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Abstract

We analyze approximation rates by deep ReLU networks of a class of multi-variate solutions of
Kolmogorov equations which arise in option pricing. Key technical devices are deep ReLU architectures
capable of efficiently approximating tensor products. Combining this with results concerning the approx-
imation of well behaved (i.e. fulfilling some smoothness properties) univariate functions, this provides
insights into rates of deep ReLU approximation of multi-variate functions with tensor structures. We
apply this in particular to the model problem given by the price of a european maximum option on a
basket of d assets within the Black-Scholes model for european maximum option pricing. We prove that
the solution to the d-variate option pricing problem can be approximated up to an ε-error by a deep ReLU

network of size O
(

d2+
1
n ε−

1
n

)

where n ∈ N is abitrary (with the constant implied in O(·) depending on

n). The techniques developed in the constructive proof are of independent interest in the analysis of the
expressive power of deep neural networks for solution manifolds of PDEs in high dimension.

Keywords: neural network approximation, low rank approximation, option pricing, high dimensional
PDEs.
MSC2010 Classification: 41Axx, 35Kxx, 65-XX, 65D30

1 Introduction

1.1 Motivation

The development of new classification and regression algorithms based on deep neural networks – coined
“Deep Learning” – revolutionized the area of artificial intelligence, machine learning, and data analysis [12].
More recently, these methods have been applied to the numerical solution of partial differential equations
(PDEs for short) [25, 11, 9, 17, 15, 3, 8, 14]. In these works it has been empirically observed that deep
learning-based methods work exceptionally well when used for the numerical solution of high dimensional
problems arising in option pricing. The numerical experiments carried out in [3, 8, 14, 2] in particular suggest
that deep learning-based methods may not suffer from the curse of dimensionality for these problems. In [24],
a first theoretical result on rates of expression of infinite-variate generalized polynomial chaos expansions for
solution manifolds of certain classes of parametric PDEs has been obtained.

Neural networks constitute a parametrized class of functions constructed by successive applications of
affine mappings and coordinatewise nonlinearities, see [23] for a mathematical introduction. As in [22], we
introduce a neural network via a tuple of matrix vector pairs

Φ = (((A1
i,j)

N1,N0

i,j=1 , (b
1
i )
N1

i=1), . . . , ((A
L
i,j)

NL,NL−1

i,j=1 , (bLi )
NL

i=1)) ∈ ×Ll=1

(
R
Nl×Nl−1 × R

Nl
)

(1.1)

∗This work was performed during visits of PG at the Seminar for Applied Mathematics and the FIM of ETH Zürich, and
completed during the thematic term “Numerical Analysis of Complex PDE Models in the Sciences” at the Erwin Schrödinger
Institute, Vienna, from June-August, 2018. AJ acknowledges support by the Swiss National Science Foundation under grant
No. 175699 DE and PhG are supported in part by the Austrian Science Fund (FWF) under project number P 30148.
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for given hyperparameters L ∈ N, N0, N1, . . . , NL ∈ N. Given an “activation function” ̺ ∈ C(R,R), a neural
network Φ then describes a function R̺(Φ) ∈ C(RN0 ,RNL) that can be evaluated by the recursion

xl = ̺(Alxl−1 + b1), l = 1, . . . , L− 1, [R̺(Φ)] (x0) = ALxL−1 + bL. (1.2)

The number of nonzero values in the matrix vector tuples defining Φ describe the size of Φ which will be
denoted by M(Φ). We refer to Setting 5.1 for a more detailed description. A popular activation function ̺
is the so-called “Rectified Linear Unit” ReLU(x) = max{x, 0} [12].

An increasing body of research addresses the approximation properties (or “expressive power”) of deep
neural networks, where by “approximation properties” we mean the study of the optimal tradeoff between
the size M(Φ) and the approximation error ‖u − R̺(Φ)‖ of neural networks approximating functions u
from a given function class. Classical references include [16, 7, 1, 6] as well as the summary [23] and the
references therein. In these works it is shown that deep neural networks provide optimal approximation rates
for classical smoothness spaces such as Sobolev spaces or Besov spaces. More recently these results have
been extended to Shearlet and Ridgelet spaces [4], Modulation spaces [21], piecewise smooth functions [22]
and polynomial chaos expansions [24]. All these results indicate that all classical approximation methods
based on sparse expansions can be emulated by neural networks.

1.2 Contributions and Main Result

As a first main contribution of this work we show in Proposition 6.4 that low-rank functions of the form

(x1, . . . , xd) ∈ R
d 7→

R∑

s=1

cs

d∏

j=1

hsj(xj), (1.3)

with hsj ∈ C(R,R) sufficiently regular, and (cs)
R
s=1 ⊆ R can be approximated to a given relative precision

by deep ReLU neural networks of size scaling like Rd2, that is, without curse of dimensionality. In other
words, we show that in addition all classical approximation methods based on sparse expansions and on more
general low-rank structures, can be emulated by neural networks. Since the solutions of several classes of
high-dimensional PDEs are precisely of this form (see, e.g., [24]), our approximation results can be directly
applied to these problems to establish approximation rates for neural network approximations that do not
suffer from the curse of dimensionality.

As a particular application of the tools developed in the present paper, we provide a mathematical
analysis of the rates of expressive power of DNNs for a particular, high-dimensional PDE which arises in
mathematical finance, namely the pricing of a so-called european maximum Option; cf., e.g.,
http://www.investment-and-finance.net/derivatives/m/maximum-option.html).

We consider the particular (and not quite realistic) situation that the log-returns of these d assets are
uncorrelated, i.e. their log-returns evolve according to d uncorrelated drifted scalar diffusion processes.

The price of the european maximum Option on this basket of d assets can then be obtained as solution of
the multivariate Black-Scholes equation which reads, for the presently considered case of uncorrelated assets,
as

( ∂∂tu)(t, x) +
µ
2

d∑

i=1

xi
(
∂
∂xi

u
)
(t, x) + σ2

2

d∑

i=1

|xi|2
(
∂2

∂x2
i

u
)
(t, x) = 0 . (1.4)

For the european maximum option, (1.4) is completed with the terminal condition

u(T, x) = ϕ(x) = max{x1 −K1, x2 −K2, . . . , xd −Kd, 0} (1.5)

for x = (x1, . . . , xd) ∈ (0,∞)d. It is well known (see, e.g., [10] and the references there) that there is a unique
classical solution in (0,∞)d × [0, T ] of the linear, parabolic equation (1.4) which attains continuously the
terminal condition (1.5). This solution can be expressed as conditional expectation of the function ϕ(x) in
(1.5) over suitable sample paths of a d-dimensional diffusion.

One main result of this paper is the following result (stated with completely detailed assumptions below
as Theorem 7.3), on expression rates of deep neural networks for the basket option price u(0, x) for x ∈ [a, b]d

for some 0 < a < b < ∞. To render their dependence on the number d of assets in the basket explicit, we
write ud in the statement of the theorem.
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Theorem 1.1. Let n ∈ N, a ∈ (0,∞), b ∈ (a,∞), (Ki)i∈N ⊆ [0,Kmax), and let ud : (0,∞) × [a, b]d → R,
d ∈ N, be the functions which satisfy for every d ∈ N, c ∈ (0,∞), and for every (t, x) ∈ [0, T ]× (0,∞)d

( ∂∂tud)(t, x) +
µ
2

d∑

i=1

xi
(
∂
∂xi

ud
)
(t, x) + σ2

2

d∑

i=1

|xi|2
(
∂2

∂x2
i

ud
)
(t, x) = 0 (1.6)

with terminal condition at t = T

ud(T, x) = ϕ(x) = max{x1 −K1, x2 −K2, . . . , xd −Kd, 0}, for x ∈ (0,∞)d . (1.7)

Then there exists neural networks (Γd,ε)ε∈(0,1],d∈N ∈ N which satisfy

(i) that

sup
ε∈(0,1],d∈N

[
M(Γd,ε)

d2+
1
n ε−

1
n

]

<∞, (1.8)

and

(ii) for every ε ∈ (0, 1], d ∈ N that

sup
x∈[a,b]d

|ud(0, x)− [RReLU(Γd,ε)](x)| ≤ ε. (1.9)

Informally speaking, the previous result states that the price of a d dimensional european maximum
option can, for every n ∈ N, be expressed on cubes [a, b]d by deep neural networks to pointwise accuracy
ε > 0 with network size bounded as O(d2+1/nε−1/n) for arbitrary, fixed n ∈ N and with the constant implied
in O(·) independent of d and of ε (but depending on n). In other words, the price of a european maximum
option on a basket of d assets can be approximated (or “expressed”) by deep ReLU networks with spectral
accuracy and without curse of dimensionality.

The proof of this result is based on a near explicit expression for the function ud(0, x) (see Section 2). It
uses this expression in conjunction with regularity estimates in Section 3 and a neural network quadrature
calculus and corresponding error estimates (which is of independent interest) in Section 4 to show that
the function ud(0, x) possesses an approximate low-rank representation consisting of tensor products of
cumulative normal distribution functions (Lemma 4.3) to which the low-rank approximation result mentioned
above can be applied.

Our results thus, for the first time, prove that neural network approximation does indeed not suffer from
the curse of dimensionality and achieves spectral accuracy, in the special case of european maximum option
pricing for uncorrelated assets. While we admit that this constitutes a rather special problem, the proofs in
this paper develop several novel deep neural network approximation results of independent interest that can
be applied to more general settings where a low rank structure is implicit in high-dimensional problems.

1.3 Outline

The structure of this article is as follows. The following Section 2 provides a derivation of the semi-explicit
formula for the price of european maximum options in a standard Black-Scholes setting. This formula consists
of an integral of a tensor product function. In Section 3 we develop some auxiliary regularity results for the
cumulative normal distribution that are of independent interest which will be used later on. In Section 4 we
show that the integral appearing in the formula of Section 2 can be efficiently approximated by numerical
quadrature. Section 5 introduces some basic facts related to deep ReLU networks and Section 6 develops
basic approximation results for the approximation of functions which possess a tensor product structure.
Finally, in Section 7 we show our main result, namely a spectral approximation rate for the approximation
of european maximum options by deep ReLU networks without curse of dimensionality. In Appendix A we
collect some auxiliary proofs.
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2 High-dimensional derivative pricing

In this section, we briefly review the so-called Black-Scholes (“BS equation” for short) differential equation
which arises, among others, as Kolmogorov equation for multivariate geometric Brownian Motion. The
significance of the BS equation stems from its role in the valuation of financial derivatives on so-called
baskets of risky assets, such as stocks.

2.1 Black-Scholes-PDE

We consider the BS equation, i.e., the PDE

( ∂∂tu)(t, x) +
µ
2

d∑

i=1

xi
(
∂
∂xi

u
)
(t, x) + σ2

2

d∑

i=1

|xi|2
(
∂2

∂x2
i

u
)
(t, x) = 0 . (2.1)

This linear, parabolic equation is, for one particular type of financial contracts (so-called “european maximum
option” on a basket of d stocks whose log-returns are assumed for simplicity as mutually uncorrelated) solved
for (t, x) ∈ [0, T ]× (0,∞)d and is endowed with the terminal condition

u(T, x) = ϕ(x) = max{x1 −K1, x2 −K2, . . . , xd −Kd, 0} (2.2)

for x = (x1, . . . , xd) ∈ (0,∞)d. For this and definitions of other financial contracts, we refer to e.g.,
http://www.investment-and-finance.net/derivatives/m/maximum-option.html).

2.1.1 European maximum option

Proposition 2.1. Let d ∈ N, µ ∈ R, σ, T,K1, . . . ,Kd, ξ1, . . . , ξd ∈ (0,∞), let (Ω,F ,P) be a probability space,
and letW = (W (1), . . . ,W (d)) : [0, T ]×Ω → R

d be a standard Brownian motion and let u ∈ C([0, T ]×(0,∞)d)
satisfy (2.1) and (2.2). Then for x = (ξ1, . . . , ξd) ∈ (0,∞)d it holds that

u(0, x) = E

[

max
i∈{1,2,...,d}

(

max
{

exp
([
µ− σ2

2

]
T + σW

(i)
T

)
ξi −Ki, 0

})]

=

∫ ∞

0

1−

[
d∏

i=1

(

∫ 1

σ
√

T

[

ln
(

y+Ki
ξi

)

−(µ−[σ2/2])T
]

−∞
1√
2π

exp
(

− r2

2

)

dr

)]

dy.

(2.3)

For the proof of this Proposition, we require the following result which is in principle well-known (a proof
is provided for completeness in the Appendix A.1.

Lemma 2.2 (Complementary distribution function formula). Let µ : B([0,∞)) → [0,∞] be a sigma-finite
measure. Then ∫ ∞

0

xµ(dx) =

∫ ∞

0

µ([x,∞)) dx =

∫ ∞

0

µ((x,∞)) dx. (2.4)

We are now in position to provide a proof of Proposition 2.1.

Proof of Proposition 2.1. The first equality follows directly from the Feynmann-Kac formula [13, Corollary
4.17]. We proceed with a proof of the second equality. Throughout this proof letXi : Ω → R, i ∈ {1, 2, . . . , d},
be random variables which satisfy for every i ∈ {1, 2, . . . , d}

Xi = exp
([
µ− σ2

2

]
T + σW

(i)
T

)
ξi (2.5)

and let Y : Ω → R be the random variable given by

Y = max{X1 −K1, . . . , Xd −Kd, 0}. (2.6)
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Observe that for every y ∈ (0,∞) it holds

P(Y ≥ y)

= 1− P(Y < y) = 1− P

(

max
i∈{1,2,...,d}

(Xi −Ki) < y

)

= 1− P
(
∩i∈{1,2,...,d} {Xi −Ki < y}

)
= 1−

d∏

i=1

P(Xi −Ki < y)

= 1−
d∏

i=1

P(Xi < y +Ki)

= 1−
d∏

i=1

P

(

exp
([
µ− σ2

2

]
T + σW

(i)
T

)
ξi < y +Ki

)

.

(2.7)

Hence, we obtain that for every y ∈ (0,∞) it holds

P(Y ≥ y) = 1−
d∏

i=1

P

(

exp
([
µ− σ2

2

]
T + σW

(i)
T

)
< y+Ki

ξi

)

= 1−
d∏

i=1

P

(

σW
(i)
T < ln

(
y+Ki

ξi

)

−
[
µ− σ2

2

]
T
)

= 1−
d∏

i=1

P

(
1√
T
W

(i)
T < 1

σ
√
T

[

ln
(
y+Ki

ξi

)

−
[
µ− σ2

2

]
T
])

.

(2.8)

This shows that for every y ∈ (0,∞) it holds

P(Y ≥ y) = 1−

[
d∏

i=1

(

∫ 1

σ
√

T

[

ln
(

y+Ki
ξi

)

−(µ−[σ2/2])T
]

−∞
1√
2π

exp
(

− r2

2

)

dr

)]

. (2.9)

Combining this with Lemma 2.2 completes the proof of Proposition 2.1.

With Lemma 2.2 and Proposition 2.1, we may write

u(0, x)

= E

[

ϕ
(

exp
([
µ− σ2

/2
]
T + σW

(1)
T

)

x1, . . . , exp
([
µ− σ2

/2
]
T + σW

(d)
T

)

xd

)] (2.10)

(“semi-explicit” formula). Let us consider the case µ = σ2/2, T = σ = 1, and K1 = . . . = Kd = K ∈ (0,∞).
Then for every x = (x1, . . . , xd) ∈ (0,∞)d

u(0, x)

= E

[

ϕ
(

eW
(1)
T x1, . . . , e

W
(d)
T xd

)]

= E

[

ϕ
(

eW
(1)
1 x1, . . . , e

W
(d)
1 xd

)]

= E

[

max
{

eW
(1)
1 x1 −K, . . . , eW

(d)
1 xd −K, 0

}]

=

∫ ∞

0

1−

[
d∏

i=1

∫ ln(K+c
xd

)

−∞
1√
2π

exp
(

− r2

2

)

dr

]

dc.

(2.11)

3 Regularity of the Cumulative Normal Distribution

Now that we have derived an explicit formula for the solution, we establish regularity properties of the inte-
grand function in (2.11). This will be required in order approximate the multivariate integrals by quadratures
(which are subsequently realized by neural networks) in Section 4 and to apply the neural network results
from Section 6 to our problem. To this end, we analyze the derivatives of the factors in the tensor product,
which essentially are concatenations of the cumulative normal distribution with the natural logarithm. As
this function appears in numerous closed-form option pricing formulae (see, e.g., [18]), the (Gevrey) type
regularity estimates obtained in this section are of independent interest (they may, for example, also be used
in the analysis of deep network expression rates and of spectral methods for option pricing).
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Lemma 3.1. Let f : (0,∞) → R be the function which satisfies for every t ∈ (0,∞) that

f(t) = 1√
2π

∫ ln(t)

−∞
e−

1
2 r

2

dr, (3.1)

let gn,k : (0,∞) → R, n, k ∈ N0, be the functions which satisfy for every n, k ∈ N0, t ∈ (0,∞) that

gn,k(t) = t−ne−
1
2 [ln(t)]

2

[ln(t)]k, (3.2)

and let (γn,k)n,k∈Z ⊆ Z be the integers which satisfy for every n, k ∈ Z that

γn,k =







1 : n = 1, k = 0

−γn−1,k−1 − (n− 1)γn−1,k + (k + 1)γn−1,k+1 : n > 1, 0 ≤ k < n

0 : else

. (3.3)

Then it holds for every n ∈ N that

(i) we have that f is n-times continuously differentiable and

(ii) we have for every t ∈ (0,∞) that

f (n)(t) = 1√
2π

[
n−1∑

k=0

γn,k gn,k(t)

]

. (3.4)

Proof of Lemma 3.1. We prove (i) and (ii) by induction on n ∈ N. For the base case n = 1 note that (3.1),

(3.2), (3.3), the fact that the function R ∋ r 7→ e−
1
2 r

2

∈ (0,∞) is continuous, the fundamental theorem of
calculus, and the chain rule yield

(A) that f is differentiable and

(B) that for every t ∈ (0,∞) it holds

f ′(t) = 1√
2π
e−

1
2 [ln(t)]

2

t−1 = 1√
2π
g1,0(t) =

1√
2π
γ1,0 g1,0(t). (3.5)

This establishes (i) and (ii) in the base case n = 1. For the induction step N ∋ n→ n+ 1 ∈ {2, 3, 4, . . .}
note that for every t ∈ (0,∞) we have

d
dt

[

e−
1
2 [ln(t)]

2
]

= −t−1e−
1
2 [ln(t)]

2

ln(t). (3.6)

Combining this and (3.2) with the product rule establishes for every n ∈ N, k ∈ {0, 1, . . . , n− 1}, t ∈ (0,∞)
that

(gn,k)
′(t) = d

dt

[

t−ne−
1
2 [ln(t)]

2

[ln(t)]k
]

= −nt−(n+1)e−
1
2 [ln(t)]

2

[ln(t)]k − t−(n+1)e−
1
2 [ln(t)]

2

[ln(t)]k+1

+ t−(n+1)e−
1
2 [ln(t)]

2

k[ln(t)]max{k−1,0}

= −gn+1,k+1(t)− ngn+1,k(t) + kgn+1,max{k−1,0}(t).

(3.7)

Hence, we obtain that for every n ∈ N, t ∈ (0,∞) it holds

n−1∑

k=0

γn,k(gn,k)
′(t)

=

n−1∑

k=0

[
γn,k

(
−gn+1,k+1(t)− ngn+1,k(t) + kgn+1,max{k−1,0}(t)

)]

=

n−1∑

k=0

−γn,k gn+1,k+1(t) +

n−1∑

k=0

−nγn,k gn+1,k(t) +

n−1∑

k=1

kγn,k gn+1,max{k−1,0}(t)

=

n∑

k=1

−γn,k−1 gn+1,k(t) +

n−1∑

k=0

−nγn,k gn+1,k(t) +

n−2∑

k=0

(k + 1)γn,k+1 gn+1,k(t).

(3.8)
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The fact that for every n ∈ N it holds that γn,−1 = γn,n = γn,n+1 = 0 and (3.3) therefore ensure that for
every n ∈ N, t ∈ (0,∞) we have

n−1∑

k=0

γn,k(gn,k)
′(t) =

n∑

k=0

[(−γn,k−1 − nγn,k + (k + 1)γn,k+1) gn+1,k(t)]

=

n∑

k=0

γn+1,k gn+1,k(t).

(3.9)

Induction thus establishes (i) and (ii). The proof of Lemma 3.1 is thus completed.

Using the recursive formula from above we can now bound the derivatives of f . Note that the supremum
of f (n) is actually attained on the interval [e−4n, 1] and scales with n like e(cn

2) for some c ∈ (0,∞). This
can directly be seen by calulating the maximum of the gn,k from (3.2). For our purposes, however, it is
sufficient to establish that all derivatives of f are bounded on (0,∞).

