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Abstract

The development of new classification and regression algorithms based on empirical risk
minimization (ERM) over deep neural network hypothesis classes, coined Deep Learning,
revolutionized the area of artificial intelligence, machine learning, and data analysis. More
recently, these methods have been applied to the numerical solution of high dimensional
partial differential equations (PDEs) with great success. In particular, recent simulations
indicate that deep learning based algorithms are capable of overcoming the curse of di-
mensionality for the numerical solution of linear Kolmogorov PDEs. Kolmogorov PDEs
have been widely used in models from engineering, finance, and the natural sciences. In
particular Kolmogorov PDEs are highly employed in models for the approximative pricing
of financial derivatives. Nearly all approximation methods for Kolmogorov PDEs in the
literature suffer under the curse of dimensionality. By contrast, in recent work by some of
the authors it was shown that deep ReLU neural networks are capable of approximating
solutions of Kolmogorov PDEs without incurring the curse of dimensionality. The present
paper considerably strengthens these results by providing an analysis of the generalization
error. In particular we show that for Kolmogorov PDEs with affine drift and diffusion
coefficients and a given accuracy ε > 0, ERM over deep neural network hypothesis classes
of size scaling polynomially in the dimension d and ε−1 and with a number of training
samples scaling polynomially in the dimension d and ε−1 approximates the solution of
the Kolmogorov PDE to within accuracy ε with high probability. We conclude that ERM
over deep neural network hypothesis classes breaks the curse of dimensionality for the
numerical solution of linear Kolmogorov PDEs with affine drift and diffusion coefficients.
To the best of our knowledge this is the first rigorous mathematical result that proves the
efficiency of deep learning methods for high dimensional problems.
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1 Introduction

1.1 Problem Statement

Suppose we need to numerically approximate the end value [u, v]d ∋ x 7→ Fd(T, x) of the
solution Fd ∈ C([0, T ]×R

d,R) of a linear Kolmogorov equation which for an initial value
ϕd ∈ C(Rd,R), diffusion coefficient σd ∈ C(Rd,Rd×d) and drift µd ∈ C(Rd,Rd) is defined
as

{
∂Fd
∂t (t, x) =

1
2Trace

(
σd(x)[σd(x)]

∗(HessxFd)(t, x)
)
+

〈
µd(x), (∇xFd)(t, x)

〉
Rd

Fd(0, x) = ϕd(x)
(1)

for every (t, x) ∈ [0, T ] × R
d. Important special cases include the heat equation or the

Black-Scholes equation from computational finance where typically the functions σd, µd
are affine and the initial values ϕd can be represented as a composition of multivariate
minima, maxima and linear combinations such as

ϕd(x) = min

{
max

{
D−

d∑

i=1

cd,ixi, 0

}
,D

}
(2)

with suitable coefficients D, cd,i ∈ (0,∞), d ∈ N, i ∈ {1, 2, . . . , d}, in the case of a
European Put option pricing problem. It is well-known that most standard numerical
algorithms for this problem suffer from the curse of dimensionality, meaning that their
computational complexity grows exponentially in the dimension d [8].

If the goal is simply to evaluate Fd(T, ·) at a single value ξ ∈ R
d, then under suitable

assumptions Monte-Carlo sampling methods are known to not suffer from the curse of
dimensionality. These methods are based on the integral representation (Feynman-Kac
formula)

Fd(T, ξ) = E
[
ϕd(S

ξ
T )
]

(3)
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with (Sξ
t )t∈[0,T ] a stochastic process satisfying the stochastic differential equation

dSξ
t = σd(S

ξ
t )dB

d
t + µd(S

ξ
t )dt and Sξ

0 = ξ

on some probability space (Ω,G,P). The evaluation of Fd(T, ξ) can then be computed by
approximating the expectation in (3) by Monte-Carlo integration, that is, by simulating

i.i.d. samples (S(i))mi=1 with S(1) ∼ Sξ
T and by approximating Fd(T, ξ) with the empirical

average

1

m

m∑

i=1

ϕd(S
(i)).

It is well known that the number of samples m needed to obtain a desired accuracy
ε depends only polynomially on the dimension d and ε−1, implying that Monte-Carlo
sampling does indeed not suffer from the curse of dimensionality.

If the goal is however to approximate Fd(T, ·) not only at a single value but, for
example, on a full hypercube [u, v]d, there has been no known method not suffering from
the curse of dimensionality. In particular, there has been no known method that can
provably be applied efficiently in high dimensions, say, d >> 100.

The present paper introduces and analyzes deep learning based algorithms for the
numerical approximation of Fd(T, ·) on a full hypercube [u, v]d. We will prove that the
resulting algorithms overcome the curse of dimensionality and can consequently be effi-
ciently applied even in high dimensions. Our proofs will be based on tools from statistical
learning theory [13] and the following key properties of linear Kolmogorov equations:

P.1 the fact that one can reformulate (1) as a mathematical learning problem (see Lemma
3.2 below),

P.2 the fact that typical initial conditions arising from problems in computational fi-
nance, such as for example (2), are either exactly representable as neural networks
with ReLU activation function or can be approximated by such neural networks
without incurring the curse of dimensionality (see [23, Section 4])

P.3 and the fact that Property P.2 is preserved under the evolution of linear Kolmogorov
equations (1) with affine diffusion- and drift coefficients which implies that Fd(T, ·)
can be approximated by neural networks with ReLU activation function without
incurring the curse of dimensionality (see Theorem 3.3 below).

1.2 Deep Learning and Statistical Learning Theory

In their most basic incarnation, deep learning based algorithms start with training data

((X
(i)
d , Y

(i)
d ))mi=1 : Ω→ ([u, v]d × [−D,D])m.

To give a concrete example, X
(i)
d may consist of different 28 × 28 pixel grayscale images

of handwritten digits and Y
(i)
d may consist of corresponding probabilities describing the

likelihood of a certain digit to be shown in image X
(i)
d [36]. The goal is then to find a

functional relation between images and labels and use it for predictive purposes.
Empirical risk minimization (ERM) attempts to solve this prediction problem by min-

imizing the empirical risk

f 7→ Ed,m(f) :=
1

m

m∑

i=1

(
f(X

(i)
d )− Y (i)

d

)2
(4)
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over a compact hypothesis class H ⊆ C([u, v]d,R), resulting in a predictor

f̂d,m,H ∈ argmin
f∈H

Ed,m(f) (5)

that is hoped to provide a good approximation of the desired functional relation in the
training data. In deep learning, these hypothesis classes consist of deep neural networks
which are typically defined via an activation function ρ ∈ C(R,R), a number of (hidden)
layers l ∈ N and an architecture a = (a0, a1, a2, . . . , al, al+1) ∈ N

l+2 with a0 = d, al+1 = 1
by

Fρ,a(θ, x) := AWl,Bl
◦ ρal ◦ AWl−1,Bl−1

◦ ρal−1
◦ · · · ◦ ρa1 ◦ AW0,B0(x),

where for k, n ∈ N, x = (xi)
n
i=1 ∈ R

n, a weight matrix W ∈ R
k×n and a bias vector

B ∈ R
k, we let AW,B(x) := Wx+B,

θ = ((Wi, Bi))
l
i=0 ∈

l×
i=0

(
R
ai+1×ai × R

ai+1
)

and
ρn(x) = (ρ(xi))

n
i=1 ∈ R

n,

so that corresponding hypothesis classes are of the form1

N u,v
ρ,a,R =

{
([u, v]a0 ∋ x 7→ Fρ,a(θ, x)) : θ ∈

l×
i=0

(
R
ai+1×ai × R

ai+1
)
, ‖θ‖∞ ≤ R

}
. (6)

Despite the great practical successes of the “deep learning paradigm” as just described,
a theoretical analysis that specifies useful bounds on the number of samples m and the
network size (described by P(a) := ∑l

i=0 ai+1ai + ai+1, the number of free parameters) is
far out of reach.

Theoretical tools for achieving such results have been developed within the field of

statistical learning theory where it is typically postulated that ((X
(i)
d , Y

(i)
d ))mi=1 are i.i.d.

samples drawn from the distribution of some (unknown!) data (Xd, Yd) and that the
optimal functional relation between Xd and Yd is given by the regression function

f̂d :

{
[u, v]d → R

x 7→ E
[
Yd

∣∣Xd = x
] ,

which minimizes the risk

f 7→ Ed(f) := E
[
(f(Xd)− Yd)2

]
.

The minimization of functionals of the form Ed defined via the probability distribution of
(Xd, Yd) is commonly referred to as a

mathematical learning problem with data (Xd, Yd) and quadratic loss function,

see, for instance, [13]. Under strong regularity assumptions on the regression function
f̂d (in the sense that f̂d can be well approximated by the hypothesis class H, see [18,
19, 46, 48, 14, 30, 12, 3, 11, 4, 39, 38, 40, 22, 31, 47, 10, 15, 42, 9, 44, 51, 52, 45]
for corresponding results with H consisting of neural networks and f̂d satisfying various
smoothness assumptions) and the law of (Xd, Yd) it is then possible to obtain bounds on
the sample size m and the number P(a) of neural network parameters of

H = N u,v
ρ,a,R

1For a finite index set I and M ∈ R
I we define ‖M‖∞ := maxi∈I |Mi| and ‖M‖2 :=

√∑
i∈I |Mi|2.
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to achieve, with high probability, an error

E

[(
f̂d,m,H(Xd)− f̂d(Xd)

)2
]
≤ ε, (7)

see for example [13, 34, 37, 50, 24, 5].
Unfortunately it is not clear to what extent these classical techniques are useful for the

analysis of real world applications of deep learning methods for (at least) the following
reasons:

1. The crucial assumption that the training data consists of i.i.d. samples of an under-
lying probability distribution is typically not satisfied.

2. Even if the assumption were satisfied, the underlying distribution of (Xd, Yd) is
typically unknown. This implies that it is impossible to verify a priory the regularity
assumptions on f̂d that are needed for the theory of [13] to be applicable.

3. Even if the the theory of [13] were applicable, since the distribution of Xd is un-

known, it is not clear how the quantity E

[(
f̂d,m,H(Xd)− f̂d(Xd)

)2
]
of (7) can be

interpreted.

4. The theory developed in [13] operates in an asymptotic regime where the number
m of training samples exceeds the “dimension” P(a) of the hypothesis class H.
However, in many applications the number of training samples is fixed and it is
not possible to generate more training data at will. Moreover, many successful
deep learning applications operate in a regime where there is far less training data
available, see also [53].

