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ELECTRO-SENSING OF INHOMOGENEOUS TARGETS

ANDREA SCAPIN

Abstract. This paper addresses the electro-sensing problem for weakly electric fish
in the case of inhomogeneous targets. It aims at providing a shape descriptor-based

classification for inhomogeneous targets from measurements of the potentials on the
skin of the fish. The approach is based on new invariants for the contracted gen-
eralized polarization tensors associated with inhomogeneous objects. The numerical

simulations show that by comparing these invariants with those in a dictionary of pre-
computed homogeneous and inhomogeneous targets, one can successfully classify the
inhomogeneous target.

1. Introduction

Electric fish orient themselves at night in complete darkness by using their active electro-
sensing system. They generate a stable, relatively high-frequency, weak electric field and
perceive the transdermal potential modulations caused by nearby targets with different
electromagnetic properties than the surrounding water [28, 29, 30]. Since they have an
electric sense that allows underwater navigation, target classification and intraspecific com-
munication, they are privileged animals for bio-inspiring man-built autonomous systems
[17]. In fact, active electro-sensing has motivated an increasing number of experimen-
tal, behavioral, biological, and computational studies since Lissmann and Machins work
[12, 13, 16, 18, 23, 24, 27, 28]. The growing interest in electro-sensing could be explained
not only by the curiosity of discovering a sixth sense, electric perception, that is not among
one of our own senses, but also by potential bio-inspired applications in underwater au-
tonomous robotics. It is challenging to equip robots with electric perception and provide
them, by mimicking weakly electric fish, with navigation, imaging and classification capa-
bilities in dark or turbid environments [30, 19].

Mathematically speaking, the electro-sensing problem is to detect and locate the target
and to identify its shape and material parameters given the current distribution over the
skin of the fish. In other words, electro-sensing system performance can be assessed with
respect to four fundamental tasks: target detection, estimation of a target’s location, shape
and internal structure. Due to the fundamental ill-posedness of this imaging problem, it is
very intriguing to see how much information weakly electric fish are able to recover. The
electric field perturbation due to the target is a complicated highly nonlinear function of
its shape, electromagnetic parameters, and distance from the fish. Thus, understanding
analytically this electric sensing is likely to give us insight in this regard [12, 13, 16, 23]. A
simple physical model for the electric responses of the polarised targets has been proposed
in [27]. The model shows that the target’s position and size are intricately related in
the measurements of the trans-cutaneous currents projected onto the skin. Numerical
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approaches have also been driven for simplified geometries using a finite differences scheme
in [20], a finite elements method in [21], and a boundary element method approach in [12].
The geometry of the fish is simplified by an ellipse and is divided into two areas: the
thin skin with low conductivity and the interior of the body. The target’s shape is a disk.
In this simple model, the electric images projected onto the fish skin are fundamentally
blurry and difficult to interpret [28, 29]. In [21], the skin’s and body’s conductivity values
are optimized in order to approximate as well as possible the experimentally measured
field. The result is that the optimal conductivity is not uniform, being higher in the tail
region.

More recently, in [2], a rigorous model for the electro-location of a target around the
fish has been derived. Using the fact that the electric current produced by the electric
organ is time harmonic with a known fundamental frequency, a space-frequency location
search algorithm has been introduced. Its robustness with respect to measurement noise
and its sensitivity with respect to the number of frequencies, the number of sensors, and
the distance to the target have been illustrated. In the case of disk- and ellipse-shaped
targets, it has been shown that the conductivity, the permittivity, and the size of the
targets can be reconstructed separately from multifrequency measurements. In [14], a
capacitive sensing method has recently been implemented. It has been shown that the
size of a capacitive sphere can be estimated from multifrequency electrosensory data. In
[15], uniqueness and stability estimates to the considered electro-sensing inverse problem
have been established.

There are still many longstanding problems in electro-sensing. In particular, shape
identification and classification are considered to be the most challenging ones. They have
yet to be analyzed and understood. In [3, 4], two schemes that allow one to recognize and
classify targets from measurements of the electric field perturbations induced by the targets
have been presented and analyzed. The first algorithm is based on shape descriptors for
nonbiological targets and the second one is based on spectral induced polarizations that can
be used to image living biological targets, which have frequency-dependent electromagnetic
parameters due to the capacitive effects induced by their cell membrane structures [8]. In
[3], one first extracts the generalized (or high-order) polarization tensors of the target from
the data. These tensors, first introduced in [11], are intrinsic geometric quantities and
constitute the right class of features to represent the target shapes [3]. The shape features
are encoded in the polarization tensors. The extraction of the generalized polarization
tensors can be achieved by a least-squares method. The noise level in the reconstructed
generalized polarization tensors depends on the angle of view. The larger the angle of
view, the more stable the reconstruction. Then from the extracted features one computes
the invariants under rigid motion and scaling. Comparing these invariants with those in a
dictionary of precomputed shapes, one can successfully classify the nonbiological target.

Since more complex objects may have arbitrary shapes and multiple layers of different
dielectric materials warranting, a deeper analysis of the full response is required. It is the
objective of the present paper to extend the approach proposed in [3] to inhomogeneous
targets. Let us now recall the model of electro-sensing derived in [2]: the body of the fish
is Ω, an open bounded set in R

2, with smooth boundary ∂Ω, and with outward normal
unit vector denoted by ν. The electric organ is a dipole f(x) inside Ω or a sum of point
sources inside Ω satisfying the charge neutrality condition. The skin of the fish is very thin
and highly resistive. Its effective thickness, that is, the skin thickness times the contrast
between the water and the skin conductivities, is denoted by ξ, and it is much smaller
than the fish size. We assume that the conductivity of the background medium is one. We
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consider a smooth bounded target D = z+ δB, where z is its location, and B is a smooth
bounded domain containing the origin. We assume that the conductivity of D is a scalar
function γ(x) 6= 1 for x ∈ D with γ(x) = γ̂((x − z)/δ). Also, let γ ∈ L∞(R2) satisfy the
uniform ellipticity condition that for some λ > 0, λ−1 ≤ γ ≤ λ. In the presence of D, the
electric potential emitted by the fish is the solution to the following equations:

(1.1)





∆u = f in Ω,

∇ · (1 + (γ − 1)χD)∇u = 0 in R
2 \ Ω,

u|+ − u|− = ξ
∂u

∂ν

∣∣∣∣
+

on ∂Ω,

∂u

∂ν

∣∣∣∣
−

= 0 on ∂Ω,

|u(x)| = O(|x|−1) as |x| → ∞.

Here, χD is the characteristic function of D, ∂/∂ν is the normal derivative, and |± denotes
the limits from, respectively, outside and inside Ω. The static background potential U , i.e.,
the electric potential without any target, is the unique solution to (1.1) with a constant
conductivity equal to 1 outside the body of the fish Ω:

(1.2)





∆U = f in Ω,

∆U = 0 in R
2 \ Ω,

U |+ − U |− = ξ
∂U

∂ν

∣∣∣∣
+

on ∂Ω,

∂U

∂ν

∣∣∣∣
−

= 0 on ∂Ω,

|U(x)| = O(|x|−1) as |x| → ∞.

A dipole approximation for small homogeneous targets away from the fish has been derived
in [2]. It is given in terms of the generalized polarization tensors (GPTs). The concept
of GPTs for an inhomogeneous target has been first considered in [6]. However in [6], a
model much simpler then the weakly electric fish has been taken into account. The aim
of the present paper is to extend the notion of generalized polarization tensors (GPTs)
to the fish model described above and to introduce an efficient shape descriptor-based
classification for inhomogeneous targets from measurements of the potentials on the skin
of the fish. The approach is based on new invariants for particular linear combinations of
the GPTs associated with inhomogeneous objects.

The paper is organized as follows. In Section 2, we derive a boundary integral rep-
resentation for the perturbation of the potential due to the presence of the target. We
introduce the GPTs associated with the inhomogeneous target D as the building blocks of
the multipolar asymptotic expansion of the boundary measurements of u|+ on ∂Ω in terms
of the size of D. In Section 3, we consider a particular linear combination of the GPTs,
called contracted generalized polarization tensors (CGPTs), and generalize the transla-
tion, rotation and scaling formulas for the contracted GPTs associated with homogeneous
targets first derived in [3] to those associated with the inhomogeneous target D. Based on
such formulas, we build transform invariants for the CGPTs and propose a matching algo-
rithm for retrieving inhomogeneous targets. In Section 4, we present a variety of numerical
simulations to illustrate the performance of the proposed matching algorithm. We aim at
recognizing a specific inhomogeneous target by means of a dictionary-matching approach.



