

[

∣

∣E
[

Φ0,d
δ (Y δ,d,1,x

T )
]∣

∣

p
]

νd(dx)

≤ 2p−1

∫

Rd

∣

∣E
[

f0,d(X
d,x
T )
]

− E
[

Φ0,d
δ (Y δ,d,1,x

T )
]∣

∣

p
νd(dx)

+
22p−1pp

M p/2

∫

Rd

E

[

∣

∣Φ0,d
δ (Y δ,d,1,x

T )
∣

∣

p
]

νd(dx).

(152)
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Next observe that for all d ∈ N, x, y ∈ R
d it holds that

2

∫ 1

0

[

r‖x‖Rd + (1− r)‖y‖Rd

]κ
dr ≥

∫ 1

0

[

rκ‖x‖κ
Rd + (1− r)κ‖y‖κ

Rd

]

dr

=
[

‖x‖κ
Rd + ‖y‖κ

Rd

]

∫ 1

0

rκ dr =

[

‖x‖κ
Rd + ‖y‖κ

Rd

]

κ+ 1
.

(153)

This and the hypothesis that ∀ d ∈ N, δ ∈ (0, 1], x, y ∈ R
d : |(Rφ0,d

δ )(x)− (Rφ0,d
δ )(y)|

≤ κdκ(1 + ‖x‖κ
Rd + ‖y‖κ

Rd)‖x− y‖Rd prove that for all d ∈ N, δ ∈ (0, 1], x, y ∈ R
d it

holds that

|Φ0,d
δ (x)− Φ0,d

δ (y)| = |(Rφ0,d
δ )(x)− (Rφ0,d

δ )(y)|
≤ κdκ(1 + ‖x‖κ

Rd + ‖y‖κ
Rd)‖x− y‖Rd

≤ κdκ
(

1 + 2(κ+ 1)

∫ 1

0

[

r‖x‖Rd + (1− r)‖y‖Rd

]κ
dr

)

‖x− y‖Rd

≤ 2κ(κ+ 1)dκ
(

1 +

∫ 1

0

[

r‖x‖Rd + (1− r)‖y‖Rd

]κ
dr

)

‖x− y‖Rd.

(154)

Proposition 4.6 (with d = d, m = d, ξ = x, T = T , c = κ, C = κdκ, ε0 = δκdκ,
ε1 = δκdκ, ε2 = 0, ς0 = κ, ς1 = κ, ς2 = 0, L0 = 2κ(κ + 1)dκ, L1 = κ, ℓ = κ,
h = min{δ2, T}, B = Ad, p = 2, q = 2, ‖·‖ = ‖·‖

Rd, (Ω,F ,P) = (Ω,F ,P),
W = W d,1, φ0 = Φ0,d

δ , f1 = f1,d, φ2 = idRd, χ = χmin{δ,
√
T}, f0 = f0,d, φ1 = Φ1,d

δ ,

(̟r)r∈(0,∞) = (̟d,r)r∈(0,∞), X = Xd,x, Y = Y δ,d,1,x for d ∈ N, x ∈ R
d, δ ∈ (0, 1] in

the notation of Proposition 4.6) hence ensures that for all d ∈ N, δ ∈ (0, 1], x ∈ R
d

it holds that
∣

∣E
[

f0,d(X
d,x
T )
]

− E
[

Φ0,d
δ (Y δ,d,1,x

T )
]∣

∣

p ≤
[

2δκdκ + (min{δ2, T}/T )1/2
]p

· ep(κ+3+2κ+[κmax{κ,κ}+κmax{κ,1}+κmax{κ,1}+2]T )
[

‖x‖Rd +max{1, 0}(1 + 1)

+ max{1, κdκ, ‖f1,d(0)‖Rd}max{1, T}+̟d,max{κ,2κ,2,2κ}
]pmax{1,κ,κ}+pκ

·
∣

∣max{1, 2κ(κ+ 1)dκ}
∣

∣

p

≤
[

2δκdκ + (δ2/T )
1/2
]p
ep(3+3κ+[κ2+2κι+2]T )

∣

∣max{1, 2κ(κ+ 1)dκ}
∣

∣

p

·
[

‖x‖Rd + 2 +max{1, κdκ, ‖f1,d(0)‖Rd}max{1, T}+̟d,max{2κ,2}
]pι+pκ

.

(155)

Moreover, note that Lemma 4.2 assures that for all q ∈ [2,∞), d ∈ N it holds that

̟d,q ≤
√

(q − 1) Trace(A∗
dAd)T =

√

2(q − 1) Trace(Ad)T ≤
√

2(q − 1)κdκT .

