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Abstract

The aim of this paper is to provide and numerically test in the presence of measurement noise
a procedure for target classification in wave imaging based on comparing frequency-dependent
distribution descriptors with precomputed ones in a dictionary of learned distributions. Distri-
bution descriptors for inhomogeneous objects are obtained from the scattering coefficients. First,
we extract the scattering coefficients of the (inhomogeneous) target from the perturbation of the
echoes. Then, for a collection of inhomogeneous targets, we build a frequency-dependent dictio-
nary of distribution descriptors and use a matching algorithm in order to identify a target from
the dictionary up to some translation, rotation and scaling.
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1 Introduction

There are several geometric and physical quantities associated with target classification such as eigen-
values and capacities [16]. The concept of the scattering coefficients is one of them. The notion appears
naturally when we describe the perturbation of sounds emitted by animals such bats and dolphins due
to the presence of targets whose material parameters (permeability and permettivity) are different
from the ones of the background [12, 17, 18].

To mathematically introduce the concept of the scattering coefficients, we consider the Helmholtz
problem in R

2 for a given fixed frequency ω > 0:







∇ · (χ(R2 \ B̄) + 1
σ
χ(B))∇u+ ω2(χ(R2 \ B̄) + µχ(B))u = 0 in R

2,
∣

∣

∣

∂(u−U)
∂|x| − iω(u− U)

∣

∣

∣ ≤ K

|x|
3
2

if |x| → ∞. (1.1)

Here, K is a positive constant, B is the target embedded in R
2 with Lipschitz boundary, χ(B) (resp.

χ(R2 \ B̄)) is the characteristc function of B (resp. R
2 \ B̄), the positive constants σ and µ are the

magnetic permeability and electric permettivity of the target, which are supposed to be different from
the background permettivity and permeability (the constant function 1), U is the background solution,
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i.e., a given solution to (∆ + ω2)U = 0, and the solution u to (1.1) represents the perturbed wave.
The perturbation u−U due to the presence of the permettivity and permeability target B admits the
following asymptotic expansion as |x| → ∞, see [12]:

u(x)− U(x) = − i
4

∑

n∈Z

H(1)
n (ω|x|)einθx

∑

m∈Z

Wn,m[B, σ, µ, ω]am(U), (1.2)

where H
(1)
n are the Hankel functions of the first kind of order n and am(U) are constants such that

U(x) =
∑

m∈Z
am(U)Jm(ω|x|)eimθx with Jm being the Bessel function of order m. The building blocks

Wn,m[B, σ, µ, ω] for the asymptotic expansion (1.2) are called the scattering coefficients. Note that the
scattering coefficients Wn,m[B, σ, µ, ω] can be reconstructed from the far-field measurements of u by a
least-squared method. A stability analysis of the reconstruction is provided in [12].

This paper extends the results of [12] to targets with inhomogeneous permettivities and perme-
abilities. The concept of inhomogeneous scattering coefficients were first introduced in [4] and used
later in [5] to prove resolution enhancement in high-contrast media. It is the purpose of this paper
to extend the notion of scattering coefficients to objects with inhomogeneous permittivities and per-
meabilities and show their application in target classification. First, we prove important properties
of the scattering coefficients such as translation, rotation and scaling formulas. Then, we construct
distribution descriptors for multiple frequencies based on scaling, rotation, and translation properties
of the scattering coefficients. Finally, we use a target identification algorithm in order to identify an
inhomogeneous target from a dictionary of precomputed frequency-dependent distribution descriptors
up to some translation, rotation and scaling. For the sake of simplicity, throughout this paper, we
focus on two-dimensional models. However, the results can be easily extended to three dimensions.

The paper is organized as follows. In Section 2 we introduce the scattering coefficients for inho-
mogeneous targets and prove that they are the building blocks of the far-field expansion of the wave
perturbation. Section 3 is devoted to the derivation of integral representations of the inhomogeneous
scattering coefficients. In Section 4 we prove important properties for the inhomogeneous scattering
coefficients, such as the exponential decay of the scattering coefficients. We also show translation,
rotation and scaling property for the scattering coefficients. In Section 5 we construct the translation-
and rotation-invariant distribution descriptor. We also observe that the inhomogeneous scattering
coefficients are nothing else but the Fourier coefficients of the far-field pattern. In Section 6 we present
numerical results in order to demonstrate the theoretical framework presented in previous sections. In
particular, we investigate the identification of a target by the reconstruction of scattering coefficients
from the measurements of the multistatic response matrix. A few concluding remarks are given in
Section 7. In Appendix A, we provide integral representations for the case of piecewise constant (in-
homogeneous) material parameters. In Appendix B, we present results of target identification using a
full-view setting with no noise (σ = 0%).

2 Scattering coefficients and asymptotic expansions

Let 1
σ
be a bounded measurable function in R

2 such that 1
σ
− 1 is compactly supported and

0 < λ1 ≤
1

σ
≤ λ2,

where λ1, λ2 are constants. Let µ be a bounded measurable function in R
2 such that µ−1 is compactly

supported and
0 < λ3 ≤ µ ≤ λ4,
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where λ3, λ4 are constants. For a given fixed frequency ω > 0, we consider the following Helmholtz
problem:







∇ · 1
σ
∇u+ ω2µu = 0 in R

2,
∣

∣

∣

∂(u−U)
∂|x| − iω(u− U)

∣

∣

∣ ≤ K

|x|
3
2

if |x| → ∞, (2.1)

where U is a given solution to
∆U + ω2U = 0, (2.2)

and | · | denotes the Euclidean norm of R2. In this section, we derive a full far-field expansion of
(u− U)(x) as |x| → ∞. In the course of doing so, the notion of inhomogeneous scattering coefficients
appears naturally.

Let B a bounded domain in R
2 with Lipschitz boundary. We assume that B is such that

supp

(

1

σ
− 1

)

⊂ B,

supp(µ− 1) ⊂ B.
Suppose that B contains the origin. Note that (2.1) is equivalent to



































∇ · 1
σ
∇u+ ω2µu = 0 in B,

∆u+ ω2u = 0 in R
2 \ B̄,

u|+ − u|− = 0 on ∂B,

ν · ∇u|+ − ν · 1σ∇u|− = 0 on ∂B,
∣

∣

∣

∂(u−U)
∂|x| − iω(u− U)

∣

∣

∣ ≤ K

|x|
3
2

if |x| → ∞,

(2.3)

where ν is the outward normal vector at some x ∈ ∂B and the subscripts ± indicate the limits from
outside and inside B, respectively.

In two dimensions, the fundamental solution Γω(x) to the the Helmholtz equation

(∆ + ω2)Γω(x) = δ0(x)

subject to the Sommerfeld outgoing radiation condition is given by

Γω(x) = −
i

4
H

(1)
0 (ω|x|).

Assume that ω2 is not a Neumann eigenvalue of − 1
µ(x)∇ · 1

σ(x)∇ on B. Let Nσ,µ be the Neumann

function of problem
{

∇ · 1
σ
∇u+ ω2µu = 0 x ∈ B,

1
σ
∂u
∂ν

= g x ∈ ∂B, (2.4)

that is, for each fixed z ∈ B, Nσ,µ(z, ·) is solution to

{

∇y · 1
σ(y)∇yNσ,µ(z, y) + ω2µ(y)Nσ,µ(z, y) = −δz(y) y ∈ B,

1
σ(y)∇yNσ,µ(z, y)νy = 0 y ∈ ∂B. (2.5)

We can prove the following result.
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Proposition 2.1. The function defined by

NB,σ,µ[g](x) :=
∫

∂B

Nσ,µ(x, y)g(y) dSy, x ∈ B, (2.6)

is the solution to (2.4). Moreover, the Neumann-to-Dirichlet (NtD) map Λσ,µ : H− 1
2 (∂B)→ H

1
2 (∂B)

is well-defined, invertible and

Λσ,µ[g](x) = NB,σ,µ[g]|∂B (x) = u|∂B(x) for x ∈ ∂B.

