
Solving stochastic differential equations and

Kolmogorov equations

by means of deep learning

Ch. Beck and S. Becker and Ph. Grohs and A. Jentzen

Research Report No. 2018-21
June 2018

Seminar für Angewandte Mathematik
Eidgenössische Technische Hochschule

CH-8092 Zürich
Switzerland

__

Solving stochastic differential equations and

Kolmogorov equations by means of deep learning

Christian Beck1, Sebastian Becker2, Philipp Grohs3,
Nor Jaafari4, and Arnulf Jentzen5

1 Department of Mathematics, ETH Zurich,

Zurich, Switzerland, e-mail: christian.beck@math.ethz.ch

2 ZENAI AG, Zurich, Switzerland, e-mail: sebastian.becker@zenai.ch

3 Faculty of Mathematics and Research Platform Data Science,

University of Vienna, Vienna, Austria, e-mail: philipp.grohs@univie.ac.at

4 ZENAI AG, Zurich, Switzerland, e-mail: nor.jaafari@zenai.ch

5 Department of Mathematics, ETH Zurich, Zurich,

Switzerland, e-mail: arnulf.jentzen@sam.math.ethz.ch

June 11, 2018

Abstract

Stochastic differential equations (SDEs) and the Kolmogorov partial differential
equations (PDEs) associated to them have been widely used in models from engineer-
ing, finance, and the natural sciences. In particular, SDEs and Kolmogorov PDEs,
respectively, are highly employed in models for the approximative pricing of financial
derivatives. Kolmogorov PDEs and SDEs, respectively, can typically not be solved
explicitly and it has been and still is an active topic of research to design and analyze
numerical methods which are able to approximately solve Kolmogorov PDEs and
SDEs, respectively. Nearly all approximation methods for Kolmogorov PDEs in the
literature suffer under the curse of dimensionality or only provide approximations of
the solution of the PDE at a single fixed space-time point. In this paper we derive
and propose a numerical approximation method which aims to overcome both of
the above mentioned drawbacks and intends to deliver a numerical approximation
of the Kolmogorov PDE on an entire region [a, b]d without suffering from the curse
of dimensionality. Numerical results on examples including the heat equation, the
Black-Scholes model, the stochastic Lorenz equation, and the Heston model suggest
that the proposed approximation algorithm is quite effective in high dimensions in
terms of both accuracy and speed.

1

Contents

1 Introduction 2

2 Derivation and description of the proposed approximation algorithm 3
2.1 Kolmogorov partial differential equations (PDEs) 3
2.2 On stochastic differential equations and Kolmogorov PDEs 3
2.3 Formulation as minimization problem . 4
2.4 Discretization of the stochastic differential equation 21
2.5 Deep artificial neural network approximations 22
2.6 Stochastic gradient descent-type minimization 23
2.7 Description of the algorithm in a special case 24
2.8 Description of the algorithm in the general case 25

3 Examples 26
3.1 Setting . 27
3.2 Heat equation . 27
3.3 Geometric Brownian motions . 35
3.4 Black-Scholes model with correlated noise 37
3.5 Stochastic Lorenz equations . 39
3.6 Heston model . 40

4 Python source codes 42
4.1 Python source code for the algorithm . 42
4.2 A Python source code associated to Subsection 3.2 45
4.3 A Python source code associated to Subsection 3.3 46
4.4 A Python source code associated to Subsection 3.4 47
4.5 A Python source code associated to Subsection 3.5 48
4.6 A Python source code associated to Subsection 3.6 50

1 Introduction

Stochastic differential equations (SDEs) and the Kolmogorov partial differential equations
(PDEs) associated to them have been widely used in models from engineering, finance, and
the natural sciences. In particular, SDEs and Kolmogorov PDEs, respectively, are highly
employed in models for the approximative pricing of financial derivatives. Kolmogorov
PDEs and SDEs, respectively, can typically not be solved explicitly and it has been and
still is an active topic of research to design and analyze numerical methods which are able
to approximately solve Kolmogorov PDEs and SDEs, respectively (see, e.g., [17], [20], [21],
[27], [28], [29], [32], [40], [41], [42], [44], [45], [46], [47], [49], [52]). In particular, there
are nowadays several different types of numerical approximation methods for Kolmogorov