(156)

This, (155), and the fact that ∀ y, z ∈ R, α ∈ [1,∞) : |y + z|α ≤ 2α−1(|y|α + |z|α)
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demonstrate that for all d ∈ N, δ ∈ (0, 1] it holds that

∫

Rd

∣

∣E
[

f0,d(X
d,x
T )
]

− E
[

Φ0,d
δ (Y δ,d,1,x

T )
]∣

∣

p
νd(dx)

≤ δp
[

2κdκ + T−1/2
]p
ep(3+3κ+[κ2+2κι+2]T )

∣

∣max{1, 2κ(κ+ 1)dκ}
∣

∣

p

·
∫

Rd

[

‖x‖Rd + 2 +max{1, κdκ, ‖f1,d(0)‖Rd}max{1, T}+
√

2(2ι− 1)κdκT
]pι+pκ

νd(dx)

≤ δp
[

2κdκ + T−1/2
]p
ep(3+3κ+[κ2+2κι+2]T )

∣

∣max{1, 2κ(κ+ 1)dκ}
∣

∣

p

· 2pι+pκ−1

(

[

2 + max{1, κdκ, ‖f1,d(0)‖Rd}max{1, T}+
√

2(2ι− 1)κdκT
]pι+pκ

+

∫

Rd

‖x‖pι+pκ
Rd νd(dx)

)

. (157)

Next note that the fact that ι ≤ κ + 1 and Hölder’s inequality prove that for all
d ∈ N it holds that

∫

Rd

‖x‖pι+pκ
Rd νd(dx) ≤

[
∫

Rd

‖x‖p(2κ+1)

Rd νd(dx)

](ι+κ)/(2κ+1)

≤ [ηdη]
(ι+κ)/(2κ+1) ≤ ηdη.

(158)

Combining this and (157) ensures that for all d ∈ N, δ ∈ (0, 1] it holds that

2p−1

∫

Rd

∣

∣E
[

f0,d(X
d,x
T )
]

− E
[

Φ0,d
δ (Y δ,d,1,x

T )
]∣

∣

p
νd(dx)

≤ δp
[

2κdκ + T−1/2
]p
ep(3+3κ+[κ2+2κι+2]T )

∣

∣max{1, 2κ(κ+ 1)dκ}
∣

∣

p
2p(2ι+1)−2 (159)

·
(

[

2 + max{1, κdκ, ‖f1,d(0)‖Rd}max{1, T}+
√

2(2ι− 1)κdκT
]pι+pκ

+ ηdη
)

.

Next observe that for all d ∈ N, δ ∈ (0, 1], x ∈ R
d it holds that

|Φ0,d
δ (x)| ≤ |Φ0,d

δ (x)− f0,d(x)|+ |f0,d(x)|
≤ δκdκ(1 + ‖x‖κ

Rd) + κdκ(1 + ‖x‖κ
Rd) ≤ 2κdκ(1 + ‖x‖κ

Rd).
(160)

Moreover, note that Lemma 4.1 shows that for all q ∈ [1,∞), δ ∈ (0, 1], d,m ∈ N,
x ∈ R

d it holds that

(

E
[

‖Y δ,d,m,x
T ‖q

Rd

])1/q ≤
(

‖x‖Rd + κdκT +
(

E
[

‖AdW
d,m
T ‖q

Rd

])1/q
)

eκT

=
(

‖x‖Rd + κdκT +̟d,q

)

eκT .
(161)

This and (156) demonstrate that for all q ∈ [2,∞), δ ∈ (0, 1], d,m ∈ N, x ∈ R
d it

holds that

(

E
[

‖Y δ,d,m,x
T ‖q

Rd

])1/q ≤
(

‖x‖Rd + κdκT +
√

2(q − 1)κdκT
)

eκT . (162)

35



Combining this with (160), the fact that ∀ y, z ∈ R, α ∈ [1,∞) : |y+z|α ≤ 2α−1(|y|α+
|z|α), and Hölder’s inequality ensures that for all δ ∈ (0, 1], d ∈ N it holds that
∫

Rd

E

[

∣

∣Φ0,d
δ (Y δ,d,1,x

T )
∣

∣

p
]

νd(dx) ≤
(

2κdκ
)p
∫

Rd

E

[(

1 + ‖Y δ,d,1,x
T ‖κ

Rd

)p]

νd(dx)

≤
(

2κdκ
)p
2p−1

∫

Rd

E

[

1 + ‖Y δ,d,1,x
T ‖pκ

Rd

]

νd(dx)

≤
(

4κdκ
)p
(

1 +

∫

Rd

E

[

‖Y δ,d,1,x
T ‖pκ

Rd

]

νd(dx)

)

≤
(

4κdκ
)p
(

1 +

∫

Rd

E

[

‖Y δ,d,1,x
T ‖pι

Rd

]κ/ι

νd(dx)

)

≤
(

4κdκ
)p
(

1 +

∫

Rd

[

(

‖x‖Rd + κdκT +
√

2(pι− 1)κdκT
)

eκT
]pκ

νd(dx)

)

.

