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IMPROVED EFFICIENCY OF A MULTI-INDEX FEM1

FOR2

COMPUTATIONAL UNCERTAINTY QUANTIFICATION∗3

JOSEF DICK† , MICHAEL FEISCHL‡ , AND CHRISTOPH SCHWAB§4

Abstract. We propose a multi-index algorithm for the Monte Carlo discretization of a linear,5
elliptic PDE with affine-parametric input. We prove an error vs. work analysis which allows a6
multi-level finite-element approximation in the physical domain, and apply the multi-index analysis7
with isotropic, unstructured mesh refinement in the physical domain for the solution of the forward8
problem, for the approximation of the random field, and for the Monte-Carlo quadrature error.9
Our approach allows Lipschitz domains and mesh hierarchies more general than tensor grids. The10
improvement in complexity is obtained from combining spacial discretization, dimension truncation11
and MC sampling in a multi-index fashion. Our analysis improves cost estimates compared to12
multi-level algorithms for similar problems and mathematically underpins the outstanding practical13
performance of multi-index algorithms for partial differential equations with random coefficients.14

Key words. Multi-index, Monte Carlo, Finite Element Method, Uncertainty Quantification15
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1. Introduction. The term multi-index Monte Carlo method (MIMC for short)17

was first coined in the work [14] as an extension of the multi-level Monte Carlo method18

(MLMC for short) developed in [12]. The MIMC idea abstracts sparse grids and sparse19

tensor products to approximate multivariate functions from sparse tensor products of20

univariate hierarchic approximations in each variable, see the surveys [5, 24] and the21

references there.22

Since the appearance of [12], the multi-level idea has been applied in many areas23

including high-dimensional integration, stochastic differential equations, and several24

types of PDEs with random coefficients. We refer to [4, 11, 13, 23]. Most of these25

works addressed MLMC algorithms, while multi-level quasi-Monte Carlo (MLQMC26

for short) algorithms for PDEs with random field input data were addressed only more27

recently in [16, 10, 8, 9]. In the framework of PDEs with random coefficients, the idea28

of the multi-level approach is to introduce sequences of bisection refined grids and to29

compute finite element (FE) approximations of a given partial differential equation30

(PDE) with random coefficients on each discretization level. By varying the MC31

sample size on each level of the FE discretization and by judicious combincation of32

the individual approximations, it is possible to reduce the total cost (up to logarithmic33

factors) from cost(sampling) × cost(FEM) to cost(sampling) + cost(FEM), where34

the individual cost terms are measured on the finest level.35

For example, in linear, elliptic PDEs in divergence form in a bounded domain36

D, MLMC FEM were introduced in [6, 4]. It was shown there that MLMC FEM37
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2 J. DICK, M. FEISCHL, C. SCHWAB

with continuous, piecewise affine (“P1-FEM”) finite elements in D can provide a nu-38

merically computed estimate of the mean field (or “ensemble average”) of the random39

solution u (and, as explained in [4], also of its 2- and k-point correlations) which satis-40

fies, in H1(D), essentially optimal (up to logarithmic terms) convergence rate bounds41

O(h) in work which equals, in space dimension d = 2, essentially O(h−2). These42

asymptotic orders equal the error vs. work relation for the solution of one instance43

of the coresponding deterministic problem. In [4], the random input was assumed to44

consist only of a single term in a KL epansion of the random diffusion coefficient.45

A similar result, again in space dimension d = 2, for functionals G(·) ∈ H−1(D) of46

the solution was obtained in [17]. There, again P1-FEM in D were employed, but in47

order to achieve the higher FE convergence rate O(h2) for G(·) ∈ L2(D), multi-level48

Quasi-Monte Carlo integration over the ensemble was necessary.49

This idea was further extended in [14] to include more than one parameter which50

is quantized into levels. One possible example for this approach, presented in [14],51

is to introduce anisotropic discretizations in the physical domain (as, e.g., sparse52

grid FE discretizations) for which two (three) parameters control the element size53

in the coordinate direction. This ‘sparse grid’ approach has been combined with54

a heuristic, adaptive algorithm and a Quasi-Monte Carlo algorithm in [22]. More55

examples of variations of this approach can be found in [15, 21]. In these approaches,56

the construction of sparse grid hierarchies in the physical domain to access the multi-57

index efficiency could impose obstructions on the shape of the physical domains which58

are amenable to this kind of discretization.59

In the present work, we follow a different (but, as we will show, very natural)60

approach: we include the approximation of the random coefficients into the multi-61

index discretization and convergence analysis. As we show, this is effective due to the62

following consideration: apart from toy problems, it is often not possible to obtain63

exact samples of the random coefficients. This is usually due to the fact that the64

random coefficient is given in terms of some series expansion for which only finitely65

many terms can be computed. This particular approximation can constitute a ma-66

jor bottleneck in computations. It is therefore of practical importance to improve67

efficiency of algorithms.68

Although the presently proposed approach is, in principle, more general, we de-69

velop it here for affine-parametric random coefficients in a standard, linear Poisson70

model problem71

−div(A∇u) = f in D , u = 0 on ∂D(1.1)7273

for some Lipschitz domain D ⊆ R
d. We parametrize the uncertain diffusion coeffi-74

cient, assumed to belong to W 1,∞(D), by a dimensionally truncated Karhunen-Loeve75

expansion (“KL expansion” for short), i.e., for given x ∈ D and ω ∈ Ω (the probability76

space, see Section 2.1)77

A(x, ω) = φ0(x) +

∞∑

j=1

φj(x)ψj(ωj) ≈ Aν(x, ω) := φ0(x) +

sν∑

j=1

φj(x)ψj(ωj),78

79

where {sν}ν∈N ⊂ N is an increasing sequence of “dimension truncation” parameters.80

Given a quantity of interest in terms of a linear functional G(·), the idea is to81

approximate the expectation of the exact solution u of (1.1), i.e., E(G(u)) (where82

the expectation is taken over Ω). This is done by computing several instances of the83

“double difference” Dν
ℓ = (uνℓ − uνℓ−1) − (uν−1

ℓ − uν−1
ℓ−1 ), where u

ν
ℓ denotes the FEM84
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IMPROVED EFFICIENCY OF A MULTI-INDEX FEM 3

approximation of u on a mesh of size hℓ and with respect to the approximation Aν85

of the exact (i.e. withouth truncation) random coefficient. As for any multi-level86

approach, this requires a mesh hierarchy h0, h1, . . . , hℓ as introduced in Section 2.2.87

This leads to88

E(G(u)) ≈
∑

0≤ℓ+ν≤N

QmN−ℓ−ν
(G(Dν

ℓ )),89

90

where QmN−ℓ−ν
denotes a MC sampling rule with given sample size mN−ℓ−ν ∈ N such91

that m0 < m1 < · · · < mN . The main result of this work is to prove that the above92

approximation is (up to logarithmic factors) optimal in the sense that it is as good as93

the approximation given by the naive approach QmN
(G(uNN )), where all components94

are computed on the finest level, while reducing the computational cost.95

The error/cost estimates from Section 6 show that the distribution of work among96

the individual levels is optimal up to logarithmic factors. This can be seen from the97

fact that the multi-index algorithm achieves the same (up to logarithmic factors) cost98

versus error ratio than the worst ratio of each of the involved algorithms (FEM, Monte99

Carlo, approximation of the random coefficient). Since a combined algorithm of this100

form cannot be more efficient than each of its components, this shows optimality.101

2. Model problem. We chose a simple Poisson model problem to give a concise102

presentation of the ideas and proof techniques. The authors are confident that very103

similar techniques can be used to include more general model problems. Moreover,104

we focus on the standard case of H2-regularity of the Poisson problem. Intermediate105

cases with less regularity can be included with the same arguments, but are left out106

for the sake of clarity.107

2.1. Abstract setting. Consider a bounded “physical domain” D ⊆ R
d with108

Lipschitz boundary in dimension d ∈ {2, 3}. We model uncertain input data on a109

probability space (Ω,Σ,P). The mathematical expectation (“ensemble average”) w.r.110

to the probability measure P is denoted by E.111

Define the parametrized bilinear form112

a(A;w, v) :=

∫

D

A(x)∇w(x) · ∇v(x) dx113
114

for a scalar diffusion coefficient A : D → [0,∞). To model uncertain input data, we115

consider random diffusion coefficients which satisfy A(·, ω) ∈ L∞(D) for almost all116

ω ∈ Ω. Precisely, A is assumed a strongly measurable map from (Ω,Σ) to the Banach117

space L∞(D), endowed with the Borel sigma algebra. For A ∈ L∞(D), the bilinear118

form a(A; ., .) is continuous on H1
0 (D)×H1

0 (D), the usual Sobolev space given by119

H1
0 (D) :=

{
v ∈ L2(D) : ∇v ∈ L2(D)d, v|∂D = 0

}
.120121

We assume at hand a sequence of approximate diffusion coefficients (Aν)ν∈N of A =122

A∞ which satisfy Aν(·, ω) ∈W 1,∞(D) for almost all ω ∈ Ω as well as123

lim
ν→∞

‖A−Aν‖L∞(Ω;W 1,∞(D)) = 0.(2.1)124
125

Furthermore, we assume the existence of deterministic bounds Amin and Amax such126

that for every ν ∈ N ∪ {∞}127

0 < Amin ≤ inf
x∈D

Aν(x, ω) ≤ sup
x∈D

Aν(x, ω) ≤ Amax <∞.(2.2)128
129

This manuscript is for review purposes only.