Lemma 3.2. Let f : (0,∞) → R be the function which satisfies for every t ∈ (0,∞) that

f(t) = 1√
2π

∫ ln(t)

−∞
e−

1
2 r

2

dr. (3.10)

Then it holds for every n ∈ N that

sup
t∈(0,∞)

∣
∣
∣f (n)(t)

∣
∣
∣ ≤ max

{

(n− 1)! 2n−2 , sup
t∈[e−4n,1]

∣
∣
∣f (n)(t)

∣
∣
∣

}

<∞. (3.11)

Proof of Lemma 3.2. Throughout this proof let gn,k : (0,∞) → R, n, k ∈ N0, be the functions such that for
every n, k ∈ N0, t ∈ (0,∞) it holds

gn,k(t) = t−ne−
1
2 [ln(t)]

2

[ln(t)]k (3.12)

and let (γn,k)n,k∈Z ⊆ Z be the integers such that for every n, k ∈ Z it holds

γn,k =







1 : n = 1, k = 0

−γn−1,k−1 − (n− 1)γn−1,k + (k + 1)γn−1,k+1 : n > 1, 0 ≤ k < n

0 : else

(3.13)

Then Lemma 3.1 shows for every n ∈ N that

(a) we have that f is n-times continuously differentiable and

(b) we have for every t ∈ (0,∞) that

f (n)(t) = 1√
2π

[
n−1∑

k=0

γn,k gn,k(t)

]

. (3.14)

In addition, observe that for every m ∈ N, t ∈ (0, e−2m] holds 1
2 ln(t) ≤ −m. This ensures that for every

m ∈ N, t ∈ (0, e−2m] ⊆ (0, 1] we have

∣
∣
∣e−

1
2 [ln(t)]

2
∣
∣
∣ = e[ln(t)(−

1
2 ln(t))] =

[

eln(t)
]− 1

2 ln(t)

= t−
1
2 ln(t) =

(
1
t

) 1
2 ln(t)

≤
(
1
t

)−m
= tm. (3.15)

Moreover, note that the fundamental theorem of calculus implies for every t ∈ (0, 1] that

|ln(t)| = |ln(t)− ln(1)| = |ln(1)− ln(t)| =

∣
∣
∣
∣

∫ 1

t

1

s
ds

∣
∣
∣
∣
≤

∣
∣
∣
∣

1

t
(1 − t)

∣
∣
∣
∣
≤ t−1. (3.16)
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Combining (3.12), (3.14), and (3.15) therefore establishes that for every n ∈ N, t ∈ (0, e−4n)⊆ (0, 1] it holds

∣
∣
∣f (n)(t)

∣
∣
∣ = 1√

2π

∣
∣
∣
∣
∣

n−1∑

k=0

γn,k gn,k(t)

∣
∣
∣
∣
∣
= 1√

2π

∣
∣
∣
∣
∣

n−1∑

k=0

γn,kt
−ne−

1
2 [ln(t)]

2

[ln(t)]k

∣
∣
∣
∣
∣

≤ 1√
2π

[
n−1∑

k=0

|γn,k| t
n−k

]

≤ 1√
2π

[
n−1∑

k=0

|γn,k|

]

.

(3.17)

In addition, observe that the fundamental theorem of calculus ensures that for every t ∈ [1,∞) we have

|ln(t)| = |ln(t)− ln(1)| =

∣
∣
∣
∣

∫ t

1

1

s
ds

∣
∣
∣
∣
≤ |t− 1| ≤ t. (3.18)

This, (3.12), (3.14), and the fact that for every t ∈ (0,∞) it holds |e−
1
2 [ln(t)]

2

| ≤ 1 imply that for every n ∈ N,
t ∈ (1,∞) we have

∣
∣
∣f (n)(t)

∣
∣
∣ = 1√

2π

∣
∣
∣
∣
∣

n−1∑

k=0

γn,k gn,k(t)

∣
∣
∣
∣
∣
= 1√

2π

∣
∣
∣
∣
∣

n−1∑

k=0

γn,kt
−ne−

1
2 [ln(t)]

2

[ln(t)]k

∣
∣
∣
∣
∣

≤ 1√
2π

[
n−1∑

k=0

|γn,k| t
−n |ln(t)|k

]

≤ 1√
2π

[
n−1∑

k=0

|γn,k| t
−ntk

]

= 1√
2π

[
n−1∑

k=0

|γn,k| t
−n+k

]

≤ 1√
2π

[
n−1∑

k=0

|γn,k|

]

.

(3.19)

Moreover, observe that (a) assures that for every n ∈ N it holds that the function f (n) is continuous. This
and the boundedness of the set [e−4n, 1] ensure that for every n ∈ N we have

sup
t∈[e−4n,1]

∣
∣
∣f (n)(t)

∣
∣
∣ <∞. (3.20)

Combining this with (3.17) and (3.19) establishes that for every n ∈ N we have

sup
t∈(0,∞)

∣
∣
∣f (n)(t)

∣
∣
∣ ≤ max

{

1√
2π

[
n−1∑

k=0

|γn,k|

]

, sup
t∈[e−4n,1]

∣
∣
∣f (n)(t)

∣
∣
∣

}

<∞. (3.21)

Furthermore, note that (3.13) implies that for every n ∈ {2, 3, 4, . . .} it holds

n−1∑

k=0

|γn,k| =
n−1∑

k=0

|−γn−1,k−1 − (n− 1)γn−1,k + (k + 1)γn−1,k+1|

≤

[
n−1∑

k=0

|γn−1,k−1|

]

+

[
n−1∑

k=0

(n− 1) |γn−1,k|

]

+

[
n−1∑

k=0

(k + 1) |γn−1,k+1|

]

=

[
n−2∑

k=−1

|γn−1,k|

]

+

[
n−1∑

k=0

(n− 1) |γn−1,k|

]

+

[
n∑

k=1

k |γn−1,k|

]

.

(3.22)

Combining this with the fact that for every n ∈ {2, 3, 4, . . .}, k ∈ Z\{0, 1, . . . , n − 2} we have γn−1,k = 0
implies that for every n ∈ {2, 3, 4, . . .} it holds

n−1∑

k=0

|γn,k| =
n−2∑

k=0

[(1 + (n− 1) + k) |γn−1,k|] ≤ (2n− 2)

[
n−2∑

k=0

|γn−1,k|

]

= 2(n− 1)

[
n−2∑

k=0

|γn−1,k|

]

. (3.23)
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The fact that γ1,0 = 1 hence implies that for every n ∈ N we have

n−1∑

k=0

|γn,k| ≤ (n− 1)! 2n−1

[
0∑

k=0

|γ1,k|

]

= (n− 1)! 2n−1. (3.24)

Combining this and (3.21) ensures that for every n ∈ N it holds

sup
t∈(0,∞)

∣
∣
∣f (n)(t)

∣
∣
∣ ≤ max

{

1√
2π

(n− 1)! 2n−1 , sup
t∈[e−4n,1]

∣
∣
∣f (n)(t)

∣
∣
∣

}

<∞. (3.25)

The proof of Lemma 3.2 is thus completed.

In the following corollary we estimate the derivatives of the function x→ f(K+c
x ) required to approximate

this function by neural networks.

Corollary 3.3. Let n ∈ N, K ∈ [0,∞), c, a ∈ (0,∞), b ∈ (a,∞), let f : (0,∞) → R be the function which
satisfies for every t ∈ (0,∞) that

f(t) = 1√
2π

∫ ln(t)

−∞
e−

1
2 r

2

dr, (3.26)

and let h : [a, b] → R be the function which satisfies for every x ∈ [a, b] that

h(x) = f(K+c
x ). (3.27)

Then it holds

(i) that f and h are infinitely often differentiable and

(ii) that

max
k∈{0,1,...,n}

sup
x∈[a,b]

∣

∣

∣
h
(k)(x)

∣

∣

∣
≤ n2n−1

n!



 max
k∈{0,1,...,n}

sup
t∈[K+c

b
,K+c

a
]

∣

∣

∣
f
(k)(t)

∣

∣

∣



max{a−2n
, 1}max{(K + c)n, 1}.

(3.28)

Proof of Corollary 3.3. Throughout this proof let αm,j ∈ Z, m, j ∈ Z, be the integers which satisfy that for
every m, j ∈ Z it holds

αm,j =







−1 : m = j = 1

−(m− 1 + j)αm−1,j − αm−1,j−1 : m > 1, 1 ≤ j ≤ m

0 : else

. (3.29)

Note that Lemma 3.1 and the chain rule ensure that the functions f and h are infinitely often differentiable.
Next we claim that for every m ∈ N, x ∈ [a, b] it holds

h(m)(x) = dm

dxm

(
f(K+c

x )
)
=

m∑

j=1

αm,j(K + c)jx−(m+j)(f (j)
(
K+c
x )
)
. (3.30)

We prove (3.30) by induction on m ∈ N. To prove the base case m = 1 we note that the chain rule ensures
that for every x ∈ [a, b] we have

d
dx

(
f(K+c

x )
)
= −(K + c)x−2

(
f ′(K+c

x )
)
= α1,1(K + c)x−2

(
f ′(K+c

x )
)
. (3.31)
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This establishes (3.30) in the base case m = 1. For the induction step N ∋ m→ m+1 ∈ N observe that the
chain rule implies for every m ∈ N, x ∈ [a, b] that

d
dx

[

m
∑

j=1

αm,j(K + c)jx−(m+j)
(

f
(j)(K+c

x
)
)

]

= −

[

m
∑

j=1

αm,j(K + c)j+1
x
−(m+j+2)

(

f
(j+1)(K+c

x
)
)

]

−

[

m
∑

j=1

αm,j(K + c)j(m+ j)x−(m+j+1)
(

f
(j)(K+c

x
)
)

]

= −

[

m+1
∑

j=2

αm,j−1(K + c)jx−(m+j+1)
(

f
(j)(K+c

x
)
)

]

−

[

m
∑

j=1

αm,j(K + c)j(m+ j)x−(m+j+1)
(

f
(j)(K+c

x
)
)

]

=

m+1
∑

j=1

(−(m+ j)αm,j − αm,j−1)(K + c)jx−(m+1+j)
(

f
(j)(K+c

x
)
)

.

(3.32)

Induction thus establishes (3.30). Next note that (3.29) ensures that for every m ∈ {2, 3, . . .} it holds

max
j∈{1,2,...,m}

|αm,j| = max
j∈{1,2,...,m}

|−(m− 1 + j)αm−1,j − αm−1,j−1|

≤

[

max
j∈{1,2,...,m−1}

|(m− 1 + j)αm−1,j |

]

+

[

max
j∈{1,2,...,m−1}

|αm−1,j |

]

≤ (2m− 1)

[

max
j∈{1,2,...,m−1}

|αm−1,j|

]

≤ 2m

[

max
j∈{1,2,...,m−1}

|αm−1,j|

]

.

(3.33)

Induction hence proves that for every m ∈ N we have maxj∈{1,2,...,m} |αm,j| ≤ 2m−1m!. Combining this with
(3.30) implies that for every m ∈ {1, 2, . . . , n}, x ∈ [a, b] we have

∣
∣
∣h(m)(x)

∣
∣
∣ =

∣
∣
∣
∣
∣
∣

m∑

j=1

αm,j(K + c)jx−(m+j)
(
f (j)(K+c

x )
)

∣
∣
∣
∣
∣
∣

≤ 2m−1m!

[

max
j∈{1,2,...,m}

sup
t∈[K+c

b
,K+c

a
]

∣
∣
∣f (j)(t)

∣
∣
∣

]

max{x−2m, 1}





m∑

j=1

(K + c)j





≤ m2m−1m!

[

max
j∈{1,2,...,m}

sup
t∈[K+c

b
,K+c

a
]

∣
∣
∣f (j)(t)

∣
∣
∣

]

max{x−2m, 1}max{(K + c)m, 1}.

(3.34)

Combining this with the fact that supx∈[a,b] |h(x)| = supt∈[K+c
b
,K+c

a
] |f(t)| establishes that it holds

max
k∈{0,1,...,n}

sup
x∈[a,b]

∣

∣

∣
h
(k)(x)

∣

∣

∣
≤ n2n−1

n!



 max
k∈{0,1,...,n}

sup
t∈[K+c

b
,K+c

a
]

∣

∣

∣
f
(k)(t)

∣

∣

∣



max{a−2n
, 1}max{(K + c)n, 1}. (3.35)

This completes the proof of Corollary 3.3.

Next we consider the derivatives of the functions c 7→ f(K+c
xi

), i ∈ {1, 2, . . . , d}, and their tensor product,
which will be needed in order to approximate approximate the outer integral in (2.11) by composite Gaussian
quadrature.

Corollary 3.4. Let n ∈ N, K ∈ [0,∞), x ∈ (0,∞), let f : (0,∞) → R be the function which satisfies for
every t ∈ (0,∞) that

f(t) = 1√
2π

∫ ln(t)

−∞
e−

1
2 r

2

dr, (3.36)

and let g : (0,∞) → R be the function which satisfies for every t ∈ (0,∞) that

g(t) = f
(
K+t
x

)
. (3.37)

Then it holds
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(i) that f and g are infinitely often differentiable and

(ii) that

sup
t∈(0,∞)

∣
∣
∣g(n)(t)

∣
∣
∣ ≤

[

sup
t∈(0,∞)

∣
∣
∣f (n)(t)

∣
∣
∣

]

|x|−n <∞. (3.38)

Proof of Corollary 3.4. Combining Lemma 3.2 with the chain rule implies that for every t ∈ (0,∞) it holds

∣
∣
∣g(n)(t)

∣
∣
∣ =

∣
∣ d

n

dtn

(
f(K+t

x )
)∣
∣ =

∣
∣
∣f (n)

(
K+t
x

)
1
xn

∣
∣
∣ ≤

[

sup
t∈(0,∞)

∣
∣
∣f (n)(t)

∣
∣
∣

]

|x|−n <∞. (3.39)

This completes the proof of Corollary 3.4.

Lemma 3.5. Let d, n ∈ N, a ∈ (0,∞), b ∈ (a,∞), K = (K1, . . . ,Kd) ∈ [0,∞)d, x = (x1, . . . , xd) ∈ [a, b]d,
let f : (0,∞) → R be the function which satisfies for every t ∈ (0,∞) that

f(t) = 1√
2π

∫ ln(t)

−∞
e−

1
2 r

2

dr, (3.40)

and let F : (0,∞) → R be the function which satisfies for every c ∈ (0,∞) that

F (c) = 1−

[
d∏

i=1

f
(
Ki+c
xi

)]

. (3.41)

Then it holds

(i) that f and F are infinitely often differentiable and

(ii) that

sup
c∈(0,∞)

∣
∣
∣F (n)(c)

∣
∣
∣ ≤

[

max
k∈{0,1,...,n}

sup
t∈(0,∞)

∣
∣
∣f (k)(t)

∣
∣
∣

]n

dna−n <∞. (3.42)

Proof of Lemma 3.5. Note that Lemma 3.1 ensures that f and F are infinitely often differentiable. Moreover,
observe that (3.41) and the general Leibniz rule imply for every c ∈ (0,∞) that

F (n)(c) = − dn

dcn

[
d∏

i=1

f
(
Ki+c
xi

)]

= −
∑

l1,l2,...,ld∈N0,
∑d

i=1 li=n

[(
n

l1, l2, . . . , ld

)
d∏

i=1

(
dli

dcli

[

f
(
Ki+c
xi

)])]

.
(3.43)

Next note that the fact that for every r ∈ R it holds that e−
1
2 r

2

≥ 0 ensures that

sup
t∈(0,∞)

|f(t)| = sup
t∈(0,∞)

∣
∣
∣
∣
∣

1√
2π

∫ ln(t)

−∞
e−

1
2 r

2

dr

∣
∣
∣
∣
∣
=

∣
∣
∣
∣

1√
2π

∫ ∞

−∞
e−

1
2 r

2

dr

∣
∣
∣
∣
= 1. (3.44)
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Corollary 3.4 hence establishes that for every c ∈ [0,∞), l1, . . . , ld ∈ N0 with
∑d

i=1 li = n it holds

∣
∣
∣
∣

d∏

i=1

(
dli

dcli

[

f
(
Ki+c
xi

)])
∣
∣
∣
∣
≤

d∏

i=1

([

sup
t∈(0,∞)

∣
∣
∣f (li)(t)

∣
∣
∣

]

|xi|
−li

)

=

[
d∏

i=1

|xi|
−li
][

d∏

i=1

(

sup
t∈(0,∞)

∣
∣
∣f (li)(t)

∣
∣
∣

)]

≤

[
d∏

i=1

|xi|
−li
]






∏

i∈{1,2,...,d},
li>0

(

max
k∈{1,2,...,n}

sup
t∈(0,∞)

∣
∣
∣f (k)(t)

∣
∣
∣

)





≤

[
d∏

i=1

|xi|
−li
]






∏

i∈{1,2,...,d},
li>0

max

{

1, max
k∈{1,2,...,n}

sup
t∈(0,∞)

∣
∣
∣f (k)(t)

∣
∣
∣

}





≤

[
d∏

i=1

|xi|
−li
][

max

{

1, max
k∈{1,2,...,n}

sup
t∈(0,∞)

∣
∣
∣f (k)(t)

∣
∣
∣

}](l1+...+ld)

=

[
d∏

i=1

|xi|
−li
][

max
k∈{0,1,...,n}

sup
t∈(0,∞)

∣
∣
∣f (k)(t)

∣
∣
∣

]n

.

(3.45)

Moreover, note that the multinomial theorem ensures that

dn =

[
d∑

i=1

1

]n

=
∑

l1,l2,...,ld∈N0,
∑d

i=1 li=n

[(
n

l1, l2, . . . , ld

)
d∏

i=1

1li
]

=
∑

l1,l2,...,ld∈N0,
∑d

i=1 li=n

[(
n

l1, l2, . . . , ld

)]

.
(3.46)

Combining this with (3.43), (3.45), and the assumption that x ∈ [a, b]d implies that for every c ∈ (0,∞) we
have

∣
∣
∣F (n)(c)

∣
∣
∣ ≤

∣
∣
∣
∣
∣
∣
∣
∣
∣

∑

l1,l2,...,ld∈N0,
∑d

i=1 li=n

[(
n

l1, l2, . . . , ld

)[
d∏

i=1

|xi|
−li
][

max
k∈{0,1,...,n}

sup
t∈(0,∞)

∣
∣
∣f (k)(t)

∣
∣
∣

]n]

∣
∣
∣
∣
∣
∣
∣
∣
∣

≤ a−n
[

max
k∈{0,1,...,n}

sup
t∈(0,∞)

∣
∣
∣f (k)(t)

∣
∣
∣

]n

∣
∣
∣
∣
∣
∣
∣
∣
∣

∑

l1,l2,...,ld∈N0,
∑d

i=1 li=n

(
n

l1, l2, . . . , ld

)

∣
∣
∣
∣
∣
∣
∣
∣
∣

= a−n
[

max
k∈{0,1,...,n}

sup
t∈(0,∞)

∣
∣
∣f (k)(t)

∣
∣
∣

]n

dn.

(3.47)

This completes the proof of Lemma 3.5.

4 Quadrature

To approximate the function x 7→ u(0, x) from (2.11) by a neural network we need to evaluate, for arbitrary,
given x, an expression of the form

∫∞
0
Fx(c)dc with Fx as defined in Lemma 4.2. We achieve this by proving

in Lemma 4.2 that the functions Fx decay sufficiently fast for c→ ∞, and then employ numerical integration

to show that the definite integral
∫ N

0
Fx(c)dc can be sufficiently well approximated by a weighted sum of

Fx(cj) for suitable quadrature points cj ∈ (0, N). The representation of such a sum can be realized by
neural networks. We show in Section 6 and 7 how the functions x 7→ Fx(cj) for (cj) ∈ (0, N) can be realized
efficiently due to their tensor product structure. We start by recalling an error bound for composite Gaussian
quadrature which is explicit in the stepsize and quadrature order.
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Lemma 4.1. Let n,M ∈ N, N ∈ (0,∞). Then there exist real numbers (cj)
nM
j=1 ⊆ (0, N) and (wj)

nM
j=1 ⊆ (0,∞)

such that for every h ∈ C2n([0, N ],R) it holds
∣
∣
∣
∣
∣
∣

∫ N

0

h(t) dt−
nM∑

j=1

wjh(cj)

∣
∣
∣
∣
∣
∣

≤ 1
(2n)!N

2n+1M−2n

[

sup
ξ∈[0,N ]

∣
∣
∣h(2n)(ξ)

∣
∣
∣

]

. (4.1)

Proof of Lemma 4.1. Throughout this proof let h ∈ C2n([0, N ],R) and αk ∈ [0, N ], k ∈ {0, 1, . . . ,M}, such
that for every k ∈ {0, 1, . . . ,M} it holds αk = kN

M . Observe that [19, Theorems 4.17, 6.11, and 6.12] ensure
that for every k ∈ {0, 1, . . . ,M − 1} there exist (γki )

n
i=1 ⊆ (αk, αk+1), (ω

k
i )
n
i=1 ⊆ (0,∞), and ξk ∈ [αk, αk+1]

such that
∫ αk+1

αk

h(t) dt−
n∑

i=1

ωki h(γ
k
i ) =

h(2n)(ξk)

(2n)!

∫ αk+1

αk

[
n∏

i=1

(t− γki )
2

]

dt. (4.2)

Next note that for every k ∈ {0, 1, . . . ,M − 1} it holds
∫ αk+1

αk

[
n∏

i=1

(t− γki )
2

]

dt ≤

∫ αk+1

αk

[
n∏

i=1

(αk − αk+1)
2

]

dt =
[
N
M

]2n+1
. (4.3)

Combining this with (4.2) yields that for every k ∈ {0, 1, . . . ,M} we have
∣
∣
∣
∣
∣

∫ αk+1

αk

h(t) dt−
n∑

i=1

ωki h(γ
k
i )

∣
∣
∣
∣
∣
≤

∣
∣h(2n)(ξk)

∣
∣

(2n)!

[
N
M

]2n+1
≤ 1

(2n)!

[
N
M

]2n+1

[

sup
ξ∈[0,N ]

∣
∣
∣h(2n)(ξ)

∣
∣
∣

]

. (4.4)

Hence, we obtain
∣
∣
∣
∣
∣

∫ N

0

h(t) dt−
M−1∑

k=0

n∑

i=1

ωki h(γ
k
i )

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣

M−1∑

k=0

[
∫ αk+1

αk

h(t) dt−
n∑

i=1

ωki h(γ
k
i )

]∣
∣
∣
∣
∣

≤
M−1∑

k=0

(

1
(2n)!

(
N
M

)2n+1

[

sup
ξ∈[0,N ]

∣
∣
∣h(2n)(ξ)

∣
∣
∣

])

= 1
(2n)!N

2n+1M−2n

[

sup
ξ∈[0,N ]

∣
∣
∣h(2n)(ξ)

∣
∣
∣

]

.

(4.5)

Let (cj)
nM
j=1 ⊆ (0, N), (wj)

nM
j=1 ⊆ (0,∞) such that for every i ∈ {1, 2, . . . , n}, k ∈ {0, 1, . . . ,M − 1} it holds

ckn+i = γki and wkn+i = ωki . (4.6)

Next observe that
∣
∣
∣
∣
∣
∣

∫ N

0

h(t) dt−
nM∑

j=1

wjh(cj)

∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

∫ N

0

h(t) dt−
M−1∑

k=0

n∑

i=1

ωki h(γ
k
i )

∣
∣
∣
∣
∣
. (4.7)

This completes the proof of Lemma 4.1.

In the following we bound the error due to truncating the domain of integration.

