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Abstract

We analyze approximation rates by deep ReLU networks of a class of multi-variate solutions of
Kolmogorov equations which arise in option pricing. Key technical devices are deep ReLLU architectures
capable of efficiently approximating tensor products. Combining this with results concerning the approx-
imation of well behaved (i.e. fulfilling some smoothness properties) univariate functions, this provides
insights into rates of deep ReLU approximation of multi-variate functions with tensor structures. We
apply this in particular to the model problem given by the price of a european maximum option on a
basket of d assets within the Black-Scholes model for european maximum option pricing. We prove that
the solution to the d-variate option pricing problem can be approximated up to an e-error by a deep ReLLU
network of size O <d2+% 57%) where n € N is abitrary (with the constant implied in O(-) depending on
n). The techniques developed in the constructive proof are of independent interest in the analysis of the
expressive power of deep neural networks for solution manifolds of PDEs in high dimension.

Keywords: neural network approximation, low rank approximation, option pricing, high dimensional
PDEs.
MSC2010 Classification: 41Axx, 35Kxx, 65-XX, 65D30

1 Introduction

1.1 Motivation

The development of new classification and regression algorithms based on deep neural networks — coined
“Deep Learning” — revolutionized the area of artificial intelligence, machine learning, and data analysis [12].
More recently, these methods have been applied to the numerical solution of partial differential equations
(PDEs for short) [25 0T}, @, 07, 15 B 8 14]. In these works it has been empirically observed that deep
learning-based methods work exceptionally well when used for the numerical solution of high dimensional
problems arising in option pricing. The numerical experiments carried out in [3] [8,[14] 2] in particular suggest
that deep learning-based methods may not suffer from the curse of dimensionality for these problems. In [24],
a first theoretical result on rates of expression of infinite-variate generalized polynomial chaos expansions for
solution manifolds of certain classes of parametric PDEs has been obtained.

Neural networks constitute a parametrized class of functions constructed by successive applications of
affine mappings and coordinatewise nonlinearities, see [23] for a mathematical introduction. As in [22], we
introduce a neural network via a tuple of matrix vector pairs

® = (AL 010 (AF) 7 0F)S)) € xizy (RNt RY) (1.1)

i,5/i,5=1 > t,j=1
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for given hyperparameters L € N, Ny, N1, ..., N, € N. Given an “activation function” p € C'(R,R), a neural
network ® then describes a function R,(®) € C(RNo,RVN2) that can be evaluated by the recursion

€T = Q(Alxl—l —l—bl),l: 1,...,L—1, [RQ(‘I))] (CL‘Q) =Apx,_1+bpL. (1.2)

The number of nonzero values in the matrix vector tuples defining ® describe the size of ® which will be
denoted by M(®). We refer to Setting [5.1] for a more detailed description. A popular activation function o
is the so-called “Rectified Linear Unit” ReLU(z) = max{x,0} [12].

An increasing body of research addresses the approximation properties (or “expressive power”) of deep
neural networks, where by “approximation properties” we mean the study of the optimal tradeoff between
the size M(®) and the approximation error ||[u — R,(®)|| of neural networks approximating functions u
from a given function class. Classical references include [I6] [7 [T, [6] as well as the summary [23] and the
references therein. In these works it is shown that deep neural networks provide optimal approximation rates
for classical smoothness spaces such as Sobolev spaces or Besov spaces. More recently these results have
been extended to Shearlet and Ridgelet spaces [4], Modulation spaces [21], piecewise smooth functions [22]
and polynomial chaos expansions [24]. All these results indicate that all classical approximation methods
based on sparse expansions can be emulated by neural networks.

1.2 Contributions and Main Result

As a first main contribution of this work we show in Proposition [6.4] that low-rank functions of the form
R d
(@1, xa) €ERY = > e [] 1i(ay), (1.3)
s=1 Jj=1

with b3 € C(R,R) sufficiently regular, and (cs); € R can be approximated to a given relative precision
by deep ReLU neural networks of size scaling like Rd?, that is, without curse of dimensionality. In other
words, we show that in addition all classical approximation methods based on sparse expansions and on more
general low-rank structures, can be emulated by neural networks. Since the solutions of several classes of
high-dimensional PDEs are precisely of this form (see, e.g., [24]), our approximation results can be directly
applied to these problems to establish approximation rates for neural network approximations that do not
suffer from the curse of dimensionality.

As a particular application of the tools developed in the present paper, we provide a mathematical
analysis of the rates of expressive power of DNNs for a particular, high-dimensional PDE which arises in
mathematical finance, namely the pricing of a so-called european mazimum Option; cf., e.g.,
http://www.investment-and-finance.net/derivatives/m/maximum-option.html).

We consider the particular (and not quite realistic) situation that the log-returns of these d assets are
uncorrelated, i.e. their log-returns evolve according to d uncorrelated drifted scalar diffusion processes.

The price of the european maximum Option on this basket of d assets can then be obtained as solution of
the multivariate Black-Scholes equation which reads, for the presently considered case of uncorrelated assets,

as
2

(%u)(t,w) +£ éxi(a%iu)(t,x) + %

For the european maximum option, (4] is completed with the terminal condition

M-

Il
-

|xi|2(ai;gu) (t,x)=0. (1.4)

K2

u(T,z) = p(x) = max{r; — Ky,29 — Ka,...,2q — K4,0} (1.5)

for x = (w1,...,24) € (0,00)% Tt is well known (see, e.g., [I0] and the references there) that there is a unique
classical solution in (0,00)% x [0,T] of the linear, parabolic equation ([C4) which attains continuously the
terminal condition (L5). This solution can be expressed as conditional expectation of the function ¢(z) in
(L3 over suitable sample paths of a d-dimensional diffusion.

One main result of this paper is the following result (stated with completely detailed assumptions below
as Theorem [T3)), on expression rates of deep neural networks for the basket option price u(0, z) for x € [a, b]?
for some 0 < a < b < co. To render their dependence on the number d of assets in the basket explicit, we
write ug in the statement of the theorem.


http://www.investment-and-finance.net/derivatives/m/maximum-option.html

Theorem 1.1. Let n € N, a € (0,00), b € (a,00), (K;)ien C [0, Kmax), and let ug: (0,00) x [a,b]? — R,
d € N, be the functions which satisfy for every d € N, ¢ € (0,00), and for every (t,z) € [0,T] x (0, 00)%

(%ud)(t,x) +5

Ii(a%iud)( x) + "7 i:: ;]2 ( )(t,x) =0 (1.6)

Y-

i=1

with terminal condition att =T
ug(T, x) = p(x) = max{z; — Ki,x0 — Ko,...,0q4 — K4,0}, forz € (0,00)%. (1.7)

Then there exists neural networks (a.c)zc(0,1),den € I which satisfy

(i) that
M(Fd 5) }

sup —F | < o0, 1.8
c€(0,1],deN [dﬂ%a% (18)

and

(i1) for every e € (0,1], d € N that
s[up]d |Ud(0,$) — [RRCLU(Fd,s)] (:Z?)| S E. (19)
zr€la,b

Informally speaking, the previous result states that the price of a d dimensional european maximum
option can, for every n € N, be expressed on cubes [a,b]¢ by deep neural networks to pointwise accuracy
£ > 0 with network size bounded as O(d?*'/"e~1/") for arbitrary, fixed n € N and with the constant implied
in O(-) independent of d and of ¢ (but depending on n). In other words, the price of a european maximum
option on a basket of d assets can be approximated (or “expressed”) by deep ReLU networks with spectral
accuracy and without curse of dimensionality.

The proof of this result is based on a near explicit expression for the function u4(0, ) (see Section ). Tt
uses this expression in conjunction with regularity estimates in Section [Bl and a neural network quadrature
calculus and corresponding error estimates (which is of independent interest) in Section [l to show that
the function u4(0,x) possesses an approximate low-rank representation consisting of tensor products of
cumulative normal distribution functions (LemmalZ3]) to which the low-rank approximation result mentioned
above can be applied.

Our results thus, for the first time, prove that neural network approximation does indeed not suffer from
the curse of dimensionality and achieves spectral accuracy, in the special case of european maximum option
pricing for uncorrelated assets. While we admit that this constitutes a rather special problem, the proofs in
this paper develop several novel deep neural network approximation results of independent interest that can
be applied to more general settings where a low rank structure is implicit in high-dimensional problems.

1.3 Outline

The structure of this article is as follows. The following Section 2] provides a derivation of the semi-explicit
formula for the price of european maximum options in a standard Black-Scholes setting. This formula consists
of an integral of a tensor product function. In Section Bl we develop some auxiliary regularity results for the
cumulative normal distribution that are of independent interest which will be used later on. In Section [dwe
show that the integral appearing in the formula of Section 2l can be efficiently approximated by numerical
quadrature. Section [l introduces some basic facts related to deep ReLU networks and Section [6 develops
basic approximation results for the approximation of functions which possess a tensor product structure.
Finally, in Section [ we show our main result, namely a spectral approximation rate for the approximation
of european maximum options by deep ReLU networks without curse of dimensionality. In Appendix [A] we
collect some auxiliary proofs.



2 High-dimensional derivative pricing

In this section, we briefly review the so-called Black-Scholes (“BS equation” for short) differential equation
which arises, among others, as Kolmogorov equation for multivariate geometric Brownian Motion. The
significance of the BS equation stems from its role in the valuation of financial derivatives on so-called
baskets of risky assets, such as stocks.

2.1 Black-Scholes-PDE
We consider the BS equation, i.e., the PDE

(Zu)(t,z) + & i i (32-u) (t,x) + % é |xi|2(8a—;?u)(t,x) =0. (2.1)

This linear, parabolic equation is, for one particular type of financial contracts (so-called “european maximum
option” on a basket of d stocks whose log-returns are assumed for simplicity as mutually uncorrelated) solved
for (t,x) € [0,T] x (0,00)% and is endowed with the terminal condition

u(T,z) = p(x) = max{x; — Ky,29 — Ko, ...,2q — K4,0} (2.2)

for x = (x1,...,24) € (0,00)?%. For this and definitions of other financial contracts, we refer to e.g.,
http://www.investment-and-finance.net/derivatives/m/maximum-option.html).

2.1.1 European maximum option

Proposition 2.1. Letd e N, p € R, 0, T, K1,...,Ka,&1,...,&q € (0,00), let (Q, F,P) be a probability space,
andlet W = (WD .. WD) [0,T)xQ — R? be a standard Brownian motion and let u € C([0,T]x (0, 00)%)
satisfy @) and @2). Then for x = (&1,...,&4) € (0,00)? it holds that

u(0,z) =E |:i€{111.,12%.)?,d} (max{exp([,u - %Z]T + O'W,J(j)) & — Ky, 0})}

=1

(2.3)

For the proof of this Proposition, we require the following result which is in principle well-known (a proof
is provided for completeness in the Appendix [A ]

Lemma 2.2 (Complementary distribution function formula). Let p: B([0,00)) — [0,00] be a sigma-finite
measure. Then

/ x pu(de) = / w([z, 00)) dx = / w((z, 00)) da. (2.4)
0 0 0
We are now in position to provide a proof of Proposition 2.1]

Proof of Proposition[21]. The first equality follows directly from the Feynmann-Kac formula [13, Corollary
4.17]. We proceed with a proof of the second equality. Throughout this prooflet X;: Q — R, i € {1,2,...,d},
be random variables which satisfy for every i € {1,2,...,d}

2 i
X; =exp([p— 2T + oW & (2.5)
and let Y: Q — R be the random variable given by

YzmaX{Xl—Kl,...,Xd—Kd,O}. (2.6)
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Observe that for every y € (0, 00) it holds

P(Y > y)
=1-PY =1-P X, — K;
Y <) (ie fnax ( ) < y)
d
=1-P(Nicro,..ap{Xi —K; <y})=1- Hlp(Xi - K; <vy) (2.7)

i

N
Il
-

1- [[P(X; <y+K))

I
T
e

N
Il
-

P(exp([u — %2]T + UW}”) & <y+ Kl) .

Hence, we obtain that for every y € (0, 00) it holds

d .
PY>y)=1- . P(exp([,u — U—;}T—i—aWél)) < y-EIKZ)

N
Il
-

I
T
—e

N
Il
-

P(oWf) < (1) — [u— F)T) (2.8)

I
T
—e

N
Il
-

P(Wf) < 2 n(255) - (- 2)7]).

This shows that for every y € (0,00) it holds

BY >g) =1 lﬁ <f“3j [1n(y+gf<i)—(u—[a2/z])T] \/% exp(—é) dr)] . (2.9)

i=1
Combining this with Lemma 2.2] completes the proof of Proposition 211 O
With Lemma 2.2 and Proposition 2.1l we may write

u(0,x)
= E{gp (exp([,u — 02/2} T+ JW}D) Ty, .. ,exp([,u — 02/2} T+ JW}d)) xd)} (2.10)
(“semi-explicit” formula). Let us consider the case p =02/2, T=0c=1,and K1 =...= K;= K € (0,00).
Then for every @ = (1,...,24) € (0,00)%
u(0, )
)] ()
zE[max{ewl(l)xl —K,...,er(d)xd —K,OH (2.11)

00 d ln(ﬁzc) )
= 1-— / = exp(—T—) dr| dec.
[ el

3 Regularity of the Cumulative Normal Distribution

Now that we have derived an explicit formula for the solution, we establish regularity properties of the inte-
grand function in (ZII]). This will be required in order approximate the multivariate integrals by quadratures
(which are subsequently realized by neural networks) in Section 4 and to apply the neural network results
from Section 6 to our problem. To this end, we analyze the derivatives of the factors in the tensor product,
which essentially are concatenations of the cumulative normal distribution with the natural logarithm. As
this function appears in numerous closed-form option pricing formulae (see, e.g., [18]), the (Gevrey) type
regularity estimates obtained in this section are of independent interest (they may, for example, also be used
in the analysis of deep network expression rates and of spectral methods for option pricing).



Lemma 3.1. Let f: (0,00) — R be the function which satisfies for every t € (0,00) that

ft) = #/1:” e 3" dr, (3.1)
let gnk: (0,00) = R, n,k € Ny, be the functions which satisfy for every n,k € Ny, t € (0,00) that
gni(t) = t7"e” 2O n(p))k, (3.2)
and let (Yn.k)n.kez C Z be the integers which satisfy for every n,k € Z that
1 n=1,k=0
Yok =8 —Yn-1h-1— =Dyt x+(k+DVn_1x41 n>1,0<k<n. (3.3)
0 : else

Then it holds for every n € N that

(i) we have that f is n-times continuously differentiable and

(i1) we have for every t € (0,00) that

n—1
f(n) (t) = \/%_77 lz VYn,k gn,k(t)‘| . (34)
k=0

Proof of Lemma[31l. We prove ([l) and (i) by induction on n € N. For the base case n = 1 note that (3.1]),

B2), B3), the fact that the function R 5 r — e e (0,00) is continuous, the fundamental theorem of
calculus, and the chain rule yield

(A) that f is differentiable and
(B) that for every ¢ € (0, 00) it holds

—in(e))? . —
f/(t) = \/% e 2[1 ®] t 1 = \/%9170(15) = \/% V1,0 gl,O(t)- (35)

This establishes () and (i) in the base case n = 1. For the induction step N> n —-n+1¢€{2,3,4,...}
note that for every ¢ € (0, 00) we have

4 [e*%“ﬂ@)ﬂ = —t e 3P (4. (3.6)

Combining this and ([B2)) with the product rule establishes for every n € N, k € {0,1,...,n— 1}, t € (0,00)
that

(gna) (8) = & [ 2008 (1))

= —nt~ (T =z ImOP [ (p)]k — ¢~ (D) gz IO [ ()] k1

(3.7)
+ t—(n-l-l)e—% [ln(t)]2k[ln(t)]max{k—l,o}
= —Gn+1,k+1(t) = nGnr1,x(t) + kGnt1 max{r—1,0} ()-
Hence, we obtain that for every n € N, ¢ € (0, 00) it holds
n—1
’Yn,kr(gn,k)l(t)
k=0
n—1
= Z [k (—gnt1,641 () = nGnt1.6(E) + kg1 maxir—1,01 (1)) ]
k=0
n—1 n—1 n—1 (38)
- —Yn,k gn—i-l,k:—i-l(t) + Z —NYn,k gn—i—l,k:(t) + Z kﬂ/n,k gnJrl,max{kfl,O} (t)
k=0 k=1

M- 11

n—1 n—2
—Vn,k—1 gn+1,k(t) + Z —NYnk Gnt1,k (1) + Z(k + 1)Vt 1 Gnt 1,6 (8)-
k=0 k=0

>
Il
—



The fact that for every n € N it holds that v,,—1 = Yn.n = Yn,n+1 = 0 and B3] therefore ensure that for
every n € N, ¢ € (0,00) we have

n—1 n
Z Yk (gnk) (t) = Z (= V=1 — 1Yk + (b + 1) Yn k1) Gnt1,k(2)]
k=0 kzo (39)
= Z Yrt1,k Gnt1,k ().
k=0
Induction thus establishes (i) and (). The proof of Lemma B1lis thus completed. O

Using the recursive formula from above we can now bound the derivatives of f. Note that the supremum
of f™ is actually attained on the interval [e=4",1] and scales with n like e("*) for some ¢ € (0,00). This
can directly be seen by calulating the maximum of the g, from [B2). For our purposes, however, it is
sufficient to establish that all derivatives of f are bounded on (0, c0).