(163)

The fact that ∀ y, z ∈ R, α ∈ [0,∞) : |y + z|α ≤ 2α(|y|α + |z|α) hence proves that for
all δ ∈ (0, 1], d ∈ N it holds that
∫

Rd

E

[

∣

∣Φ0,d
δ (Y δ,d,1,x

T )
∣

∣

p
]

νd(dx) (164)

≤
(

4κdκ
)p
(

1 + 2pκ epκ
2T

[
∫

Rd

‖x‖pκ
Rd νd(dx) +

(

κdκT +
√

2(pι− 1)κdκT
)pκ
])

≤
(

4κdκ
)p
2pκ epκ

2T

[

1 +
(

κdκT +
√

2(pι− 1)κdκT
)pκ

+

∫

Rd

‖x‖pκ
Rd νd(dx)

]

.

Next note that Hölder’s inequality shows that for all d ∈ N it holds that

∫

Rd

‖x‖pκ
Rd νd(dx) ≤

[
∫

Rd

‖x‖p(2κ+1)

Rd νd(dx)

]κ/(2κ+1)

≤ [ηdη]
κ/(2κ+1) ≤ ηdη.

(165)

Combining this and (164) ensures that for all δ ∈ (0, 1], d ∈ N it holds that

22p−1pp
∫

Rd

E

[

∣

∣Φ0,d
δ (Y δ,d,1,x

T )
∣

∣

p
]

νd(dx) (166)

≤
(

2κ+4pκdκeκ
2T
)p

2

[

1 +
(

κdκT +
√

2(pι− 1)κdκT
)pκ

+ ηdη
]

.

This, (152), and (159) prove that for all d ∈ N, ε ∈ (0, 1] it holds that

∫

Rd

E

[

∣

∣

∣

∣

ud(T, x)−
1

Md,ε

[

Md,ε
∑

m=1

Φ0,d
Dd,ε

(

Y
Dd,ε,d,m,x
T

)

]∣

∣

∣

∣

p
]

νd(dx) ≤ εp

4
+ εp

2
< εp. (167)

Corollary 2.4 therefore assures that for all d ∈ N, ε ∈ (0, 1] there exists wd,ε ∈ Ω
such that

[

∫

Rd

∣

∣

∣

∣

ud(T, x)−
1

Md,ε

[

Md,ε
∑

m=1

(

Rφ0,d
Dd,ε

)

(

Y
Dd,ε,d,m,x
T (wd,ε)

)

]∣

∣

∣

∣

p

νd(dx)

]1/p

< ε. (168)
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Moreover, note that for all d ∈ N, ε ∈ (0, 1] it holds that

Md,ε ≤
(

2(κ+4)pκdκeκ
2T

ε

)2[

1 +
(

κdκT +
√

2(pι− 1)κdκT
)pκ

+ ηdη
]2/p

+ 1

= 22(κ+4)p2κ2d2κe2κ
2T
[

1 +
(

κdκT +
√

2(pι− 1)κdκT
)pκ

+ ηdη
]2/p

ε−2 + 1

≤ 22(κ+4)p2κ2d2κe2κ
2T
[

1 +
(

κdκT +
√

2(pι− 1)κdκT
)pκ

+ ηdη
]

ε−2 + 1

≤ 22(κ+4)p2κ2d2κe2κ
2T
[

1 +
(

ιdιT + pιdι
√
T
)pκ

+ ηdη
]

ε−2 + 1. (169)

Hence, we obtain that for all d ∈ N, ε ∈ (0, 1] it holds that

Md,ε ≤ 22(κ+4)p2κ2d2κe2κ
2T
[

1 +
∣

∣2pιdι max{1, T}|pκ + ηdη
]

ε−2 + 1

≤ 22(κ+4)p2κ2d2κe2κ
2Tdmax{pκι,η}[1 + |2pιmax{1, T}|pκ + η

]

ε−2 + 1

≤ 22(κ+4)p2κ2e2κ
2T
[

1 + |2pιmax{1, T}|pκ + η
]

dpκι+η+2κε−2 + 1

≤ 22(κ+4)p2ι2e2κ
2T
[

1 + |2pιmax{1, T}|pκ + η
]

dpκι+η+2κε−2 + 1

≤ 22(κ+4)p2ι2e2κ
2T
[

2 + |2pιmax{1, T}|pκ + η
]

dpκι+η+2κε−2.