Proof. By (2.4), for each fixed x ∈ B, we have

(

∇y ·
1

σ(y)
∇yu(y) + ω2µ(y)u(y)

)

Nσ,µ(x, y) = 0.

By integrating over B and applying Green’s formula, we have

∫

∂B

g(y)Nσ,µ(x, y) dSy −
∫

∂B

u(y)
1

σ(y)
∇yNσ,µ(x, y) · νy dSy

+

∫

B

u(y)

(

∇y ·
1

σ(y)
∇yNσ,µ(x, y) + ω2µ(y)Nσ,µ(x, y)

)

dy = 0.

From (2.5), it follows that

u(x) =

∫

∂B

Nσ,µ(x, y)g(y) dSy.

The second part of the proposition follows from the fact that ω2 is not a Neumann eigenvalue of −∆
in B.

We can prove the following proposition.

Proposition 2.2. For each x ∈ R
2 \ B̄, if u is the solution to (2.1) and U is such that (2.2) holds,

then

(u− U)(x) =

∫

∂B

g(y)Γω(x− y) dSy −
∫

∂B

Λσ,µ[g](y)
∂Γω
∂νy

∣

∣

∣

∣

+

(x− y) dSy. (2.7)

Proof. Observe that
∆(u− U)(y) + ω2(u− U)(y) = 0 for y ∈ R

2 \ B̄.
Hence, for each fixed x ∈ R

2 \ B̄,

∫

R2\B̄

[

∆(u− U)(y) + ω2(u− U)(y)
]

Γω(x− y) dy = 0.
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Let R > 0 be such that B ⊂ BR. By Green’s formula, we have

−
∫

BR\B̄

∇y(u− U)(y)∇yΓω(x− y) dy +
∫

∂(BR\B̄)

∂(u− U)

∂νy
(y)Γω(x− y) dSy

+

∫

BR\B̄

ω2(u− U)(y)Γω(x− y) dy =

=

∫

∂(BR\B̄)

∂(u− U)

∂νy
(y)Γω(x− y) dSy −

∫

∂(BR\B̄)

(u− U)(y)
∂Γω
∂νy

(x− y) dSy

+

∫

BR\B̄

(u− U)(y)[(∆ + ω2)Γω(x− y)] dy =

= 0.

(2.8)

Given x ∈ R
2 \ B̄, for R large enough,
∫

BR\B̄

(u− U)(y)[(∆ + ω2)Γω(x− y)] dy =

∫

BR\B̄

(u− U)(y)δ0(x− y) dy =

= (u− U)(x).

Then, we obtain

(u− U)(x) =−
∫

∂B

(u− U)(y)
∂Γω
∂νy

∣

∣

∣

∣

+

(x− y) dSy +
∫

∂B

∂(u− U)

∂νy
(y)Γω(x− y) dSy =

=−
∫

∂B

u(y)
∂Γω
∂νy

∣

∣

∣

∣

+

(x− y) dSy +
∫

∂B

∂u

∂νy
(y)Γω(x− y) dSy,

(2.9)

where the second equality holds from Green’s formula and ∆U = −ω2U :
∫

∂B

U(y)
∂Γω
∂νy

∣

∣

∣

∣

+

(x− y) dSy −
∫

∂B

∂U

∂νy
(y)Γω(x− y) dSy =

=

∫

B

U(y)∆Γω(x− y)−∆U(y)Γω(x− y) dy =

=

∫

B

U(y)(δ0(x− y)− ω2Γω(x− y)) + ω2U(y)Γω(x− y) dy =

=

∫

B

U(y)δ0(x− y) dy = 0.

Thus, from the transmission conditions, it follows that (2.9) can be rewritten as

(u− U)(x) = −
∫

∂B

Λσ,µ[g](y)
∂Γω
∂νy

∣

∣

∣

∣

+

(x− y) dSy +
∫

∂B

g(y)Γω(x− y) dSy.

For x ∈ R
2 \ B̄, we have

Λ1,1

(

∂Γω
∂νy

(x− ·)
)

= Γω(x− ·) on ∂B,
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and hence
∫

∂B

∂Γω
∂νy

∣

∣

∣

∣

+

(x− y)Λσ,µ[g](y) dSy =

∫

∂B

Γω(x− y)Λ−1
1,1Λσ,µ[g](y) dSy, (2.10)

which is a consequence of the fact that Λ1,1 is invertible and self-adjoint. The following result holds.

Proposition 2.3. For each u, v ∈ L2(∂B) solutions of (2.1),
〈

Λσ,µ

[

1

σ

∂u

∂ν

]

,
1

σ

∂v

∂ν

〉

L2(∂B)

=

〈

1

σ

∂u

∂ν
,Λσ,µ

[

1

σ

∂v

∂ν

]〉

L2(∂B)

.

Proof. For the sake of simplicity, let us prove the case in which σ = µ = 1. By subtracting ∆uv̄+ω2uv̄ =
0 to ∆v̄u+ ω2v̄u = 0, we get

∆uv̄ −∆v̄u = 0.

By Green’s formula,
〈

Λ1,1

[

∂u

∂ν

]

,
∂v

∂ν

〉

L2(∂B)

=

∫

∂B

u
∂v̄

∂ν
=

=

∫

B

∆v̄u−∆uv̄ +

∫

∂B

v̄
∂u

∂ν
=

=

〈

∂u

∂ν
,Λ1,1

[

∂v

∂ν

]〉

L2(∂B)

.

By (2.10), for x ∈ R
2 \ B̄, formula (2.7) becomes

(u− U)(x) =

∫

∂B

Γω(x− y)Λ−1
1,1(Λ1,1 − Λσ,µ)[g](y) dSy. (2.11)

For |x| > |y|, by Graf’s addition formula [1],

Γω(x− y) = −
i

4

∑

n∈Z

H(1)
n (ω|x|)einθxJn(ω|y|)e−inθy ,

where x = (|x|, θx), y = (|y|, θy), H(1)
n is the Hankel function of the first kind of order n and Jn is the

Bessel function of the first kind of order n. In the following, we use Cm to denote the cylindrical wave
of index m ∈ Z and of wave number ω, which is defined by

Cm(x) = Cm,ω(y) := Jm(ω|y|)eimθy . (2.12)

Hence, (2.11) becomes:

(u− U)(x) = − i
4

∑

n∈Z

H(1)
n (ω|x|)einθx

∫

∂B

Cn(y)Λ−1
1,1(Λ1,1 − Λσ,µ)[g](y) dSy. (2.13)

For each m ∈ Z, let um be the solution to (2.1) when Cm is the source term. For x ∈ ∂B, let us define

gm(x) :=
1

σ

∂um
∂ν

∣

∣

∣

∣

−

(x).
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Since the family of cylindrical waves (Cm(x))m is complete [8], U admits the following expansion:

U(x) =
∑

m∈Z

am(U)Cm(x),

where am(U) are constants. By linearity of (2.1), we get

g(x) =
1

σ

∂u

∂ν

∣

∣

∣

∣

−

(x) =
∑

m∈Z

am(U)gm(x).

Then, for |x| → ∞,

(u− U)(x) =− i

4

∑

n,m∈Z

H(1)
n (ω|x|)einθxam(U)

∫

∂B

Cn(y)Λ−1
1,1(Λ1,1 − Λσ,µ)[gm](y)dSy. (2.14)

Now we can define the scattering coefficients associated with σ and µ.

Definition 2.4. We define the scattering coefficients associated with the inhomogeneous permittivity
µ(x) and the permeability σ(x) for a given fixed frequency ω > 0 as follows:

Wn,m[B, σ, µ, ω] =

∫

∂B

Cn(y)Λ−1
1,1(Λ1,1 − Λσ,µ)[gm](y) dSy.

Then, for x→∞, (2.14) becomes

(u− U)(x) =− i

4

∑

n,m∈Z

H(1)
n (ω|x|)einθxWn,m[B, σ, µ, ω]am(U). (2.15)

From (2.15), we get the following theorem.