2

PDEs in the literature including deterministic numerical approximation methods such as
finite differences based approximation methods (cf., for example, [7], [8], [23], [43], [58],
[56]) and finite elements based approximation methods (cf., for example, [9], [10], [59])
as well as random numerical approximation methods based on Monte Carlo methods (cf.,
for example, [17], [20]) and discretizations of the underlying SDEs (cf., for example, [21],
[27], [28], [29], [32], [40], [41], [42], [44], [45], [46], [47], [49], [52]). The above mentioned
deterministic approximation methods for PDEs work quite efficiently in one or two space
dimensions but cannot be used in the case of high-dimensional PDEs as they suffer from
the so-called curse of dimensionality (cf. Bellman [5]) in the sense that the computational
effort of the considered approximation algorithm grows exponentially in the PDE dimen-
sion. The above mentioned random numerical approximation methods involving Monte
Carlo approximations typically overcome this curse of dimensionality but only provide
approximations of the Kolmogorov PDE at a single fixed space-time point.

The key contribution of this paper is to derive and propose a numerical approximation
method which aims to overcome both of the above mentioned drawbacks and intends to
deliver a numerical approximation of the Kolmogorov PDE on an entire region [a, b]d with-
out suffering from the curse of dimensionality. The numerical scheme, which we propose in
this work, is inspired by recently developed deep learning based approximation algorithms
for PDEs in the literature (cf., for example, [3], [4], [14], [15], [16], [24], [26], [51], [57]). To
derive the proposed approximation scheme we first reformulate the considered Kolmogorov
PDE as a suitable infinite dimensional stochastic optimization problem (see items (ii)–(iii)
in Proposition 2.7 below for details). This infinite dimensional stochastic optimization
problem is then temporally discretized by means of suitable discretizations of the under-
lying SDE and it is spatially discretized by means of fully connected deep artificial neural
network approximations (see (107) in Subsection 2.6 as well as Subsections 2.4–2.5 below).
The resulting finite dimensional stochastic optimization problem is then solved by means
of stochastic gradient descent type optimization algorithms (see (109) in Subsection 2.6,
Framework 2.9 in Subsection 2.7, Framework 2.10 in Subsection 2.8, as well as (124)–(125)
in Subsection 3.1). We test the proposed approximation method numerically in the case
of several examples of SDEs and PDEs, respectively (see Subsections 3.2–3.6 below for de-
tails). The obtained numerical results indicate that the proposed approximation algorithm
is quite effective in high dimensions in terms of both accuracy and speed.

The remainder of this article is organized as follows. In Section 2 we derive the pro-
posed approximation algorithm (see Subsections 2.1–2.6 below) and we present a detailed
description of the proposed approximation algorithm in a special case (see Subsection 2.7
below) as well as in the general case (see Subsection 2.8 below). In Section 3 we test
the proposed algorithm numerically in the case of several examples of SDEs and PDEs,
respectively. The employed source codes for the numerical simulations in Section 3 are
postponed to Section 4.

3

2 Derivation and description of the proposed approx-

imation algorithm

In this section we describe the approximation problem which we intend to solve (see Sub-
section 2.1 below) and we derive (see Subsections 2.2–2.6 below) and specify (see Subsec-
tions 2.7–2.8 below) the numerical scheme which we suggest to use to solve this approxima-
tion problem (cf., for example, E et al. [14], Han et al. [24], Sirignano & Spiliopoulos [57],
Beck et al. [3], Fujii, Takahashi, A., & Takahashi, M. [16], and Henry-Labordere [26] for
related derivations and related approximation schemes).