(170)

Next observe that for all d ∈ N, ε ∈ (0, 1] it holds that

‖f1,d(0)‖Rd ≤ ‖f1,d(0)− (Rφ1,d
ε )(0)‖Rd + ‖(Rφ1,d

ε )(0)‖Rd

≤ εκdκ + κdκ ≤ 2κdκ ≤ 2ιdκ.
(171)

Therefore, we obtain that for all d ∈ N, ε ∈ (0, 1] it holds that

Dd,ε = ε
[

max{2κdκ, 1}+ T−1/2
]−1

e−(3+3κ+[κ2+2κι+2]T )
∣

∣max{1, 2κ(κ+ 1)dκ}
∣

∣

−1
2−(2ι+1)

·
(

[

2 + max{1, κdκ, ‖f1,d(0)‖Rd}max{1, T}+
√

2(2ι− 1)κdκT
]pι+pκ

+ ηdη
)

−1/p

≥ ε
[

max{2κdκ, 1}+ T−1/2
]−1

e−(3+3κ+[κ2+2κι+2]T )
∣

∣max{1, 2κ(κ+ 1)dκ}
∣

∣

−1
2−(2ι+1)

·
(

[

2 + max{1, κdκ, 2ιdκ}max{1, T}+
√

2(2ι− 1)κdκT
]pι+pκ

+ ηdη
)

−1/p

≥ ε
[

2max{2κdκ, 1, T−1/2}
]−1

e−(3+3ι+[3ι2+2]T )
∣

∣max{1, 2κ(κ+ 1)dκ}
∣

∣

−1
2−(2ι+1)

·
(

[

2 + 2ιdκmax{1, T}+ 2ιdκ
√
T
]pι+pκ

+ ηdη
)

−1/p

. (172)

This proves that for all d ∈ N, ε ∈ (0, 1] it holds that

Dd,ε ≥ ε
∣

∣4ιdκmax{1, T−1/2}
∣

∣

−1
e−(3ι2+3)(T+1)

∣

∣4ι2dκ
∣

∣

−1
2−(2ι+1)

·
(

[

6ιdκ max{1, T}
]pι+pκ

+ ηdη
)

−1/p

≥ ε
∣

∣4ιdκmax{1, T−1/2}
∣

∣

−1
e−(3ι2+3)(T+1)

∣

∣4ι2dκ
∣

∣

−1
2−(2ι+1)

·
(

[

6ιmax{1, T}
]pι+pκ

+ η
)

−1/p

d
[−κ(pι+pκ)−η]/p

≥
∣

∣4ιmax{1, T−1/2}
∣

∣

−1
e−(3ι2+3)(T+1)

∣

∣4ι2
∣

∣

−1
2−(2ι+1)

·
(

[6ιmax{1, T}]pι+pκ + η
)
−1/p

d−(2κ+κ(κ+ι)+η)ε.

(173)
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Hence, we obtain that for all d ∈ N, ε ∈ (0, 1] it holds that

Dd,ε ≥ |min{1, T 1/2}|e−(3ι2+3)(T+1) ι−32−(2ι+5)

·
(

[6ιmax{1, T}]pι+pκ + η
)
−1/p

d−(κ(2+κ+ι)+η)ε.
(174)

Moreover, note that Proposition 5.3 ensures that for all δ ∈ (0, 1], d ∈ N, t ∈ [0, T ],
ω ∈ Ω there exist (ψδ,d,m,t,ω)m∈N ⊆ N such that for all x ∈ R

d, m ∈ N it holds that

R(ψδ,d,m,t,ω) ∈ C(Rd,Rd), P(ψδ,d,m,t,ω) ≤ P(φ2,d)+(P(φ2,d)+P(φ1,d
δ ))3[χδ(t)/δ

2+1],
L(ψδ,d,m,t,ω) = L(ψδ,d,1,t,ω), and

(Rψδ,d,m,t,ω)(x) = Y δ,d,m,x
t (ω). (175)

This demonstrates that for all δ ∈ (0, 1], d,m ∈ N, ω ∈ Ω it holds that

P(ψδ,d,m,T,ω) ≤
(

P(φ2,d) + P(φ1,d
δ )
)3[
χδ(T )/δ

2 + 2
]

≤
(

κdκδ−κ
)3[

T/δ2 + 2
]

≤ κ3(T + 2)d3κδ−3κ−2.
(176)

Proposition 5.2 hence proves that for all δ ∈ (0, 1], d ∈ N, ω ∈ Ω there exist
(ϕδ,d,m,ω)m∈N ⊆ N such that for all x ∈ R

d, m ∈ N it holds that R(ϕδ,d,m,ω) ∈
C(Rd,R), P(ϕδ,d,m,ω) ≤ P(φ2,d)(P(φ0,d

δ ) + P(ψδ,d,m,T,ω)), L(ϕδ,d,m,ω) = L(ϕδ,d,1,ω),
and

(Rϕδ,d,m,ω)(x) = Φ0,d
δ (Y δ,d,m,x

T (ω)). (177)

This and (176) ensure that for all δ ∈ (0, 1], d,m ∈ N, ω ∈ Ω it holds that

P(ϕδ,d,m,ω) ≤ κdκ
[

κdκδ−κ + κ3(T + 2)d3κδ−3κ−2
]