4 J. DICK, M. FEISCHL, C. SCHWAB

To ease notation, we write aνω(·, ·) := a(Aν(ω), ·, ·). Finally, suppose the right-hand130

side f ∈ H−1(D). We embed L2(D) in H−1(D) via the compact embedding v 7→131

〈v , ·〉D for all v ∈ L2(D).132

The assumptions imply ellipticity and continuity of the bilinear form, i.e., for133

almost all ω ∈ Ω134

inf
ν∈N∪∞

inf
w∈H1

0
(D)

aνω(w,w)

‖w‖2H1(D)

≥ Amin(2.3)135

136

as well as137

sup
ν∈N∪∞

sup
w,v∈H1

0
(D)

aνω(w, v)

‖w‖H1(D)‖v‖H1(D)
≤ Amax.(2.4)138

139

The Lax-Milgram lemma implies with (2.3) and (2.4) unique solvability and con-140

tinuity of the solution operator. This implies in particular the existence of a unique141

random solution u (i.e. a strongly measurable map u : Ω → H1
0 (D)) which is defined142

pathwise by: given ω ∈ Ω, find u(ω) ∈ H1
0 (D) such that143

a(A(ω);u(ω), v) = 〈f , v〉D for all v ∈ H1
0 (D), P a.e. ω ∈ Ω.144145

The Lipschitz continuity of the data-to-solution operator SA : A → u (for fixed146

source term f) on the data A ∈ L∞(D) such that (2.2) holds implies the strong mea-147

surability of u : Ω → H1
0 (D). We are interested in the expectation of a certain quantity148

of interest G(·) which is a deterministic, bounded linear functional G(·) : H1
0 (D) → R,149

i.e.150

E(G(u)) ∈ R.151152

We assume that G has an-L2 representer, i.e., that there exists g ∈ L2(D) such that153

G(v) =

∫

D

gv dx for all v ∈ H1
0 (D).154

155

2.2. Finite element discretization. We assume at our disposal a sequence156

of nested triangulations {Tℓ}ℓ∈N with corresponding spaces (Xℓ)ℓ∈N (such that Xℓ ⊆157

Xk ⊂ H1
0 (D) for all ℓ ≤ k). We assume the following approximation property of the158

spaces Xℓ: There exists a constant Capprox > 0 and a monotone sequence {hℓ}ℓ∈N159

with hℓ > 0 and with limℓ hℓ = 0 such that all u ∈ H2(D) satisfy160

inf
v∈Xℓ

‖u− v‖H1(D) ≤ Capproxhℓ‖u‖H2(D).(2.5)161
162

For convenience, we assume hℓ+1 ≥ Cunifhℓ for all ℓ ∈ N and for some constant163

Cunif > 0. A popular example would be based on the nested sequence {Tℓ}ℓ≥0 of164

regular, uniform triangulations of D with corresponding decreasing sequence {hℓ}ℓ≥0165

of mesh-widths hℓ = max{diam(T ) : T ∈ Tℓ}. The sequence {Xℓ}ℓ≥0 of subspaces166

can then be chosen as spaces of continuous, piecewise-linear functions on Tℓ.167

Given the sequence {Xℓ}ℓ≥0 of subspaces, the Galerkin approximation uνℓ (ω) ∈ Xℓ168

is the solution of169

aνω(u
ν
ℓ (ω), v) = 〈f , v〉D for all v ∈ Xℓ and almost all ω ∈ Ω.170171
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Unique solvability follows from the Lax-Milgram lemma and (2.3)–(2.4). Consider the172

solution operators S
ν
ℓ (ω) : H

−1(D) → Xℓ defined by S
ν
ℓ (ω)f := uνℓ (ω). Moreover, let173

(Sνℓ (ω))
−1 : Xℓ → H−1(D) be defined by174

((Sνℓ (ω))
−1u)(v) := aνω(u, v) for all u ∈ Xℓ, v ∈ H1

0 (D).175176

For brevity, we will omit the random parameter and just write Sνℓ := S
ν
ℓ (ω). Moreover,177

we write S
ν
∞f := uν , where uν(ω) ∈ H1

0 (D) is the unique solution of178

aνω(u
ν(ω), v) = 〈f , v〉D for all v ∈ H1

0 (D).179180

Thus, uν denotes the exact solution corresponding to Aν and ((Sν∞(ω))−1·)(v) :=181

aνω(·, v) ∈ H−1(D).182

For simplicity of presentation, we restrict to domains D ⊆ R
d which admit183

uniform (w.r. to all MC samples) H2-regularity of the exact solution as long as184

f ∈ L2(D): there exists a constant Creg > 0 such that for all ω ∈ Ω185

sup
ν∈N

‖Sν∞f‖H2(D) ≤
Creg

Amin
2 (1 + ‖Aν(ω)‖W 1,∞(D))‖f‖L2(D).(2.6)186

187

We remark that when the solution of the Poisson equation is H2-regular, (2.6) follows188

as an immediate consequence. Possible examples of domains D which satisfy this189

property include domains with C2-boundary ∂D or convex domains.190

Lemma 2.1. The discrete solution operators S
ν
ℓ : H

−1(D) → Xℓ as defined above191

satisfy for almost all ω ∈ Ω that192

‖Sνℓ ‖H−1(D)→H1(D) ≤ Amin
−1

193194

as well as195

‖(Sνℓ )−1‖Xℓ→H−1(D) ≤ Amax.196197

Proof. The result follows immediately from (2.3)–(2.4).198

3. Product structure of the approximation error. The main purpose of199

this section is to prove the product error estimate of Theorem 3.9 below at the end of200

this section. This error estimate factors the total error into error contributions of the201

approximation of the random coefficient A ≈ Aν and finite element approximation202

error hℓ → 0. We will restate several well-known results from finite-element analysis,203

as we will make use of the exact dependence on the constants.204

In view of the multi-index decomposition in Section 6, we consider the “difference205

of differences”206

Dν
ℓ := (uνℓ − uνℓ−1)− (uν−1

ℓ − uν−1
ℓ−1 ) : Ω → Xℓ.207208

The goal is to get an error estimate of product form, as this allows us to obtain nearly209

optimal complexity estimates. The key observation is that the definition of Dν
ℓ and210

S
ν
ℓ implies that211

Dν
ℓ = (Sνℓ − S

ν
ℓ−1)f − (Sν−1

ℓ − S
ν−1
ℓ−1 )f212

= (Sνℓ − S
ν
ℓ−1)(S

ν
ℓ )

−1(Sνℓ − S
ν−1
ℓ )f + remainder,213214
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6 J. DICK, M. FEISCHL, C. SCHWAB

where the remainder term can be controlled in Lemma 3.5, below. The product form215

of the first term already suggest the product error estimate which is the goal of this216

section.217

In the following, we use the operator norm for bilinear forms b(·, ·) : X × X → R218

for a Hilbert space X , i.e.,219

‖b‖ := sup
x,y∈X\{0}

|b(x, y)|
‖x‖X ‖y‖X

.220

221

222

Lemma 3.1. Given A,B : Ω → L∞(D), there holds the estimate223

‖a(A(ω), ·, ·)− a(B(ω), ·, ·)‖ ≤ ‖A(ω)−B(ω)‖L∞(D) for all ω ∈ Ω.224225

as well as226

‖Sνℓ f − S
µ
ℓ f‖H1(D) ≤ Amin

−2‖Aν(ω)−Aµ(ω)‖L∞(D)‖f‖L2(D)227228

for all ℓ, ν, µ ∈ N.229

Proof. The first estimate follows since we have for almost all ω ∈ Ω that230

|a(A(ω), u, v)− a(B(ω), u, v)| ≤
∫

D

|A(x, ω)−B(x, ω)||∇u||∇v| dx231

≤ ‖A(ω)−B(ω)‖L∞(D)‖u‖H1(D)‖v‖H1(D).232233

For the second statement, we combine the above with (2.3), and Lemma 2.1, to obtain234

Amin‖Sνℓ f − S
µ
ℓ f‖2H1(D) ≤ aνω(S

ν
ℓ f − S

µ
ℓ f, S

ν
ℓ f − S

µ
ℓ f)235

= 〈f , Sνℓ f − S
µ
ℓ f〉D − aνω(S

µ
ℓ f, S

ν
ℓ f − S

µ
ℓ f)236

= (aµω − aνω)(S
µ
ℓ f, S

ν
ℓ f − S

µ
ℓ f)237

≤ Amin
−1‖Aν −Aµ‖L∞(D)‖f‖L2(D)‖Sνℓ f − S

µ
ℓ f‖H1(D)238239

for all ω ∈ Ω. This concludes the proof.240

Lemma 3.2 (Galerkin orthogonality). There holds Galerkin orthogonality for all241

k, ℓ ∈ N ∪ {∞}, ν ∈ N and all f ∈ H−1(D) in the form242

aνω(S
ν
kf, v) = aνω(S

ν
ℓ f, v) for all v ∈ Xmin{ℓ,k} and all ω ∈ Ω.243244

Particularly, this implies S
ν
ℓ (S

ν
k)

−1 = idXk
for all ℓ ≥ k and k <∞.245

Proof. By definition, we have246

aνω(S
ν
kf, v) = 〈f , v〉D = aνω(S

ν
ℓ f, v).247248

To see the second statement, note that for v ∈ Xk and w ∈ Xℓ, there holds by249

definition of the inverse250

aνω(S
ν
ℓ (S

ν
k)

−1v, w) = ((Sνk)
−1v)(w) = aνω(v, w).251252

This and the positive definiteness of the bilinear form aνω(·, ·) conclude the proof.253
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For the next lemma, we define the energy norm254