4 ANDREA SCAPIN

The considered dictionary of targets contains both homogeneous and inhomogeneous ob-
jects. The latters are obtained by inserting inside the homogeneous targets inclusions with
different conductivities. Similarily to what has been done in [3], the numerical simulations
we perform confirm that extracting generalized polarization tensors of an inhomogeneous
target from the data and comparing invariants with those of learned elements in a dictio-
nary yields a classification procedure with a good performance in the full-view case and
with small measurement noise level.

2. CGPTs for the weakly electric fish model

2.1. Boundary integral representation. The two-dimensional model we want to study
is (1.1) where the target D is assumed to be inhomogeneous.

First, we recall a boundary integral representation for the perturbation of the potential,
namely u−U , where U and u are solutions to (1.2) and (1.1) respectively. Let ΓR be the
Green’s function associated with Robin boundary conditions, that is defined for x ∈ R

2 \Ω
by

(2.1)





−∆yΓR(x, y) = δx(y), y ∈ R
2 \ Ω,

ΓR(x, y)|+ − ξ
∂ΓR

∂νx
(x, y)

∣∣∣∣
+

= 0, y ∈ ∂Ω,
∣∣ΓR(x, y) +

1
2π log |y|

∣∣ = O(|y|−1), |y| → ∞.

We consider the divergence-type equation in (1.1) posed on R
2 \Ω and test it with the

solution ΓR to (2.1):

(2.2) ΓR(x, y)∇y · γ(y)∇yu(y) = 0.

Integrating (2.2) over BR \ (Ω ∪D), we get
∫

BR\(Ω∪D)

ΓR(x, y)∇ · γ(y)∇yu(y) dy =

∫

BR\(Ω∪D)

∆yu(y) ΓR(x, y)dy = 0.

Applying Green’s theorem we obtain

0 =

∫

BR\(Ω∪D)

∆yu(y) ΓR(x, y)dy

=

∫

BR\(Ω∪D)

u(y) · (−∆yΓR)(x, y) dy +

∫

∂(BR\(Ω∪D))

(
∂u

∂νy
(y) ΓR(x, y)−

∂ΓR

∂νy
u(y)

)
dsy

= u(x) +

∫

∂(BR\(Ω∪D))

(
∂u

∂ν
ΓR −

∂ΓR

∂νy
u

)
ds.

So, we have

u(x) =

∫

∂(BR\(Ω∪D))

(
∂ΓR

∂νy
u−

∂u

∂ν
ΓR

)
ds

=

∫

∂BR

(
∂ΓR

∂νy
u−

∂u

∂ν
ΓR

)
ds−

∫

∂Ω

(
∂ΓR

∂νx
u−

∂u

∂ν
ΓR

)
ds−

∫

∂D

(
∂ΓR

∂νy
u−

∂u

∂ν
ΓR

)
ds.

Let U be the static background solution defined in (1.2). Then

∆U = 0 in R
2 \ Ω.
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Multiplying by ΓR and integrating over BR \ Ω we get

U(x) =

∫

∂BR

(
∂ΓR

∂νy
U −

∂U

∂ν
ΓR

)
ds−

∫

∂Ω

(
∂ΓR

∂νy
U −

∂U

∂ν
ΓR

)
ds.

Omitting the contributions of the integrals on ∂BR, that are negligible as R → +∞,
we have that

u− U =

∫

∂Ω

(
∂ΓR

∂νy
U −

∂U

∂ν
ΓR

)
−

∫

∂Ω

(
∂ΓR

∂νy
u−

∂u

∂ν
ΓR

)
ds−

∫

∂D

(
∂ΓR

∂νy
u−

∂u

∂ν
ΓR

)
ds

=

∫

∂Ω

∂ΓR

∂νy
(U − u)− ΓR

(
∂U

∂ν
−
∂u

∂ν

)
ds−

∫

∂D

(
∂ΓR

∂νy
u−

∂u

∂ν
ΓR

)
ds.

Then, using the Robin’s boundary conditions for ΓR, U and u, we obtain that

=

∫

∂Ω

∂ΓR

∂νy

(
U|+ − u|+

)
−ξ

∂ΓR

∂νy

(
U|+ − U|−

ξ
−
u|+ − u|−

ξ

)
ds−

∫

∂D

(
∂ΓR

∂νy
u−

∂u

∂ν
ΓR

)
ds.

Since u|− = U|−, we get

=

∫

∂Ω

∂ΓR

∂νy

(
U|+ − u|+

)
−
∂ΓR

∂νy

(
U|+ − u|+

)
ds−

∫

∂D

(
∂ΓR

∂νy
u|+ −

∂u

∂ν

∣∣∣∣
+

ΓR

)
ds .

Therefore,

(2.3) (u− U)(x) =

∫

∂D

(
∂u

∂ν

∣∣∣∣
+

(y) ΓR(x, y)−
∂ΓR

∂νx
(x, y) u|+(y)

)
dsy .

Let us now define the Neumann-to-Dirichlet (NtD) map

Λγ

[
γ
∂u

∂ν

∣∣∣∣
−

]
= u|∂D.

The transmission condition on ∂D

γ
∂u

∂ν

∣∣∣∣
−

=
∂u

∂ν

∣∣∣∣
+

yields

(u− U)(x) =

∫

∂D

g(y) ΓR(x, y) dsy −

∫

∂D

∂ΓR

∂νy
(x, y) Λγ [g](y) dsy ,

with g = ∂u/∂ν|+.

For x ∈ R
2 \ (Ω ∪D),

Λ1

(
∂ΓR(x, ·)

∂νy

)
= ΓR(x, ·)−

1

|∂D|

∫

∂D

ΓR(x, y) dsy on ∂D,

where Λ1 = Λγ≡1, and hence,

∂ΓR(x, ·)

∂νy
= Λ−1

1 [ΓR(x, ·)] on ∂D,
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since Λ1 : H
−1/2
0 (∂D) → H

1/2
0 (∂D) is invertible. Moreover, since Λ1 : H

−1/2
0 (∂D) →

H
1/2
0 (∂D) is self-adjoint, it follows that

(u− U)(x) =

∫

∂D

g(y) ΓR(x, y) dsy −

∫

∂D

Λ−1
1 [ΓR(x, ·)](y) Λγ [g](y) dsy

=

∫

∂D

g(y) ΓR(x, y) dsy −

∫

∂D

ΓR(x, y) Λ
−1
1 Λγ [g](y) dsy

=

∫

∂D

ΓR(x, y)(g(y)− Λ−1
1 Λγ [g](y)) dsy

=

∫

∂D

ΓR(x, y)(I − Λ−1
1 Λγ)[g](y) dsy

=

∫

∂D

ΓR(x, y)Λ
−1
1 (Λ1 − Λγ)[g](y) dsy .

Therefore, the following result holds.

Lemma 2.1. For x ∈ R
2 \ (Ω ∪D), we have

(2.4) (u− U)(x) =

∫

∂D

ΓR(x, y)Λ
−1
1 (Λ1 − Λγ)[g](y) dsy,

with g = ∂u/∂ν|+.

Theorem 2.2 (Dipolar approximation). If D = z + δB, with dist(∂Ω, z)≫ 1, δ ≪ 1 and

B is a bounded open set, then for any x ∈ ∂Ω,

(2.5)

(
∂u

∂ν
−
∂U

∂ν

)
(x) = −δ2∇U(z)TM(γ̂, B)∇y

(
∂ΓR

∂ν

∣∣∣∣
+

)
(x, z) + o(δ2),

where T denotes the transpose, M(γ̂, B) = (mij)i,j∈{1,2} is the first-order polarization

tensor associated with B and γ̂, given by

(2.6) mij =

∫

∂B

yiTB

(
I −

(
I

2
+K∗

B

)
TB

)−1(
∂xj
∂ν

∣∣∣∣
∂B

)
(y) dsy,

I is the identity operator, and TB : H
−1/2
0 (∂B) −→ H

−1/2
0 (∂B) is the operator defined by

TB := Λ−1
1 (Λ1 − Λγ̂).