2.1 Kolmogorov partial differential equations (PDEs)

Let T ∈ (0,∞), d ∈ N, let µ : Rd → R
d and σ : Rd → R

d×d be Lipschitz continuous
functions, let ϕ : Rd → R be a function, and let u = (u(t, x))(t,x)∈[0,T]×Rd ∈ C1,2([0, T] ×
R

d,R) be a function with at most polynomially growing partial derivatives which satisfies
for every t ∈ [0, T], x ∈ R

d that u(0, x) = ϕ(x) and

∂u
∂t
(t, x) = 1

2
TraceRd

(
σ(x)[σ(x)]∗(Hessx u)(t, x)

)
+ 〈µ(x), (∇xu)(t, x)〉Rd . (1)

Our goal is to approximately calculate the function R
d ∋ x 7→ u(T, x) ∈ R on some subset

of Rd. To fix ideas we consider real numbers a, b ∈ R with a < b and we suppose that our
goal is to approximately calculate the function [a, b]d ∋ x 7→ u(T, x) ∈ R.

2.2 On stochastic differential equations and Kolmogorov PDEs

In this subsection we provide a probabilistic representation for the solutions of the PDE (1),
that is, we recall the classical Feynman-Kac formula for the PDE (1) (cf., for example,
Øksendal [50, Chapter 8]).

Let (Ω,F ,P) be a probability space with a normal filtration (Ft)t∈[0,T], let W : [0, T]×
Ω → R

d be a standard (Ω,F ,P, (Ft)t∈[0,T])-Brownian motion, and for every x ∈ R
d letXx =

(Xx
t)t∈[0,T] : [0, T] × Ω → R

d be an (Ft)t∈[0,T]-adapted stochastic process with continuous
sample paths which satisfies that for every t ∈ [0, T] it holds P-a.s. that

Xx
t = x+

∫ t

0

µ(Xx
s) ds+

∫ t

0

σ(Xx
s) dWs. (2)

The Feynman-Kac formula (cf., for example, Hairer et al. [22, Corollary 4.17 and Remark
4.1]) and (1) hence yield that for every x ∈ R

d it holds that

u(T, x) = ❊
[
u(0, Xx

T)
]
= ❊

[
ϕ(Xx

T)
]
. (3)

4

2.3 Formulation as minimization problem

In the next step we exploit (3) to formulate a minimization problem which is uniquely
solved by the function [a, b]d ∋ x 7→ u(T, x) ∈ R (cf. (1) above). For this we first recall
the L2-minimization property of the expectation of a real-valued random variable (see
Lemma 2.1 below). Then we extend this minimization result to certain random fields (see
Proposition 2.2 below). Thereafter, we apply Proposition 2.2 to random fields in the context
of the Feynman-Kac representation (3) to obtain Proposition 2.7 below. Proposition 2.7
provides a minimization problem (see, for instance, (93) below) which has the function
[a, b]d ∋ x 7→ u(T, x) ∈ R as the unique global minimizer.

Our proof of Proposition 2.7 is based on the elementary auxiliary results in Lemmas 2.3–
2.6. For completeness we also present the proofs of Lemmas 2.3–2.6 here. The statement
and the proof of Lemma 2.3 are based on the proof of Da Prato & Zabczyk [13, Lemma
1.1].

Lemma 2.1. Let (Ω,F ,P) be a probability space and let X : Ω → R be an F/B(R)-
measurable random variable which satisfies ❊[|X|2] <∞. Then

(i) it holds for every y ∈ R that

❊
[
|X − y|2

]
= ❊

[
|X −❊[X]|2

]
+ |❊[X]− y|2, (4)

(ii) it holds that there exists a unique real number z ∈ R such that

❊
[
|X − z|2

]
= inf

y∈R
❊
[
|X − y|2

]
, (5)

and

(iii) it holds that
❊
[
|X −❊[X]|2

]
= inf

y∈R
❊
[
|X − y|2

]
. (6)

Proof of Lemma 2.1. Observe that the fact that ❊[|X|] <∞ ensures that for every y ∈ R

it holds that

❊
[
|X − y|2

]
= ❊

[
|X −❊[X] +❊[X]− y|2

]

= ❊
[
|X −❊[X]|2 + 2(X −❊[X])(❊[X]− y) + |❊[X]− y|2

]

= ❊
[
|X −❊[X]|2

]
+ 2(❊[X]− y)❊

[
X −❊[X]

]
+ |❊[X]− y|2

= ❊
[
|X −❊[X]|2

]
+ |❊[X]− y|2.

