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IMPROVED EFFICIENCY OF A MULTI-INDEX FEM
FOR
COMPUTATIONAL UNCERTAINTY QUANTIFICATION*

JOSEF DICK', MICHAEL FEISCHL!, AND CHRISTOPH SCHWABS

Abstract. We propose a multi-index algorithm for the Monte Carlo discretization of a linear,
elliptic PDE with affine-parametric input. We prove an error vs. work analysis which allows a
multi-level finite-element approximation in the physical domain, and apply the multi-index analysis
with isotropic, unstructured mesh refinement in the physical domain for the solution of the forward
problem, for the approximation of the random field, and for the Monte-Carlo quadrature error.
Our approach allows Lipschitz domains and mesh hierarchies more general than tensor grids. The
improvement in complexity is obtained from combining spacial discretization, dimension truncation
and MC sampling in a multi-index fashion. Owur analysis improves cost estimates compared to
multi-level algorithms for similar problems and mathematically underpins the outstanding practical
performance of multi-index algorithms for partial differential equations with random coefficients.
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1. Introduction. The term multi-index Monte Carlo method (MIMC for short)
was first coined in the work [14] as an extension of the multi-level Monte Carlo method
(MLMC for short) developed in [12]. The MIMC idea abstracts sparse grids and sparse
tensor products to approximate multivariate functions from sparse tensor products of
univariate hierarchic approximations in each variable, see the surveys [5, 24] and the
references there.

Since the appearance of [12], the multi-level idea has been applied in many areas
including high-dimensional integration, stochastic differential equations, and several
types of PDEs with random coefficients. We refer to [4, 11, 13, 23]. Most of these
works addressed MLMC algorithms, while multi-level quasi-Monte Carlo (MLQMC
for short) algorithms for PDEs with random field input data were addressed only more
recently in [16, 10, 8, 9]. In the framework of PDEs with random coefficients, the idea
of the multi-level approach is to introduce sequences of bisection refined grids and to
compute finite element (FE) approximations of a given partial differential equation
(PDE) with random coefficients on each discretization level. By varying the MC
sample size on each level of the FE discretization and by judicious combincation of
the individual approximations, it is possible to reduce the total cost (up to logarithmic
factors) from cost(sampling) x cost(FEM) to cost(sampling) + cost(FEM), where
the individual cost terms are measured on the finest level.

For example, in linear, elliptic PDEs in divergence form in a bounded domain
D, MLMC FEM were introduced in [6, 4]. It was shown there that MLMC FEM
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2 J. DICK, M. FEISCHL, C. SCHWAB

with continuous, piecewise affine (“P;-FEM”) finite elements in D can provide a nu-
merically computed estimate of the mean field (or “ensemble average”) of the random
solution u (and, as explained in [4], also of its 2- and k-point correlations) which satis-
fies, in H'(D), essentially optimal (up to logarithmic terms) convergence rate bounds
O(h) in work which equals, in space dimension d = 2, essentially O(h~=2). These
asymptotic orders equal the error vs. work relation for the solution of one instance
of the coresponding deterministic problem. In [4], the random input was assumed to
consist only of a single term in a KL epansion of the random diffusion coefficient.
A similar result, again in space dimension d = 2, for functionals G(-) € H=1(D) of
the solution was obtained in [17]. There, again P;-FEM in D were employed, but in
order to achieve the higher FE convergence rate O(h?) for G(-) € L%(D), multi-level
Quasi-Monte Carlo integration over the ensemble was necessary.

This idea was further extended in [14] to include more than one parameter which
is quantized into levels. One possible example for this approach, presented in [14],
is to introduce anisotropic discretizations in the physical domain (as, e.g., sparse
grid FE discretizations) for which two (three) parameters control the element size
in the coordinate direction. This ‘sparse grid’ approach has been combined with
a heuristic, adaptive algorithm and a Quasi-Monte Carlo algorithm in [22]. More
examples of variations of this approach can be found in [15, 21]. In these approaches,
the construction of sparse grid hierarchies in the physical domain to access the multi-
index efficiency could impose obstructions on the shape of the physical domains which
are amenable to this kind of discretization.

In the present work, we follow a different (but, as we will show, very natural)
approach: we include the approximation of the random coefficients into the multi-
index discretization and convergence analysis. As we show, this is effective due to the
following consideration: apart from toy problems, it is often not possible to obtain
exact samples of the random coefficients. This is usually due to the fact that the
random coefficient is given in terms of some series expansion for which only finitely
many terms can be computed. This particular approximation can constitute a ma-
jor bottleneck in computations. It is therefore of practical importance to improve
efficiency of algorithms.

Although the presently proposed approach is, in principle, more general, we de-
velop it here for affine-parametric random coefficients in a standard, linear Poisson
model problem

(1.1) —div(AVu) = f in D, u=0 on 9D

for some Lipschitz domain D C R%¢. We parametrize the uncertain diffusion coeffi-
cient, assumed to belong to W°°(D), by a dimensionally truncated Karhunen-Loeve
expansion (“KL expansion” for short), i.e., for given z € D and w € Q) (the probability
space, see Section 2.1)

Az, w) +Z¢J 2)Yj(w;) = A (z,w) == ¢ +Z¢J ) (w;),

where {s,},eny C N is an increasing sequence of “dimension truncation” parameters.

Given a quantity of interest in terms of a linear functional G(-), the idea is to
approximate the expectation of the exact solution u of (1.1), i.e., E(G(u)) (where
the expectation is taken over ). This is done by computing several instances of the
“double difference” DY = (uf —uy_,) — (uf~" — ul~}), where u¥ denotes the FEM

This manuscript is for review purposes only.
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IMPROVED EFFICIENCY OF A MULTI-INDEX FEM 3

approximation of u on a mesh of size hy, and with respect to the approximation A"
of the exact (i.e. withouth truncation) random coefficient. As for any multi-level
approach, this requires a mesh hierarchy hg, hq, ...,y as introduced in Section 2.2.
This leads to

E(G)~ Y Quy. . (GDY)),

0<l+v<N

where @, _, , denotes a MC sampling rule with given sample size my_¢—, € N such
that mg < m1 < --- < my. The main result of this work is to prove that the above
approximation is (up to logarithmic factors) optimal in the sense that it is as good as
the approximation given by the naive approach Q,,, (G(uY)), where all components
are computed on the finest level, while reducing the computational cost.

The error/cost estimates from Section 6 show that the distribution of work among
the individual levels is optimal up to logarithmic factors. This can be seen from the
fact that the multi-index algorithm achieves the same (up to logarithmic factors) cost
versus error ratio than the worst ratio of each of the involved algorithms (FEM, Monte
Carlo, approximation of the random coefficient). Since a combined algorithm of this
form cannot be more efficient than each of its components, this shows optimality.

2. Model problem. We chose a simple Poisson model problem to give a concise
presentation of the ideas and proof techniques. The authors are confident that very
similar techniques can be used to include more general model problems. Moreover,
we focus on the standard case of H2-regularity of the Poisson problem. Intermediate
cases with less regularity can be included with the same arguments, but are left out
for the sake of clarity.

2.1. Abstract setting. Consider a bounded “physical domain” D C R with
Lipschitz boundary in dimension d € {2,3}. We model uncertain input data on a
probability space (2, ¥, P). The mathematical expectation (“ensemble average”) w.r.
to the probability measure P is denoted by E.