Lemma 4.2. Let d, n ∈ N, a ∈ (0,∞), b ∈ (a,∞), K = (K1,K2, . . . ,Kd) ∈ [0,∞)d, let Fx : (0,∞) → R,
x ∈ [a, b]d, be the functions which satisfy for every x = (x1, x2, . . . , xd) ∈ [a, b]d, c ∈ (0,∞) that

Fx(c) = 1−
d∏

i=1

[

1√
2π

∫ ln(
Ki+c

xi
)

−∞
e−

1
2 r

2

dr

]

, (4.8)

and for every ε ∈ (0, 1] let Nε ∈ R be given by Nε = 2e2(n+1)(b + 1)1+
1
n d

1
n ε−

1
n . Then it holds for every

ε ∈ (0, 1] that

sup
x∈[a,b]d

∣
∣
∣
∣

∫ ∞

Nε

Fx(c) dc

∣
∣
∣
∣
≤ ε. (4.9)
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Proof of Lemma 4.2. Throughout this proof let g : (0,∞) → (0, 1) be the function given by

g(t) = 1− 1√
2π

∫ ln(t)

−∞
e−

1
2 r

2

dr. (4.10)

Note that [5, Eq.(5)] ensures that for every y ∈ [0,∞) we have 2√
π

∫∞
y e−r

2

dr ≤ e−y
2

. This implies for every

t ∈ [1,∞) that

0 < g(t) = 1− 1√
2π

∫ ln(t)

−∞
e−

1
2 r

2

dr = 1√
2π

∫ ∞

ln(t)

e−
1
2 r

2

dr = 1√
π

∫ ∞

ln(t)√
2

e−r
2

dr ≤ 1
2e

− 1
2 [ln(t)]

2

. (4.11)

Furthermore, observe that for every t ∈ [e2(n+1),∞) it holds

e−
1
2 [ln(t)]

2

= e[ln(t)(−
1
2 ln(t))] =

[

eln(t)
]− 1

2 ln(t)

= t−
1
2 ln(t) ≤ t−(n+1). (4.12)

This, (4.11), and the fact that for every ε ∈ (0, 1], c ∈ [Nε,∞), x ∈ [a, b]d, i ∈ {1, 2, . . . , d} we have
Ki+c
xi

≥ c
b ≥ e2(n+1) ≥ 1 imply that for every ε ∈ (0, 1], c ∈ [Nε,∞), x ∈ [a, b]d it holds

|Fx(c)| =

∣
∣
∣
∣
∣
1−

d∏

i=1

[

1√
2π

∫ ln(
Ki+c

xi
)

−∞
e−

1
2 r

2

dr

]∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣
1−

d∏

i=1

[

1− g(Ki+c
xi

)
]
∣
∣
∣
∣
∣

≤

∣
∣
∣
∣
∣
1−

d∏

i=1

[

1− 1
2

[
Ki+c
xi

]−(n+1)
]
∣
∣
∣
∣
∣
≤

∣
∣
∣
∣
∣
1−

d∏

i=1

[

1− 1
2

[
c
b

]−(n+1)
]
∣
∣
∣
∣
∣
.

(4.13)

Combining this with the binomial theorem and the fact that for every i ∈ {1, 2, . . . , d} we have
(
d
i

)
≤ di

i! ≤
di

exp(i ln(i)−i+1) ≤ (de)i

ii establishes that for every ε ∈ (0, 1], c ∈ [Nε,∞), x ∈ [a, b]d it holds

|Fx(c)| ≤

∣
∣
∣
∣
1−

(

1− 1
2

[
c
b

]−(n+1)
)d
∣
∣
∣
∣
=

∣
∣
∣
∣
∣
1−

d∑

i=0

[(
d

i

)[

− 1
2

[
c
b

]−(n+1)
]i
]
∣
∣
∣
∣
∣

≤
d∑

i=1

[(
d

i

)
[
1
2

]i [ b
c

](n+1)i
]

≤
d∑

i=1

[
de
2i

]i [ b
c

](n+1)i

=

d∑

i=1

[
e
2i

]i
[

d
[
b
c

]n+1
]i

≤ 2d
[
b
c

]n+1

[
d∑

i=1

[

d
[
b
c

]n+1
]i−1

]

= 2d
[
b
c

]n+1

[
d−1∑

i=0

[

d
[
b
c

]n+1
]i
]

≤ 2d
[
b
c

]n+1

[ ∞∑

i=0

[

d
[
b
c

]n+1
]i
]

.

(4.14)

This, the geometric sum formula, and the fact that for every ε ∈ (0, 1] it holds that Nε ≥ 2bd
1
n imply that

for every ε ∈ (0, 1], c ∈ [Nε,∞), x ∈ [a, b]d we have

|Fx(c)| ≤ 2d
[
b
c

]n+1

[

1

1− d
[
b
c

]n+1

]

≤ 4d
[
b
c

]n+1
. (4.15)

Hence, we obtain for every ε ∈ (0, 1], x ∈ [a, b]d that
∣
∣
∣
∣

∫ ∞

Nε

Fx(c) dc

∣
∣
∣
∣
≤ 4dbn+1

∣
∣
∣
∣

∫ ∞

Nε

c−(n+1)dc

∣
∣
∣
∣
= 4dbn+1 1

n (Nε)
−n

= 4
ndb

n+1
[

2e2(n+1)(b+ 1)1+
1
n d

1
n ε−

1
n

]−n

= 4
ndb

n+12−ne−(2n2+2n)(b + 1)−(n+1)d−1ε

= 4
n2

−ne−(2n2+n)
[

b
b+1

]n+1

ε ≤ ε.

(4.16)

This completes the proof of Lemma 4.2.
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Next we combine the result above with Lemma 4.1 in order to derive the number of terms needed in
order to approximate the integral by a sum to within a prescribed error bound ε.

Lemma 4.3. Let n ∈ N, a ∈ (0,∞), b ∈ (a,∞), (Ki)i∈N ⊆ [0,∞), let F dx : (0,∞) → R, x ∈ [a, b]d, d ∈ N,
be the functions which satisfy for every d ∈ N, x = (x1, x2, . . . , xd) ∈ [a, b]d, c ∈ (0,∞) that

F dx (c) = 1−
d∏

i=1

[

1√
2π

∫ ln(
Ki+c

xi
)

−∞
e−

1
2 r

2

dr

]

, (4.17)

and for every d ∈ N, ε ∈ (0, 1] let Nd,ε ∈ R be given by

Nd,ε = 2e2(n+1)(b + 1)1+
1
n d

1
n

[
ε
2

]− 1
n . (4.18)

Then there exist Qd,ε ∈ N, cdε,j ∈ (0, Nd,ε), w
d
ε,j ∈ [0,∞), j ∈ {1, 2, . . . , Qd,ε}, d ∈ N, ε ∈ (0, 1], such

(i) that

sup
ε∈(0,1],d∈N

[
Qd,ε

d1+
2
n ε−

2
n

]

<∞ (4.19)

and

(ii) that for every d ∈ N, ε ∈ (0, 1] it holds
∑Qd,ε

j=1 w
d
ε,j = Nd,ε and

sup
x∈[a,b]d

∣
∣
∣
∣
∣
∣

∫ ∞

0

F dx (c) dc−

Qd,ε∑

j=1

wdε,jF
d
x (c

d
ε,j)

∣
∣
∣
∣
∣
∣

≤ ε. (4.20)

Proof of Lemma 4.3. Note that Lemma 3.5 ensures the existence of Sm ∈ R, m ∈ N, such that for every
d,m ∈ N, x ∈ [a, b]d it holds

sup
c∈(0,∞)

∣
∣
∣(F dx )

(m)(c)
∣
∣
∣ ≤ Smd

m. (4.21)

Let Qd,ε ∈ R, d ∈ N, ε ∈ (0, 1], be given by

Qd,ε = n

⌈[
1

(2n)! (Nd,ε)
2n+1S2nd

2n 2
ε

] 1
2n

⌉

. (4.22)

Next observe that Lemma 4.1 (with N ↔ Nd,ε in the notation of Lemma 4.1) establishes the existence of
cdε,j ∈ (0, Nd,ε), w

d
ε,j ∈ [0,∞), j ∈ {1, 2, . . . , Qd,ε}, d ∈ N, ε ∈ (0, 1], such that for every d ∈ N, ε ∈ (0,∞),

x ∈ [a, b]d we have
∑Qd,ε

j=1 w
d
ε,j = Nd,ε and

∣
∣
∣
∣
∣
∣

∫ Nd,ε

0

F dx (c)dc−

Qd,ε∑

j=1

wdε,jF
d
x (c

d
ε,j)

∣
∣
∣
∣
∣
∣

≤ 1
(2n)! (Nd,ε)

2n+1
[
Qd,ε

n

]−2n

S2nd
2n

≤ 1
(2n)! (Nd,ε)

2n+1
[

1
(2n)! (Nd,ε)

2n+1S2nd
2n 2

ε

]−1

S2nd
2n = ε

2 .

(4.23)

Moreover, note that Lemma 4.2 (with Nd, ε2 ↔ Nd,ε in the notation of Lemma 4.2) and (4.23) imply for every

d ∈ N, ε ∈ (0, 1], x ∈ [a, b]d that
∣
∣
∣
∣
∣
∣

∫ ∞

0

F dx (c) dc−

Qd,ε∑

j=1

wdε,jF
d
x (c

d
ε,j)

∣
∣
∣
∣
∣
∣

≤

∣
∣
∣
∣
∣
∣

∫ Nd,ε

0

F dx (c) dc−

Qd,ε∑

j=1

wdε,jF
d
x (c

d
ε,j)

∣
∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣

∫ ∞

Nd,ε

F dx (c) dc

∣
∣
∣
∣
∣

≤ ε
2 + ε

2 = ε.

(4.24)
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Furthermore, we have for every d ∈ N, ε ∈ (0, 1] that

Qd,ε ≤ n

(

1 +
[

1
(2n)!(Nd,ε)

2n+1S2nd
2n 2

ε

] 1
2n

)

= n+ n
[
2S2n

(2n)!

] 1
2n

dε−
1
2n (Nd,ε)

1+ 1
2n

≤ n+ n
[
2S2n

(2n)!

] 1
2n

dε−
1
2n

[

4e2(n+1)(b+ 1)1+
1
n d

1
n ε−

1
n

]1+ 1
2n

= n+ 4n
[
8S2n

(2n)!

] 1
2n

e2n+3+ 1
n [b+ 1]

1+ 3
2n+ 1

2n2 d1+
1
n
+ 1

2n2 ε−
3
2n− 1

2n2

≤ nd1+
2
n ε−

2
n + 4n

[
8S2n

(2n)!

] 1
2n

e2n+3+ 1
n [b+ 1]

1+ 3
2n+ 1

2n2 d1+
2
n ε−

2
n .

(4.25)

This implies

sup
ε∈(0,1],d∈N

[
Qd,ε

d1+
2
n ε−

2
n

]

≤ n+ 4n
[
8S2n

(2n)!

] 1
2n

e2n+3+ 1
n [b+ 1]1+

3
2n+ 1

2n2 <∞. (4.26)

The proof of Lemma 4.3 is thus completed.

5 Basic ReLU DNN Calculus

In order to talk about neural networks we will, up to some minor changes and additions, adopt the notation
of P. Petersen and F. Voigtlaender from [22]. This allows us to differentiate between a neural network,
defined as a structured set of weights, and its realization, which is a function on R

d. Note that this is
almost necessary in order to talk about the complexity of neural networks, since notions like depth, size
or architecture do not make sense for general functions on R

d. Even if we know that a given function ’is’
a neural network, i.e. can be written a series of affine transformations and componentwise non-linearities,
there are, in general, multiple non-trivially different ways to do so.
Each of these structured sets we consider does however define a unique function. This enables us to explic-
itly and unambiguously construct complex neural networks from simple ones, and subsequently relate the
approximation capability of a given network to its complexity. Further note that since the realization of
neural network is unique we can still speak of a neural network approximating a given function when its
realization does so.
Specifically, a neural network will be given by its architecture, i.e. number of layers L and layer dimen-
sions1N0, N1, . . . , NL, as well as the weights determining the affine transformations used to compute each
layer from the previous one. Note that our notion of neural networks does not attach the architecture and
weights to a fixed activation function, but instead considers the realization of such a neural network with
respect to a given activation function. This choice is a purely technical one here, as we always consider
networks with ReLU activation function.

Setting 5.1 (Neural networks). For every L ∈ N, N0, N1, . . . , NL ∈ N let NN0,N1,...,NL

L be the set given by

NN0,N1,...,NL

L = ×Ll=1

(
R
Nl×Nl−1 × R

Nl
)
, (5.1)

let N be the set given by

N =
⋃

L∈N,
N0,N1,...,NL∈N

NN0,N1,...,NL

L , (5.2)

let L,M,Ml, dimin, dimout : N → N, l ∈ {1, 2, . . . , L}, be the functions which satisfy for every L ∈ N

and every N0, N1, . . . , NL ∈ N, Φ = (((A1
i,j)

N1,N0

i,j=1 , (b
1
i )
N1

i=1), . . . , ((A
L
i,j)

NL,NL−1

i,j=1 , (bLi )
NL

i=1)) ∈ NN0,N1,...,NL

L ,

1Often phrased as input dimension N0 and output dimension NL with Nl, l ∈ {1, 2, . . . , L− 1} many neurons in the l’th
layer.

16



l ∈ {1, 2, . . . , L} L(Φ) = L, dimin(Φ) = N0, dimout(Φ) = NL,

Ml(Φ) =

Nl∑

i=1




1R\{0}(b

l
i) +

Nl−1∑

j=1

1R\{0}(A
l
i,j)



 , (5.3)

and

M(Φ) =

L∑

l=1

Ml(Φ). (5.4)

For every ̺ ∈ C(R,R) let ̺∗ : ∪d∈N R
d → ∪d∈NR

d be the function which satisfies for every d ∈ N,
x = (x1, x2, . . . , xd) ∈ R

d that ̺∗(x) = (̺(x1), ̺(x2), . . . , ̺(xd)), and for every ̺ ∈ C(R,R) denote by
R̺ : N → ∪a,b∈N C(R

a,Rb) the function which satisfies for every L ∈ N, N0, N1, . . . , NL ∈ N, x0 ∈ R
N0 , and

Φ = ((A1, b1), (A2, b2), . . . , (AL, bL)) ∈ NN0,N1,...,NL

L , with x1 ∈ R
N1 , . . . , xL−1 ∈ R

NL−1 given by

xl = ̺∗(Alxl−1 + bl) , l = 1, ..., L− 1 , (5.5)

that

[R̺(Φ)] (x0) = ALxL−1 + bL . (5.6)

The quantity M(Φ) simply denotes the number of non-zero entries of the network Φ, which together with
its depth L(Φ) will be how we measure the ’size’ of a given neural network Φ. One could instead consider
the number of all weights, i.e. including zeroes, of a neural network. Note, however, that for any non-
degenerate neural network Φ the total number of weights is bounded from above by M(Φ)2 +M(Φ). Here,
the terminology “degenerate” refers to a neural network which has neurons that can be removed without
changing the realization of the NN. This implies for any neural network there also exists a non-degenerate
one of smaller or equal size, which has the exact same realization. Since our primary goal is to approximate
d-variate functions by networks the size of which only depends polynomially on the dimension, the above
means that the qualitatively same results hold regardless of which notion of ’size’ is used.
We start by introducing two basic tools for constructing new neural networks from known ones and, in
Lemma 5.3 and Lemma 5.4, consider how the properties of a derived network depend on its parts. The
first tool will be ’concatenation’ of neural networks in (5.7), which takes two networks and provides a
new network whose realization is the composition of the realization of the two constituent functions. This
version of concatenation only works when using the ReLU activation function, as ̺(x) = max{0, x} implies
̺(x) − ̺(−x) = x. It does, however, provide us with better control on the number (and magnitude) of the
weights of the resulting network.
The second tool will be the ’parallelization’ of neural networks in (5.12), which will be useful when considering
linear combinations or tensor products of functions which we can already approximate. While parallelization
of same-depth networks (5.10) works with arbitrary activation functions, we use for the general case that
any ReLU network can easily be extended (5.11) to an arbitrary depth without changing its realization.

Setting 5.2. Assume Setting 5.1, for every L1, L2 ∈ N, Φi =
(
(Ai1, b

i
1), (A

i
2, b

i
2), . . . , (A

i
Li
, biLi

)
)

∈ N,

i ∈ {1, 2}, with dimin(Φ
1) = dimout(Φ

2) let Φ1 ⊙ Φ2 ∈ N be the neural network given by

Φ1 ⊙Φ2 =

(

(A2
1, b

2
1), . . . , (A

2
L2−1, b

2
L2−1),

((

A2
L2

−A2
L2

)

,

(

b2L2

−b2L2

))

,
((

A1
1 −A1

1

)

, b11
)

, (A1
2, b

1
2), . . . , (A

1
L1

, b1L1
)

)

, (5.7)

for every d ∈ N, L ∈ N ∩ [2,∞) let ΦId
d,L ∈ N be the neural network given by

ΦId
d,L =





((
IdRd

−IdRd

)

, 0

)

, (IdR2d , 0), . . . , (IdR2d , 0)
︸ ︷︷ ︸

L-2 times

,
((
IdRd −IdRd

)
, 0
)



 , (5.8)

for every d ∈ N let ΦId
d,1 ∈ N be the neural network given by

ΦId
d,1 = ((IdRd , 0)), (5.9)
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for every n, L ∈ N, Φj = ((Aj1, b
j
1), (A

j
2, b

j
2), . . . , (A

j
L, b

j
L)) ∈ N, j ∈ {1, 2, . . . , n}, let Ps(Φ1,Φ2, . . . ,Φn) ∈ N

be the neural network which satisfies

Ps(Φ
1
,Φ2

, . . . ,Φn) =































A1
1

A2
1

.

.

.

An
1











,











b11
b21
.

.

.

bn1





















, . . . ,





















A1
L

A2
L

.

.

.

An
L











,











b1L
b2L
.

.

.

bnL































, (5.10)

for every L, d ∈ N, Φ ∈ N with L(Φ) ≤ L, dimout(Φ) = d, let EL(Φ) ∈ N be the neural network given by

EL(Φ) =

{

ΦId
d,L−L(Φ) ⊙ Φ : L(Φ) < L

Φ : L(Φ) = L
, (5.11)

and for every n, L ∈ N, Φj ∈ N, j ∈ {1, 2, . . . , n} with maxj∈{1,2,...,n}L(Φ
j) = L, let P(Φ1,Φ2, . . . ,Φn) ∈ N

denote the neural network given by

P(Φ1,Φ2, . . . ,Φn) = Ps(EL(Φ
1), EL(Φ

2), . . . , EL(Φ
n)). (5.12)

Lemma 5.3. Assume Setting 5.2, let Φ1,Φ2 ∈ N, and let ̺ : R → R be the function which satisfies for every
t ∈ R that ̺(t) = max{0, t}. Then

(i) for every x ∈ R
dimin(Φ

2) it holds

[R̺(Φ
1 ⊙ Φ2)](x) = ([R̺(Φ

1)] ◦ [R̺(Φ
2)])(x) = [R̺(Φ

1)]([R̺(Φ
2)](x)), (5.13)

(ii) L(Φ1 ⊙ Φ2) = L(Φ1) + L(Φ2),

(iii) M(Φ1 ⊙ Φ2) ≤ M(Φ1) +M(Φ2) +M1(Φ
1) +ML(Φ2)(Φ

2) ≤ 2(M(Φ1) +M(Φ2)),

(iv) M1(Φ
1 ⊙ Φ2) = M1(Φ

2),

(v) ML(Φ1⊙Φ2)(Φ
1 ⊙ Φ2) = ML(Φ1)(Φ

1),

(vi) dimin(Φ
1 ⊙ Φ2) = dimin(Φ

2),

(vii) dimout(Φ
1 ⊙ Φ2) = dimout(Φ

1),

(viii) for every d, L ∈ N, x ∈ R
d it holds that [R̺(Φ

Id
d,L)](x) = x, and

(ix) for every L ∈ N, Φ ∈ N with L(Φ) ≤ L, x ∈ R
dimin(Φ) it holds that [R̺(EL(Φ))](x) = [R̺(Φ)](x).

Proof of Lemma 5.3. For every i ∈ {1, 2} let Li ∈ N, N i
1, N

i
2, . . . , N

i
Li
, (Ail , b

i
l) ∈ R

Ni
l×Ni

l−1 × R
Ni

l , l ∈

{1, 2, . . . , Li} such that Φi = ((Ai1, b
i
1), . . . , (A

i
Li
, biLi

)). Furthermore, let (Al, bl) ∈ R
Nl×Nl−1 × R

Nl , l ∈
{1, 2, . . . , L1 + L2}, be the matrix-vector tuples which satisfy Φ1 ⊙ Φ2 = ((A1, b1), . . . , (AL1+L2 , bL1+L2))
and let rl : R

N0 → R
Nl , l ∈ {1, 2, . . . , L1 + L2}, be the functions which satisfy for every x ∈ R

N0 that

rl(x) =







̺∗(A1x+ b1) : l = 1

̺∗(Alrl−1(x) + bl) : 1 < l < L1 + L2

Alrl−1(x) + bl : l = L1 + L2

. (5.14)

Observe that for every l ∈ {1, 2, . . . , L2 − 1} holds (Al, bl) = (A2
l , b

2
l ). This implies that for every x ∈ R

N0

holds

A2
L2
rL2−1(x) + b2L2

= [R̺(Φ2)](x). (5.15)
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Combining this with (5.7) implies for every x ∈ R
N0 that

rL2(x) = ̺∗(AL2rL2−1(x) + bL2) = ̺∗
((

A2
L2

−A2
L2

)

rL2−1(x) +

(
b2L2

−b2L2

))

= ̺∗
((

A2
L2
rl−1(x) + b2L2

−A2
L2
rl−1(x)− b2L2

))

=

(
̺∗([R̺(Φ2)](x))
̺∗(−[R̺(Φ

2)](x))

) (5.16)

In addition, for every d ∈ N, y = (y1, y2, . . . , yd) ∈ R
d holds

̺∗(y)− ̺∗(−y) = (̺(y1)− ̺(−y1), ̺(y2)− ̺(−y2), . . . , ̺(yd)− ̺(−yd)) = y. (5.17)

This, (5.7), and (5.16) ensure that for every x ∈ R
N0 holds

rL2+1(x) = AL2+1

(
̺∗([R̺(Φ2)](x))
̺∗(−[R̺(Φ

2)](x))

)

+ bL2+1

= A1
1̺

∗([R̺(Φ
2)](x)) −A1

1̺
∗(−[R̺(Φ

2)](x)) + bL2+1

= A1
1[R̺(Φ

2)](x) + b11.