Proof. Let Γ be the fundamental solution of the Laplacian in R
2. Following [9, 11], define

H = −

∫

∂Ω

(
∂Γ

∂νy
u−

∂u

∂ν
Γ

)
ds = −DΩ[u|+] + SΩ

[
∂u

∂ν

∣∣∣∣
+

]
.

Integration by parts and using the same arguments as those in the proof of Lemma 2.1
yields

(2.7) (u−H)(x) =

∫

∂D

Γ(x, y)Λ−1
1 (Λ1 − Λγ)[g](y) dsy = SD [TD[g]] (x),

where TD := Λ−1
1 (Λ1 − Λγ).

Taking the normal derivative on ∂D in (2.7) from outside and using the jump relations
gives

g =
∂u

∂ν

∣∣∣∣
+

=
∂H

∂ν
+

(
I

2
+K∗

D

)
TD[g].
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Hence,

(2.8) g =

(
I −

(
I

2
+K∗

D

)
TD

)−1(
∂H

∂ν

∣∣∣∣
∂D

)
.

Substituting (2.8) into (2.4), we get

(u− U)(x) =

∫

∂D

ΓR(x, y)TD

(
I −

(
I

2
+K∗

D

)
TD

)−1(
∂H

∂ν

∣∣∣∣
∂D

)
(y) dsy.

Following the same arguments as those in [9, 11], we can establish by using the scaling
properties of K∗

D and TD that ‖∇H−∇U‖ = O(δ2), see [11]. Therefore, Taylor expanding
ΓR(x, · ) and H at z and scaling the integral, we get the desired expression for the leading-
order term of the small-volume expansion. �

Definition 2.1. Let α, β ∈ N
2 be multi-indices. We define the generalized polarization

tensors associated to the conductivity distribution γ̂ by

(2.9) Mαβ(γ̂, B) =

∫

∂B

yαTB

(
I −

(
I

2
+K∗

B

)
TB

)−1(
∂xβ

∂ν

∣∣∣∣
∂B

)
(y) dsy.

We can also define the contracted generalized polarization tensors (CGPTs) as follows.

Definition 2.2. Let z = y1 + iy2 and ζ = x1 + ix2. For any pair of indices m,n ∈ N, we
define

M cc
mn(γ̂, B) :=

∫

∂B

Re(zm)TB

(
I −

(
I

2
+K∗

B

)
TB

)−1

[Re(ζn)](y) dsy,

M cs
mn(γ̂, B) :=

∫

∂B

Re(zm)TB

(
I −

(
I

2
+K∗

B

)
TB

)−1

[Im(ζn)](y) dsy,

Msc
mn(γ̂, B) :=

∫

∂B

Im(zm)TB

(
I −

(
I

2
+K∗

B

)
TB

)−1

[Re(ζn)](y) dsy,

Mss
mn(γ̂, B) :=

∫

∂B

Im(zm)TB

(
I −

(
I

2
+K∗

B

)
TB

)−1

[Im(ζn)](y) dsy.

Note that the CGPTs introduced here coincide with those studied in [6].

Proposition 2.3. Let u be the solution to

(2.10)

{
∇ · γ∇u = 0 in R

2,

u− h = O(|x|−1) as |x| → +∞,

where h is a harmonic function in R
2. Then the following identity holds:

(2.11) γ
∂u

∂ν

∣∣∣∣
−

=

(
I −

(
I

2
+K∗

D

)
TD

)−1 [
∂h

∂ν

]
on ∂D.

Proof. The solution u to (2.10) can be represented as

(2.12) u = h+ SD[ψ] in R
2 \D,

for some ψ ∈ L2(∂D). Therefore,

∂u

∂ν

∣∣∣∣
+

=
∂h

∂ν
+

(
I

2
+K∗

D

)
[ψ].
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The transmission condition on ∂D

∂u

∂ν

∣∣∣∣
+

= γ
∂u

∂ν

∣∣∣∣
−

leads to

(2.13) γ
∂u

∂ν

∣∣∣∣
−

=
∂h

∂ν
+

(
I

2
+K∗

D

)
[ψ].

Applying the map Λγ on both sides gives
(
I

2
+K∗

D

)
[ψ] = u− Λγ

[
∂h

∂ν

]
.

Next, using the representation (2.12), we get

Λγ

(
I

2
+K∗

D

)
[ψ] = h+ SD[ψ]− Λγ

[
∂h

∂ν

]
.

Applying Λ−1
1 and using the jump relations, we obtain

Λ−1
1 Λγ

(
I

2
+K∗

D

)
[ψ] =

∂h

∂ν
+

(
−
I

2
+K∗

D

)
[ψ]− Λ−1

1 Λγ

[
∂h

∂ν

]
.

[
−

(
−
I

2
+K∗

D

)
+ Λ−1

1 Λγ

(
I

2
+K∗

D

)]
[ψ] =

∂h

∂ν
− Λ−1

1 Λγ

[
∂h

∂ν

]
,

[
I −

(
I

2
+K∗

D

)
+ Λ−1

1 Λγ

(
I

2
+K∗

D

)]
[ψ] = TD

[
∂h

∂ν

]
,

[
I − TD

(
I

2
+K∗

D

)]
[ψ] = TD

[
∂h

∂ν

]
.

Therefore, we get the following expression of ψ:

ψ =

(
I − TD

(
I

2
+K∗

D

))−1 [
TD

[
∂h

∂ν

]]
.

Substituting ψ into (2.13), we arrive at

γ
∂u

∂ν

∣∣∣∣
−

=
∂h

∂ν
+

(
I

2
+K∗

D

)(
I − TD

(
I

2
+K∗

D

))−1

TD

[
∂h

∂ν

]
,

or equivalently,

(2.14) γ
∂u

∂ν

∣∣∣∣
−

=


I −

(
I −

((
I

2
+K∗

D

)
TD

)−1
)−1



[
∂h

∂ν

]
,

which is equivalent to (2.11). �

The following result shows that the GPTs are the building blocks of the multipolar
asymptotic expansion of u− U .

Theorem 2.4 (Multipolar approximation). For any x ∈ ∂Ω,

(2.15)

(
∂u

∂ν
−
∂U

∂ν

)
(x) = −

∑

|α|,|β|≥1

1

α!β!
δ|α|+|β|∂αU(z)Mαβ(γ̂, B)∂βy

(
∂ΓR

∂ν

∣∣∣∣
+

)
(x, z).
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Remark. In view of (2.15), the GPTs Mαβ(γ̂, B) can be reconstrcted from measurements
of ∂u/∂ν − ∂U/∂ν corresponding to different positions of the fish. As in [3], the number
of of GPTs which can be reconstructed accurately for a given signal-to-noise ratio can
determined determined in terms of the ratio between the characteristic size of the target
and its distance to the fish. The resolving formula derived in [3] holds. Moreover, it is
worth mentioning that if the target is homogeneous, then the GPTs reduce to those first
introduced and investigated in [9, 10]. In fact, if γ|D ≡ k, 0 < k 6= 1 < +∞, then

Mαβ(k,D) =

∫

∂D

yα
(
T −1
D −

(
I

2
+K∗

D

))−1(
∂xβ

∂ν

∣∣∣∣
∂D

)
(y) dsy

=

∫

∂D

yα (λI −K∗
D)

−1

(
∂xβ

∂ν

∣∣∣∣
∂D

)
(y) dsy,

where λ = k+1
2(k−1) .

3. Properties of the CGPTs

The goal of this section is to provide transformation formulas for the contracted GPTs
introduced in Definition 2.2.

3.1. Translation formula. We want to investigate how the quantity

(3.1) M cc
mn(γ,D) =Mmn =

∫

∂D

Re(zm)TD[gcn](y) dsy

changes with respect to a translation of D.

We denote by x̂ = x+ z, D̂ := D + z, 1̂(x̂) := 1, and γ̂(x̂) := γ(x). We want to relate

M cc
mn(γ,D) with M cc

mn(γ̂, D̂) defined by

M cc
mn(γ̂, D̂) = M̂ cc

mn =

∫

∂D̂

Re(x̂m)(ĝcn(x̂)− Λ−1

1̂
ΛD̂
γ̂ [ĝcn](x̂)) dsx̂.