Define the parametrized bilinear form

a(A;w,v) == /D A(x)Vw(z) - Vo(z) d

for a scalar diffusion coefficient A: D — [0,00). To model uncertain input data, we
consider random diffusion coefficients which satisfy A(-,w) € L (D) for almost all
w € Q. Precisely, A is assumed a strongly measurable map from (2, X) to the Banach
space L>°(D), endowed with the Borel sigma algebra. For A € L*°(D), the bilinear
form a(4;.,.) is continuous on H}(D) x Hg(D), the usual Sobolev space given by

H{(D) = {v e L*(D) : Vv e L*(D)?, v|pp = 0}.

We assume at hand a sequence of approximate diffusion coefficients (A”),cy of A =
A% which satisfy A”(-,w) € W1°°(D) for almost all w € Q as well as

(2.1) Jim A = A¥[[ oo @100 (D)) = 0.

Furthermore, we assume the existence of deterministic bounds A, and Apax such
that for every v € NU {oo}

(2.2) 0 < Apin < inf A" (z,w) < sup A% (2,w) < Apax < 00.
z€D €D

This manuscript is for review purposes only.
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4 J. DICK, M. FEISCHL, C. SCHWAB

To ease notation, we write a(-,-) := a(A¥(w),-,-). Finally, suppose the right-hand
side f € H~*(D). We embed L?(D) in H~ (D) via the compact embedding v +
(v, -)p for all v € L*(D).

The assumptions imply ellipticity and continuity of the bilinear form, i.e., for
almost all w €

(2.3) B T 2 A
veNUoo we H (D) ||w||H1(D)
as well as
ay,(w, v)
(2.4) sup sup < Apax-

vENUoo w,vEHé(D) ||wHH1(D) ||U||H1(D) N

The Lax-Milgram lemma implies with (2.3) and (2.4) unique solvability and con-
tinuity of the solution operator. This implies in particular the existence of a unique
random solution u (i.e. a strongly measurable map u : Q — HJ (D)) which is defined
pathwise by: given w € €, find u(w) € H} (D) such that

a(A(w);u(w),v) = (f,v)p forallv e Hy(D), Pae we.

The Lipschitz continuity of the data-to-solution operator S4 : A — u (for fixed
source term f) on the data A € L°°(D) such that (2.2) holds implies the strong mea-
surability of u : Q — Hg (D). We are interested in the expectation of a certain quantity
of interest G(-) which is a deterministic, bounded linear functional G(-): H}(D) — R,
ie.

E(G(u)) € R.

We assume that G has an-L? representer, i.e., that there exists g € L?(D) such that
G(v) = / gvdzx for all v € HY(D).
D

2.2. Finite element discretization. We assume at our disposal a sequence
of nested triangulations {7 }sen with corresponding spaces (Xp)een (such that X, C
Xy, C H}(D) for all ¢ < k). We assume the following approximation property of the
spaces Xp: There exists a constant Capprox > 0 and a monotone sequence {hy}ren
with Ay > 0 and with lim, by = 0 such that all u € H?(D) satisfy

(2.5) inf ||u - 'UHHI(D) < Capproxhé||U||H2(D)~
veXy

For convenience, we assume hyy; > Cynithe for all £ € N and for some constant

Cunit > 0. A popular example would be based on the nested sequence {7;}e>0 of

regular, uniform triangulations of D with corresponding decreasing sequence {hs}¢>0

of mesh-widths hy = max{diam(T) : T € T;}. The sequence {X;}¢>o of subspaces

can then be chosen as spaces of continuous, piecewise-linear functions on 7.

Given the sequence { Xy }¢>o of subspaces, the Galerkin approximation u} (w) € A,
is the solution of

al,(ug(w),v) = (f,v)p forall v € Xy and almost all w € Q.

This manuscript is for review purposes only.
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IMPROVED EFFICIENCY OF A MULTI-INDEX FEM 5

Unique solvability follows from the Lax-Milgram lemma and (2.3)—(2.4). Consider the
solution operators S (w): H™1(D) — X, defined by S%(w)f := uj(w). Moreover, let
(S (w))~': X — H~1(D) be defined by

((SY(w) " tu)(v) := a%(u,v) for all u € Xy, v € HY(D).

For brevity, we will omit the random parameter and just write S} := S} (w). Moreover,
we write S f := u”, where u”(w) € H}(D) is the unique solution of

a’ (u”(w),v) = (f,v)p forallv e H(D).

w

Thus, u” denotes the exact solution corresponding to A” and ((S% (w))~!)(v) =
a’(-,v) € H-1(D).

For simplicity of presentation, we restrict to domains D C R? which admit
uniform (w.r. to all MC samples) H?-regularity of the exact solution as long as
f € L?(D): there exists a constant Creg > 0 such that for all w € Q

v CT v
(2.6) sup IS5 fll 20y < Tf’gg(l + 1A% @) llwree (o) f 1l 22(D)-

min

We remark that when the solution of the Poisson equation is H2-regular, (2.6) follows
as an immediate consequence. Possible examples of domains D which satisfy this
property include domains with C?-boundary 9D or convex domains.

LEMMA 2.1. The discrete solution operators Sy : H1(D) — X, as defined above
satisfy for almost all w € Q that

ISE 1 z-1 (D) b1 (D) < Amin "

as well as

”(SZ)_l ||Xe—)H_1(D) S Amax~
Proof. The result follows immediately from (2.3)—(2.4). |

3. Product structure of the approximation error. The main purpose of
this section is to prove the product error estimate of Theorem 3.9 below at the end of
this section. This error estimate factors the total error into error contributions of the
approximation of the random coefficient A =~ A" and finite element approximation
error hy — 0. We will restate several well-known results from finite-element analysis,
as we will make use of the exact dependence on the constants.

In view of the multi-index decomposition in Section 6, we consider the “difference
of differences”

DY 1= (uf — ) — () 0 A

The goal is to get an error estimate of product form, as this allows us to obtain nearly
optimal complexity estimates. The key observation is that the definition of D} and
; implies that
Dy = (S} = S{1)f = (87 = S{Z)f
= (S —S;_1)(SY) (S} — Sy 1) f + remainder,

This manuscript is for review purposes only.



215
216

219

240

241
242

6 J. DICK, M. FEISCHL, C. SCHWAB

where the remainder term can be controlled in Lemma 3.5, below. The product form
of the first term already suggest the product error estimate which is the goal of this
section.

In the following, we use the operator norm for bilinear forms b(-,-): X x X = R
for a Hilbert space X, i.e.,

b(z,y
T ——CY)
vt o Tellzllle

LEMMA 3.1. Given A, B: Q — L*°(D), there holds the estimate

la(A(w), -, ) = a(Bw), )| <[[A(w) = B(w)llLee(py for allw € Q.
as well as
IS7f =S fll (D) < Amin A" (W) = A (W)l o= () | Fll 20y
forall V,v, u € N.
Proof. The first estimate follows since we have for almost all w € Q that
la(A(w), u,v) — a(B(w), u,v)]| </ |A(z,w) — B(z,w)||Vul||Vu| dz
< [|A(w) = Bl o) lull a2 oy llvll (o
For the second statement, we combine the above with (2.3), and Lemma 2.1, to obtain
AwinlIS7f = S}l (o) < al(S1f =S} f.S(f = Spf)
=(f,S{f=Sifip —al(S;f.S(f = S(f)

= (aly — al)(Sy £, S{ f =S} f)
< Amin A — A poo () | Fll 220y ISY f = S Fllar (o)

for all w € €. This concludes the proof. 0

LEMMA 3.2 (Galerkin orthogonality). There holds Galerkin orthogonality for all
k,t € NU{cc}, v €N and all f € H-1(D) in the form

ay, (S f,v) = al(Syf,v)  for all v € Xyingeky and all w € Q.