≤ κ2d4κδ−3κ−2(T + 2)[1 + κ2] ≤ 2ι2κ2(T + 2)d4κδ−3κ−2.
(178)

Lemma 5.1 and (177) therefore show that for all M, d ∈ N, δ ∈ (0, 1], ω ∈ Ω there
exists ΨM,d,δ,ω ∈ N such that for all x ∈ R

d it holds that R(ΨM,d,δ,ω) ∈ C(Rd,R),
P(ΨM,d,δ,ω) ≤ 2M2ι2κ2(T + 2)d4κδ−3κ−2, and

(RΨM,d,δ,ω)(x) =
1

M

M
∑

m=1

Φ0,d
δ (Y δ,d,m,x

T (ω)). (179)

This, (170), and (174) assure that for all d ∈ N, ε ∈ (0, 1], ω ∈ Ω it holds that

P(ΨMd,ε,d,Dd,ε,ω) ≤ 2|Md,ε|2ι2κ2(T + 2)d4κ|Dd,ε|−3κ−2

≤ 2
(

22(κ+4)p2ι2e2κ
2T
[

2 + |2pιmax{1, T}|pκ + η
]

dpκι+η+2κε−2
)2

· ι2κ2(T + 2)d4κ
[

|min{1, T 1/2}|e−(3ι2+3)(T+1) ι−32−(2ι+5)

·
(

[6ιmax{1, T}]pι+pκ + η
)
−1/p

d−(κ(2+κ+ι)+η)ε
]−3κ−2

(180)

= 2
(

22(κ+4)p2ι2e2κ
2T
[

2 + |2pιmax{1, T}|pκ + η
]

)2

ι2κ2(T + 2)

·
[

|min{1, T 1/2}|e−(3ι2+3)(T+1) ι−32−(2ι+5)
(

[6ιmax{1, T}]pι+pκ + η
)
−1/p
]−3κ−2

· d2(pκι+η+4κ)+(κ(2+κ+ι)+η)(3κ+2)ε−3κ−6.

Combining this and (168) finishes the proof of item (ii). The proof of Proposition 6.1
is thus completed.
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Corollary 6.2. Let T, κ, η, p ∈ (0,∞), let Ad = (ad,i,j)(i,j)∈{1,...,d}2 ∈ R
d×d, d ∈ N,

be symmetric positive semidefinite matrices, for every d ∈ N let ‖·‖
Rd : Rd → [0,∞)

be the d-dimensional Euclidean norm and let νd : B(Rd) → [0, 1] be a probability
measure on R

d, let f0,d : R
d → R, d ∈ N, and f1,d : R

d → R
d, d ∈ N, be functions,

let Ad : R
d → R

d, d ∈ N, and a : R → R be continuous functions which satisfy for
all d ∈ N, x = (x1, . . . , xd) ∈ R

d that Ad(x) = (a(x1), . . . , a(xd)), let

N = ∪L∈{2,3,4,... } ∪(l0,l1,...,lL)∈NL+1 (×L
n=1(R

ln×ln−1 × R
ln)), (181)

let P : N → N, L : N → ∪L∈{2,3,4,... }N
L+1, and R : N → ∪k,l∈NC(R

k,Rl) be the
functions which satisfy for all L ∈ {2, 3, 4, . . .}, l0, l1, . . . , lL ∈ N, Φ = ((W1, B1), . . . ,
(WL, BL)) ∈ (×L

n=1(R
ln×ln−1 × R

ln)), x0 ∈ R
l0, . . ., xL−1 ∈ R

lL−1 with ∀n ∈ N ∩
[1, L) : xn = Aln(Wnxn−1+Bn) that P(Φ) =

∑L
n=1 ln(ln−1+1), R(Φ) ∈ C(Rl0,RlL),

L(Φ) = (l0, l1, . . . , lL), and

(RΦ)(x0) = WLxL−1 +BL, (182)

let (φm,d
ε )(m,d,ε)∈{0,1}×N×(0,1] ⊆ N , (φ2,d)d∈N ⊆ N , and assume for all d ∈ N, ε ∈

(0, 1], x, y ∈ R
d that R(φ0,d

ε ) ∈ C(Rd,R), R(φ1,d
ε ),R(φ2,d) ∈ C(Rd,Rd), |f0,d(x)| +

∑d
i,j=1 |ad,i,j| ≤ κdκ(1+‖x‖κ

Rd), ‖f1,d(x)−f1,d(y)‖Rd ≤ κ‖x−y‖Rd, ‖(Rφ1,d
ε )(x)‖Rd ≤

κ(dκ + ‖x‖Rd), P(φ2,d) +
∑1

m=0P(φm,d
ε ) ≤ κdκε−κ, |(Rφ0,d

ε )(x) − (Rφ0,d
ε )(y)| ≤

κdκ(1+‖x‖κ
Rd+‖y‖κ

Rd)‖x−y‖Rd, L(φ2,d) ∈ N
3, (Rφ2,d)(x) = x,

∫

Rd ‖z‖p(2κ+1)