1.3 Kolmogorov Equations as Learning Problem

We will reformulate the numerical solution of linear Kolmogorov equations as a classical
statistical learning problem and demonstrate that in this specific case none of the afore-
mentioned problems appears. The Feynman-Kac formula (3) directly implies that the
numerical approximation of Fd(T, ·) can be restated as a classical learning problem in the
sense of [13] as follows. Let

Xd ∼ U([u, v]d),
the uniform distribution on [u, v]d, and let

Yd := ϕd(S
Xd
T )

with (SXd
t )t∈[0,T ] a stochastic process satisfying the stochastic differential equation

dSXd
t = σd(S

Xd
t )dBd

t + µd(S
Xd
t )dt and SXd

0 = Xd. (8)

Under suitable conditions it then follows from (3) that Fd(T, x) is the minimizer of the
risk functional Ed(f) := E

[
(f(Xd)− Yd)2

]
, that is,

f̂d(x) = Fd(T, x)

for a.e. x ∈ [u, v]d, see Lemma 3.2 and [6, Proposition 2.7]. As outlined in Subsection 1.2,
we thus have that

Fd(T, ·) is the solution of the mathematical learning problem with data (Xd, Yd)
and quadratic loss function.
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Having reformulated the numerical approximation of Fd(T, ·) as a learning problem, a
natural next step is to apply the deep learning paradigm, that is, for m ∈ N and for i.i.d.
samples

((X
(i)
d , Y

(i)
d ))mi=1

with (X
(1)
d , Y

(1)
d ) ∼ (Xd, Yd) to minimize the empirical risk (4) over a class H = N u,v

ρ,a,R of

neural networks of a given architecture a, see Equation (6), and to compute f̂d,m,H ∈ H
as in (5).

In [6] this idea has been implemented with suitable classes of deep neural networks
of a given architecture as hypothesis class H. In extensive numerical simulations it was
observed that the algorithm introduced in [6] is efficient even in very high dimensions. In
particular, the simulations carried out in [6] suggest that this algorithm does not suffer
from the curse of dimensionality. Related work with similar conclusions can be found in
[49, 21, 21, 27, 32, 17, 7, 26, 16]. We emphasize that all these works are purely empirical.
Prior to this work no theoretical results confirming the efficiency of deep learning methods
applied to high dimensional problems existed.

Two main parameters influence the complexity of the algorithm described above: the
“size” of the hypothesis classHd,ε (in the case of deep neural networks: the number P(ad,ε)
of network parameters that need to be optimized) as well as the number of training samples
md,ε needed to guarantee that, with high probability, the estimate

1

(v − u)d
∥∥∥f̂d,md,ε,Hd,ε

(·)− Fd(T, ·)
∥∥∥
2

L2[u,v]d

= E

[(
f̂d,md,ε,Hd,ε

(Xd)− Fd(T,Xd)
)2

]
≤ ε

(9)

holds true. We are interested in their scaling with respect to the precision ε and the
dimension d.

Observe that contrary to conventional learning problems, the data distribution (Xd, Yd)
is now explicitly known. Moreover, i.i.d. samples of this distribution can be efficiently
simulated as needed (Xd is a simple uniform distribution that can be efficiently simulated
using a suitable random number generator and SXd

T can be simulated by any numerical
solver for the stochastic differential equation (8)). In particular, in the mathematical
learning problem that arises from our reformulation of the Kolmogorov equation, none
of the Problems 1.- 4. described in Subsection 1.2 occurs! We will therefore be able to
use tools from statistical learning theory to obtain bounds on the quantities md,ε, P(ad,ε)
above.

1.4 Contribution

We show that, whenever for all d ∈ N both σd and µd are affine functions (this includes
the important case of the Black-Scholes equation in option pricing), and if the initial
conditions (ϕd)d∈N can be approximated by deep neural networks without curse of dimen-
sionality (this can easily shown to be true for a large number of relevant options such as
(capped) Basket Call -, Basket Put -, Call on max -, and Call on min - options, see [23,
Section 4]), there exists a polynomial p : R2 → R such that for every d ∈ N and ε ∈ (0, 1)
it holds that

max{md,ε,P(ad,ε)} ≤ p(ε−1, d).

We conclude that the aforementioned deep learning based algorithm does not suffer from
the curse of dimensionality2.

2Our analysis does not consider the computational cost of solving the ERM problem (5). The latter is typically
achieved by stochastic first order optimization methods whose theoretical analysis is completely open to date.
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We briefly describe our proof strategy for bounding the error

1

(v − u)d
∥∥∥f̂d,m,H(·)− Fd(T, ·)

∥∥∥
2

L2[u,v]d
(10)

as in (9) with high probability. Let a best approximation in our hypothesis class be defined
by

f̂d,H ∈ argmin
f∈H

1

(v − u)d
∥∥f(·)− Fd(T, ·)

∥∥2
L2[u,v]d

.

By the so-called Bias-Variance Decomposition (see Lemma 2.8) we can decompose the
error (10) according to

1

(v − u)d
∥∥∥f̂d,m,H(·)− Fd(T, ·)

∥∥∥
2

L2[u,v]d

=
1

(v − u)d
∥∥∥f̂d,H − Fd(T, ·)

∥∥∥
2

L2[u,v]d︸ ︷︷ ︸
approximation error

+ Ed(f̂d,m,H)− Ed(f̂d,H)
︸ ︷︷ ︸

generalization error

and obtain separate bounds on the approximation and generalization error.
For the important case that the functions σd and µd are affine, which will be one of

our main assumptions, the approximation error of neural network hypothesis classes with
ReLU activation function

ρ(x) = ReLU(x) := max{x, 0}
has been analyzed in [23]. By the results of [23] neural network hypothesis classes with
ReLU activation function are capable of approximating the solutions (Fd(T, ·))d∈N without
incurring the curse of dimensionality whenever the same is true for the initial conditions
(ϕd)d∈N. By a lucky coincidence, most initial conditions that come from applications in
financial engineering are in fact exactly representable by small neural networks with ReLU
activation function so that the latter is always satisfied, see for example Subsection 3.4. In
Section 3 we extend these approximation results to neural network hypothesis classes with
ReLU activation functions whose maximal coefficient size scales at most polynomially in
the size of the neural network, see Theorem 3.3. We then leverage these approximation
results as well as tools from [13] to obtain probabilistic estimates of the generalization
error. These tools require sharp bounds on the covering numbers of hypothesis classes
consisting of deep neural networks and we provide such bounds in Section 4 under the
condition that the maximal coefficient size scales at most polynomially in the size of the
neural network.

The results of [13] require that the regression function f̂d as well as all functions
in H are uniformly bounded. This forces us to require that the initial conditions ϕd

are uniformly bounded which by (3) implies that also the functions f̂d = Fd(T, ·) are
uniformly bounded. Furthermore, we introduce hypothesis classes of “clipped” neural
networks which are defined by

N u,v
ρ,a,R,D =

{
(
[u, v]a0 ∋ x 7→ Cal+1,D ◦ Fρ,a(θ, x)

)
: θ ∈

l×
i=0

(
R
ai+1×ai × R

ai+1
)
, ‖θ‖∞ ≤ R

}

with
Cal+1,D(x) =

(
min{|xi|,D} sgn(xi)

)al+1

i=1

for x ∈ R
al+1 denoting a clipping function with clipping amplitude D ∈ (0,∞). In

Subsection 2.2 we show that the clipping function Cal+1,D can be represented as a small
neural network with ReLU activation function so that clipped neural networks with ReLU
activation function are in fact standard neural networks with ReLU activation function.

We are now ready to formulate a first specific result of this paper as an appetizer.
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Theorem 1.1 (Pricing of European Put Option without Curse of Dimensionality). Let
(Ω,G,P, (Gt)t∈[0,T ]) be a filtered probability space which fulfills the usual conditions, let
T,L ∈ (0,∞), D ∈ [1,∞), u ∈ R, v ∈ (u,∞) and for all d ∈ N let cd,i ∈ (0,∞),

i ∈ {1, 2, . . . , d}, be real numbers which satisfy that
∑d

i=1 cd,i = 1, let ϕd ∈ C(Rd,R) be
given by

ϕd(x) = min

{
max

{
D−

d∑

i=1

cd,ixi, 0

}
,D

}

for every x = (xi)
d
i=1 ∈ R

d, let σd ∈ C(Rd,Rd×d), µd ∈ C(Rd,Rd) be affine linear functions
which satisfy for every x ∈ R

d that

‖σd(x)‖2 + ‖µd(x)‖2 ≤ L(1 + ‖x‖2),

let Fd ∈ C([0, T ] × R
d,R) be the unique at most polynomially growing viscosity solution3

of the d-dimensional Kolmogorov PDE
{

∂Fd
∂t (t, x) =

1
2Trace

(
σd(x)[σd(x)]

∗(HessxFd)(t, x)
)
+

〈
µd(x), (∇xFd)(t, x)

〉
Rd

Fd(0, x) = ϕd(x)

for every (t, x) ∈ (0, T ) × R
d, let Bd be a d-dimensional (Gt)-Brownian motion, let

Xd ∼ U([u, v]d) be G0-measurable, let (SXd
t )t∈[0,T ] be an adapted stochastic process with

continuous sample paths satisfying the stochastic differential equation

dSXd
t = σd(S

Xd
t )dBd

t + µd(S
Xd
t )dt and SXd

0 = Xd,

let Yd := ϕd(S
Xd
T ) and let ((X

(i)
d , Y

(i)
d ))i∈N be i.i.d. random variables with (X

(1)
d , Y

(1)
d ) ∼

(Xd, Yd). Then there exists C ∈ (0,∞) such that for every ε, ̺ ∈ (0, 1) and every d ∈ N

there exist
a = (d, a1, a2, 1) ∈ N

4,

R ∈ [1,∞) and m ∈ N so that with H := N u,v
ReLU,a,R,D and4

f̂d,m,H ∈ argmin
f∈H

1

m

m∑

i=1

(
f(X

(i)
d )− Y (i)

d

)2

it holds

(i) that
P(a) ≤ Cd2ε−2

(ii) that
max{a1, a2} ≤ Cd3/2ε−1

(iii) that
R ≤ Cd2ε−1

(iv) that
m ≤ Cd2ε−4

(
1 + ln(dε−1̺−1)

)

(v) and that

P

[
1

(v − u)d
∥∥∥f̂d,m,H − Fd(T, ·)

∥∥∥
2

L2[u,v]d
≤ ε

]
≥ 1− ̺.

3We refer the interested reader to [25] for the definition and properties of viscosity solutions.
4More precisely, for every outcome ω ∈ Ω we pick f̂d,m,H(ω) ∈ argminf∈H Ed,m(f)(ω) such that the mapping

ω → f̂d,m,H(ω) is measurable, see Lemma 2.2.
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Theorem 1.1 demonstrates that deep learning based ERM succeeds in solving the
option pricing problem for European Put options without incurring the curse of dimen-
sionality. A proof will be given in Section 3 below. We hasten to add that the scope of
this paper is much wider and that analogous results will be shown in a much more general
context, see Theorem 3.7 which states that a result analogous to Theorem 1.1 holds true
whenever the initial conditions (ϕd)d∈N can be approximated by neural networks with
ReLU activation function without curse of dimensionality. Theorem 3.7, in conjunction
with the results of [23], can then be applied to prove the absence of the curse of dimen-
sionality in the pricing of (capped) Basket Call -, Basket Put -, Call on max -, and Call
on min - options.