Particularly, this implies S} (SY)™! = idx, for all £ >k and k < oo.
Proof. By definition, we have

ag,(Sif,v) = (f, v)p = a5 (57 f,v).

To see the second statement, note that for v € X} and w € A}, there holds by
definition of the inverse

al,(S7(S¥) v, w) = ((S7) ') (w) = af (v, w).

This and the positive definiteness of the bilinear form a?, (-, ) conclude the proof. 0O

This manuscript is for review purposes only.
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254 For the next lemma, we define the energy norm
358 s 2= (af ()2,
257 Note that (2.3)—(2.4) ensure A, /2 ||- lar oy < llow < Amax?|- | 1 (py for almost
258 all w € Q and for all v € N.
259 There holds the following variant of Céa’s lemma:
260 LEMMA 3.3 (Céa’s lemma). Forv: Q — Xy, w € Q, and k < £, we have
261 I(S7 ()" = SE(SE) ™ o)l (py < Amin /2 inf o) = wlle,,
weXy
262 < A’élrnin71/214max1/2 i f - .
< Jof, W)~ wliro
264 Proof. For almost all w € €, Galerkin orthogonality guarantees
265 aly (S} (S)) ™" = SE(SE) v, (SY(S)) ™" = SE(S)) ™)
308 = ol (S1(80) ™ — SEEH) . SEE) o — )
268 for all w € X. Since a, is a scalar product with respective norm || - ||, we have
269 al (S ()~ = SE(S)) Mo, S)(S)) v — w)
379 < N(SFESH ™ = SK(SY) ™ 0llw,ulISESE) ™ 0 — wlle -
272 Ellipticity (2.3), norm equivalence mln|| laro) <N llww < Amax | - | &1 (py, and
273 the fact that w was arbitrary conclude the proof.
274 The following lemma bounds the difference of the Galerkin projections S¥(SY)~*
275 for different parameters v.
276 LEMMA 3.4. There holds for ¢, k,v,u € N, all v: Q — &), and all w € )
277 I(SK(S) ™ = Si(SY) ™ How)ll a1 (o)
278 < Cproj(w)[[(A” = A*) (W)l Lo (py inf [[v(w) = wllH1(p)
279 we X,

280 where Cproj(w) := Amin~ > Amax-

281 Proof. For k > ¢, we have S{(S})~! = idx, = S{(S})~" and thus the assertion
282 holds trivially. Assume k < (. Define vy = (S{(S})~! — S{(S)) " Hv: @ = X
283 Ellipticity (2.3) of al,(-, ) together with Galerkin orthogonality shows for w € 2

30 Amnlloe@) ) < a5 (n(w), v(@)) = a4 ((SESH) ! = SEEE) ™ o(w), velw)):

286 Since SY(SY) ™! = idx, = SH(S)) ™!, we have

287 Aminl|ve (W) I3 py < al((SF(S)) ™! = Sp(S)) ™ Hv(w), vk (w))
288 = al((SF(S)) ™" = SE(S)) v (w), ve(w))
389 + (af, — al)((SF(SY) ™ = SE(S))  Hv(w), vk (w))-

291  The first term on the right-hand side above is zero due to Galerkin orthogonality.
292 Therefore, we obtain

(3.1)
291 Moe@)lr oy S Aminllal — abllI1(SF(SF) ™ = Sk(SH) ™)o@l oy llvw ()l 1 ()

This manuscript is for review purposes only.
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8 J. DICK, M. FEISCHL, C. SCHWAB

As shown in Lemma 3.1, there holds [|a}, — al|| < [[(A” — A*)(w)|| (D). Moreover,
we have by Céa’s lemma (Lemma 3.3)

I(SE(SH) ™ =SS ™ ()l (D) < Amin ™~ Amax/> wiél)f(k [v(w) = wll (D).

This together with (3.1) concludes the proof. |
For the statement of the next result, we recall the definition of the double differ-
ence
DY = (uf —uf_q) — (w7 —ul ) Q= A

LEMMA 3.5. There holds for all w € §)

(3.2)
125 @)l oy < I(SY = S_0)() 74 (SF =S¢ ) oy
+ Coroi @)(A” = A @) 2oy 0t ™ @) = vl

Proof. Straightforward expansion of the equation and S (S{)™! = idx,, k < ¢
from Lemma 3.2 show
Dy = (S} = S¢_y) — (8¢ =S4 f
= (S7 = S{_0)(SO)THST =S¢ f = (S (SIS =S4 S

The last term on the right-hand side satisfies

I1(S7_1(S) 'S¢~ = SEZ) fllarn o)
(3-3) <SS TS = STl oy
+ 1872 (8™ = SyZi (ST TS il (-

The first term on the right-hand side satisfies for all v € Xp_;
ag,((SyZ1 (S 7Sy =SyT) fro) = al (S 7Sy 7Sy =S f) =0

and thus [|(S;Z (S, ") 7Sy ™" = S=)fllar(py = 0. For the second term on the
right-hand side of (3.3), Lemma 3.4 with 4 =v — 1 and k = £ — 1 proves

I1(S7-1(80) ™ = SyZ Sy ™IS Fllmg oy

S 147 (w) = A7 W)l oy dnf luy ™ (W) = vlla ()

€EXi—1

Altogether, this concludes the proof. 0

The following result is well-known and we reprove it in our setting for the conve-
nience of the reader.

LEMMA 3.6 (Aubin-Nitsche duality). There holds for all v € H} (D) that

V(IQU \— Cf v
lv = S7(S5) vl 2y < Capproxﬁ(l + (| A" (W) lwr.e (p) ) hel|v]| 1. () -

min

Thi. iseript s fi CVIEW PUTPOSES
This manuscript is for review purposes only
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Proof. Let 1: L?(D) — H~(D) be the usual embedding via the L?(D)-scalar
product. Define V := v — S¥(S% )~ 'v. We have with Galerkin orthogonality and by
symmetry of a, for all w € X

lv = SE(S%) " 0ll72(p) = ai(S% 0 e(V), V) = af[ (S, 0 o(V) —w, V)
<|IS% o t(V) = wl g o)V [ 21 (py-
Since w € X, was arbitrary, we get with (2.5) and (2.6)
v — SZ(SZO)_10||2L2(D)
< Capprox/el[SZ o L(V) 120y IV |17 (D)

Cre v v v —
& (L4 [|A” (W)[lw .o (py) hellv = ST(S5) " 0l 2oy IV I i1 () -

mln

With Lemma 2.1, we show ||V z1(py < (1+ Amin " Amin) V]| 1 (py and thus conclude

< Capprox

the proof. ]
The following result bounds the first term on the right-hand side of the estimate
in Lemma 3.5 by an error estimate in product form.