Theorem 2.5. Let u be the solution to (2.1). If U admits the following expansion:

U(x) =
∑

m∈Z

am(U)Cn(x),

then we have

(u− U)(x) =− i

4

∑

n,m∈Z

H(1)
n (ω|x|)einθxWn,m[B, σ, µ, ω]am(U). (2.16)

which holds uniformly as |x| → ∞.

3 Integral representation of the scattering coefficients

In this section, we provide another definition of scattering coefficients which is based on integral
formulations. In the following, we suppose that ω2 is not a Dirichlet eigenvalue of −∆, unless stated
otherwise.

Formula (2.11) suggests that the solution u to (2.1) for a given fixed frequency ω > 0 may be
represented as

u(x) =

{

U(x) + SωB [φ](x) x ∈ R
2 \ B̄,

NB,σ,µ[ψ](x) x ∈ B, (3.1)
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where the pair of densities (φ, ψ) ∈ L2(∂B)× L2(∂B) satisfy the transmission conditions
{

U(x) + SωB [φ](x) = NB,σ,µ[ψ](x) = Λσ,µ[ψ](x),

ψ(x) =
(

1
2I + (Kω

B)
∗
)

[φ](x) + ∂U
∂ν

(x),
x ∈ ∂B. (3.2)

Here, the single-layer potential and the trace operator are given by

SωB [φ](x) =

∫

∂B

Γω(x− y)φ(y) dSy,

and

(Kω
B)

∗[φ](x) =

∫

∂B

∂Γω
∂νx

(x− y)φ(y) dSy,

and NB,σ,µ is defined by (2.6). We now prove that the integral equation (3.1) is uniquely solvable.

Lemma 3.1. The operator A : L2(∂B)× L2(∂B)→ H1(∂B)× L2(∂B) defined by

A =

[

−SωB Λσ,µ
−
(

1
2I + (Kω

B)
∗
)

I

]

is invertible.

As a consequence of Lemma 3.1, we get the following theorem.

Theorem 3.2. The solution u to (2.1) can be represented in the form (3.1), where the pair (φ, ψ) ∈
L2(∂B)× L2(∂B) is the solution to

A
[

φ
ψ

]

=

[

U
∂U
∂ν

]

. (3.3)

Proof of Lemma 3.1. Let (F,G) ∈ H1(∂B)× L2(∂B). Proving that

A
[

φ
ψ

]

=

[

F
G

]

(3.4)

is uniquely solvable is equivalent to prove existence and uniqueness of a solution in H1
loc(R

2) to the
problem



































∇ · 1
σ
∇u+ ω2µu = 0 in B,

∆u+ ω2u = 0 in R
2 \ B̄,

u|+ − u|− = F in ∂B,
∂u
∂ν

∣

∣

+
− 1

σ
∂u
∂ν

∣

∣

−
= G in ∂B,

∣

∣

∣

∂u
∂|x| − iωu

∣

∣

∣ ≤ K

|x|
3
2

if |x| → ∞.

(3.5)

To prove the injectivity of A, let us suppose that F = G = 0. Using the fact that
∫

∂B

∂u

∂ν

∣

∣

∣

∣

+

ū =

∫

∂B

1

σ

∂u

∂ν

∣

∣

∣

∣

−

ū =

∫

B

1

σ
|∇u|2 − ω2µ|u|2,

we find that the solution u satisfies

ℑ
∫

∂B

∂u

∂ν

∣

∣

∣

∣

+

ū = 0.
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By applying Lemma 11.3 of [10] and the unique continuation property to (3.5), we readily get u = 0
in R

2. Since

u(x) =

{

SωB [φ](x) x ∈ R
2 \ B̄,

NB,σ,µ[ψ](x) x ∈ B,
we get

SωB [φ](x) = 0 x ∈ R
2 \ B̄,

NB,σ,µ[ψ](x) = 0 x ∈ B.
In particular, NB,σ,µ[ψ](x) = Λσ,µ[ψ](x) = 0 on ∂B. Since Λσ,µ is invertible, ψ = 0 on ∂B. On the
other hand, SωB [φ](x) = 0 on ∂B. Suppose that ω2 is not a Dirichlet eigenvalue for −∆ on B. Since
(∆ + ω2)SωB [φ](x) = 0 in B, we have SωB [φ](x) = 0 in B, and hence in R

2. It then follows from [10]
that

φ =
∂SωB [φ]

∂ν

∣

∣

∣

∣

+

− ∂SωB [φ]

∂ν

∣

∣

∣

∣

−

= 0 on ∂D.

This finishes the proof of the injectivity of A. Since u is solution to ∆u + ω2u = 0 in R
2 \ B̄ and

∣

∣

∣

∂u
∂|x| − iωu

∣

∣

∣ ≤ K

|x|
3
2

as |x| → ∞, then there exists φ ∈ L2(∂B) such that

u(x) = SωB [φ](x), x ∈ R
2 \ B̄. (3.6)

If we set

ψ =
1

σ

∂u

∂ν

∣

∣

∣

∣

−

, (3.7)

then
Λσ,µ[ψ] = u|−.

By (3.6),
∂u

∂ν

∣

∣

∣

∣

+

=

(

1

2
I + (Kω

B)
∗

)

[φ],

and hence

ψ =
1

σ

∂u

∂ν

∣

∣

∣

∣

−

=
∂u

∂ν

∣

∣

∣

∣

+

+G =

(

1

2
I + (Kω

B)
∗

)

[φ] +G.

Thus, for x ∈ ∂B,

G(x) = −
(

1

2
I + (Kω

B)
∗

)

[φ](x) + ψ(x),

and from the transmission condition

F (x) = Λσ,µ[ψ](x)− SωB [φ](x),

which shows that φ and ψ = 1
σ
∂u
∂ν

∣

∣

−
solve (3.4).

We can now define the scattering coefficients associated with µ and σ using the operator A.
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Definition 3.3. For m ∈ Z, let (φm, ψm) ∈ L2(∂B)× L2(∂B) be the solution to

A
[

φm
ψm

]

=

[ Cm
∂Cm

∂ν

]

on ∂B, (3.8)

where Cm is the cylindrical wave. For n ∈ Z, we define the scattering coefficients associated with the
permittivity distribution µ(x) and permeability σ(x) for a given fixed frequency ω > 0 as follows:

Wn,m =Wn,m[B, σ, µ, ω] =

∫

∂B

Cn(y)φm(y) dSy. (3.9)

4 Properties of the scattering coefficients

In this section, we prove important properties for the scattering coefficients.

4.1 Decay of the Scattering Coefficients

Like the homogeneous case, the coefficient Wn,m decays exponentially as the orders m,n increase. We
can prove the following Proposition.

Proposition 4.1. For a given fixed frequency ω > 0, there is a constant K (depending on σ, µ and
ω) such that

|Wn,m[B, σ, µ, ω]| ≤ K |n|+|m|

|n||n||m||m|
∀n,m ∈ Z. (4.1)

Proof. Recall that
Cm(x) = Jm(ω|x|)eimθx .

Since

Jm(t) ∼ 1
√

2π|m|

(

et

2|m|

)|m|

as m→∞, we have

‖Cm‖L2(∂B) + ‖∇Cm‖L2(∂B) ≤
K |m|

|m||m|
.

Then, with the same arguments as those of [7], there exists another constant K such that

‖φm‖L2(∂B) + ‖ψm‖L2(∂B) ≤ K
(

‖Cm‖L2(∂B) +

∥

∥

∥

∥

∂Cm
∂ν

∥

∥

∥

∥

L2(∂B)

)

≤

≤ K
(

‖Cm‖L2(∂B) + ‖∇Cm‖L2(∂B)

)

.

Hence, for another constant K,

‖φm‖L2(∂B) ≤
K |m|

|m||m|
.

Since
∥

∥

∥
Cn(y)

∥

∥

∥

L2(∂B)
≤ K |n|

|n||n| ,

by the definition of the scattering coefficients Wn,m, we have (4.1).
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4.2 Transformation formulas

We introduce the notation for translation, scaling, and rotation of a shape B as

Bz := B + z, Bs := sB, Bθ = eiθB,

and those of the material parameter σ (resp. µ) as

σz := σ(· − z), σs := σ(s−1·), σθ := σ(e−iθ·).