1.5 Outline

The outline is as follows. In Section 2 we present our main result related to the gener-
alization of clipped ReLU networks in a rather general setting. Whenever the regression
functions (f̂d)d∈N can be approximated without curse of dimensionality by clipped neu-
ral networks, we show that also the number m of required training samples to achieve a
desired accuracy ε with high probability does not suffer from the curse of dimensionality.
This result is proven in Section 5 using tools from statistical learning theory and the cov-
ering number estimates of the hypothesis class of clipped neural networks from Section 4.
In Section 3 we extend a result of [23] claiming that the end value of the solution to certain
Kolmogorov PDEs can indeed by approximated by clipped neural networks without the
curse of dimensionality and therefore our results from Section 2 apply. This gives rise to
the quantitative polynomial bounds on the number of samples and the network architec-
ture in Theorem 3.7. As an example we prove that the complexity of pricing European
Put options is only growing polynomially in the dimension.

2 Results in Statistical Learning Theory

The present section develops generalization bounds for ERM problems in the spirit of [13].
In Subsection 2.1 we present the basic setting in which we operate, as well as the definition
of clipped neural network hypothesis classes. After expanding on these hypothesis classes
in Subsection 2.2 we present the main result related to the generalization of clipped ReLU
networks in Subsection 2.3. This result, Corollary 2.11, states that approximation results
that are free of the curse of dimensionality can be leveraged to generalization results that
are free of the curse of dimensionality.

2.1 Basic Setting

This subsection summarizes the basic setting for our main results. The following Setting
2.1 describes a standard statistical mathematical learning problem as defined, for example,
in [13].

Setting 2.1 (Mathematical Learning Problem). Let u ∈ R, v ∈ (u,∞), D ∈ [1,∞), let
(Ω,G,P) be a probability space, for all d ∈ N let

Xd : Ω→ [u, v]d

( input data) and
Yd : Ω→ [−D,D]

( label) be random variables, let

(X
(i)
d , Y

(i)
d ) : Ω→ [u, v]d × [−D,D], i ∈ N,

9



be i.i.d. random variables with (X
(1)
d , Y

(1)
d ) ∼ (Xd, Yd) ( training data), for d,m ∈ N and

a Borel measurable function f : [u, v]d → R let

Ed(f) :=
∫

Ω

(
f(Xd)− Yd

)2
dP = E

[(
f(Xd)− Yd

)2]

be the risk and let

Ed,m(f) :=
1

m

m∑

i=1

(
f(X

(i)
d )− Y (i)

d

)2

be the empirical risk, for every d ∈ N let PXd
be the image measure of Xd on the hypercube

[u, v]d and let f̂d ∈ L2 (PXd
)5 be the regression function defined by

f̂d :

{
[u, v]d → R

x 7→ E

[
Yd

∣∣Xd = x
]

and for d,m ∈ N, ω ∈ Ω and compact H ⊆ C([u, v]d,R) (hypothesis class) let

f̂d,H ∈ argmin
f∈H

Ed(f) (11)

be a best approximation and let

f̂d,m,H(ω) ∈ argmin
f∈H

Ed,m(f)(ω) (12)

be an empirical regression function such that the mapping Ω ∋ ω 7→ f̂d,m,H(ω) is measur-
able.

We want to emphasize that the minima in (11) and (12) will be attained due to the
compactness of our hypothesis class but they need not be unique. For the probability in
our generalization error bound (Theorem 2.10) to be well-defined one needs the measur-
ability of the mapping

Ω ∋ ω 7→ f̂d,m,H(ω).

While this technical assumption is often not explicitly stated in the literature on statistical
learning theory it is actually crucial for analyzing the generalization error. We prove that
in our setting (by choosing a suitable minimizer) measurability can indeed by satisfied.

Lemma 2.2 (Measurability of the Empirical Regression Function). Assume Setting 2.1,
let d,m ∈ N and let H ⊆ C([u, b]d,R) be compact. For every ω ∈ Ω one can choose the
empirical regression function

f̂d,m,H(ω) ∈ argmin
f∈H

1

m

m∑

i=1

(
f(X

(i)
d (ω))− Y (i)

d (ω)
)2

in a way, such that it holds that

(i) the mapping
Ω ∋ ω 7→ f̂d,m,H(ω)

is G/B(H)-measurable

5We define the Hilbert-Space L2 (PXd
) as the space of all Borel measurable functions f ∈ [u, v]d → R with finite

norm ‖f‖L2(PX
d
) =

( ∫
[u,v]d f

2 dPXd

)1/2
= E

[
(f(Xd))

2
]1/2

< ∞ where functions which coincide PXd
-a.s. are

identified as usual.

10



(ii) and the mapping
Ω ∋ ω 7→ Ed

(
f̂d,m,H(ω)

)

is G/B(R)-measurable.

Proof of Lemma 2.2. First observe that H is a separable metric space induced by the
uniform norm and that for every f ∈ H the mapping

Ω ∋ ω 7→ Ed,m(f)(ω)

is G/B(R)-measurable. By the reverse triangle inequality we get that
∣∣∣Ed,m(f)1/2 − Ed,m(g)1/2

∣∣∣ = 1√
m

∣∣∣
∥∥∥(f(X(i)

d )− Y (i)
d )mi=1

∥∥∥
2
−

∥∥∥(g(X(i)
d )− Y (i)

d )mi=1

∥∥∥
2

∣∣∣

≤ 1√
m

∥∥∥(f(X(i)
d )− g(X(i)

d ))mi=1

∥∥∥
2
≤ sup

x∈[u,v]d
|f(x)− g(x)|

for every f, g ∈ H. This shows that for every ω ∈ Ω the function

H ∋ f 7→ Ed,m(f)(ω)

is continuous which implies that the function

Ω×H ∋ (ω, f) 7→ Ed,m(f)(ω)

is a Carathéodory function. The Measurable Maximum Theorem in [1, Theorem 18.19
with (S,Σ) ← (Ω,G), X ← H, f(s, x) ← −Ed,m(x)(s) and ϕ(s) = H for every s ∈ S]
assures that the set-valued function of minimizers of

min
f∈H
Ed,m(f)

admits a measurable selector. That is to say, there exists a G/B(H)-measurable mapping
f̂d,m,H : Ω→H such that for every ω ∈ Ω it holds that

f̂d,m,H(ω) ∈ argmin
f∈H

Ed,m(f)(ω).

This establishes item (i). For the proof of the second item observe that the risk Ed : H → R

is continuous and thus B(H)/B(R)-measurable. Indeed, an analogous computation as for
the empirical risk above shows that for f, g ∈ H it holds that

∣∣∣Ed(f)1/2 − Ed(g)1/2
∣∣∣ =

∣∣∣‖f(Xd)− Yd‖L2(P) − ‖g(Xd)− Yd‖L2(P)

∣∣∣
≤ ‖f(Xd)− g(Xd)‖L2(P) ≤ sup

x∈[u,v]d
|f(x)− g(x)|.

This yields the claim as compositions of measurable functions are again measurable.

For our theory we assume in Setting 2.1 that the empirical regression function is chosen
in the sense of Lemma 2.2. This allows us to view the risk of the empirical regression
function as a random variable

Ω ∋ ω 7→ Ed
(
f̂d,m,H(ω)

)

which is necessary for bounding the generalization error.
The following setting describes suitable hypothesis classes based on deep artificial

neural networks. Our definition of (artificial feedforward) neural networks with ReLU
activation function is completely standard, except for the composition with a “clipping
function” CD,n in (13) below which will be clarified in Subsection 2.2. From now on we
will only consider neural networks with ReLU activation function and therefore we will
omit writing the index ρ = ReLU in our notation.

11



Setting 2.3 (Neural Networks). For D ∈ (0,∞), k, n ∈ N, W ∈ R
k×n, B ∈ R

k let
AW,B ∈ C(Rn,Rk) be the affine linear mapping given by

AW,B(x) =Wx+B,

let ReLUn ∈ C(Rn,Rn) be the n-dimensional Rectified Linear Unit function given by

ReLUn(x) =
(
max{xi, 0}

)n
i=1

and let Cn,D ∈ C(Rn,Rn) be the n-dimensional clipping function given by

Cn,D(x) =
(
min{|xi|,D} sgn(xi)

)n
i=1

for every x = (xi)
n
i=1 ∈ R

n. For l ∈ N0, D ∈ (0,∞) and a network architecture

a = (a0, a1, . . . , al, al+1) ∈ N
l+2

let the number of hidden layers L(a) be given by

L(a) = l,

the number of parameters P(a) be given by

P(a) =
l∑

i=0

ai+1ai + ai+1

and for x ∈ R
a0 and parameters

θ =
(
(Wi, Bi)

)l
i=0
∈

l×
i=0

(
R
ai+1×ai × R

ai+1
)
≃ R

P(a)

let the neural network Fa : RP(a) ×R
a0 → R

al+1 be defined as

Fa(θ, x) = AWl,Bl
◦ ReLUal ◦AWl−1,Bl−1

◦ ReLUal−1
◦ · · · ◦ ReLUa1 ◦AW0,B0(x),

and let the clipped neural network Fa,D : RP(a) ×R
a0 → R

al+1 be defined as

Fa,D(θ, x) = Cal+1,D ◦ Fa(θ, x).

For l ∈ N0, R,D ∈ (0,∞), u ∈ R, v ∈ (u,∞), a = (a0, a1, . . . , al, al+1) ∈ N
l+2 let

N u,v
a,R =

{
([u, v]a0 ∋ x 7→ Fa(θ, x)) : θ ∈

l×
i=0

(
R
ai+1×ai × R

ai+1
)
, ‖θ‖∞ ≤ R

}

(hypothesis class of neural networks) and let

N u,v
a,R,D =

{
([u, v]a0 ∋ x 7→ Fa,D(θ, x)) : θ ∈

l×
i=0

(
R
ai+1×ai × R

ai+1
)
, ‖θ‖∞ ≤ R

}
(13)

(hypothesis class of clipped neural networks) and for d ∈ N let

Ad =
⋃

l∈N0

{(a0, a1, . . . , al, al+1) ∈ R
l+2 : a0 = d, al+1 = 1}

( admissible network architectures).
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2.2 Clipped Neural Networks are Standard Neural Net-

works

In this subsection we clarify the role of the function Cal+1,D in the definition of N u,v
a,R,D in

Setting 2.3. The neural network classes N u,v
a,R,D are somewhat non-standard in the sense

that the function Cal+1,D is applied to the output of a neural network, see Setting 2.3. The
reason for our choice of this definition is that our main results will require that the set of
neural networks over which the empirical risk minimization problem is solved consists of
uniformly bounded functions (such boundedness assumptions are in fact standard in sta-
tistical learning theory, see [13]). Lemma 2.6 shows that the clipping function Cal+1,D can
be represented as a small neural network which implies that the seemingly non-standard
classes N u,v

a,R,D are actually conventional neural network classes that can be trained with
standard methods [35, 28, 33, 43].

Lemma 2.4. Assume Setting 2.3, let n ∈ N and D ∈ (0,∞). Then for all x ∈ R
n it holds

that

Cn,D(x) = −ReLUn((D)ni=1 − ReLUn(x)) + ReLUn(−ReLUn(−x) + (D)ni=1).