LEMMA 3.7. There holds for all w € §)
IS¢ = S7_)(SY)HSE = S;™) e oy
< Coroa @)hel|(A” = A7) @)llwr. ()l 22().
where CN'prod(w) ~ CunifAmjn75Amaxl/2(1 + max;eo,1} ||14V*i(°‘))||W17<><:(D))2 > 0.
Proof. First, Céa’s lemma (Lemma 3.3) shows for v: Q — A
(87 ~ St @) el o) < Amin™ it o) — wl.

Let v := (SY —S; ") f and choose w := S¥_,(S% ) ~'v. Then, there holds with Galerkin
orthogonality a (w,v —w) = a% (v —SY_,(S%)"'v,w) = 0 and hence

lv—wlZ, = al(v,v —w) = aj(u” —S;7" f,v - w)
:av 1( Su 1f, )+((1 _au 1)(UV—SZ_1f,’U—’U})
=a N (u, v —w) — (f,v—w)p + (a — aZ ) (u’ — Sy~ v — w),

where we inserted and subtracted a%~!(,-). This leads to

||v—w||i, :a”*(u” v —w) - ay(u”, v — w) + (a — al )’ — Sy v — w)
—(at) - al Sy v — w)
() — al ) (v —w) — () — al )l = w o - w),

where we used S; “lr= u;f_l and we added and subtracted the corresponding exact
solution u~!. Using the definition of the bilinear forms as well as integration by
parts, the above reads

lo—wl|?, = /D (VA = A1) - vt + (AY — A DA (v — w) dz

_(ay_au 1)(u12 1 UV_17’U—U})
<147 = A7 Hlwroe (o w2y lv = wllz2 (o)

+llag, — a7 iy ™ = u’ " oy llv = wllm o).

Thi iscript s fi cVleW PUTPOSE:
This manuscript is for review purposes only
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10 J. DICK, M. FEISCHL, C. SCHWAB
Finally, Lemma 3.6 shows

[v—wllr2p) < hlflAmin_Q(l + ||AV_1(W)HWLOO(D))HUHHl(D)
S b1 Amin P (4 [|A7H W) [ () 1 | 22(0)

where the last estimate uses Lemma 2.1. Assumption (2.5), together with the Céa
lemma (Lemma 3.3), implies

||ull;71 - uu_lHHl(D) ,S Amin_lAmax1/2h€HUV_1||H2(D).
Together with (2.6), we obtain

M 20y S Amin 2(1+ |4 (W) lwre () 1.f 122Dy o

and thus conclude the proof.

Finally, we have collected all the ingredients to obtain the combined discretization
error estimate in product form.

PROPOSITION 3.8. There holds for all w € €2
1D% (@)l (D) < Cproa(w)hell(A” — A1) (@) w0y | fll 22(p).

where Cprod(w) =~ 5prod(w)(1 + Amax) > 0.

Proof. The first term on the right-hand side of (3.2) is bounded by Lemma 3.7.
For the second term, we use (2.5) together with (2.6) to obtain a similar bound.
Finally, we exploit that hy > Cynirhe—1 and conclude the proof. 0

Since we are interested in the error of the goal functional G(-), we may exploit a
standard Aubin-Nitsche duality argument to double the rate of convergence.

THEOREM 3.9. There holds for all w €
|G(DF ()] < Cproa(w)hi min {1, [[(A” — A" ) (w)[lwr.e () } | fll2(p) 9]l 2 (D)
with 6prod (w) > 0 depending on Cproda(w) from Proposition 3.8 via

Cprod(w) = Amin_5AmaX||AV(w)HW“’O(D)”Ay_l(w)‘lWl’“(D)Cprod(w)-
Proof. Let g¥ € H}(Q) such that G(-) = a%(-,¢") (note that such a function

w

always exists due to the ellipticity (2.3) of a%~!). There holds for v,w € X,_;

G(DY) = af,(uf —ug_y, ") — af ™ (uy ™ —uy=y,g"7")
= ag(uy —uf_y,9" —v) — a7 (T — T g T —w),

where we used Galerkin orthogonality (Lemma 3.2) to insert v € Xp—1. Adding and
subtracting of a” (-, ) leads to

G(DY) = a(uf —ui_1,9" = v) = al (™" — {7, 9" — )
+(a% — a7 —ul g =)
= aj(uf —uf 10" —v) —al(uy Tt — T g — )
+(a —a Y =l g T = v) el () —uf_g,9Y — g7 —w),

This manuscript is for review purposes only.
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where we added and subtracted a”(u} — uy_;,¢""') and inserted w € X,_; using
Galerkin orthogonality (Lemma 3.2). Recalling the definition of D}, we arrive at

G(DY) = (D, g~ =) + (al, — o )i — =l g = v)

w w

v—1

+al,(uy —uy_y,9" —g"" " —w).

Lemma 3.1 and the Céa lemma (Lemma 3.3) together with (2.5) and (2.6) allows us
to estimate

|G(DY)| < Amax | DY |z 0y llg” " = vl 51 ()

+ 1A — A" Y| ooy luf ™t =l T oy llg” ™
v—1

Y=ol (p)

+ lug — w1 lmroyllg” — 9" —wlar(p)
< AmaxI DY 0y l9” " = vl 1 ()

+ Amin > Amax 2 (1+ 477 (@) lwroo () 1f | 220y e
(HAV = A e pyllg” ™ = vl oy + 9" — 9"~ w||H1(D))'
1

Since G(-) = [, g(z)(-) dx for some g € L?(D), we obtain from (2.6) that g*,¢" "' €
H?(D). Therefore, and since v € X,_; was arbitrary, (2.5) and (2.6) show

v—1

inf g"" = vllaipy S Amin 2L+ [JA”H (W) w0y hellgll L2 () -

vEX_y
Moreover, there holds for all v € HZ (D)
al(g” —g""v) = (g, v)p —al(g" ™" v) = (@' —a")(g" " v)
= /D (V(A” — A1) Vg" !t + (47 — AV HAg" Hvda.

It is easy to see that the right-hand side is of the form (r, v)p for some r € L?(D)
with

I7ll2(py < 2|A” — A Hlwroo oy 9" N 2ep) S I1AY — A" Hlwroe (o) lgll 2 ()
Therefore, (2.6) shows

9" = " 2 (D) S Amin (1 + A7 (@) w1 (o)A = A" w1y 19l 22

Since w € Xp—1 in (3.4) was arbitrary, the same argument and (2.5) show

: f v _ 1/71_
welg;(_lllg g wl| g1 (D)

< heAmin 2 (1 + [|A” (W)l () |A” — A w0y 191l 22 (D) -

Altogether, we conclude the proof by use of Proposition 3.8, the above estimates, and
insertion in (3.4). The minimum in the statement follows from standard arguments
which we will sketch briefly. There holds

Guy —ug—y) = af(uf —ui_y,9") = af(uy —ug_y, 9" —v)

)
for all v € X,—1. As above, choosing v = SY(S% ) '¢” and Lemma 3.3 together
with (2.5) leads to

G (ug —up 1)l S Nluf — ug sz yhe-1llgllL2(p)
S |l fllezcoyllgll 2 py-
This concludes the proof. 0

This manuscript is for review purposes only.
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4. Approximation of the random coefficient. This section gives two exam-
ples of how to choose the random coefficient A(z,w) as well as the approximations
AY(z,w) in terms of the KL-expansion.