We denote by φU,B = φU,B,ω the solution to (3.3) given the domain B, the source term U , and the
frequency ω. We can prove that there exist explicit relations between the inhomogeneous scattering
coefficients of B and Bz, Bs, Bθ. We prove the following Propositions.

Proposition 4.2 (Translation formula). For any z ∈ R
2, the following relation holds

Wn,m[Bz, σz, µz, ω] =
∑

a,b

Ca(z)Cb(z)Wn−a,m−b[B, σ, µ, ω]. (4.2)

Proof. Let φ̃m = φCm,Bz and ỹ = y + z with y ∈ B. By the definition of the scattering coefficients:

Wn,m[Bz, σz, µz, ω] =

∫

∂Bz

Cn(ỹ)φ̃m(ỹ) dSỹ =

=

∫

∂B

Cn(y + z)φ̃m(y + z) dSy.

(4.3)

From the identity [8],

Cn(y − z) =
∑

l∈Z

Cl+n(y)Cl(z),

we have
Cn(y + z) =

∑

a∈Z

Ca+n(y)Ca(−z),

and
Cm(x̃) = Cm(x+ z) =

∑

b∈Z

Cb+m(x)Cb(−z),

where x̃ = x+ z with x ∈ B. To find φ̃m, let us consider

Ã
[

φ̃m
ψ̃m

]

(x̃) =

[

−SωBz [φ̃m](x̃) ΛBz,σz,µz [ψ̃m](x̃)

−
(

1
2I + (Kω

Bz )∗
)

[φ̃m](x̃) I[ψ̃m](x̃)

]

.

Recall that (φ̃m, ψ̃m) ∈ L2(∂Bz)× L2(∂Bz) is the solution to

Ã
[

φ̃m
ψ̃m

]

(x̃) =

[ Cm(x̃)
∂Cm

∂νx̃
(x̃)

]

. (4.4)

Let w̃ = w + z for w ∈ B. Let us prove that

[

φ̃m(w̃)

ψ̃m(w̃)

]

=
∑

b∈Z

Cb(−z)
[

φm+b(w)
ψm+b(w)

]

(4.5)
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is the solution. Since
[ Cm(x̃)
∂Cm

∂νx̃
(x̃)

]

=

[ Cm(x+ z)
∂Cm

∂νx+z
(x+ z)

]

=
∑

b∈Z

Cb(−z)
[ Cm+b(x)
∂Cm+b

∂νx
(x)

]

,

if we prove that

Ã
[

φ̃m
ψ̃m

]

(x̃) =

[

−SωB [φ̃m(·+ z)](x) ΛB,σ,µ[ψ̃m(·+ z)](x)

−
(

1
2I + (Kω

B)
∗
)

[φ̃m(·+ z)](x) I[ψ̃m(·+ z)](x)

]

, (4.6)

then by the linearity of operator A and the existence and uniqueness of a solution to system (4.4), we
have (4.5). Let us prove (4.6). We write

SωBz [φ̃m](x̃) =

∫

Bz

Γω(x̃− ỹ)φ̃m(ỹ) dSỹ =

=

∫

B

Γω(x+ z − (y + z))φ̃m(y + z) dSy =

= SωB [φ̃m(·+ z)](x),

−
(

1

2
I + (Kω

Bz )∗
)

[φ̃m](x̃) = −
(

1

2
I + (Kω

B)
∗

)

[φ̃m(·+ z)](x),

NBz,σz,µz [ψ̃m](x̃) =

∫

∂Bz

Ñσz,µz (x̃, ỹ)ψ̃m(ỹ) dSỹ =

=

∫

∂B

Nσ,µ(x, y)ψ̃m(y + z) dSy =

= NB,σ,µ[ψ̃m(·+ z)](x),

where Ñσz,µz (x̃, ỹ) = Nσ,µ(x, y) follows from the existence and uniqueness of the Neumann function
result. In fact, for w̃ ∈ Bz and by a change of variables, the Neumann problem







∇ỹ · 1
σz(ỹ)∇ỹÑσz,µz (w̃, ỹ) + ω2µz(ỹ)Ñσz,µz (w̃, ỹ) = −δw̃(ỹ) ỹ ∈ Bz,

1
σz(ỹ)

∂Ñσz,µz

∂νỹ
(w̃, ỹ) = 0 ỹ ∈ ∂Bz, (4.7)

can be rewritten as






∇y · 1
σ(y)∇yÑσz,µz (w + z, y + z) + ω2µ(y)Ñσz,µz (w + z, y + z) = −δw(y) y ∈ B,

1
σ(y)

∂Ñσz,µz

∂νy
(w + z, y + z) = 0 y ∈ ∂B.

(4.8)

From the uniqueness of the Neumann function, Ñσz,µz (w + z, y + z) = Nσ,µ(x, y) is the solution to
(4.8).

Then, (4.3) yields

Wn,m[Bz, σz, µz, ω] =
∑

a,b

Ca(−z)Cb(−z)Wn+a,m+b[B, σ, µ, ω].

Since Ca(−z) = C−a(z), (4.2) holds.
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Proposition 4.3 (Scaling formula). For any s > 0, the following relation holds

Wn,m[Bs, σs, µs, ω] =Wn,m[B, σ, µ, sω]. (4.9)

Proof. Let φ̃m,ω = φCm,Bs,ω and ỹ = sy with y ∈ B. Since (|ỹ|, θỹ) = (s|y|, θy), by the definition of
the scattering coefficients:

Wn,m[Bs, σs, µs, ω] =

∫

∂Bs

Cn,ω(ỹ)φ̃m,ω(ỹ) dSỹ =

= s

∫

∂B

Cn,sω(y)φ̃m,ω(sy) dSy.
(4.10)

We have
Cm,ω(x̃) = Cm,ω(sx) = Cm,sω(x),

where x̃ = sx with x ∈ B. To find φ̃m,ω, let us consider

Ã
[

φ̃m,ω
ψ̃m,ω

]

(x̃) =

[

−SωBs [φ̃m,ω](x̃) ΛBs,σs,µs,ω[ψ̃m,ω](x̃)

−
(

1
2I + (Kω

Bs)∗
)

[φ̃m,ω](x̃) I[ψ̃m,ω](x̃)

]

.

Recall that (φ̃m,ω, ψ̃m,ω) ∈ L2(∂Bs)× L2(∂Bs) is the solution to

Ã
[

φ̃m,ω
ψ̃m,ω

]

(x̃) =

[ Cm,ω(x̃)
∂Cm,ω

∂νx̃
(x̃)

]

. (4.11)

Let w̃ = sw for w ∈ B. Let us prove that

[

φ̃m,ω(w̃)

ψ̃m,ω(w̃)

]

= s−1

[

φm,sω(w)
ψm,sω(w)

]

(4.12)

is the solution. Since
[ Cm,ω(x̃)
∂Cm,ω

∂νx̃
(x̃)

]

=

[ Cm,ω(sx)
∂Cm,ω

∂νsx
(sx)

]

=

[ Cm,sω(x)
s−1 ∂Cm,sω

∂νx
(x)

]

,

if we prove that

Ã
[

φ̃m,ω
ψ̃m,ω

]

(x̃) =

[

−sSsωB [φ̃m,ω(s ·)](x) sΛB,σ,µ,sω[ψ̃m,ω(s ·)](x)
−
(

1
2I + (Ksω

B )∗
)

[φ̃m,ω(s ·)](x) I[ψ̃m,ω(s ·)](x)

]

, (4.13)

then by the linearity of operator A and the existence and uniqueness of a solution to system (4.11),
we have (4.12). Let us prove (4.13). We write

SωBs [φ̃m,ω](x̃) =

∫

Bs

Γω(x̃− ỹ)φ̃m,ω(ỹ) dSỹ =

=

∫

B

Γω(sx− sy)φ̃m,ω(sy)s dSy =

= sSsωB [φ̃m,ω(s ·)](x),

−
(

1

2
I + (Kω

Bs)∗
)

[φ̃m,ω](x̃) = −
(

1

2
I + (Ksω

B )∗
)