(7)

This establishes item (i). Item (ii) and item (iii) are immediate consequences of item (i).
The proof of Lemma 2.1 is thus completed.

5

Proposition 2.2. Let a ∈ R, b ∈ (a,∞), let (Ω,F ,P) be a probability space, let X =
(Xx)x∈[a,b]d : [a, b]

d × Ω → R be a (B([a, b]d) ⊗ F)/B(R)-measurable function, assume for
every x ∈ [a, b]d that ❊[|Xx|2] <∞, and assume that the function [a, b]d ∋ x 7→ ❊[Xx] ∈ R

is continuous. Then

(i) it holds that there exists a unique continuous function u : [a, b]d → R such that
∫

[a,b]d
❊
[
|Xx − u(x)|2

]
dx = inf

v∈C([a,b]d,R)

(∫

[a,b]d
❊
[
|Xx − v(x)|2

]
dx

)

(8)

and

(ii) it holds for every x ∈ [a, b]d that u(x) = ❊[Xx].

Proof of Proposition 2.2. Observe that item (i) in Lemma 2.1 and the hypothesis that
∀ x ∈ [a, b]d : ❊[|Xx|2] < ∞ ensure that for every function u : [a, b]d → R and every x ∈
[a, b]d it holds that

❊
[
|Xx − u(x)|2

]
= ❊

[
|Xx −❊[Xx]|2

]
+ |❊[Xx]− u(x)|2. (9)

Fubini’s theorem (see, e.g., Klenke [39, Theorem 14.16]) hence proves that for every con-
tinuous function u : [a, b]d → R it holds that
∫

[a,b]d
❊
[
|Xx − u(x)|2

]
dx =

∫

[a,b]d
❊
[
|Xx −❊[Xx]|2

]
dx+

∫

[a,b]d
|❊[Xx]− u(x)|2 dx. (10)

The hypothesis that the function [a, b]d ∋ x 7→ ❊[Xx] ∈ R is continuous therefore demon-
strates that

∫

[a,b]d
❊
[
|Xx −❊[Xx]|2

]
dx

≥ inf
v∈C([a,b]d,R)

(∫

[a,b]d
❊
[
|Xx − v(x)|2

]
dx

)

= inf
v∈C([a,b]d,R)

(∫

[a,b]d
❊
[
|Xx −❊[Xx]|2

]
dx+

∫

[a,b]d
|❊[Xx]− v(x)|2 dx

)

≥ inf
v∈C([a,b]d,R)

(∫

[a,b]d
❊
[
|Xx −❊[Xx]|2

]
dx

)

=

∫

[a,b]d
❊
[
|Xx −❊[Xx]|2

]
dx.

(11)

Hence, we obtain that
∫

[a,b]d
❊
[
|Xx −❊[Xx]|2

]
dx = inf

v∈C([a,b]d,R)

(∫

[a,b]d
❊
[
|Xx − v(x)|2

]
dx

)

. (12)

6

Again the fact that the function [a, b]d ∋ x 7→ ❊[Xx] ∈ R is continuous therefore proves
that there exists a continuous function u : [a, b]d → R such that

∫

[a,b]d
❊
[
|Xx − u(x)|2

]
dx = inf

v∈C([a,b]d,R)

(∫

[a,b]d
❊
[
|Xx − v(x)|2

]
dx

)

. (13)

Next observe that (10) and (12) yield that for every continuous function u : [a, b]d → R

with ∫

[a,b]d
❊
[
|Xx − u(x)|2

]
dx = inf

v∈C([a,b]d,R)