4.1. KL expansion. In this section, we assume Q = [0,1]", and define w =
(wi)ien. We assume that A” is of the form

(4.1) A7 (2,0) = dola) + > 5(w5)5(2)

Jj=1

for functions ¢; € W1°(D) and v; € L>([0,1],[—Cy,Cy]) for some fixed Cy, > 0.
While the literature often deals with the uniform case 9;(w) = w — 1/2 (see next
subsection), we allow this slightly more general case. We assume that the series
converges absolutely in W1°(D) for all w € Q and hence define

Az, w) = A% (2,0) = do() + Y bj(w))d;(x).
j=1
Moreover, we assume that (2.2) holds.

THEOREM 4.1. Under the assumptions of the current section, there holds

Sv

(4.2) IGDY) |z~ < Cxrhi > lillwr~mo) £z gl o)-

i=s,_1+1
The constant Cky, > 0 depends on Cy, but is independent of ¢, v, and w.
Proof. The estimate follows immediately by definition of A¥ and Theorem 3.9. 0

4.2. KL expansion with uniform random variables. In many cases, it is
possible to reduce (4.1) to the simplified form

(4.3) A” (x,w) == ¢o(x) + ijqi)j(x),
j=1
where now Q = [—1/2,1/2]" and essinf,ep ¢o(z) > 0 . This means setting 1;(w) :=

w—1/2in (4.1).

Remark 4.2. Note that theoretically, the case from Section 4.1 can always be
reduced to the present case. However, in many cases, this requires the user to pre-
compute all functions ¢; which is computationally impractical.

It turns out that in this case, an improved version of Theorem 3.9 (see Theorem 4.7
at the end of this section) can be derived by arguments already used for quasi-Monte
Carlo estimates (see, e.g., the works [8, 9] and the references therein). Given a subset
QC HjeN C, we define for all j € N

Q) := {w; € C: Jw; € C, i € N\ {j} such that w = (w1,ws,...) € V'}.

LEMMA 4.3. Assume that Q' D Q is such that all results of Section 3 hold true
with Q' instead of Q. This is particularly the case if the random coefficient remains

uniformly bounded away from zero and infinity also in Y. Then the map F': Q; — C,
wj = G(S}(w)f) is holomorphic for all j € N.

This manuscript is for review purposes only.
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Proof. Along the lines of the argument in [7], we verify complex differentiability of
the parametric solutions. Fix j € N. Given z € C, define w+2z € CN by (w+2); = w;
for all i # j and (w + 2); = w; + 2. Let z be sufficiently small such that there exists
g > 2|z| with B.(w) C Q. By definition, we have for v € X

0=ag.(S{(w+2)f,v) —al(S{(w)f,v)
/D(A"(a:,w +2)— AY(2,w))VSy(w+ 2) f - Vodz + a,(S)(w + 2) f — S} (w) f,v).

Let g € X denote the representer of G(-)|x, with respect to a. This and the above
allows us to compute

G w+2)f) =G f) _ al(S{(w+2)f = Si(w)f. ")

z z
AV — AV
=- / (w0 t2) = AT9) Gov iy 1 2)f - V" da.
D

z

(4.4)

Since A" is holomorphic, Cauchy’s integral formula shows for B (w;) C ) that

‘A (wi+zi_A (JC,LU) —aijV(l‘,w)‘

1 1 A" (z,y) A" (z,y) A" (z,y)
T or /aBM)z((y(wjiZ)) - (y*wij‘)) - (y*wjy)2 ! ‘

_ L AY(z,y) _ AY(z,y)
/835(00_7') (y—wj—2)y—wj) (y—w))? dy‘

1 / AY(z,y)z d ‘
Py Y
211 JaB. (w)) (y —wj — 2)(y —w;)?

S e A L axpy 2] -

~

This uniform convergence in |z| together with Lemma 3.1 shows that passing to the
limit z — 0 in C in (4.4) leads to

0, G(SLf) = — / O, A (2,w)VSY (w) f - Vg" dz € C.
D

This shows that F' is complex differentiable and thus holomorphic. 0
LEMMA 4.4. Let (9;) en be a positive sequence such that
QcQ = H Bl+gj (0)
JEN
and that all the results of Section 3 hold true with Q' instead of Q. Given £,v € N,
the map F/: Q —- R, w— G(D}(w)) satisfies
105 FY | L= (2
||fHL2(D)||9||L2(D)
. {0 S 1 @i >0,

1h2 . -
Cder H%légfi min{1, sup,cq ||4¥ — AY 1||W1,00(D)} else,

for all multi-indices o € NN with |a| < co. The constant Cgqer > 0 depends only on
Cproa from Theorem 5.9.

This manuscript is for review purposes only.
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Proof. For brevity of presentation, we fix £ and v and write F' := F;. Lemma 4.3
shows that F' can be extended to a function F': Q' — C, which is holomorphic in each
coordinate w;. Moreover, Lemma 3.1 proves that F' is uniformly continuous in .
Therefore, we obtain immediately by induction that F' satisfies the multidimensional
analog of Cauchy’s integral formula for all w € €/

F(z)

Fw)= (27ri)*”/ / dzy ...dzp,
9B., (way) 3B, (wWa,,) (21 —way) - - (20 — wa,) "
where (dy,...,d,) € N contains exactly n distinct dimensions and the parameters
€; > 0,7=1,...,n are chosen so small that the integration domains of the contour

integrals above are contained in ©’. This shows immediately that for any multi-index
o € No" with |a| < oo, 0% F is holomorphic in each variable. Iterated application of
Cauchy’s integral formula shows for all w € Q that

=l F(z)
9°F :( [] ) / _ dz .
« (W) ey 2 152, 9B,, (w:) H i=1 (Zz — Wi)a+1 :
@ #0 a;#0 ¢ @ 70

This shows immediately

0F @) < (T Se2mer™ ) IF i < al( T] o7 ) IF e,

i=1 i=1
a; #0
This and Theorem 3.9 with A”(w) = ¢¢ + Y ;. wi¢; conclude the proof. o

LEMMA 4.5. Define for sufficiently small § > 0

[[¢5llw. (D)
(essinfyep go(x) — 28)

Given l,v € N, the map F: Q@ — R, w — G(D} (w)) satisfies

Bi =

[eS)
Zi:su-‘rl Q; > 0,

~ 0
||83F||L°° Q S C’der Sy a;
@ (T3 82 ) B2 1 ey llgllaacoy — else,

for all multi-indices o € NON with |a| < 2. The constant 5’der > 0 depends only on
Caer; 0, and (¢;)jen-

Proof. Given o € NYo with |a| < 2 an admissible sequence (g;);jen in Lemma 4.4
is, given € > 0,

. J(infrep do(@) = 28)a; /2] b5l 3 0o py for all j € N with aj > 0,
o for all j € N with a; = 0.

This sequence satisfies

inf | R(Go+ Y _widi) > do — (ess inf do(w) —20) =D 5]l (p) > 0

i E€EB . 7
wi€B1q; (0):€N i=1 i=1

for sufficiently small ¢ > 0 (here R denotes the real part). Moreover, the term
oo + > widillwr.(py remains uniformly bounded in ' := [[;2; Bi4,,(0). This

This manuscript is for review purposes only.
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ensures that € satisfies all the assumptions required for 2 and thus all results of Sec-
tion 3 remain valid for )’ instead of 2. In particular, the constant Cpyoq(w) from The-
orem 3.9 is uniformly bounded in w € Q’. The affine-parametric map w — AY(z,w)
is holomorphic in each coordinate in €2, with constant derivative

¢j(z) for j<s,,
0 else.