(5.18)

Combining this with (5.14) establishes (i). Moreover, (ii)-(vii) follow directly from (5.7). Furthermore,
(5.8), (5.9), and (5.17) imply (viii). Finally, (ix) follows from (5.11) and (viii). This completes the proof of
Lemma 5.3.

Lemma 5.4. Assume Setting 5.2, let ̺ : R → R be the function which satisfies for every t ∈ R that ̺(t) =
max{0, t}, let n ∈ N, let ϕj ∈ N, j ∈ {1, 2, . . . , n}, let dj ∈ N, j ∈ {1, 2, . . . , n}, be given by dj = dimin(ϕ

j),
let D ∈ N be given by D =

∑n
j=1 dj, and let Φ ∈ N be given by Φ = P(ϕ1, ϕ2, . . . , ϕn). Then

(i) for every x ∈ R
D it holds

[R̺(Φ)](x) =
(

[R̺(ϕ
1)](x1, . . . , xd1), [R̺(ϕ

2)](xd1+1, . . . , xd1+d2), . . . , [R̺(ϕ
n)](xD−dn+1, . . . , xD)

)

, (5.19)

(ii) L(Φ) = maxj∈{1,2,...,n} L(ϕ
j),

(iii) M(Φ) ≤ 2
(
∑n

j=1 M(ϕj)
)

+ 4
(
∑n

j=1 dimout(ϕ
j)
)

maxj∈{1,2,...,n} L(ϕ
j),

(iv) M(Φ) =
∑n

j=1 M(ϕj) provided for every j, j′ ∈ {1, 2, . . . , n} holds L(ϕj) = L(ϕj
′
),

(v) ML(Φ)(Φ) ≤
∑n

j=1 max{2 dimout(ϕ
j),ML(ϕj)(ϕ

j)},

(vi) M1(Φ) =
∑n
j=1 M1(ϕ

j),

(vii) dimin(Φ) =
∑n
j=1 dimin(ϕ

j), and

(viii) dimout(Φ) =
∑n

j=1 dimout(ϕ
j).

Proof of Lemma 5.4. Observe that Lemma 5.3 implies that for every j ∈ {1, 2, . . . , n} holds

R̺(EL(Φ)(ϕ
j)) = R̺(ϕ

j). (5.20)

Combining this with (5.10) and (5.12) establishes (i). Furthermore, note that that (ii), (vi), (vii), and
(viii) follow directly from (5.10) and (5.12). Moreover, (5.10) demonstrates that for every m ∈ N, ψi ∈ N,
i ∈ {1, 2, . . . ,m}, with ∀i, i′ ∈ {1, 2, . . . ,m} : L(ψi) = L(ψi

′
) holds

M(Ps(ψ
1, ψ2, . . . , ψm)) =

m∑

i=1

M(ψi). (5.21)
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This establishes (iv). Next, observe that Lemma 5.3, (5.11), and the fact that for every d ∈, L ∈ N holds
M(ΦId

d,L) ≤ 2dL imply that for every j ∈ {1, 2, . . . , n} we have

M(EL(Φ)(ϕ
j)) ≤ 2M(ΦId

dimout(ϕj),L(Φ)−L(ϕj)) + 2M(ϕj)

≤ 4 dimout(ϕ
j)L(Φ) + 2M(ϕj).

(5.22)

Combining this with (5.21) establishes (iii). In addition, note that (5.8), (5.9), and (5.11) ensure for every
j ∈ {1, 2, . . . , n} that

ML(Φ)(EL(Φ)(ϕ
j)) ≤ max{2 dimout(ϕ

j),ML(ϕj)(ϕ
j)}. (5.23)

Combining this with (5.10) establishes (v). The proof of Lemma 5.4 is thus completed.

6 Basic Expression Rate Results

Here we begin by establishing an expression rate result for a very simple function, namely x 7→ x2 on [0, 1].
Our approach is based on the observation by M. Telgarsky [26], that neural networks with ReLU activation
function can efficiently compute high-frequent sawtooth functions, and the idea of D. Yarotsky in [27] to
use this in order to approximate the function x 7→ x2 by networks computing its linear interpolations. This
can then be used to derive networks capable of efficiently approximating (x, y) 7→ xy, which leads to tensor
products as well as polynomials and subsequently smooth function. Note that [27] uses a slighlty different
notion of neural networks, where connections between non-adjacent layers are permitted. This does, however,
only require a technical modification of the proof, which does not significantly change the result. Nonetheless,
the respective proofs are provided in the appendix for completeness.

Lemma 6.1. Assume Setting 5.1 and let ̺ : R → R be the ReLU activation function given by ̺(t) =
max{0, t}. Then there exist neural networks (σε)ε∈(0,∞) ⊆ N such that for every ε ∈ (0,∞)

(i) L(σε) ≤

{
1
2 |log2(ε)|+ 1 : ε < 1

1 : ε ≥ 1
,

(ii) M(σε) ≤

{

15(12 |log2(ε)|+ 1) : ε < 1

0 : ε ≥ 1
,

(iii) supt∈[0,1]

∣
∣t2 − [R̺(σε)](t)

∣
∣ ≤ ε,

(iv) [R̺(σε)](0) = 0.

We can now derive the following result on approximate multiplication by neural networks, by observing
that xy = 2B2(|(x+ y)/2B|2 − |x/2B|2 − |y/2B|2) for every B ∈ (0,∞), x, y ∈ R.

Lemma 6.2. Assume Setting 5.1, let B ∈ (0,∞), and let ̺ : R → R be the ReLU activation function given
by ̺(t) = max{0, t}. Then there exist neural networks (µε)ε∈(0,∞) ⊆ N which satisfy for every ε ∈ (0,∞)
that

(i) L(µε) ≤

{
1
2 log2(

1
ε ) + log2(B) + 6 : ε < B2

1 : ε ≥ B2
,

(ii) M(µε) ≤

{

90 log2(
1
ε ) + 180 log2(B) + 467 : ε < B2

0 : ε ≥ B2
,

(iii) sup(x,y)∈[−B,B]2 |xy − [R̺(µε)](x, y)| ≤ ε,

(iv) M1(µε) ≤ 14, ML(µε)(µε) = 3, and

(v) for every x ∈ R it holds that R̺[µε](0, x) = R̺[µε](x, 0) = 0.
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Next we extend this result to products of any number of factors by hierarchical, pairwise multiplication.

Theorem 6.3. Assume Setting 5.1, let ̺ : R → R be the ReLU activation function given by ̺(t) = max{0, t},
let m ∈ N ∩ [2,∞), and let B ∈ [1,∞). Then there exists a constant C ∈ R (which is independent of m, B)
and neural networks (Πε)ε∈(0,∞) ⊆ N which satisfy

(i) L(Πε) ≤ C ln(m) (|ln(ε)|+m ln(B) + ln(m)),

(ii) M(Πε) ≤ Cm (|ln(ε)|+m ln(B) + ln(m)),

(iii) sup
x∈[−B,B]m

∣
∣
∣
∣
∣
∣





m∏

j=1

xj



− [R̺(Πε)](x)

∣
∣
∣
∣
∣
∣

≤ ε, and

(iv) R̺ [Πε] (x1, x2, . . . , xm) = 0, if there exists i ∈ {1, 2, . . . ,m} with xi = 0.

Proof of Theorem 6.3. Throughout this proof assume Setting 5.2, let l = ⌈log2m⌉, and let θ ∈ N 1,1
1 be the

neural network given by θ = (0, 0), let (A, b) ∈ R
l×m × R

l be the matrix-vector tuple given by

Ai,j =

{

1 : i = j, j ≤ m

0 : else
and bi =

{

0 : i ≤ m

1 : i > m
. (6.1)

Let further ω ∈ Nm,2l

2 be the neural network given by ω = ((A, b)). Note that Lemma 6.2 (with Bm as B
in the notation of Lemma 6.2) ensures that there exist neural networks (µη)η∈(0,∞) ⊆ N such that for every

η ∈ (0, [Bm]
2
) it holds

(A) L(µη) ≤
1
2 log2(

1
η ) + log2(B

m) + 6,

(B) M(µη) ≤ 90 log2(
1
η ) + 180 log2(B

m) + 467,

(C) sup
x,y∈[−Bm,Bm]

|xy − [R̺(µη)](x, y)| ≤ η,

(D) M1(µη) ≤ 14, ML(µη)(µη) = 3, and

(E) for every x ∈ R it holds that R̺[µη](0, x) = R̺[µη](x, 0) = 0.

Let (νε)ε∈(0,∞) ⊆ N be the neural networks which satisfy for every ε ∈ (0,∞)

νε = µm−2B−2mε. (6.2)

Observe that (A) implies that for every ε ∈ (0, Bm) ⊆ (0,m2B4m) it holds

L(νε) ≤
1
2 log2(

1
m−2B−2mε ) + log2(B

m) + 6

= 1
2 (log2(

1
ε ) + 2 log2(m) + 2m log2(B)) +m log2(B) + 6

= 1
2 log2(

1
ε ) + 2m log2(B) + log2(m) + 6.

(6.3)

In addition, note that (B) implies that for every ε ∈ (0, Bm) ⊆ (0,m2B4m)

M(νε) ≤ 90 log2(
1

m−2B−2mε ) + 180 log2(B
m) + 467

= 90 log2(
1
ε ) + 360m log2(B) + 180 log2(m) + 467.

(6.4)

Furthermore, (C) implies that for every ε ∈ (0, Bm) ⊆ (0,m2B4m) holds

sup
x,y∈[−Bm,Bm]

|xy − [R̺(νη)](x, y)| ≤ m−2B−2mε. (6.5)
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Let πk,ε ∈ N, ε ∈ (0,∞), k ∈ N, be the neural networks which satisfy for every ε ∈ (0,∞), k ∈ N

πk,ε =

{

νε : k = 1

νε ◦ P(πk−1,ε, πk−1,ε) : k > 1
(6.6)

and let (Πε)ε∈(0,∞) ⊆ N be neural networks given by

Πε =

{

πl,ε ◦ ω : ε < Bm

θ : ε ≥ Bm
. (6.7)

Note that for every ε ∈ (Bm,∞) it holds

sup
x∈[−B,B]m

∣
∣
∣
∣
∣

[
m∏

j=1

xj

]

− [R̺(Πε)](x)

∣
∣
∣
∣
∣
= sup

x∈[−B,B]m

∣
∣
∣
∣
∣

[
m∏

j=1

xj

]

− [R̺(θ)](x)

∣
∣
∣
∣
∣

= sup
x∈[−B,B]m

∣
∣
∣
∣
∣

[
m∏

j=1

xj

]

− 0

∣
∣
∣
∣
∣
= Bm ≤ ε.

(6.8)

We claim that for every k ∈ {1, 2, . . . , l}, ε ∈ (0, Bm) it holds

(a) that

sup
x∈[−B,B](2k)

∣
∣
∣
∣
∣

[
2k∏

j=1

xj

]

− [R̺(πk,ε)](x)

∣
∣
∣
∣
∣
≤ 4k−1m−2B(2k−2m)ε, (6.9)

(b) that L(πk,ε) ≤ kL(νε), and

(c) that M(πk,ε) ≤ (2k − 1)M(νε) + (2k−1 − 1)20.

We prove (a), (b), and (c) by induction on k ∈ {1, 2, . . . , l}. Observe that (6.5) and the fact that B ∈ [1,∞)
establishes (a) for k = 1. Moreover, note that (6.6) establishes (b) and (c) in the base case k = 1.

For the induction step {1, 2, . . . , l − 1} ∋ k → k + 1 ∈ {2, 3, . . . , l} note that Lemma 5.3, Lemma 5.4,
(6.5) and (6.6) imply that for every k ∈ {1, 2, . . . , l− 1}, ε ∈ (0, Bm)

sup
x∈[−B,B](2k+1)

∣
∣
∣
∣
∣
∣





2k+1
∏

j=1

xj



− [R̺(πk+1,ε)](x)

∣
∣
∣
∣
∣
∣

= sup
x,x′∈[−B,B](2k)

∣
∣
∣
∣
∣
∣





2k∏

j=1

xj









2k∏

j=1

x′j



− [R̺(πk+1,ε)] ((x, x
′))

∣
∣
∣
∣
∣
∣

= sup
x,x′∈[−B,B](2k)

∣
∣
∣
∣
∣
∣





2k∏

j=1

xj









2k∏

j=1

x′j



− [R̺(νε)] ([R̺(πk,ε)](x), [R̺(πk,ε)](x
′))

∣
∣
∣
∣
∣
∣

≤ sup
x,x′∈[−B,B](2k)

∣
∣
∣
∣
∣
∣





2k∏

j=1

xj









2k∏

j=1

x′j



− ([R̺(πk,ε)](x)) ([R̺(πk,ε)](x
′))

∣
∣
∣
∣
∣
∣

+ sup
x,x′∈[−B,B](2k)

|([R̺(πk,ε)](x)) ([R̺(πk,ε)](x
′))− [R̺(νε)] ([R̺(πk,ε)](x), [R̺(πk,ε)](x

′))|

≤ sup
x,x′∈[−B,B](2k)

∣
∣
∣
∣
∣
∣





2k∏

j=1

xj









2k∏

j=1

x′j



− ([R̺(πk,ε)](x)) ([R̺(πk,ε)](x
′))

∣
∣
∣
∣
∣
∣

+m−2B−2mε.

(6.10)

Next, for every c, δ ∈ (0,∞), y, z ∈ [−c, c], ỹ, z̃ ∈ R with |y − ỹ| , |z − z̃| ≤ δ it holds

|yz − ỹz̃| ≤ 2(|y|+ |z|)δ + δ2 ≤ 2cδ + δ2. (6.11)
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Moreover, for every k ∈ {1, 2, . . . , l}

4k−1 ≤ 4l−1 = 4⌈log2m⌉−1 ≤ 4log2m = m2. (6.12)

The fact that B ∈ [1,∞) therefore ensures that for every k ∈ {1, 2, . . . , l − 1}, ε ∈ (0, Bm)

[

4k−1m−2B(2k−2m)ε
]2

=
[

4k−1m−2B(2k+1−2m)ε
] [

4k−1m−2B−2mε
]
≤
[

4k−1m−2B(2k+1−2m)ε
]

. (6.13)

This and (6.11) imply that for every k ∈ {1, 2, . . . , l − 1}, ε ∈ (0, Bm), x, x′ ∈ [−B,B](2
k)

∣
∣
∣
∣
∣

[
2k∏

j=1

xj

][
2k∏

j=1

x′j

]

− ([R̺(πk,ε)](x)) ([R̺(πk,ε)](x
′))

∣
∣
∣
∣
∣

≤ 2B(2k)4k−1m−2B(2k−2m)ε+
[

4k−1m−2B(2k−2m)ε
]2

≤ 3
[

4k−1m−2B(2k+1−2m)ε
]

.

(6.14)

Combining this, (6.10), and the fact that B ∈ [1,∞) demonstrates that for every k ∈ {1, 2, . . . , l − 1},
ε ∈ (0, Bm)

sup
x∈[−B,B](2k+1)

∣
∣
∣
∣
∣

[
2k+1
∏

j=1

xj

]

− [R̺(πk+1,ε)](x)

∣
∣
∣
∣
∣

≤ 3
[

4k−1m−2B(2k+1−2m)ε
]

+m−2B−2mε

≤ 4km−2B(2k+1−2m)ε.

(6.15)

This establishes the claim (a). Moreover, Lemma 5.3 and Lemma 5.4 imply for every k ∈ {1, 2, . . . , l − 1},
ε ∈ (0, Bm) with L(πk,ε) ≤ kL(νε) holds

L(πk+1,ε) = L(νε) + max{L(πk,ε),L(πk,ε)}

≤ L(νε) + kL(νε) = (k + 1)L(νε).
(6.16)

This establishes the claim (b). Furthermore, Lemma 5.3, Lemma 5.4, (B), and (D) imply for every k ∈
{1, 2, . . . , l − 1}, ε ∈ (0, Bm) with M(πk,ε) ≤ (2k − 1)M(νε) + (2k−1 − 1)20 holds

M(πk+1,ε) ≤ M(νε) + (M(πk,ε) +M(πk,ε)) +M1(νε) +ML(P(πk,ε,πk,ε))(P(πk,ε, πk,ε))

≤ M(νε) + 2M(πk,ε) + 14 + 2ML(νε)(νε) ≤ M(νε) + 2M(πk,ε) + 20

≤ M(νε) + 2((2k − 1)M(νε) + (2k−1 − 1)20) + 20

= (2k+1 − 1)M(νε) + (2k − 1)20.

(6.17)

This establishes the claim (c).
Combining (a) with Lemma 5.3 and (6.7) implies for every ε ∈ (0, Bm) the bound

sup
x∈[−B,B]m

∣

∣

∣

∣

∣

[

m
∏

j=1

xj

]

− [R̺(Πε)](x)

∣

∣

∣

∣

∣

≤ sup
x∈[−B,B](2

l)

∣

∣

∣

∣

∣

∣





2l
∏

j=1

xj



− [R̺(πl,ε)](x)

∣

∣

∣

∣

∣

∣

≤ 4l−1
m

−2
B

(2l−2m)
ε

≤ 4⌈log2(m)⌉−1
m

−2
B

(2⌈log2(m)⌉−2m)
ε

≤ 4log2(m)
m

−2
B

(2log2(m)+1−2m)
ε

≤
[

2log2(m)
]2

m
−2

B
(2m−2m)

ε ≤ ε.

(6.18)
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This and (6.8) establish that the neural networks (Πε)ε∈(0,∞) satisfy (iii). Combining (b) with Lemma 5.3,
(6.3), and (6.7) ensures that for every ε ∈ (0, Bm)

L(Πε) = L(πl,ε) + L(ω) ≤ lL(νε) + 1 ≤ (log2(m) + 1)L(νε) + 1

≤ log2(m) log2(
1
ε
) + 4 log2(m)m log2(B) + 2[log2(m)]2 + 12 log2(m) + 1.

(6.19)

and that for every ε ∈ (Bm,∞) it holds L(Πε) = L(θ) = 1. This establishes that the neural networks
(Πε)ε∈(0,∞) satisfy (i). Furthermore, note that (c), Lemma 5.3, (6.3), and (6.7) demonstrate that for every
ε ∈ (0, Bm)

M(Πε) ≤ 2(M(πl,ε) +M(ω)) ≤ 2
[

(2l − 1)M(νε) + (2l−1 − 1)20
]

+ 4m

≤ 2l+1M(νε) + (2l)20 + 4m ≤ 4mM(νε) + 44m

≤ 360m log2(
1
ε
) + 1440m2 log2(B) + 720m log2(m) + 1912m.

(6.20)

and that for every ε ∈ (Bm,∞) holds M(Πε) = M(θ) = 0. This establishes that the neural networks
(Πε)ε∈(0,∞) satisfy (ii). Note that (iv) follows from (E) by construction. The proof of Theorem 6.3 is thus
completed.

With the above established, it is quite straightforward to get the following result for the approximation
of tensor products. Note that the exponential term Bm−1 in (iii) is unavoidable as result from multiplying
m many inaccurate values of magnitude B. For our purposes this will not be an issue since the functions we
consider are bounded in absolute value by B = 1. This is further not an issue in cases, where the hj can be
approximated by networks whose size scales logarithmically with ε.

Proposition 6.4. Assume Setting 5.2, let ̺ : R → R be the ReLU activation function given by ̺(t) =
max{0, t}, let B ∈ [1,∞), m ∈ N, for every j ∈ {1, 2, . . . ,m} let dj ∈ N, Ωj ⊆ R

dj , and hj : Ωj → [−B,B],
let (Φjε)ε∈(0,∞) ∈ N, j ∈ {1, 2, . . . ,m}, be neural networks which satisfy for every ε ∈ (0,∞), j ∈ {1, 2, . . . ,m}

sup
t∈Ωj

∣
∣hj(x) −

[
R̺(Φ

j
ε)
]
(x)
∣
∣ ≤ ε, (6.21)

let ΦP
ε ∈ N, ε ∈ (0,∞) be be given by ΦP

ε = P(Φ1
ε,Φ

2
ε, . . . ,Φ

m
ε ), and let Lε ∈ N, ε ∈ (0,∞) be given by

Lε = maxj∈{1,2,...,m}L(Φ
j
ε).

Then there exists a constant C ∈ R ( which is independent of m,B, ε) and neural networks (Ψε)ε∈(0,∞) ⊆ N

which satsify

(i) L(Ψε) ≤ C ln(m) (|ln(ε)|+m ln(B) + ln(m)) + Lε,

(ii) M(Ψε) ≤ Cm (|ln(ε)|+m ln(B) + ln(m)) +M(ΦP
ε ) +MLε

(ΦP
ε ), and

(iii) sup
t=(t1,t2,...,tm)∈×m

j=1Ωj

∣
∣
∣
∣
∣

[
m∏

j=1

hj(tj)

]

− [R̺(Ψε)](t)

∣
∣
∣
∣
∣
≤ 3mBm−1ε.

Proof of Proposition 6.4. In the case of m = 1 the neural networks (Φ1
ε)ε∈(0,∞) ∈ N satisfy (i), (ii), and (iii)

by assumption. Throughout the remainder of this proof assume m ≥ 2, and let θ ∈ N 1,1
1 denote the trivial

neural network θ = (0, 0). Observe that Theorem 6.3 (with ε ↔ η, C′ ↔ C in the notation Theorem 6.3)
ensures that there exist C′ ∈ R and neural networks (Πη)η∈(0,∞) ⊆ N which satisfy for every η ∈ (0,∞) that

(a) L(Πη) ≤ C′ ln(m) (|ln(η)|+m ln(B) + ln(m)),

(b) M(Πη) ≤ C′m (|ln(η)|+m ln(B) + ln(m)), and

(c) sup
x∈[−B,B]m

∣
∣
∣
∣
∣
∣





m∏

j=1

xj



− [R̺(Πη)](x)

∣
∣
∣
∣
∣
∣

≤ η.
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Let (Ψε)ε∈(0,∞) ⊆ N be the neural networks which satisfy for every ε ∈ (0,∞) that

Ψε =

{

Πε ◦ P(Φ1
ε,Φ

2
ε, . . . ,Φ

m
ε ) : ε < B

2m

θ : ε ≥ B
2m

. (6.22)

Note that for every ε ∈ (0, B2m )

max
x∈[−B,B]m,x′∈Rm

‖x′−x‖∞≤ε

∣
∣
∣
∣
∣
∣

m∏

j=1

x′j −
m∏

j=1

xj

∣
∣
∣
∣
∣
∣

= (B + ε)m −Bm =
m∑

k=1

(
m

k

)

Bm−kεk ≤ ε
m∑

k=1

mk

k!
Bm−kεk−1

≤ ε

m∑

k=1

mk

k!
Bm−k

(
B

2m

)k−1

= mBm−1ε

m∑

k=1

1

2k−1k!