‖u‖ω,ν := (aνω(u, u))
1/2.255256

Note that (2.3)–(2.4) ensure Amin
1/2‖·‖H1(D) ≤ ‖·‖ω,ν ≤ Amax

1/2‖·‖H1(D) for almost257

all ω ∈ Ω and for all ν ∈ N.258

There holds the following variant of Céa’s lemma:259

Lemma 3.3 (Céa’s lemma). For v : Ω → Xℓ, ω ∈ Ω, and k ≤ ℓ, we have260

‖(Sµℓ (S
µ
ℓ )

−1 − S
µ
k(S

µ
ℓ )

−1)v(ω)‖H1(D) ≤ Amin
−1/2 inf

w∈Xk

‖v(ω)− w‖ω,µ261

≤ Amin
−1/2Amax

1/2 inf
w∈Xk

‖v(ω)− w‖H1(D).262
263

Proof. For almost all ω ∈ Ω, Galerkin orthogonality guarantees264

aµω
(
(Sµℓ (S

µ
ℓ )

−1 − S
µ
k(S

µ
ℓ )

−1)v, (Sµℓ (S
µ
ℓ )

−1 − S
µ
k(S

µ
ℓ )

−1)v
)

265

= aµω
(
(Sµℓ (S

µ
ℓ )

−1 − S
µ
k(S

µ
ℓ )

−1)v, Sµℓ (S
µ
ℓ )

−1v − w
)

266267

for all w ∈ Xk. Since aνω is a scalar product with respective norm ‖ · ‖ω,ν , we have268

aµω
(
(Sµℓ (S

µ
ℓ )

−1 − S
µ
k(S

µ
ℓ )

−1)v, Sµℓ (S
µ
ℓ )

−1v − w
)

269

≤ ‖(Sµℓ (S
µ
ℓ )

−1 − S
µ
k(S

µ
ℓ )

−1)v‖ω,µ‖Sµℓ (S
µ
ℓ )

−1v − w‖ω,µ.270271

Ellipticity (2.3), norm equivalence A
1/2
min‖ · ‖H1(D) ≤ ‖ · ‖ω,ν ≤ Amax

1/2‖ · ‖H1(D), and272

the fact that ω was arbitrary conclude the proof.273

The following lemma bounds the difference of the Galerkin projections Sνk(S
ν
ℓ )

−1274

for different parameters ν.275

Lemma 3.4. There holds for ℓ, k, ν, µ ∈ N, all v : Ω → Xℓ, and all ω ∈ Ω276

‖(Sνk(Sνℓ )−1 − S
µ
k(S

µ
ℓ )

−1)v(ω)‖H1(D)277

≤ Cproj(ω)‖(Aν −Aµ)(ω)‖L∞(D) inf
w∈Xk

‖v(ω)− w‖H1(D),278
279

where Cproj(ω) := Amin
−2Amax.280

Proof. For k ≥ ℓ, we have S
ν
k(S

ν
ℓ )

−1 = idXℓ
= S

µ
k(S

µ
ℓ )

−1 and thus the assertion281

holds trivially. Assume k < ℓ. Define vk := (Sνk(S
ν
ℓ )

−1 − S
µ
k(S

µ
ℓ )

−1)v : Ω → Xℓ.282

Ellipticity (2.3) of aνω(·, ·) together with Galerkin orthogonality shows for ω ∈ Ω283

Amin‖vk(ω)‖2H1(D) ≤ aνω(vk(ω), vk(ω)) = aνω((S
ν
ℓ (S

ν
ℓ )

−1 − S
µ
k(S

µ
ℓ )

−1)v(ω), vk(ω)).284
285

Since S
ν
ℓ (S

ν
ℓ )

−1 = idXℓ
= S

µ
ℓ (S

µ
ℓ )

−1, we have286

Amin‖vk(ω)‖2H1(D) ≤ aνω((S
µ
ℓ (S

µ
ℓ )

−1 − S
µ
k(S

µ
ℓ )

−1)v(ω), vk(ω))287

= aµω((S
µ
ℓ (S

µ
ℓ )

−1 − S
µ
k(S

µ
ℓ )

−1)v(ω), vk(ω))288

+ (aνω − aµω)((S
µ
ℓ (S

µ
ℓ )

−1 − S
µ
k(S

µ
ℓ )

−1)v(ω), vk(ω)).289290

The first term on the right-hand side above is zero due to Galerkin orthogonality.291

Therefore, we obtain292

‖vk(ω)‖2H1(D) . A−1
min‖aνω − aµω‖‖(Sµℓ (S

µ
ℓ )

−1 − S
µ
k(S

µ
ℓ )

−1)v(ω)‖H1(D)‖vk(ω)‖H1(D).

(3.1)

293
294
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As shown in Lemma 3.1, there holds ‖aνω − aµω‖ ≤ ‖(Aν − Aµ)(ω)‖L∞(D). Moreover,295

we have by Céa’s lemma (Lemma 3.3)296

‖(Sµℓ (S
µ
ℓ )

−1 − S
µ
k(S

µ
ℓ )

−1)v(ω)‖H1(D) ≤ Amin
−1Amax

1/2 inf
w∈Xk

‖v(ω)− w‖H1(D).297
298

This together with (3.1) concludes the proof.299

For the statement of the next result, we recall the definition of the double differ-300

ence301

Dν
ℓ := (uνℓ − uνℓ−1)− (uν−1

ℓ − uν−1
ℓ−1 ) : Ω → Xℓ.302303

Lemma 3.5. There holds for all ω ∈ Ω304

‖Dν
ℓ (ω)‖H1(D) ≤ ‖(Sνℓ − S

ν
ℓ−1)(S

ν
ℓ )

−1(Sνℓ − S
ν−1
ℓ )f‖H1(D)

+ Cproj(ω)‖(Aν −Aν−1)(ω)‖L∞(D) inf
w∈Xk

‖uν−1
ℓ (ω)− v‖H1(D).

(3.2)

305

306

Proof. Straightforward expansion of the equation and S
ν
ℓ (S

ν
k)

−1 = idXk
, k ≤ ℓ307

from Lemma 3.2 show308

Dν
ℓ = ((Sνℓ − S

ν
ℓ−1)− (Sν−1

ℓ − S
ν−1
ℓ−1 ))f309

= (Sνℓ − S
ν
ℓ−1)(S

ν
ℓ )

−1(Sνℓ − S
ν−1
ℓ )f − (Sνℓ−1(S

ν
ℓ )

−1
S
ν−1
ℓ − S

ν−1
ℓ−1 )f.310311

The last term on the right-hand side satisfies312

‖(Sνℓ−1(S
ν
ℓ )

−1
S
ν−1
ℓ − S

ν−1
ℓ−1 )f‖H1(D)

≤ ‖(Sν−1
ℓ−1 (S

ν−1
ℓ )−1

S
ν−1
ℓ − S

ν−1
ℓ−1 )f‖H1(D)

+ ‖(Sνℓ−1(S
ν
ℓ )

−1 − S
ν−1
ℓ−1 (S

ν−1
ℓ )−1)Sν−1

ℓ f‖H1(D).

(3.3)313

314

The first term on the right-hand side satisfies for all v ∈ Xℓ−1315

aνω((S
ν−1
ℓ−1 (S

ν−1
ℓ )−1

S
ν−1
ℓ − S

ν−1
ℓ−1 )f, v) = aνω((S

ν−1
ℓ (Sν−1

ℓ )−1
S
ν−1
ℓ − S

ν−1
ℓ )f, v) = 0316317

and thus ‖(Sν−1
ℓ−1 (S

ν−1
ℓ )−1

S
ν−1
ℓ − S

ν−1
ℓ−1 )f‖H1(D) = 0. For the second term on the318

right-hand side of (3.3), Lemma 3.4 with µ = ν − 1 and k = ℓ− 1 proves319

‖(Sνℓ−1(S
ν
ℓ )

−1 − S
ν−1
ℓ−1 (S

ν−1
ℓ )−1)Sν−1

ℓ f‖H1
0
(D)320

. ‖Aν(ω)−Aν−1(ω)‖L∞(D) inf
v∈Xℓ−1

‖uν−1
ℓ (ω)− v‖H1(D).321

322

Altogether, this concludes the proof.323

The following result is well-known and we reprove it in our setting for the conve-324

nience of the reader.325

Lemma 3.6 (Aubin-Nitsche duality). There holds for all v ∈ H1
0 (D) that326

‖v − S
ν
ℓ (S

ν
∞)−1v‖L2(D) ≤ Capprox

Creg

Amin
2 (1 + ‖Aν(ω)‖W 1,∞(D))hℓ‖v‖H1(D).327

328
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Proof. Let ι : L2(D) → H−1(D) be the usual embedding via the L2(D)-scalar329

product. Define V := v − S
ν
ℓ (S

ν
∞)−1v. We have with Galerkin orthogonality and by330

symmetry of aνω for all w ∈ Xℓ331

‖v − S
ν
ℓ (S

ν
∞)−1v‖2L2(D) = aνω(S

ν
∞ ◦ ι(V ), V ) = aνω(S

ν
∞ ◦ ι(V )− w, V )332

≤ ‖Sν∞ ◦ ι(V )− w‖H1(D)‖V ‖H1(D).333334

Since w ∈ Xℓ was arbitrary, we get with (2.5) and (2.6)335

‖v − S
ν
ℓ (S

ν
∞)−1v‖2L2(D)336

≤ Capproxhℓ‖Sν∞ ◦ ι(V )‖H2(D)‖V ‖H1(D)337

≤ Capprox
Creg

Amin
2 (1 + ‖Aν(ω)‖W 1,∞(D))hℓ‖v − S

ν
ℓ (S

ν
∞)−1v‖L2(D)‖V ‖H1(D).338

339

With Lemma 2.1, we show ‖V ‖H1(D) ≤ (1+Amin
−1Amin)‖v‖H1(D) and thus conclude340

the proof.341

The following result bounds the first term on the right-hand side of the estimate342

in Lemma 3.5 by an error estimate in product form.343

Lemma 3.7. There holds for all ω ∈ Ω344

‖(Sνℓ − S
ν
ℓ−1)(S

ν
ℓ )