By the change of variables x̂ = x+ z, we obtain

(3.2) M cc
mn(γ̂, D̂) = M̂ cc

mn =

∫

∂D

Re((x+ z)m)(ĝcn(x+ z)− Λ−1

1̂
ΛD̂
γ̂ [ĝcn](x+ z)) dsx .

Lemma 3.1. We have

(3.3) ĝcn(x+ z) =
n∑

k=1

(
n
k

)
[gck(x)r

n−k
z cos((n− k)θz)− g

s
k(x)r

n−k
z sin((n− k)θz)] ,

and

(3.4) ĝsn(x+ z) =
n∑

k=1

(
n
k

)
[gsk(x)r

n−k
z cos((n− k)θz) + gck(x)r

n−k
z sin((n− k)θz)] ,

where z = rz(cos θz, sin θz) in polar coordinates.

Proof. Let ûcn be the solution to

(3.5)

{
∇x̂ · γ̂(x̂)∇x̂û

c
n(x̂) = 0, in R

2

ûcn(x̂)− Re(x̂n) = O(|x̂|−1) as |x̂| → +∞,
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Then, by definition, ĝcn := γ̂
∂ûcn
∂νx̂

. Using the change of variables in (3.5) and setting

vcn(x) := ûcn(x+ z), we obtain
{
∇x · γ(x)∇xv

c
n(x) = 0 in R

2,

vcn(x)− Re((x+ z)
n
) = O(|x|−1) as |x| → +∞.

From

Re((x+ z)n) =

n∑

k=0

(
n
k

)
rkxr

n−k
z [cos(kθx) cos((n− k)θz)− sin(kθx) sin((n− k)θz)],

it follows that

vcn(x) =
n∑

k=0

(
n
k

)
[hck(x)r

n−k
z cos((n− k)θz)− h

s
k(x)r

n−k
z sin((n− k)θz)].

Hence,

ĝcn(x+ z) =

n∑

k=1

(
n
k

)
[gck(x)r

n−k
z cos((n− k)θz)− g

s
k(x)r

n−k
z sin((n− k)θz)].

Analogously we derive formula (3.4) for ĝsn. �

To relate (3.1) and (3.2) we consider the operator

Λ−1
1 ΛD

γ : H
−1/2
0 (∂D) −→ H

−1/2
0 (∂D)

gcn 7−→
∂h

∂νx

∣∣∣∣
−

,

where h is the solution to the boundary value problem

(3.6)

{
∆h = 0 in D,

∇xh · νx = gcn on ∂D.

Let y ∈ D and consider the corresponding Neumann function N1(x, y), that is, the
solution to

(3.7)





∆xN1(x, y) = −δy(x), x ∈ D,

∇xN1(x, y) · νx = 1
|∂D| , x ∈ ∂D,∫

∂D

N1(x, y)dsx = 0.

Then the solution h of (3.6) can be represented by means of this Neumann function

h(y) =

∫

∂D

N1(x, y)g(x) dsx.

So, for y ∈ ∂D, we have

(3.8) Λ−1
1 ΛD

γ [gcn](y) = ∇yh(y) · νy|∂D =

∫

∂D

∇yN1(x, y) · νy g
c
n(x) dsx.

Now we proceed similarly. We let the operator Λ−1

1̂
ΛD̂
γ̂ : H

−1/2
0 (∂D̂) −→ H

−1/2
0 (∂D̂)

be defined by

ĝcn 7−→
∂ĥ

∂νx̂

∣∣∣∣
−

,
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with ĥ being the solution of

(3.9)

{
∆ĥ = 0 in D̂,

∇x̂ĥ · νx̂ = ĝcn on ∂D̂.

Let ŷ = y+ z ∈ D̂ and consider the corresponding Neumann function N̂1(x̂, ŷ), that is,
the solution to 




∆x̂N̂1(x̂, ŷ) = −δŷ(x̂), x̂ ∈ D̂,

∇x̂N̂1(x̂, ŷ) · νx̂ = − 1

|∂D̂|
, x̂ ∈ ∂D̂,∫

∂D̂

N̂1(x̂, ŷ)dsx̂ = 0,

that can be written as

(3.10)





∆xN̂1(x+ z, y + z) = −δy(x), x ∈ D,

∇xN̂1(x+ z, y + z) · νx = − 1
|∂D| , x ∈ ∂D,∫

∂D

N̂1(x+ z, y + z)dsx = 0.

Comparing (3.10) and (3.7), we observe that N̂1(x+z, y+z) and N1(x, y) satisfy the same
boundary value problem (3.7). The uniqueness of a solution to (3.7) yields

(3.11) N̂1(x+ z, y + z) = N1(x, y) .

The solution ĥ to (3.9) can be represented by means of the Neumann function N̂1:

ĥ(ŷ) =

∫

∂D̂

N̂1(x̂, ŷ) ĝ
c
n(x̂) dsx̂.

Moreover, for y ∈ ∂D, we have

Λ−1

1̂
ΛD̂
γ̂ [ĝcn](ŷ) = ∇ŷ ĥ(ŷ) · νŷ

=

∫

∂D̂

(∇ŷ N̂1)(x̂, ŷ) · νŷ ĝ
c
n(x̂) dsx̂

=

∫

∂D

(∇y N̂1)(x+ z, ŷ) · νy ĝ
c
n(x+ z) dsx

=

∫

∂D

(∇y N1)(x, y) · νy

n∑

k=1

(
n
k

)
[gck(x)r

n−k
z cos((n− k)θz)− g

s
k(x)r

n−k
z sin((n− k)θz)] dsx

=

n∑

k=1

(
n
k

)
rn−k
z

[
cos((n− k)θz)

∫

∂D

(∇y N1)(x, y) · νy g
c
k(x) dsx

− sin((n− k)θz)

∫

∂D

(∇y N1)(x, y) · νy g
s
k(x) dsx

]

=
n∑

k=1

(
n
k

)
rn−k
z

[
cos((n− k)θz) Λ

−1
1 ΛD

γ [gck](y)− sin((n− k)θz) Λ
−1
1 ΛD

γ [gsk](y)
]
.

Here we have made the change of variables x̂ = x+ z and used identity (3.11). Therefore,
it follows that
(3.12)

Λ−1

1̂
ΛD̂
γ̂ [ĝ](ŷ) =

n∑

k=1

(
n
k

)
rn−k
z

[
cos((n− k)θz) Λ

−1
1 ΛD

γ [gck](y)− sin((n− k)θz) Λ
−1
1 ΛD

γ [gsk](y)
]
.
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Hence

M cc
mn(γ̂, D̂) =

∫

∂D

Re((x+ z)m)(gcn(x)− Λ−1
1 ΛD

γ [gcn](x)) dsx.

Using the identity

Re((x+ z)m) =

m∑

k=0

(
m
k

)
rkxr

m−k
z [cos(kθx) cos((m− k)θz)− sin(kθx) sin((m− k)θz)] ,

we get

M cc
mn(γ̂, D̂) =

∫

∂D

Re((x+ z)m)(ĝcn(x+ z)− Λ−1

1̂
ΛD̂
γ̂ [ĝcn](x+ z)) dsx

=

m∑

k=1

rm−k
z

(
m
k

)[
cos((m− k)θz)

∫

∂D

rkx cos(kθx)(ĝ
c
n(x+ z)− Λ−1

1̂
ΛD̂
γ̂ [ĝcn](x+ z)) dsx

− sin((m− k)θz)

∫

∂D

rkx sin(kθx)(ĝ
c
n(x+ z)− Λ−1

1̂
ΛD̂
γ̂ [ĝcn](x+ z)) dsx

]
.

(3.13)

From Lemma 3.1 and formula (3.12), we obtain

ĝcn(x+ z)− Λ−1

1̂
ΛD̂
γ̂ [ĝcn](x+ z) =

n∑

r=1

(
n
r

)
rn−r
z [gcr(x) cos((n− r)θz)− g

s
r(x) sin((n− r)θz)]

−

n∑

r=1

(
n
r

)
rn−r
z

[
cos((n− r)θz) Λ

−1
1 ΛD

γ [gcr](x)− sin((n− r)θz) Λ
−1
1 ΛD

γ [gsr ](x)
]

=

n∑

r=1

(
n
r

)
rn−r
z [gcr(x) cos((n− r)θz)− g

s
r(x) sin((n− r)θz)

−(cos((n− r)θz) Λ
−1
1 ΛD

γ [gcr](x)− sin((n− r)θz) Λ
−1
1 ΛD

γ [gsr ](x))
]

=

n∑

r=1

(
n
r

)
rn−r
z

[
(gcr(x)− Λ−1

1 ΛD
γ [gcr](x)) cos((n− r)θz)− (gsr(x)− Λ−1

1 ΛD
γ [gsr ](x)) sin((n− r)θz)

]
.