Lemma 3.2. Let f: (0,00) = R be the function which satisfies for every t € (0,00) that

In(t)
ft) = #/ e 2 dr. (3.10)
Then it holds for every n € N that
sup ’f(")(t)’ <max{ (n—1)!2"7%, sup ’f(”)(t)’ < 0. (3.11)
te(0,00) tele—4n 1]

Proof of Lemma[3.2. Throughout this proof let g, 1: (0,00) = R, n, k € Ny, be the functions such that for
every n, k € Ny, t € (0,00) it holds

Gni(t) =t 3O Iy (1)) (3.12)

and let (Yn,x)n.kez C Z be the integers such that for every n, k € Z it holds

1 n=1k=0
Tk =9 —Yn-1h-1— M —Dyp_1p+ (k+1Dym_1k+1 n>1,0<k<n (3.13)
0 : else

Then Lemma Bl shows for every n € N that
(a) we have that f is n-times continuously differentiable and

(b) we have for every t € (0,00) that
n—1
f(n)(t) = \/% [Z Yn,k gn,k(t)‘| . (314)

In addition, observe that for every m € N, t € (0,e 2™ holds % In(t) < —m. This ensures that for every
m €N, t € (0,e72m] C (0, 1] we have

_lip
‘e—%[m(t)f — (=3 )] _ [eln(t)} 3 In(t) — i) — (%)%ln(t) < (%)—m T (3.15)

Moreover, note that the fundamental theorem of calculus implies for every ¢t € (0,1] that

1
1
/—ds
. S

n($)] = [In(t) — In(1)] = [In(1) — In(t)| =

g’%a—tﬁgt*. (3.16)



Combining B12), BI4), and [BIH) therefore establishes that for every n € N, t € (0,e~4")C (0, 1] it holds

“nem 3O 1 (1))

0] = A

1
Var
k=0
n—1 n—1
—k
\/% lz |’7n,k|tn ‘| < \/% lz |’7n,k|‘| .
k=0 k=0

In addition, observe that the fundamental theorem of calculus ensures that for every ¢ € [1, 00) we have

(3.17)

|ln(t)|—|ln(t)—1n(1)|—‘/l %ds <|t-1<t (3.18)

This, @12), BI4), and the fact that for every ¢ € (0, 00) it holds |e~2(®))*| < 1 imply that for every n € N,
€ (1,00) we have

rw) = A w0 O )

n—1
Z’Ynkgnk
k=0
T lz [k 7" [In(t) 1 < 7 lz Y k| £~ ”t’“] (3.19)
L [Z m,m“k] <+ [z m,u] |
k=0 k=0

Moreover, observe that (@) assures that for every n € N it holds that the function f(") is continuous. This
and the boundedness of the set [e4", 1] ensure that for every n € N we have

| /\

sup ’f(")(t)‘ < 00. (3.20)

tele=4n 1]
Combining this with (B17) and [BI9]) establishes that for every n € N we have
sup ‘f(")(t)’ < max{ [Z ™ k|] sup ‘f(")(t)’} < 0. (3.21)
te(0,00) tele=4n 1]

Furthermore, note that (3I3]) implies that for every n € {2,3,4,...} it holds

n—1 n—1
Z Y,k = Z = Yn—1,k—1 — (0 = D)yn—16 + (K + 1)vn—1,k+1]
k=0 k=0
n—1 n—1 —
< [Z |Yn—1,k—1] Z(n =) |vn-1kl| + Z (E+1)|vn-1 k+1|] (3.22)
k=0 =0
—1 n
= [Z -1kl | + Z(”—l In—1,kl| + Zkhn—ml] :
=1 k=0 f

Combining this with the fact that for every n € {2,3,4,...}, k € Z\{0,1,...,n — 2} we have y,_1% = 0
implies that for every n € {2,3,4,...} it holds

n—2

Z'Vﬂk' Z (L+(n=1)+k)|m-1,l] < (2n -2 [Zl’%z 1k|1 =2(n—1) [Zl’%z 1k|‘| (3.23)

k=0



The fact that 71,0 = 1 hence implies that for every n € N we have

n—1 0
>l < (n—1)12771 [Z |717k|‘| = (n—1)12""" (3.24)
k=0 k=0

Combining this and (B.2I]) ensures that for every n € N it holds

sup ‘f(") (t)‘ < max \/%(n — 12"t sup ‘f(”)(t)‘ < 0. (3.25)
te(0,00) 4 tefe—4n 1]
The proof of Lemma is thus completed. O

K+c

In the following corollary we estimate the derivatives of the function z — f (=

this function by neural networks.

) required to approximate

Corollary 3.3. Letn € N, K € [0,00), ¢,a € (0,00), b € (a,00), let f: (0,00) = R be the function which
satisfies for every t € (0,00) that

In(t)
ft) = ﬁ/ e~ dr, (3.26)
and let h: [a,b] — R be the function which satisfies for every x € [a,b] that
h(z) = F(EF). (3:27)
Then it holds

(i) that f and h are infinitely often differentiable and
(i) that

max sup ’h(k)(:c)‘ <n2" 'n max sup
ke{0,1,..., n} z€la,b)] ke{0,1,..., n} te[K;cyK+C]

f(k)(t)‘ max{a”>", 1} max{(K +¢)",1}.
(3.28)

Proof of Corollary[3:3 Throughout this proof let o, ; € Z, m,j € Z, be the integers which satisfy that for
every m,j € Z it holds

-1 m=7=1
A, j = —(m -1 +j)am_1)j — Qp—1,j—1 M > 1,1<53<m. (329)
0 : else

Note that Lemma 3] and the chain rule ensure that the functions f and h are infinitely often differentiable.
Next we claim that for every m € N, z € [a, b] it holds

h(m)(l,) _ dd; (f(%)) _ zm:ozm,j(K + C)jx—(mﬂ)(f(j)(%))_ (3.30)

We prove (330) by induction on m € N. To prove the base case m = 1 we note that the chain rule ensures
that for every x € [a, b] we have

L(FEED) = (K + a2 (F(EE9)) = ana (K + o)z 2 (F(£2e)) . (3.31)



This establishes (330) in the base case m = 1. For the induction step N> m — m + 1 € N observe that the
chain rule implies for every m € N, x € [a, b] that

c;l_:v |:§m: Q5 (K + C)jx7(7n+j) (f(])(%)):|
=1

_ [i a7n)j(K+C)j+1x7(m+j+2) (f(j+1)(%))] _ [iam,j(l{—kc)j(m—&—j)x“"*Hl)(f(j)(%))}

j=1 Jj=1

(3.32)
m—+1
[Z mj—1(K +c)z 7(m+g+1)(f(g) K+c )} |:ZOé7ng K +¢)(m+j)z (m+j+1)(f(j)(%))]
j=2
m—+1 . . .
= > (=t fam — am o) (K + e T (fU Ik )
j=1

Induction thus establishes (8:30). Next note that (3:29) ensures that for every m € {2,3,...} it holds

max Q. i| = max —(m—=-14+7)um_1; — Qm—_1.i—
je{1,2,...,m}| il je{1,2,...,m}| ( Fem-1,; .
< -1 j m—1,j m—1,7
- |:j6{1,12r71~?j),(m—1} [(m =1+ j)a 1’]@ + |:j€{l,g,1.?f(m—1} [ 1”'] (3.33)

IN

2m — 1 m— 2 m—1.1 -
(2m >Le{1,§i%%m_l}'a w'] m{e{l;??%m_l}'a w@

Induction hence proves that for every m € N we have max;c1,2,....m} |m,j| < 2m~1m!. Combining this with
(330) implies that for every m € {1,2,...,n}, « € [a, b] we have

‘h(m)(.’lj)‘ _ i O (K + e)f = (mHD)( fU) Ekey)
=1

< 2m~1ml ma, su G ‘ max{z "> 1 (K +¢) (3.34)
- LE{I 2,X,m} te[K+clf)K+C] f ( ) X{ } ;
<m2™ ! max sup f(j)(t)‘ max{z~*" 1} max{(K + ¢)", 1}.

je{1,2,....m} te[K+c K+C]

Combining this with the fact that sup,¢(, 4 |7 (7)| = SUD¢Kie Kic) | f(t)| establishes that it holds

max sup |[R¥(z ‘ <n2" 'nl max su e ’ max{a~ 2", 1} max{(K +¢)",1}. 3.35

e s M) < B iy u P [§O | macta ™ 1 max{( 0" 1) (3.35)
This completes the proof of Corollary 3.3 O
Next we consider the derivatives of the functions ¢ — f (%), i€{1,2,...,d}, and their tensor product,

which will be needed in order to approximate approximate the outer integral in (ZI1]) by composite Gaussian
quadrature.

Corollary 3.4. Let n € N, K € [0,00), z € (0,00), let f: (0,00) — R be the function which satisfies for
every t € (0,00) that

In(t L s
t) = \/%/_OO e 2" dr, (3.36)
and let g: (0,00) = R be the function which satisfies for every t € (0,00) that
g(t) = F(5H). (3.37)

Then it holds
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(i) that f and g are infinitely often differentiable and

(i) that

sup ‘g(")(t)‘ < [ sup ‘f(”)(t)‘] lz| ™" < oo. (3.38)
te(0,00) t€(0,00)

Proof of Corollary [34] Combining Lemma B.2] with the chain rule implies that for every ¢ € (0, 00) it holds

|9 @) = [ &= (P | = | £ (K) L

< l sup : ‘f(")(t)” 2] ™" < 0. (3.39)

te(0,00
This completes the proof of Corollary 3.4 O

Lemma 3.5. Let d,n € N, a € (0,00), b € (a,00), K = (Ky,...,Ky) € [0,00)¢, & = (z1,...,24) € [a,b]?,
let f:(0,00) — R be the function which satisfies for every t € (0,00) that

In(t)
ft) = J%/ e dr, (3.40)

and let F': (0,00) — R be the function which satisfies for every c € (0,00) that

Fle)=1— | T f( e 3.41
(c) = [T F(=:) |- (3.41)
i=1

Then it holds
(i) that f and F are infinitely often differentiable and
(i) that

sup ’F(") (c)‘ < max sup ‘f(k) (t)‘ d"a™" < 0. (3.42)
c€(0,00) ke{0,1,...,n} te(0,00)

Proof of Lemma[Z3 Note that Lemma[BIlensures that f and F are infinitely often differentiable. Moreover,
observe that ([3.41) and the general Leibniz rule imply for every ¢ € (0, 00) that

o0 [ (5
S (O A CatCDl]] b

l1,l2,...,la€Np, ¢
Z?:l li=n

Next note that the fact that for every » € R it holds that e~2"" > 0 ensures that

In(t) Lo
\/%_ﬂ—/foo e 2" dr

° 1,2
sup |f(t)] = sup = ’L/ e 2" dr| = 1. (3.44)
te(0,00) te(0,00) Ve —o0

11



Corollary B4 hence establishes that for every ¢ € [0,00), l1,...,lq € Ny with Zle l; = n it holds

1 (=)< 1
[ d
Il

k6{1)27'“)n} tE(0,00

max sup : ‘f(k) (t)D

INA
=
T
8
=
|
=
~
m
L
:—‘
) 4[\3
a
et
N

: (3.45)
M d
< 1T |l li I1 max< 1, max sup ’f(k)(t)}
= 1 |ieq 2y, Rt 2 n} 1€ (0,00)
;>0
g o (it Ala)
_il;[1| | I { ke{1,2,....,n} t€(0,00) /o
~(frer ] | mex s 100 n
s} v | _ke{O,l ..... n} te(0,00)

Moreover, note that the multinomial theorem ensures that

= LZ:I; 1]71 = 2 Kll,ZQ,T.L. .,ld) fll 1li] > [(llle’T'L' : aldﬂ ' (3.46)

l1,l2,...,la€No, l1,l2,...,la€No,
S li=n S li=n

Combining this with (43), (345), and the assumption that = € [a, b]¢ implies that for every ¢ € (0,00) we
have

d n
Fn) ‘ < n Ll ‘ (k) (¢ }
‘ (C) - Z l(llv 125 . ;ld il;Il |:E | ke{lg)lfv’x!n} tes(g,rio) f ( )

l1,l2,...,la€ENo,
S li=n
r " n (3.47)
<a™" max sup ‘f(k) (t)‘ ( )
| k€{0,1,0-n} e (0,00) ] 11,12,261\10, li,lo,. .01
Egzl li=n

r mn

_ —n (k) ’ n
=a max su t d".
_kE{O,l,...,n} tE(O,IZO) ’f ( )

This completes the proof of Lemma O

4 Quadrature

To approximate the function x +— (0, x) from (2I1]) by a neural network we need to evaluate, for arbitrary,
given x, an expression of the form fooo F,(c)dc with F, as defined in Lemma[.2l We achieve this by proving
in Lemma [£.2] that the functions F, decay sufficiently fast for ¢ — oo, and then employ numerical integration
to show that the definite integral fON F,(c)de can be sufficiently well approximated by a weighted sum of
F,(c;) for suitable quadrature points ¢; € (0, N). The representation of such a sum can be realized by
neural networks. We show in Section 6 and 7 how the functions = — F,(c;) for (¢;) € (0, N) can be realized
efficiently due to their tensor product structure. We start by recalling an error bound for composite Gaussian
quadrature which is explicit in the stepsize and quadrature order.
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Lemma4.1. Letn, M € N, N € (0,00). Then there exist real numbers (c;)j2] C
such that for every h € C?*([0, N],R) it holds

/ dt—ZwJ (c)] < iy N2 H M- 2”{ sup ‘h@")(g)”. (4.1)
0

£€[0,N]

Proof of Lemmal[]-dl Throughout this proof let h € C*"([0, N],R) and ay, € [0,N], k € {0,1,..., M}, such
that for every k € {0,1,..., M} it holds ay = kﬁN Observe that [19] Theorems 4.17, 6.11, and 6.12] ensure
that for every k € {0,1,..., M — 1} there exist (v¥)"; C (ag, arr1), (WF)7, C (0,00), and &* € [ak, 1]
such that

Otk+1 h(2n)(§ ) Ak+1 [ n
t)dt — wkh Py = / [ t— fﬂdt. 4.2
Next note that for every k € {0,1,..., M — 1} it holds
Ok+1 [ n Xk+1 [ n 9 N 12n+1
[ fre—soe)acs [T [ e - an?] a= (37 13)
A 1= Qg 7=
Combining this with (£2]) yields that for every k € {0,1,..., M} we have
ak+1 h(2n) §k)|
k | N 2n+1 1 [N72ntl (2n)
Wh% _7— < &y L7 sup |h 5‘. 4.4
[ -y T B < B s ]| )
Hence, we obtain
N M—-1 n M-—1 (ST n b
JRLCEE S IELCLIEDS [ [ o= 3wkl |
0 k=0 i=1 k=0 L7 i=1 -
R 2nt1
< (ﬁ (37) l sup \h@’”(@\D (4.5)
k=0 £€[0,N]
= (2n)|N2n+1M 2| sup ‘h(%)(f)‘ .
£el0,N]
et C (0, N), (w; - o0) such that for every 7 € {1,2,...,n}, k€ {0,1,..., M — 1t holds
Let (¢;)7™ C (0, N), (w; 0, L that f 1,2 ke {0,1,...,M — 1} it hold
Chnti = ’yl- and  Wkpti = wf. (4.6)

Next observe that

N nM 1 n
/ h(t)dt — > " w;h(c;) ’/ t)dt— wah(yf) : (4.7)
0 j=1 k=0 i=1
This completes the proof of Lemma 11 O

In the following we bound the error due to truncating the domain of integration.