−1(Sνℓ − S
ν−1
ℓ )f‖H1(D)345

≤ C̃prod(ω)hℓ‖(Aν −Aν−1)(ω)‖W 1,∞(D)‖f‖L2(D),346347

where C̃prod(ω) ≃ CunifAmin
−5Amax

1/2(1 + maxi∈{0,1} ‖Aν−i(ω)‖W 1,∞(D))
2 > 0.348

Proof. First, Céa’s lemma (Lemma 3.3) shows for v : Ω → Xℓ349

‖(Sνℓ − S
ν
ℓ−1(ω))(S

ν
ℓ )

−1v‖H1(D) ≤ Amin
−1 inf

w∈Xℓ−1

‖v(ω)− w‖ω,ν .350
351

Let v := (Sνℓ−S
ν−1
ℓ )f and choose w := S

ν
ℓ−1(S

ν
∞)−1v. Then, there holds with Galerkin352

orthogonality aνω(w, v − w) = aνω(v − S
ν
ℓ−1(S

ν
∞)−1v, w) = 0 and hence353

‖v − w‖2ω,ν = aνω(v, v − w) = aνω(u
ν − S

ν−1
ℓ f, v − w)354

= aν−1
ω (uν − S

ν−1
ℓ f, v − w) + (aνω − aν−1

ω )(uν − S
ν−1
ℓ f, v − w)355

= aν−1
ω (uν , v − w)− 〈f , v − w〉D + (aνω − aν−1

ω )(uν − S
ν−1
ℓ f, v − w),356357

where we inserted and subtracted aν−1
ω (·, ·). This leads to358

‖v − w‖2ω,ν = aν−1
ω (uν , v − w)− aνω(u

ν , v − w) + (aνω − aν−1
ω )(uν − S

ν−1
ℓ f, v − w)359

= −(aνω − aν−1
ω )(Sν−1

ℓ f, v − w)360

= −(aνω − aν−1
ω )(uν−1, v − w)− (aνω − aν−1

ω )(uν−1
ℓ − uν−1, v − w),361362

where we used S
ν−1
ℓ f = uν−1

ℓ and we added and subtracted the corresponding exact363

solution uν−1. Using the definition of the bilinear forms as well as integration by364

parts, the above reads365

‖v − w‖2ω,ν =

∫

D

(
∇(Aν −Aν−1) · ∇uν−1 + (Aν −Aν−1)∆uν−1

)
(v − w) dx366

− (aνω − aν−1
ω )(uν−1

ℓ − uν−1, v − w)367

≤ ‖Aν −Aν−1‖W 1,∞(D)‖uν−1‖H2(D)‖v − w‖L2(D)368

+ ‖aνω − aν−1
ω ‖‖uν−1

ℓ − uν−1‖H1(D)‖v − w‖H1(D).369370
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Finally, Lemma 3.6 shows371

‖v − w‖L2(D) . hℓ−1Amin
−2(1 + ‖Aν−1(ω)‖W 1,∞(D))‖v‖H1(D)372

. hℓ−1Amin
−3(1 + ‖Aν−1(ω)‖W 1,∞(D))‖f‖L2(D),373374

where the last estimate uses Lemma 2.1. Assumption (2.5), together with the Céa375

lemma (Lemma 3.3), implies376

‖uν−1
ℓ − uν−1‖H1(D) . Amin

−1Amax
1/2hℓ‖uν−1‖H2(D).377378

Together with (2.6), we obtain379

‖uν−1‖H2(D) . Amin
−2(1 + ‖Aν−1(ω)‖W 1,∞(D)‖f‖L2(D)380381

and thus conclude the proof.382

Finally, we have collected all the ingredients to obtain the combined discretization383

error estimate in product form.384

Proposition 3.8. There holds for all ω ∈ Ω385

‖Dν
ℓ (ω)‖H1(D) ≤ Cprod(ω)hℓ‖(Aν −Aν−1)(ω)‖W 1,∞(D)‖f‖L2(D),386387

where Cprod(ω) ≃ C̃prod(ω)(1 +Amax) > 0.388

Proof. The first term on the right-hand side of (3.2) is bounded by Lemma 3.7.389

For the second term, we use (2.5) together with (2.6) to obtain a similar bound.390

Finally, we exploit that hℓ ≥ Cunifhℓ−1 and conclude the proof.391

Since we are interested in the error of the goal functional G(·), we may exploit a392

standard Aubin-Nitsche duality argument to double the rate of convergence.393

Theorem 3.9. There holds for all ω ∈ Ω394

|G(Dν
ℓ (ω))| ≤ Cprod(ω)h

2
ℓ min

{
1, ‖(Aν −Aν−1)(ω)‖W 1,∞(D)

}
‖f‖L2(D)‖g‖L2(D)395396

with Cprod(ω) > 0 depending on Cprod(ω) from Proposition 3.8 via397

Cprod(ω) ≃ Amin
−5Amax‖Aν(ω)‖W 1,∞(D)‖Aν−1(ω)‖W 1,∞(D)Cprod(ω).398

Proof. Let gν ∈ H1
0 (Ω) such that G(·) = aνω(·, gν) (note that such a function399

always exists due to the ellipticity (2.3) of aν−1
ω ). There holds for v, w ∈ Xℓ−1400

G(Dν
ℓ ) = aνω(u

ν
ℓ − uνℓ−1, g

ν)− aν−1
ω (uν−1

ℓ − uν−1
ℓ−1 , g

ν−1)401

= aνω(u
ν
ℓ − uνℓ−1, g

ν − v)− aν−1
ω (uν−1

ℓ − uν−1
ℓ−1 , g

ν−1 − v),402403

where we used Galerkin orthogonality (Lemma 3.2) to insert v ∈ Xℓ−1. Adding and404

subtracting of aνω(·, ·) leads to405

G(Dν
ℓ ) = aνω(u

ν
ℓ − uνℓ−1, g

ν − v)− aνω(u
ν−1
ℓ − uν−1

ℓ−1 , g
ν−1 − v)406

+ (aνω − aν−1
ω )(uν−1

ℓ − uν−1
ℓ−1 , g

ν−1 − v)407

= aνω(u
ν
ℓ − uνℓ−1, g

ν−1 − v)− aνω(u
ν−1
ℓ − uν−1

ℓ−1 , g
ν−1 − v)408

+ (aνω − aν−1
ω )(uν−1

ℓ − uν−1
ℓ−1 , g

ν−1 − v) + aνω(u
ν
ℓ − uνℓ−1, g

ν − gν−1 − w),409410
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where we added and subtracted aνω(u
ν
ℓ − uνℓ−1, g

ν−1) and inserted w ∈ Xℓ−1 using411

Galerkin orthogonality (Lemma 3.2). Recalling the definition of Dν
ℓ , we arrive at412

G(Dν
ℓ ) = aνω(D

ν
ℓ , g

ν−1 − v) + (aνω − aν−1
ω )(uν−1

ℓ − uν−1
ℓ−1 , g

ν−1 − v)413

+ aνω(u
ν
ℓ − uνℓ−1, g

ν − gν−1 − w).414415

Lemma 3.1 and the Céa lemma (Lemma 3.3) together with (2.5) and (2.6) allows us416

to estimate417

|G(Dν
ℓ )| . Amax‖Dν

ℓ ‖H1(D)‖gν−1 − v‖H1(D)

+ ‖Aν −Aν−1‖L∞(D)‖uν−1
ℓ − uν−1

ℓ−1 ‖H1(D)‖gν−1 − v‖H1(D)

+ ‖uνℓ − uνℓ−1‖H1(D)‖gν − gν−1 − w‖H1(D)

. Amax‖Dν
ℓ ‖H1(D)‖gν−1 − v‖H1(D)

+Amin
−3Amax

1/2(1 + ‖Aν−1(ω)‖W 1,∞(D))‖f‖L2(D)hℓ(
‖Aν −Aν−1‖L∞(D)‖gν−1 − v‖H1(D) + ‖gν − gν−1 − w‖H1(D)

)
.