So ∫

∂D

rkx cos(kθx)(ĝ
c
n(x+ z)− Λ−1

1̂
ΛD̂
γ̂ [ĝcn](x+ z)) dsx

=

n∑

r=1

(
n
r

)
rn−r
z [cos((n− r)θz)M

cc
kr − sin((n− r)θz)M

cs
kr] ,

(3.14)

and ∫

∂D

rkx sin(kθx)(ĝ
c
n(x+ z)− Λ−1

1̂
ΛD̂
γ̂ [ĝcn](x+ z)) dsx

=

n∑

r=1

(
n
r

)
rn−r
z [cos((n− r)θz)M

sc
kr − sin((n− r)θz)M

ss
kr ] .

(3.15)

Plugging (3.14) and (3.15) into formula (3.13), we arrive at

M cc
mn(γ̂, D̂) =

m∑

k=1

n∑

r=1

(
n
r

)(
m
k

)
rn−r
z rm−k

z {cos((m− k)θz) [cos((n− r)θz)M
cc
kr − sin((n− r)θz)M

cs
kr]

− sin((m− k)θz) [cos((n− r)θz)M
sc
kr − sin((n− r)θz)M

ss
kr ]} .
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Analogously, we readily get

Msc
mn(γ̂, D̂) =

m∑

k=1

n∑

r=1

(
n
r

)(
m
k

)
rn−r
z rm−k

z {cos((m− k)θz) [cos((n− r)θz)M
sc
kr − sin((n− r)θz)M

ss
kr ]

+ sin((m− k)θz) [cos((n− r)θz)M
cc
kr − sin((n− r)θz)M

cs
kr]} ,

M cs
mn(γ̂, D̂) =

m∑

k=1

n∑

r=1

(
n
r

)(
m
k

)
rn−r
z rm−k

z {cos((m− k)θz) [cos((n− r)θz)M
cs
kr + sin((n− r)θz)M

cc
kr]

− sin((m− k)θz) [cos((n− r)θz)M
ss
kr + sin((n− r)θz)M

sc
kr]} ,

Mss
mn(γ̂, D̂) =

m∑

k=1

n∑

r=1

(
n
r

)(
m
k

)
rn−r
z rm−k

z {cos((m− k)θz) [cos((n− r)θz)M
ss
kr + sin((n− r)θz)M

sc
kr]

+ sin((m− k)θz) [cos((n− r)θz)M
cs
kr + sin((n− r)θz)M

cc
kr]} .

We write these formulas compactly in a matrix form as follows:
[
M̂ cc

mn M̂sc
mn

M̂ cs
mn M̂ss

mn

]
=

m∑

k=1

n∑

r=1

rm−k
z rn−r

z

(
m
k

)(
n
r

)
R((n− r)θz)

[
M cc

kr Msc
kr

M cs
kr Mss

kr

]
·R((m− k)θz)

T ,

where R(θ) is the matrix associated with the rotation by θ, i.e.,

(3.16) R(θ) :=

[
cos θ − sin θ
sin θ cos θ

]
.

3.2. Rotation formula. We want to investigate how Mmn changes with respect to a
rotation of D by an angle θ.

Let θ ∈ [0, 2π) and let R ∈ R
2×2 be the matrix associated with the rotation

R := R(θ) =

[
cos θ − sin θ
sin θ cos θ

]
.

Let us define ΦR(x) := Rx = eiθx.

We denote x̂ = Rx, D̂ := ΦR(D) and γ̂(x̂) := γ(x). We want to relate M cc
mn(γ,D) with

M cc
mn(γ̂, D̂) defined by

(3.17) M cc
mn(γ̂, D̂) = M̂ cc

mn =

∫

∂D̂

Re(x̂m)(ĝcn(x̂)− Λ−1

1̂
ΛD̂
γ̂ [ĝcn](x̂)) dsx̂.

By the change of variables x̂ = Rx, we obtain

(3.18) M cc
mn(γ̂, D̂) = M̂ cc

mn =

∫

∂D

rmx cos(m(θx + θ)) (ĝcn(Rx)− Λ−1

1̂
ΛD̂
γ̂ [ĝcn](Rx)) dsx .

Lemma 3.2. We have

(3.19) ĝcn(Rx) = cosnθ gcn(x)− sinnθ gsn(x) ,

and

(3.20) ĝsn(Rx) = cosnθ gsn(x) + sinnθ gcn(x) .
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Proof. Let ûcn be the solution to

(3.21)

{
∇x̂ · γ̂(x̂)∇x̂û

c
n(x̂) = 0 in R

2,

ûcn(x̂)− r
n
x̂ cos(nθx̂) = O(r−1

x̂ ) as |x̂| → +∞.

Then, by definition, we have ĝcn :=
∂ûcn
∂νx̂

∣∣∣∣
+

. By a change of variables in (3.21) and by

setting vcn(x) := ûcn(Rx), we obtain
{
∇x · γ(x)∇xv

c
n(x) = 0 in R

2,

vcn(x)− r
n
x cos(n(θx + θ)) = O(r−1

x ) as |x| → +∞.

Hence,
{
∇x · γ(x)∇xv

c
n(x) = 0 in R

2,

vcn(x)− (rnx cosnθx cosnθ − r
n
x sinnθx sinnθ) = O(r−1

x ) as |x| → +∞,

or equivalently,
{
∇x · γ(x)∇xv

c
n(x) = 0 in R

2,

vcn(x)− (hcn(x)θx cosnθ − h
s
n(x) sinnθ) = O(r−1

x ) as |x| → +∞.

Therefore,

vcn(x) = cosnθ ucn(x)− sinnθ usn(x).

Analogously we derive formula (3.20) for ĝsn. �

In order to relate (3.1) and (3.18) we need to have a better understanding of the bound-
ary operator that we are integrating. We have already written an integral representation

for the operator Λ−1
1 ΛD

γ : H
−1/2
0 (∂D) −→ H

−1/2
0 (∂D) in the previous subsection (see

(3.8)). Now, we proceed similarly for the operator that plays a role in the rotated prob-
lem:

Λ−1

1̂
ΛD̂
γ̂ : H

−1/2
0 (∂D̂) −→ H

−1/2
0 (∂D̂)

ĝcn 7−→
∂ĥ

∂νx̂

∣∣∣∣
−

,

where ĥ is the solution to the boundary value problem

(3.22)

{
∆ĥ = 0 in D̂,

∇x̂ĥ · νx̂ = ĝcn on ∂D̂.

Let ŷ = Ry ∈ D̂ and consider the corresponding Neumann function N̂1(x̂, ŷ), that is,
the solution to 




∆x̂N̂1(x̂, ŷ) = −δŷ(x̂), x̂ ∈ D̂,

∇x̂N̂1(x̂, ŷ) · νx̂ = − 1

|∂D̂|
, x̂ ∈ ∂D̂,∫

∂D̂

N̂1(x̂, ŷ)dsx̂ = 0.
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Exploiting the rotational invariance of the Laplacian gives





(∆xN̂1 ◦ ΦR)(x,Ry) = −δRy(Rx) = −δy(x), x ∈ D,

R(∇xN̂1 ◦ ΦR)(x,Ry) · (Rνx) = −
1

|∂D| , x ∈ ∂D,∫

∂D

N̂1(Rx, ŷ)dsx = 0.

Therefore,





(∆xN̂1 ◦ ΦR)(x,Ry) = −δRy(Rx) = −δy(x), x ∈ D,

(∇xN̂1 ◦ ΦR)(x,Ry) · νx = − 1
|∂D| , x ∈ ∂D,∫

∂D

N̂1(Rx,Ry)dsx = 0.