Proof of Lemma 2.4. Without loss of generality we may assume that n = 1. We distin-
guish four cases:
x < −D. In this case it holds that ReLU1(x) = 0, ReLU1(−x) = −x and ReLU1(x+D) =
0. Therefore it holds that

C1,D(x) = −D = −ReLU1(D) + ReLU1(x+D)

= −ReLU1(D− ReLU1(x)) + ReLU1(−ReLU1(−x) +D).

x > D. In this case it holds that ReLU1(x) = x, ReLU1(−x) = 0 and ReLU1(D−x) = 0.
Therefore it holds that

C1,D(x) = D = −ReLU1(D− x) + ReLU1(D)

= −ReLU1(D− ReLU1(x)) + ReLU1(−ReLU1(−x) +D).

x ≤ D and x ≥ 0. In this case it holds that ReLU1(x) = x, ReLU1(−x) = 0 and
ReLU1(D− x) = D− x. Therefore it holds that

C1,D(x) = x = −ReLU1(D− x) + ReLU1(D)

= −ReLU1(D− ReLU1(x)) + ReLU1(−ReLU1(−x) +D).

x ≥ −D and x ≤ 0. In this case it holds that ReLU1(x) = 0, ReLU1(−x) = −x and
ReLU1(x+D) = x+D. Therefore it holds that

C1,D(x) = x = −ReLU1(D) + ReLU1(x+D)

= −ReLU1(D− ReLU1(x)) + ReLU1(−ReLU1(−x) +D).

This proves the lemma.

The following contraction property will be useful in several places later on.

Corollary 2.5 (Contraction Property of the Clipping Function). Assume Setting 2.3, let
n ∈ N and D ∈ (0,∞). Then for all x, y ∈ R

n it holds that

‖Cn,D(x)− Cn,D(y)‖2 ≤ ‖x− y‖2.

Proof of Corollary 2.5. The proof follows from a straightforward calculation.
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The next lemma states that the clipping function Cn,D can be represented as a small
neural network.

Lemma 2.6 (Clipping Function as Neural Network). Assume Setting 2.3, let n ∈ N,
D ∈ (0,∞) and let

a = (n, 2n, 2n, n).

Then there exists θ ∈ R
P(a) such that for all x ∈ R

n it holds that

Cn,D(x) = Fa(θ, x).

Proof of Lemma 2.6. Denote by I the n-dimensional identity matrix and let

θ ∈
(
R
2n×n × R

2n
)
× (R2n×2n × R

2n)× (Rn×2n × R
n) ≃ R

P(a)

be given by

θ :=






[

I

−I

]
,



0
...
0





 ,



[
−I 0

0 −I

]
,



D

...
D





 ,



[
−I I

]
,



0
...
0








 .

Lemma 2.4 and the Definition of Fa(θ, ·) now prove the claim.

The next result shows that the “clipped” neural network classes N u,v
a,R,D are in fact

subsets of “non-clipped” neural network classes.

Corollary 2.7. Assume Setting 2.3, let l ∈ N0, u ∈ R, v ∈ (u,∞), D, R ∈ (0,∞), let
a = (a0, a1, . . . , al, al+1) ∈ N

l+2 and

b := (a0, a1, . . . , al, al+1, 2al+1, 2al+1, al+1) ∈ N
l+5.

Then it holds that
N u,v

a,R,D ⊆ N
u,v
b,R.

Proof of Corollary 2.7. The proof follows directly from Lemma 2.6.

2.3 A Generalization Result

The following result is often referred to as the “Bias-Variance Decomposition”.

Lemma 2.8. Assume Setting 2.1, let d ∈ N and let H ⊆ C([u, v]d,R) be compact. Then
for every f ∈ C

(
[u, v]d,R

)
it holds that

∥∥∥f − f̂d
∥∥∥
2

L2(PXd
)
=

∥∥∥f̂d,H − f̂d
∥∥∥
2

L2(PXd
)︸ ︷︷ ︸

approximation error (bias)

+ Ed(f̂d,m,H)− Ed(f̂d,H)
︸ ︷︷ ︸

generalization error (variance)

+ Ed(f)− Ed(f̂d,m,H).

Proof of Lemma 2.8. For f ∈ C
(
[u, v]d,R

)
it holds that

Ed(f) = E
[(
f(Xd)− f̂d(Xd) + f̂d(Xd)− Yd

)2]

= E
[(
f(Xd)− f̂d(Xd)

)2]
+E

[(
f̂d(Xd)− Yd

)2]

+ 2E
[(
f(Xd)− f̂d(Xd)

)(
f̂d(Xd)− Yd

)]
(14)
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Observe that, due to the fact that f̂d(Xd) = E
[
Yd

∣∣Xd

]
, it holds by the tower property of

the conditional expectation that

E

[(
f(Xd)− f̂d(Xd)

)(
f̂d(Xd)− Yd

)]

= E
[
E

[(
f(Xd)− f̂d(Xd))

)(
f̂d(Xd)− Yd

)∣∣∣Xd

]]

= E
[(
f(Xd)− f̂d(Xd)

)(
f̂d(Xd)−E

[
Yd

∣∣Xd

] )]
= 0

which, together with (14), implies that

Ed(f)− Ed(f̂d) = E
[(
f(Xd)− f̂d(Xd)

)2]
=

∥∥∥f − f̂d
∥∥∥
2

L2(PXd
)
. (15)

Therefore, it follows that for every f ∈ C
(
[u, v]d,R

)
it holds that

∥∥∥f − f̂d
∥∥∥
2

L2(PXd
)
= Ed(f)− Ed(f̂d,m,H) + Ed(f̂d,m,H)− Ed(f̂d,H) + Ed(f̂d,H)− Ed(f̂d).

Finally, applying (15) (with f ← f̂d,H) implies that

∥∥∥f − f̂d
∥∥∥
2

L2(PXd
)
= Ed(f)− Ed(f̂d,m,H) + Ed(f̂d,m,H)− Ed(f̂d,H) +

∥∥∥f̂d,H − f̂d
∥∥∥
2

L2(PXd
)

which proves the lemma.

The next lemma states that the function f̂d,H is a best approximation of f̂d in H with
respect to the L2(PXd

) norm.

Lemma 2.9. Assume Setting 2.1, let d ∈ N and let H ⊆ C([u, v]d,R) be compact. Then
for every f ∈ H it holds that

∥∥∥f̂d,H − f̂d
∥∥∥
2

L2(PXd
)
≤

∥∥∥f − f̂d
∥∥∥
2

L2(PXd
)
.

Proof of Lemma 2.9. Observe that by assumption for all f ∈ H it holds that

Ed(f)− Ed(f̂d,H) ≥ 0

which, by Lemma 2.8, implies that

∥∥∥f̂d,H − f̂d
∥∥∥
2

L2(PXd
)
≤

∥∥∥f − f̂d
∥∥∥
2

L2(PXd
)
.

The following theorem describes our main result related to the generalization of clipped
ReLU networks.

Theorem 2.10 (Generalization Error Bound). Assume Settings 2.1 and 2.3, let h ∈
C((0,∞)5,R) be given by

h(x) = 128D4x21

[
1 + x2 + x4

(
ln

(
64Dmax{1, |u|, |v|}x1

)
+

(
x5 + 1

)(
x3 + 2

))]
,

let ε, ̺ ∈ (0, 1), d ∈ N, a ∈ Ad, R ∈ [1,∞), let H := N u,v
a,R,D and

m ≥ h
(
ε−1, ln(̺−1), ln(R‖a‖∞),P(a),L(a)

)
.

Then it holds that
P

[
Ed

(
f̂d,m,H

)
− Ed

(
f̂d,H

)
≤ ε

]
≥ 1− ̺.
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A proof of Therem 2.10 will be given in Section 5. The next result shows how to
use Theorem 2.10 to leverage bounds on the approximation error to obtain quantitative
bounds on the generalization error.

Corollary 2.11 (Approximation implies Generalization). Assume Settings 2.1 and 2.3
and assume that for every d ∈ N, ε ∈ (0, 1) there exist ad,ε ∈ Ad, Rd,ε ∈ [1,∞) and a
clipped neural network

gd,ε ∈ Hd,ε := N u,v
ad,ε,Rd,ε,D

such that it holds that ∥∥∥f̂d − gd,ε
∥∥∥
2

L2(PXd
)
≤ ε/2.

Let h ∈ C((0,∞)5,R) be given by

h(x) = 128D4x21

[
1 + x2 + x4

(
ln

(
64Dmax{1, |u|, |v|}x1

)
+

(
x5 + 1

)(
x3 + 2

))]
,

let d ∈ N, ε, ̺ ∈ (0, 1) and

m ≥ h
(
2ε−1, ln(̺−1), ln(Rd,ε‖ad,ε‖∞),P(ad,ε),L(ad,ε)

)
.

Then it holds that

P

[∥∥∥f̂d,m,Hd,ε
− f̂d

∥∥∥
2

L2(PXd
)
≤ ε

]
≥ 1− ̺.

Proof of Corollary 2.11. Since by assumption it holds that gd,ε ∈ Hd,ε and

∥∥∥f̂d − gd,ε
∥∥∥
2

L2(PXd
)
≤ ε/2,

Lemma 2.9 implies that ∥∥∥f̂d − f̂d,Hd,ε

∥∥∥
2

L2(PXd
)
≤ ε/2. (16)

The Bias-Variance decomposition in Lemma 2.8 together with (16) hence assures that

∥∥∥f̂d − f̂d,m,Hd,ε

∥∥∥
2

L2(PXd
)
≤ ε/2 + Ed(f̂d,m,Hd,ε

)− Ed(f̂d,Hd,ε
). (17)

Theorem 2.10 (with ε← ε/2) implies that

P

[
Ed(f̂d,m,Hd,ε

)− Ed(f̂d,Hd,ε
) ≤ ε/2

]
≥ 1− ̺. (18)

Finally, (17) and (18) directly imply the desired claim.

The previous result in particular implies that, whenever the family (f̂d)d∈N from the
mathematical learning problem of Setting 2.1 can be approximated by neural networks
without curse of dimensionality, then also the number m of required training samples
to achieve a desired accuracy with high probability does not suffer from the curse of
dimensionality, either. A version of this statement is given in the next result.

Corollary 2.12 (Approximation without Curse implies Generalization without Curse).
Assume Settings 2.1 and 2.3 and assume that there exists a polynomial q : R2 → R such
that for all d ∈ N and ε ∈ (0, 1) there is ad,ε ∈ Ad, Rd,ε ∈ [1,∞) and

gd,ε ∈ N u,v
ad,ε,Rd,ε,D

=: Hd,ε
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with
max {ln(Rd,ε),P(ad,ε)} ≤ q(d, ε−1)

and ∥∥∥f̂d − gd,ε
∥∥∥
2

L2(PXd
)
≤ ε/2.

Then there exists a polynomial s : R2 → R such that for all d ∈ N, ε, ̺ ∈ (0, 1) and all

m ≥ s(d, ε−1)(1 + ln(̺−1))

it holds that

P

[∥∥∥f̂d,m,Hd,ε
− f̂d

∥∥∥
2

L2(PXd
)
≤ ε

]
≥ 1− ̺.