Lemma 4.2. Let d,n € N, a € (0,00), b € (a,0), K = (K1, Kas,...,Kq) € [0,00)¢, let F,: (0,00) — R,

x € [a,b]?, be the functions which satisfy for every x = (x1,22,...,24) € [a,b]¢, ¢ € (0,00) that
d ln(K +C) 1.2
Fo(e)=1-]] #/ e 2" dr|, (4.8)
i=1 o

1

and for every e € (0,1] let N. € R be given by N. = 22D (b 4 1)1 wdne=w. Then it holds for every

€ (0,1] that
/ Fy(c)de| <e
N

€

sup
z€[a,b]¢

(4.9)
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Proof of Lemma[4.3 Throughout this proof let g: (0, — (0,1) be the function given by

ln(t . 2

Note that [5l Eq.(5)] ensures that for every y € [0, 00) we have % f;o e~ dr < e~¥". This implies for every
€ [1,00) that

In(t
0<g(t —1_\/—27/ eﬂdT_\/?/l(ezrdT_%/lu dr < e2[ln(t)] (4.11)
+ n(t

V2

Furthermore, observe that for every t € [¢2("+1) o0) it holds
il
e—3m®? _ @ (- m@)] — [eln(t)} 3 In(t) — 3 In(t) < p=(n41), (4.12)

This, (IEII), and the fact that for every ¢ € (0,1], ¢ € [N.,0), z € [a,b]%, i € {1,2,...,d} we have
Kite > £ > 2"t > 1 imply that for every ¢ € (0, 1], ¢ € [N.,00), z € [a,b]? it holds

Tq

|Fu(c)] = |1 — ﬁ [\/% /1n(Ki—i+C) e%rzdr] =1|1— H [1 _ g(K;jrC)}
.Z - d - (4.13)
H { % {K +c:|_("+1):| <h- H {1 B % [%]7(n+1)} .

Combining this with the binomial theorem and the fact that for every i € {1,2,...,d} we have (f) < a <

!

W < (dli) establishes that for every ¢ € (0,1], ¢ € [N.,00), x € [a, b]¢ it holds
1[c]—(n ar d d 1 re1—(n i
|Fa(e)] < ’1— (1_5 [e] ¢ +1>) _ 1_; Kz) [_5 Ok +1>} }
d . d
< [( ) <3
o - B (4.14)
-3t o1 <2 [ o]
d— i ) s "
=2d[]"" [Zé la[e]"] ] < 2d[2]" [Z; a2 ”

This, the geometric sum formula, and the fact that for every e € (0,1] it holds that N, > 2bd imply that
for every e € (0,1], ¢ € [N.,00), = € [a, b]? we have

n+1 1 n+1
Fao) < 24 2" | | <4 (4.15)
1-d[g]
Hence, we obtain for every € € (0,1], z € [a, b]? that
/ Fm (C) de S 4dbn+1 / Ci(nJrl)dC = 4dbn+1%(Ns)7n
N¢ Ne
_ 4 pn+l (n+1) 141, _1 -n
= 4qp [26 (b+ 1)+ dn } (416)
_ %dbn+l2—ne—(2n +2n) (b + 1)—(n+1)d—1
n+1
= dg=ne=(nt+m) [HLJ e<e.
This completes the proof of Lemma (4.2 O
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Next we combine the result above with Lemma .1l in order to derive the number of terms needed in
order to approximate the integral by a sum to within a prescribed error bound e.

Lemma 4.3. Letn € N, a € (0,00), b € (a,00), (K;)ien C [0,00), let F2: (0,00) = R, x € [a,b]?, d € N,
be the functions which satisfy for every d € N, x = (z1,22,...,24) € [a,b]?, ¢ € (0,00) that

d (<),
Fley=1-]] #/ e"z"dr|, (4.17)
i=1 o
and for every d € N, e € (0,1] let Ng. € R be given by
Nye =262 HD(b 4 1) F 5 d [] 7 (4.18)
Then there exist Qq. € N, cgj € (0, Ng), wgyj €10,00), 7€{1,2,...,Quac}, d€N, e €(0,1], such
(i) that
st :|
sup —— | < 4.19
£€(0,1],deN [d”%a% (4.19)
and
(i1) that for every d € N, € € (0,1] it holds ZQd : = Ng. and
Qa,e
sup / ¢)dc — ws S FY( <e. (4.20)
z€[a,b]¢ |JO Z =

Proof of Lemma[{.3 Note that Lemma ensures the existence of S, € R, m € N, such that for every
d,m €N, z € [a,b]? it holds

sup ‘(Fgﬂm) (c)‘ < Spd™. (4.21)
c€(0,00)

Let Quc €R,d €N, ¢ € (0,1], be given by

Qaz=n H@(Nd,a)%ﬂsgnd%g} w . (4.22)

Next observe that Lemma [41] (with N <+ Ng. in the notation of Lemma 1)) establishes the existence of
¢ €(0,Nage), w; €10, oo), je{l,2,...,Qauc}, d € N, e € (0,1], such that for every d € N, € € (0, c0),

5]

r € [a,b]? we have ZQd : = Ny and
Na.c Qd,e —om,
/ Fd dC— Zwsj m S ﬁ(Nd,a)zn—i_l [Qz,a} Sznd2n
0

(4.23)
-1
< ﬁ (Nd E)2n+1 [(2}1)' (Nd,5)2n+1 S2nd2n§} S2nd2n _ %

Moreover, note that Lemma[L2] (with Ng ¢ <> N in the notation of Lemma [€.2)) and ([23)) imply for every
deN,ee€ (0,1], x € [a,b]? that

Qa,e

/ dc—Zwaj !
0

Qa,e

wa m +

(4.24)

INA
S—
5

/ h Fl(c)de

Nd,s

IA
wlo
+
wlo
Il
m
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Furthermore, we have for every d € N, e € (0, 1] that

2n

1
Que<n (14 [y (o 0a2] )

1 1+-L
<ntn B3 demd (424 )R are | (4.25)

|

1
—n+4n [?gzﬂ 3L (p 4 It g T ae e e
mn):

1

< ndtheTn 4+ 4n [ff;;!} T3 (p 1]t mE gl T
This implies
Qe 855 n 2n+3+L 1+2 4+ -1
sup 7| Sntdn|GH| e m b+ 1] T T < oo, (4.26)
cc(0,1],deN Ld Tme™n :
The proof of Lemma is thus completed. O

5 Basic ReLU DNN Calculus

In order to talk about neural networks we will, up to some minor changes and additions, adopt the notation
of P. Petersen and F. Voigtlaender from [22]. This allows us to differentiate between a neural network,
defined as a structured set of weights, and its realization, which is a function on R?. Note that this is
almost necessary in order to talk about the complexity of neural networks, since notions like depth, size
or architecture do not make sense for general functions on R%. Even if we know that a given function ’is’
a neural network, i.e. can be written a series of affine transformations and componentwise non-linearities,
there are, in general, multiple non-trivially different ways to do so.

Each of these structured sets we consider does however define a unique function. This enables us to explic-
itly and unambiguously construct complex neural networks from simple ones, and subsequently relate the
approximation capability of a given network to its complexity. Further note that since the realization of
neural network is unique we can still speak of a neural network approximating a given function when its
realization does so.

Specifically, a neural network will be given by its architecture, i.e. number of layers L and layer dimen-
sionsﬂNo, Ni,...,Np, as well as the weights determining the affine transformations used to compute each
layer from the previous one. Note that our notion of neural networks does not attach the architecture and
weights to a fixed activation function, but instead considers the realization of such a neural network with
respect to a given activation function. This choice is a purely technical one here, as we always consider
networks with ReLLU activation function.

Setting 5.1 (Neural networks). For every L € N, No, Ny,..., Ny € N let NiVO’Nl"”’NL be the set given by

NN NE — o b (RN o RN (5.1)
let N be the set given by
N = U NiVO’Nl""’NL, (5.2)
LEN,

No,N1,...,NLeN

let L, M, M, dim;y,, dimoye: M — N, I € {1,2,...,L}, be the functions which satisfy for every L € N

and every No,Ni,...,NL €N, @ = (((A] )03, (0h)0), - (AF) 2 0F)XR)) € Mo,

LOften phrased as input dimension Np and output dimension Ny with Ny, I € {1,2,...,L — 1} many neurons in the I’th
layer.

16



le{1,2,...,L} L(D) = L, dimi(P) = Np, dimeu(®) = N,

N, N;_1
M (@) = Z Ig\ {0} (b)) + Z ]lR\{O}(Aé,j) ) (5.3)
and
L
M(@) =" My(@). (5.4)
=1

For every o € O(R,R) let 0*: Ugeny R — UgenR? be the function which satisfies for every d € N,
r = (71,22,...,24) € RY that o*(x) = (o(x1),0(x2),...,0(z4)), and for every o € C(R,R) denote by
R, M — Ugpen C(RY,R?) the function which satisfies for every L € N, No, Ny,..., N € N, 29 € RN, and

= 0" (Aixi—1 + by) , l=1,..,.L—1, (5.5)
that
[Ro(®)] (z0) = ALzr—1 + b1 . (5.6)

The quantity M(®) simply denotes the number of non-zero entries of the network ®, which together with
its depth £(®) will be how we measure the ’size’ of a given neural network ®. One could instead consider
the number of all weights, i.e. including zeroes, of a neural network. Note, however, that for any non-
degenerate neural network ® the total number of weights is bounded from above by M(®)? + M(®). Here,
the terminology “degenerate” refers to a neural network which has neurons that can be removed without
changing the realization of the NN. This implies for any neural network there also exists a non-degenerate
one of smaller or equal size, which has the exact same realization. Since our primary goal is to approximate
d-variate functions by networks the size of which only depends polynomially on the dimension, the above
means that the qualitatively same results hold regardless of which notion of ’size’ is used.

We start by introducing two basic tools for constructing new neural networks from known ones and, in
Lemma (.3 and Lemma [£.4] consider how the properties of a derived network depend on its parts. The
first tool will be ’concatenation’ of neural networks in (57)), which takes two networks and provides a
new network whose realization is the composition of the realization of the two constituent functions. This
version of concatenation only works when using the ReLU activation function, as o(z) = max{0, z} implies
o(z) — o(—z) = x. Tt does, however, provide us with better control on the number (and magnitude) of the
weights of the resulting network.

The second tool will be the 'parallelization’ of neural networks in (5:12)), which will be useful when considering
linear combinations or tensor products of functions which we can already approximate. While parallelization
of same-depth networks (5.I0) works with arbitrary activation functions, we use for the general case that
any ReLU network can easily be extended (.I1]) to an arbitrary depth without changing its realization.

Setting 5.2. Assume Setting L1, for every Li,Ly € N, ® = ((A},b}), (A5, b%),..., (AL b1 ) € M,
i € {1,2}, with dim;,(®') = dimey, (P?) let P © &2 € N be the neural network given by
A3 b3
oo = (ata) a0, 0 () () (at —ab) b kb adnh)) . (57)
2 2

for everyd € N, L e NN [2,00) let @}fL € N be the neural network given by

oY, = <<I?ﬁ:)p),(Idde,O),...,(Idde,O),((Ide —Idga),0) |, (5.8)
—AUR

L-2 times

for every d € N let @&‘?l € N be the neural network given by

@iy = ((Idga, 0)), (5.9)

17



for every n, L € N, ® = ((A],b]), (A3, b)), ..., (A}, 00)) €M, j € {1,2,...,n}, let Ps(®', %, ... &) € N

be the neural network which satisfies

Al bt A} b
A3 bt A7 b1

Py(d,®*, ..., ") = ) o ) N . (5.10)
A} by A7 by

for every L,d € N, ® € 0 with L(P) < L, dimey(P) = d, let EL(P) € N be the neural network given by

£1(3) — O 0P L(@)<L (5.11)
) S L(®) =L’

and for everyn,L €N, ® € N, j € {1,2,...,n} with max;eqy2
denote the neural network given by

oy L(®7) = L, let P(®!,32,... ") € N

PO, ®2,...,0") = Py (EL(DY), EL(B?), ..., EL(D™)). (5.12)

Lemma 5.3. Assume Setting[5.3, let 1, 2 € N, and let o: R — R be the function which satisfies for every
t € R that o(t) = max{0,t}. Then

(i) for every x € RYmn(®) 4t holds
[Ro(®' © 92)](2) = ([Ro(®")] 0 [Ry(9*)])(w) = [Ry(DH)]([Re(®*)](2)), (5.13)
(ii) L(®' © ®?) = L(D1) + L(D?),
(iii) M(®' ® ?) < M(D') + M(D?) + M1 (®1) + My (a2)(D?) < 2(M(P) + M(D?)),
(iv) My(®! O ®2) = My (D?),
(v) Me@ioe)(® © %) = M) (@),
(vi) dimy,(®! © ®?) = dimy, (D2),
(vii) dimou (' © ©?) = dimoy (P1),
(viii) for every d, L € N, x € R? it holds that [Ry(®y';)|(x) = x, and
(iz) for every L € N, ® € M with L(®) < L, x € RI™n(®) 4t holds that [R,(EL(P))](x) = [Ry(®)](x).