One can easily see that N̂1(Rx,Ry) and N1(x, y) satisfy exactly the same boundary
value problem (3.7). The uniqueness of a solution to (3.7) yields

(3.23) N̂1(Rx,Ry) = N1(x, y) .

Since the solution ĥ to (3.22) can be represented by means of the Neumann function

N̂1:

ĥ(ŷ) =

∫

∂D̂

N̂1(x̂, ŷ) ĝ
c
n(x̂) dsx̂ ,

we have, for y ∈ ∂D,

Λ−1

1̂
ΛD̂
γ̂ [ĝcn](ŷ) = ∇ŷ ĥ(ŷ) · νŷ

=

∫

∂D̂

(∇ŷ N̂1)(x̂, ŷ) · νŷ ĝ
c
n(x̂) dsx̂

=

∫

∂D

(∇ŷ N̂1)(Rx, ŷ) · νŷ ĝ
c
n(Rx) dsx

=

∫

∂D

R(∇y N̂1(Rx,R · ))(Rx, y) ·R νy (cosnθ g
c
n(x)− sinnθ gsn(x)) dsx

=

∫

∂D

(∇y N1)(x, y) · νy (cosnθ g
c
n(x)− sinnθ gsn(x)) dsx

= cosnθ

∫

∂D

(∇y N1)(x, y) · νy g
c
n(x) dsx − sinnθ

∫

∂D

(∇y N1)(x, y) · νy g
s
n(x) dsx .

Here, we have made the change of variables x̂ = Rx and used identity (3.23). Therefore,
it follows that

(3.24) Λ−1

1̂
ΛD̂
γ̂ [ĝcn](Rx) = cosnθΛ−1

1 ΛD
γ [gcn](x)− sinnθΛ−1

1 ΛD
γ [gsn](x) .

Hence, from Lemma 3.2 and (3.24), we get

ĝcn(Rx)− Λ−1

1̂
ΛD̂
γ̂ [ĝcn](Rx) = cosnθ gcn(x)− sinnθ gsn(x)− cosnθΛ−1

1 ΛD
γ [gcn](x) + sinnθΛ−1

1 ΛD
γ [gsn](x)

= cosnθ (gcn(x)− Λ−1
1 ΛD

γ [gcn](x))− sinnθ (gsn(x)− Λ−1
1 ΛD

γ [gsn](x)) .
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M cc
mn(γ̂, D̂) =

∫

∂D

rmx cos(m(θx + θ)) (ĝcn(Rx)− Λ−1

1̂
ΛD̂
γ̂ [ĝcn](Rx)) dsx

=

∫

∂D

[rmx cos(mθx) cos(mθ)− r
m
x sin(mθx) sin(mθ)](ĝ

c
n(Rx)− Λ−1

1̂
ΛD̂
γ̂ [ĝcn](Rx)) dsx

= cos(mθ) cos(nθ)

∫

∂D

rmx cos(mθx)(g
c
n(x)− Λ−1

1 ΛD
γ [gcn](x)) dsx

− cos(mθ) sin(nθ)

∫

∂D

rmx cos(mθx)(g
s
n(x)− Λ−1

1 ΛD
γ [gsn](x)) dsx

− sin(mθ) cos(nθ)

∫

∂D

rmx sin(mθx)(g
c
n(x)− Λ−1

1 ΛD
γ [gcn](x)) dsx

+ sin(mθ) sin(nθ)

∫

∂D

rmx sin(mθx)(g
s
n(x)− Λ−1

1 ΛD
γ [gsn](x)) dsx

= cos(mθ) cos(nθ)M cc
mn − cos(mθ) sin(nθ)M cs

mn

− sin(mθ) cos(nθ)Msc
mn + sin(mθ) sin(nθ)Mss

mn .

Similar computations lead to the rotation formulas for the others CGPTs M̂ cs
mn, M̂

sc
mn

and M̂ss
mn. All these formulas can be written in a matrix form:

[
M̂ cc

mn M̂sc
mn

M̂ cs
mn M̂ss

mn

]
= R(nθ) ·

[
M cc

mn Msc
mn

M cs
mn Mss

mn

]
·R(mθ)T ,

where R(θ) is defined in (3.16).

3.3. Scaling formula. Similarly to what we have done for translations and rotations we
want to investigate how Mmn changes with respect to a scaling of D.

Let s > 0 and assume that z = 0. We denote x̂ = sx, D̂ := sD and γ̂(x̂) := γ(x). We

want to relate M cc
mn(γ,D) with M cc

mn(γ̂, D̂) given by

M cc
mn(γ̂, D̂) = M̂mn =

∫

∂D̂

Re(x̂m)(ĝcn(x̂)− Λ−1

1̂
ΛD̂
γ̂ [ĝcn](x̂)) dsx̂ .

By the change of variables x̂ = sx, we obtain

(3.25) M cc
mn(γ̂, D̂) = M̂mn = sm+1

∫

∂D

Re(xm)(ĝcn(sx)− Λ−1

1̂
ΛD̂
γ̂ [ĝcn](sx)) dsx.

Lemma 3.3. We have

(3.26) ĝcn(sx) = sn−1gcn(x) ,

and

(3.27) ĝsn(sx) = sn−1gsn(x) .

Proof. We show the first identity. The one for ĝsn can be proved in the same way. Let ûcn
be the solution to

(3.28)

{
∇x̂ · γ̂(x̂)∇x̂û

c
n(x̂) = 0 in R

2,

ûcn(x̂)− r
n
x̂ cos(nθx̂) = O(r−1

x̂ ) as |x̂| → +∞,

Then ĝcn := γ̂
∂ûcn
∂νx̂

. By a change of variables in (3.28) and by setting vcn(x) := ûcn(sx), we

obtain {
∇x · γ(x)∇xv

c
n(x) = 0 in R

2,

s(vcn(x)− s
nrnx cos(nθx)) = O(r−1

x ) as |x̂| → +∞.
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Therefore, snvcn(x) solves the same problem as ucn(x). By the uniqueness of a solution, we
get

s−nvcn(x) = ucn(x).

So

∇xu
c
n(x) = s−n∇xv

c
n(x) = s−n+1∇x̂û

c
n(x̂) .

Hence,

gcn(x) = s−n+1ĝcn(x̂).

�

We want to relate (3.1) and (3.25). We refer to (3.8) for an integral representation of
the operator Λ−1

1 ΛD
γ .

Now we proceed similarly for the operator that plays a role in the scaled problem:

Λ−1

1̂
ΛD̂
γ̂ : H

−1/2
0 (∂D̂) −→ H

−1/2
0 (∂D̂)

ĝcn 7−→
∂ĥ

∂νx̂

∣∣∣∣
−

,

where ĥ is the solution to the boundary value problem

(3.29)

{
∆ĥ = 0 in D̂,

∇x̂ĥ · νx̂ = ĝcn on ∂D̂ .

Let ŷ = sy ∈ D̂ and consider the corresponding Neumann function N̂1(x̂, ŷ), that is,
the solution to 




∆x̂N̂1(x̂, ŷ) = −δŷ(x̂), x̂ ∈ D̂,

∇x̂N̂1(x̂, ŷ) · νx̂ = − 1

|∂D̂|
, x̂ ∈ ∂D̂,∫

∂D̂

N̂1(x̂, ŷ)dsx̂ = 0.

Then,




1
s2 ∆xN̂1(sx, sy) = −δsy(sx) = −δ0(s(x− y)) = −

1
s2 δy(x), x ∈ D,

1
s ∇xN̂1(sx, sy) · νx = − 1

s|∂D| , x ∈ ∂D,∫

∂D

N̂1(sx, ŷ)dsx = 0,

which shows that 



∆xN̂1(sx, sy) = −δy(x), x ∈ D,

∇xN̂1(sx, sy) · νx = − 1
|∂D| , x ∈ ∂D,∫

∂D

N̂1(sx, sy)dsx = 0.

One can easily see that N̂1(sx, sy) and N1(x, y) satisfy exactly the same boundary value
problem (3.7). Therefore,

(3.30) N̂1(sx, sy) = N1(x, y) .