Rd νd(dz) ≤
ηdη, and

|f0,d(x)− (Rφ0,d
ε )(x)|+ ‖f1,d(x)− (Rφ1,d

ε )(x)‖Rd ≤ εκdκ(1 + ‖x‖κ
Rd). (183)

Then

(i) there exist unique at most polynomially growing functions ud : [0, T ]×R
d → R,

d ∈ N, such that for all d ∈ N, x ∈ R
d it holds that ud(0, x) = f0,d(x) and such

that for all d ∈ N it holds that ud is a viscosity solution of

( ∂
∂t
ud)(t, x) = ( ∂

∂x
ud)(t, x) f1,d(x) +

d
∑

i,j=1

ad,i,j (
∂2

∂xi∂xj
ud)(t, x) (184)

for (t, x) ∈ (0, T )× R
d and

(ii) there exist (ψd,ε)(d,ε)∈N×(0,1] ⊆ N , c ∈ R such that for all d ∈ N, ε ∈ (0, 1] it
holds that P(ψd,ε) ≤ c dcε−c, R(ψd,ε) ∈ C(Rd,R), and

[
∫

Rd

|ud(T, x)− (Rψd,ε)(x)|p νd(dx)
]1/p

≤ ε. (185)

6.2 Rectified DNN approximations

Theorem 6.3. Let T, κ, η, p ∈ (0,∞), let Ad = (ad,i,j)(i,j)∈{1,...,d}2 ∈ R
d×d, d ∈ N,

be symmetric positive semidefinite matrices, for every d ∈ N let ‖·‖
Rd : Rd → [0,∞)

be the d-dimensional Euclidean norm and let νd : B(Rd) → [0, 1] be a probability
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measure on R
d, let f0,d : R

d → R, d ∈ N, and f1,d : R
d → R

d, d ∈ N, be functions, let
Ad : R

d → R
d, d ∈ N, be the functions which satisfy for all d ∈ N, x = (x1, . . . , xd) ∈

R
d that Ad(x) = (max{x1, 0}, . . . ,max{xd, 0}), let

N = ∪L∈{2,3,4,... } ∪(l0,l1,...,lL)∈NL+1 (×L
n=1(R

ln×ln−1 × R
ln)), (186)

let P : N → N, L : N → ∪L∈{2,3,4,... }N
L+1, and R : N → ∪k,l∈NC(R

k,Rl) be the
functions which satisfy for all L ∈ {2, 3, 4, . . .}, l0, l1, . . . , lL ∈ N, Φ = ((W1, B1), . . . ,
(WL, BL)) ∈ (×L

n=1(R
ln×ln−1 × R

ln)), x0 ∈ R
l0, . . ., xL−1 ∈ R

lL−1 with ∀n ∈ N ∩
[1, L) : xn = Aln(Wnxn−1+Bn) that P(Φ) =

∑L
n=1 ln(ln−1+1), R(Φ) ∈ C(Rl0,RlL),

L(Φ) = (l0, l1, . . . , lL), and

(RΦ)(x0) = WLxL−1 +BL, (187)

let (φm,d
ε )(m,d,ε)∈{0,1}×N×(0,1] ⊆ N , and assume for all d ∈ N, ε ∈ (0, 1], x, y ∈ R

d that

R(φ0,d
ε ) ∈ C(Rd,R), R(φ1,d

ε ) ∈ C(Rd,Rd), |f0,d(x)|+
∑d

i,j=1 |ad,i,j| ≤ κdκ(1+‖x‖κ
Rd),

‖f1,d(x)−f1,d(y)‖Rd ≤ κ‖x−y‖Rd , ‖(Rφ1,d
ε )(x)‖Rd ≤ κ(dκ+‖x‖Rd),

∑1
m=0 P(φm,d

ε ) ≤
κdκε−κ, |(Rφ0,d

ε )(x)−(Rφ0,d
ε )(y)| ≤ κdκ(1+‖x‖κ

Rd+‖y‖κ
Rd)‖x−y‖Rd,

∫

Rd ‖z‖p(4κ+15)

Rd νd(dz)
≤ ηdη, and

|f0,d(x)− (Rφ0,d
ε )(x)|+ ‖f1,d(x)− (Rφ1,d

ε )(x)‖Rd ≤ εκdκ(1 + ‖x‖κ
Rd). (188)