Proof of Lemma[Z3 For every i € {1,2} let L; € N, N{,Nj,...,Nj , (A},b}) € RVIXNL xRN €
{1,2,...,L;} such that & = ((A},b}),..., (A}, ,b},)). Furthermore, let (A;,b) € RN>Ni—t x RN |
{1,2,..., L1 + Lo}, be the matrix-vector tuples which satisfy ®; ® ®3 = ((A1,b1),..., (AL, +L,00,4L,))
and let r;: RNo — RN [ € {1,2,..., Ly + Lo}, be the functions which satisfy for every z € RNo that

Q*(Alx-i- bl) =1
Tl(:Z?) e Q*(Aﬂ‘[_l(,f) + b[) l<i< Ly + Lo . (514)
Alrl,l(x) + b l=L1+ Lo

Observe that for every | € {1,2,...,Ly — 1} holds (A4;,b;) = (A?,b7). This implies that for every z € RN
holds

AL, rry-1(2) + 07, = [Ro(®2))(2). (5.15)
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Combining this with (5.7) implies for every x € R™o that

A2 b2
7L, (7) = 0" (AL,rr,-1(2) + bL,) = 0" ((_/ff ) rrami(e) (—522 ))
L2 L2

, , ! (5.16)
o (G Th)) = (UEGH))
In addition, for every d € N, y = (y1,s, . .., ya) € R? holds
0" (y) — 0" (—y) = (o(y1) — o(=y1), 0(y2) — o(—y2), - .-, 0(ya) — o(—ya)) = y. (5.17)
This, (51), and (5I6) ensure that for every z € RNo holds
o=t (FUED )
= Alg(R (<1>2)](x)) AL (~[Ro()](2)) + brats (5.18)

= Aj[Ry(®?)]() + b

Combining this with (5.I4) establishes (). Moreover, ([)-{) follow directly from (57). Furthermore,

E3), (59), and (BI7) imply (id). Finally, (ix) follows from (5.11]) and (viil). This completes the proof of
Lemma (53] O

Lemma 5.4. Assume Setting[5.2, let p: R — R be the function which satisfies for every t € R that o(t) =
max{0,t}, letn € N, let ¢ € M, j € {1,2,...,n}, letd; €N, j € {1,2,...,n}, be given by d; = dim;,(¢7),
let D € N be given by D = E;;l dj, and let ® € N be given by ® = P(p', %, ..., ¢"). Then

(i) for every x € RP it holds

[Ro(®)](z) = ([Ro()](x1, -, Tay), [Ro(@D)](Bdr 41, - - - s Ty ds) s - - [Re (™) (FD—d 415 - -, 2D)),  (5.19)
(i) L(P®) = maxjeqia,..ny L(#7),
(iii) M(@) <2 (S M) +4 (] dimou () ) maxje s 3,...n £(67),
(iv) M(®) = 3" M(¢) provided for every j,j' € {1,2,...,n} holds L(¢7) = L(¢7),
(v) M@y (®) < 377 max{2 dimou (7)), M (pi) (7)1,
(vi) Mi(®) =30, Ma(¢?),
(vii) dimy(®) = 37, dimya(¢7), and
(viii) it (®) = 37 dimou ().
Proof of Lemma[5} Observe that Lemma B3 implies that for every j € {1,2,...,n} holds
Ry(Ec(a)(¢")) = Rolg). (5.20)

Combining this with (5I0) and (EI2) establishes (). Furthermore, note that that (@), (), (), and
&) follow directly from (GI0) and (BI2). Moreover, (EI0) demonstrates that for every m € N, 1), € N,
i€{1,2,...,m}, with Vi,i" € {1,2,...,m}: L(¢*) = L(x*) holds

m

M(PL(W 4%, ™) = M@, (5.21)

i=1
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This establishes (fv]). Next, observe that Lemma 53] (5.I1)), and the fact that for every d €, L € N holds
M(®F,) < 2dL imply that for every j € {1,2,...,n} we have

M(Eg(@) (@) < 2M(Pin, . (09),20)— (o) T 2M(#)

: ) (5.22)
< 4 dimeyt (¢? ) L(P) + 2M(¢7).

Combining this with (521]) establishes (). In addition, note that (58], (59), and (EII)) ensure for every
j€{1,2,...,n} that

M@y (Ecia) (¢7)) < max{2dimout(¢”), M) (@7)} (5.23)

Combining this with (5I0) establishes (). The proof of Lemma 54 is thus completed. O

6 Basic Expression Rate Results

Here we begin by establishing an expression rate result for a very simple function, namely = + 22 on [0, 1].
Our approach is based on the observation by M. Telgarsky [26], that neural networks with ReLU activation
function can efficiently compute high-frequent sawtooth functions, and the idea of D. Yarotsky in [27] to
use this in order to approximate the function = — 22 by networks computing its linear interpolations. This
can then be used to derive networks capable of efficiently approximating (z,y) — zy, which leads to tensor
products as well as polynomials and subsequently smooth function. Note that [27] uses a slighlty different
notion of neural networks, where connections between non-adjacent layers are permitted. This does, however,
only require a technical modification of the proof, which does not significantly change the result. Nonetheless,
the respective proofs are provided in the appendix for completeness.

Lemma 6.1. Assume Setting [21] and let o: R — R be the ReLU activation function given by o(t) =
max{0,t}. Then there exist neural networks (0c)cc(0,00) € N such that for every € € (0, 00)

Llogy(e)|+1 :e<1
) Loo) <2772 :
(i <a>_{1 o

y 15(5 [logy(e)| +1) e <1
(ii) M(UE)S{O 2 o> 1
(i) supyefo,1) ‘tQ - [RQ(UE)](t)‘ s¢
(iv) [Ro(oc))0) = 0.

We can now derive the following result on approximate multiplication by neural networks, by observing
that 2y = 2B%(|(z +y)/2B|* — |x/2B|? — |y/2B|?) for every B € (0,00), =,y € R.

Lemma 6.2. Assume Setting[51], let B € (0,00), and let o: R — R be the ReLU activation function given
by o(t) = max{0,t}. Then there exist neural networks (jic)ec(0,00) € M which satisfy for every e € (0,00)
that

$logy(2) +logy(B) +6 :e< B?
1 :e> B?%

(1) Lpe) < {

901ogy (L) + 1801ogy (B) + 467 :e < B?

(“) M(NE)S{O o> B2

(Z”) SUP(z,y)e[—B,B]2 |$y - [RQ(ILLE)]('I7y)| <e,
(iv) Mi(pe) <14, Mgy (pe) =3, and
(v) for every x € R it holds that R,[u:](0,2) = R,[ue](x,0) = 0.
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Next we extend this result to products of any number of factors by hierarchical, pairwise multiplication.

Theorem 6.3. Assume Setting[51], let o: R — R be the ReLU activation function given by o(t) = max{0, t},
let m e NN [2,00), and let B € [1,00). Then there exists a constant C' € R (which is independent of m, B)
and neural networks (Il)cc(0,00) € N which satisfy

(i) L(I.) < Cln(m) (]In(e)| + mIn(B) + In(m)),
(ii) M(IL.) < Cm (Jln(e)| + mIn(B) + In(m)),

(m) sup HIJ — [R,(I1)](z)| < e, and

-B,BJ™
() R, 1] (x1,22,...,2m) =0, if there exists i € {1,2,...,m} with x; = 0.

Proof of Theorem [6:3. Throughout this proof assume Setting 5.2} let I = [logy m], and let # € "' be the
neural network given by 6 = (0,0), let (A,b) € R™*™ x R! be the matrix-vector tuple given by

1 i1=4,7< 0 :2<
Aijz b=nhi=m and b; = Z,_m. (61)
’ 0 :else 1 2>m

L
Let further w € A3"* be the neural network given by w = ((4,b)). Note that Lemma (with B™ as B
in the notation of Lemma [6.2]) ensures that there exist neural networks (i, ),e(0,00) € M such that for every

n € (0,[B™?) it holds
(A) Lpg) < 3 10g2( ) +logy(B™) + 6,
(B) M(uy) <90 10g2( ) + 180 log, (B™) + 467,

(C)  sup oy = [Ro(pn)](2, )| <,
I,yE[—B”l,Bm]

(D) Mi(uy) < 14, Megu,)(py) =3, and
(E) for every € R it holds that R,[i,](0,z) = R,[uy](x,0) = 0.
Let (Ve)ce(0,00) € N be the neural networks which satisfy for every e € (0, 00)
Ve = fbm—2B—2me- (6.2)
Observe that (A implies that for every ¢ € (0, B™) C (0,m*B*™) it holds

L(ve) < 5108y (5=rp=mz) +loga(B™) + 6
= 3(logy(2) + 2logy(m) + 2mlogy(B)) + mlogy(B) + 6 (6.3)
= Llogy(L) 4 2mlogy(B) + logy(m) + 6.

In addition, note that (B]) implies that for every ¢ € (0, B™) C (0, m?B*™)

6.4
= 90log, (L ) + 360m log, (B) + 1801log,(m) + 467. (6.4)

Furthermore, (C)) implies that for every € € (0, B™) C (0,m?B*™) holds
sup lzy — [Ro(v)](x,y)] < m™2B*"e. (6.5)

x,y€[—B™,B™]
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Let 7. € N, € € (0,00), k € N, be the neural networks which satisfy for every e € (0,00), k € N

Ve k=1
The = (6.6)
Ve O 'P(Trkflys,ﬂ'kflﬁs) k>1

and let (IL)ce(0,00) € N be neural networks given by

I = mMeow :e<B ' (6.7)
0 e > B™

Note that for every € € (B™, 00) it holds

sup l zj| — [Ro(Il)](z)| =  sup ll_[ zj | — [Ro(0)](2)
z€[—-B,B]™ | | j=1 z€[—B,B]™ | | j=1 (6 8)
= sup [Izj| -0=B"<e
z€[-B,B|™ | | j=1
We claim that for every k € {1,2,...,1}, € € (0, B™) it holds
(a) that
ok .
sup Il zj| = [Re(mk.e)](x)| < gF—lyp =2 g -2m) (6.9)
ze[—-B,B]2%) | |7=1

(b) that L(my) < kL(v:), and
(c) that M (i) < (28 — DM (ve) + (2871 — 1)20.

We prove @), (L)), and (@) by induction on k € {1,2,...,1}. Observe that (G.5) and the fact that B € [1, 00)
establishes @) for & = 1. Moreover, note that ([6.0]) establishes (b)) and (@) in the base case k = 1.

For the induction step {1,2,...,1—1} 3 k = k+ 1 € {2,3,...,1} note that Lemma 53] Lemma 5.4
(©3) and ([G6) imply that for every k € {1,2,...,1—1}, ¢ € (0, B™)

2k+1

sup [T 2| - [Ro(misr))(a)

z€[-B,B]C*H || jZq

o et T
= sup Iz | [ T1#)| = [Ro(mrsro)] ((,2"))
z,2'€[-B,B]2" | | j=1 j=1
2k 2k
= sup I [ [TI 25| = [Rowo)] ([Ro(me))(®), [Ro(mr )] (a”)
z,z’G[—B,B](2k) _j:l _j:l (610)
ok Tt ]
< sup I [ TI2 | = (Ro(mio)l(@)) ([Ro(mne)l ("))
z,z’'€[—B,B](2") =1 | |i=1 |
+  sup [([Ro(mr,e))(@)) ([Ro(mre)](2")) — [Ro(ve)] ([Ro(mr,e )| (@), [Ro(mh.e)](2))]
z,x'€[—B,B|(2")
< sw [T || TT 2 | - (Ro(mi))(@)) (1Rl )](@))] +m2B~2"e,
x,2’€[—B,B](2") =1 | |l/=1 |
Next, for every ¢,d € (0,00), y,2 € [—c¢,c], 7,2 € R with |y — 7|, |z — 2| < § it holds
lyz — 92| < 2(|y| + |2])d + 6% < 2¢6 + 62 (6.11)
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Moreover, for every k € {1,2,...,1}
47{}—1 S 4l—1 — 4(log2 m]—l S 410g2m — m2' (612)

The fact that B € [1,00) therefore ensures that for every k € {1,2,...,1 — 1}, £ € (0, B™)
{4k—1m—2B(2k_2m)€r N {4’“_1m_2B(2k“_2m)5} [4k—1m—2B—2m€] < [4k—1m_gB(2k+1_2m)€ . (6.13)

This and (11 imply that for every k € {1,2,...,1 — 1}, £ € (0, B™), z,a’ € [—B,B](2k)

2k 2k
i1 1
Jj=1 =1

— ([Ro(mre)](2)) ([Rg(m,a)](w’))‘

< op@") gk—1,—2 g2 —2m) . | [4k—1m—2B(2k—2m)E} 2 (6.14)
<3 [4’“—1m—2B<2’““—2m>a} .

Combining this, (6I0), and the fact that B € [1,00) demonstrates that for every k € {1,2,...,1— 1},
sup

e € (0,B™)
2k+1
[ =
ze[—B,B|2*h) | | =1

<3 [4’“—1m—23<2’““—2m>5} +m 2B %M

= [Ro(mhy1,0)](2)

(6.15)

< g2 p@TT—2m)

This establishes the claim (@). Moreover, Lemma and Lemma 5.4 imply for every k € {1,2,...,1 — 1},
e € (0, B™) with L(mg,.) < kL(ve) holds

L(Tpy1e) = L(ve) + max{L(mpc), L(Tpe)}

< L(ve) + kL(ve) = (k+ 1)L(ve). (6.16)

This establishes the claim (Bl). Furthermore, Lemma [£3] Lemma [E4 (Bl), and (D) imply for every k €
(1,2,...,0— 1}, e € (0, B™) with M(ms..) < (2¥ — )M (r.) + (2"~ — 1)20 holds

M(Wk-i-l,s) < M(ve) + (M(Wk,a) + M(Wk,a)) + Ml(”&) + Mg(p(ﬂm,ﬂm))('])(ﬂk,a, Wk,a))
SM(ve) + 2M(Tg ) + 14+ 2M g (ve) < M(ve) + 2M (g ) + 20
< M(ve) +2((2F = DM (o) + (2871 = 1)20) + 20

= (2" — M (ve) + (27 - 1)20.

(6.17)

This establishes the claim (@).
Combining @) with Lemma 5.3 and (6.7 implies for every € € (0, B™) the bound

i- i

=1
l
< gty 2pE—mig

sup — [R,o(Te)] ()

z€[—B,B]™

< sup
we[-B,B](2Y

= [Ro(m,c)](x)

(6.18)

< glloga(m)] =1, =2 p(2flee2 (T —2m) _

< 4log2 (m) m72B(21032 (m)+1 72m)5

< |:2log2(m)]2mf2B(2mf2m)E <e.

23



This and (G.8) establish that the neural networks (IL.).c(0,00) satisfy (). Combining (b)) with Lemma (.3
(63), and (6.7) ensures that for every ¢ € (0, B™)

L(II) = L(m,e) + L(w) <UL(We) + 1 < (logy(m) + 1)L(ve) + 1

5 (6.19)
< log,(m) 10%2(%) +4logy(m)mlog, (B) + 2[10g2(m)] + 12log,(m) + 1.

and that for every e € (B™,00) it holds L(II.) = £(#) = 1. This establishes that the neural networks
(I )ce(0,00) satisfy (). Furthermore, note that (@), Lemma B3] (6.3), and (6.7) demonstrate that for every
e € (0,B™)

ML) < 2(M(m.c) + M(w)) < 2 [(2l S M)+ (27 = 1)20] +dm
<2 M(v2) + (21)20 + 4m < AmM (v2) + 44m (6.20)
< 360m log, (L) + 1440m” log, (B) + 720m log, (m) + 1912m.

and that for every ¢ € (B™,00) holds M(II.) = M(#) = 0. This establishes that the neural networks
(IL) e (0,00) satisfy (). Note that (i) follows from (E) by construction. The proof of Theorem [G.3]is thus
completed. O

With the above established, it is quite straightforward to get the following result for the approximation
of tensor products. Note that the exponential term B™~! in ({il) is unavoidable as result from multiplying
m many inaccurate values of magnitude B. For our purposes this will not be an issue since the functions we
consider are bounded in absolute value by B = 1. This is further not an issue in cases, where the h; can be
approximated by networks whose size scales logarithmically with e.