Proof of Corollary 2.12. Observe that for every d ∈ N, ε ∈ (0, 1) it holds that

max {ln(‖ad,ε‖∞),L(ad,ε)} ≤ P(ad,ε) ≤ q(d, ε−1)

and that the function h ∈ C((0,∞)5,R) from Corollary 2.11 satisfies

h(x) ≤ 128D4x21(1 + x2)
[
1 + x4

(
ln

(
64Dmax{1, |u|, |v|}x1

)
+

(
x5 + 1

)(
x3 + 2

))]

for every x ∈ (0,∞)5. This and the basic inequality ln(z) ≤ z−1 for z ∈ (0,∞) establishes
that for every d ∈ N, ε, ̺ ∈ (0, 1) it holds that

h
(
2ε−1, ln(̺−1), 2q(d, ε−1), q(d, ε−1), q(d, ε−1))

)
≤ s(d, ε−1)(1 + ln(̺−1))

where the polynomial s : R2 → R is defined by

s(x) = 512D4x22

[
1 + q(x1, x2)

(
ln
(
128Dmax{1, |u|, |v|}

)

+ x2 − 1 +
(
q(x1, x2) + 1

)(
2q(x1, x2) + 2

))]

and thus Corollary 2.12 is a direct consequence of Corollary 2.11.

3 Applications for the Numerical Approximation

of High Dimensional PDEs

In the present section we apply the general results of Section 2 to the solution of high
dimensional Kolmogorov PDEs. To this end we first reformulate the solution of a Kol-
mogorov PDE as a mathematical learning problem in Subsection 3.1. The next Subsection
3.2 establishes suitable approximation results for solutions of Kolmogorov PDEs. The fol-
lowing Subsection 3.3 contains the main result of this paper, Theorem 3.7, which states
that ERM with deep neural networks is capable of numerically solving Kolmogorov PDEs
with affine coefficients without curse of dimensionality. As a specific application we show
in Subsection 3.4 that ERM with deep neural networks is capable of solving the Black-
Scholes pricing problem for European Put options without curse of dimensionality.
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3.1 Kolmogorov PDEs as Learning Problem

The following setting will be frequently used.

Setting 3.1. Assume Setting 2.1, let T,L ∈ (0,∞), for all d ∈ N let ϕd ∈ C(Rd, [−D,D])
and let σd ∈ C(Rd,Rd×d), µd ∈ C(Rd,Rd) be affine linear functions with

‖σd(x)‖2 + ‖µd(x)‖2 ≤ L(1 + ‖x‖2)

for all x ∈ R
d. Let the probability space (Ω,G,P) be equipped with a filtration (Gt)t∈[0,T ]

which fulfills the usual conditions, for every d ∈ N let

(Bd
t )t∈[0,T ] : [0, T ]× Ω→ R

d

be a d-dimensional (Gt)-Brownian motion, let the input data Xd : Ω → [u, v]d be G0-
measurable and uniformly distributed on [u, v]d, let

(SXd
t )t∈[0,T ] : [0, T ]× Ω→ R

d

be the, up to indistinguishability, unique adapted stochastic processes with continuous sam-
ple paths satisfying the stochastic differential equation

dSXd
t = σd(S

Xd
t )dBd

t + µd(S
Xd
t )dt and SXd

0 = Xd

P-a.s. for every t ∈ [0, T ] (see, for instance, [2, Theorem 9.2]), define the label by

Yd := ϕd(S
Xd
T )

and for every x ∈ R
d let

(Sx
t )t∈[0,T ] : [0, T ]× Ω→ R

d

be the, up to indistinguishability, unique adapted stochastic processes with continuous sam-
ple paths satisfying the stochastic differential equation

dSx
t = σd(S

x
t )dB

d
t + µd(S

x
t )dt and Sx

0 = x

P-a.s. for every t ∈ [0, T ]. We assume Setting 2.3 and we suppose that the initial values
(ϕd)d∈N can be approximated by neural networks in the following sense. Let c ∈ [1,∞),
ν ∈ [1/2,∞), α, β, γ, κ, λ ∈ [0,∞) and for every d ∈ N, ε ∈ (0, 1) let

bd,ε ∈ Ad, ηd,ε ∈ R
P(bd,ε)

such that for all d ∈ N, ε ∈ (0, 1) and x ∈ R
d it holds

(i) that
|ϕd(x)−Fbd,ε

(ηd,ε, x)| ≤ cdαε(1 + ‖x‖ν2),

(ii) that
‖ηd,ε‖∞ ≤ cdβε−κ,

(iii) and that
P(bd,ε) ≤ cdγε−λ.

Finally, for all d ∈ N let Fd ∈ C([0, T ] × R
d,R) be the unique function satisfying

(i) that Fd(0, x) = ϕ(x) for every x ∈ R
d,

(ii) that Fd is at most polynomially growing, i.e. there exists ϑ ∈ (0,∞) such that for
every x ∈ R

d it holds that maxt∈[0,T ] Fd(t, x) ≤ ϑ
(
1 + ‖x‖ϑ2

)
,
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(iii) and that Fd is a viscosity solution of the d-dimensional Kolmogorov PDE

∂Fd
∂t (t, x) =

1
2Trace

(
σd(x)[σd(x)]

∗(HessxFd)(t, x)
)
+

〈
µd(x), (∇xFd)(t, x)

〉
Rd

for all (t, x) ∈ (0, T ) × R
d,

see [23, Lemma 2.6 with ϕ← σd, µd and Proposition 3.4(i) with ε← cdαε, c← (c+D)dα,
v,w ← ν, u← Fd].

The next result shows that computing the end value [u, v]d ∋ x 7→ Fd(T, x) of the
solution to the Kolmogorov PDE can be restated as a learning problem.

Lemma 3.2 (Kolmogorov PDEs as Learning Problem). Assume Setting 3.1 and let d ∈ N.
Then for a.e. x ∈ [u, v]d it holds that

Fd(T, x) = f̂d(x).

Proof of Lemma 3.2. The proof is based on the Feynman-Kac formula for viscosity solu-
tions of Kolmogorov equations in [23, Corollary 2.23(ii) with u ← Fd, XT ← Sx

T ] which
assures that for every x ∈ R

d it holds that

Fd(T, x) = E
[
ϕd (S

x
T )

]
. (19)

We claim that for every A ∈ B([u, v]d) it holds that

E

[
1A(Xd)ϕd(S

Xd
T )

]
=

∫

A
E [ϕd(S

x
T )] dPXd

(x).

This would prove the lemma as it implies that for PXd
-a.s. x ∈ [u, v]d it holds that

E

[
ϕd(S

Xd
T )

∣∣∣Xd = x
]
= E

[
ϕd (S

x
T )

]

and by (19) and the definition of f̂d, Yd, Xd this assures that for a.e. x ∈ [u, v]d it holds
that

f̂d(x) = E
[
Yd

∣∣Xd = x
]
= E

[
ϕd(S

Xd
T )

∣∣∣Xd = x
]
= E

[
ϕd (S

x
T )

]
= Fd(T, x).

For the proof of the claim let us fix A ∈ B([u, v]d), let gε ∈ C∞(Rd,R), ε ∈ (0, 1), be
a family of mollifiers and for every ε ∈ (0, 1) define the convolution with the indicator
function 1A by 1A,ε := 1A ∗gε. Then by the properties of a mollifier (see, for instance, [20,
Appendix C.5 with U ← R

d, f ǫ ← 1A,ε]) it holds that 1A,ε ∈ C∞(Rd,R) and

lim
ε→0

1A,ε(x) = 1A(x) (20)

for a.e. x ∈ R
d. By defining the continuous and bounded mapping

Φε :

{
C([0, T ],Rd) → R

f 7→ 1A,ε(f(0))ϕ(f(T ))
,

we obtain from [6, Lemma 2.6(v) with Xt ← SXd
t , Xx

t ← Sx
t ] that for every ε ∈ (0, 1) it

holds that

E

[
1A,ε(Xd)ϕ(S

Xd
T )

]
=

1

(v − u)d
∫

[u,v]d
1A,ε(x)E

[
ϕ (Sx

T )
]
dx.

By (20), the dominated convergence theorem and the definition of PXd
the claim follows

when letting ε tend to zero.
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3.2 Neural Network Approximation Results for Solutions

of Kolmogorov PDEs

In this subsection we prove the following approximation result.

Theorem 3.3 (Neural Network Regularity Result for Kolmogorov PDEs). Assume Set-
ting 3.1 and let τ = ν + 2α. Then there exist C, c ∈ (0,∞) such that for all d ∈ N and
ε ∈ (0, 1) there is a ∈ Ad and θ ∈ R

P(a)

(i) with
1

(v − u)d ‖Fd(T, ·)−Fa,D(θ, ·)‖2L2[u,v]d ≤ ε

(ii) with
P(a) ≤ Cdτ(λ/2+2)+γε−λ/2−2

(iii) with
‖θ‖∞ ≤ Cdτ(κ/2+1)+β+3/2ε−κ−1

(iv) with
L(a) = L(bd,cd−τ ε1/2)

(v) and with
‖a‖∞ ≤ Cdτε−1‖bd,cd−τ ε1/2‖∞.

Let us briefly sketch the idea of the proof. First we observe that in our case of affine
linear drift µd and diffusion coefficient σd there exist random variables Md and Nd such
that for all x ∈ R

d it holds P-a.s. that

Sx
T = Mdx+Nd,

see Lemma 3.4 below. Let
((M

(j)
d ,N

(j)
d ))j∈N

be i.i.d. samples with (M
(1)
d ,N

(1)
d ) ∼ (Md,Nd). Then for fixed x ∈ R

d the Feynman-
Kac formula, our assumptions, properties of Monte-Carlo approximation and a standard
decomposition of the mean squared error into the sum of the squared bias and the variance
yield that

E



(
Fd(T, x)−

1

n

n∑

j=1

Fbd,δ

(
ηd,δ,M

(j)
d x+N

(j)
d

))2


 = E

[
ϕd(S

x
T )−Fbd,δ

(ηd,δ, S
x
T )

]2

︸ ︷︷ ︸
O(δ2)

+E



(
E

[
Fbd,δ

(ηd,δ,Mdx+Nd)
]
− 1

n

n∑

j=1

Fbd,δ

(
ηd,δ,M

(j)
d x+N

(j)
d

))2


 .

︸ ︷︷ ︸
O(n−1)

With more effort one can prove analogous estimates in the L2[u, v]d-norm and this suggests
that, given ε, for sufficient large n and small δ there exists an outcome ω such that with

M
(j)
d := M

(j)
d (ω), N

(j)
d := N

(j)
d (ω)

it holds that

1

(v − u)d
∫

[u,v]d

(
Fd(T, x)−

1

n

n∑

j=1

Fbd,δ

(
ηd,δ,M

(j)
d x+N

(j)
d

))2
dx ≤ ε.
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Finally we will prove in Lemma 3.6 that there exists a network architecture a and param-
eters θ such that for every x ∈ R

d it holds that

Fa(θ, x) =
1

n

n∑

j=1

Fbd,δ

(
ηd,δ,M

(j)
d x+N

(j)
d

)

and we bound the parameters θ with the help of Lemma 3.5 below. For a detailed
presentation we refer the interested reader to [23]. The precise proof of Theorem 3.3 is
based on the latter reference and is given after the following three auxiliary lemmas.

Lemma 3.4. Assume Setting 3.1, let d ∈ N, for every i ∈ {0, 1, . . . , d} let ei ∈ R
d be

the i-th standard basis vector in R
d and define the random variables Md : Ω→ R

d×d and
Nd : Ω→ R

d by

Nd := S0
T , Md :=

[
Se1
T − S0

T Se2
T − S0

T . . . Sed
T − S0

T

]
.