(3.4)418

419

Since G(·) =
∫
D
g(x)(·) dx for some g ∈ L2(D), we obtain from (2.6) that gν , gν−1 ∈420

H2(D). Therefore, and since v ∈ Xℓ−1 was arbitrary, (2.5) and (2.6) show421

inf
v∈Xℓ−1

‖gν−1 − v‖H1(D) . Amin
−2(1 + ‖Aν−1(ω)‖W 1,∞(D))hℓ‖g‖L2(D).422

423

Moreover, there holds for all v ∈ H1
0 (D)424

aνω(g
ν − gν−1, v) = 〈g , v〉D − aνω(g

ν−1, v) = (aν−1 − aν)(gν−1, v)425

=

∫

D

(
∇(Aν −Aν−1) · ∇gν−1 + (Aν −Aν−1)∆gν−1

)
v dx.426

427

It is easy to see that the right-hand side is of the form 〈r , v〉D for some r ∈ L2(D)428

with429

‖r‖L2(D) ≤ 2‖Aν −Aν−1‖W 1,∞(D)‖gν−1‖H2(D) . ‖Aν −Aν−1‖W 1,∞(D)‖g‖L2(D).430

Therefore, (2.6) shows431

‖gν − gν−1‖H2(D) . Amin
−2(1 + ‖Aν(ω)‖W 1,∞(D))‖Aν −Aν−1‖W 1,∞(D)‖g‖L2(D).432433

Since w ∈ Xℓ−1 in (3.4) was arbitrary, the same argument and (2.5) show434

inf
w∈Xℓ−1

‖gν − gν−1 − w‖H1(D)435

. hℓAmin
−2(1 + ‖Aν(ω)‖W 1,∞(D))‖Aν −Aν−1‖W 1,∞(D)‖g‖L2(D).436437

Altogether, we conclude the proof by use of Proposition 3.8, the above estimates, and438

insertion in (3.4). The minimum in the statement follows from standard arguments439

which we will sketch briefly. There holds440

G(uνℓ − uνℓ−1) = aνω(u
ν
ℓ − uνℓ−1, g

ν) = aνω(u
ν
ℓ − uνℓ−1, g

ν − v)441442

for all v ∈ Xℓ−1. As above, choosing v = S
ν
ℓ (S

ν
∞)−1gν and Lemma 3.3 together443

with (2.5) leads to444

|G(uνℓ − uνℓ−1)| . ‖uνℓ − uνℓ−1‖H1(D)hℓ−1‖g‖L2(D)445

. h2ℓ−1‖f‖L2(D)‖g‖L2(D).446447

This concludes the proof.448
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4. Approximation of the random coefficient. This section gives two exam-449

ples of how to choose the random coefficient A(x, ω) as well as the approximations450

Aν(x, ω) in terms of the KL-expansion.451

4.1. KL expansion. In this section, we assume Ω = [0, 1]N, and define ω =452

(ωi)i∈N. We assume that Aν is of the form453

Aν(x, ω) := φ0(x) +

sν∑

j=1

ψj(ωj)φj(x)(4.1)454

455

for functions φj ∈ W 1,∞(D) and ψj ∈ L∞([0, 1], [−Cψ, Cψ]) for some fixed Cψ > 0.456

While the literature often deals with the uniform case ψj(ω) := ω − 1/2 (see next457

subsection), we allow this slightly more general case. We assume that the series458

converges absolutely in W 1,∞(D) for all ω ∈ Ω and hence define459

A(x, ω) := A∞(x, ω) := φ0(x) +

∞∑

j=1

ψj(ωj)φj(x).460

461

Moreover, we assume that (2.2) holds.462

Theorem 4.1. Under the assumptions of the current section, there holds463

‖G(Dν
ℓ )‖L∞(Ω) ≤ CKLh

2
ℓ

sν∑

i=sν−1+1

‖φi‖W 1,∞(D)‖f‖L2(D)‖g‖L2(D).(4.2)464

465

The constant CKL > 0 depends on Cψ but is independent of ℓ, ν, and ω.466

Proof. The estimate follows immediately by definition of Aν and Theorem 3.9.467

4.2. KL expansion with uniform random variables. In many cases, it is468

possible to reduce (4.1) to the simplified form469

Aν(x, ω) := φ0(x) +

sν∑

j=1

ωjφj(x),(4.3)470

471

where now Ω = [−1/2, 1/2]N and ess infx∈D φ0(x) > 0 . This means setting ψj(ω) :=472

ω − 1/2 in (4.1).473

Remark 4.2. Note that theoretically, the case from Section 4.1 can always be474

reduced to the present case. However, in many cases, this requires the user to pre-475

compute all functions φj which is computationally impractical.476

It turns out that in this case, an improved version of Theorem 3.9 (see Theorem 4.7477

at the end of this section) can be derived by arguments already used for quasi-Monte478

Carlo estimates (see, e.g., the works [8, 9] and the references therein). Given a subset479

Ω′ ⊆ ∏
j∈N

C, we define for all j ∈ N480

Ω′
j :=

{
ωj ∈ C : ∃ωi ∈ C, i ∈ N \ {j} such that ω = (ω1, ω2, . . .) ∈ Ω′

}
.481482

Lemma 4.3. Assume that Ω′ ⊇ Ω is such that all results of Section 3 hold true483

with Ω′ instead of Ω. This is particularly the case if the random coefficient remains484

uniformly bounded away from zero and infinity also in Ω′. Then the map F : Ω′
j → C,485

ωj 7→ G(Sνℓ (ω)f) is holomorphic for all j ∈ N.486
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Proof. Along the lines of the argument in [7], we verify complex differentiability of487

the parametric solutions. Fix j ∈ N. Given z ∈ C, define ω+z ∈ C
N by (ω+z)i = ωi488

for all i 6= j and (ω + z)j = ωj + z. Let z be sufficiently small such that there exists489

ε ≥ 2|z| with Bε(ω) ⊆ Ω′. By definition, we have for v ∈ Xℓ490

0 = aνω+z(S
ν
ℓ (ω + z)f, v)− aνω(S

ν
ℓ (ω)f, v)491

=

∫

D

(Aν(x, ω + z)−Aν(x, ω))∇S
ν
ℓ (ω + z)f · ∇v dx+ aνω(S

ν
ℓ (ω + z)f − S

ν
ℓ (ω)f, v).492

493

Let gν ∈ Xℓ denote the representer of G(·)|Xℓ
with respect to aνω. This and the above494

allows us to compute495

G(Sνℓ (ω + z)f)−G(Sνℓ (ω)f)

z
=
aνω(S

ν
ℓ (ω + z)f − S

ν
ℓ (ω)f, g

ν)

z

= −
∫

D

Aν(x, ω + z)−Aν(x, ω)

z
∇S

ν
ℓ (ω + z)f · ∇gν dx.

(4.4)496

497

Since Aν is holomorphic, Cauchy’s integral formula shows for Bε(ωj) ⊂ Ω′
j that498

∣∣∣
Aν(x, ω + z)−Aν(x, ω)

z
− ∂ωj

Aν(x, ω)
∣∣∣499

=
1

2π

∣∣∣
∫

∂Bε(ωj)

1

z

( Aν(x, y)

(y − (ωj + z))
− Aν(x, y)

(y − ωj)

)
− Aν(x, y)

(y − ωj)2
dy

∣∣∣500

=
1

2π

∣∣∣
∫

∂Bε(ωj)

Aν(x, y)

(y − ωj − z)(y − ωj)
− Aν(x, y)

(y − ωj)2
dy

∣∣∣501

=
1

2π

∣∣∣
∫

∂Bε(ωj)

Aν(x, y)z

(y − ωj − z)(y − ωj)2
dy

∣∣∣502

. ε−2‖Aν‖L∞(Ω×D)|z| .503504

This uniform convergence in |z| together with Lemma 3.1 shows that passing to the505

limit z → 0 in C in (4.4) leads to506

∂ωj
G(Sνωf) = −

∫

D

∂ωj
Aν(x, ω)∇S

ν
ℓ (ω)f · ∇gν dx ∈ C.507

508

This shows that F is complex differentiable and thus holomorphic.509

Lemma 4.4. Let (̺j)j∈N be a positive sequence such that510

Ω ⊂ Ω′ :=
∏

j∈N

B1+̺j (0)511

512

and that all the results of Section 3 hold true with Ω′ instead of Ω. Given ℓ, ν ∈ N,513

the map F νℓ : Ω → R, ω 7→ G(Dν
ℓ (ω)) satisfies514

‖∂αωF νℓ ‖L∞(Ω)

‖f‖L2(D)‖g‖L2(D)
515

≤
{
0

∑∞
i=sν+1 αi > 0,

Cder
α!h2

ℓ∏∞
i=1

̺
αi
i

min{1, supω∈Ω′ ‖Aν −Aν−1‖W 1,∞(D)} else,
516

517

for all multi-indices α ∈ N
N with |α| < ∞. The constant Cder > 0 depends only on518

Cprod from Theorem 3.9.519
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Proof. For brevity of presentation, we fix ℓ and ν and write F := F νℓ . Lemma 4.3520

shows that F can be extended to a function F : Ω′ → C, which is holomorphic in each521

coordinate ωj . Moreover, Lemma 3.1 proves that F is uniformly continuous in Ω.522

Therefore, we obtain immediately by induction that F satisfies the multidimensional523

analog of Cauchy’s integral formula for all ω ∈ Ω′524

F (ω) = (2πi)−n
∫

∂Bε1
(ωd1

)

· · ·
∫

∂Bεn (ωdn )

F (z)

(z1 − ωd1) . . . (zn − ωdn)
dz1 . . . dzn,525

526

where (d1, . . . , dn) ∈ N
n contains exactly n distinct dimensions and the parameters527

εi > 0, i = 1, . . . , n are chosen so small that the integration domains of the contour528

integrals above are contained in Ω′. This shows immediately that for any multi-index529

α ∈ N0
N with |α| < ∞, ∂αωF is holomorphic in each variable. Iterated application of530

Cauchy’s integral formula shows for all ω ∈ Ω that531

∂αωF (ω) =
( ∞∏

i=1

αi 6=0

αi!

2πi

)∫
∏∞

i=1
αi 6=0

∂B̺i
(ωi)

F (z)∏∞
i=1

αi 6=0

(zi − ωi)α+1
dz .532

533

This shows immediately534

|∂αωF (ω)| ≤
( ∞∏

i=1

αi 6=0

αi!