Proposition 6.4. Assume Setting [i.2, let p: R — R be the ReLU activation function given by o(t) =
max{0,t}, let B € [1,00), m €N, for every j € {1,2,...,m} let d; € N, Q; CR% and h; : Q; — [-B, B],
let (@g)se(o,oo) eMN,je{l,2,...,m}, be neural networks which satisfy for everye € (0,00), j € {1,2,...,m}

sup ‘hj(:t) — [RQ(@g)} (;v)‘ <e, (6.21)
teQ;
let ®F € N, £ € (0,00) be be given by OF = P(®L,®2 ... &™), and let L. € N, £ € (0,00) be given by
LE = maxje{1)27,..7m} ,C(q)g)
Then there exists a constant C € R (‘which is independent of m, B,e) and neural networks (Vc).c(0,00) €N
which satsify

(i) L(T.) < Cln(m) (|In(e)| + mIn(B) + In(m)) + L.,
(ii) M(¥.) < Cm (|In(e)] + mIn(B) + In(m)) + M(®L) + My_(®T), and

[T hi(t))

Jj=1

(i) sup — [Ro(W)](1)| < 3mB™ e
t=(t1,t2,..., tm)ex;’;lﬂj

Proof of Proposition[64} In the case of m = 1 the neural networks (®1).c(0,00) € N satisfy @), (@), and ()

by assumption. Throughout the remainder of this proof assume m > 2, and let 6 € ./\/11’1 denote the trivial
neural network # = (0,0). Observe that Theorem (with € <» n, €’ <+ C in the notation Theorem [63))
ensures that there exist C” € R and neural networks (II;),e(0,00) € 91 which satisfy for every n € (0, 00) that

(8) L(IL,) < C'In(m) ([In(n)] + mIn(B) + In(m)),
(b) M(IL,) < C'm (lla(n)| + mIn(B) + In(m)), and
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Let (Vo)ze(0,00) € I be the neural networks which satisfy for every e € (0, 00) that

11 PLBZ,... ") i<
p, = (HeoP(@e @ @) 2o <y (6.22)
0 L€ Z 5m
Note that for every e € (0, £)
max ﬁ x — ﬁ zj|=(B+e)" —-B" = i ") gkl < ai m—kBm_kak_l
@€[-B,B]™ o' €R™M |- 7 / k - k!
|z’ —z||  <e Jj=1 Jj=1 k=1 k=1
m k k—1 m (623)
m m—Fk B _ m—1 1
e GEt (Gn) =Y s
k=1 k=1
< 2mB™ e

Combining this with Lemma 53 Lemma B4, (@2I), and @) implies that for every ¢ € (0,2), t =
(tl,tQ, R ,tm) € Q) it holds

{ﬁl hi(ty)| - [Re(wo)](8)] = {ﬁl hi(ty)| = [Ro(le o P(®L, @2, 87))] (1)
Jj= J=
< Jl:[ hj(tj)] - jl;ll [Rg(q’?)] (tj)H (6.24)
+ ﬁl [Rg(ég)] (t5)| = [Ro(T1e)] ([Ro(®D)](t1); -+ [Rg(<1>;”)}(tj))’
=
< 2mB™ e 4 e < 3mB™ e,
Moreover, for every e € [%, 00), t = (t1,t2,...,tm) € Q it holds that
[ I hit)| - (R0 = lljl hs(t5)| — (RO
7= = (6.25)
= || II hjt;)|| £ B™ < 2mB™ 'e.
j=1

This and ([6.24)) establish that the neural networks (V. ). ¢ ¢(0,00) satisfy (). Next observe that Lemma [53]
Lemma [54] and (@) demonstrate that for every e € (0, 22-)

7 2m

L(V.)=L(I.oP(®L,®2,...,0M) =LAL)+ max L(P])
g2, my (6.26)
< C'In(m) (JIn(e)| + mIn(B) + In(m)) + Le.

This and the fact that for every e € [, 00) it holds that £(¥.) = L(f) = 1 establish that the neural

networks (V. ). . c(0,00) satisfy (). Furthermore note that Lemma [5.3, Lemma [5.4] and (b)) ensure that for
every ¢ € (0, 22
M(V.) = M(Il. o P(DL, @2,...,07))
< 2M(H8) +M(P(‘I’iﬁ,@§,,@?)) +M£(7’(<I>;,d>§ ..... @;”))(/P(q)luq)guuq);n)) (627)
< 2C"m (In(e)| + mIn(B) 4+ In(m)) + M(®T) + My_(®7).

This and the fact that for every ¢ € [£-, 00) it holds that M(¥.) = M(#) = 0 imply the neural networks
(Ve)e,ce(0,00) satisfy (). The proof of Proposition 6.4]is completed. O

Another way to use the multiplication results is to consider the approximation of smooth functions by
polynomials. This can be done for functions of arbitrary dimension using the multivariate Taylor expan-
sion (see [27] and [20, Thm. 2.3]). Such a direct approach, however, yields networks whose size depends
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exponentially on the dimension of the function. As our goal is to show that high dimensional functions
with a tensor product structure can be approximated by networks with only polynomial dependence on the
dimension, we only consider univariate smooth functions here. In the appendix we present a detailed and
explicit construction of this Taylor approximation by neural networks.

Theorem 6.5. Assume Setting [, let n € N, r € (0,00), let p: R — R be the ReLU activation function
given by o(t) = max{0,t}, and let B} C C"([0,1],R) be the set given by

ke{O,l,...,n} tE[O,l

By = {f e C"([0,1],R):  max [ sup ‘f(k)(t)” < 1} . (6.28)
]

Then there exist neural networks (Pf.c)repr ce(0,00) © N which satisfy

i) s |0

— = ke <o,
FEBT £€(0,00) | Max{T, |1H(€)|}]

M((I)f}s)

e~ max{r, | In(e)|}

(i) sup [

} < o0, and
fEB},£€(0,00)

(i) for every f € By, € € (0,00) that

sup |f(t) = [Ro(®re)l(t)] <e. (6.29)
te[0,1]

For convenience of use we also provide the following more general corollary.
Corollary 6.6. Assume Setting[21], let r € (0,00) and let o: R — R be the ReLU activation function given by

o(t) = max{0,t}. Let further the set C" be given by C" = Ujq pjcr, C"([a,b], R), and let ||-[|,, ., : C" — [0,00)
satisfy for every [a,b] C R, f € C™([a,b],R)

fll o=  max sup ‘f(k) t } . 6.30
oo = x| s [£0) (6.30)
Then there exist neural networks (Py.c) recn ce(0,00) S T which satisfy
i L(®
(i) s Bre), <oo,
feer e€(0,00) | max{r, | Mm)l}
@ .
(i1) sup T '/:/l( fe) < 00, and
Jeeme(0.00) | max{l, b —a} [|fl o €™ max{r, | In( w1
(iii) for every [a,b] C R4, f € C"([a,b],R), € € (0,00) that
sup [f(t) — [Ro(®ye)(H)] <e. (6.31)

t€la,b]

7 DNN Expression Rates for High-Dimensional Basket prices
Now that we have established a number of general expression rate results, we can apply them to our specific
problem. Using the regularity result (83]) we obtain the following.

Corollary 7.1. Assume Setting [51], let n € N, r € (0,00), a € (0,00), b € (a,00), let o: R — R be
the ReLU activation function given by o(t) = max{0,t}, let f: (0,00) — R be as defined in BI)),and let
he: [a,b] = R, c € (0,00), K € [0,00), denote the functions which satisfy for every c € (0,00), K € [0, 00),
x € [a, b

hex(z) = F(EF€). (7.1)

C N which satisfy

Then there exist neural networks (@8707;{)& ¢ €(0,00), K €[0,00)
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(i) sup { £(Pec.x) < 00
e ce(0,00). K€[0,00) LMax{r, [In(e)[} + max{0,In(K + c)} ’
O, .
(i1) sup M-, f{) — | < o0, and
e,c€(0,00),K€[0,00) (K—|—C+ 1)ﬁa_ﬁ
(iit) for every e,c € (0,00), K € [0,00) that
sup |he, k() — [Ro(®Pe,c,x)](z)] < e (7.2)

z€[a,b]
Proof of Corollary[7.1] We observe Corollary B3 ensures the existence of a constant C' € R with

max sup
k<n zela,b)

hff}((x)] < C'max{(K +¢)",1}. (7.3)

Moreover, observe for every ¢, ¢ € (0,00), K € [0,00) it holds

max{r, | 1n(max{1,b7a}0 riax{(K+c)n,1})|}
< max{r, [ln(e)|} + | In(max{1,b — a})| + |In(C max{(K + ¢)", 1})|
< max{r, [ln(e)|} + In(max{1,b — a}) + [In(C)| + [In(max{(K + ¢)", 1})| (7.4)
< max{r, [In(e)|} + In(max{1,b — a}) + [In(C)| + nmax{In(K + ¢),0}
< n(1+ max{1,2}(|In(C)| + In(max{1,b — a})))(max{r, |In(e)|} + max{In(K + c),0}).

Furthermore, note for every ¢, ¢ € (0,00), K € [0, 00) it holds

1
g 2n2

max{1,b— a}C max{(K + ¢)*, 1}

= [max{1,b— a}] =7 =7 C'm7 max{(K + c),1} 75)

1

< [max{1,b— a}]’ﬁcﬁ(K et 1)me e,

Combining this, (T3), (4) with Lemma and Corollary (with n <+ 2n? in the notation of Corol-
lary [6.0]) completes the proof of Corollary [l O

We can then employ Proposition in order to approximate the required tensor product.

Corollary 7.2. Assume Setting[51, let 0: R — R be the ReLU activation function given by o(t) = max{0,t},
letn € N, a € (0,0), b € (a,00), (K;)ien C [0, Kmax), and consider, for hei: [a,b) — R, ¢ € (0,00),
K € [0, Kmax), the functions which are, for every ¢ € (0,00), K € [0, Kimax), © € [a,b], given by

K

1 111( ;FC) — 1,2
hc,K(ﬂi):ﬁ e 2" dr. (7.6)

For any c € (0,00), d € N let the function F&(z): [a,b]¢ — R be given by

Fee) =1- | T e )] (17)

i=1

Then there exist neural networks (V2 ). . (0,00),0en C M which satisfy

[ (vl ,)

. e
O ol ens | L@} (&) + (@) + D T (e 1) | <
M(wd
(i) sup 1( 8’03 — | < o0, and
e,c€(0,00),deN | (c+ 1)wdiTwe™=n
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(iii) for every e,c € (0,00), d € N that

sup [ Fel(x) = [Ro(W )] (2)] <e. (7.8)

z€la,bld

Proof of Corollary [7.2 Throughout this proof assume Setting[5.2l Property Corollary [T Tlensures there exist

constants by, by € (0,00) and neural networks (@%)c)n e €(0.00) C M, ¢ € N such that for every 7 € N it holds

(a) sup (@) <b
mee(0,00) | max{1, [In(n)[} + max{0,In(Kpax + ¢)} L
M(®!
(b)  sup ( 771‘3)1 — | < b, and
n,c €(0,00) (Kmax—i—c—i— 1)5777?
(c) for every n,c € (0,00) that
Sp. [here,(2) — [Ro(@] )] (@)] <. (7.9)

z€[a,b]

Furthermore, for every ¢ € (0,00), i € N, « € [a, ] holds

/1“ R ° i
e 2" dr / e 2" dr
\/271' oo

Combining this with @) and Proposition 4] and Lemma [54] implies there exist C' € R and neural networks
(2 Jne,00) €N, ¢ € (0,00), d € N, such that for every ¢ € (0,00), d € N it holds

< 1

|he,re ()] =

(A) £(é40) < Cln(@) (Info)| +In(a)) + _maxe | £(@},).

d < i
(B) M(y2.) < Cd(|In(n)| + In(d) +4ZM )+ Sdle{{x}%}.{”d}ﬁ(@nyc), and

(C) for every n € (0,00) that

sup
z€[a,b]?

[ﬁ hox, m)} Ry )] )| < 3dn. (7.11)

i=1

Let A € N"! be the neural network given by A = ((—1,1)), let & € "' be the neural network given by
0 = (0,0), and let (V2 ). . c(0,00),aen € N be the neural networks given by

d .
vl = AoV anye 1ES2 . (7.12)
' 0 te>12

Observe that this and (B)) imply for every ¢ € (0,2], ¢ € (0,00), d € N, = € [a,b]? it holds

Fi(a) — [Ry(w2 )] (@) = ‘ (1= |11 pecton]) = (1= [Ra(w, ) (x))‘ -
<3dg =-.

Moreover, (12) and (ZI0) ensure for every € € (2,00), ¢ € (0,00), d € N, = € [a,b]¢ it holds

P - [Ro02 ) @) =| (1 [ he )] ) (7.0

28



This and (ZI3) establish the neural networks (V¢ ). . c(0,00),den satisfy (). Next observe that for every

¢ € (0,00) it holds
max{0, In(Kyax + ¢)} < max{0, In(max{1, Kynax} + max{1l, Kpax}c)}

= In(max{1, Kimax} (1 + ¢)) = In(max{1l, Knax}) + In(1 +¢)

<In(c+ 1)+ | In(Kmax)]|-
Hence, we obtain that for every ¢, ¢ € (0,00), d € N it holds

max{1, [In(g3)|} + max{0, In(Kmax + c)}
<|In(e)| + In(d) + In(3) + In(c + 1) + | In(Kmax)|

< (In(3) + | In(Kmax)|) [max{1,In(d)}(| In(¢)| + In(d) + 1) + In(c + 1)] .

In addition, for every ¢,c € (0,00), d € N it holds

Cln(d) (|In(5)| + In(d)) < 4C [max{1,In(d)}(|In(e)| + In(d) + 1) + In(c + 1)].

Combining this with Lemma 53 @), (&), and (TI0) yields
l L(we,)

sup

ee(0,2),c€(0,00), | max{1, n(d)}([In(e)[ + In(d) + 1) + In(c + 1)
deN

_ 1+ C'ln(d) (‘ln(f—dﬂ + ln(d)) +maxie(1,2,....d} ‘C(@i/(sd),c)
< sup
£€(0,2],¢ €(0,00), max{1,In(d)}(|In(¢)[ + In(d) + 1) + In(c + 1)

deN

<24+4C+ (In(3) + [ In(Kmax)|)br < 00.
Moreover, (Z12]) shows
L(ve,)

su
ce(2i0 e £(0,00), [max{l, In(d)}(|In(e)| + In(d) + 1) + In(c + 1)
deN

1
o) i (0100, [max{l, n(d) ()] + n(d) + 1) + In(c + 1)
deN

This and (ZI8) establish that (U2 ,). e (0,00),aen satisfy (@). Next observe Lemma [A2] implies that

o for every € € (0,2] it holds

|In(e)| < sup  In(8)| e w =2n2e 7w,
d€[exp(—2n2?),2]

e for every d € N it holds

In(d) < [ max 1n(k:)} dw = 2n2dw,
ke{l1,2,...,exp(2n2)}

e and for every ¢ € (0,00) it holds

3=

In(c+1) < [ sup In(t+1)| (c+1)

t€(0,exp(2n?—1)]

For every m € N, z; € [1,00), 4 € {1,2,...,m}, it holds

m
ZIz‘ <
i—1

3

1 i=1

K2

29
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=2n%(c+1)n.

(7.15)
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(7.17)

(7.18)

(7.19)

(7.20)

(7.21)

(7.22)

(7.23)



Combining this with (T20), (Z21)), and (7.22) shows for every ¢ € (0,2], d € N, ¢ € (0, c0) it holds
204d(|1In(55)| + In(d)) < 2Cd(|In(e)| 4+ 21n(d) + In(3) + In(c + 1))
< 4n?Cd(2e~ 7 +2d* +1In(3) + (c+ 1)) (7.24)
<1024nCc+ 1) nd Trew.