Then for all x ∈ R
d it holds P-a.s. that

Sx
T = Mdx+Nd.

Proof of Lemma 3.4. The proof is a simple consequence of [23, Lemma 2.15 with Xx
T ←

Sx
T ].

Lemma 3.5. Assume Setting 3.1, let d ∈ N and let Md : Ω→ R
d×d, Nd : Ω→ R

d as in
Lemma 3.4. Then it holds that

E
[
‖Md‖2 + ‖Nd‖2

]
≤ 3
√
2d

(
1 + LT + 2L

√
T
)
exp

([
L
√
T + 2L

]2
T
)
.

Proof of Lemma 3.5. In [23, Proposition 2.14 with p = 2, ξ ← x, m1,m2, s1, s2 ← L,
XT ← Sx

T ] it is shown that for all x ∈ R
d it holds that

(
E
[
‖Sx

T ‖22
])1/2 ≤

√
2
(
‖x‖2 + LT + 2L

√
T
)
exp

([
L
√
T + 2L

]2
T
)
. (21)

The fact that
E
[
‖Sx

T ‖2
]
≤

(
E
[
‖Sx

T ‖22
])1/2

,

the triangle inequality, the subadditivity of the square root and (21) imply that

E
[
‖Md‖2 + ‖Nd‖2

]
= E

[ ∥∥[Se1
T − S0

T Se2
T − S0

T . . . Sed
T − S0

T

]∥∥
2
+

∥∥S0
T

∥∥
2

]

≤ E
[ ∥∥S0

T

∥∥
2
+

d∑

i=1

∥∥Sei
T − S0

T

∥∥
2

]
≤ (d+ 1)E

[∥∥S0
T

∥∥
2

]
+

d∑

i=1

E
[∥∥Sei

T

∥∥
2

]

≤
√
2
[
(d+ 1)

(
LT + 2L

√
T
)
+ d

(
1 + LT + 2L

√
T
) ]

exp
([
L
√
T + 2L

]2
T
)

≤ 3
√
2d

(
1 + LT + 2L

√
T
)
exp

([
L
√
T + 2L

]2
T
)

which is the desired estimate.

In the next lemma we show that the average of the composition of a neural network
with different affine functions can be represented by a single neural network and we bound
the number and size of its parameters.
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Lemma 3.6. Assume Setting 2.3. Let n ∈ N, l ∈ N0, b = (b0, b1, . . . , bl, bl+1) ∈ N
l+2,

η ∈ R
P(b), let

((M (j), N (j)))nj=1 ∈
(
R
b0×b0 × R

b0
)n

and let
a = (b0, nb1, . . . , nbl, bl+1) ∈ N

l+2.

Then it holds that
P(a) ≤ n2P(b)

and there exists θ ∈ R
P(a)

(i) with

‖θ‖∞ ≤
√
b0‖η‖∞

n
max
j=1

(
‖M (j)‖2 + ‖N (j)‖2 + 1

)

(ii) and with

Fa(θ, x) =
1

n

n∑

j=1

Fb(η,M
(j)x+N (j))

for all x ∈ R
b0 .

Proof of Lemma 3.6. With the exception of Item (i) this result is proven in [23, Lemma
3.8 with Aj ← Mj, bj ← Nj, R(φ) ← Fb(η, ·), R(ψ) ← Fa(θ, ·)]. The latter reference
shows that for

η = ((Vi, Ai))
l
i=0 ∈

l×
i=0

(
R
bi+1×bi × R

bi+1
)
≃ R

P(b)

and
a = (a0, a1, . . . , al, al+1) := (b0, nb1, . . . , nbl, bl+1) ∈ N

l+2

a suitable

θ = ((Wi, Bi))
l
i=0 ∈

l×
i=0

(
R
ai+1×ai × R

ai+1
)
≃ R

P(a)

is given by

W0 :=




V0M
(1)

V0M
(2)

...

V0M
(n)


 , B0 :=




V0N
(1) +A0

V0N
(2) +A0
...

V0N
(n) +A0


 ,

for i ∈ {1, 2, . . . , l − 1} by

Wi :=




Vi 0 . . . 0

0 Vi . . .
...

...
...

. . . 0

0 . . . 0 Vi



, Bi :=




Ai

Ai
...
Ai


 ,

and by
Wl :=

[
1
nVl

1
nVl . . . 1

nVl
]
, Bl := Al.

Observe that using Hölder’s inequality it holds that

‖W0‖∞ ≤
√
b0‖V0‖∞

n
max
j=1
‖M (j)‖2 ≤

√
b0‖η‖∞

n
max
j=1
‖M (j)‖2
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and

‖B0‖∞ ≤
√
b0‖V0‖∞

n
max
j=1
‖N (j)‖2 + ‖A0‖∞ ≤

√
b0‖η‖∞

n
max
j=1

(
‖N (j)‖2 + 1

)
.

Together with the facts that for every i ∈ {1, 2, . . . , l} it holds that

‖Wi‖∞ ≤ ‖Vi‖∞ ≤ ‖η‖∞
and

‖Bi‖∞ = ‖Ai‖∞ ≤ ‖η‖∞
this proves the lemma.

Now we are ready to prove Theorem 3.3.

Proof of Theorem 3.3. Except for Property (iii) a similar result was shown in [23, Corol-
lary 3.13]. For this reason we will be brief in presenting the proof and refer to the results
of [23] for further details. Recall that by Lemma 3.4 for every d ∈ N there exist random
variables Md : Ω→ R

d×d, Nd : Ω→ R
d such that for all x ∈ R

d it holds P-a.s. that

Sx
T = Mdx+Nd = AMd,Nd

(x).

For all d ∈ N, δ ∈ (0, 1) we define the function fd,δ ∈ C(Rd,R) by

fd,δ(x) = Fbd,δ
(ηd,δ, x)

which satisfies for all x ∈ R
d that

|fd,δ(x)| ≤ |fd,δ(x)− ϕd(x)|+ |ϕd(x)| ≤ (c+D)dα(1 + ‖x‖ν2).

We will now use [23, Proof of Proposition 3.4, display (217), (218), (224) and (229)
with ε ← cdαδ, c ← (c + D)dα, φ ← fd,δ, v,w ← ν, p ← 2, ν ← PXd

, u ← Fd,

Aj ← M
(j)
d , Bj ← N

(j)
d ] together with our assumptions in Setting 3.1 and the fact that,

by an elementary calculation, for every d ∈ N it holds that

∫

Rd

‖x‖2ν2 dPXd
(x) ≤ dν v

2ν+1 − u2ν+1

2ν(v − u) .

In particular, [23, Proof of Proposition 3.4] shows that there exists C ∈ [1,∞) and for
every d ∈ N there exist i.i.d. random variables

((M
(j)
d ,N

(j)
d ))j∈N

with (M
(1)
d ,N

(1)
d ) ∼ (Md,Nd) such that for every d, n ∈ N and δ ∈ (0, 1) by defining the

random variable

Ed,δ,n :=
1

(v − u)d/2
∥∥∥Fd(T, ·)−

1

n

n∑

j=1

fd,δ ◦ A
M

(j)
d ,N

(j)
d

∥∥∥
L2[u,v]d

it holds that

E [Ed,δ,n] ≤
1

(v − u)d/2
∥∥∥E

[
ϕd ◦ A

M
(1)
d ,N

(1)
d

]
−E

[
fd,δ ◦ A

M
(1)
d ,N

(1)
d

]∥∥∥
L2[u,v]d

+E


 1

(v − u)d/2
∥∥∥E

[
fd,δ ◦ A

M
(1)
d ,N

(1)
d

]
− 1

n

n∑

j=1

fd,δ ◦ A
M

(j)
d ,N

(j)
d

∥∥∥
L2[u,v]d




≤ Cdν/2+α
(
δ + n−1/2

)
= Cdτ/2

(
δ + n−1/2

)
.
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Let us fix d ∈ N, ε ∈ (0, 1),

n ∈
[
16C2dτε−1, 32C2dτε−1

)
∩ N (22)

and
δ = (4C)−1d−τ/2ε1/2. (23)

This implies that

E [Ed,δ,n] ≤
ε1/2

2
. (24)

Next, let

C = 6
√
2
(
1 + LT + 2L

√
T
)
exp

([
L
√
T + 2L

]2
T
)

and let the random variables H and G be defined by

H := (Cd)−1 n
max
j=1

(∥∥M(j)
d

∥∥
2
+

∥∥N(j)
d

∥∥
2

)

and
G := ε−1/2Ed,δ,n + n−1H.

Lemma 3.5 establishes that it holds that

E[H] ≤ (Cd)−1
n∑

j=1

E

[∥∥M(j)
d

∥∥
2
+

∥∥N(j)
d

∥∥
2

]
= n(Cd)−1

E
[
‖Md‖2 + ‖Nd‖2

]
≤ n

2

and together with (24) this assures that

E[|G|] ≤ 1.

By [23, Proposition 3.3 with X ← G, ε ← 1] it follows that there exists ω ∈ Ω such that
by defining for all j ∈ {1, . . . , n}

M
(j)
d := M

(j)
d (ω), N

(j)
d := N

(j)
d (ω)

it holds that

E2
d,δ,n(ω) =

1

(v − u)d
∥∥∥Fd(T, ·)−

1

n

n∑

j=1

fd,δ ◦ AM
(j)
d ,N

(j)
d

∥∥∥
2

L2[u,v]d
≤ ε (25)

and
H(ω) = (Cd)−1 n

max
j=1

(
‖M (j)

d ‖2 + ‖N
(j)
d ‖2

)
≤ n.

Using (22) this implies that

n
max
j=1

(
‖M (j)

d ‖2 + ‖N
(j)
d ‖2

)
≤ Cdn ≤ 32CC2dτ+1ε−1.

By Lemma 3.6, our assumptions and (22), (23) there is a ∈ Ad and θ ∈ R
P(a) with

Fa (θ, x) =
1

n

n∑

j=1

Fbd,δ

(
ηd,δ,M

(j)
d x+N

(j)
d

)
=

1

n

n∑

j=1

fd,δ ◦ AM
(j)
d ,N

(j)
d

(x) (26)

for all x ∈ R
d, with

P(a) ≤ n2P(bd,δ) ≤ 322C4cd2τ+γε−2δ−λ ≤ Cdτ(λ/2+2)+γε−λ/2−2,
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‖θ‖∞ ≤
√
d‖ηd,δ‖∞

(
32CC2dτ+1ε−1 + 1

)
≤ Cdτ(κ/2+1)+β+3/2ǫ−κ/2−1,

L(a) = L(bd,δ) = L(bd,cd−τ/2ε1/2)

and with

‖a‖∞ = n‖bd,δ‖∞ ≤ 32C2dτε−1‖bd,δ‖∞ ≤ Cdτε−1‖bd,cd−τ/2ε1/2‖∞
where C, c ∈ (0,∞) are defined by

C = max
{
3224λC4+λc, (4C)κc(32CC2 + 1)

}
, c = (4C)−1.