Then

(i) there exist unique at most polynomially growing functions ud : [0, T ]×R
d → R,

d ∈ N, such that for all d ∈ N, x ∈ R
d it holds that ud(0, x) = f0,d(x) and such

that for all d ∈ N it holds that ud is a viscosity solution of

( ∂
∂t
ud)(t, x) = ( ∂

∂x
ud)(t, x) f1,d(x) +

d
∑

i,j=1

ad,i,j (
∂2

∂xi∂xj
ud)(t, x) (189)

for (t, x) ∈ (0, T )× R
d and

(ii) there exist (ψd,ε)(d,ε)∈N×(0,1] ⊆ N , c ∈ R such that for all d ∈ N, ε ∈ (0, 1] it
holds that P(ψd,ε) ≤ c dcε−c, R(ψd,ε) ∈ C(Rd,R), and

[
∫

Rd

|ud(T, x)− (Rψd,ε)(x)|p νd(dx)
]1/p

≤ ε. (190)

Proof of Theorem 6.3. Throughout this proof let a : R → R be the function which
satisfies for all x ∈ R that

a(x) = max{x, 0} (191)

and let (φ2,d)d∈N ⊆ N satisfy for all d ∈ N, x ∈ R
d that R(ψ) ∈ C(Rd,Rd),

L(φ2,d) = (d, 2d, d), and (Rφ2,d)(x) = x (cf. Lemma 5.4). Observe that for all
d ∈ N, x = (x1, . . . , xd) ∈ R

d it holds that

Ad(x) = (a(x1), . . . , a(xd)). (192)
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Next note that for all d ∈ N it holds that

P(φ2,d) = 2d(d+ 1) + d(2d+ 1) = 2d2 + 2d+ 2d2 + d = 4d2 + 3d ≤ 7d2. (193)

This proves that for all d ∈ N, ε ∈ (0, 1] it holds that

P(φ2,d) +
1
∑

m=0

P(φm,d
ε ) ≤ 7d2 + κdκε−κ ≤ (κ+ 7)dκ+2ε−κ

≤ (2κ+ 7)d2κ+7ε−(2κ+7).

(194)

Moreover, observe that Young’s inequality assures that for all α ∈ [0,∞) it holds
that

ακ ≤ κ

2κ + 7
· α2κ+7 +

κ+ 7

2κ+ 7
≤ α2κ+7 +

κ + 7

2κ+ 7
. (195)

This ensures that for all d ∈ N, x, y ∈ R
d it holds that

κ(1 + ‖x‖κ
Rd) ≤ κ(2 + ‖x‖2κ+7

Rd ) ≤ (2κ+ 7)(1 + ‖x‖2κ+7
Rd ) (196)

and

κ(1 + ‖x‖κ
Rd + ‖y‖κ

Rd) ≤ κ

(

1 +
2(κ+ 7)

2κ+ 7
+ ‖x‖2κ+7

Rd + ‖y‖2κ+7
Rd

)

=
κ(4κ+ 21)

2κ+ 7
+ κ(‖x‖2κ+7

Rd + ‖y‖2κ+7
Rd )

≤ 2κ+ 7 + (2κ+ 7)(‖x‖2κ+7
Rd + ‖y‖2κ+7

Rd )

= (2κ+ 7)(1 + ‖x‖2κ+7
Rd + ‖y‖2κ+7

Rd ).

(197)

Combining this with (192), (194), the fact that Ad : R
d → R

d, d ∈ N, and a : R → R

are continuous functions, and Corollary 6.2 (with T = T , κ = 2κ+ 7, η = η, p = p,
(Ad)d∈N = (Ad)d∈N, (νd)d∈N = (νd)d∈N, (f0,d)d∈N = (f0,d)d∈N, (f1,d)d∈N = (f1,d)d∈N,
(Ad)d∈N = (Ad)d∈N, a = a, N = N , P = P, L = L, R = R, (φm,d

ε )(m,d,ε)∈{0,1}×N×(0,1]

= (φm,d
ε )(m,d,ε)∈{0,1}×N×(0,1], (φ

2,d)d∈N = (φ2,d)d∈N in the notation of Corollary 6.2)
establishes items (i)–(ii). The proof of Theorem 6.3 is thus completed.

6.3 Rectified DNN approximations on the d-dimensional unit
cube

Corollary 6.4. Let T, κ, p ∈ (0,∞), let Ad = (ad,i,j)(i,j)∈{1,...,d}2 ∈ R
d×d, d ∈ N, be

symmetric positive semidefinite matrices, for every d ∈ N let ‖·‖
Rd : Rd → [0,∞)

be the d-dimensional Euclidean norm, let f0,d : R
d → R, d ∈ N, and f1,d : R

d → R
d,

d ∈ N, be functions, let Ad : R
d → R

d, d ∈ N, be the functions which satisfy for all
d ∈ N, x = (x1, . . . , xd) ∈ R

d that Ad(x) = (max{x1, 0}, . . . ,max{xd, 0}), let

N = ∪L∈{2,3,4,... } ∪(l0,l1,...,lL)∈NL+1 (×L
n=1(R

ln×ln−1 × R
ln)), (198)