[φ̃m,ω(s ·)](x),
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NBs,σs,µs,ω[ψ̃m,ω](x̃) =

∫

∂Bs

Ñσs,µs,ω(x̃, ỹ)ψ̃m,ω(ỹ) dSỹ =

= s

∫

∂B

Nσ,µ,sω(x, y)ψ̃m,ω(s ·) dSy =

= sNB,σ,µ,sω[ψ̃m,ω(s ·)](x),

where Ñσs,µs,ω(x̃, ỹ) = Nσ,µ,sω(x, y) follows from existence and uniqueness of the Neumann function.
In fact, for w̃ ∈ Bs and by a change of variables, the Neumann problem







∇ỹ · 1
σs(ỹ)∇ỹÑσs,µs,ω(w̃, ỹ) + ω2µs(ỹ)Ñσs,µs,ω(w̃, ỹ) = −δw̃(ỹ) ỹ ∈ Bs,

1
σs(ỹ)

∂Ñσs,µs,ω

∂νỹ
(w̃, ỹ) = 0 ỹ ∈ ∂Bs, (4.14)

can be rewritten as






∇y · 1
σ(y)∇yÑσs,µs,ω(sw, sy) + s2ω2µ(y)Ñσs,µs,ω(sw, sy) = −δw(y) y ∈ B,

1
σ(y)

∂Ñσs,µs,ω

∂νy
(sw, sy) = 0 y ∈ ∂B.

(4.15)

from the uniqueness of the Neumann function, Ñσs,µs,ω(sx, sy) = Nσ,µ,sω(x, y) is the solution to (4.15).
Then, (4.10) yields

Wn,m[Bs, σs, µs, ω] =Wn,m[B, σ, µ, sω].

Proposition 4.4 (Rotation formula). For any θ, the following relation holds

Wn,m[Bθ, σθ, µθ, ω] = ei(m−n)θWn,m[B, σ, µ, ω]. (4.16)

Proof. Let φ̃m = φUm,Bθ and ỹ = eiθy with y ∈ B. Since (|ỹ|, θỹ) = (|y|, θy + θ), by the definition of
the scattering coefficients:

Wn,m[Bθ, σ, µ, ω] =

∫

∂Bθ

Cn(ỹ)φ̃m(ỹ) dSỹ =

=

∫

∂B

Cn(y)e−inθφ̃m(eiθy) dSy.

(4.17)

We have
Cm(x̃) = Cm(eiθx) = Cm(x)eimθ,

where x̃ = eiθx with x ∈ B. To find φ̃m, let us consider

Ã
[

φ̃m
ψ̃m

]

(x̃) =

[

−Sω
Bθ [φ̃m](x̃) ΛBθ,σθ,µθ [ψ̃m](x̃)

−( 12I + (Kω
Bθ )

∗)[φ̃m](x̃) I[ψ̃m](x̃)

]

.

Recall that (φ̃m, ψ̃m) ∈ L2(∂Bθ)× L2(∂Bθ) is the solution to

Ã
[

φ̃m
ψ̃m

]

(x̃) =

[ Cm(x̃)
∂Cm

∂νx̃
(x̃)

]

. (4.18)
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Let w̃ = eiθw for w ∈ B. Let us prove that

[

φ̃m(w̃)

ψ̃m(w̃)

]

= eimθ
[

φm(w)
ψm(w)

]

(4.19)

is the solution. Since
[ Cm(ỹ)
∂Cm

∂νỹ
(ỹ)

]

=

[

Cm(eiθy)
∂Cm

∂ν
eiθy

(eiθy)

]

= eimθ
[ Cm(y)
∂Cm

∂νy
(y)

]

,

if we prove that

Ã
[

φ̃m
ψ̃m

]

(x̃) =

[

−SωB [φ̃m(eiθ ·)](x) ΛB,σ,µ[ψ̃m(eiθ ·)](x)
−( 12I + (Kω

B)
∗)[φ̃m(eiθ ·)](x) I[ψ̃m(eiθ ·)](x)

]

, (4.20)

then by the linearity of operator A and the existence and uniqueness of a solution system (4.18), we
have (4.19). Let us prove identity (4.20). We write

SωBθ [φ̃m](x̃) =

∫

Bθ

Γω(x̃− ỹ)φ̃m(ỹ) dSỹ =

=

∫

B

Γω(x− y)φ̃m(eiθy)s dSy =

= SωB [φ̃m(eiθ ·)](x),

−
(

1

2
I + (Kω

Bθ )
∗

)

[φ̃m](x̃) = −
(

1

2
I + (Kω

B)
∗

)

[φ̃m(eiθ ·)](x),

NBθ,σ̃,µ̃[ψ̃m](x̃) =

∫

∂Bθ

Ñσ̃,µ̃(x̃, ỹ)ψ̃m(ỹ) dSỹ =

=

∫

∂B

Nσ,µ(x, y)ψ̃m(eiθ ·) dSy =

= NB,σ,µ[ψ̃m(eiθ ·)](x),
where Ñσθ,µθ (x̃, ỹ) = Nσ,µ(x, y) follows from the existence and uniqueness of the Neumann function.
In fact, for w̃ ∈ Bθ and by the change of variables, the Neumann problem







∇ỹ · 1
σθ(ỹ)

∇ỹÑσθ,µθ (w̃, ỹ) + ω2µθ(ỹ)Ñσθ,µθ (w̃, ỹ) = −δw̃(ỹ) ỹ ∈ Bθ,
1

σθ(ỹ)

∂Ñ
σθ,µθ

∂νỹ
(w̃, ỹ) = 0 ỹ ∈ ∂Bθ,

(4.21)

can be rewritten as






∇y · 1
σ(y)∇yÑσθ,µθ (eiθw, eiθy) + ω2µ(y)Ñσθ,µθ (eiθw, eiθy) = −δw(y) y ∈ B,

1
σ(y)

∂Ñ
σθ,µθ

∂νy
(eiθw, eiθy) = 0 y ∈ ∂B.

(4.22)

By the uniqueness of the Neumann function, Ñσθ,µθ (eiθx, eiθy) = Nσ,µ(x, y) is the solution to (4.15).
Then, (4.17) yields

Wn,m[Bθ, σθ, µθ, ω] = ei(m−n)θWn,m[B, σ, µ, ω].
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5 Distribution descriptors and identification in a dictionary

In this section, we construct the distribution descriptors which are invariant to rigid transformations.
In the following, we proceed as in [12]. We denote by B a reference shape of size 1 centered at the
origin, so that the unknown target D is obtained from B by a rotation with angle θ, a scaling s > 0,
and a translation z ∈ R

2 as
D = z + sRθB.

5.1 Far-field pattern

To construct the distribution descriptors which are invariant to rigid transformations, we derive the
far-field pattern of the scattering field in terms of the inhomogeneous scattering coefficients. The result
is similar to the homogeneous case [11].

If U is given by a plane wave eiωξ·x such that ωξ ·ωξ = ω2, then by the Jacobi-Anger decomposition,
we have

U(x) =
∑

m∈Z

eim(π
2
−θξ)Jm(ω|x|)eimθx =

∑

m∈Z

eim(π
2
−θξ)Cm(x).

By the linearity of operator A and existence and uniqueness of a solution to system (4.11), we obtain

φ =
∑

m∈Z

eim(π
2
−θξ)φm.

Using (2.11),

u− eiωξ·x = (u− U)(x) = − i
4

∑

m∈Z

eim(π
2
−θξ)

∫

∂B

H
(1)
0 (ω|x− y|)φm(y) dSy. (5.1)

Recall that [11]

H
(1)
0 (ω|x− y|) =

√

2

πω|x− y|e
i(ω|x−y|−π

4
) +O(|x|−1) as x→∞.