≤ 2mBm−1ε.

(6.23)

Combining this with Lemma 5.3, Lemma 5.4, (6.21), and (c) implies that for every ε ∈ (0, B2m ), t =
(t1, t2, . . . , tm) ∈ Ω it holds

∣

∣

∣

∣

∣

[

m
∏

j=1
hj(tj)

]

− [R̺(Ψε)](t)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

[

m
∏

j=1
hj(tj)

]

−
[

R̺(Πε ◦ P(Φ1
ε,Φ

2
ε, . . . ,Φ

m
ε ))

]

(t)

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

[

m
∏

j=1
hj(tj)

]

−

[

m
∏

j=1

[

R̺(Φ
j
ε)
]

(tj )

]
∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

[

m
∏

j=1

[

R̺(Φ
j
ε)
]

(tj)

]

− [R̺(Πε)]
(

[R̺(Φ
1
ε)](t1), . . . , [R̺(Φ

m
ε )](tj )

)

∣

∣

∣

∣

∣

≤ 2mBm−1ε+ ε ≤ 3mBm−1ε.

(6.24)

Moreover, for every ε ∈ [ B2m ,∞), t = (t1, t2, . . . , tm) ∈ Ω it holds that

∣
∣
∣
∣
∣

[
m∏

j=1

hj(tj)

]

− [R̺(Ψε)](t)

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣

[
m∏

j=1

hj(tj)

]

− [R̺(θ)](t)

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

[
m∏

j=1

hj(tj)

]∣
∣
∣
∣
∣
≤ Bm ≤ 2mBm−1ε.

(6.25)

This and (6.24) establish that the neural networks (Ψε)ε,c∈(0,∞) satisfy (iii). Next observe that Lemma 5.3,

Lemma 5.4, and (a) demonstrate that for every ε ∈ (0, B2m )

L(Ψε) = L(Πε ◦ P(Φ1
ε,Φ

2
ε, . . . ,Φ

m
ε )) = L(Πε) + max

j∈{1,2,...,m}
L(Φjε)

≤ C′ ln(m) (|ln(ε)|+m ln(B) + ln(m)) + Lε.
(6.26)

This and the fact that for every ε ∈ [ B2m ,∞) it holds that L(Ψε) = L(θ) = 1 establish that the neural
networks (Ψε)ε,c∈(0,∞) satisfy (i). Furthermore note that Lemma 5.3, Lemma 5.4, and (b) ensure that for

every ε ∈ (0, B2m )

M(Ψε) = M(Πε ◦ P(Φ1
ε,Φ

2
ε, . . . ,Φ

m
ε ))

≤ 2M(Πε) +M(P(Φ1
ε,Φ

2
ε, . . . ,Φ

m
ε )) +ML(P(Φ1

ε,Φ
2
ε,...,Φ

m
ε ))(P(Φ1

ε,Φ
2
ε, . . . ,Φ

m
ε ))

≤ 2C′m (|ln(ε)|+m ln(B) + ln(m)) +M(ΦP
ε ) +MLε

(ΦP
ε ).

(6.27)

This and the fact that for every ε ∈ [ B2m ,∞) it holds that M(Ψε) = M(θ) = 0 imply the neural networks
(Ψε)ε,c∈(0,∞) satisfy (ii). The proof of Proposition 6.4 is completed.

Another way to use the multiplication results is to consider the approximation of smooth functions by
polynomials. This can be done for functions of arbitrary dimension using the multivariate Taylor expan-
sion (see [27] and [20, Thm. 2.3]). Such a direct approach, however, yields networks whose size depends
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exponentially on the dimension of the function. As our goal is to show that high dimensional functions
with a tensor product structure can be approximated by networks with only polynomial dependence on the
dimension, we only consider univariate smooth functions here. In the appendix we present a detailed and
explicit construction of this Taylor approximation by neural networks.

Theorem 6.5. Assume Setting 5.1, let n ∈ N, r ∈ (0,∞), let ̺ : R → R be the ReLU activation function
given by ̺(t) = max{0, t}, and let Bn1 ⊆ Cn([0, 1],R) be the set given by

Bn1 =

{

f ∈ Cn([0, 1],R) : max
k∈{0,1,...,n}

[

sup
t∈[0,1]

∣
∣
∣f (k)(t)

∣
∣
∣

]

≤ 1

}

. (6.28)

Then there exist neural networks (Φf,ε)f∈Bn
1 ,ε∈(0,∞) ⊆ N which satisfy

(i) sup
f∈Bn

1 ,ε∈(0,∞)

[
L(Φf,ε)

max{r, |ln(ε)|}

]

<∞,

(ii) sup
f∈Bn

1 ,ε∈(0,∞)

[
M(Φf,ε)

ε−
1
n max{r, | ln(ε)|}

]

<∞, and

(iii) for every f ∈ Bn1 , ε ∈ (0,∞) that

sup
t∈[0,1]

|f(t)− [R̺(Φf,ε)](t)| ≤ ε. (6.29)

For convenience of use we also provide the following more general corollary.

Corollary 6.6. Assume Setting 5.1, let r ∈ (0,∞) and let ̺ : R → R be the ReLU activation function given by
̺(t) = max{0, t}. Let further the set Cn be given by Cn = ∪[a,b]⊆R+

Cn([a, b],R), and let ‖·‖n,∞ : Cn → [0,∞)
satisfy for every [a, b] ⊆ R+, f ∈ Cn([a, b],R)

‖f‖n,∞ = max
k∈{0,1,...,n}

[

sup
t∈[a,b]

∣
∣
∣f (k)(t)

∣
∣
∣

]

. (6.30)

Then there exist neural networks (Φf,ε)f∈Cn,ε∈(0,∞) ⊆ N which satisfy

(i) sup
f∈Cn,ε∈(0,∞)

[

L(Φf,ε)

max{r, | ln( ε
max{1,b−a}‖f‖n,∞

)|}

]

<∞,

(ii) sup
f∈Cn,ε∈(0,∞)




M(Φf,ε)

max{1, b− a} ‖f‖
1
n
n,∞ ε−

1
n max{r, | ln( ε

max{1,b−a}‖f‖n,∞
)|}



 <∞, and

(iii) for every [a, b] ⊆ R+, f ∈ Cn([a, b],R), ε ∈ (0,∞) that

sup
t∈[a,b]

|f(t)− [R̺(Φf,ε)](t)| ≤ ε. (6.31)

7 DNN Expression Rates for High-Dimensional Basket prices

Now that we have established a number of general expression rate results, we can apply them to our specific
problem. Using the regularity result (3.3) we obtain the following.

Corollary 7.1. Assume Setting 5.1, let n ∈ N, r ∈ (0,∞), a ∈ (0,∞), b ∈ (a,∞), let ̺ : R → R be
the ReLU activation function given by ̺(t) = max{0, t}, let f : (0,∞) → R be as defined in (3.1),and let
hc,K : [a, b] → R, c ∈ (0,∞), K ∈ [0,∞), denote the functions which satisfy for every c ∈ (0,∞), K ∈ [0,∞),
x ∈ [a, b]

hc,K(x) = f(K+c
x ). (7.1)

Then there exist neural networks (Φε,c,K)ε,c∈(0,∞),K∈[0,∞) ⊆ N which satisfy
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(i) sup
ε,c∈(0,∞),K∈[0,∞)

[
L(Φε,c,K)

max{r, | ln(ε)|}+max{0, ln(K + c)}

]

<∞,

(ii) sup
ε,c∈(0,∞),K∈[0,∞)

[

M(Φε,c,K)

(K + c+ 1)
1
n ε−

1
n2

]

<∞, and

(iii) for every ε, c ∈ (0,∞), K ∈ [0,∞) that

sup
x∈[a,b]

|hc,K(x)− [R̺(Φε,c,K)](x)| ≤ ε. (7.2)

Proof of Corollary 7.1. We observe Corollary 3.3 ensures the existence of a constant C ∈ R with

max
k≤n

sup
x∈[a,b]

∣
∣
∣h

(k)
c,K(x)

∣
∣
∣ ≤ Cmax{(K + c)n, 1}. (7.3)

Moreover, observe for every ε, c ∈ (0,∞), K ∈ [0,∞) it holds

max{r, | ln( ε
max{1,b−a}Cmax{(K+c)n,1})|}

≤ max{r, |ln(ε)|}+ | ln(max{1, b− a})|+ |ln(Cmax{(K + c)n, 1})|

≤ max{r, |ln(ε)|}+ ln(max{1, b− a}) + |ln(C)|+ |ln(max{(K + c)n, 1})|

≤ max{r, |ln(ε)|}+ ln(max{1, b− a}) + |ln(C)|+ nmax{ln(K + c), 0}

≤ n(1 + max{1, 1r}(| ln(C)| + ln(max{1, b− a})))(max{r, |ln(ε)|}+max{ln(K + c), 0}).

(7.4)

Furthermore, note for every ε, c ∈ (0,∞), K ∈ [0,∞) it holds

[
ε

max{1, b− a}Cmax{(K + c)n, 1}

]− 1
2n2

= [max{1, b− a}]−
1

2n2 ε−
1

2n2C
1

2n2 max{(K + c)
1
2n , 1}

≤ [max{1, b− a}]−
1

2n2 C
1

2n2 (K + c+ 1)
1
2n ε−

1
2n2 .

(7.5)

Combining this, (7.3), (7.4) with Lemma A.2 and Corollary 6.6 (with n ↔ 2n2 in the notation of Corol-
lary 6.6) completes the proof of Corollary 7.1.

We can then employ Proposition 6.4 in order to approximate the required tensor product.

Corollary 7.2. Assume Setting 5.1, let ̺ : R → R be the ReLU activation function given by ̺(t) = max{0, t},
let n ∈ N, a ∈ (0,∞), b ∈ (a,∞), (Ki)i∈N ⊆ [0,Kmax), and consider, for hc,K : [a, b] → R, c ∈ (0,∞),
K ∈ [0,Kmax), the functions which are, for every c ∈ (0,∞), K ∈ [0,Kmax), x ∈ [a, b], given by

hc,K(x) = 1√
2π

∫ ln(K+c
x

)

−∞
e−

1
2 r

2

dr. (7.6)

For any c ∈ (0,∞), d ∈ N let the function F dc (x) : [a, b]
d → R be given by

F dc (x) = 1−

[
d∏

i=1

hc,Ki
(xi)

]

. (7.7)

Then there exist neural networks (Ψdε,c)ε,c∈(0,∞),d∈N ⊆ N which satisfy

(i) sup
ε,c∈(0,∞),d∈N

[

L(Ψdε,c)

max{1, ln(d)}(|ln(ε)|+ ln(d) + 1) + ln(c+ 1)

]

<∞,

(ii) sup
ε,c∈(0,∞),d∈N

[

M(Ψdε,c)

(c+ 1)
1
n d1+

1
n ε−

1
n

]

<∞, and

27



(iii) for every ε, c ∈ (0,∞), d ∈ N that

sup
x∈[a,b]d

∣
∣F dc (x) −

[
R̺(Ψ

d
ε,c)
]
(x)
∣
∣ ≤ ε. (7.8)

Proof of Corollary 7.2. Throughout this proof assume Setting 5.2. Property Corollary 7.1 ensures there exist
constants bL, bM ∈ (0,∞) and neural networks

(
Φiη,c

)

η,c∈(0,∞)
⊆ N, i ∈ N such that for every i ∈ N it holds

(a) sup
η,c∈(0,∞)

[

L(Φiη,c)

max{1, | ln(η)|}+max{0, ln(Kmax + c)}

]

< bL,

(b) sup
η,c∈(0,∞)

[

M(Φiη,c)

(Kmax + c+ 1)
1
n η−

1
n2

]

< bM , and

(c) for every η, c ∈ (0,∞) that

sup
x∈[a,b]

∣
∣hc,Ki

(x)−
[
R̺(Φ

i
η,c)
]
(x)
∣
∣ ≤ η. (7.9)

Furthermore, for every c ∈ (0,∞), i ∈ N, x ∈ [a, b] holds

|hc,Ki
(x)| =

∣
∣
∣
∣
∣

1√
2π

∫ ln(
Ki+c

x
)

−∞
e−

1
2 r

2

dr

∣
∣
∣
∣
∣
≤ 1√

2π

∣
∣
∣
∣

∫ ∞

−∞
e−

1
2 r

2

dr

∣
∣
∣
∣
= 1. (7.10)

Combining this with (a) and Proposition 6.4 and Lemma 5.4 implies there exist C ∈ R and neural networks
(ψdη,c)η∈(0,∞) ⊆ N, c ∈ (0,∞), d ∈ N, such that for every c ∈ (0,∞), d ∈ N it holds

(A) L(ψdη,c) ≤ C ln(d) (|ln(η)|+ ln(d)) + max
i∈{1,2,...,d}

L(Φiη,c),

(B) M(ψdη,c) ≤ Cd (|ln(η)|+ ln(d)) + 4

d∑

i=1

M(Φiη,c) + 8d max
i∈{1,2,...,d}

L(Φiη,c), and

(C) for every η ∈ (0,∞) that

sup
x∈[a,b]d

∣
∣
∣
∣

[
d∏

i=1

hc,Ki
(xi)

]

−
[
R̺(ψ

d
η,c)
]
(x)

∣
∣
∣
∣
≤ 3dη. (7.11)

Let λ ∈ N 1,1
1 be the neural network given by λ = ((−1, 1)), let θ ∈ N 1,1

1 be the neural network given by
θ = (0, 0), and let (Ψdε,c)ε,c∈(0,∞),d∈N ⊆ N be the neural networks given by

Ψdε,c =

{

λ ◦ ψdε/(3d),c : ε ≤ 2

θ : ε > 2
. (7.12)

Observe that this and (B) imply for every ε ∈ (0, 2], c ∈ (0,∞), d ∈ N, x ∈ [a, b]d it holds

∣
∣F dc (x)−

[
R̺(Ψ

d
ε,c)
]
(x)
∣
∣ =

∣
∣
∣
∣

(

1−

[
d∏

i=1

hc,Ki
(xi)

])

−
(

1−
[

R̺(ψ
d
ε/(3d),c)

]

(x)
)
∣
∣
∣
∣

≤ 3d ε
3d = ε.

(7.13)

Moreover, (7.12) and (7.10) ensure for every ε ∈ (2,∞), c ∈ (0,∞), d ∈ N, x ∈ [a, b]d it holds

∣
∣F dc (x)−

[
R̺(Ψ

d
ε,c)
]
(x)
∣
∣ =

∣
∣
∣
∣

(

1−

[
d∏

i=1

hc,Ki
(xi)

])∣
∣
∣
∣

(7.14)
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This and (7.13) establish the neural networks (Ψdε,c)ε,c∈(0,∞),d∈N satisfy (iii). Next observe that for every
c ∈ (0,∞) it holds

max{0, ln(Kmax + c)} ≤ max{0, ln(max{1,Kmax}+max{1,Kmax}c)}

= ln(max{1,Kmax}(1 + c)) = ln(max{1,Kmax}) + ln(1 + c)

≤ ln(c+ 1) + | ln(Kmax)|.

(7.15)

Hence, we obtain that for every ε, c ∈ (0,∞), d ∈ N it holds

max{1, | ln( ε3d )|}+max{0, ln(Kmax + c)}

≤ | ln(ε)|+ ln(d) + ln(3) + ln(c+ 1) + | ln(Kmax)|

≤ (ln(3) + | ln(Kmax)|) [max{1, ln(d)}(| ln(ε)|+ ln(d) + 1) + ln(c+ 1)] .

(7.16)

In addition, for every ε, c ∈ (0,∞), d ∈ N it holds

C ln(d)
(∣
∣ln( ε3d)

∣
∣ + ln(d)

)
≤ 4C [max{1, ln(d)}(| ln(ε)|+ ln(d) + 1) + ln(c+ 1)] . (7.17)

Combining this with Lemma 5.3, (a), (A), and (7.16) yields

sup
ε∈(0,2],c∈(0,∞),

d∈N

[

L(Ψdε,c)

max{1, ln(d)}(|ln(ε)|+ ln(d) + 1) + ln(c+ 1)

]

≤ sup
ε∈(0,2],c∈(0,∞),

d∈N

[
1 + C ln(d)

(∣
∣ln( ε3d )

∣
∣+ ln(d)

)
+maxi∈{1,2,...,d}L(Φ

i
ε/(3d),c)

max{1, ln(d)}(|ln(ε)|+ ln(d) + 1) + ln(c+ 1)

]

≤ 2 + 4C + (ln(3) + | ln(Kmax)|)bL <∞.

(7.18)

Moreover, (7.12) shows

sup
ε∈(2,∞),c∈(0,∞),

d∈N

[

L(Ψd
ε,c)

max{1, ln(d)}(|ln(ε)|+ ln(d) + 1) + ln(c+ 1)

]

= sup
ε∈(2,∞),c∈(0,∞),

d∈N

[

1

max{1, ln(d)}(|ln(ε)|+ ln(d) + 1) + ln(c+ 1)

]

< ∞.

(7.19)

This and (7.18) establish that (Ψdε,c)ε,c∈(0,∞),d∈N satisfy (i). Next observe Lemma A.2 implies that

• for every ε ∈ (0, 2] it holds

| ln(ε)| ≤

[

sup
δ∈[exp(−2n2),2]

ln(δ)

]

ε−
1
n = 2n2ε−

1
n , (7.20)

• for every d ∈ N it holds

ln(d) ≤

[

max
k∈{1,2,...,exp(2n2)}

ln(k)

]

d
1
n = 2n2d

1
n , (7.21)

• and for every c ∈ (0,∞) it holds

ln(c+ 1) ≤

[

sup
t∈(0,exp(2n2−1)]

ln(t+ 1)

]

(c+ 1)
1
n = 2n2(c+ 1)

1
n . (7.22)

For every m ∈ N, xi ∈ [1,∞), i ∈ {1, 2, . . . ,m}, it holds

m∑

i=1

xi ≤
m∏

i=1

(xi + 1) ≤ 2m
m∏

i=1

xi. (7.23)
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Combining this with (7.20), (7.21), and (7.22) shows for every ε ∈ (0, 2], d ∈ N, c ∈ (0,∞) it holds

2Cd(| ln( ε3d )|+ ln(d)) ≤ 2Cd(| ln(ε)|+ 2 ln(d) + ln(3) + ln(c+ 1))

≤ 4n2Cd(2ε−
1
n + 2d

1
n + ln(3) + (c+ 1)

1
n )

≤ 1024n2C(c+ 1)
1
n d1+

1
n ε−

1
n .

(7.24)

Furthermore, note (7.15), (7.20), (7.21), (7.22), and (7.23) ensure for every ε ∈ (0, 2], d ∈ N, c ∈ (0,∞) it
holds

16d(max{1, | ln( ε3d )|}+max{0, ln(Kmax + c)})

≤ 16d(| ln(ε)|+ ln(d) + ln(3) + ln(c+ 1) + | ln(Kmax)|)

≤ 32n2d(2ε−
1
n + d

1
n + (c+ 1)

1
n + ln(3) + | ln(Kmax)|)

≤ 2048n2(ln(3) + | ln(Kmax)|)(c+ 1)
1
n d1+

1
n ε−

1
n .

(7.25)

In addition, observe that for every ε ∈ (0, 2], d ∈ N, c ∈ (0,∞) it holds

4d(Kmax + c+ 1)
1
n ( ε3d )

− 1
n2 ≤ 96max{1,Kmax}(c+ 1)

1
n d1+

1
n ε−

1
n . (7.26)

Combining this with Lemma 5.3, (a), (b), (B), (7.24), and (7.25) yield

sup
ε∈(0,2],c∈(0,∞),

d∈N

[

M(Ψdε,c)

(c+ 1)
1
n d1+

1
n ε−

1
n

]

≤ sup
ε∈(0,2],c∈(0,∞),

d∈N










4 + 2Cd(| ln( ε3d)|+ ln(d)) + 8
d∑

i=1

M(Φiε/(3d),c) + 16d max
i∈{1,2,...,d}

L(Φiε/(3d),c)

(c+ 1)
1
n d1+

1
n ε−

1
n










≤ 8 + 1024n2C + 96max{1,Kmax}bM + 2048n2(ln(3) + | ln(Kmax)|)bL <∞.

(7.27)

Furthermore, note that (7.12) ensures

sup
ε∈(2,∞),c∈(0,∞),

d∈N

[

M(Ψdε,c)

(c+ 1)
1
n d1+

1
n ε−

1
n

]

= sup
ε∈(2,∞),c∈(0,∞),

d∈N

[
M(θ)

(c+ 1)
1
n d1+

1
n ε−

1
n

]

= 0. (7.28)

This and (7.27) establish that the neural networks (Ψdε,c)ε,c∈(0,∞),d∈N satisfy (ii). Thus the proof of Corol-
lary 7.2 is completed.

Finally, we add the quadrature estimates from Section 4 to achieve approximation with networks whose
size only depends polynomially on the dimension of the problem.