let P : N → N and R : N → ∪k,l∈NC(R
k,Rl) be the functions which satisfy for all

L ∈ {2, 3, 4, . . .}, l0, l1, . . . , lL ∈ N, Φ = ((W1, B1), . . . , (WL, BL)) ∈ (×L
n=1(R

ln×ln−1×
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R
ln)), x0 ∈ R

l0, . . ., xL−1 ∈ R
lL−1 with ∀n ∈ N ∩ [1, L) : xn = Aln(Wnxn−1 + Bn)

that P(Φ) =
∑L

n=1 ln(ln−1 + 1), R(Φ) ∈ C(Rl0 ,RlL), and

(RΦ)(x0) = WLxL−1 +BL, (199)

let (φm,d
ε )(m,d,ε)∈{0,1}×N×(0,1] ⊆ N , and assume for all d ∈ N, ε ∈ (0, 1], x, y ∈ R

d that

R(φ0,d
ε ) ∈ C(Rd,R), R(φ1,d

ε ) ∈ C(Rd,Rd), |f0,d(x)|+
∑d

i,j=1 |ad,i,j| ≤ κdκ(1+‖x‖κ
Rd),

‖f1,d(x)−f1,d(y)‖Rd ≤ κ‖x−y‖Rd , ‖(Rφ1,d
ε )(x)‖Rd ≤ κ(dκ+‖x‖Rd),

∑1
m=0 P(φm,d

ε ) ≤
κdκε−κ, |(Rφ0,d

ε )(x)− (Rφ0,d
ε )(y)| ≤ κdκ(1 + ‖x‖κ

Rd + ‖y‖κ
Rd)‖x− y‖Rd, and

|f0,d(x)− (Rφ0,d
ε )(x)|+ ‖f1,d(x)− (Rφ1,d

ε )(x)‖Rd ≤ εκdκ(1 + ‖x‖κ
Rd). (200)

Then

(i) there exist unique at most polynomially growing functions ud : [0, T ]×R
d → R,

d ∈ N, such that for all d ∈ N, x ∈ R
d it holds that ud(0, x) = f0,d(x) and such

that for all d ∈ N it holds that ud is a viscosity solution of

( ∂
∂t
ud)(t, x) = ( ∂

∂x
ud)(t, x) f1,d(x) +

d
∑

i,j=1

ad,i,j (
∂2

∂xi∂xj
ud)(t, x) (201)

for (t, x) ∈ (0, T )× R
d and

(ii) there exist (ψd,ε)(d,ε)∈N×(0,1] ⊆ N , c ∈ R such that for all d ∈ N, ε ∈ (0, 1] it
holds that P(ψd,ε) ≤ c dcε−c, R(ψd,ε) ∈ C(Rd,R), and

[
∫

[0,1]d
|ud(T, x)− (Rψd,ε)(x)|p dx

]1/p

≤ ε. (202)

Proof of Corollary 6.4. Throughout this proof for every d ∈ N let λd : B(Rd) →
[0,∞] be the Lebesgue-Borel measure on R

d and let νd : B(Rd) → [0, 1] be the
function which satisfies for all B ∈ B(Rd) that

νd(B) = λd(B ∩ [0, 1]d). (203)

Observe that (203) implies that for all d ∈ N it holds that νd is a probability measure
on R

d. This and (203) ensure that for all d ∈ N, g ∈ C(Rd,R) it holds that
∫

Rd

|g(x)| νd(dx) =
∫

[0,1]d
|g(x)| dx. (204)

Combining this with, e.g., Grohs et al. [26, Lemma 3.12] demonstrates that for all
d ∈ N it holds that

∫

Rd

‖x‖p(4κ+15)

Rd νd(dx) =

∫

[0,1]d
‖x‖p(4κ+15)

Rd dx ≤ d
p(4κ+15)/2

≤ dp(2κ+8) ≤ p(2κ+ 8)dp(2κ+8).

(205)

Theorem 6.3 (with T = T , κ = κ, η = p(2κ+8), p = p, (Ad)d∈N = (Ad)d∈N, (νd)d∈N =
(νd)d∈N, (f0,d)d∈N = (f0,d)d∈N, (f1,d)d∈N = (f1,d)d∈N, (Ad)d∈N = (Ad)d∈N, N = N , P =
P, R = R, (φm,d

ε )(m,d,ε)∈{0,1}×N×(0,1] = (φm,d
ε )(m,d,ε)∈{0,1}×N×(0,1], (φ

2,d)d∈N = (φ2,d)d∈N
in the notation of Theorem 6.3) and (204) hence establish items (i)–(ii). The proof
of Corollary 6.4 is thus completed.
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