0, A” (2, w) = {

Moreover, since || < 2 there holds

o0 o0
[Ter <]]B
=1 =1

This, together with Lemma 4.4 concludes the proof. 0

LEMMA 4.6. Let g € L>®(Q) be sufficiently smooth and let g depend only on the
first s € N dimensions, i.e., 0,9 = 0 for alli > s. For 0 < r < s and z =
(x1,2a,...,25) € Q°, define the function space

P:(Q) :=span{f € L®(Q) : f(z) = Z oz, xr)zi, oz, ..., 2,) € R}
1=r+1
Assume that w € Q with w; = 0 for all i > r implies g(w) = 0. Then, there holds
lg@) @) < Y N0ugllLe(@)-
1=r+1
Moreover, there exists go € P2(2) such that
1 s %
||g(w) - 90(w)||L°°(Q) S 5 Z Z ||<9w78w]g||Loc(Q)
1=r+1j=r+1

Proof. Let w € R®. There holds

g(w):g(wl,...,wr,o,...)—k Z / &Uig(wl,...,wi,l,ti,O,...)dti
~ i=r+170
= Z/ (awig(wl,...,wr,O,...)
0

1=r+1

ti
+/ 83ig(w1,...,wi_l,si,O,...)dsi
0

i—1 wj
+ Z /0 &djawig(wl,...,wj_l,sj,(),...) dsj)dtz

j=r+1

Since the first integrand on the right-hand side does not depend on w;, the above

This manuscript is for review purposes only.
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implies
g(w) = Z (wiawig(wl, ceywr, 0,000
1=r+1
Wi ti
+/ ( Bf,ig(wl,...,wi,hsi,O,...)dsi

0 0

+ Z / 6%6% wl,...,ijl,Sj,O,...)de)dti).
Jj=r+1

Since there holds (w — w; 0y, g(w1, ..., wr,0,...)) € P3(Q) for all i > r+1, we conclude

the proof. 0
THEOREM 4.7. Under the assumptions of the current section, there holds
(4.5) IGDY) |z~ < Cxrhi > lillwr~mo) £z llgllc2o)-
i=s,1+1

Moreover, there exists go € P3v_ () such that

(4.6)

|G(DY) — gollL= (o)

< Cxrhg Z Z pillwr.oe Dy 1B5llw oo (D) | 20y 9| L2 (D) -

i=sy—1+1j=s,-1+1

The constant Ckr, > 0 is independent of £, v, and w.

Proof. The first estimate (4.5) follows from the definition of A¥ and Theorem 3.9.

For (4.6), the map g(w) := Dj(w) satisfies the requirements of Lemma 4.6 with
r = s,_1. Hence, the result follows immediately from Lemma 4.6 and Lemma 4.5. O

5. Monte Carlo integration. This section discusses the Monte Carlo quadra-

ture rules. The uniform KL-expansion case (Section 4.2) allows us to increase the
order of convergence by symmetrization of the Monte Carlo rule. This section defines
the Monte Carlo integration for the case that the random coefficient is given by a
KL-expansion as discussed in Sections 4.1-4.2.

We make the standard assumption that the functions ¢; from (4.3) satisfy

(51) H(ijWIv"o(D) < CKLj_T for all jeN

for some r > 1.

LEMMA 5.1. Define the Monte Carlo rule

1 M
Qul9) = 57 > a(x"

for uniformly distributed i.i.d X* € [—1/2,1/2]*v. Then, under the assumptions of
Section 4.1 given {,v € N, the function F: Q@ — R, w— G(D}(w)) satisfies

VEMCIE(F) — Qu(F)? < Cumes, - 1r||f||L2(D>H9HL2(D)

Here, Enc(+) denotes integration over the combined probability spaces of the X¢, i =

1,...,

M, whereas E(-) denotes integration over €,,.
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Proof. The statement follows immediately from the standard Monte Carlo error
estimate, Theorem 4.1, and the fact that Zj”: < s O

By symmetrization of the Monte Carlo sequence, we are able to increase the order
of convergence in the truncation parameter v.

3u—1+1]

LEMMA 5.2. Define the symmetric Monte Carlo rule

1oL
WZ(Q(Xivm,
=1

where the X' € [—1/2,1/2]* are i.i.d. and uniformly distributed. Under the assump-
tions of Section 4.2, there holds Qnr(go) = 0 for all go € P5v_ (2). Moreover, given
LveN, themap F: Q = R, w— G(Dj(w)) satisfies

QM(Q) = X;,,)""_Q(Xi?""X;,, X;l, 1+17"'7_X;,))’

n he
VEMCIE(F) — Qu(F)]? < Cuesaly \/M||f||L2(D)H9HL2(D)'

Here, Enio(+) denotes integration over the combined probability spaces of the X;, i =
1,...,2™, whereas E(-) denotes integration over Q.

Proof. First, we notice that for go € P} _ (£2), there holds

go( X1, ..., XL ) =—go(X],..., X!

S,_17 _X;V71+17 R _X;,/)‘
Therefore, we have Qar(go) = 0 for all go € PL _ (Q). Thus, the statement follows
from the standard Monte Carlo error estimate and Theorem 4.7, where we note with

(5.1)
Sy Sy
POEEDY

1=Sy,_1+1j=s,_1+1

S Z Z 77‘ c—r S SU_1)2(77"+1)' O

t=sy—1+1j=s,—1+1

Pillwroe ()| D5l wroe (D)

6. Multi-Index error control. The multi-index decomposition allows us to
exploit the product error estimates and, hence, to improve the complexity of the
finite-element /Monte Carlo algorithm.

6.1. Complexity of MIMCFEM. To quantify the complexity, i.e., the error
vs. work, of the presently proposed MIMCFEM, we rewrite the exact solution as (Q,
denotes one of the MC sample averages Qs from Section 5 with M = 2™ samples)

hgE

E(G(u) = ) _(Qm; — Qm;—1)(G(w))
7=0
= ZZ Qm] Qm; 1)( (’(M - ué—l))
7=0¢=0

o

tqu
NE

Qmj - Qmj—l )(G(DZ))a

v=0

<.
Il
o
~
Il
o
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where m; € N and @,,_, := 0. By truncation of the series, we achieve a sparse
approximation, i.e., given N € N

EGu)~Gy:= D>  (Qu,~Qu-1)GD) = Y Quy, . (GDY)).

0<j+l+v<N 0<l+v<N

Recall the expectation of the Monte Carlo integration Eyc(+) and the expectation
over ) denoted by E(-). We define two quantities to quantify the efficiency of the
presently proposed method: the MC sampling error is defined by

En = VEMc|E(G(u)) — Gn|?

whereas the cost model is defined by
Cn := (The number of computational operations necessary to compute G )

and obviously depends on the chosen method discussed below.

First, we establish the cost model. A standard FEM will ensure hy ~ 2~¢ which
implies #7; ~ 2%, We assume a linear iterative solver such that solving the sparse
FEM system costs O(2%).