Theorem 7.3. Assume Setting 5.1, let ̺ : R → R be the ReLU activation function given by ̺(t) = max{0, t},
let n ∈ N, a ∈ (0,∞), b ∈ (a,∞), (Ki)i∈N ⊆ [0,Kmax), and let Fd : (0,∞) × [a, b]d → R, d ∈ N, be the
functions which satisfy for every d ∈ N, c ∈ (0,∞), x ∈ [a, b]d

Fd(c, x) = 1−
d∏

i=1

[

1√
2π

∫ ln(
Ki+c

xi
)

−∞
e−

1
2 r

2

dr

]

. (7.29)

Then there exists neural networks (Γd,ε)ε∈(0,1],d∈N ∈ N which satisfy

(i) sup
ε∈(0,1],d∈N

[
L(Γd,ε)

max{1, ln(d)} (| ln(ε)|+ ln(d) + 1)

]

<∞,
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(ii) sup
ε∈(0,1],d∈N

[
M(Γd,ε)

d2+
1
n ε−

1
n

]

<∞, and

(iii) for every ε ∈ (0, 1], d ∈ N that

sup
x∈[a,b]d

∣
∣
∣
∣

∫ ∞

0

Fd(c, x)dc − [R̺(Γd,ε)](x)

∣
∣
∣
∣
≤ ε. (7.30)

Proof of Theorem 7.3. Throughout this proof assume Setting 5.2, let Sb,n ∈ R be given by

Sb,n = 2e2(4n+1)(b+ 1)1+
1
4n (7.31)

and let Nd,ε ∈ R, d ∈ N, ε ∈ (0, 1], be given by

Nd,ε = Sb,nd
1
4n

[
ε
4

]− 1
4n . (7.32)

Note Lemma 4.3 (with 4n↔ n, F dx (c) ↔ Fd(x, c), Nd, ε
2
↔ Nd,ε, Qd, ε

2
↔ Qd,ε in the notation of Lemma 4.3)

ensures that there exist Qd,ε ∈ R, cdε,j ∈ (0, Nd,ε), w
d
ε,j ∈ [0,∞), j ∈ {1, 2, . . . , Qd,ε}, d ∈ N, ε ∈ (0, 1] with

sup
ε∈(0,1],d∈N

[
Qd,ε

d1+
1
2n ε−

1
2n

]

<∞ (7.33)

and for every d ∈ N, ε ∈ (0, 1] it holds

sup
x∈[a,b]d

∣
∣
∣
∣
∣
∣

∫ ∞

0

Fd(c, x)dc−

Qd,ε∑

j=0

wdε,jFd(c
d
ε,j , x)

∣
∣
∣
∣
∣
∣

≤ ε
2 (7.34)

and

Qd,ε∑

j=1

wdε,j = Nd,ε. (7.35)

Furthermore, Corollary 7.2 (with 4n ↔ n, F d
cdε,j

(x) ↔ Fd(x, c
d
ε,j)) ensures there exist neural networks

(Ψdε,j)ε∈(0,∞),d∈N,j∈{1,2,...,Qd,ε} ⊆ N which satisfy

(a) sup
ε∈(0,∞),d∈N




maxj∈{1,2,...,Qd,ε} L(Ψ

d
ε,j)

max{1, ln(d)}
(

| ln( ε
2Nd,ε

)|+ ln(d) + 1
)

+ ln(Nd,ε + 1)



 <∞,

(b) sup
ε∈(0,∞),d∈N






maxj∈{1,2,...,Qd,ε} M(Ψdε,j)

(Nd,ε + 1)
1
4n d1+

1
4n

[
ε

2Nd,ε

]− 1
4n




 <∞, and

(c) for every ε ∈ (0,∞), d ∈ N that

sup
x∈[a,b]d

∣
∣Fd(c

d
ε,j , x)−

[
R̺(Ψ

d
ε,j)
]
(x)
∣
∣ ≤ ε

2Nd,ε
. (7.36)

Let IdRd ∈ R
d×d, d ∈ N, be the matrices given by IdRd = diag(1, 1, . . . , 1), let ∇d,q ∈ N d,dq

1 , d, q ∈ N, be the
neural networks given by

∇d,q =




(






Idd
...

Idd




 , 0)




 , (7.37)
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let Σd,ε ∈ N d,1
1 , d ∈ N, ε ∈ (0, 1], be the neural networks given by

Σd,ε =
(
(
(
wdε,1 wdε,2 . . . wdε,Qd,ε

)
, 0)
)
, (7.38)

and let (Γd,ε)ε∈(0,1],d∈N ∈ N be the neural networks given by

Γd,ε = Σd,ε ◦ P(Ψdε,1,Ψ
d
ε,2, . . . ,Ψ

d
ε,Qd,ε

) ◦ ∇d,Qd,ε
. (7.39)

Combining Lemma 5.3, Lemma 5.4, (7.34), (7.35), and (c) implies for every ε ∈ (0,∞) and d ∈ N, x ∈ [a, b]d

it holds
∣
∣
∣
∣

∫ ∞

0

Fd(c, x)dc − [R̺(Γd,ε)](x)

∣
∣
∣
∣

≤

∣
∣
∣
∣
∣
∣

∫ ∞

0

Fd(c, x)dc−

Qd,ε∑

j=0

wdε,jFd(c
d
ε,j , x)

∣
∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣
∣

Qd,ε∑

j=0

wdε,jFd(c
d
ε,j , x)− [R̺(Γd,ε)](x)

∣
∣
∣
∣
∣
∣

≤ ε
2 +

∣
∣
∣
∣
∣
∣

Qd,ε∑

j=0

wdε,jFd(c
d
ε,j , x)−

Qd,ε∑

j=0

wdε,j
[
R̺(Ψ

d
ε,j)
]
(x)

∣
∣
∣
∣
∣
∣

≤ ε
2 +

Qd,ε∑

j=0

wdε,j
∣
∣Fd(c

d
ε,j , x)−

[
R̺(Ψ

d
ε,j)
]
(x)
∣
∣ ≤ ε

2 +Nd,ε
ε

2Nd,ε
= ε.

(7.40)

This establishes that the neural networks (Γd,ε)ε∈(0,1],d∈N satisfy (iii). Next, observe for every ε ∈ (0,∞),
d ∈ N

max{1, ln(d)}

(

| ln(
ε

2Nd,ε
)|+ ln(d) + 1

)

+ ln(Nd,ε + 1)

≤ max{1, ln(d)} (| ln(ε)|+ ln(d) + 3 ln(Nd,ε) + ln(2) + 1)

≤ max{1, ln(d)}

(

| ln(ε)|+ ln(d) + 3

(

ln(Sb,n) +
1

4n
ln(d) +

1

4n
| ln(ε)|+

1

4n
ln(4)

)

+ 2

)

≤ max{1, ln(d)} (4| ln(ε)|+ 4 ln(d) + 3 ln(Sb,n) + 8)

≤ (3 ln(Sb,n) + 8)max{1, ln(d)} (| ln(ε)|+ ln(d) + 1) .

(7.41)

Combining this with Lemma 5.3, Lemma 5.4, and (a) implies

sup
ε∈(0,1],d∈N

[
L(Γd,ε)

max{1, ln(d)} (| ln(ε)|+ ln(d) + 1)

]

≤ sup
ε∈(0,1],d∈N

[

L(Σd,ε) + maxj∈{1,2,...,Qd,ε} L(Ψ
d
ε,j) + L(∇d,Qd,ε

)

max{1, ln(d)} (| ln(ε)|+ ln(d) + 1)

]

≤ 2 + sup
ε∈(0,1],d∈N

[

maxj∈{1,2,...,Qd,ε} L(Ψ
d
ε,j)

max{1, ln(d)} (| ln(ε)|+ ln(d) + 1)

]

≤ 2 + (3 ln(Sb,n) + 8) sup
ε∈(0,∞),d∈N




maxj∈{1,2,...,Qd,ε} L(Ψ

d
ε,j)

max{1, ln(d)}
(

| ln( ε
2Nd,ε

)|+ ln(d) + 1
)

+ ln(Nd,ε + 1)





<∞.

(7.42)
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This establishes (Γd,ε)ε∈(0,1],d∈N satisfy (i). In addition, for every ε ∈ (0,∞), d ∈ N it holds

(Nd,ε + 1)
1
4n d1+

1
4n

[
ε

2Nd,ε

]− 1
4n

≤ 4N
1
2n

d,εd
1+ 1

4n ε−
1
4n

≤ 4
[

Sb,nd
1
4n

[
ε
4

]− 1
4n

] 1
2n

d1+
1
4n ε−

1
4n

≤ 16Sb,nd
1+ 1

4n+ 1
4n2 ε−( 1

4n+ 1
8n2 )

≤ 16Sb,nd
1+ 1

2n ε−
1
2n .

(7.43)

Combining this with Lemma 5.3, Lemma 5.4, (7.33), (b), and the fact that for every ψ ∈ N which satisfies
minl∈{1,2,...,L(ψ)} Ml(ψ) > 0 it holds L(ψ) ≤ M(ψ) ensures

sup
ε∈(0,1],d∈N

[
M(Γd,ε)

d(2+
1
n
)ε−

1
n

]

≤ sup
ε∈(0,1],d∈N











2M(Σd,ε) + 4



2

Qd,ε∑

j=1

M(Ψdε,j) + 4Qd,ε max
j∈{1,2,...,Qd,ε}

L(Ψdε,j)



+ 4M(∇d,Qd,ε
)

d(2+
1
n
)ε−

1
n











≤ sup
ε∈(0,1],d∈N

[

24Qd,εmaxj∈{1,2,...,Qd,ε} M(Ψdε,j)

d(2+
1
n
)ε−

1
n

]

+ sup
ε∈(0,1],d∈N

[
2Qd,ε + 4dQd,ε

d(2+
1
n
)ε−

1
n

]

≤ 24

(

sup
ε∈(0,1],d∈N

[
Qd,ε

d(1+
1
2n )ε−

1
2n

])(

sup
ε∈(0,1],d∈N

[

maxj∈{1,2,...,Qd,ε} M(Ψdε,j)

d(1+
1
2n )ε−

1
2n

])

+ 4 sup
ε∈(0,1],d∈N

[
Qd,ε

d(1+
1
n
)ε−

1
n

]

≤ 24

(

sup
ε∈(0,1],d∈N

[
Qd,ε

d(1+
1
2n )ε−

1
2n

])



1 + 16Sb,n sup

ε∈(0,1],d∈N






maxj∈{1,2,...,Qd,ε} M(Ψdε,j)

(Nd,ε + 1)
1
4n d1+

1
4n

[
ε

2Nd,ε

]− 1
4n











<∞.

(7.44)

This establishes the neural networks (Γd,ε)ε∈(0,1],d∈N satisfy (ii). The proof of Theorem 7.3 is thus completed.
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A Additional Proofs

A.1 Complementary Distribution Formula

Lemma A.1 (Complementary distribution function formula). Let µ : B([0,∞)) → [0,∞] be a sigma-finite
measure. Then ∫ ∞

0

xµ(dx) =

∫ ∞

0

µ([x,∞)) dx =

∫ ∞

0

µ((x,∞)) dx. (A.1)

Proof of Lemma 2.2. First, observe that

∫ ∞

0

xµ(dx) =

∫ ∞

0

[∫ x

0

dy

]

µ(dx) =

∫ ∞

0

[∫ ∞

0

1(−∞,x](y) dy

]

µ(dx)

=

∫ ∞

0

∫ ∞

0

1[y,∞)(x) dy µ(dx).

(A.2)

Next observe that the fact that function

[0,∞)2 ∋ (x, y) 7→ 1[y,∞)(x) ∈ R (A.3)

is (B([0,∞))⊗B([0,∞)))/B(R)-measurable and the hypothesis that µ is a sigma-finite measure allows us to
apply Fubini’s theorem to obtain

∫ ∞

0

∫ ∞

0

1[y,∞)(x) dy µ(dx) =

∫ ∞

0

∫ ∞

0

1[y,∞)(x)µ(dx) dy =

∫ ∞

0

µ([y,∞)) dy . (A.4)

Combining this with (A.2) demonstrates for every ε ∈ (0,∞)

∫ ∞

0

xµ(dx) =

∫ ∞

0

µ([y,∞)) dy ≥

∫ ∞

0

µ((y,∞)) dy

≥

∫ ∞

0

µ([y + ε,∞)) dy =

∫ ∞

ε

µ([y,∞)) dy.

(A.5)

Beppo Levi’s monotone convergence theorem hence establishes

∫ ∞

0

xµ(dx) =

∫ ∞

0

µ([y,∞)) dy ≥

∫ ∞

0

µ((y,∞)) dy

≥ sup
ε∈(0,∞)

[∫ ∞

ε

µ([y,∞)) dy

]

= sup
ε∈(0,∞)

[∫ ∞

0

µ([y,∞))1(ε,∞)(y) dy

]

=

∫ ∞

0

µ([y,∞)) dy.

(A.6)

The proof of Lemma A.1 is thus completed.
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A.2 Technical Lemma

Lemma A.2. It holds for every r ∈ (0,∞), t ∈ (0, exp(−2r2)] that

|ln(t)| ≤ t−
1/r (A.7)

and for every r ∈ (0,∞), t ∈ [exp(2r2),∞) that

ln(t) ≤ t
1/r. (A.8)

Proof of Lemma A.2. First, observe that for every r ∈ (0,∞), y ∈ [2r2,∞) it holds that

exp
(y

r

)

=

∞∑

k=0

[
yk

k!rk

]

≥
y2

2!r2
= y

[ y

2r2

]

≥ y. (A.9)

This implies that for every r ∈ (0,∞), x ∈ [exp(2r2),∞) it holds that

x
1/r = exp

(

ln
(

x
1/r
))

= exp
(

ln(x)
r

)

≥ ln(x). (A.10)

Hence, we obtain that for every r ∈ (0,∞), t ∈ (0, exp(−2r2)] ⊆ (0, 1] it holds that

t−
1/r =

[
1
t

]1/r
≥ ln(1t ) = |ln(t)| . (A.11)

This completes the proof of Lemma A.2.

A.3 Proof of Lemma 6.1

Proof of Lemma 6.1. The proof follows [27]. We provide it in order to provide values of constants in the
bounds on depth and width, and to reveal the dependence on the scaling parameter B. Throughout this
proof let θ ∈ N 1,1

1 be the neural network given by θ = (0, 0), let gs : [0, 1] → [0, 1], s ∈ N, be the functions
which satisfy for every s ∈ N, t ∈ [0, 1] that

gs(t) =







2t : s = 1, t < 1
2

2− 2t : s = 1, t ≥ 1
2

g1(gs−1(t)) : s ≥ 1

, (A.12)

and let fm : [0, 1] → [0, 1], m ∈ N, be the functions which satisfy for every m ∈ N, k ∈ {0, 1, . . . , 2m},
x ∈

[
k
2m ,

k+1
2m

]
that

fm(x) =

[
2k + 1

2m

]

x−
k2 + k

22m
. (A.13)

We claim for every s ∈ N, k ∈ {0, 1, . . . , 2s−1 − 1} it holds

gs(x) =

{

2s(x− 2k
2s ) : x ∈

[
2k
2s ,

2k+1
2s

]

2s(2k+2
2s − x) : x ∈

[
2k+1
2s , 2k+2

2s

] . (A.14)

We now prove (A.14) by induction on s ∈ N. Equation (A.12) establishes (A.14) in the base case s = 1.
For the induction step N ∋ s → s + 1 ∈ {2, 3, . . .} observe that (A.12) implies for every s ∈ N, l ∈
{0, 1, . . . , 2s−1 − 1} that

(a) it holds for every x ∈
[
2l
2s ,

2l+(1/2)
2s

]

gs+1(x) = g(gs(x)) = g(2s(x − 2l
2s )) = 2

[
2s(x− 2l

2s )
]

= 2s+1(x− 2l
2s ) = 2s+1(x− 2(2l)

2s+1 ).
(A.15)
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(b) it holds for every x ∈
[
2l+(1/2)

2s , 2l+1
2s

]

gs+1(x) = g(gs(x)) = g(2s(x− 2l
2s )) = 2− 2

[
2s(x− 2l

2s )
]

= 2− 2s+1x+ 4l = 2s+1(4l+2
2s+1 − x)

= 2s+1(2(2l+1)
2s+1 − x).

(A.16)

(c) it holds for every x ∈
[
2l+1
2s , 2l+(3/2)

2s

]

gs+1(x) = g(gs(x)) = g(2s(2l+1
2s − x)) = 2− 2

[
2s(2l+1

2s − x)
]

= 2− 2(2l+ 1) + 2s+1x = 2s+1x− 2(2l)

= 2s+1(x− 2(2l)
2s+1 ).

(A.17)

(d) it holds for every x ∈
[
2l+(3/2)

2s , 2l+2
2s

]

gs+1(x) = g(gs(x)) = g(2s(2l+1
2s − x)) = 2

[
2s(2l+1

2s − x)
]

= 2s+1(2l+1
2s − x) = 2s+1(2(2l+1)

2s+1 − x).
(A.18)

Next observe that for every s ∈ N, k ∈ {0, 1, . . . , 2s − 1} there exists l ∈ {0, 1, . . . , 2s−1 − 1} such that

[
2k

2s+1 ,
2k+1
2s+1

]
=
[
2l
2s ,

2l+(1/2)
2s

]

or
[

2k
2s+1 ,

2k+1
2s+1

]
=
[
2l+1
2s , 2l+(3/2)

2s

]

. (A.19)

Furthermore, for every s ∈ N, k ∈ {0, 1, . . . , 2s − 1} there exists l ∈ {0, 1, . . . , 2s−1 − 1} such that

[
2k+1
2s+1 ,

2k+2
2s+1

]
=
[
2l+(1/2)

2s , 2l+1
2s

]

or
[
2k+1
2s+1 ,

2k+2
2s+1

]
=
[
2l+(3/2)

2s , 2l+2
2s

]

. (A.20)

Combining this with (A.15), (A.16), (A.17), (A.18), and (A.19) completes the induction step N ∋ s→ s+1 ∈
{2, 3, . . .} and thus establishes the claim (A.14).

Next, for every m ∈ N, k ∈ {0, 1, . . . , 2m−1} it holds

fm−1(
2k
2m )− fm(

2k
2m ) = fm−1(

k
2m−1 )− fm( 2k

2m ) =
[

k
2m−1

]2
−
[
2k
2m

]2
= 0. (A.21)

In addition, note that (A.13) implies that for every m ∈ N, k ∈ {0, 1, . . . , 2m − 1} it holds

fm−1(
2k+1
2m ) = fm−1

(
k+ 1

2

2m−1

)

=

[
2k + 1

2m−1

]
k + 1

2

2m−1
−

k2 + k

22(m−1)

=
(2k + 1)(k + 1

2 )− (k2 + k)

22m−2
=
k2 + k + 1

2

22m−2
=

4k2 + 4k + 2

22m

(A.22)

and

fm(2k+1
2m ) =

[
2(2k + 1) + 1

2m

]
2k + 1

2m
−

(2k + 1)2 + (2k + 1)

22m
=

4k2 + 4k + 1

22m
. (A.23)

For every m ∈ N, k ∈ {0, 1, . . . , 2m − 1} it holds

fm−1(
2k+1
2m )− fm(2k+1

2m ) =
4k2 + 4k + 2

22m
−

4k2 + 4k + 1

22m
=

1

22m
. (A.24)

Combining this with (A.14), (A.13), and (A.21) demonstrates that for every m ∈ N, x ∈ [0, 1] it holds

fm−1(x)− fm(x) = 2−2mgm(x). (A.25)
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The fact that for every x ∈ [0, 1] it holds that f0(x) = x therefore implies that for every m ∈ N0, x ∈ [0, 1]
it holds

fm(x) = x−
m∑

s=1

2−2sgs(x). (A.26)

We observe fm is the affine, linear interpolant of the twice continuously differentiable function [0, 1] ∋ x 7→
x2 ∈ [0, 1] at the points k

2m , k ∈ {0, 1, . . . , 2m}. This establishes that for every m ∈ N

sup
x∈[0,1]

∣
∣x2 − fm(x)

∣
∣ = max

k∈{0,1,...,2m}



 sup
x∈[ k

2m ,k+1
2m ]

∣
∣x2 − fm(x)

∣
∣





≤ max
k∈{0,1,...,2m}

([
k+1
2m − k

2m

]2

8
max

x∈[ k
2m , k+1

2m ]

∣
∣
∣
d2

dt2

[
x2
]
∣
∣
∣

)

≤ max
k∈{0,1,...,2m}

(

1
8

[
1
2m

]2
max

x∈[ k
2m , k+1

2m ]
|2|

)

= 2−2m−2.

(A.27)

Let (Ak, bk) ∈ R
4×4 × R

4, k ∈ N, be the matrix-vector tuples which satisfy for every k ∈ N

Ak =







2 −4 2 0
2 −4 2 0
2 −4 2 0

−2−2k+3 2−2k+4 −2−2k+3 1







and bk =







0
− 1

2
−1
0






, (A.28)

let ϕm ∈ N, m ∈ N, be the neural networks which satisfy ϕ1 = (1, 0) and, for every m ∈ N,

ϕm =



















1
1
1
1






,







0
− 1

2
−1
0












, (A2, b2), . . . , (Am−1, bm−1),













−2−2m+3

2−2m+4

−2−2m+3

1







T

, 0












. (A.29)

Let further rk : R → R, k ∈ N denote the function which satisfies for every x ∈ R

(r11(x), r
1
2(x), r

1
3(x), r

1
4(x)) = r1(x) = ̺∗(x, x − 1

2 , x− 1, x) (A.30)

and for every x ∈ R, k ∈ N

(rk1 (x), r
k
2 (x), r

k
3 (x), r

k
4 (x)) = rk(x) = ̺∗(Akrk−1(x) + bk). (A.31)

We claim that for every k ∈ {1, 2, . . . ,m− 1}, x ∈ [0, 1] it holds

(a)

2rk1 (x)− 4rk2 (x) + 2rk3 (x) = gk(x) (A.32)

and

(b)

rk4 (x) = x−
k−1∑

j=1

2−2jgj(x). (A.33)
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We prove (a) and (b) by induction over k ∈ {1, 2, . . . ,m− 1}. For the base case k = 1 we note that for every
x ∈ [0, 1] it holds

g1(x) = 2̺(x)− 4̺(x− 1
2 ) + 2̺(x− 1). (A.34)

Hence, we obtain that for every x ∈ [0, 1] it holds

2r11(x)− 4r12(x) + 2r13(x) = 2̺(x)− 4̺(x− 1
2 ) + 2̺(x− 1) = g1(x). (A.35)

Furthermore, note that for every x ∈ [0, 1] it holds that r14(x) = x. This and (A.35) establish the base case
k = 1. For the induction step {1, 2, . . . ,m− 2} ∋ k − 1 → k ∈ {2, 3, . . . ,m− 1} observe that (A.34) ensures
for every x ∈ [0, 1], k ∈ {2, 3, . . . ,m− 1}, with gk−1(x) = 2rk−1

1 (x)− 4rk−1
2 (x) + 2rk−1

3 (x), it holds

2rk1 (x) − 4rk2 (x) + 2rk3 (x) = 2̺(2rk−1
1 (x)− 4rk−1

2 (x) + 2rk−1
3 (x))

−4̺(2rk−1
1 (x)− 4rk−1

2 (x) + 2rk−1
3 (x) − 1

2 )

+2̺(2rk−1
1 (x)− 4rk−1

2 (x) + 2rk−1
3 (x) − 1)

= g1(2r
k−1
1 (x) − 4rk−1

2 (x) + 2rk−1
3 (x))

= g1(gk−1(k)) = gk(x).