Furthermore, note (CIH), (Z20), (T21), (722), and ([T23) ensure for every ¢ € (0,2], d € N, ¢ € (0,00) it
holds

16d(max{1, [In(g3)|} + max{0, In(Kmax +¢)})
<16d(]In(e)| + In(d) + In(3) + In(c + 1) + | In(Kmax)|)
< 320%d(2e77 +d7 + (c+ 1)7 +10(3) + | In(Knax)|)
< 2048n%(In(3) + | In(Kpmax)|) (¢ + 1) nd T e n,

(7.25)

In addition, observe that for every ¢ € (0,2], d € N, ¢ € (0,00) it holds

1

Ad(Kpax + ¢+ 1)7 () 777 < 96 max{1, Kpax} (¢ + 1)nd Fre~n, (7.26)
Combining this with Lemma 53] @), (B), (B), (C24), and (T25) yield

M)
(c+ L)ndFhe

sup
€€(0,2],c €(0,00),
deN

4+20d(|In(£5)| + In(d) +SZM e +16di€{?}$d}5(@2/(3@70) (7.27)
< sup T

£€(0,2],¢ €(0,00), (c+ 1)nd1+n5 w
deN

< 8+ 1024nC + 96 max{1, Kpax toas + 204802 (In(3) + | In(Kmax)| )bz, < 0.

Furthermore, note that (ZI2) ensures

sup
€€(2,00),c €(0,00),
deN

= sup
£€(2,00),c €(0,00), (C + 1)%d1+%€7%
deN

M(WE,)
(c+1)w d1+%

1 AO) =0. (7.28)

1
n

This and (T27) establish that the neural networks (U2 ). .e(0,00),aen satisfy (). Thus the proof of Corol-
lary [[.2]is completed. O

Finally, we add the quadrature estimates from Section 4 to achieve approximation with networks whose
size only depends polynomially on the dimension of the problem.

Theorem 7.3. Assume Setting[521], let o: R — R be the ReLU activation function given by o(t) = max{0, t},
letn € N, a € (0,0), b € (a,0), (Ki)ien C [0, Kmax), and let Fy: (0,00) x [a,b]? — R, d € N, be the
functions which satisfy for every d € N, ¢ € (0,00), € [a, b]*

d (i)
Fyle,z) =1— H \/%/ e"2"dr|. (7.29)
i=1 -
Then there exists neural networks (U'a.c)zc(0,1),den € N which satisfy
. ﬁ(rd a) :|
7 sup ’ < 00,
VP oL @)} (@) (@ 1
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(i)  sup
€€(0,1],deN

[ M(Fd,sl

1
d*twe

(iii) for every e € (0,1], d € N that

sup
z€la,bld

/OOO Fi(e,z)de — [Ry(Tye)|(z)] < e. (7.30)

Proof of Theorem [7.3 Throughout this proof assume Setting [5.2] let Sp ,, € R be given by
Spon = 224D (h 4 1)1 0 (7.31)
and let Ng. € R, d € N, ¢ € (0,1], be given by
Nie = Spnd® [5]777 . (7.32)

Note Lemma 3] (with 4n <> n, F(c) <> Fy(z,c), Na,g <> Nae, Qa,5 <> Qa, in the notation of Lemma [L3)
ensures that there exist Qg4 € R, cg)j € (0, Ng.), wl, €[0,00),5€{1,2,...,Qac}, d €N, e € (0,1] with

€,j
sup [%] < (7.33)
cc(0,1],deN Ld Tame~
and for every d € N, € € (0,1] it holds
0o Qad.e
sup / Fi(e,z)de — Z wg)de(cg)j,:zr) <3 (7.34)
z€E€la,bld |J0 )
and
Qe
> wl; =Ny (7.35)
j=1

Furthermore, Corollary (with 4n < n, Fjd (x) + Fd(:v,cgj)) ensures there exist neural networks

€,J

(‘I’g,j)se(o,oo),deN,je{Lz ..... Qa.} © I which satisfy

[ max; L.
(@  sup jei1.2,..Qu ) £(YE) s
c€(0,00).deN | max{1, In(d)} (| In(55—)| + In(d) + 1) +In(Ng. +1)
max; MW
(b) Sup XJG{LQ 7777 Qd,s} ( 5,‘]7)L < OO, and
€00 dEN | (7 4 1) it [2]\? } In
L ’ d,e
(c) for every e € (0,00), d € N that
sup }Fd(cij,x) - [RQ(\I/g)j)} ()] < 2]\2’5. (7.36)

z€[a,b]d

Let Tdgs € R4 d € N, be the matrices given by Idgs = diag(1,1,...,1), let Vg, € N"% d q € N, be the
neural networks given by

vd,q - ( : ’ O) ’ (737)



let ¥y € Nld’l, d € N, ¢ € (0,1], be the neural networks given by

Ed75 — (((w‘il wg72 e wEd;Qd,a) ,0)) 5 (738)

and let (I'q.c)ee(0,1],aen € N be the neural networks given by
Tge=Fae0P(UL, 0,05 YoVaq,. (7.39)

Combining Lemma 5.3, Lemma 5.4 (734, (35), and (@) implies for every ¢ € (0,00) and d € N, = € [a, b]?
it holds

/0 " Fue.a)de — [Ry(Ta))(a)

Qd.e Qd.e

< /0 Fy(e,z)de — Z wide(cg)j,:E) + Z wide(cng) — [Ro(Tae))(z)
j=0 7=0

Qd.e Qd.e (7'40)
<5+ Z wg)de(cgJ,x) - Z wg,j [RQ(\IIg,j)] (z)

j=0 j=0

Qd.e
<+ > wl | Falcl m) — [Ry(PE )] ()| < 5+ Niegr— =&

§=0

This establishes that the neural networks (I'qc)ee(0,1],den satisfy (). Next, observe for every e € (0,00),
deN

max{1, In(d)} (| ln(2§d€

< max{l,In(d)} (|In(e)] + In(d) + 3In(Ng.) + In(2) + 1)
< max{1,In(d)} (| In(e)| + In(d) + 3 (1n(5'b,n) + i In(d) + $| In(e)| + % 1n(4)> + 2)

< max{1,In(d)} (4| In(e)| + 41In(d) + 3In(Sp,n) + 8)
< (3In(Sp.,) + 8) max{1,In(d)} (| In(e)| + In(d) + 1) .

)| + In(d) + 1) +In(Ng. +1)

(7.41)

Combining this with Lemma 53] Lemma 54 and (@) implies
sup [ E(Fd’g) ]
cc(0,1].den [max{1,In(d)} (|In(e)| + In(d) + 1)

L(Saz) + maXjeq12...Qu.3 L) + L(Vaq..)
max{1,In(d)} (|In(e)| + In(d) + 1)

< sup

€(0,1],deN

mane{LQ 1111 Qd,s} E(\I]g,])
max{1,In(d)} (| In(e)| + In(d) + 1)

maxje(12,..Qu.) L)
max{1,In(d)} (|In(z5=)| + In(d) + 1) + In(No. + 1)

<2+ sup (7.42)

€€(0,1],deN

<2+ (3In(Sp,n) +8) sup
e€(0,00),deN

< 00.
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This establishes (I'q.c)o¢(0,1),aen satisfy @). In addition, for every € € (0,00), d € N it holds

9
2Ng.e

T it o T gl o~
(Nd,8+1)4nd an §4Nd;d in g dn

1
— 173
< 4[Syud [5)7T] T Mt e (7.43)
<1685y pd T TRz ()
< 168y d T,

Combining this with Lemma 3] Lemma 54l (Z33), (M), and the fact that for every +) € 9 which satisfies
minge 12, £y} Mi() > 0 it holds L(¢)) < M(¢) ensures

wp [0 ]
ce(01].den L@ en
I Qa,e
d d
2M(Zae) + 4 QJZZ;M@EJ) T4Que  max | LOVE)) | +4M(Vag,.)
< sup
e€(0,1],deN d(2+%)5*%
< ap | HQuemiens.@u M| [M]
- ccOaden | d>Fwen ceaen | d@HDe—% (7.44)
<24 sup [L] sup maXje{1,2,.., Qd,s}M(\Ijg,j)
- ce(01].den LdI+2m)e ™2 £€(0,1],deN dO+zm)e=zm
st :|
+4 sup {7
ce(01].den LT ew
max; M(T
=24 ( sup Lﬁ%]) 14165y, sup jed1.2,.Qqcp M( 87]_)L
£€(0,1],deN e c€OUAEN | (N, -+ D) dltw [21\2,5} "
< 0.

This establishes the neural networks (I'g.c)ee(0,1),den satisfy (). The proof of Theorem [3]is thus completed.
O
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A Additional Proofs

A.1 Complementary Distribution Formula

Lemma A.1 (Complementary distribution function formula). Let p: B(]0,00)) — [0, 00| be a sigma-finite
measure. Then

/Ooow(daf) = /Ooo pi(lz, 00)) dw = /000 p((z, 00)) da. (A.1)

Proof of LemmalZZ First, observe that

/Oooxu(dx) = /OOO [/O”” dy] p(dz) = OOO [/OOO (oo, (y) dy} pu(da)

0o poo (A.2)
o Jo
Next observe that the fact that function
[0,00)2 3 (z,y) = Ly o0y (z) €R (A.3)

is (B([0,00)) ® B([0,00)))/B(R)-measurable and the hypothesis that x is a sigma-finite measure allows us to
apply Fubini’s theorem to obtain

|| the@adyntan) = [ [ vy @ ntdordy = [ i) dy (A1)
o Jo o Jo 0
Combining this with (A.2)) demonstrates for every e € (0, 00)
/ :vu(dw)=/ u([y,OO))dyZ/ p((y; 00)) dy
0 0 0

- - (A.5)
> [ty = [ o) v

Beppo Levi’s monotone convergence theorem hence establishes

/OOO  p(dz)

/Ou([yaoO))dyZ/O p((y,00)) dy

Y

sup | [ e ] (A6)

e€(0,00)

= sup [ /Omuay,oo))n(g,oo)(y)dy]— /Ooouqy,oo))dy.

e€(0,00)

The proof of Lemma [A ] is thus completed. O
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A.2 Technical Lemma

Lemma A.2. It holds for every r € (0,00), t € (0, exp(—27?)] that

lIn(t)| <t~ (A7)
and for every r € (0,00), t € [exp(2r?),00) that

In(t) < ¢/ (A.8)
Proof of Lemma[A2. First, observe that for every r € (0,00), y € [2r?, 00) it holds that

(1) =5[] 2 2 =[] 2. s

k=0

This implies that for every r € (0,00), x € [exp(2r?), o) it holds that
2" = exp (ln(acl/T)) = exp(@) > In(x). (A.10)
Hence, we obtain that for every r € (0, 0), t € (0,exp(—2r?)] C (0,1] it holds that
7 = [47 = n(}) = (o)]. (A11)

This completes the proof of Lemma [A.2] O

A.3 Proof of Lemma

Proof of Lemmal6 1. The proof follows [27]. We provide it in order to provide values of constants in the
bounds on depth and width, and to reveal the dependence on the scaling parameter B. Throughout this
proof let 6 € Nll’l be the neural network given by 6 = (0,0), let gs: [0,1] — [0,1], s € N, be the functions
which satisfy for every s € N, ¢ € [0, 1] that

2t rs=1,t<
gs(t) =<2 —2t cs=1,t>
91(gs—1(t)) :s5>1

and let f,: [0,1] — [0,1], m € N, be the functions which satisfy for every m € N, k € {0,1,...,2™},
k" kt1
v €[5, 5] that

NI— N[

: (A.12)

2k+1 k*+k
fm(x) = [ o ] ~ Em (A.13)
We claim for every s € N, k € {0,1,...,25"1 — 1} it holds
25(x — 2k tx € Q—f,zkfl
gs(z) = s(2k+22 : . [§k+122kl2 : (A.14)
Z(T_I) .I€[2s,25}

We now prove (AJ4) by induction on s € N. Equation (AI2) establishes (AI4) in the base case s = 1.
For the induction step N 2 s — s+ 1 € {2,3,...} observe that (AI2) implies for every s € N, [ €
{0,1,...,2571 — 1} that

i 1 204+(1/2)
(a) it holds for every x € [22—5, 2—52}

gs+1(2) = g(gs () = 9(2°(x — 31)) = 2[2°(2 — 3)]

A15
:25-1-1(:17_3_5;):254—1(:17_%). ( )
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. 204(} !
(b) it holds for every z € %, 2l

gs+1(2) = g(gs(2)) = g(2°(x = 35)) =2 = 2 [2°(x — )]

=225ty 4 4] = 25T (482 — g) (A.16)
S C )

2041 204(3/2)

(c) it holds for every x € | %55, =5

gsi1(x) = g(gs(x)) = g(2°(BEL — &) =2 — 2 [25(ZEL — )]

=2 2020+ 1)+ 25 g = 25T — 2(20) (A.17)

i 204 (3/2) 20+2
(d) it holds for every x € 2—32, QL

ger1(2) = 9(9a(x)) = 9(2° (% — 1)) = 2 [2°(F — )]
=2 (2 ) = 2 (P ),

25

(A.18)

Next observe that for every s € N, k € {0,1,...,2% — 1} there exists [ € {0,1,...,2°"1 — 1} such that

2, 2] = [2_1 21+(1/2)} or [p2k, 2] = {2l+1 2l+(3/2)} (A.19)

PERR) W PER] PE 2sF1y 9s+1 PERR s

Furthermore, for every s € N, k € {0,1,...,2% — 1} there exists [ € {0,1,...,25"1 — 1} such that

2k4+1 2k+271 _ | 204+(1/2) 2041 2k4+1 2k4+27 _ | 204+(3/2) 2042
(555, 357 —[ e B or (3R ] = 25 g5 | (A.20)

Combining this with (ATH), (AI6), (AI17), (AI8), and (AI9) completes the induction step N3 s — s+1 €
{2,3,...} and thus establishes the claim (A14]).

Next, for every m € N, k € {0,1,...,2m71} it holds

P 1 (ZE) = Fn(ZE) = 1 (5r) — fn(Z) = [52]7 - [Z])7 =0 (A.21)

In addition, note that (AT3]) implies that for every m € N, k € {0,1,...,2™ — 1} it holds

1 2k+11k+35  Kk*+k
fm— 1( ) = fm—1 (2m—le> = [le} om—1  92(m—1)

(A.22)
Ck+1)(k+3)—(2+k) K +k+3 4k24+4k+2
= 92m—2 T 92m-—2 92m
and
22k+1)+1] 2k+1  (2k+1)?+ (2k+1) 4k? +4k+1
2k+1Y _ _ = ) A2
fm( 2m ) |: om :| om 22m 922m ( 3)
For every m € N, k € {0,1,...,2™ — 1} it holds
4k 44k +2  ARP4+4k+1 1
Jm— 1( ) fm(m;il) = 92m - 52m = 22—m (A24)
Combining this with (AT4), (AI3), and (A2I) demonstrates that for every m € N, z € [0, 1] it holds
fn—1(x) = fm(x) = 272" g (). (A.25)
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The fact that for every x € [0,1] it holds that fo(x) = x therefore implies that for every m € Ny, x € [0, 1]
it holds

m

fm(x) =2 — Z 272 g, (). (A.26)

s=1

We observe f,,, is the affine, linear interpolant of the twice continuously differentiable function [0,1] 3 =
2?2 € [0,1] at the points 2%, k€ {0,1,...,2™}. This establishes that for every m € N

2 2
sup |27 — fm(z)| = max sup = fm(x
IO %y |y )
[t _ k]2 .
< 2 2m d? ‘
ke{0,1,...,.2m} 8 Ie[?%] e [+°] (A.27)
< 171
i (g )
272m72

2 —4 2 0 0
2 —4 2 0 -1
_ — 2
Ak = 2 4 2 0 and bk = 1 y (A28)
_2—2k+3 2—2/€+4 _2—2k+3 1 0
let v, € M, m € N, be the neural networks which satisty ¢; = (1,0) and, for every m € N,
1 0 _2—2m+3 T
1 _1 2—2m+4
Pm = 11> _i 7(A25b2)7'- '7(Am*17bm*1)7 —9—2m+3 ;0 . (A29)
1 0 1
Let further r*: R — R, k € N denote the function which satisfies for every z € R
('f‘} (‘T)v T‘% (‘T)v T‘é (CL‘), Ti (CL‘)) =r! (CL‘) = Q* (CL‘, xr — %7 x—1, .’L‘) (A'?’O)
and for every x € R, k € N
(r (x), 75 (2), 75 (), 7} () = ¥ (2) = 0" (Apri—1(2) + by). (A.31)
We claim that for every k € {1,2,...,m — 1}, x € [0,1] it holds
(a)
27"]1C (z) — 47“’5(1:) + 2r§(z) = gr(x) (A.32)
and
(b)
k—1 _
ri(z) =2 — Z 27 % g;(x). (A.33)
j=1
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We prove @) and (b)) by induction over k € {1,2,...,m — 1}. For the base case k = 1 we note that for every
x € [0, 1] it holds

g1(x) = 20(z) — 4o(x — 3) + 20(z — 1). (A.34)

Hence, we obtain that for every = € [0, 1] it holds

2r{(z) — 4ry(z) + 2r3(z) = 20(z) — do(z — 3) + 20(z — 1) = g1 (z). (A.35)
Furthermore, note that for every = € [0,1] it holds that 7} (x) = z. This and ([(A35) establish the base case
k = 1. For the induction step {1,2,...,m —2} >k —1— k € {2,3,...,m — 1} observe that (A.34) ensures
for every z € [0,1], k € {2,3,...,m — 1}, with gx_1(2) = 2r¥ " (z) — 47571 () 4+ 2rF~1(2), it holds
27 (x) — 4r3(x) + 2r§(z) = 20(2r7 " (2) —4ry ™' (2) + 215 ()
~40(2r ™ (2) — 4ry ™ (x) + 25 (2) — 3)
202 () — 4k () + 201 () — 1) (A36)
= g2 ) — 4k (2) 4+ 2rh 7 (2)

= g1(gr-1(k)) = gr(z).