2π
2π̺−αi

i

)
‖F‖L∞(Ω′) ≤ α!

( ∞∏

i=1

̺−αi

i

)
‖F‖L∞(Ω′).535

536

This and Theorem 3.9 with Aν(ω) = φ0 +
∑ν
i=1 ωiφi conclude the proof.537

Lemma 4.5. Define for sufficiently small δ > 0538

βi :=
‖φi‖W 1,∞(D)

(ess infx∈D φ0(x)− 2δ)
.539

540

Given ℓ, ν ∈ N, the map F : Ω → R, ω 7→ G(Dν
ℓ (ω)) satisfies541

‖∂αωF‖L∞(Ω) ≤ C̃der

{
0

∑∞
i=sν+1 αi > 0,(∏sν

i=1 β
αi

i

)
h2ℓ‖f‖L2(D)‖g‖L2(D) else,

542

543

for all multi-indices α ∈ N
N
0 with |α| ≤ 2. The constant C̃der > 0 depends only on544

Cder, δ, and (φj)j∈N.545

Proof. Given α ∈ N
N0 with |α| ≤ 2 an admissible sequence (̺j)j∈N in Lemma 4.4546

is, given ε > 0,547

̺j :=

{
(infx∈D φ0(x)− 2δ)αj/2‖φj‖−1

W 1,∞(D) for all j ∈ N with αj > 0,

ε for all j ∈ N with αj = 0.
548

549

This sequence satisfies550

inf
ωi∈B1+̺i

(0):i∈N

ℜ
(
φ0 +

ν∑

i=1

ωiφi
)
≥ φ0 − (ess inf

x∈D
φ0(x)− 2δ)− ε

∞∑

i=1

‖φj‖L∞(D) ≥ δ551

552

for sufficiently small ε > 0 (here ℜ denotes the real part). Moreover, the term553

‖φ0 +
∑ν
i=1 ωiφi‖W 1,∞(D) remains uniformly bounded in Ω′ :=

∏∞
i=1B1+̺i(0). This554
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ensures that Ω′ satisfies all the assumptions required for Ω and thus all results of Sec-555

tion 3 remain valid for Ω′ instead of Ω. In particular, the constant Cprod(ω) from The-556

orem 3.9 is uniformly bounded in ω ∈ Ω′. The affine-parametric map ω 7→ Aν(x, ω)557

is holomorphic in each coordinate in Ω′, with constant derivative558

∂ωj
Aν(x, ω) =

{
φj(x) for j ≤ sν ,

0 else.
559

560

Moreover, since |α| ≤ 2 there holds561

∞∏

i=1

̺−αi

i ≤
∞∏

i=1

βαi

i .562

563

This, together with Lemma 4.4 concludes the proof.564

Lemma 4.6. Let g ∈ L∞(Ω) be sufficiently smooth and let g depend only on the565

first s ∈ N dimensions, i.e., ∂ωi
g = 0 for all i > s. For 0 ≤ r ≤ s and x =566

(x1, x2, . . . , xs) ∈ Ωs, define the function space567

Psr (Ω) := span
{
f ∈ L∞(Ω) : f(x) =

s∑

i=r+1

α(x1, . . . , xr)xi, α(x1, . . . , xr) ∈ R
}
.568

569

Assume that ω ∈ Ω with ωi = 0 for all i > r implies g(ω) = 0. Then, there holds570

‖g(ω)‖L∞(Ω) ≤
s∑

i=r+1

‖∂ωi
g‖L∞(Ω).571

572

Moreover, there exists g0 ∈ Psr (Ω) such that573

‖g(ω)− g0(ω)‖L∞(Ω) ≤
1

2

s∑

i=r+1

i∑

j=r+1

‖∂ωi
∂ωj

g‖L∞(Ω).574

575

Proof. Let ω ∈ R
s. There holds576

g(ω) = g(ω1, . . . , ωr, 0, . . .)︸ ︷︷ ︸
=0

+

s∑

i=r+1

∫ ωi

0

∂ωi
g(ω1, . . . , ωi−1, ti, 0, . . .) dti577

=

s∑

i=r+1

∫ ωi

0

(
∂ωi

g(ω1, . . . , ωr, 0, . . .)578

+

∫ ti

0

∂2ωi
g(ω1, . . . , ωi−1, si, 0, . . .) dsi579

+

i−1∑

j=r+1

∫ ωj

0

∂ωj
∂ωi

g(ω1, . . . , ωj−1, sj , 0, . . .) dsj

)
dti.580

581

Since the first integrand on the right-hand side does not depend on ωi, the above582
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implies583

g(ω) =
s∑

i=r+1

(
ωi∂ωi

g(ω1, . . . , ωr, 0, . . .)584

+

∫ ωi

0

(∫ ti

0

∂2ωi
g(ω1, . . . , ωi−1, si, 0, . . .) dsi585

+
i−1∑

j=r+1

∫ ωj

0

∂ωj
∂ωi

g(ω1, . . . , ωj−1, sj , 0, . . .) dsj

)
dti

)
.586

587

Since there holds (ω 7→ ωi∂ωi
g(ω1, . . . , ωr, 0, . . .)) ∈ Psr (Ω) for all i ≥ r+1, we conclude588

the proof.589

Theorem 4.7. Under the assumptions of the current section, there holds590

‖G(Dν
ℓ )‖L∞(Ω) ≤ CKLh

2
ℓ

sν∑

i=sν−1+1

‖φi‖W 1,∞(D)‖f‖L2(D)‖g‖L2(D).(4.5)591

592

Moreover, there exists g0 ∈ Psνsν−1
(Ω) such that593

‖G(Dν
ℓ )− g0‖L∞(Ω)

≤ CKLh
2
ℓ

sν∑

i=sν−1+1

sν∑

j=sν−1+1

‖φi‖W 1,∞(D)‖φj‖W 1,∞(D)‖f‖L2(D)‖g‖L2(D).
(4.6)594

595

The constant CKL > 0 is independent of ℓ, ν, and ω.596

Proof. The first estimate (4.5) follows from the definition of Aν and Theorem 3.9.597

For (4.6), the map g(ω) := Dν
ℓ (ω) satisfies the requirements of Lemma 4.6 with598

r = sν−1. Hence, the result follows immediately from Lemma 4.6 and Lemma 4.5.599

5. Monte Carlo integration. This section discusses the Monte Carlo quadra-600

ture rules. The uniform KL-expansion case (Section 4.2) allows us to increase the601

order of convergence by symmetrization of the Monte Carlo rule. This section defines602

the Monte Carlo integration for the case that the random coefficient is given by a603

KL-expansion as discussed in Sections 4.1–4.2.604

We make the standard assumption that the functions φi from (4.3) satisfy605

‖φj‖W 1,∞(D) ≤ CKLj
−r for all j ∈ N(5.1)606607

for some r > 1.608

Lemma 5.1. Define the Monte Carlo rule609

QM (g) :=
1

M

M∑

i=1

g(Xi)610

611

for uniformly distributed i.i.d Xi ∈ [−1/2, 1/2]sν . Then, under the assumptions of612

Section 4.1 given ℓ, ν ∈ N, the function F : Ω → R, ω 7→ G(Dν
ℓ (ω)) satisfies613

√
EMC|E(F )−QM (F )|2 ≤ CMCs

1−r
ν−1

h2ℓ√
M

‖f‖L2(D)‖g‖L2(D).614
615

Here, EMC(·) denotes integration over the combined probability spaces of the Xi, i =616

1, . . . ,M , whereas E(·) denotes integration over Ων .617
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Proof. The statement follows immediately from the standard Monte Carlo error618

estimate, Theorem 4.1, and the fact that
∑sν
j=sν−1+1 j

−r . s1−rν−1.619

By symmetrization of the Monte Carlo sequence, we are able to increase the order620

of convergence in the truncation parameter ν.621

Lemma 5.2. Define the symmetric Monte Carlo rule622

QM (g) :=
1

2M

M∑

i=1

(g(Xi
1, . . . , X

i
sν ) + g(Xi

1, . . . , X
i
sν−1

,−Xi
sν−1+1, . . . ,−Xi

sν )),623

624

where the Xi ∈ [−1/2, 1/2]sν are i.i.d. and uniformly distributed. Under the assump-625

tions of Section 4.2, there holds QM (g0) = 0 for all g0 ∈ Psνsν−1
(Ω). Moreover, given626

ℓ, ν ∈ N, the map F : Ω → R, ω 7→ G(Dν
ℓ (ω)) satisfies627

√
EMC|E(F )−QM (F )|2 ≤ CMCs

2(1−r)
ν−1

h2ℓ√
M

‖f‖L2(D)‖g‖L2(D).628
629

Here, EMC(·) denotes integration over the combined probability spaces of the Xi, i =630

1, . . . , 2m, whereas E(·) denotes integration over Ων .631

Proof. First, we notice that for g0 ∈ P1
sν−1

(Ω), there holds632

g0(X
i
1, . . . , X

i
sν ) = −g0(Xi

1, . . . , X
i
sν−1

,−Xi
sν−1+1, . . . ,−Xi

sν ).633
634

Therefore, we have QM (g0) = 0 for all g0 ∈ P1
sν−1

(Ω). Thus, the statement follows635

from the standard Monte Carlo error estimate and Theorem 4.7, where we note with636

(5.1)637

sν∑

i=sν−1+1

sν∑

j=sν−1+1

‖φi‖W 1,∞(D)‖φj‖W 1,∞(D)638

.