(∫

[a,b]d
❊
[
|Xx − v(x)|2

]
dx

)

(14)

it holds that
∫

[a,b]d
❊
[
|Xx −❊[Xx]|2

]
dx

= inf
v∈C([a,b]d,R)

(∫

[a,b]d
❊
[
|Xx − v(x)|2

]
dx

)

=

∫

[a,b]d]

❊
[
|Xx − u(x)|2

]
dx

=

∫

[a,b]d
❊
[
|Xx −❊[Xx]|2

]
dx+

∫

[a,b]d
|❊[Xx]− u(x)|2 dx.

(15)

Hence, we obtain that for every continuous function u : [a, b]d → R with

∫

[a,b]d
❊
[
|Xx − u(x)|2

]
dx = inf

v∈C([a,b]d,R)

(∫

[a,b]d
❊
[
|Xx − v(x)|2

]
dx

)

(16)

it holds that ∫

[a,b]d
|❊[Xx]− u(x)|2 dx = 0. (17)

This and again the hypothesis that the function [a, b]d ∋ x 7→ ❊[Xx] ∈ R is continuous
yield that for every continuous function u : [a, b]d → R with

∫

[a,b]d
❊
[
|Xx − u(x)|2

]
dx = inf

v∈C([a,b]d,R)

(∫

[a,b]d
❊
[
|Xx − v(x)|2

]
dx

)

(18)

and every x ∈ [a, b]d it holds that u(x) = ❊[Xx]. Combining this with (13) completes the
proof of Proposition 2.2.

Lemma 2.3 (Projections in metric spaces). Let (E, d) be a metric space, let n ∈ N,
e1, e2, . . . , en ∈ E, and let P : E → E be the function which satisfies for every x ∈ E that

P (x) = emin{k∈{1,2,...,n} : d(x,ek)=min{d(x,e1),d(x,e2),...,d(x,en)}}. (19)

Then

7

(i) it holds for every x ∈ E that

d(x, P (x)) = min
k∈{1,2,...,n}

d(x, ek) (20)

and

(ii) it holds for every A ⊆ E that P−1(A) ∈ B(E).
Proof of Lemma 2.3. Throughout this proof let D = (D1, . . . , Dn) : E → R

n be the func-
tion which satisfies for every x ∈ E that

D(x) = (D1(x), D2(x), . . . , Dn(x)) = (d(x, e1), d(x, e2), . . . , d(x, en)) . (21)

Note that (19) ensures that for every x ∈ E it holds that

d(x, P (x)) = d(x, emin{k∈{1,2,...,n} : d(x,ek)=min{d(x,e1),d(x,e2),...,d(x,en)}}) = min
k∈{1,2,...,n}

d(x, ek).

(22)
This establishes item (i). It thus remains to prove item (ii). For this observe that the fact
that the function d : E × E → [0,∞) is continuous ensures that the function D : E → R

n

is continuous. Hence, we obtain that the function D : E → R
n is B(E)/B(Rn)-measurable.

Next note that item (i) demonstrates that for every k ∈ {1, 2, . . . , n}, x ∈ P−1({ek}) it
holds that

d(x, ek) = d(x, P (x)) = min
l∈{1,2,...,n}

d(x, el). (23)

Hence, we obtain that for every k ∈ {1, 2, . . . , n}, x ∈ P−1({ek}) it holds that

k ≥ min{l ∈ {1, 2, . . . , n} : d(x, el) = min{d(x, e1), d(x, e2), . . . , d(x, en)}}. (24)

Moreover, note that (19) ensures that for every k ∈ {1, 2, . . . , n}, x ∈ P−1({ek}) it holds
that

min

{

l ∈ {1, 2, . . . , n} : d(x, el) = min
u∈{1,2,...,n}

d(x, eu)

}

∈
{
l ∈ {1, 2, . . . , n} : el = ek

}
⊆
{
k, k + 1, . . . , n

}
.