(A.36)

Induction thus establishes (a). Moreover note that (A.13) and (A.26) for every k ∈ N, x ∈ [0, 1] it holds

x−
k−1∑

j=1

2−2jgj(x) = fk−1(x) ≥ 0. (A.37)

Combining this with (A.34) implies that for every x ∈ [0, 1], k ∈ {2, 3, . . . ,m−1} with gk−1(x) = 2rk−1
1 (x)−

4rk−1
2 (x) + 2rk−1

3 (x) and rk−1
4 (x) = x−

∑k−2
j=1 2

−2jgj(x) it holds

rk4 (x) = ̺(−2−2k+3rk−1
1 (x) + 2−2k+4rk−1

2 (x) − 2−2k+3rk−1
3 (x) + rk−1

4 (x))

= ̺(x−
k−2∑

j=1

2−2jgj(x)− gk−1(x)) = ̺(x−
k−1∑

j=1

2−2jgj(x))

= x−
k−1∑

j=1

2−2jgj(x).

(A.38)

Induction thus establishes (b). Next observe that (a) and (b) that for every m ∈ N, x ∈ [0, 1] it holds

[R̺(ϕm)](x) = −2−2m+3rm−1
1 (x) + 2−2m+4rm−1

2 (x)− 2−2m+3rm−1
3 (x) + rm−1

4 (x)

= −2−2(m−1)
(
2rm−1

1 (x)− 4rm−1
2 (x) + 2rm−1

3 (x)
)
+ x−

m−2∑

j=1

2−2jgj(x)

= x−





m−2∑

j=1

2−2jgj(x)



− 2−2(m−1)gm−1(x) = x−
m−1∑

j=1

2−2jgj(x).

(A.39)

Combining this with (A.26) establishes that for every m ∈ N, x ∈ [0, 1] it holds

[R̺(ϕm)](x) = fm−1(x). (A.40)

This and (A.27) imply that for every m ∈ N it holds

sup
x∈[0,1]

∣
∣x2 − [R̺(ϕm)](x)

∣
∣ ≤ 2−2m. (A.41)
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Furthermore, observe that by construction it holds for every m ∈ N

L(ϕm) = m and M(ϕm) = max{1, 10 + 15(m− 2)} ≤ 15m. (A.42)

Let (σε)ε∈(0,∞) ⊆ N be the neural networks which satisfy for ε ∈ (0, 1)

σε = ϕ⌈ 1
2 |log2(ε)|⌉ (A.43)

and for every ε ∈ [1,∞) that σε = θ. Observe that for every ε ∈ [1,∞) it holds

sup
x∈[0,1]

∣
∣x2 − [R̺(σε)](x)

∣
∣ = sup

x∈[0,1]

∣
∣x2 − [R̺(θ)](x)

∣
∣ ≤ 1 ≤ ε. (A.44)

In addition note for every ε ∈ (0, 1) it holds

sup
x∈[0,1]

∣
∣x2 − [R̺(σε)](x)

∣
∣ = sup

x∈[0,1]

∣
∣
∣x2 − [R̺(ϕ⌈ 1

2 |log2(ε)|⌉)](x)
∣
∣
∣

≤ 2−2⌈ 1
2 |log2(ε)|⌉ ≤ 2−2( 1

2 |log2(ε)|) = 2log2(ε) = ε.

(A.45)

Moreover, observe that (A.42) implies for every ε ∈ (0, 1) it holds

L(σε) = L(ϕ⌈ 1
2 |log2(ε)|⌉) =

⌈
1
2 |log2(ε)|

⌉
(A.46)

and

M(σε) = M(ϕ⌈ 1
2 |log2(ε)|⌉) ≤ 15

⌈
1
2 |log2(ε)|

⌉
. (A.47)

Furthermore, for every ε ∈ [1,∞) it holds L(σε) = L(θ) = 1 and M(σε) = M(θ) = 0. This completes the
proof of Lemma 6.1.

A.4 Proof of Lemma 6.2

Proof of Lemma 6.2. Throughout this proof assume Setting 5.2, let θ ∈ N 1,1
1 be the neural network given

by θ = (0, 0), let α1, α2, α1,2 ∈ N 2,2,1
2 be the neural networks given by

α1 =

(

(

(
1 0
−1 0

)

,

(
0
0

)

), (
(

1
2B

1
2B

)
, 0)

)

,

α2 =

(

(

(
0 1
0 −1

)

,

(
0
0

)

), (
(

1
2B

1
2B

)
, 0)

)

,

α1,2 =

(

(

(
1 1
−1 −1

)

,

(
0
0

)

), (
(

1
2B

1
2B

)
, 0)

)

,

(A.48)

and let Σ ∈ N 3,1
1 be the neural network given by Σ =

(
(
(
2B2 −2B2 −2B2

)
, 0)
)
. Observe that Lemma 6.1

ensures the existence of neural networks (σε)ε∈(0,∞) ⊆ N which satisfy Lemma 6.1, (i) – (iv). Let (µε)ε∈(0,∞) ⊆
N be the neural networks which satisfy for every ε ∈ (0,∞)

µε =

{

Σ ◦ P
(
σε/6B2 ◦ α1,2, σε/6B2 ◦ α1, σε/6B2 ◦ α2

)
: ε < B2

θ : ε ≥ B2
. (A.49)

Note first that for every ε ∈ [B2,∞) it holds

sup
x,y∈[−B,B]

|xy − [R̺(µε)](x, y)| = sup
x,y∈[−B,B]

|xy − [R̺(θ)](x, y)| = sup
x,y∈[−B,B]

|xy − 0| = B2 ≤ ε. (A.50)

Next observe that for every (x, y) ∈ R
2 it holds

[R̺(α1)](x, y) =
1
2B̺(x) +

1
2B̺(−x) =

1
2B |x| , [R̺(α2)](x, y) =

1
2B |y| ,

[R̺(α1,2)](x, y) =
1
2B |x+ y| .

(A.51)
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Furthermore, for every (x, y, z) ∈ R
3 holds [R̺(Σ)](x, y, z) = 2B2x − 2B2y − 2B2z. Combining this with

Lemma 5.3, Lemma 5.4, (A.49), and (A.51) establishes that for every ε ∈ (0, B2), (x, y) ∈ [−B,B]2 it holds

[R̺(µε)](x, y) = 2B2
(

[R̺(σε/6B2)]
(

|x+y|
2B

)

− [R̺(σε/6B2)]
(

|x|
2B

)

− [R̺(σε/6B2)]
(

|y|
2B

))

. (A.52)

With Lemma 6.1, Item iv, (A.52) establishes (v). In addition note that Lemma 6.1 demonstrates for every
ε ∈ (0,∞) it holds

sup
z∈[−2B,2B]

∣
∣
∣
1
2z

2 − 2B2
[

[R̺(σε/6B2)]
(

|z|
2B

)]∣
∣
∣

= sup
z∈[−2B,2B]

∣
∣
∣
∣
2B2

[
|z|
2B

]2

− 2B2
[

[R̺(σε/6B2)]
(

|z|
2B

)]
∣
∣
∣
∣

= 2B2

[

sup
t∈[0,1]

∣
∣t2 −

[
[R̺(σε/6B2)] (t)

]∣
∣

]

≤ 2B2
[ ε

6B2

]

=
ε

3
.

(A.53)

This and (A.52) establish that for every ε ∈ (0, B2) it holds

sup
x,y∈[−B,B]

|xy − [R̺(µε)](x, y)|

= sup
x,y∈[−B,B]

∣
∣
∣
∣

1

2

[
(x+ y)2 − x2 − y2

]
− [R̺(µε)](x, y)

∣
∣
∣
∣

≤ ε
3 + ε

3 + ε
3 = ε.

(A.54)

Next observe that L(α1) = L(α2) = L(α1,2) = 2 and L(Σ) = 1. Combining this with Lemma 5.3, Lemma 5.4,
and Lemma 6.1(i) ensures for every ε ∈ (0, B2)

L(µε) = L(Σ) + max{L(σε/6B2) + L(α1,2),L(σε/6B2) + L(α1),L(σε/6B2) + L(α2)}

≤ 1
2

∣
∣log2(

ε
6B2 )

∣
∣+ 4 = 1

2 log2(
6B2

ε ) + 4

= 1
2 (log2(

1
ε ) + 2 log2(B) + 3) + 4

= 1
2 log2(

1
ε ) + log2(B) + 6.

(A.55)

Combining M(α1) = M(α2) = 4 and M(α1,2) = 6 with Lemma 5.3, Lemma 6.1(ii), and (A.48) demonstrate
for every ε ∈ (0, B2) it holds

M(σε/6B2 ◦ α1,2) ≤ 2(M(σε/6B2) +M(α1,2))

≤ 2(15(12
∣
∣log2(

ε
6B2 )

∣
∣+ 1) + 6)

≤ 15(log2(
1
ε ) + 2 log2(B) + 3) + 42

= 15 log2(
1
ε ) + 30 log2(B) + 87

(A.56)

and analogously M(σε/6B2 ◦ α1) = M(σε/6B2 ◦ α2) ≤ 15 log2(
1
ε ) + 30 log2(B) + 83. This, and M(Σ) = 3,

Lemma 5.3 and Lemma 5.4 imply that for every ε ∈ (0, B2) it holds

M(µε) = 2
(
M(Σ) +

[
M(σε/6B2 ◦ α1,2) +M(σε/6B2 ◦ α1) +M(σε/6B2 ◦ α2)

])

≤ 90 log2(
1
ε ) + 180 log2(B) + 467.

(A.57)

Moreover, for every ε ∈ (B2,∞) it holds L(µε) = 1 and M(µε) = 0. Next, observe Lemma 5.3 and
Lemma 5.4 demonstrate that for every ε ∈ (0,∞) it holds that

M1(µε) = M1(P
(
σε/6B2 ◦ α1,2, σε/6B2 ◦ α1, σε/6B2 ◦ α2

)
) ≤ M1(α1,2) +M1(α1) +M1(α2) = 14 (A.58)

and

ML(µε)(µε) = M(Σ) = 3. (A.59)

This completes the proof of Lemma 6.2.
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A.5 Proof of Theorem 6.5

Proof of Theorem 6.5. Throughout this proof assume Setting 5.2, let hN,j : R → R, N ∈ N, j ∈ {0, 1, . . . , N},
be the functions which satisfy for every N ∈ N, j ∈ {0, 1, . . . , N}, x ∈ R

hN,j(x) =







Nx+ 1− j : j−1
N ≤ x ≤ j

N

−Nx+ 1 + j : j
N ≤ x ≤ j+1

N

0 : else

, (A.60)

let Tf,N,j : R → R, f ∈ Bn1 , N ∈ N, j ∈ {0, 1, . . . , N}, be the functions which satisfy for every f ∈ Bn1 ,
N ∈ N, j ∈ {0, 1, . . . , N}, x ∈ [0, 1]

Tf,N,j(x) =
n−1∑

k=0

f (k)( jN )

k!
(x− j

N )k. (A.61)

For every f ∈ Bn1 , let fN : R → R, N ∈ N denote functions which satisfy for every N ∈ N, x ∈ [0, 1]

fN(x) =

N∑

j=0

hN,j(x)Tf,N,j(x). (A.62)

Observe that Taylor’s theorem (with Lagrange remainder term) ensures that for every f ∈ Bn1 , N ∈ N,
j ∈ {0, 1, . . . , N}, x ∈ [max{0, j−1

N },min{1, j+1
N }]

|f(x)− Tf,N,j(x)| ≤
1
n!

∣
∣x− j

N

∣
∣
n

sup

ξ∈[max{0, j−1
N },min{1, j+1

N }]

∣
∣
∣f (n)(ξ)

∣
∣
∣

≤ 1
n!N

−n max
k∈{0,1,...,n}

[

sup
t∈[0,1]

∣
∣
∣f (k)(t)

∣
∣
∣

]

≤ 1
n!N

−n.

(A.63)

Moreover, for every N ∈ N, x ∈ [0, 1], j /∈ {⌈Nx⌉ − 1, ⌈Nx⌉} it holds that hN,j(x) = 0. We obtain for every
N ∈ N and x ∈ [0, 1]

N
∑

j=0

hN,j(x)Tf,N,j(x) = hN,⌈Nx⌉−1(x)Tf,N,⌈Nx⌉−1(x) + hN,⌈Nx⌉(x)Tf,N,⌈Nx⌉(x). (A.64)

Furthermore, (A.60) implies for every N ∈ N, j ∈ {1, . . . , N − 1}, x ∈ [ j−1
N , jN ] holds

hN,j−1(x) + hN,j(x) = −Nx+ 1 + (j − 1) +Nx+ 1− j = 1. (A.65)

Combining this with (A.62), (A.63), and (A.64) establishes that for every f ∈ Bn1 , N ∈ N, x ∈ [0, 1]

|f(x)− fN (x)|

=

∣
∣
∣
∣
∣
∣

f(x)−
N∑

j=0

hN,j(x)Tf,N,j(x)

∣
∣
∣
∣
∣
∣

=
∣
∣f(x)−

(
hN,⌈Nx⌉−1(x)Tf,N,⌈Nx⌉−1(x) + hN,⌈Nx⌉(x)Tf,N,⌈Nx⌉(x)

)∣
∣

≤
∣
∣hN,⌈Nx⌉−1(x)f(x) − hN,⌈Nx⌉−1(x)Tf,N,⌈Nx⌉−1(x)

∣
∣

+
∣
∣hN,⌈Nx⌉(x)f(x) − hN,⌈Nx⌉(x)Tf,N,⌈Nx⌉(x)

∣
∣

= hN,⌈Nx⌉−1(x)
∣
∣f(x)− Tf,N,⌈Nx⌉−1(x)

∣
∣+ hN,⌈Nx⌉(x)

∣
∣f(x)− Tf,N,⌈Nx⌉(x)

∣
∣

≤ hN,⌈Nx⌉−1(x)
[

1
n!N

−n]+ hN,⌈Nx⌉(x)
[
1
n!N

−n] = 1
n!N

−n.

(A.66)

We now realize this local Taylor approximation using neural networks. To this end, note that Theorem 6.3
ensures that there exist C ∈ R and neural networks (Πkη)η∈(0,∞), k ∈ N ∩ [2,∞) which satisfy
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(A) L(Πkη) ≤ C ln(k) (|ln(η)|+ k ln(3) + ln(k)),

(B) M(Πkη) ≤ Ck (|ln(η)|+ k ln(3) + ln(k)),

(C) sup
x∈[−3,3]k

∣
∣
∣
∣
∣

[
k∏

i=1

xi

]

−
[
R̺(Π

k
η)
]
(x)

∣
∣
∣
∣
∣
≤ η and

(D) R̺
[
Πkη
]
(x1, x2, . . . , xk) = 0, if there exists i ∈ {1, 2, . . . , k} with xi = 0.

To complete the proof, we introduce the following neural networks:

• ∇N,j,k ∈ N k,1
1 , N ∈ N, j ∈ {0, 1, . . . , N}, k ∈ {2, 3, . . . , n− 1} given by

∇N,j,k =




(






1
...
1




 ,






− j
N
...

− j
N




)




 , (A.67)

• ξkε,N,j ∈ N, ε ∈ (0,∞), N ∈ N, j ∈ {0, 1, . . . , N}, k ∈ {1, 2, . . . , n− 1}, given by

ξkε,N,j =

{

(1, 0) : k = 1

Πkε/8e ◦ ∇N,j,k : k > 1
, (A.68)

• Σf,N,j ∈ N 1,n−1
1 , f ∈ Bn1 , N ∈ N, j ∈ {0, 1, . . . , N} given by

Σf,N,j =

(

(

(

f(n−1)(
j
N )

(n−1)!

f(n−2)(
j
N )

(n−2)! . . .
f(1)(

j
N )

(1)!

)

, f( jN ))

)

, (A.69)

• τf,ε,N,j ∈ N, f ∈ Bn1 , ε ∈ (0,∞), N ∈ N, j ∈ {0, 1, . . . , N} given by

τf,ε,N,j = Σf,N,j ◦ P(ξn−1
ε,N,j , ξ

n−2
ε,N,j, . . . , ξ

1
ε,N,j) ◦ ∇1,0,n−1, (A.70)

• χN,j ∈ N 1,3,1
2 , N ∈ N, j ∈ {0, 1, . . . , N} given by

χN,j =



(





1
1
1



 ,





−(j−1)/N
−j/N

−(j+1)/N



), (
(
1 −2 1

)
, 0)



 (A.71)

• λN ∈ N 1,N+1
1 , N ∈ N given by

λN =
(
(
(
1 . . . 1

)
, 0)
)
, (A.72)

• ψf,ε,N,j ∈ N, f ∈ Bn1 , ε ∈ (0,∞), N ∈ N, j ∈ {0, 1, . . . , N} given by

ψf,ε,N,j = Π2
ε/8 ◦ P(χN,j, τf,ε,N,j), (A.73)

• ϕf,ε,N ∈ N, f ∈ Bn1 , N ∈ N, ε ∈ (0,∞) given by

ϕf,ε,N = λN ◦ P (ψf,ε,N,1, ψf,ε,N,2, . . . , ψf,ε,N,N) ◦ ∇1,0,2N+2. (A.74)
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With these networks, we note Lemma 5.3, Lemma 5.4, (C), (A.67) and (A.68) ensure that for every N ∈ N,
ε ∈ (0,∞), j ∈ {0, 1, . . . , N}, k ∈ {2, 3, . . . , n− 1}

sup
x∈[0,1]

∣

∣

∣
(x− j

N
)k −

[

R̺(ξ
k
ε,N,j)

]

(x)
∣

∣

∣

≤ sup
x∈[0,1]

∣

∣

∣(x− j
N
)k −

[

R̺(Π
k
ε/8e)

]

([R̺(∇N,j,k)] (x))
∣

∣

∣

≤ sup
x∈[0,1]

∣

∣

∣

∣

∣

[

k
∏

i=1

(x− j
N
)k
]

−
[

R̺(Π
k
ε/8e)

]

(x− j
N
, x− j

N
, . . . , x− j

N
)

∣

∣

∣

∣

∣

≤ sup
x∈[−1,1]k

∣

∣

∣

∣

∣

[

k
∏

i=1

xi

]

−
[

R̺(Π
k
ε/8e)

]

(x)

∣

∣

∣

∣

∣

≤ ε
8e

(A.75)

and

sup
x∈[0,1]

∣
∣(x− j

N )−
[
R̺(ξ

1
ε,N,j)

]
(x)
∣
∣ = 0. (A.76)

Moreover, Lemma 5.3, Lemma 5.4, (A.67), (A.68), (A.69), and (A.70) demonstrate that for every f ∈ Bn1 ,
N ∈ N, ε ∈ (0,∞), j ∈ {0, 1, . . . , N}, x ∈ [0, 1] it holds

[R̺(τf,ε,N,j)] (x) =

n−1∑

k=1

[

f (k)( jN )

k!

[
R̺(ξ

k
ε,N,j)

]
(x)

]

+ f( jN ). (A.77)

Combining this with (A.61), (A.70), (A.75) and (A.75) establishes that for every f ∈ Bn1 , N ∈ N, ε ∈ (0,∞),
j ∈ {0, 1, . . . , N}, x ∈ [0, 1] it holds

|Tf,N,j(x)− [R̺(τf,ε,N,j)] (x)|

=

∣

∣

∣

∣

∣

(

n−1
∑

k=0

f (k)( j
N
)

k!
(x− j

N
)k
)

−

(

n−1
∑

k=1

[

f (k)( j
N
)

k!

[

R̺(ξ
k
ε,N,j)

]

(x)

]

+ f( j
N
)

)∣

∣

∣

∣

∣

≤
n−1
∑

k=1

(

f (k)( j
N
)

k!

∣

∣

∣
(x− j

N
)k −

[

R̺(ξ
k
ε,N,j)

]

(x)
∣

∣

∣

)

≤
ε

8e

n−1
∑

k=1

f (k)( j
N
)

k!
≤

ε

8e

(

∞
∑

k=1

1

k!

)

≤
ε

8
.

(A.78)

Next, (A.71) ensures for every N ∈ N, j ∈ {0, 1, . . . , N}, x ∈ [0, 1]

[R̺(χN,j)](x) = ̺(x− j−1
N )− 2̺(x− j

N ) + ̺(x− j+1
N ) = hN,j(x). (A.79)

Now (A.78) and Taylor’s Theorem imply for every f ∈ Bn1 , N ∈ N, ε ∈ (0, 1), j ∈ {0, 1, . . . , N}, x ∈ [0, 1]
that

|[R̺(τf,ε,N,j)](x)| ≤ |[R̺(τf,ε,N,j)](x)− Tf,N,j(x)|+ |Tf,N,j(x)− f(x)|+ |f(x)|

≤
ε

4(N + 1)
+ 1

n!x
n sup
t∈[0,1]

|f (n)(t)| + sup
t∈[0,1]

|f(t)| ≤ 3.
(A.80)

Combining this with Lemma 5.3, Lemma 5.4, (A.60), (C), (A.78), and (A.79) establishes for every f ∈ Bn1 ,
N ∈ N, ε ∈ (0, 1), j ∈ {0, 1, . . . , N}, x ∈ [0, 1] the bound

|hN,j(x)Tf,N,j(x) − [R̺(ψf,ε,N,j)](x, x)|

≤ |hN,j(x)Tf,N,j(x) − [R̺(χN,j)](x)[R̺(τN,j)](x)|

+
∣
∣
∣[R̺(χN,j)](x)[R̺(τN,j)](x)− [R̺(Π

2
ε/8 ◦ P(χN,j, τf,ε,N,j))](x, x)

∣
∣
∣

≤ |hN,j(x)Tf,N,j(x) − [R̺(τN,j)](x)|

+
∣
∣
∣[R̺(χN,j)](x)[R̺(τN,j)](x)− [R̺(Π

2
ε/8)]([R̺(χN,j](x), [R̺(τf,ε,N,j)](x))

∣
∣
∣

≤ ε
8 + ε

8 = ε
4 .