Induction thus establishes (@). Moreover note that (A.I3) and (A.20) for every k € N, x € [0, 1] it holds
k—1 ‘
x— Z 27%gi(x) = fr_1(x) > 0. (A.37)
j=1

Combining this with (A34) implies that for every = € [0,1], k € {2,3,...,m—1} with gx_1(z) = 271 (z) —
4rh V() + 278N (z) and ¥ (2) = 2 — 25;12 272 g;(z) it holds
ri(z) = o(=27 2T (@) + 272 T (@) = 272 (@) 4T (2)
k=2 k=1
=o(x— > 27 Ygi(x) — gr1(2)) = ol — >_2 ¥ g,(x))
j=1

= (A.38)

<

k—1
=x— Z 27 % gi(x).
j=1

Induction thus establishes (D). Next observe that (@) and (D)) that for every m € N, z € [0, 1] it holds

[Ro(pm)](z) = =272 430" (@) + 2724 = (2) — 2727030 (@) + 1) (2)
m—2
= =220 (27 M) — 4r (@) + 20 (@) = Y 27 g(x)
j=1 (A.39)

m—2 m—1
=z — Z 272 g(z)| —272m Vg, () =2 — Z 27%g;(x).
j=1 J=1

Combining this with (A.26) establishes that for every m € N, x € [0,1] it holds
[Ro(om))(2) = frn-1(2). (A.40)
This and [A27) imply that for every m € N it holds

sup [2* — [Ry(iom)](2)] < 272, (A41)
z€[0,1]
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Furthermore, observe that by construction it holds for every m € N
L(om)=m and M(pn)=max{1,10+ 15(m — 2)} < 15m. (A.42)
Let (02)ee(0,00) € I be the neural networks which satisfy for € € (0, 1)
Te = P[ 110, ()] (A.43)
and for every € € [1,00) that 0. = 6. Observe that for every ¢ € [1,00) it holds

sup |2° — [Ry(0o)|(z)| = sup [2* — [Ry(0)](z)] <1 <e. (A.44)
z€[0,1] z€[0,1]

In addition note for every ¢ € (0,1) it holds

s |22 — [Ry(02)](x)| = s ‘x - [Rg(so(%uoggs)q)](x)\ (A.45)

< 92[4log; ()] < 9-2(}llog>()) — gloga(e) — .

Moreover, observe that ([(A42)) implies for every ¢ € (0,1) it holds

‘C(Ua) = E(‘P[%|1og2(€)ﬂ) = {% |10g2(5)|~| (A'46)

and
M(o.) = M(‘P[éuogz(s)ﬂ) < 15 [1 [log,(e)]] - (A.A4T)
Furthermore, for every ¢ € [1,00) it holds L(c.) = £(f) = 1 and M(o.) = M(f) = 0. This completes the
proof of Lemma O

A.4 Proof of Lemma

Proof of Lemmal6.2. Throughout this proof assume Setting £.2] let 6 € Nll’l be the neural network given
by 6 = (0,0), let aq, 0,012 € N22’2’1 be the neural networks given by

() -
= (((5 ) (0)1 3 #).0), (A48)
ama= (L) 1) ()G ).0).

and let £ € N! be the neural network given by ¥ = (((2B*> —2B* —2B?%),0)). Observe that Lemma[G.1]
ensures the existence of neural networks (0. )cc(0,00) € 9 which satisfy Lemmal6T] @) — ). Let (1c)ee(0,00) €
N be the neural networks which satisfy for every ¢ € (0, c0)

[\)
o=
[)
S
SN—
S
N——

e — YoP (05/632 0Q12,0:/p2 O 1, 0cfsp2 O ag) e < Bz ' (A.49)
0 :e> B
Note first that for every e € [B2, 00) it holds
sup oy = [Ro(pe)l(@,y)l = sup oy = [Ro(0))(z,9)| =  sup oy —0]=B*<e. (5 5
z,y€[—B,B] z,y€[—B,B] z,y€[—B,B]
Next observe that for every (x,y) € R? it holds
[Ro(a)l(z,y) = 5p0(z) + 550(—2) = 55 2], [Re(a2)l(z,y) = 55 lyl, (A51)

[Ro(01,2))(,9) = 55 o+ y] .

40



Furthermore, for every (z,y,2) € R? holds [R,(X)](z,y,2) = 2B%z — 2By — 2B?2. Combining this with
Lemma 53] Lemma 54 (A49), and (A5 establishes that for every ¢ € (0, B?), (z,y) € [-B, B]? it holds

[Ry(n))(,) = 2B (1Ro(ows002)] (155 ) = (R0 ene)] (55) = [Rologone)) (34) ) - (A.52)

With Lemma [G.1] Ttem [ (A52) establishes ([@). In addition note that Lemma [6.1] demonstrates for every
€ € (0,00) it holds

122 _2p? [[Rg(as/sBz)] (%)} ‘

sup
2€[—2B,2B]
_ 2111?92 Izl
" selo2t 28] 2B {23] 2B [[39(05/632)](28)“ (A.53)
—28° | sup |12 [[Bylome)] 0)]]| <287 [5] = &

te0,1]
This and ([(A52) establish that for every ¢ € (0, B?) it holds

sup |zy — [Ry(pe)](z, )]
z,y€[—B,B]

= sup
2YE[—B,B]

Lty —a? =47 - [Rgma)](x,y)\ (A.54)

Next observe that L(a1) = L(ag) = L(aq,2) = 2 and £(X) = 1. Combining this with Lemmal5.3] Lemmal5.4]
and Lemma GI|{) ensures for every ¢ € (0, B?)
L(pe) = LX) +max{L(0w/sp2) + L(a1,2), L(0sep>) + L(a1), L(0essp2) + L{a2)}
2
< % ‘10g2(6%)| +4= %10g2(6§ )+4
= 3(logy(L) 4 2logy(B) +3) + 4
= 1logy (1) + logy(B) + 6.
Combining M(a;) = M(az) = 4 and M(aq,2) = 6 with Lemma[5.3] Lemma[G.I){), and (A48) demonstrate
for every € € (0, B?) it holds

(A.55)

M(0=ssp2 0 a1,2) < 2(M(0ess52) + M(ar2))
(15(3 [logs (55)| + 1) +6)
5(logy(2) + 21og,(B) + 3) + 42

5logy (L) + 301ogy(B) + 87

<
<
<

2
2
) (A.56)
1

and analogously M (0.jsp2 © a1) = M(0csep2 © az) < 151logy(L) + 301og,(B) + 83. This, and M(Z) = 3,
Lemma [5.3] and Lemma [5.4] imply that for every e € (0, B?) it holds

M(Na) =2 (M(E) + [M(UE/GB2 © a1,2) + M(UE/GB2 o 041) + M(UE/GB2 o 042)])

. (A.57)
< 901logy () + 1801ogy(B) + 467.

Moreover, for every e € (B? 00) it holds £(u:) = 1 and M(u.) = 0. Next, observe Lemma 3] and
Lemma [5.4] demonstrate that for every e € (0, 00) it holds that
Mi(pe) = Mi(P (0csop2 © Q12,0652 © 1, 0csgp2 © a2)) < Mi(a2) + My(aq) + My(az) =14 (A.58)
and
Mgy () = M(S) = 3. (A59)

This completes the proof of Lemma O
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A.5 Proof of Theorem

Proof of Theorem[6.3 Throughout this proof assume Setting[5.2 let Ay ;: R =R, N € N, j € {0,1,...,N},
be the functions which satisfy for every N € N, j € {0,1,..., N}, z € R

Nz+1-j r<e<g
hnj(x) =4 —Noz+1+j 4 <a<Id (A.60)
0 else

let Tyn;:R—R, fe B}, NeN,je{0,1,...,N}, be the functions which satisfy for every f € BT,
NeN,je{0,1,....,N}, x €0,1]

FAE
Trnj(r) = (z — )" (A.61)
For every f € By, let fnv : R — R, N € N denote functions which satisfy for every N € N, z € [0, 1]

ZhN,J JTn,j(@ )- (A.62)

Observe that Taylor’s theorem (with Lagrange remainder term) ensures that for every f € B, N € N,
j€{0,1,...,N}, z € [max{0, %}, min{1, %}]

@) = T @) < & o — 4" sup RG]

¢emax{0, 52 ) min{1, 2Ly
N N (A.63)

<

==

N™"  max su } (k) t} < Ly-n
ke{0,1,....n} LG[OI*)” Q) nt

Moreover, for every N € N, z € [0,1], j ¢ {[Nz]| — 1, [Nz]} it holds that hn j(z) = 0. We obtain for every
N eNand z € [0,1]

Z hn i (@) Ty N5 (x) = hy,(Ne) -1 (@) Tr, N, N1 -1 () + by, (ne) (2) T, N e (7). (A.64)
Furthermore, (A.60) implies for every N € N, j € {1,.. — 1}, z € [51, 4] holds
hyj—1(z) + hy (@) = —No+1+ (j— 1)+ Nz +1—j = 1. (A.65)

Combining this with (A.62)), (A.G3), and (A.64) establishes that for every f € B, N € N, z € [0,1]
|f(x) = fn ()]

ZhNJ )Ty N,j(x)

| f(z) - (hN, a1 —1()Ts N, a1 =1 (%) + Ay va] (2)Tr N v (2)) | (A.66)
< |, iNa] -1 (@) (@) = By Na)—1(2) Ty N, [Na] -1 (7)]
+ |hy, (Nﬂ( 2)f(x) = by, fna] (2)Tf N, Ne (2)]
= hy,(Na]-1(2) | f(2) = TN, [Na)—1(2)| + A, pve) (@) | f(2) = Tp v, pva ()]
< hyiNa-1(@) [N 4 by pve (2) [N ] = LN

We now realize this local Taylor approximation using neural networks. To this end, note that Theorem
ensures that there exist C' € R and neural networks (II ),76(0 x)s k € NN [2,00) which satisfy
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(A) £(11F) < Cln(k) (IIn(n)| + k1n(3) + In(k)),

(B) M(IL}) < Ck (Jn(n)| + kIn(3) + In(k)),

k

(C)  sup
z€[—3,3]F

- [Rg(ﬂfi)] (z)

< n and

Ly
1

(D) R, [HZ] (x1,2,...,2) =0, if there exists i € {1,2,...,k} with z; = 0.
To complete the proof, we introduce the following neural networks:

o Vn,k €NFLNeEN, je{0,1,...,N}, ke {2,3,...,n— 1} given by

1 —

Vvae= (| ¢+ D>

2k

e

N EMee(0,00), NeN, je{0,1,....,N}, ke{1,2,...,n— 1}, given by

. _{(1,0) k=1

NI, o Ve tk> 1

Sin; NPT feBy, NeN, je{0,1,..., N} given by

= (20 0 o) )

(1)1 2! e !

e Ti.N; €EN feBP, ee(0,00), NeN,je{0,1,...,N} given by
TheNg = SfN; 0 PEN 16N 5 &N i) © Viom—1,
e xn; ENYP N eEN, je{0,1,...,N} given by
1 —(G-1/N
XN,j = ( 1 ’ _j/N )a((l -2 1)70)
1 —G+D/N

Av € NPVTEN € N given by
w=(((1 ... 1),0),

Yren; €N, fE€BY, e€(0,0), NeN, je{0,1,...,N} given by

Yreng =2 0 P(XN ) T.eN.5);

PfeN € N, f € B?u NeN,ee (0700) given by

©feN =ANOP (Vre N1 Vfe N2 - Ve NN)© Vio2N+2
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With these networks, we note Lemma 53] Lemma 54 (), (A.67) and (A68) ensure that for every N € N,
€(0,00), 5 €{0,1,....N}, k€ {2,3,....,n—1}

sup |z = 4)" = [Ro(l n.p)| (@)

z€[0,1]
< s [ = )" = [Ro0)] (Ro(Fri0] @)
< xil[tpl [f[ [R (Ha/ge)] @-Fr—% . x—%) A
gmsulp1 [f[ [ H'S/SG)}( )| < 5
and
sup |(z — %) — [Ro(&ln )] (x)| = 0. (A.76)

z€[0,1]

Moreover, Lemma 3] Lemma B4l (A67), (A6]), (A69), and (ATQ) demonstrate that for every f € BT,
N eN,e€(0,0),j€{0,1,...,N}, x € [0,1] it holds

[Ro(Tfe,n.5)] i [ %) Ro(& N 7)) (@) | + F(F). (A.77)

k=1

Combining this with (A61)), (A70), (ATD) and (ATD) establishes that for every f € B, N € N, ¢ € (0, 0),
j€{0,1,...,N}, z €[0,1] it holds

|Ts,n,5(x) = [Ro(7,c,n.5)] ()]

(R
n—1 ¢(k)( 4 . =L
| ) (£ [
k=0

+f(%)>‘
<f D) o gy - [Raleh)] (x)\) A

(k) J o0
5 f W 1 5
£ £ ) <&
8e Z 86 < k!) -8

k=1

IN

£l
I |

IN

Next, (ATI) ensures for every N € N, j € {0,1,..., N}, z € [0,1]
[Ro(xnj)(@) = o(x — 551) = 20(x — %) + o(x — 57) = hn (2). (A.79)

Now ([A78)) and Taylor’s Theorem imply for every f € B}, N € N, e € (0,1), 7 € {0,1,....,N}, = € [0,1]
that

|[Ro(7r.e,5.)(@)| < [[Ro(Ts.e,ni)I(@) = Trn (@) + [Ty () = f(2)] + [ f(2)]

€
74—%3@" sup |F™ @)+ sup |f(t)| < 3.
TSR t6[071]| (®)] S ]| (®)]

Combining this with Lemma [5.3] Lemma B4 (A60), (), (A18), and (A7) establishes for every f € BT,
NeN, ee(0,1),j€{0,1,...,N}, z € [0,1] the bound

|hn i (@) g (@) = [Ro(Vgen,5)] (@, )|
< |hw i (@) Tpn (@) — [Ro(xv,j)] (@) [Ro(Tv,5)] ()
+‘[RQ(XNJ)]( )[R (Tn,5)l(x) — [
< |hw i (@) T () = [Ro(Tav,5)](2)
+ |[RoOew @) Ry (@) — [
.