Further, observe that, due to the Feynman-Kac formula in [23, Corollary 2.23(ii) with
u← Fd, XT ← Sx

T ] and the fact that ϕd : Rd → [−D,D] for every x ∈ R
d it holds that

|Fd(T, x)| =
∣∣E

[
ϕd(S

x
T )
]∣∣ ≤ D,

which implies that
CD,1 ◦ Fd(T, x) = Fd(T, x)

for all x ∈ R
d. Corollary 2.5, (25) and (26) hence imply that

1

(v − u)d ‖Fd(T, ·)−Fa,D(θ, ·)‖2L2[u,v]d ≤ ε

and this proves the theorem.

3.3 Neural Network Generalization Results for Solutions of

Kolmogorov PDEs

The next theorem represents the main result of this paper.

Theorem 3.7 (Neural Network Generalization Result for Kolmogorov PDEs). Assume
Setting 3.1, let τ = ν + 2α and let h ∈ C((0,∞)5,R) be given by

h(x) = 128D4x21

[
1 + x2 + x4

(
ln

(
64Dmax{1, |u|, |v|}x1

)
+

(
x5 + 1

)(
x3 + 2

))]
.

Then there exist C, c ∈ (0,∞) such that for all d ∈ N and ε, ̺ ∈ (0, 1) there is a ∈ Ad and
R ∈ [1,∞)

(i) with
P(a) ≤ Cdτ(λ/2+2)+γε−λ/2−2

(ii) with
R ≤ Cdτ(κ/2+1)+β+3/2ε−κ/2−1

(iii) with
L(a) = L(bd,cd−τ ε1/2)

(iv) and with
‖a‖∞ ≤ Cdτε−1‖bd,cd−τ ε1/2‖∞

such that with
H = N u,v

a,R,D,

and
m ≥ h

(
2ε−1, ln(̺−1), ln (R‖a‖∞) ,P(a),L(a))

)

it holds that

P

[
1

(v − u)d
∥∥∥f̂d,m,H − Fd(T, ·)

∥∥∥
2

L2[u,v]d
≤ ε

]
≥ 1− ̺.
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Proof of Theorem 3.7. This is a direct consequence of Theorem 3.3 (with ε← ε/2), Corol-
lary 2.11 and the fact that for every d ∈ N it holds that PXd

= 1
(v−u)d

λ[u,v]d .

We can also reformulate this in a more compact form.

Corollary 3.8. Assume Setting 3.1 Then there exists a polynomial p : R2 → R such that
for all d ∈ N and ε, ̺ ∈ (0, 1) there is a ∈ Ad and R ∈ [1,∞) with

max{R,P(a)} ≤ p(d, ε−1)

such that with
H = N u,v

a,R,D

and
m ≥ p(d, ε−1)(1 + ln(̺−1))

it holds that

P

[
1

(v − u)d
∥∥∥f̂d,m,H − Fd(T, ·)

∥∥∥
2

L2[u,v]d
≤ ε

]
≥ 1− ̺.

Proof of Corollary 3.8. This is a direct consequence of Theorem 3.3, Corollary 2.12 and
the fact that given arbitrary polynomials q : R2 → R and s : R2 → R there exists a new
polynomial p : R2 → R satisfying max{q(x), s(x)} ≤ p(x) for every x ∈ R

2.

3.4 Pricing of High-Dimensional Options

The proof of Theorem 1.1 from the introductory section dealing with the pricing of high-
dimensional European Put Options is now an easy consequence of the above theory.

Proof of Theorem 1.1. We first show that the approximation of (ϕd)d∈N by clipped neural
networks according to Setting 3.1 is possible. Note that for every z ∈ [0,∞) it holds that

min{z,D} = 1
2 (max{D+ z, 0} −max{D− z, 0} −max{z −D, 0}) .

That implies that for every d ∈ N it holds that

ϕd(x) = min

{
max

{
D−

d∑

i=1

cd,ixi, 0

}
,D

}

= AV2,A2 ◦ ReLU3 ◦AV1,A1 ◦ ReLU1 ◦AV0,A0(x) = Fbd
(ηd, x)

where

V0 =
[
−cd,1 −cd,2 . . . −cd,d

]
, A0 = D, V1 =




1
−1
1


 , A1 =




D

D

−D


 ,

V2 =
[
1
2 −1

2 −1
2

]
, A1 = 0

bd = (d, 1, 3, 1) and

ηd = (Vi, Ai)
2
i=0 ∈

(
R
1×d × R

1
)
×

(
R
3×1 × R

3
)
×

(
R
1×3 × R

1
)
.

Accordingly Setting 3.1 is satisfied with

c = max{D, 11}, ν = 1/2, γ = 1, α = β = κ = λ = 0, bd,ε = bd, ηd,ε = ηd

for every d ∈ N, ε ∈ (0, 1). Now Theorem 3.7 shows that there exists C ∈ [1,∞) such
that for all d ∈ N and ε, ̺ ∈ (0, 1) there is a ∈ Ad and R ∈ [1,∞)
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(i) with
P(a) ≤ Cd2ε−2

(ii) with
R ≤ Cd2ε−1

(iii) with
L(a) = L(bd) = 2

(iv) and with
‖a‖∞ ≤ Cd1/2ε−1‖bd‖∞ = Cd3/2ε−1

such that with
H = N u,v

a,R,D (27)

and
m =

⌈
h
(
2ε−1, ln(̺−1), ln

(
C2d7/2ε−2

)
, Cd2ε−2, 2

) ⌉

it holds that

P

[
1

(v − u)d
∥∥∥f̂d,m,H − Fd(T, ·)

∥∥∥
2

L2[u,v]d
≤ ε

]
≥ 1− ̺.

A simple calculation shows that by defining

C = 512D4C
[
7 + ln

(
128DC6 max{1, |u|, |v|}

)]
+ 1

for every d ∈ N, ε, ̺ ∈ (0, 1) it holds that
⌈
h
(
2ε−1, ln(̺−1), ln

(
C2d4ε−2

)
, Cd2ε−2, 2

) ⌉
≤ Cd2ε−4

(
1 + ln(dε−1̺−1)

)

and this concludes the proof.

4 Covering Number Estimates

In this section we prove some estimates on the covering numbers of neural network hy-
pothesis classes. We will use the following setting.

Setting 4.1. Let (H, d) be a compact metric space, for r ∈ (0,∞) and f ∈ H let

Br(f) := {g ∈ H : d(f, g) ≤ r}
be the ball of radius r around f , for r ∈ (0,∞) let

N(H, r) := inf

{
n ∈ N : There exists (fi)

n
i=1 ⊆ H with H ⊆

n⋃

i=1

Br(fi)

}
<∞

be the r-covering number of H.
Let us first prove that neural networks with fixed architecture and bounded parameters

are Lipschitz continuous with respect to their weights and biases.

Theorem 4.2. Assume Setting 2.3, let u ∈ R, v ∈ (u,∞), R ∈ [1,∞), l ∈ N0, let

m = max
{
1, |u|, |v|

}

and let a = (a0, a1, a2, . . . , al, al+1) ∈ N
l+2. Then for every θ,η ∈ R

P(a) with

max{‖θ‖∞, ‖η‖∞} ≤ R
it holds that

sup
x∈[u,v]a0

∥∥Fa(θ, x)−Fa(η, x)
∥∥
∞
≤ ‖θ − η‖∞

mRl
(
3‖a‖∞ + 3)l+1

2
.
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Proof of Theorem 4.2. Let us fix θ,η ∈ R
P(a) with max{‖θ‖∞, ‖η‖∞} ≤ R given by

θ =
(
(Wi, Bi)

)l
i=0
∈

l×
i=0

(
R
ai+1×ai × R

ai+1
)
≃ R

P(a)

and

η =
(
(Vi, Ai)

)l
i=0
∈

l×
i=0

(
R
ai+1×ai × R

ai+1
)
≃ R

P(a).

To simplify the notation we define D := [u, v]a0 and for every s ∈ {1, . . . , l+ 1} we define
the partial architecture a(s) by

a(s) = (a0, a1, . . . , as) ∈ R
s+1,

the partial parameters θ(s), η(s) by

θ(s) =
(
(Wi, Bi)

)s−1

i=0
∈

s−1×
i=0

(
R
ai+1×ai × R

ai+1
)
≃ R

P(a(s))

and

η(s) =
(
(Vi, Ai)

)s−1

i=0
∈

s−1×
i=0

(
R
ai+1×ai × R

ai+1
)
≃ R

P(a(s)),

the partial networks fs, gs by

fs :

{
D → R

as

x 7→ Fa(s)(θ(s), x)
,

and

gs :

{
D → R

as

x 7→ Fa(s)(η(s), x)
,

the partial errors es by
es = sup

x∈D

∥∥fs(x)− gs(x)
∥∥
∞

and the partial maxima ms by

ms = max

{
1, sup

x∈D

∥∥fs(x)
∥∥
∞
, sup
x∈D

∥∥gs(x)
∥∥
∞

}
.

Note that it holds that
fl+1(x) = Fa(θ, x)

and
gl+1(x) = Fa(η, x)

for every x ∈ D and we are therefore interested in estimating the error el+1. For the
convenience of the reader we further define

e0 = 0, m0 = m, r = ‖θ − η‖∞.

We will try to bound ms+1 relative to ms and es+1 relative to es by observing how the error
and the maximum is amplified in each layer. Using the triangle and Hölder’s inequality
it holds that

sup
x∈D

∥∥fs+1(x)
∥∥
∞

= sup
x∈D

∥∥∥WsReLUas

(
fs(x)

)
+Bs

∥∥∥
∞

≤ sup
x∈D

as
∥∥Ws

∥∥
∞

∥∥ReLUas

(
fs(x)

)∥∥
∞

+
∥∥Bs

∥∥
∞

≤ R‖a‖∞ sup
x∈D

∥∥fs(x)
∥∥
∞

+R ≤ Rms

(
‖a‖∞ + 1

)
.
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An analogous computation for the parameters η and the case s = 0 shows that for every
s ∈ {0, 1, . . . , l} it holds that

ms+1 ≤ Rms

(
‖a‖∞ + 1

)

and thus also
ms+1 ≤ Rs+1

m
(
‖a‖∞ + 1

)s+1
. (28)

For estimating the partial error we will make use of the following basic inequality. For
every k, n ∈ N, M1,M2 ∈ R

k×n, N1, N2 ∈ R
n×1 it holds that

‖M1N1 −M2N2‖∞ = ‖(M1 −M2)(N1 −N2) +M2(N1 −N2) + (M1 −M2)N2‖∞
≤ n

(
‖M1 −M2‖∞‖N1 −N2‖∞ + ‖M2‖∞‖N1 −N2‖∞ + ‖M1 −M2‖∞‖N2‖∞

)
.

This assures that for every s ∈ {1, . . . , l} and x ∈ D it holds that

∥∥∥
(
WsReLUas

(
fs(x)

)
+Bs

)
−

(
VsReLUas

(
gs(x)

)
+As

)∥∥∥
∞

≤ as
(∥∥Ws − Vs

∥∥
∞

∥∥ReLUas

(
fs(x)

)
− ReLUas

(
gs(x)

)∥∥
∞

+
∥∥Vs

∥∥
∞

∥∥ReLUas

(
fs(x)

)
− ReLUas

(
gs(x)

)∥∥
∞

+
∥∥Ws − Vs

∥∥
∞

∥∥ReLUas

(
gs(x)

)∥∥
∞

)
+

∥∥Bs −As

∥∥
∞

≤ ‖a‖∞
(
res +Res +msr

)
+ r ≤

(
‖a‖∞ + 1

)(
res +Res +msr

)
.