(25)

Therefore, we obtain that for every k ∈ {1, 2, . . . , n}, x ∈ P−1({ek}) with ek /∈ (∪l∈N∩[0,k){el})
it holds that

min

{

l ∈ {1, 2, . . . , n} : d(x, el) = min
u∈{1,2,...,n}

d(x, eu)

}

≥ k. (26)

Combining this with (24) yields that for every k ∈ {1, 2, . . . , n}, x ∈ P−1({ek}) with
ek /∈ (∪l∈N∩[0,k){el}) it holds that

min

{

l ∈ {1, 2, . . . , n} : d(x, el) = min
u∈{1,2,...,n}

d(x, eu)

}

= k. (27)

8

Hence, we obtain that for every k ∈ {1, 2, . . . , n} with ek /∈ (∪l∈N∩[0,k){el}) it holds that

P−1({ek}) ⊆
{

x ∈ E : min

{

l ∈ {1, 2, . . . , n} : d(x, el) = min
u∈{1,2,...,n}

d(x, eu)

}

= k

}

. (28)

This and (19) show that for every k ∈ {1, 2, . . . , n} with ek /∈ (∪l∈N∩[0,k){el}) it holds that

P−1({ek}) =
{

x ∈ E : min

{

l ∈ {1, 2, . . . , n} : d(x, el) = min
u∈{1,2,...,n}

d(x, eu)

}

= k

}

. (29)

Combining (21) with the fact that the function D : E → R
n is B(E)/B(Rn)-measurable

therefore demonstrates that for every k ∈ {1, 2, . . . , n} with ek /∈ (∪l∈N∩[0,k){el}) it holds
that

P−1({ek})

=

{

x ∈ E : min

{

l ∈ {1, 2, . . . , n} : d(x, el) = min
u∈{1,2,...,n}

d(x, eu)

}

= k

}

=

{

x ∈ E : min

{

l ∈ {1, 2, . . . , n} : Dl(x) = min
u∈{1,2,...,n}

Du(x)

}

= k

}

=

{

x ∈ E :

(
∀ l ∈ N ∩ [0, k) : Dk(x) < Dl(x) and
∀ l ∈ {1, 2, . . . , n} : Dk(x) ≤ Dl(x)

)}

=






k−1⋂

l=1

{x ∈ E : Dk(x) < Dl(x)}
︸ ︷︷ ︸

∈B(E)






⋂






n⋂

l=1

{x ∈ E : Dk(x) ≤ Dl(x)}
︸ ︷︷ ︸

∈B(E)




 ∈ B(E).

(30)

Hence, we obtain that for every f ∈ {e1, e2, . . . , en} it holds that

P−1({f}) ∈ B(E). (31)

Therefore, we obtain that for every A ⊆ E it holds that

P−1(A) = P−1(A ∩ {e1, e2, . . . , en})
= ∪f∈A∩{e1,e2,...,en} P

−1({f})
︸ ︷︷ ︸

∈B(E)

∈ B(E). (32)

This establishes item (ii). The proof of Lemma 2.3 is thus completed.

Lemma 2.4. Let (E, d) be a separable metric space, let (E , δ) be a metric space, let (Ω,F)
be a measurable space, let X : E × Ω → E be a function, assume for every e ∈ E that
the function Ω ∋ ω 7→ X(e, ω) ∈ E is F/B(E)-measurable, and assume for every ω ∈ Ω
that the function E ∋ e 7→ X(e, ω) ∈ E is continuous. Then it holds that the function
X : E × Ω → E is (B(E)⊗F)/B(E)-measurable.