∞∑

i=sν−1+1

∞∑

j=sν−1+1

i−rj−r . (sν−1)
2(−r+1).639

640

6. Multi-Index error control. The multi-index decomposition allows us to641

exploit the product error estimates and, hence, to improve the complexity of the642

finite-element/Monte Carlo algorithm.643

6.1. Complexity of MIMCFEM. To quantify the complexity, i.e., the error644

vs. work, of the presently proposed MIMCFEM, we rewrite the exact solution as (Qm645

denotes one of the MC sample averages QM from Section 5 with M = 2m samples)646

E(G(u)) =
∞∑

j=0

(Qmj
−Qmj−1)(G(u))647

=

∞∑

j=0

∞∑

ℓ=0

(Qmj
−Qmj−1

)(G(uℓ − uℓ−1))648

=

∞∑

j=0

∞∑

ℓ=0

∞∑

ν=0

(Qmj
−Qmj−1

)(G(Dν
ℓ )),649

650
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18 J. DICK, M. FEISCHL, C. SCHWAB

where mj ∈ N and Qm−1
:= 0. By truncation of the series, we achieve a sparse651

approximation, i.e., given N ∈ N652

E(G(u)) ≈ GN :=
∑

0≤j+ℓ+ν≤N

(Qmj
−Qmj−1)G(D

ν
ℓ ) =

∑

0≤ℓ+ν≤N

QmN−ℓ−ν
(G(Dν

ℓ )).653

654

Recall the expectation of the Monte Carlo integration EMC(·) and the expectation655

over Ω denoted by E(·). We define two quantities to quantify the efficiency of the656

presently proposed method: the MC sampling error is defined by657

EN :=
√

EMC|E(G(u))−GN |2658659

whereas the cost model is defined by660

CN := (The number of computational operations necessary to compute GN )661662

and obviously depends on the chosen method discussed below.663

First, we establish the cost model. A standard FEM will ensure hℓ ≃ 2−ℓ which664

implies #Tℓ ≃ 2dℓ. We assume a linear iterative solver such that solving the sparse665

FEM system costs O(2dℓ).666

Under the assumptions of Section 4.1 and 4.2, we assume that we can compute667

the bilinear forms668

aj(v, w) :=

∫

D

φj(x)∇v(x)∇w(x) dx for all v, w ∈ Xℓ669
670

exactly in O(#Tℓ). Depending on the truncation parameters sν , we have to compute671

sν bilinear forms aj(·, ·) to obtain in the affine case672

aνω(v, w) =

sν∑

j=1

ωjaj(v, w),673

674

resulting in a cost of O(2dℓsν). Altogether, this yields675

CN ≃
∑

0≤j+ℓ+ν≤N

2mj2dℓsν676

677

Using Lemma 5.1 as well as linear operator notation for E(·) and Qmj
, we see that678

the multi-index error satisfies679

EN = EMC

(∣∣∣
∑

N<j+ℓ+ν

(Qmj
−Qmj−1

)G(Dν
ℓ )
∣∣∣
2)1/2

680

≤
∑

0≤ℓ+ν

EMC

(
|(E−Qmmax{0,N−ℓ−ν+1}

)G(Dν
ℓ )|2

)1/2
681

. ‖f‖L2(D)‖g‖L2(D)

∑

0≤ℓ+ν

2−mmax{0,N−ℓ−ν+1}/22−2ℓs1−rν−1.682

683

An obvious choice of the parameters sν and mj is to balance the work spent on each684

of the two tasks such that the three error contributions (FEM-discretization error,685

truncation error, quadrature error) are of equal asymptotic order. We define686

mj := ⌈4j⌉ and sν := ⌈2 2ν
r−1 ⌉.687688
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With this, we have689

EN . ‖f‖L2(D)‖g‖L2(D)

∑

0≤ℓ+ν

2−2max{0,N−ℓ−ν+1}2−2ℓ2−2ν

. ‖f‖L2(D)‖g‖L2(D)(N + 1)22−2N

(6.1)690

691

as well as692

CN ≃
∑

0≤j+ℓ+ν≤N

24j2dℓ2
2ν

r−1 . 2max{4,d, 2
r−1

}N .(6.2)693

694

Using the symmetrized Monte Carlo rule from Lemma 5.2, we see that the multi-index695

error improves to696

EN . ‖f‖L2(D)‖g‖L2(D)

∑

0≤ℓ+ν

2−mmax{0,N−ℓ−ν+1}/22−2ℓs
2(1−r)
ν−1 .697

698

As above, we balance the contributions by699

mj := ⌈4j⌉ and sν := ⌈2 ν
r−1 ⌉.700701

With this, we obtain the same error estimate as for the plain Monte Carlo rule (6.1),702

but with an improved cost estimate of703

Csymm
N . 2max{4,d, 1

r−1
}N .(6.3)704705

706

6.2. Comparison to multi-level (quasi-) Monte Carlo FEM. The main707

difference to multi-level Monte Carlo is that the present method can capitalize on708

the approximation of the random coefficient, whereas the multi-level method has to709

treat this term in an a-priori fashion. However, the multi-level method can exploit710

symmetry properties of the exact operator to improve the rate of convergence in the711

approximation of the random coefficient, i.e., it achieves the same accuracy with a712

cost O(2
1

r−1
N ) instead of O(2

2
r−1

N ). This is worked out in the quasi-Monte Carlo713

case in [10] but transfers verbatim to the Monte Carlo case. Therefore, the multi-714

level (quasi-) Monte Carlo method with the same level structure as described in the715

previous section will achieve a cost versus error relation given by (see [18, Theorem 12]716

with p = q = 1/r − ε for all ε > 0 and τ = 2 in their notation)717

EML
N . (N + 1)α2−2N with CML

N . 2max{4λ,d}N+ 1
r−1

N ,718719

where α > 0 is a constant and 1/(2λ) for λ ∈ (1/2, 1] is the convergence rate of720

the QMC quadrature (with the Monte Carlo rate formally corresponding here to721

the choice 1/(2λ) = 1/2). Comparing the above estimates with the error vs. work722

estimates for the MIMCFEM from Section 6.1, we aim to identify parameter regimes723

in which the presently proposed MIMCFEM improves over alternative multi-level724

methods in terms of asymptotic error versus cost. We observe that standard multi-725

index Monte Carlo improves the multi-level Monte Carlo in case that726

max{4, d, 2

r − 1
} < max{4, d}+ 1

r − 1
equivalent to max{4, d} > 1

r − 1
,727

728
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i.e., when the sampling and the FEM computations dominate the approximation of the729

random coefficient. We conclude that the symmetric multi-index Monte Carlo method730

from Lemma 5.2 improves the multi-index Monte Carlo method for all parameter731

combinations. For λ ∈ (1/2, 1],732

max{4, d, 1

r − 1
} < max{4λ, d}+ 1

r − 1
equivalent to 4− 4λ <

1

r − 1
733
734

the presently proposed, symmetric multi-index Monte Carlo FE method even improves735

in terms of error vs. work as compared to the first order multi-level quasi-Monte Carlo736

method based on e.g. a randomly shifted lattice rule as in [17]. This setting represents737

the case when the approximation of the random coefficient dominates the sampling738

and the FEM computations.739

7. Extension of the MIFEM convergence to Reduced Regularity in D.740

Up to this point, the presentation and the error vs. work analysis assumed “full elliptic741

regularity” for data and solutions of the model problem in Section 2. Specifically, we742

assumed that the random diffusion coefficient A and the deterministic right hand side743

f in (1.1) belong to W 1,∞(D) and to L2(D), respectively. This, together with the744

convexity of the domain D and the homogeneous Dirichlet boundary conditions is745

well known to ensure P-a.s. that u ∈ L2(Ω;H2(D)). This, in turn, implies first order746

convergence of conforming P1-FEM on regular, quasiuniform meshes, and second747

order (super)convergence for continuous linear functionals in L2(D). These somewhat748

restrictive assumptions were made in order to present the MIFEM approach in the749

most explicit and transparent way. The present MIFEM error analysis is, however,750

valid under more general assumptions, which we now indicate.751

Still considering conforming P1-FEM on regular meshes of triangles, mixed bound-752

ary conditions and nonconvex polygons D will allow verbatim the same line of argu-753

ment and results, provided that the following modifications of the FE error analysis754

are taken into account: (i) elliptic regularity : as is well-known, the L2−H2 regularity755

result which we used will, in general, cease to be valid for nonconvex D, or for mixed756

boundary value problems. A corresponding theory is available and uses weighted757

Sobolev spaces. We describe it to the extent necessary for extending our error anal-758

ysis for conforming P1-FEM. In polygonal domains D ⊂ R
2, weighted, hilbertian759

Kondrat’ev spaces of order m ∈ N0 with shift a ∈ R are defined by760

(7.1) Kma (D) := {v : D → R|r|α|−aD ∂αv ∈ L2(D), |α| ≤ m}761

In (7.1), α ∈ N
2
0 denotes a multi-index and ∂α the usual mixed weak derivative of762

order α = (α1, α2). In these spaces, there holds the following regularity result [2,763

Thm. 1.1].764

Proposition 7.1. Assume that D ⊂ R
2 is a bounded polygon with straight sides.765

In D consider the Dirichlet problem (1.1) with random coefficient A ∈ L∞(Ω;W 1,∞(D))766

satisfying (2.2). Then the following holds:767

1. There exists η > 0 such that for every |a| < η, and for every f ∈ K0
a−1(D),768

the unique solution u ∈ H1
0 (D) of (1.1) belongs to K2

a+1(D).769

2. For every fixed f ∈ K0
a−1(D), the data-to-solution map S : W 1,∞(D) →770

K2
a+1(D) : A 7→ u is analytic for every |a| < η.771

3. There exists a sequence {T ℓ}ℓ≥0 of regular, simplicial triangulations with re-772

finements towards the corners of D such that there holds the approximation773
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property774