(29)

Together with the fact that r ≤ 2R this establishes that for every s ∈ {1, 2, . . . , l} it holds
that

es+1 ≤
(
‖a‖∞ + 1

)(
3Res +msr

)
. (30)

We now claim that for every s ∈ {0, 1, . . . , l} it holds that

es+1 ≤ 1
2

(
3s+1 − 1

2

)
Rs

m
(
‖a‖∞ + 1

)s+1
r, (31)

which we will prove by induction. The base case s = 0 is proved similar to (29), namely

e1 = sup
x∈D

∥∥(W0x+B0

)
−

(
V0x+A0

)∥∥
∞

≤ ‖a‖∞mr + r ≤ m
(
‖a‖∞ + 1

)
r.

For the induction step let us assume that (31) holds for a given s ∈ {0, 1, . . . , l−1}, which
implies by (28) and (30) that

es+2 ≤
(
‖a‖∞ + 1

)(
3Res+1 +ms+1r

)

= 1
2

(
‖a‖∞ + 1

)((
3s+2 − 3

2

)
Rs+1

m
(
‖a‖∞ + 1

)s+1
r +Rs+1

m
(
‖a‖∞ + 1

)s+1
r
)

≤ 1
2

(
3s+2 − 1

2

)
Rs+1

m
(
‖a‖∞ + 1

)s+2
r.

Consequently, our claim (31) holds for every s ∈ {0, 1, . . . , l} and in particular assures
that

sup
x∈D

∥∥Fa(θ, x)−Fa(η, x)
∥∥
∞

= el+1 ≤ 1
2

(
3l+1 − 1

2

)
Rl

m
(
‖a‖∞ + 1

)l+1
r

≤ rmR
l
(
3‖a‖∞ + 3

)l+1

2

This proves the theorem.
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Next we state a proposition on the covering number of balls in an euclidean space
(or general any finite-dimensional Banach space) and with Theorem 4.2 this allows us to
bound the covering number of our hypothesis class.

Proposition 4.3. Assume Setting 4.1. Let n ∈ N, R ∈ [1,∞), r ∈ (0, 1) and define the
metric space

BR =
{
θ ∈ R

n : ‖θ‖∞ ≤ R
}

with its metric induced by the norm ‖·‖∞. Then it holds that

lnN(BR, r) ≤ n ln
(4R
r

)
.

Proof of Proposition 4.3. A proof is given, for instance, in [13, Proposition 5].

This implies the following lemma for the covering number of the hypothesis class of
(clipped) neural networks.

Lemma 4.4. Assume Setting 2.3 and 4.1, let u ∈ R, v ∈ (u,∞), d ∈ N, R ∈ [1,∞),
r ∈ (0, 1), let m = max

{
1, |u|, |v|

}
and let a ∈ Ad. Then it holds that

lnN
(
N u,v

a,R,D, r
)
≤ lnN

(
N u,v

a,R, r
)
≤ P(a)

[
ln

(2m
r

)
+ (L(a) + 1) ln

(
3R‖a‖∞ + 3R

)]
.

Proof of Lemma 4.4. To simplify the notation we define

BR =
{
θ ∈ R

P(a) : ‖θ‖∞ ≤ R
}
, ∆ = r

2

mRL(a)
(
3‖a‖∞ + 3)L(a)+1

, N = N
(
BR,∆

)
.

Choose
θ1,θ2, . . . ,θN ∈ BR

such that the balls with center θi, i ∈ {1, 2, . . . , N}, and radius ∆ cover BR. For arbitrary
θ ∈ BR there exists i ∈ {1, 2, . . . , N} such that it holds that

‖θ − θi‖∞ ≤ ∆

and by Lemma 2.6 and Theorem 4.2 this implies that

sup
x∈[u,v]a0

∣∣Fa,D(θ, x)−Fa,D(θi, x)
∣∣ ≤ sup

x∈[u,v]a0

∣∣Fa(θ, x)−Fa(θi, x)
∣∣

≤ ‖θ − θi‖∞
mRL(a)

(
3‖a‖∞ + 3)L(a)+1

2
≤ r

This shows that
N
(
N u,v

a,R,D, r
)
≤ N

(
N u,v

a,R, r
)
≤ N = N

(
BR,∆

)

and Proposition 4.3 implies that it holds that

lnN
(
N u,v

a,R,D, r
)
≤ lnN

(
N u,v

a,R, r
)
≤ P(a) ln

(4R
∆

)

= P(a)
[
ln

(2m
r

)
+ (L(a) + 1) ln

(
3R‖a‖∞ + 3R

)]
.

This proves the lemma.
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5 Proof of Theorem 2.10

In this section we prove our main generalization result. As a main tool we will use the
following result.

Theorem 5.1 (Bound on the Sample Error). Assume Settings 2.1, 2.3 and 4.1. Let
ε > 0, d ∈ N, R ∈ [1,∞), a ∈ Ad, H := N u,v

a,R,D and m ∈ N. Then it holds that

P

[
Ed

(
f̂d,m,H

)
− Ed

(
f̂d,H

)
≤ ε

]
≥ 1− 2N

(
H, ε

32D

)
exp

(
− mε2

128D4

)
.

Proof of Theorem 5.1. The proof is adapted for our purposes from [13] and [41, End of
Chapter 3]. First note that by assumptions for every f ∈ H it holds that

|f(Xd)− Yd| ≤ sup
x∈[u,v]d

|f(x)|+ |Yd| ≤ 2D

and analogously for the samples ((X
(i)
d , Y

(i)
d ))mi=1. The elementary identity

(y1 − z)2 − (y2 − z)2 = (y1 − y2)(y1 + y2 − 2z)

for real numbers y1, y2, z ∈ R and Jensen’s inequality imply that

|Ed(f)− Ed(g)| ≤ E
[∣∣(f(Xd)− g(Xd)

)(
f(Xd) + g(Xd)− 2Yd

)∣∣]

≤ 4D sup
x∈[u,v]d

|f(x)− g(x)|

and

|Ed,m(f)− Ed,m(g)| ≤ 1

m

m∑

i=1

∣∣(f(X(i)
d )− g(X(i)

d )
)(
f(X

(i)
d ) + g(X

(i)
d )− 2Y

(i)
d

)∣∣

≤ 4D sup
x∈[u,v]d

|f(x)− g(x)|

for every f, g ∈ H. Now define N = N
(
H, ε

32D

)
and choose

f1, f2, . . . , fN ∈ H

such that the balls

Bi =

{
f ∈ H : sup

x∈[u,v]d
|f(x)− fi(x)| ≤

ε

32D

}
, i ∈ {1, 2, . . . , N},

cover H. This establishes that for every i ∈ {1, 2, . . . , N} and f ∈ Bi it holds that

|Ed(f)− Ed,m(f)| ≤ |Ed(f)− Ed(fi)|+ |Ed(fi)− Ed,m(fi)|+ |Ed,m(fi)− Ed,m(f)|
≤ 8D sup

x∈[u,v]d
|f(x)− fi(x)| + |Ed(fi)− Ed,m(fi)|

≤ ε/4 + |Ed(fi)− Ed,m(fi)| .

(32)

Our assumptions yield that for every ω ∈ Ω it holds that

Ed
(
f̂d,m,H(ω)

)
− Ed

(
f̂d,H

)

≤ Ed
(
f̂d,m,H(ω)

)
− Ed,m

(
f̂d,m,H(ω)

)
(ω) + Ed,m

(
f̂d,H

)
(ω)− Ed

(
f̂d,H

)

≤ 2 sup
f∈H
|Ed(f)− Ed,m(f)(ω)|

(33)
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In summary (32) and (33) give
{
ω ∈ Ω: Ed

(
f̂d,m,H(ω)

)
− Ed

(
f̂d,H

)
≥ ε

}

⊆
N⋃

i=1

{
ω ∈ Ω: sup

f∈Bi

|Ed(f)− Ed,m(f)(ω)| ≥ ε/2
}

⊆
N⋃

i=1

{ω ∈ Ω: |Ed(fi)− Ed,m(fi)(ω)| ≥ ε/4} .

Observe that for fixed f ∈ H it holds that the random variables Ei :=
(
f(X

(i)
d )− Y (i)

d

)2
,

i ∈ {1, 2, . . . ,m}, are independent and satisfy

E [Ei] = Ed(f),
1

m

m∑

i=1

Ei = Ed,m(f), 0 ≤ Ei ≤ 4D2

which by Hoeffding’s inequality (see, for instance, [29, Theorem 2 withXi ← ±Ei]) assures
that

P

[∣∣Ed(f)− Ed,m(f)
∣∣ ≥ ε/4

]
≤ 2 exp

(
− mε2

128D4

)
. (34)

Together with (5), the monotonicity and subadditivity of the probability measure and the
measurability assumptions according to Lemma 2.2 this proves that

P

[
Ed

(
f̂d,m,H

)
− Ed

(
f̂d,H

)
≥ ε

]
≤

N∑

i=1

P

[∣∣Ed(fi)− Ed,m(fi)
∣∣ ≥ ε/4

]

≤ 2N exp

(
− mε2

128D4

)
.

Using the complement rule and plugging in the definition of N proves the theorem.

We now have everything in place to proceed to the proof of Theorem 2.10.

Proof of Theorem 2.10. This is a direct consequence of Theorem 5.1 and Lemma 4.4. We
assume Setting 4.1 and and observe that

1− 2N
(
H, ε

32D

)
exp

(
− mε2

128D4

)
≥ 1− ̺ (35)

holds for every

m ≥ 128D4ε−2
[
lnN

(
H, ε

32D

)
+ ln(2/̺)

]
. (36)

Lemma 4.4 and some basic inequalities assure that with m = max {1, |u|, |v|} it holds that

128D4ε−2
[
lnN

(
H, ε

32D

)
+ ln(2/̺)

]

≤ 128D4ε−2

[
P(a)

(
ln

(64Dm

ε

)
+

(
L(a) + 1

)
ln

(
3R‖a‖∞ + 3R

))
+ ln(2/̺)

]

≤ 128D4ε−2
[
P(a)

(
ln

(64Dm

ε

)
+ (L(a) + 1)

(
ln(R‖a‖∞) + 2

))
+ ln(̺−1) + 1

]

= h
(
ε−1, ln(̺−1), ln(R‖a‖∞),P(a),L(a)

)
.

(37)

Combining (35), (36), (37) and Theorem 5.1 shows that for every

m ≥ h
(
ε−1, ln(̺−1), ln(R‖a‖∞),P(a),L(a)

)

it holds that

P

[
Ed

(
f̂d,m,H

)
− Ed

(
f̂d,H

)
≤ ε

]
≥ 1− 2N

(
H, ε

32D

)
exp

(
− mε2

128D4

)
≥ 1− ̺

and this proves the theorem.
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