(A.80)

IN

BT, 0 Pxn 5. 7505 2) )

Ry(T2 )[Ry (v (@), [Ro (7e.v,)) ()|
<

=
1

oolm
oolm
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Furthermore, note that for every N € N, j € {0,1,...,N}, x ¢ [%, JT] it holds that hy j(z) = xn,;(z) =
0. Thus (D)) ensures that for every f € B, N e N, ¢ € (0,1), j € {0, ., N}, z €[0,1] it holds

1,.
|hn i (2) TN j (%) = [Ro(¥renv,5)](z,2)| = 0. (A.82)

This, Lemma 53] Lemma 54 (A62), (A74), and (AR8I) imply that for every f € B}, N € N, ¢ € (0,1),
x € [0,1] it holds

N
| (@) = [Re(pgen)](@)| = thva D) Tr () = Y [Ro(thpen ), 2)
7= (A.83)
<2 s i ()T () — Ry )
=3
Combining this with (AX66) establishes that for every f € B, N € N, ¢ € (0,1), « € [0,1] it holds
[f(@) = [Ro(prem))(@)] < [f(2) = In(@)] + [ fv (@) = [Ro(pren)]l < N7 + 5. (A.84)
Let N. € N satisfy for every ¢ € (0, 00)
N =[[&]7]. (A.85)
let 0 € Nll’l be given by 0 = (0,0), and let (®f:)repn cc(0,00) € N be the neural networks given by
Pfe,N. €< 1
O, — . A.86
ik {9 te>1 ( )
Oberve that (A84) implies that for every f € B}, ¢ € (0,1), z € [0, 1]
[ (@) = [Ro(®y,0)) ()| = |F () = [Rolppen))(@)] < NI+ 5 < L [BE] + 5 =e (A.87)
Moreover that for every f € B}, e € [1,00), x € [0,1] it holds
[f (@) = [Ro(®re)](2)] = | f(2) = [Ro(0)](2)] = | f(z)| <1 <e. (A.88)

This and (A8T) establish that the neural networks (<I> f.e) feBr ce(0,00) Satisty ().
Next, Lemma [(5.3] LemmaIBEI, @A), (A67), a (Imb imply for every N € N, ¢ € (0,00), j €
{0,1,....,N}, ke {1,2,...,n—1}

L&y ) < max{l LE) 4+ L(Vijx)} < Cln(k) (|In(&)| + kIn(3) + In(k)) + 1. (A.89)
Combining this with Lemma (3] Lemma (4 (A67), (A69), (AT0) shows for every f € B, N € N,
g€ (0,00), j €{0,1,..., N} the bound

L(Tyen,j) < L(EfN, )+ [ {1glaxn71}‘c(§§,N,j) +L(V10n-1)
<3+ Cn(n) (|In(£)|+ nn(3) + In(n)) .

This, Lemma (3] Lemma B4, (&), (A7), (AT2), (A1), and (A6T) ensure for every f € B, N € N,
€ (0,00) it holds

(A.90)

Lloren) <L L(Vpen,j L
(pren) < LAN) + L_e{gflﬁ%_w} (¥, ,N,g)] + L(V1,028+2)

=2 L‘e{g?ﬁ).(.,zv} E(HE/S o P(xn.j, Tf»aN,j))}

<2+ [CIn(2) (|In(5)] +21n(3) + In(2)) + max{3, L(7s.c.n.5)}] (A.91)
<54 Cn(2) (|In(g)| + In(18)) + C'In(n) (| In(£)| + nIn(3) + In(n))
<54+ Cn(2) (|In(e)| + | In(8)| + In(18))
+ Cln(n) (|In(e)| + | In(8e)| + n1n(3) + In(n))
= ClIn(2n) [In(e)| + C(In(2) In(144) + In(n)(In(3)n + In(n) + | In(8e)|)) + 5.

~— —
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With the constant C' from (A91)), define the term T by
T) = C(In(2) In(144) + In(n)(In(3)n + In(n) + | In(8e)|)) + 5. (A.92)

Observe that (AX91)) implies for every f € B}, ¢ € (0,1)
L(Ps:) = L(ofen.)=Cln(2n) |In(e)| + T1. (A.93)

Hence we obtain

L(Pf.e) C1In(2n)|In(e) |+ T
fean:g()O - [max{r,\{n(a)\}} = feBnSSUEI(’O . {WEI} < Cn(2n) + =+ < cc. (A.94)
10 € J 10 ;€

In addition, note that (A-93) ensures that

sup [ L£(®y.0) } - sup [Cln(2n) [In(e)| + Ty
)

max{r,|In < Cln(2n) + % < 0. A.95
fEBP e€(e=T 1 {r )} FEBY c€(e=7,1) r ] ( )

Furthermore

sup {M]_ sup [;]<oo. (A.96)

fEBT,e€(1,00) max{r, [In(e)[} fEBT e€[1,00) max{r, [In(e)|}

This, (A.94), and (A93)) establish that the neural networks (®y).c(0,00) satisfy (). Next, Lemma [53] (B,
(A67), and ([(AGY) imply for every N € N, € € (0,00), j € {0,1,...,N}, k€ {1,2,....,n—1}

M(EE ;) < max{1,2(M(TE, ) + M(V 1))} < 2(Ck (JIn(£)] + kIn(3) + In(k)) + 1) (A.97)

Combining this with Lemma 53] Lemma 54 (A.67), (A.69), and (AT0) shows for every f € B}, N € N,
e € (0,00), j € {0,1,..., N} it holds

M(7peng) <2 (MSgn5) +2 (MPER, 6 ) + £(V10-1)) )

n—1

_ k . —
+4(n 1)k€{1g{%§n1}£(§E7N7J)>+8(n 1)

=1 (A.98)
< 10n+8(n—1)(2Cn (ln( &) +nn(3) + 1n(n)> +2)
+16(n—1)(Cln(n) (|In(£)| + nln(3) +In(n)) + 1)
< 32n°C (|In(£)| 4+ n1n(3) + In(n)) + 42n.
Let the term T, be given by
Ty =128 (C + 32n*C + C'ln(n)) , (A.99)
and let the term T3 be given by
T3 = 1556 + 128(C'In(144) + 64n*C(n1n(3) + In(n)) + 42n. (A.100)

This, Lemma (3] Lemma 54 (B), (A67), (ATI), (AT2), (A), and the fact that for every ¢ € 9 with
minge g2, ()} Mi(y) > 0 it holds that L£(z)) < M(1)) ensure that for every f € BY', N € N, e € (0,00) it
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holds

M(‘Pf,s,N)
S2MOAN) + 2MP Wt e n 1, Ve N2, - Ve N N)) + M(Vio2ani2)])

N
<2N+1 N 16(N + 1 C N N+1
<2(N+1)+8 ;Mw,, Ny) | +16(N + )Le{&;;w},cwﬁ N)| F8(N+1)

< 20N +32(N +1 i
= 2NN o 0y M)

< 20N + 64N (M(IIZ,) + M(P(xn., Treon.w)) )
< 20N + 128NC (|In(Z)] + 21n(3) + In(2)) (A.101)
+ 64N 2M(xn,N) + 2M(7fe.n,n) +4dmax{L(xn,N), L(Tfe,nN)})
< 20N +128NC (|In(§)| + In(18)) + 1152N
+ 128N (32n°C (| 1n(8£)| +nIn(3) +In(n)) + 42n)
+ 128N (3+ Cln(n) (|In(E)| + nln(3) +In(n)))
=128 (C + 32n*C + C'ln(n )) N|lIn(e)|
+ (1556 + 128(C'In(144) + 64n*C(n1n(3) + In(n)) + 42n) N
= TyN|In(e)| + T3N.

Combining this with Lemma [A-2] demonstrates that for every f € B}, ¢ € (0, exp(—2n?)] it holds

M(®f) = M(psen.) <ToNe|In(e)| + T3Ne
=1 [[Z]" | ImE) + 7 [ [Z] "]

: (A.102)
< 3Thew |In(e)| 4+ 3T5e ™=
< 3The™w max{r, |In(e)|} + 3Tse .
Hence we obtain
M(P 1
sup [ (®rc) } <33T+ 3T ————7 < o©. (A.103)
feBr cc(0,exp(—2n2)) L& = max{r, |In(e)[} max{r, 2n?}
Combining (AT02) with the fact that continuous function are bounded on compact sets ensures
@ .
wp [ ]
feBP e€exp(—2n2),1] Le ™ = max{r, | In(e)|}
TN([In(e)| + | In(N)) + TN —
< sup [ 2 nla 1 2 } < 00
FEBT e€[exp(—2n2),1] e~ » max{r,|In(e)|}
In addition note
Dy 0
sup . M(®y.c) } = sup [ M) } (A.105)
feByee(io0) Le™m max{r, |In(e)|}]  reBpee(t,o0) Lo max{r, |In(e)[}
0
= sup [ } =0 < o0. (A.106)
feBee(l,00) L€ + max{r, | In(e)|}

This, (A.I03), and (A.I04) establish that the neural networks (®y.)repn ce(0,00) Satisfy (). The proof of
Theorem is completed. O
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A.6 Proof of Corollary

Proof of Corollary[6201 Throughout this proof assume Setting 52 let ¢, € R, [a,b] € Ry, be the real
numbers given by cqp = min{l, (b — a)™"}, let Aoy € N"', [a,0] C Ry, be the neural networks given

by Aap = (7=, —5%), let ay € N, N f € €™ be the neural networks given by oy = (1 £l 00 5 0), let
Lap: [0,1] = [a,b], [a,b] C R4 be the functions which satisfy for every [a,b] C Ry, ¢t € [0, 1]
Loy(t) = (b—a)t+a, (A.107)
and for every f € C" let f. € C™(]0,1],R) be the function which satisfies for every ¢ € [0, 1]
Fe() = 11 £l e €a(F (Lap(£))- (A.108)
We claim that for every [a,b] C Ry, f € C"([a,b],R), m € {1,2,...,n}, t € [0,1] it holds
(1) = 111l e Can® = @) 1 (Lo () (A-109)

We now prove (ATI09) by induction on m € {1,2,...,n}. For the base case m = 1, the chain rule implies
for every [a,b] C R, f € C"([a,b],R), t € [0,1]

Pt = & (11 e Canf (Lan®)] = 117k can [ (Lan() L y(®)]
= 11f 1 e € 1 (L) = @)) = 25 €anlb = @)l (L (8))]:

This establishes (A-I09) in the base case m = 1.
For the induction step {1,2,...,n—1}3m —m+1 € {2,3,...,n} observe that the chain rule ensures
for every [a,b] C R4, f € C"([a,b],R), m €N, ¢t € [0,1]

(A.110)

& (1P cas® = @)™ ) Ly @)]] = 115 cas(d = @) (D (Lo () Ty ()

1 (A.111)
= 11 £1l 5o Cap(b = @)™ LD (L (8)].
Induction thus establishes (A109).
In addition, for every [a,b] CR,4, k€ {0,1,...,n}
cap(b—a)® =min{1, (b —a) "}(b—a)* = min{(b—a)*, (b—a) "} <1. (A.112)
Combining this with ([@30), (A107), and (A109) ensures for every [a,b] C Ry, f € C"([a,b],R)
(k) ‘ _ ‘ _ k) (¢ ‘
max su « max su Ca a
s Le[o%] 9 ] s l o [I71 e = )17 ) ]
(A.113)
() ¢ }
max su
< Ifllke o [ w |1 ]

Theorem [6.5] therefore establishes that there exist neural networks (®4.) e Br ne(0,00) © 9 which satisfy

[—E(q)g’”) } < oo

@) 52 [maxr ()}

g€BT,ne(0,00)

M((I)gy”l)
n~ 7 max{r, | In(n)[}

] < 00, and

(b)  swp [

gEBT,n€(0,00)

(c) for every g € B}, n € (0,00) that

S |9(t) = [Ro(®g,n)](1)] < 1. (A.114)
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Let ((I)f>5)f6C",€E(O,oo) C M denote neural networks which satisfy for every [a,b] C Ry, f € C™([a,b],R),
€ (0,00)
Bre=asopy s ©dap (A.115)

Observe that for every [a,b] C Ry, f € C"([a,b],R), t € [0,1] it holds

Boan)l®) = || t = i = Lap®  and  [R(ap))(t) = H==r.  (A116)

Ca,b

Lemma [5.3] therefore demonstrates for every [a,b] C R4, f € C"([a,b],R), € € (0,00), t € [0,1] it holds

[Ro(®re)l(t) = [Rolay oo, canc ©Xap)l(t)

T, o0

= [Ro(ay) o Ro( cans )0 Ro(Aap)](t) (A.117)

T, 00

_ %[R (@f*, Ca,b )](L;,lly(t))

Hf\l

Moreover, note (A-I08) ensures that for every [a,b] C Ry, f € C"([a,b],R), t € [a,b] it holds

fy = Yleee g (14 1)), (A.118)

Combining (@), (AI15), and (AI17) implies for every [a,b] C Ry, f € C™([a,b],R), € € (0, 00)

Hfllnoof*( ())_M[R (O _can )](La,i(t))‘

C
ab form =

sup |f(t) = [Ro(®y,c)I(t)]

t€[a,b] [a b]

W | g
fatel0,1]

This establishes that the neural networks ((I)fvs)fGC",se(O,oo)
for every [a,b] C Ry, f € C"([a,b],R), € € (0,00) holds

(A.119)
fo() = [Ro(p

1l oo Cane
f*,f“nb;)](t)” < car Tho =c.

satisfy (). Furthermore, Lemma [5.3] ensures

L(®pe) =L(agopy cavs 0Aap) =Laf) + LIy cans )+ L(Aap) =L(py cavs ) +2. (A.120)

EA EA oot

In addition, for every [a,b] C Ry, f € C"([a,b],R), € € (0,00) holds

min{1,(b—a)™"
max{r, [ In(p7pt™) [} = max{r, | n( =)} = max{r, | n(mammp=ymmr =)D

(A.121)
< nmax{r, [0 a=amm, - -
Combining this with (@) and (A120) implies that
L abe 2
sup o ] sup ((pr ”funboo "
£ bE
feen ze(0,00) | max{7, | In( =y )1 feen c€(0,00) | max{r, | In(ye=—)[} (A122)

L(Py,)+2 }

—n  sup [m

gEBT ,me(0,00)

This establishes that the neural networks (®;.)
every [&,b] - RJH f € On([avb]vR)a €€ (0,00)

Fecn ce(0,00) satisfy (). Next, Lemma [5.3 implies that for

M(@12) = Mlago gy cone o das) = Mlag) + M(py coae )+ M(hap) = Mlpy cpne ) +3.
(A.123)

Hf\lnoo (K] \nao
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In addition, note that (A121]) shows for every [a,b] C Ry, f € C"([a,b],R), € € (0,00)

3=

cq N Ca L 1
[m} max{r, | In(7525=) b < max{1,b — a} ||£]17 o e+ max{r, | In

Combining this with () and (AJI5) therefore ensures

M(®@ye)
sup T T .
fGC”,EG(0,00) max{l,b—a}”f”;{)ooa n maX{T,|ln(m)|}

M(gpf* ‘a,b® ) +3

€ ____
max{1,b—a}|[fll,,

)} (A.124)

<n  sup 7m0 (A.125)
fecr,e€(0,00) {ﬁ} B max{r, | In( ”;ﬁ’:; )}
<n  sw { M(@y.n) +3 } -
g€ By me(0.00) L1~ max{r, [ In(n)[}
This establishes that the neural networks (®;..) fFecm e€(0,00) satisfy (@) and completes the proof. O
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