(7.2) ∀w ∈ K2
a+1(D) : inf

v∈S1(D;T ℓ)
‖w − v‖H1(D) ≤ Chℓ‖w‖K2

a+1
(D) ,775

where hℓ := max{diam(T ) : T ∈ T ℓ} and Xℓ = #(T ℓ) . h−2
ℓ .776

We refer to [2, Thm. 1.1] for the proof of items 1. and 2., and to [1, 3, 20] for a proof777

of item 3.; we note in passing that [1, 3] cover so-called graded meshes, whereas item778

3. for nested, bisection-tree meshes as generated e.g. by adaptive FEM is proved in779

[20].780

With Proposition 7.1 at hand, the preceding MIFEM error analysis extends verba-781

tim to the present, more general setting: the H2(D) regularity results for the forward782

problem as well as for the adjoint problem extend to K2
a+1(D), under the assumption783

f, g ∈ K0
a−1(D), and under identical assumptions on the random coefficient A. The784

use of the Cauchy integral theorem in the weighted function space setting is justified785

by item 2. combined with the (obvious) observation that affine-parametric functions786

such as (4.3) depend analytically on the parameters ωj .787

We also note that other discretizations, such as the symmetric IP DG FEM,788

admit corresponding error bounds on graded meshes including the superconvergence789

error bound in L2(D) [19]. A corresponding MIFEM algorithm and error analysis790

with exactly the same error vs. work bounds could also be obtained for SIPDG791

discretization of the forward problem.792

We finally mention that Proposition 7.1 also extends verbatim to homogeneous,793

mixed boundary conditions, to symmetric matrix-valued random diffusion coefficients794

A = (aij)i,j=1,2 ∈ W 1,∞(D;R2×2) (the space W 1,∞(D) could even be slightly larger,795

admitting singular behaviour near corners of D) and to higher orders m ≥ 2 of796

differentiation, allowing for Lagrangean FEM of polynomial degree p = m ≥ 2 on797

locally refined meshes in D. A precise statement of these regularity results is available798

in [2, Thm. 4.4].799

8. Numerical experiments. We provide numerical tests in space dimension800

2 to verify the theoretical results. In the first example, we choose uniform mesh801

refinement in a convex domain D and irregular forcing function f (which is to say802

in the present setting of first order FEM that f 6∈ L2(D)). The second example will803

feature a non-convex domain with re-entrant corner and sequences {Tℓ}ℓ of locally804

refined, nested regular triangulations of D.805

8.1. Irregular forcing and uniform mesh refinement. For purposes of com-806

parison, we use a similar example as in [8, Section 5.2]. We choose the convex domain807

D = [0, 1]2 and define the scalar random coefficient function A by808

A(x, ω) := 1/2 +

∞∑

k1,k2=1

ωk1,k2
(k21 + k22)

2
sin(k1πx1) sin(k2πx2)809

:= 1/2 +
∞∑

j=1

ωj
µj

sin(k1,jπx1) sin(k2,jπx2),810

811

where µj := (k21,j + k22,j)
2 such that µi ≤ µj for all i ≤ j and ties are broken in an812

arbitrary fashion. This ensures that the φj satisfy (5.1) with r = 2. The variational813

form of the problem then reads814

Find u ∈ H1
0 (D) : a(A(·, ω);u, v) = f(v) ∀v ∈ H1

0 (D) .815816
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Fig. 1. Two levels of mesh-refinement for the unit-square domain.

where f ∈ H−1/2−ε(D) for all ε > 0 is defined by

f(v) :=

∫

Γ

v(x1, x2)x1 dΓ(x1, x2) =
√
2

∫ 1

0

t v(t, 1− t) dt

for Γ =
{
(0, 1) + r(1,−1) : 0 ≤ r ≤ 1

}
being a diagonal of D. Note that we choose817

the weight x1 in the integral in the definition of the right-hand side to introduce818

some non-symmetric quantities and thus avoid super-convergence effects. We consider819

the quantity of interest G(u) :=
∫
D′ u dx, where D

′ = (1/2, 1)2 ⊂ D. Whereas the820

analysis of the present paper is focused on the full regularity case with right-hand side821

f ∈ L2(D), all arguments remain valid in case of reduced regularity of the right-hand822

side f ∈ H−1/2−ε(D) (for the case of reduced regularity due to re-entrant corners,823

see the second experiment).824

The finite element discretization is based on first order, nodal continuous, piece-825

wise affine finite elements Xℓ on a uniform partition of [0, 1]2 into 22ℓ+1 many con-826

gruent triangles (one example is shown in Figure 1). The meshwidth of this trian-827

gulation is hℓ = O(2−ℓ). Note that the cost model applies as we can compute the828

stiffness matrix exactly since the gradients of the shape functions are constants and829

the anti-derivatives of products of sine functions are known over triangles. The error830

expected by theory for the FEM on mesh-level ℓ is O(hℓ) = O(2−3/2ℓ) (due to the831

reduced regularity of the right-hand side f). Thus we choose the mj := 3j as well832

as sν = ⌈2ν/(r−1)⌉ for the original algorithm and sν = ⌈2ν/(2(r−1))⌉ for the sym-833

metrized version. Therefore we expect that the errors for both algorithms satisfy834

EN = O(2−3/2N ) = O(C
−1/2
N ), where CN as defined in (6.2), (6.3) denotes the cost835

of the multi-index FEM on level N . This is confirmed in Figure 2. For the numeri-836

cal experiments, we compare with a reference solution computed with a higher-order837

Quasi-Monte Carlo method proposed in [8]. The reference value is computed with838

a higher order QMC rule1 To smooth out the effects of MC sampling, the plotted839

relative errors are averaged over 20 runs of the respective multi-index algorithm (we840

also plot empirical 90%-confidence intervals for each error point).841

8.2. Local mesh refinement. The regularity of the exact solution can also be842

reduced by re-entrant corners with corresponding reduced rates of FE convergence for843

quasiuniform meshes. As is well-known (e.g. [3, 1]), in two space dimensions, this is844

1 The authors thank F. Henriquez, a PhD student at the Seminar for Applied Mathematics of
ETH, for computing the reference value.
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Fig. 2. Averaged relative errors or the multi-index algorithms with respect to the reference

solution G compared with the theoretical error bound O(C
−1/2
N ) (original algorithm (left) and sym-

metrized version (right)). Both plots shows the average error curve of 20 runs of the algorithms
as well as the empirical 90%-confidence intervals of the computed error. The symmetrized version
reaches the accuracy of the non-symmetric version already for N = 6 instead of N = 9.
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Fig. 3. Two levels of graded mesh-refinement for the L-shaped domain.

due to point-singularities in the solution. These can be compensated by a-priori local845

mesh-refinement in D. Using hierarchies of so-called graded or suitable bisection-tree846

meshes, and expressing regularity of solutions in terms of weighted H2(D) spaces,847

the present regularity and FE convergence analysis remains valid verbatim, with full848

convergence rates (see Section 7 for details).849

This is demonstrated on the following example on the L-shaped domain D :=850

[−1, 1]2 \ (1, 0)× (−1, 0) depicted in Figure 3 with the same coefficient and PDE as in851

the previous example. However, as a right-hand side, we use f = 1 and the quantity of852

interest is now defined by G(u) :=
∫
(0,1/2)2

u dx. The graded meshes T ℓ from Propo-853

sition 7.1 are generated by newest vertex bisection by iteratively refining all elements854

T which are coarser than the theoretically optimal grading of O(dist({0}, T )1/3hℓ).855

This results in a sequence of meshes with #(T ℓ) = O(22/3ℓ). Figure 3 shows one856

instance of this sequence of meshes. Figure 4 confirms the correct distribution of857

element diameters within the mesh.858

The performance of the multi-index Monte Carlo method is shown in Figure 5859

for the symmetrized version. Since we aim for the full convergence rate O(2−2N ) in860

this example, we choose the level parameters mj := 8/3j as well as sν = ⌈22ν/(3r−3)⌉.861

Due to the much higher number of Monte-Carlo samples required in this example, we862
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Fig. 4. We see statistics of several graded meshes for levels N = 1, . . . , 9. The left-hand side

plot shows that the number of elements behaves as O(22/3N ). The right-hand side plot shows for the
mesh T 8 that the distribution of element diameters with respect to their distance to the singularity
behaves like O(dist({0}, T )1/3hN ), where hN is the maximal element diameter.
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Fig. 5. Averaged relative errors or the multi-index algorithms with respect to the reference

solution G compared with the theoretical error bound O(C
−1/2
N ). The error curve is the average of

four Monte-Carlo runs.

only performed four Monte-Carlo runs and show the averaged error in Figure 5. We863

observe optimal convergence behaviour despite the presence of corner singularities in864

the exact solution. As a reference solution, we use the approximation on the next865

higher level N = 14.866

9. Conclusion. The present work shows that the multi-index Monte Carlo al-867

gorithm with the indices being the discretization parameters of the finite element868

method, of the Monte Carlo method, and of the approximation of the random field is869

superior to its multi-level counterpart. The error estimates are rigorous and the prod-870

uct error estimate from Theorem 3.9 might be of independent interest. The method871

can be combined with existing multi-index techniques which focus on sparse grids in872

the physical domain D to further reduce the computational effort under the provision873
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of appropriate extra regularity.874
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