The solution ĥ to (3.29) can be represented by means of the Neumann function N̂1:

ĥ(ŷ) =

∫

∂D̂

N̂1(x̂, ŷ) ĝ
c
n(x̂) dsx̂ ,
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and so, for y ∈ ∂D, we have

Λ−1

1̂
ΛD̂
γ̂ [ĝ](ŷ) = ∇ŷ ĥ(ŷ) · νŷ

=

∫

∂D̂

(∇ŷ N̂1)(x̂, ŷ) · νŷ ĝ
c
n(x̂) dsx̂

=

∫

∂D

(∇ŷ N̂1)(sx, ŷ) · νy s
n−1 gcn(x) s dsx

= sn−1

∫

∂D

(∇y N̂1(sx, s · ))(sx, y) · νy g
c
n(x) dsx

= sn−1

∫

∂D

(∇y N1)(x, y) · νy g
c
n(x) dsx.

Here, we have made the change of variables x̂ = sx and used identity (3.30). Therefore,
it follows that

Λ−1

1̂
ΛD̂
γ̂ [ĝ](ŷ) = sn−1 Λ−1

1 ΛD
γ [g](y).

Then

M cc
mn(γ̂, D̂) = sm+1

∫

∂D

Re(xm)(sn−1gcn(x)− s
n−1Λ−1

1 ΛD
γ [gcn](x)) dsx

= sm+n

∫

∂D

Re(xm)(gcn(x)− Λ−1
1 ΛD

γ [gcn](x)) dsx

= sm+nM cc
mn(γ,D).

Hence, we obtain the following scaling formula

M cc
mn(γ̂, D̂) = sm+nM cc

mn(γ,D) .

Analogously, we get

M cs
mn(γ̂, D̂) = sm+nM cs

mn(γ,D),

Msc
mn(γ̂, D̂) = sm+nMsc

mn(γ,D),

Mss
mn(γ̂, D̂) = sm+nMss

mn(γ,D).

In order to simplify the notation, for any pair of indices m,n, we denote by Mmn :=[
M cc

mn Msc
mn

M cs
mn Mss

mn

]
and M̂mn :=

[
M̂ cc

mn M̂sc
mn

M̂ cs
mn M̂ss

mn

]
. We introduce also the following notation:

• TzD = {x+ z, for x ∈ D}, (Tz ⋆ γ)(x) = γ(x− z), for z ∈ R
2;

• RθD = {eiθx, for x ∈ D}, (Rθ ⋆ γ)(x) = γ(e−iθx), for θ ∈ [0, 2π);

• sD = {sx, for x ∈ D}, (s ⋆ γ)(x) = γ(s−1x), for s > 0,

where D is an open set and γ is a conductivity distribution in the plane.

We summarize the formulas that we obtained so far in the following theorem.

Proposition 3.4. For any pair m,n of indices, m,n = 1, 2, . . ., the following transforma-

tion formulas hold true:

Mmn(Tz ⋆ γ, TzD) =

m∑

k=1

n∑

r=1

rm−k
z rn−r

z

(
m
k

)(
n
r

)
R((n− r)θz)Mkr(γ,D)R((m− k)θz)

T ,

Mmn(Rθ ⋆ γ,RθD) = R(nθ)Mmn(γ,D)R(mθ)T ,
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and

Mmn(s ⋆ γ, sD) = sm+n Mmn(γ,D).

3.4. Complex CGPTs. As observed in [3], it is convenient to consider complex com-
binations of CGPTs. For a pair of indices m,n = 1, 2, ... , we introduce the following
quantities

(3.31)
N

(1)
mn(γ,D) = (M cc

mn −M
ss
mn) + i(M cs

mn +Msc
mn),

N
(2)
mn(γ,D) = (M cc

mn +Mss
mn) + i(M cs

mn −M
sc
mn).

Using relations of Proposition 3.4 it is straightforward to prove similar rules than those
derived in [2] for the complex CGPTs (3.31).

Proposition 3.5. For all integers m,n, and geometric parameters θ, s and z, the following
holds:

(3.32)

N(1)
mn(Rθ ⋆ γ,RθD) = ei(m+n)N(1)

mn(γ,D), N(2)
mn(Rθ ⋆ γ,RθD) = ei(n−m)N(2)

mn(γ,D),

(3.33) N(1)
mn(s ⋆ γ, sD) = sm+nN(1)

mn(γ,D), N(2)
mn(s ⋆ γ, sD) = sm+nN(2)

mn(γ,D),

and

(3.34)

N(1)
mn(Tz⋆γ, TzD) =

m∑

l=1

n∑

k=1

Cz
mlN

(1)
lk (γ,D)Cz

nk, N(2)
mn(Tz⋆γ, TzD) =

m∑

l=1

n∑

k=1

Cz
mlN

(2)
lk (γ,D)Cz

nk,

where Cz is a lower triangular matrix with the m,n-th entry given by

Cz
mn =

(
m

n

)
zm−n.

We define the complex CGPT matrices by

N(1) := (N(1)
mn)m,n, N(2) := (N(2)

mn)m,n.

Setting w = seiθ we introduce the diagonal matrix Gw with m-th diagonal entry given by
smeimθ.

Applying one after the other the properties of Proposition 3.5 we immediately get the
following relations:

(3.35) N(1)(Tz ⋆ (s ⋆ (Rθ ⋆ γ)), TzsRθD) = CzGwN(1)(γ,D)Gw(Cz)T ,

(3.36) N(2)(Tz ⋆ (s ⋆ (Rθ ⋆ σ)), TzsRθD) = CzGwN(2)(γ,D)Gw(Cz)T .

Relations (3.35) and (3.36) still hold for the truncated CGPTs of finite order, due to the
triangular shape of the matrix Cz.

We call a dictionary D a collection of pairs (σ,B), where B is a standard shape centered
at the origin, with characteristic size of order 1, and σ is a conductivity distribution such
that supp(σ − 1) = B.

We assume that a reference dictionary D is initially given. Furthermore, suppose to
consider a pair (γ,D), which is unknow, that is obtained from an element (σ,B) ∈ D by
applying some unknown rotation θ, scaling s and translation z, i.e., D = TzsRθ B and
γ = Tz ⋆ (s ⋆ (Rθ ⋆ σ)).
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3.5. Conductivity descriptors. If D = TzsRθ B and γ = Tz ⋆ (s ⋆ (Rθ ⋆ σ)) then the
following identities hold true:

(3.37) N
(1)
11 (γ,D) = w2N

(1)
11 (σ,B),

(3.38) N
(1)
12 (γ,D) = 2N

(1)
11 (γ,D)z + w3N

(1)
12 (σ,B),

(3.39) N
(2)
11 (γ,D) = s2N

(2)
11 (σ,B),

(3.40) N
(2)
12 (γ,D) = 2N

(2)
11 (γ,D)z + s2wN

(2)
12 (σ,B),

where w = seiθ.

From identities (3.39) and (3.40) we obtain the relation:

(3.41)
N

(2)
12 (γ,D)

2N
(2)
11 (γ,D)

= z + seiθ
N

(2)
12 (σ,B)

2N
(2)
11 (σ,B)

.

Following [3], let u =
N

(2)
12 (γ,D)

2N
(2)
11 (γ,D)

. We define the following quantities

(3.42) J (1)(γ,D) = N(1)(T−u ⋆ γ, T−uD) = C−uN(1)(γ,D)(C−u)T ,

(3.43) J (2)(γ,D) = N(2)(T−u ⋆ γ, T−uD) = C−uN(2)(γ,D)(C−u)T ,

where the matrix C−u has been previously defined in Proposition 3.5. These quantities
are translation invariant.

From J (1)(γ,D) = (J
(1)
mn(γ,D))m,n, J

(2)(γ,D) = (J
(2)
mn(γ,D))m,n, for each pair of

indices m,n, we define the scaling invariant quantities:
(3.44)

S(1)mn(γ,D) =
J

(1)
mn(γ,D)

(J
(2)
mm(γ,D)J

(2)
nn (γ,D))1/2

, S(2)mn(γ,D) =
J

(2)
mn(γ,D)

(J
(2)
mm(γ,D)J

(2)
nn (γ,D))1/2

.

Finally, we introduce the CGPT-based shape descriptors I(1) = (I
(1)
mn)m,n and I(2) =

(I
(2)
mn)m,n:

I(1)mn = |S(1)mn(γ,D)|, I(2)mn = |S(2)mn(γ,D)|,

where | · | denotes the modulus of a complex number. It is clear, by construction, that
I(1) and I(2) are invariant under translation, rotation, and scaling.