Under the assumptions of Section 4.1 and 4.2, we assume that we can compute
the bilinear forms

a;(v,w) = / ¢j(x)Vu(z)Vw(z)dr for all v,w € Ay
D

exactly in O(#7;). Depending on the truncation parameters s,, we have to compute
s, bilinear forms a;(-,-) to obtain in the affine case

Sv
a’ (v,w) = ijaj(v, w),
j=1

resulting in a cost of O(2%s,). Altogether, this yields
Cn ~ Z omigdty
0<j+Le+v<N

Using Lemma 5.1 as well as linear operator notation for E(-) and Q,,,, we see that
the multi-index error satisfies
2) 1/2

Eny = EMC(‘ Z (Qm; —Qm,_,)G(DY)

N<j+Ll+v
v 1/2
< Z EMC(K]E_ anlax{O,N—Z—u«{»l})G(‘DZ)|2)
0<t+v
S llzzoyllglloepy D 27 mmeson—tmviny /297206070,

0<l+v

An obvious choice of the parameters s, and m; is to balance the work spent on each
of the two tasks such that the three error contributions (FEM-discretization error,
truncation error, quadrature error) are of equal asymptotic order. We define

mj = [4j] and s, := f2r2511.
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With this, we have

Ex S 12 lgllzapy S 27 2mmsoN—tovii}gaty=2s
(6.1) 0<t+v

S fllz2oyllgll 2oy (N + 1)2272%

as well as

(6.2) Cn ~ Z 9djgdle 2 < gmax{4,d, 721 }N
0<j+0+v<N

Using the symmetrized Monte Carlo rule from Lemma 5.2, we see that the multi-index
error improves to

_ — 2(1—
Eyn S Hf||L2(D)||g||L2(D) Z 2 mmax{o,N—e—u+1}/22 2€SV£1 r).
0<t+v

As above, we balance the contributions by
my = [4§] and s, :=[27T].

With this, we obtain the same error estimate as for the plain Monte Carlo rule (6.1),
but with an improved cost estimate of

(63) C«]S\?’mm S, 2max{4,d,ﬁ}N.

6.2. Comparison to multi-level (quasi-) Monte Carlo FEM. The main
difference to multi-level Monte Carlo is that the present method can capitalize on
the approximation of the random coefficient, whereas the multi-level method has to
treat this term in an a-priori fashion. However, the multi-level method can exploit
symmetry properties of the exact operator to improve the rate of convergence in the
approximation of the random coefficient, i.e., it achieves the same accuracy with a
cost (’)(2f11N) instead of (’)(2%1\1). This is worked out in the quasi-Monte Carlo
case in [10] but transfers verbatim to the Monte Carlo case. Therefore, the multi-
level (quasi-) Monte Carlo method with the same level structure as described in the
previous section will achieve a cost versus error relation given by (see [18, Theorem 12]
with p=¢=1/r —¢ for all ¢ > 0 and 7 = 2 in their notation)

E[l\\//[L < (N + 1)042721\7 with O%[L < 2max{4>\,d}N+Ti1N’
where o > 0 is a constant and 1/(2A) for A € (1/2,1] is the convergence rate of
the QMC quadrature (with the Monte Carlo rate formally corresponding here to
the choice 1/(2X) = 1/2). Comparing the above estimates with the error vs. work
estimates for the MIMCFEM from Section 6.1, we aim to identify parameter regimes
in which the presently proposed MIMCFEM improves over alternative multi-level
methods in terms of asymptotic error versus cost. We observe that standard multi-
index Monte Carlo improves the multi-level Monte Carlo in case that

2 1 1
max{4,d, rj} < max{4,d} + 1 equivalent to max{4,d} > Py
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i.e., when the sampling and the FEM computations dominate the approximation of the
random coefficient. We conclude that the symmetric multi-index Monte Carlo method
from Lemma 5.2 improves the multi-index Monte Carlo method for all parameter
combinations. For A € (1/2,1],

max{4, d, rfll} < max{4A,d} + rfll equivalent to 4 —4\ < 3
the presently proposed, symmetric multi-index Monte Carlo FE method even improves
in terms of error vs. work as compared to the first order multi-level quasi-Monte Carlo
method based on e.g. a randomly shifted lattice rule as in [17]. This setting represents
the case when the approximation of the random coefficient dominates the sampling
and the FEM computations.

7. Extension of the MIFEM convergence to Reduced Regularity in D.
Up to this point, the presentation and the error vs. work analysis assumed “full elliptic
regularity” for data and solutions of the model problem in Section 2. Specifically, we
assumed that the random diffusion coefficient A and the deterministic right hand side
f in (1.1) belong to W1>°(D) and to L?(D), respectively. This, together with the
convexity of the domain D and the homogeneous Dirichlet boundary conditions is
well known to ensure P-a.s. that v € L?(Q2; H2(D)). This, in turn, implies first order
convergence of conforming P;-FEM on regular, quasiuniform meshes, and second
order (super)convergence for continuous linear functionals in L?(D). These somewhat
restrictive assumptions were made in order to present the MIFEM approach in the
most explicit and transparent way. The present MIFEM error analysis is, however,
valid under more general assumptions, which we now indicate.

Still considering conforming P;-FEM on regular meshes of triangles, mized bound-
ary conditions and nonconvex polygons D will allow verbatim the same line of argu-
ment and results, provided that the following modifications of the FE error analysis
are taken into account: (i) elliptic regularity: as is well-known, the L? — H? regularity
result which we used will, in general, cease to be valid for nonconvex D, or for mixed
boundary value problems. A corresponding theory is available and uses weighted
Sobolev spaces. We describe it to the extent necessary for extending our error anal-
ysis for conforming P;-FEM. In polygonal domains D C R2?, weighted, hilbertian
Kondrat’ev spaces of order m € Ny with shift a € R are defined by

(7.1) K™(D) := {v: D — Rl7}¢I7"0% € L*(D), |a| < m}

In (7.1), o € N2 denotes a multi-index and 9% the usual mixed weak derivative of
order @ = (a1,a). In these spaces, there holds the following regularity result [2,
Thm. 1.1].

PROPOSITION T7.1. Assume that D C R? is a bounded polygon with straight sides.
In D consider the Dirichlet problem (1.1) with random coefficient A € L>°(Q; W>°(D))}}
satisfying (2.2). Then the following holds:
1. There exists 1 > 0 such that for every |a| < n, and for every f € K°_,(D),
the unique solution u € H} (D) of (1.1) belongs to K2,,(D).
2. For every fived f € KY_,(D), the data-to-solution map S : W1>°(D) —
K%, (D) : A u is analytic for every |a| < .
3. There exzists a sequence {T }s>0 of reqular, simplicial triangulations with re-
finements towards the corners of D such that there holds the approximation
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property

(12 Vwekia(D): et fw—vlme) < Chelul,, o

where hy := max{diam(T) : T € T*} and X, = #(T*) < h; .

We refer to [2, Thm. 1.1] for the proof of items 1. and 2., and to [1, 3, 20] for a proof
of item 3.; we note in passing that [1, 3] cover so-called graded meshes, whereas item
3. for nested, bisection-tree meshes as generated e.g. by adaptive FEM is proved in
[20].

With Proposition 7.1 at hand, the preceding MIFEM error analysis extends verba-
tim to the present, more general setting: the H?(D) regularity results for the forward
problem as well as for the adjoint problem extend to K2 (D), under the assumption
f,g9 € KY_,(D), and under identical assumptions on the random coefficient A. The
use of the Cauchy integral theorem in the weighted function space setting is justified
by item 2. combined with the (obvious) observation that affine-parametric functions
such as (4.3) depend analytically on the parameters w;.