(A.81)
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Furthermore, note that for every N ∈ N, j ∈ {0, 1, . . . , N}, x /∈ [ j−1
N , j+1

N ] it holds that hN,j(x) = χN,j(x) =
0. Thus (D) ensures that for every f ∈ Bn1 , N ∈ N, ε ∈ (0, 1), j ∈ {0, 1, . . . , N}, x ∈ [0, 1] it holds

|hN,j(x)Tf,N,j(x)− [R̺(ψf,ε,N,j)](x, x)| = 0. (A.82)

This, Lemma 5.3, Lemma 5.4, (A.62), (A.74), and (A.81) imply that for every f ∈ Bn1 , N ∈ N, ε ∈ (0, 1),
x ∈ [0, 1] it holds

|fN (x)− [R̺(ϕf,ε,N )](x)| =

∣
∣
∣
∣
∣
∣

N∑

j=0

hN,j(x)Tf,N,j(x)−
N∑

j=0

[R̺(ψf,ε,N,j)](x, x)

∣
∣
∣
∣
∣
∣

≤ 2 max
j∈{0,1,...,N}

|hN,j(x)Tf,N,j(x) − [R̺(ψf,ε,N,j)](x, x)|

≤ ε
2 .

(A.83)

Combining this with (A.66) establishes that for every f ∈ Bn1 , N ∈ N, ε ∈ (0, 1), x ∈ [0, 1] it holds

|f(x)− [R̺(ϕf,ε,N )](x)| ≤ |f(x)− fN (x)|+ |fN (x)− [R̺(ϕf,ε,N )]| ≤ 1
n!N

−n + ε
2 . (A.84)

Let Nε ∈ N satisfy for every ε ∈ (0,∞)

Nε =
⌈[

2
n!ε

]1/n
⌉

, (A.85)

let θ ∈ N 1,1
1 be given by θ = (0, 0), and let (Φf,ε)f∈Bn

1 ,ε∈(0,∞) ⊆ N be the neural networks given by

Φf,ε =

{

ϕf,ε,Nε
: ε < 1

θ : ε ≥ 1
. (A.86)

Oberve that (A.84) implies that for every f ∈ Bn1 , ε ∈ (0, 1), x ∈ [0, 1]

|f(x)− [R̺(Φf,ε)](x)| = |f(x)− [R̺(ϕf,ε,Nε
)](x)| ≤ 1

n!N
−n
ε + ε

2 ≤ 1
n!

[
n!ε
2

]
+ ε

2 = ε. (A.87)

Moreover that for every f ∈ Bn1 , ε ∈ [1,∞), x ∈ [0, 1] it holds

|f(x)− [R̺(Φf,ε)](x)| = |f(x) − [R̺(θ)](x)| = |f(x)| ≤ 1 ≤ ε. (A.88)

This and (A.87) establish that the neural networks (Φf,ε)f∈Bn
1 ,ε∈(0,∞) satisfy (iii).

Next, Lemma 5.3, Lemma 5.4, (A), (A.67), and (A.68) imply for every N ∈ N, ε ∈ (0,∞), j ∈
{0, 1, . . . , N}, k ∈ {1, 2, . . . , n− 1}

L(ξkε,N,j) ≤ max{1,L(Πkε/8e) + L(∇N,j,k)} ≤ C ln(k)
(
| ln( ε8e)|+ k ln(3) + ln(k)

)
+ 1. (A.89)

Combining this with Lemma 5.3, Lemma 5.4, (A.67), (A.69), (A.70) shows for every f ∈ Bn1 , N ∈ N,
ε ∈ (0,∞), j ∈ {0, 1, . . . , N} the bound

L(τf,ε,N,j) ≤ L(Σf,N,j) +

[

max
k∈{1,2,...,n−1}

L(ξkε,N,j)

]

+ L(∇1,0,n−1)

≤ 3 + C ln(n)
(
| ln( ε8e)|+ n ln(3) + ln(n)

)
.

(A.90)

This, Lemma 5.3, Lemma 5.4, (A), (A.71), (A.72), (A.74), and (A.67) ensure for every f ∈ Bn1 , N ∈ N,
ε ∈ (0,∞) it holds

L(ϕf,ε,N ) ≤ L(λN ) +

[

max
j∈{0,1,...,N}

L(ψf,ε,N,j)

]

+ L(∇1,0,2N+2)

≤ 2 +

[

max
j∈{0,1,...,N}

L(Π2
ε/8 ◦ P(χN,j, τf,ε,N,j))

]

≤ 2 +
[
C ln(2)

(
| ln( ε8 )|+ 2 ln(3) + ln(2)

)
+max{3,L(τf,ε,N,j)}

]

≤ 5 + C ln(2)
(
| ln( ε8 )|+ ln(18)

)
+ C ln(n)

(
| ln( ε8e)|+ n ln(3) + ln(n)

)

≤ 5 + C ln(2) (| ln(ε)|+ | ln(8)|+ ln(18))

+ C ln(n) (| ln(ε)|+ | ln(8e)|+ n ln(3) + ln(n))

= C ln(2n) |ln(ε)|+ C(ln(2) ln(144) + ln(n)(ln(3)n+ ln(n) + | ln(8e)|)) + 5.

(A.91)
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With the constant C from (A.91), define the term T1 by

T1 = C(ln(2) ln(144) + ln(n)(ln(3)n+ ln(n) + | ln(8e)|)) + 5. (A.92)

Observe that (A.91) implies for every f ∈ Bn1 , ε ∈ (0, 1)

L(Φf,ε) = L(ϕf,ε,Nε
) = C ln(2n) |ln(ε)|+ T1. (A.93)

Hence we obtain

sup
f∈Bn

1 ,ε∈(0,e−r ]

[
L(Φf,ε)

max{r,|ln(ε)|}

]

≤ sup
f∈Bn

1 ,ε∈(0,e−r]

[
C ln(2n)|ln(ε)|+T1

|ln(ε)|

]

≤ C ln(2n) + T1

r <∞. (A.94)

In addition, note that (A.93) ensures that

sup
f∈Bn

1 ,ε∈(e−r ,1)

[
L(Φf,ε)

max{r,|ln(ε)|}

]

≤ sup
f∈Bn

1 ,ε∈(e−r ,1)

[
C ln(2n) |ln(ε)|+ T1

r

]

≤ C ln(2n) + T1

r <∞. (A.95)

Furthermore

sup
f∈Bn

1 ,ε∈[1,∞)

[
L(Φf,ε)

max{r, |ln(ε)|}

]

= sup
f∈Bn

1 ,ε∈[1,∞)

[
1

max{r, |ln(ε)|}

]

<∞. (A.96)

This, (A.94), and (A.95) establish that the neural networks (Φf,ε)ε∈(0,∞) satisfy (i). Next, Lemma 5.3, (B),
(A.67), and (A.68) imply for every N ∈ N, ε ∈ (0,∞), j ∈ {0, 1, . . . , N}, k ∈ {1, 2, . . . , n− 1}

M(ξkε,N,j) ≤ max{1, 2(M(Πkε/8e) +M(∇N,j,k))} ≤ 2(Ck
(∣
∣ln( ε8e )

∣
∣+ k ln(3) + ln(k)

)
+ 1) (A.97)

Combining this with Lemma 5.3, Lemma 5.4, (A.67), (A.69), and (A.70) shows for every f ∈ Bn1 , N ∈ N,
ε ∈ (0,∞), j ∈ {0, 1, . . . , N} it holds

M(τf,ε,N,j) ≤ 2
(

M(Σf,N,j) + 2
(

M(P(ξn−1
ε,N,j, . . . , ξ

1
ε,N,j)) + L(∇1,0,n−1)

))

≤ 2n+ 4

(

2

[
n−1∑

k=1

M(ξkε,N,j)

]

+ 4(n− 1) max
k∈{1,2,...,n−1}

L(ξkε,N,j)

)

+ 8(n− 1)

≤ 10n+ 8(n− 1)(2Cn
(

ln( ε
(8e) )|+ n ln(3) + ln(n)

)

+ 2)

+ 16(n− 1)(C ln(n)
(
| ln( ε8e )|+ n ln(3) + ln(n)

)
+ 1)

≤ 32n2C
(
| ln( ε8e )|+ n ln(3) + ln(n)

)
+ 42n.

(A.98)

Let the term T2 be given by

T2 = 128
(
C + 32n2C + C ln(n)

)
, (A.99)

and let the term T3 be given by

T3 = 1556 + 128(C ln(144) + 64n2C(n ln(3) + ln(n)) + 42n. (A.100)

This, Lemma 5.3, Lemma 5.4, (B), (A.67), (A.71), (A.72), (A.74), and the fact that for every ψ ∈ N with
minl∈{1,2,...,L(ψ)} Ml(ψ) > 0 it holds that L(ψ) ≤ M(ψ) ensure that for every f ∈ Bn1 , N ∈ N, ε ∈ (0,∞) it
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holds

M(ϕf,ε,N )

≤ 2 (M(λN ) + 2 [M(P(ψf,ε,N,1, ψf,ε,N,2, . . . , ψf,ε,N,N)) +M(∇1,0,2N+2)])

≤ 2(N + 1) + 8





N∑

j=0

M(ψf,ε,N,j)



+ 16(N + 1)

[

max
j∈{0,1,...,N}

L(ψf,ε,N,j)

]

+ 8(N + 1)

≤ 20N + 32(N + 1) max
j∈{1,2,...,N}

M(ψf,ε,N,j)

≤ 20N + 64N
(

M(Π2
ε/8) +M(P(χN,N , τf,ε,N,N))

)

≤ 20N + 128NC
(∣
∣ln( ε8 )

∣
∣+ 2 ln(3) + ln(2)

)

+ 64N (2M(χN,N) + 2M(τf,ε,N,N) + 4max{L(χN,N),L(τf,ε,N,N )})

≤ 20N + 128NC
(∣
∣ln( ε8 )

∣
∣+ ln(18)

)
+ 1152N

+ 128N
(
32n2C

(
| ln( ε8e )|+ n ln(3) + ln(n)

)
+ 42n

)

+ 128N
(
3 + C ln(n)

(
| ln( ε8e)|+ n ln(3) + ln(n)

))

= 128
(
C + 32n2C + C ln(n)

)
N | ln(ε)|

+
(
1556 + 128(C ln(144) + 64n2C(n ln(3) + ln(n)) + 42n

)
N

= T2N | ln(ε)|+ T3N.

(A.101)

Combining this with Lemma A.2 demonstrates that for every f ∈ Bn1 , ε ∈ (0, exp(−2n2)] it holds

M(Φf,ε) = M(ϕf,ε,Nε
) ≤ T2Nε| ln(ε)|+ T3Nε

= T2

⌈[
2
n!ε

]1/n
⌉

| ln(ε)|+ T3

⌈[
2
n!ε

]1/n
⌉

≤ 3T2ε
− 1

n | ln(ε)|+ 3T3ε
− 1

n

≤ 3T2ε
− 1

n max{r, | ln(ε)|}+ 3T3ε
− 1

n .

(A.102)

Hence we obtain

sup
f∈Bn

1 ,ε∈(0,exp(−2n2))

[
M(Φf,ε)

ε−
1
n max{r, | ln(ε)|}

]

≤ 3T2 + 3T3
1

max{r, 2n2}
<∞. (A.103)

Combining (A.102) with the fact that continuous function are bounded on compact sets ensures

sup
f∈Bn

1 ,ε∈[exp(−2n2),1]

[
M(Φf,ε)

ε−
1
n max{r, | ln(ε)|}

]

≤ sup
f∈Bn

1 ,ε∈[exp(−2n2),1]

[
T2N(| ln(ε)|+ | ln(N)|) + T3N

ε−
1
n max{r, | ln(ε)|}

]

<∞.

(A.104)

In addition note

sup
f∈Bn

1 ,ε∈(1,∞)

[
M(Φf,ε)

ε−
1
n max{r, | ln(ε)|}

]

= sup
f∈Bn

1 ,ε∈(1,∞)

[
M(θ)

ε−
1
n max{r, | ln(ε)|}

]

(A.105)

= sup
f∈Bn

1 ,ε∈(1,∞)

[
0

ε−
1
n max{r, | ln(ε)|}

]

= 0 <∞. (A.106)

This, (A.103), and (A.104) establish that the neural networks (Φf,ε)f∈Bn
1 ,ε∈(0,∞) satisfy (ii). The proof of

Theorem 6.5 is completed.
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A.6 Proof of Corollary 6.6

Proof of Corollary 6.6. Throughout this proof assume Setting 5.2, let ca,b ∈ R, [a, b] ⊆ R+, be the real

numbers given by ca,b = min{1, (b − a)−n}, let λa,b ∈ N 1,1
1 , [a, b] ⊆ R+, be the neural networks given

by λa,b = ( 1
b−a ,−

a
b−a ), let αf ∈ N 1,1

1 , f ∈ Cn be the neural networks given by αf = (1c ‖f‖n,∞ , 0), let
La,b : [0, 1] → [a, b], [a, b] ⊆ R+ be the functions which satisfy for every [a, b] ⊆ R+, t ∈ [0, 1]

La,b(t) = (b − a)t+ a, (A.107)

and for every f ∈ Cn let f∗ ∈ Cn([0, 1],R) be the function which satisfies for every t ∈ [0, 1]

f∗(t) = ‖f‖−1
n,∞ ca,b(f(La,b(t))). (A.108)

We claim that for every [a, b] ⊆ R+, f ∈ Cn([a, b],R), m ∈ {1, 2, . . . , n}, t ∈ [0, 1] it holds

f
(m)
∗ (t) = ‖f‖−1

n,∞ ca,b(b− a)m[f (m)(La,b(t))]. (A.109)

We now prove (A.109) by induction on m ∈ {1, 2, . . . , n}. For the base case m = 1, the chain rule implies
for every [a, b] ⊆ R+, f ∈ Cn([a, b],R), t ∈ [0, 1]

f ′
∗(t) =

d
dt

[

‖f‖−1
n,∞ ca,bf(La,b(t))

]

= ‖f‖−1
n,∞ ca,b

[
f ′(La,b(t))L

′
a,b(t)

]

= ‖f‖−1
n,∞ ca,b [f

′(La,b(t))(b − a)] = ‖f‖−1
n,∞ ca,b(b − a)[f ′(La,b(t))].

(A.110)

This establishes (A.109) in the base case m = 1.
For the induction step {1, 2, . . . , n− 1} ∋ m→ m+ 1 ∈ {2, 3, . . . , n} observe that the chain rule ensures

for every [a, b] ⊆ R+, f ∈ Cn([a, b],R), m ∈ N, t ∈ [0, 1]

d
dt

[

‖f‖−1
n,∞ ca,b(b− a)m[f (m)(La,b(t))]

]

= ‖f‖−1
n,∞ ca,b(b− a)m[f (m+1)(La,b(t))L

′
a,b(t)]

= ‖f‖−1
n,∞ ca,b(b− a)m+1[f (m+1)(La,b(t))].

(A.111)

Induction thus establishes (A.109).
In addition, for every [a, b] ⊆ R+, k ∈ {0, 1, . . . , n}

ca,b(b− a)k = min{1, (b− a)−n}(b− a)k = min{(b− a)k, (b− a)−n+k} ≤ 1. (A.112)

Combining this with (6.30), (A.107), and (A.109) ensures for every [a, b] ⊆ R+, f ∈ Cn([a, b],R)

max
k∈{0,1,...,n}

[

sup
t∈[0,1]

∣
∣
∣f

(k)
∗ (t)

∣
∣
∣

]

= max
k∈{0,1,...,n}

[

sup
t∈[a,b]

∣
∣
∣‖f‖

−1
n,∞ ca,b(b− a)k[f (k)(t)]

∣
∣
∣

]

≤ ‖f‖−1
n,∞ max

k∈{0,1,...,n}

[

sup
t∈[a,b]

∣
∣
∣f (k)(t)

∣
∣
∣

]

= 1.

(A.113)

Theorem 6.5 therefore establishes that there exist neural networks (Φg,η)g∈Bn
1 ,η∈(0,∞) ⊆ N which satisfy

(a) sup
g∈Bn

1 ,η∈(0,∞)

[
L(Φg,η)

max{r, |ln(η)|}

]

<∞,

(b) sup
g∈Bn

1 ,η∈(0,∞)

[
M(Φg,η)

η−
1
n max{r, | ln(η)|}

]

<∞, and

(c) for every g ∈ Bn1 , η ∈ (0,∞) that

sup
t∈[0,1]

|g(t)− [R̺(Φg,η)](t)| ≤ η. (A.114)
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Let (Φf,ε)f∈Cn,ε∈(0,∞) ⊆ N denote neural networks which satisfy for every [a, b] ⊆ R+, f ∈ Cn([a, b],R),

ε ∈ (0,∞)

Φf,ε = αf ◦ ϕf∗,
ca,bε

‖f‖n,∞
◦ λa,b. (A.115)

Observe that for every [a, b] ⊆ R+, f ∈ Cn([a, b],R), t ∈ [0, 1] it holds

[R̺(λa,b)](t) =
[

1
(b−a)

]

t− a
(b−a) = L−1

a,b(t) and [R̺(αf )](t) =
‖f‖n,∞
ca,b

t. (A.116)

Lemma 5.3 therefore demonstrates for every [a, b] ⊆ R+, f ∈ Cn([a, b],R), ε ∈ (0,∞), t ∈ [0, 1] it holds

[R̺(Φf,ε)](t) = [R̺(αf ◦ ϕf∗,
ca,bε

‖f‖n,∞
◦ λa,b)](t)

= [R̺(αf ) ◦R̺(ϕf∗,
ca,bε

‖f‖n,∞
) ◦R̺(λa,b)](t)

=
‖f‖n,∞
ca,b

[R̺(ϕf∗,
ca,bε

‖f‖n,∞
)](L−1

a,b(t)).

(A.117)

Moreover, note (A.108) ensures that for every [a, b] ⊆ R+, f ∈ Cn([a, b],R), t ∈ [a, b] it holds

f(t) =
‖f‖n,∞
ca,b

f∗(L
−1
a,b(t)). (A.118)

Combining (c), (A.115), and (A.117) implies for every [a, b] ⊆ R+, f ∈ Cn([a, b],R), ε ∈ (0,∞)

sup
t∈[a,b]

|f(t)− [R̺(Φf,ε)](t)| = sup
t∈[a,b]

∣
∣
∣
∣

‖f‖n,∞
ca,b

f∗(L
−1
a,b(t))−

‖f‖n,∞
ca,b

[R̺(ϕf∗,
ca,bε

‖f‖n,∞
)](L−1

a,b(t))

∣
∣
∣
∣

=
‖f‖n,∞
ca,b

[

sup
t∈[0,1]

∣
∣
∣
∣
f∗(t)− [R̺(ϕf∗,

ca,bε

‖f‖n,∞
)](t)

∣
∣
∣
∣

]

≤
‖f‖n,∞
ca,b

ca,bε
‖f‖n,∞

= ε.

(A.119)

This establishes that the neural networks (Φf,ε)f∈Cn,ε∈(0,∞) satisfy (iii). Furthermore, Lemma 5.3 ensures

for every [a, b] ⊆ R+, f ∈ Cn([a, b],R), ε ∈ (0,∞) holds

L(Φf,ε) = L(αf ◦ ϕf∗,
ca,bε

‖f‖n,∞
◦ λa,b) = L(αf ) + L(ϕ

f∗,
ca,bε

‖f‖n,∞
) + L(λa,b) = L(ϕ

f∗,
ca,bε

‖f‖n,∞
) + 2. (A.120)

In addition, for every [a, b] ⊆ R+, f ∈ Cn([a, b],R), ε ∈ (0,∞) holds

max{r, | ln( ca,bε
‖f‖n,∞

)|} = max{r, | ln(min{1,(b−a)−n}ε
‖f‖n,∞

)|} = max{r, | ln( ε
(max{1,(b−a)})n‖f‖n,∞

)|}

≤ nmax{r, | ln( ε
(max{1,(b−a)})‖f‖n,∞

)|}.
(A.121)

Combining this with (a) and (A.120) implies that

sup
f∈Cn,ε∈(0,∞)

[

L(Φf,ε)

max{r, | ln( ε
max{1,b−a}‖f‖n,∞

)|}

]

≤ n sup
f∈Cn,ε∈(0,∞)





L(ϕ
f∗,

ca,bε

‖f‖n,∞
) + 2

max{r, | ln(
ca,bε

‖f‖n,∞
)|}





= n sup
g∈Bn

1 ,η∈(0,∞)

[
L(Φg,η) + 2

max{r, |ln(η)|}

]

<∞.

(A.122)

This establishes that the neural networks (Φf,ε)f∈Cn,ε∈(0,∞) satisfy (i). Next, Lemma 5.3 implies that for

every [a, b] ⊆ R+, f ∈ Cn([a, b],R), ε ∈ (0,∞)

M(Φf,ε) = M(αf ◦ ϕf∗,
ca,bε

‖f‖n,∞
◦ λa,b) = M(αf ) +M(ϕ

f∗,
ca,bε

‖f‖n,∞
) +M(λa,b) = M(ϕ

f∗,
ca,bε

‖f‖n,∞
) + 3.

(A.123)
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In addition, note that (A.121) shows for every [a, b] ⊆ R+, f ∈ Cn([a, b],R), ε ∈ (0,∞)

[
ca,bε

‖f‖n,∞

]− 1
n

max{r, | ln(
ca,bε

‖f‖n,∞
)|}n ≤ max{1, b− a} ‖f‖

1
n
n,∞ ε−

1
n max{r, | ln( ε

max{1,b−a}‖f‖n,∞
)|}. (A.124)

Combining this with (b) and (A.115) therefore ensures

sup
f∈Cn,ε∈(0,∞)




M(Φf,ε)

max{1, b− a} ‖f‖
1
n
n,∞ ε−

1
n max{r, | ln( ε

max{1,b−a}‖f‖n,∞
)|}





≤ n sup
f∈Cn,ε∈(0,∞)






M(ϕ
f∗,

ca,bε

‖f‖n,∞
) + 3

[
ca,bε

‖f‖n,∞

]− 1
n

max{r, | ln(
ca,bε

‖f‖n,∞
)|}






≤ n sup
g∈Bn

1 ,η∈(0,∞)

[
M(Φg,η) + 3

η−
1
n max{r, | ln(η)|}

]

<∞.

(A.125)

This establishes that the neural networks (Φf,ε)f∈Cn,ε∈(0,∞) satisfy (ii) and completes the proof.
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