Since |x− y| = |x| − |y| cos(θx − θy) +O(|x|−1), (5.1) becomes

u− eiωξ·x = −ie−iπ4 eiω|x|
√

8πω|x|
∑

m∈Z

eim(π
2
−θξ)

∫

∂B

e−iω|y| cos(θx−θy)φm(y) dSy +O(|x|−1). (5.2)

By Jacobi-Anger identity,

e−iω|y| cos(θx−θy) = eiω|y| cos(θx−θy+π) =
∑

n∈Z

inJn(ω|y|)ein(θx−θy+π),

(5.2) becomes

u− eiωξ·x = −ie−iπ4 eiω|x|
√

8πω|x|
∑

m,n∈Z

eim(π
2
−θξ)ein(θx−

π
2
)

∫

∂B

inJn(ω|y|)e−in(θy−
3
2
π)φm(y) dSy +O(|x|−1).

(5.3)

16



Since inein
3π
2 = in(−i)n = 1, we obtain

u− eiωξ·x = −ie−iπ4 eiω|x|
√

8πω|x|
∑

m,n∈Z

eim(π
2
−θξ)ein(θx−

π
2
)Wn,m +O(|x|−1), (5.4)

where Wn,m are the inhomogeneous scattering coefficients.
We define the far-field pattern (the scattering amplitude) when the incident field is the plane wave

U(x) = eiωξ·x, |ξ| = 1, as the two-dimensional 2π-periodic function

A∞
B ((θξ, θx)

T ;σ, µ, ω) =
∑

m∈Z

eim(π
2
−θξ)

∫

∂B

e−iω|y| cos(θx−θy)φm(y) dSy.

From (5.4), we get the following proposition.

Proposition 5.1. Let (θξ, θx)
T ∈ [0, 2π]2. Then, we have

A∞
B ((θξ, θx)

T ;σ, µ, ω) =
∑

m,n∈Z

eim(π
2
−θξ)ein(θx−

π
2
)Wn,m[B, σ, µ, ω]. (5.5)

5.2 Translation- and rotation-invariant distribution descriptors

A simple relation exists between far-field patterns of D = z + sRθB and B. The following result
generalizes to the inhomogeneous case the result proved in [12] in the case of homegenous scattering
coefficients.

Proposition 5.2. Let D = z+ sRθB. We denote by θz the angle of z in polar coordinates, and define

φz((θξ, θx)
T ) := eiω|z| cos(θξ−θz)e−iω|z| cos(θx−θz).

Then, we have

A∞
D ((θξ, θx)

T ;σ, µ, ω) = φz((θξ, θx)
T )A∞

B ((θξ − θ, θx − θ)T , σ, µ, sω).

Proof. By transformation formulas (4.2), (4.9), and (4.16), we have

Wn,m[D,σ, µ, ω] =
∑

a,b∈Z

Ca(z)Cb(z)Wn−a,m−b[sRθB, σ, µ, ω] =

=
∑

a,b∈Z

Ca(z)Cb(z)Wn−a,m−b[RθB, σ, µ, sω] =

=
∑

a,b∈Z

Ca(z)Cb(z)ei(m−b)θe−i(n−a)θWn−a,m−b[B, σ, µ, sω].

(5.6)

Therefore, using the Jacobi-Anger identity,

eiω|z| cos(θξ−θz) = eiω|z| cos(θz−θξ) =
∑

a∈Z

iaJa(ω|z|)eia(θz−θξ) =
∑

a∈Z

Ja(ω|z|)eia(
π
2
−(θξ−θz)) =

=
∑

a∈Z

Ca(z)eia(
π
2
−θξ),
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we obtain

A∞
D ((θξ, θx)

T ;σ, µ, ω) =
∑

m,n∈Z

eim(π
2
−θξ)ein(θx−

π
2
)Wn,m[D,σ, µ, ω] =

=
∑

m,n,a,b∈Z

eim(π
2
−θξ)ein(θx−

π
2
)Ca(z)Cb(z)ei(m−b)θe−i(n−a)θWn−a,m−b[B, σ, µ, sω] =

=
∑

m,n,a,b∈Z

Ca(z)e−ia(
π
2
−θx)eia(

π
2
−θx)Cb(z)eim(π

2
−θξ)ein(θx−

π
2
)ei(m−b)θe−i(n−a)θWn−a,m−b[B, σ, µ, sω] =

=
∑

m,n,a,b∈Z

Ca(z)e−ia(
π
2
−θx)Cb(z)eim(π

2
−θξ)ei(n−a)(θx−

π
2
)ei(m−b)θe−i(n−a)θWn−a,m−b[B, σ, µ, sω] =

=
∑

m,n,a,b∈Z

Ca(z)e−ia(
π
2
−θx)Cb(z)e−ib(θξ−

π
2
)ei(m−b)(π

2
−θξ)ei(n−a)(θx−

π
2
)ei(m−b)θe−i(n−a)θWn−a,m−b[B, σ, µ, sω] =

=
∑

m′,n′,a,b∈Z

Ca(z)e−ia(
π
2
−θx)Cb(z)e−ib(θξ−

π
2
)eim

′(π
2
−θξ)ein

′(θx−
π
2
)eim

′θe−in
′θWn′,m′ [B, σ, µ, sω] =

=
∑

m′,n′∈Z

eiω|z| cos(θξ−θz)e−iω|z| cos(θx−θz)eim
′(π

2
−θξ)ein

′(θx−
π
2
)ei(m

′−n′)θWn′,m′ [B, σ, µ, sω] =

=
∑

m′,n′∈Z

φz((θξ, θx)
T )eim

′(π
2
−θξ)ein

′(θx−
π
2
)Wn′,m′ [Bθ, σ, µ, sω] =

= φz((θξ, θx)
T )A∞

B ((θξ − θ, θx − θ)T , σ, µ, sω).

Hereafter, we illustrate the descriptor construction based on the far-field pattern. We proceed
as in [12]. Given η = (θξ, θx)

T , we define the frequency-dependent distribution descriptor of an
inhomogeneous object D as follows:

SD(v;σ, µ, ω) :=

∫

[0,2π]2
|A∞
D (η;σ, µ, ω)A∞

D (η − v;σ, µ, ω)| dη. (5.7)

The distribution descriptor SD is invariant to any translation and rotation. More precisely, we can
prove the following identity.

Proposition 5.3. Let D = z + sRθB. We have

SD(v;σ, µ, ω) = SB(v;σ, µ, sω).

Proof. Given η = (η1, η2), θ = (θ, θ), by |φz(·)| = 1 and
∫

[0,2π]2
A∞
B (η − θ;σ, µ, sω) dη =

∫

[0,2π]2

∑

m,n∈Z

eim(π
2
−(η1−θ))ein((η2−θ)−

π
2
)Wn,m[B, σ, µ, sω] dη =

=

∫

[−θ,2π−θ]2

∑

m,n∈Z

eim(π
2
−η′1)ein(η

′

2−
π
2
)Wn,m[B, σ, µ, sω] dη′ =

=

∫

[0,2π]2

∑

m,n∈Z

eim(π
2
−η′1)ein(η

′

2−
π
2
)Wn,m[B, σ, µ, sω] dη′ =

=

∫

[0,2π]2
A∞
B (η′;σ, µ, sω) dη′,
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we have

SD(v;σ, µ, ω) =

∫

[0,2π]2
|A∞
D (η;σ, µ, ω)A∞

D (η − v;σ, µ, ω)| dη =

=

∫

[0,2π]2
|φz(η)A∞

B (η − (θ, θ), σ, µ, sω)φz(η − v)A∞
B (η − v − (θ, θ);σ, µ, sω)| dη =

=

∫

[0,2π]2
|A∞
B (η − (θ, θ), σ, µ, sω)A∞

B (η − (θ, θ)− v;σ, µ, sω)| dη =

=

∫

[0,2π]2
|A∞
B (η′, σ, µ, sω)A∞

B (η′ − v;σ, µ, sω)| dη′ =

= SB(v, σ, µ, sω).