We also note that other discretizations, such as the symmetric IP DG FEM,
admit corresponding error bounds on graded meshes including the superconvergence
error bound in L?(D) [19]. A corresponding MIFEM algorithm and error analysis
with exactly the same error vs. work bounds could also be obtained for SIPDG
discretization of the forward problem.

We finally mention that Proposition 7.1 also extends verbatim to homogeneous,
mixed boundary conditions, to symmetric matrix-valued random diffusion coefficients
A = (a;j)ij=1,2 € WH°(D;R**?) (the space W*°(D) could even be slightly larger,
admitting singular behaviour near corners of D) and to higher orders m > 2 of
differentiation, allowing for Lagrangean FEM of polynomial degree p = m > 2 on
locally refined meshes in D. A precise statement of these regularity results is available
in [2, Thm. 4.4].

8. Numerical experiments. We provide numerical tests in space dimension
2 to verify the theoretical results. In the first example, we choose uniform mesh
refinement in a convex domain D and irregular forcing function f (which is to say
in the present setting of first order FEM that f ¢ L?(D)). The second example will
feature a non-convex domain with re-entrant corner and sequences {7}, of locally
refined, nested regular triangulations of D.

8.1. Irregular forcing and uniform mesh refinement. For purposes of com-
parison, we use a similar example as in [8, Section 5.2]. We choose the convex domain
D = [0,1]? and define the scalar random coefficient function A by

o0

w . .
Az, w) :=1/2+ ) Ek:_l % sin(kymzy) sin(kemas)
1,~k2=

= 1/2 + Z “i sin(ijmcl) Sin(kg,jﬂ'l‘g),
j=11

where p1; := (k7 ; + k3 ;) such that p; < pj for all i < j and ties are broken in an
arbitrary fashion. This ensures that the ¢; satisfy (5.1) with » = 2. The variational
form of the problem then reads

Find v € H}(D): a(A(,w);u,v) = f(v) Vv € Hi(D).
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F1G. 1. Two levels of mesh-refinement for the unit-square domain.
where f € H=/27¢(D) for all ¢ > 0 is defined by

1
flv) = /F'U(xl,xg):cl dl(z1, x9) = \/5/0 to(t,1 —t)dt

for ' = {(0,1) + r(1,—1) : 0 <r <1} being a diagonal of D. Note that we choose
the weight x; in the integral in the definition of the right-hand side to introduce
some non-symmetric quantities and thus avoid super-convergence effects. We consider
the quantity of interest G(u) := [, udz, where D' = (1/2,1)*> C D. Whereas the
analysis of the present paper is focused on the full regularity case with right-hand side
f € L3(D), all arguments remain valid in case of reduced regularity of the right-hand
side f € H~'/27¢(D) (for the case of reduced regularity due to re-entrant corners,
see the second experiment).

The finite element discretization is based on first order, nodal continuous, piece-
wise affine finite elements X, on a uniform partition of [0, 1]? into 22*! many con-
gruent triangles (one example is shown in Figure 1). The meshwidth of this trian-
gulation is hy = O(27¢). Note that the cost model applies as we can compute the
stiffness matrix exactly since the gradients of the shape functions are constants and
the anti-derivatives of products of sine functions are known over triangles. The error
expected by theory for the FEM on mesh-level £ is O(hy) = O(273/%) (due to the
reduced regularity of the right-hand side f). Thus we choose the m; := 3j as well
as 5, = [2¥/"=1] for the original algorithm and s, = [2*/2("=1)] for the sym-
metrized version. Therefore we expect that the errors for both algorithms satisfy
Ey = 0(273/2N) = 0(CR{""?), where Cy as defined in (6.2), (6.3) denotes the cost
of the multi-index FEM on level N. This is confirmed in Figure 2. For the numeri-
cal experiments, we compare with a reference solution computed with a higher-order
Quasi-Monte Carlo method proposed in [8]. The reference value is computed with
a higher order QMC rule! To smooth out the effects of MC sampling, the plotted
relative errors are averaged over 20 runs of the respective multi-index algorithm (we
also plot empirical 90%-confidence intervals for each error point).

8.2. Local mesh refinement. The regularity of the exact solution can also be
reduced by re-entrant corners with corresponding reduced rates of FE convergence for
quasiuniform meshes. As is well-known (e.g. [3, 1]), in two space dimensions, this is

1 The authors thank F. Henriquez, a PhD student at the Seminar for Applied Mathematics of

ETH, for computing the reference value.
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F1G. 2. Aweraged relative errors or the multi-index algorithms with respect to the reference
solution G compared with the theoretical error bound (9(0;/1/2) (original algorithm (left) and sym-
metrized version (right)). Both plots shows the average error curve of 20 runs of the algorithms
as well as the empirical 90%-confidence intervals of the computed error. The symmetrized version
reaches the accuracy of the non-symmetric version already for N = 6 instead of N = 9.
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Fic. 3. Two levels of graded mesh-refinement for the L-shaped domain.

due to point-singularities in the solution. These can be compensated by a-priori local
mesh-refinement in D. Using hierarchies of so-called graded or suitable bisection-tree
meshes, and expressing regularity of solutions in terms of weighted H?(D) spaces,
the present regularity and FE convergence analysis remains valid verbatim, with full
convergence rates (see Section 7 for details).

This is demonstrated on the following example on the L-shaped domain D :=
[—1,1]2\ (1,0) x (—1,0) depicted in Figure 3 with the same coefficient and PDE as in
the previous example. However, as a right-hand side, we use f = 1 and the quantity of
interest is now defined by G(u) := f(071/2)2 udz. The graded meshes T* from Propo-
sition 7.1 are generated by newest vertex bisection by iteratively refining all elements
T which are coarser than the theoretically optimal grading of O(dist({0},T)Y3hy).
This results in a sequence of meshes with #(7%) = O(2%/3). Figure 3 shows one
instance of this sequence of meshes. Figure 4 confirms the correct distribution of
element diameters within the mesh.

The performance of the multi-index Monte Carlo method is shown in Figure 5
for the symmetrized version. Since we aim for the full convergence rate O(272Y) in
this example, we choose the level parameters m; := 8/3; as well as s, = [22//(3r=3)],
Due to the much higher number of Monte-Carlo samples required in this example, we
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mesh T° that the distribution of element diameters with respect to their distance to the singularity
behaves like O(dist({0}, T)/3hy), where hy is the mazimal element diameter.
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Fic. 5. Aweraged relative errors or the multi-index algorithms with respect to the reference
solution G compared with the theoretical error bound 0(0&1/2

four Monte-Carlo runs.

). The error curve is the average of

only performed four Monte-Carlo runs and show the averaged error in Figure 5. We
observe optimal convergence behaviour despite the presence of corner singularities in
the exact solution. As a reference solution, we use the approximation on the next
higher level N = 14.

9. Conclusion. The present work shows that the multi-index Monte Carlo al-
gorithm with the indices being the discretization parameters of the finite element
method, of the Monte Carlo method, and of the approximation of the random field is
superior to its multi-level counterpart. The error estimates are rigorous and the prod-
uct error estimate from Theorem 3.9 might be of independent interest. The method
can be combined with existing multi-index techniques which focus on sparse grids in
the physical domain D to further reduce the computational effort under the provision

This manuscript is for review purposes only.



876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932

IMPROVED EFFICIENCY OF A MULTI-INDEX FEM 25

of appropriate extra regularity.
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