9

Proof of Lemma 2.4. Throughout this proof let (em)m∈N ⊆ E be a sequence which satisfies
that {em : m ∈ N} = E, let Pn : E → E, n ∈ N, be the functions which satisfy for every
n ∈ N, x ∈ E that

Pn(x) = emin{k∈{1,2,...,n} : d(x,ek)=min{d(x,e1),d(x,e2),...,d(x,en)}}, (33)

and let Xn : E × Ω → E , n ∈ N, be the functions which satisfy for every n ∈ N, x ∈ E,
ω ∈ Ω that

Xn(x, ω) = X(Pn(x), ω). (34)

Note that (34) shows that for all n ∈ N, B ∈ B(E) it holds that

(Xn)
−1(B) = {(x, ω) ∈ E × Ω: Xn(x, ω) ∈ B}

=
⋃

y∈Im(Pn)

([
(Xn)

−1(B)
]
∩
[
(Pn)

−1({y})× Ω
])

=
⋃

y∈Im(Pn)

{

(x, ω) ∈ E × Ω:
[

Xn(x, ω) ∈ B and x ∈ (Pn)
−1({y})

]}

=
⋃

y∈Im(Pn)

{

(x, ω) ∈ E × Ω:
[

X(Pn(x), ω) ∈ B and x ∈ (Pn)
−1({y})

]}

.

(35)

Item (ii) in Lemma 2.3 hence implies that for all n ∈ N, B ∈ B(E) it holds that

(Xn)
−1(B) =

⋃

y∈Im(Pn)

{

(x, ω) ∈ E × Ω:
[

X(y, ω) ∈ B and x ∈ (Pn)
−1({y})

]}

=
⋃

y∈Im(Pn)

(

{(x, ω) ∈ E × Ω: X(y, ω) ∈ B} ∩
[
(Pn)

−1({y})× Ω
])

=
⋃

y∈Im(Pn)

([
E ×

(
(X(y, ·))−1 (B)

)

︸ ︷︷ ︸

∈(B(E)⊗F)

]
∩
[
(Pn)

−1({y})× Ω
︸ ︷︷ ︸

∈(B(E)⊗F)

])

∈ (B(E)⊗F).

(36)

This proves that for every n ∈ N it holds that the function Xn is (B(E) ⊗ F)/B(E)-
measurable. In addition, note that item (i) in Lemma 2.3 and the hypothesis that for
every ω ∈ Ω it holds that the function E ∋ x 7→ X(x, ω) ∈ E is continuous imply that for
every x ∈ E, ω ∈ Ω it holds that

lim
n→∞

Xn(x, ω) = lim
n→∞

X(Pn(x), ω) = X(x, ω). (37)

Combining this with the fact that for every n ∈ N it holds that the function Xn : E×Ω → E
is (B(E)⊗F)/B(E)-measurable shows that the functionX : E×Ω → E is (B(E)⊗F)/B(E)-
measurable. The proof of Lemma 2.4 is thus completed.

10

Lemma 2.5. Let (Ω,F ,P) be a probability space, let (E, d) and (E , δ) be separable metric
spaces, let Xn : Ω → E, n ∈ N0, be random variables which satisfy for every ε ∈ (0,∞)
that

lim sup
n→∞

P(d(Xn, X0) ≥ ε) = 0, (38)

and let Φ: E → E be a continuous function. Then it holds for every ε ∈ (0,∞) that

lim sup
n→∞

P(δ(Φ(Xn),Φ(X0)) ≥ ε) = 0. (39)

Proof of Lemma 2.5. Note that (38), e.g., Cox et al. [12, Lemma 2.4], and, e.g., Hutzen-
thaler et al. [35, Lemma 4.2] establish (39). The proof of Lemma 2.5 is thus completed.

Lemma 2.6. Let d,m ∈ N, T ∈ (0,∞), L, a ∈ R, b ∈ (a,∞), let µ : Rd → R
d and σ : Rd →

R
d×m be functions which satisfy for every x, y ∈ R

d that max{‖µ(x) − µ(y)‖Rd , ‖σ(x) −
σ(y)‖HS(Rm,Rd)} ≤ L‖x−y‖Rd, let Φ: C([0, T],Rd) → R be an at most polynomially growing
continuous function, let (Ω,F ,P) be a probability space with a normal filtration (Ft)t∈[0,T],
let ξ : Ω → [a, b]d be a continuous uniformly distributed F0/B([a, b]d)-measurable random
variable, let W : [0, T] × Ω → R

m be a standard (Ft)t∈[0,T]-Brownian motion, for every
x ∈ [a, b]d let Xx = (Xx

t)t∈[0,T] : [0, T]×Ω → R
d be an (Ft)t∈[0,T]-adapted stochastic process

with continuous sample paths which satisfies that for every t ∈ [0, T] it holds P-a.s. that