6 Numerical experiments

In this section, we present a variety of numerical results in order to demonstrate the applicability of
the theoretical framework presented in the previous sections. In particular, we investigate the iden-
tification of a target by reconstructing inhomogeneous scattering coefficients from the measurements
of the multistatic response (MSR) matrix. In the multistatic configuration, directions of incidence
and observations are sampled. For each incident direction, the scattered wave is measured in all the
observation directions [8]. The overall procedure is similar to the one of [12] for the homogeneous case.
In the following, we consider the case of piecewise constant (inhomogeneous) material parameters. For
a collection of (inhomogeneous) targets, based on the code developed in [19] for homogeneous targets,
we build a frequency dependent dictionary of distribution descriptors and use a target identification
algorithm like the one of [12] in order to identify an inhomogeneous target from the dictionary up to
some translation, rotation and scaling. Our dictionary will include three kinds of objects:

• Homogeneous targets, i.e. a disk, a triangle, etc.

• Inhomogeneous targets with one inclusion inside, i.e. a circular inclusion inside a circular target,
etc.

• Inhomogeneous targets with two (distinct) inclusions inside, i.e. a circular inclusion and a square
inside a circular target, etc.

Note that these inclusions have different material parameters than the ones of target and the back-
ground. In the following, we use the results of Section 4 for a suitable integral representation of the
solutions for the case of an inhomogeneous target with one inclusion inside and the case of an inho-
mogeneous object with two inclusions inside (see Appendix A). The case of a homogeneous target is
taken into account in [12]. Finally, we perform numerical experiments in order to test the performance
of the inhomogeneous scattering coefficients in inhomogeneous target identification.

Given a target D, the overall procedure of a numerical experiment can be summarized by the
following steps:

• Data simulation. The MSR matrix is simulated for a range of frequency [ωmin, ωmax] by evaluating
the integral representation (3.1), where the densities are computed by solving (3.8). We adopt a
circular acquisition system (a full-view acquisition).
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• Reconstruction of scattering coefficients. For each frequency, we reconstruct the matrix W =
(Wmn[D

−z0 ])mn of scattering coefficients directly by the formula (3.32) of [12].

• Target identification. We calculate the distribution descriptors and use a target identification
algorithm, see [12].

6.1 Dictionary

The dictionary D that we consider is composed by 14 targets with different material parameters:

• 6 elements of the dictionary are homogeneous targets: a disk, an ellipse, a triangle, a square, a
rectangle, and the letter A (see Figure 1). All homogeneous targets share the same permittivity
µ = 3 and permeability σ = 3.

• 5 elements of the dictionary are inhomogeneous targets with a single inclusion inside: a disk
with a circular inclusion inside, a disk with an ellipse inside, a disk with a triangular inclusion
inside, a disk with a square inside, and a disk with a rectangular inclusion inside (see Figure 1).
Note that these 6 targets share the same permittivity (µe = 3) and permeability (σe = 3) for the
exterior domain, while all inclusions have permittivity µi = 6 and permeability σi = 6.

• 3 elements of the dictionary are (inhomogeneous) disks with two distinct inclusions inside: two
circular inclusions for the first disk, a circle and an ellipse for the second disk, and two distinct
ellipses for the third one (see Figure 1). These 3 targets share the same permittivity (µe = 3) and
permeability (σe = 3) for the exterior domain, while the two distinct inclusions have permittivity
µi = 6 and permeability σi = 6, i = 1, 2.
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Figure 1: Dictionary of targets
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6.2 Acquisition system

We generate a circular acquisition system using plane waves, which refers to the situation where the
receivers xr are uniformly distributed on a circle of radius R and centered at z0 (typically, z0 can be
obtained using some localization algorithm [8]: here, we assume that z0 is close to the center of the
target D) and the sources are plane waves with equally distributed wave direction. More specifically,
for the rth receiver we have |xr − z0| = R and the angle θr := θxr−z0 = 2πr/Nr, where the sth plane
wave source is given by

Us(x) = eik0ξs·x,

with the unit vector ξs satisfying θs := 2πs/Ns.
For this experiment, we generate a circular acquisition system with radius R = 3, and Ns = 91

plane waves as sources and Nr = 91 receivers. For simplicity, we always choose the center z0 = [0, 0]T .
Figure 2 illustrates this acquisition system for the three different elements of the dictionary D.

6.3 Measurements

In each numerical experiment, the unknown target D is obtained from one of the elements of the
dictionary by a rotation with angle θ = π/3, a scaling s = 1.2 and a translation z = [−0.5, 0.5]T .

Each element of the dictionary is approximated by 29 points. We reconstruct the matrix W =
(Wmn)mn of scattering coefficients at order 25. Figure 3 plots the relative error of the (analytical)
reconstruction ‖West−W‖F /‖W‖F as a function of K for the three kinds of targets in the dictionary
(‖ · ‖F denotes the Frobenius norm of matrices). It can be seen that in the full aperture case, the
reconstruction is robust. For example, in the case of a disk with a circular inclusion inside, with 20%
of noise, the error is less than 10% for an order K up to 45.

6.4 Scale estimation

Given an unknown target Dn = z+sRθBn and a dictionary of (inhomogeneous) objects D = (Bn)n, by
measurements we reconstruct the distribution descriptor SDn

(v;ω) and build a frequency dependent
dictionary of distribution descriptors (SBn

(v;ω))n.
Note that the distribution descriptor of the target SDn

is frequency dependent. As we proved in
the previous sections, since the frequency ω is coupled with the scaling factor s, which is unknown
and arbitrary in (0,∞), to adapt the distribution descriptor SDn

to target identification we assume
that the physical operating frequency is limited, that is 0 < ωmin ≤ ω ≤ ωmax < ∞, and that
0 < smin ≤ s ≤ smax < ∞, which means that the target we are interested in should not be too small
or too large. Then sest can be estimated by solving

sest = arg mins∈[smin,smax]







∫ ωmax

ωmin

(

∫

[0,2π]2
[SDn

(v;ω)− SBn
(v; sω)] dv

)2

dω







. (6.1)

Numerically, (6.1) can be solved approximately by sampling. Note that a wide range of frequencies
[ωmin, ωmax] brings more information and therefore improves the estimation (6.1).
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(a) Homogeneous disk (b) Disk with a disk inside (c) Disk with two disks inside

Figure 2: Circular acquisition systems for three kinds of targets. We adopt full aperture with Ns = 91 plane
wave sources (with the angular position marked by ◦) and Nr = 91 receivers (marked by ×). Figure (a) shows
a circular acquisition system for an homogeneous target (a disk); (b) shows a circular acquisition system for
an inhomogeneous target (a disk with a circular inclusion inside); (c) shows a circular acquisition system for
an inhomogeneous disk with two distinct inclusions inside.

6.5 Numerical implementation

Let Ndic
ω , Nω, Nv, and Ns be positive integers. We define:

• (ωdic
l )l=0,...,Ndic

ω
uniformly distributed points on [ωdic

min, ω
dic
max], with

ωdic
min := ωminsmin,

ωdic
max := ωmaxsmax.

• (ωk)k=0,...,Nω
uniformly distributed points on [ωmin, ωmax].

• ((v1i , v
2
j ))i,j=1,...,Nv

uniformly distributed points on [0, 2π]2.

.
We sample the functions SBn

and SDn
at discrete positions as follows:

SDn

ijk := SDn
((v1i , v

2
j );ωk), S

Bn

ijl := SBn
((v1i , v

2
j );ωl).

For (st)t=0,...,Nδ
uniformly distributed in [smin, smax], we can discretize the functional inside the argmin

in (6.1):

J(t;Dn, Bn) =

Nω
∑

k=0

∑

l∈Ik(st)





Nv
∑

i,j=1

(SDn

ijk − SBn

ijl )





2

,

with the index set Ik(s) := {1 ≤ l ≤ Ndic
ω such that ωdic

l−1 ≤ sωk ≤ ωdic
l }. Finally, the scaling factor is

estimated through
ǫ(Dn, Bn) = min

t=0,...,Nδ

J(t;Dn, Bn).
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(a) Disk with a circular inclusion inside (b) Disk with two circular inclusions inside

Figure 3: Relative error of the reconstruction ‖West −W‖F /‖W‖F for the systems (b) and (c) in Figures 2
at a different order K and fixed frequency ω = 0.75π. The curves from bottom to top correspond to percentage
of noise σ0 = 20%, 40%, 60%, 80%, and 100%. The experiments have been repeated 100 times.