The matching algorithm we refer to is rather simple, see Algorithm 1. This approach
has been presented previously by Habib Ammari et al. in [2], where shape descriptors
have been exploited for dealing with homogeneous conductivities.
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Algorithm 1: Shape identification based on transform invariant descriptors

Input : the first k-th order shape descriptors I(1)(D), I(2)(D) of an unknown
shape D.

1 for Bn ∈ D do

2 en ←
(
‖I(1)(Bn)− I

(1)(D)‖2F + ‖I(2)(Bn)− I
(2)(D)‖2F

)1/2
;

3 n← n+ 1;

end

Output: the true dictionary element n∗ ← argminnen.

‖ · ‖F denotes the Frobenius norm of matrices.

Remark. It is easy to see that all the radially symmetric conductivities possess the same
conductivity descriptors I(1) and I(2). This is a consequence of the following identities:

M cs
mn =Msc

mn = 0 for all m,n,

M cc
mn =Mss

mn = 0 if m 6= n,

M cc
mm =Mss

mm if m = n.

4. Numerical results

In this section, we show some proof-of-concept numerical simulations about the dictionary-
matching approach. Henceforth, we will restrict ourselves to piecewise constant distribu-
tions only.

4.1. Setting. Let D be the dictionary containing 10 standard conductivity distributions,
as illustrated in Figure 1. Each one of the 5 shapes in the row a is equipped with homoge-
neous conductivity having parameter k = 2 (Triangle, Ellipse, Bean, Shield and Triangular
Shield) whereas each coated shape in the row b is equipped with an inhomogeneous con-
ductivity distribution having value k1 = 2 in the outer coating and having value k2 = 4 in
the inner coating. All the shapes have the same characteristic size, which is of order one.
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0

0.5
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-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

Figure 1. Dictionary D.

Our aim is to numerically simulate the mechanism of sensing a specific target (γ,D)
which is obtained starting from a standard element of the dictionary (σ,B) ∈ D, applying
a scaling by a parameter s > 0 and a rotation by an angle θ ∈ [0, 2π). For doing so, we
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generalize the code developed in [31] for homogeneous targets to piecewise inhomogeneous
ones.

The targets we are considering for the experiments are located at the origin as the
standard shapes. The scaling coefficient and the rotation angle are s = 0.5 and θ = π/3,
respectively. On the other hand, we consider the full-view setting. We assume that the
fish is a banana-shaped fish that swims around the target along a circular trajectory whose
curvature center is located at the origin (0, 0) and the radius is R = 1.5 × diameter(D).
We set the impedance of the skin ξ = 0. See for instance Figure 2.

4.2. Experiment. The experiment is as follows. As the fish swims around the target, a
series of 512 equispaced receptors on its skin collects the measurements for 500 different
positions, so that the resulting Multistatic-Response-Matrix (MSR) is a 500× 512 matrix.
From this acquisition procedure, we reconstruct the CGPTs of the target up to a certain
order K and use a proper subset of them to compute approximately some distribution de-
scriptors. The descriptors obtained in this manner are then compared to the precomputed
theoretical descriptors of the standard distributions of D. We select the best matching
conductivity as the standard conductivity that corresponds to the minimal error, in the
noiseless case, or to the minimal mean error, when the measurements are corrupted by
noise.

-1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

-1.5

-1

-0.5

0

0.5

1

1.5

Figure 2. Banana-shaped fish drawn at a fixed position, while swimming along

a circular trajectory centered at the origin and collecting measurements for

sensing the inhomogeneous target 2b.

We observe from Figure 3 that the conductivities of the dictionary D can be both theo-
retically and experimentally well-distinguished by means of their second-order descriptors(
I
(1)
mn

)
m,n=1,2

,
(
I
(2)
mn

)
m,n=1,2

.

For each noise-level, we repeat the same experiment N = 104 times and compute the
probability of identification. The results are shown in Figure 4. We report in Table 1 some
additional data concerning the identification that performs relatively badly, i.e., that of
the target 1a.

The results reveal that the mismatching happens more frequently between conductivi-
ties for which the corresponding geometric shapes share the same kind of high-frequency
components, see [7]. In particular, depending on the strength of the noise that is con-
sidered, the pairs of conductivities 1a-b,4a-b and 5a-b are frequently confused with each
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Figure 3. Figure 3a and Figure 3c show the discrepancy between the theoret-

ical descriptors, wheras Figure 3b and Figure 3d show the discrepancy between

the theoretical descriptors and the ones obtained from the reconstructed CGPTs

at noise-level σ0 = 0.

1a 1b 2a 2b 3a 3b 4a 4b 5a 5b
0.1 0.9854 0 0 0 0 0 0 0 0.0004 0.0142
0.2 0.6448 0 0 0 0 0 0 0 0.0514 0.3038
0.3 0.3168 0 0 0 0 0 0 0 0.1252 0.558
0.4 0.1626 0.0006 0 0 0 0 0 0 0.1584 0.6784
0.5 0.0974 0.0012 0 0 0 0 0 0 0.1712 0.7302

Table 1. Frequency table for the identification of the conductivity 1a, i.e., the

homogeneous Triangle, at different small noise-levels. Each row contains the

relative frequencies for all the elements of the dictionary at a fixed noise-level.

other, due to the presence of corners and are rarely confused with the pairs 2a-b,3a-b. This
mismatching pattern is confirmed by Figure 3c, where third-order descriptors qualitatively
highlight such similarities.
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0%

20%

40%

60%

80%

100%

Triangle
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TriaShield
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10-1

Figure 4. Stability of classification based on second-order descriptors. For

each level of noise N = 104 experiments have been driven. The location of the

target is supposed to be known.

We also exhibit some plots showing the mean errors resulting from the identification
procedure for two different conductivities, see Figure 5 and Figure 6. In this case the
experiment has been repeated for 5000 times, using independent draws of white noise, and
the results are the mean values of all experiments.

(a) σ0 = 0.15. (b) σ0 = 0.50.

Figure 5. Errors concerning the identification of the homogeneous Triangle 1a

at different noise-levels. Each bar refers to a different element of D.
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(a) σ0 = 0.15. (b) σ0 = 0.50.

Figure 6. Identification of the inhomogeneous Ellipse 2b at different noise-

levels. Each bar refers to a different element of D.

4.3. Robustness of the reconstruction. We numerically reconstructed the CGPTs
from the measurements, i.e., from the MSR matrix. This reconstruction turns out to be
robust when we add some noise to the simulated data. Fixing the truncation order in the
reconstruction at K = 5, the relative error of the reconstructed CGPTs of orders k for
k ≤ 5 is illustrated in Figure 7. For the noisy case, the experiment has been repeated 100
times, using independent draws of white noise and the reconstructed CGPT is taken as
the average of the CGPTs.

1 2 3 4 5
10-3

10-2

10-1

100

101

(a) σ0 = 0.

1 2 3 4 5
10-3

10-2

10-1

100

101

(b) σ0 = 0.2.

Figure 7. Relative error ‖M − Mrecon‖F /‖M‖F of the reconstruction of the

CGPTs throughout the acquisition procedure described previously in 4.1 for

the conductivity 1b, the inhomogeneous Triangle.

5. Concluding remarks

In this paper, we have extended the dictionary-matching approach for classification in
electro-sensing to inhomogeneous targets. We have established translation, rotation, and
scaling formulas for particular linear combinations of the generalized polarization tensors
associated with inhomogeneous targets. We have derived new invariants and tested their
performance for recognizing inhomogeneous targets inside a dictionary of homogeneous and
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inhomogeneous conductivity distributions. In a forthcoming paper, we plan to combine
our present approach together with the multi-frequency approach introduced in [4] to
enhance the classification capabilities of the proposed method and its stability.
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E-mail address: andrea.scapin@sam.math.ethz.ch


	1. Introduction
	2. CGPTs for the weakly electric fish model
	2.1. Boundary integral representation

	3. Properties of the CGPTs 
	3.1. Translation formula
	3.2. Rotation formula
	3.3. Scaling formula
	3.4. Complex CGPTs
	3.5. Conductivity descriptors

	4. Numerical results
	4.1. Setting
	4.2. Experiment
	4.3. Robustness of the reconstruction

	5. Concluding remarks
	6. Acknowledgment
	References