6.6 Frequency-dependent dictionary and matching algorithm

A frequency-dependent dictionary of distribution descriptors can be constructed as follows. For a
collection of standard elements of the dictionary (Bn)n, we precompute the discrete samples (SBn

ijl )ijl

of the distribution descriptor SBn
(v;ω), for v ∈ [0, 2π]2 and ω ∈ [ωdic

min, ω
dic
max]. (SBn

ijl )ijl constitute our
frequency-dependent dictionary of distribution descriptors.

Suppose that our (inhomogeneous) target D is the realization of an element from the dictionary
(Bn)n, up to some unknown translation, rotation, and scaling. We assume that the scaling factor is such
that smin ≤ s ≤ smax, where smin and smax are known. In order to identify D from the dictionary, we
compute the discrete samples (SDijk)ijk of the distribution descriptor SD(v;ω), and calculate ǫ(D,Bn)
for all elements of the above mentioned dictionary. The true identified target is expected to give
the best estimation of scaling and to minimize the error ǫ(D,Bn) among all the dictionary elements.
Therefore, we take the minimizer of (ǫ(D,Bn))n as the identified target. This procedure is described
in detail in Algorithm 1, which was first introduced by Ammari et al. [12].

Algorithm 1 Target identification algorithm

Input: (SDijk)ijk of unknown target D; ((SBn

ijl )ijl)n of the whole dictionary.
for Bn in the dictionary do

ǫn ← ǫ(D,Bn);
n← n+ 1;

end for

Output: The true dictionary element n∗ ← argminn ǫn.
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6.7 Parameter settings for identification and scaling estimation

For this experiment, the frequency-dependent dictionary of distribution descriptors ((SBn

ijl )ijk)n is

computed for the frequency range [ωdic
min, ω

dic
max] = [0.25π, 1.5π], with Ndic

ω = 78 and Nv = 512. The
data are simulated for the operating frequency range [ωmin, ωmax] = [0.5π, π] with Nω = 52. The valid
scaling range is [smin, smax] = [0.5, 1.5] with Nδ = 250.

6.8 Target identification in the full-view case

Here, we present results of target identification obtained using the full-view setting of Figure 2:

• We obtain the target D by transforming each element Bn of the dictionary of Figure 1 with the
parameters z = [−0.5, 0.5]T , s = 1.2, and θ = π/3. The order K of the reconstructed matrix of
scattering coefficients is set to 25.

• It can be seen that the identification succeeded for all targets with noise σ0 up to 50%. In the
case of σ0 = 0% (see Appendix B), the error bars of each identified target have very different
numerical value compared to those of the other elements of the dictionary. This means that
recognition works well and a dictionary of large size can be used in practice.

• Figures 4 and 5 show the error bars for the dictionary of Figure 1 for all inhomogeneous targets
with noise σ0 = 40%, 80%. Themth error bar in the nth group corresponds to the error ǫ(D,Bm)
of the matching experiment using the generating element of the dictionary Bn. The shortest bar
in each group is the identified target and is marked in green, while the true target is marked in
red when the identification fails. For σ0 = 40%, identification succeeded and sest is also close to
the true value s = 1.2, see Figure 6. For σ0 = 80%, it failed for two inhomogeneous targets.
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Figure 4: Results of identification for all inhomogeneous objects in the full-view setting and σ0 = 40%.
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Figure 5: Results of identification for all inhomogeneous objects in the full-view setting and σ0 = 80%.
Identification failed for two targets
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Figure 6: Difference between the estimated scaling factor and the true one (s = 1.2) at σ0 = 40%.
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• Figure 7 shows the probability of recognition for the inhomogeneous targets of the dictionary at
different noise levels. Measurements have been repeated 1000 times.
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Figure 7: Probability of recognition for all inhomogeneous targets of the dictionary of Figure 1.

7 Concluding remarks

In this paper, we have presented a framework of target identification for inhomogeneous objects. We
have provided and numerically tested in the presence of measurement noise a procedure for target
classification in wave imaging based on matching on a dictionary of precomputed frequency-dependent
distribution descriptors. The construction of such frequency-dependent distribution descriptors is
based on the properties of the inhomogeneous scattering coefficients. For a collection of inhomogeneous
targets, we first extracted the scattering coefficients from the reflected waves and then used a target
identification algorithm in order to identify an inhomogeneous target from the dictionary up to some
translation, rotation and scaling. It can be seen that the identification succeeded for all targets with
noise σ0 up to 50%.

A Piecewise constant distributions

In the appendix, we provide an integral representation of the solution to (2.1) for the special case of
a domain B with piecewise constant electric permittivity µ and magnetic permeability σ. This can be
seen as a particular case of (3.1).
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A.1 The case of an inhomogeneous object with one inclusion inside

We consider the case of a domain B with one inclusion Bi inside. B is immerged in an homogeneous
medium. Bi has different constant permeability and permittivity than the one ofB and the background.

Let us consider the following Helmholtz problem






∇ · 1
σ
∇u+ ω2µu = 0 in R

2,
∣
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∂(u−U)
∂|x| − iω(u− U)
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∣
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3
2

if |x| → ∞, (A.1)
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√
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with the following transmission conditions
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(A.3)

Given the cylindrical wave Cn of index n ∈ Z and of wave number k0, we look for a solution to
(A.1) of the form

un(x) =
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2 \Be,
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(A.4)

where the densities ψn, γn, ηn and φn are the solutions to
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(A.5)

As we have proved in (3.9), the scattering coefficient of order n,m associated to the target B with
(inhomogeneous) piecewise constant permittivity and permeability is

Wn,m[B, σ, µ, ω] =

∫

∂Be

Cn(y)φm(y)dSy.
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A.2 The case of an inhomogeneous object with two (distinct) inclusions
inside

Now we take into account the case of a domain B with two inclusions B1 and B2 inside. B is immerged
in a homogeneous medium. B1 and B2 have different constant permeability and permittivity than the
one of B and the background.

Let us consider the following Helmholtz problem







∇ · 1
σ
∇u+ ω2µu = 0 in R

2,
∣

∣

∣

∂(u−U)
∂|x| − iω(u− U)
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∣ ≤ K

|x|
3
2
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where
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(x) + µ0χR2\Be

(x),

with B1, B2 ⊂ Be = B. Let us define k0 = ω, ke = ω
√
σeµe and ki = ω

√
σiµi for i = 1, 2. The solution

to (A.6) should satisfy



































∆u+ ω2k20u = 0 in R
2 \Be,

∆u+ ω2k2eu = 0 in Be \B1 ∪B2,

∆u+ ω2k22u = 0 in B2,
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if |x| → ∞,

(A.7)

with the following transmission conditions



















































u|+ = u|− on ∂Be,

u|+ = u|− on ∂B2,

u|+ = u|− on ∂B1,
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(A.8)

As in the previous case, we look for a solution to (A.6) of the form

un(x) =



















Cn(x) + Sk0Be
[φ](x) in R

2 \Be,
SkeBe

[γ](x) + SkeB2
[η](x) + SkeB1

[ζ](x) in Be \B1 ∪B2,

Sk2B2
[ψ](x) in B2,

Sk1B1
[ξ](x) in B1,

(A.9)
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where the densities φn, γn, ηn, ζn, ψn and ξn are the solutions to
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(A.10)

Again, the scattering coefficient of order n,m associated to the target B with (inhomogeneous)
piecewise constant permittivity and permeability is given by

Wn,m[b, σ, µ, ω] =

∫

∂Be

Cn(y)φm(y)dSy.

B Target identification with σ0 = 0%

We present results of target identification obtained using the full-view setting of Figure 2 with no noise
(σ0 = 0%). The computation of the error ǫ(D,Bn) is represented by error bars in Figure 8, where the
mth error bar in the nth figure corresponds to the error ǫ(D,Bm) of the matching experiment using
the generating element of the dictionary Bn. The shortest bar in each group is the identified target
and is marked in green, while the true target is marked in red where the identification fails.
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Figure 8: Results of identification for all elements of the dictionary in the full-view and no noise.
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