Xx
t = x+

∫ t

0

µ(Xx
s) ds+

∫ t

0

σ(Xx
s) dWs, (40)

and let ❳ : [0, T] × Ω → R
d be an (Ft)t∈[0,T]-adapted stochastic process with continuous

sample paths which satisfies that for every t ∈ [0, T] it holds P-a.s. that

❳t = ξ +

∫ t

0

µ(❳s) ds+

∫ t

0

σ(❳s) dWs. (41)

Then

(i) it holds for every x ∈ [a, b]d that the functions Ω ∋ ω 7→ Φ((Xx
t (ω))t∈[0,T]) ∈ R and

Ω ∋ ω 7→ Φ((❳t(ω))t∈[0,T]) ∈ R are F/B(R)-measurable,

(ii) it holds for every p ∈ [2,∞), x, y ∈ [a, b]d that

(

❊

[

sup
t∈[0,T]

‖Xx
t −Xy

t ‖Rd

]p)1/p

≤
√
2 exp

(

L2T
[
p+

√
T
]2
)

‖x− y‖Rd , (42)

(iii) it holds for every x ∈ [a, b]d that ❊
[
|Φ((Xx

t)t∈[0,T])|+ |Φ((❳t)t∈[0,T])|
]
<∞,

(iv) it holds that the function [a, b]d ∋ x 7→ ❊[Φ((Xx
t)t∈[0,T])] ∈ R is continuous, and

11

(v) it holds that

❊
[
Φ((❳t)t∈[0,T])

]
= 1

(b−a)d

(∫

[a,b]d
❊
[
Φ((Xx

t)t∈[0,T])
]
dx

)

. (43)

Proof of Lemma 2.6. Throughout this proof let c ∈ [1,∞) be a real number which satisfies
for every w ∈ C([0, T],Rm) that

|Φ(w)| ≤ c

[

1 + sup
t∈[0,T]

‖wt‖Rd

]c

, (44)

let pt : C([0, T],R
m) → R

m, t ∈ [0, T], be the functions which satisfy for every t ∈ [0, T],
w = (ws)s∈[0,T] ∈ C([0, T],Rm) that pt(w) = wt, and let ΨN

x,w : [0, T] → R
d, N ∈ N, x ∈ R

d,
w ∈ C([0, T],Rm), be the functions which satisfy for every w ∈ C([0, T],Rm), x ∈ R

d,

N ∈ N, n ∈ {0, 1, . . . , N − 1}, t ∈ [nT
N
, (n+1)T

N
] that ΨN

x,w(0) = x and

ΨN
x,w(t) = ΨN

x,w

(
nT
N

)
+
(
nt
T
− n

) [

µ
(
ΨN

x,w

(
nT
N

))
T
N
+ σ
(
ΨN

x,w

(
nT
N

)) (
w (n+1)T

N

− wnT
N

)]

. (45)

Observe that the fact that the Borel sigma-algebra B(C([0, T],Rm)) is generated by the set
∪t∈[0,T]∪A∈B(Rm) {(pt)−1(A)} (cf., for example, Klenke [39, Theorem 21.31]), the hypothesis
that for every x ∈ [a, b]d it holds thatXx : [0, T]×Ω → R

d is an (Ft)t∈[0,T]-adapted stochastic
process with continuous sample paths, and the hypothesis that ❳ : [0, T] × Ω → R

d is an
(Ft)t∈[0,T]-adapted stochastic process with continuous sample paths demonstrate that the
functions

Ω ∋ ω 7→ (Xx
t (ω))t∈[0,T] ∈ C([0, T],Rd) (46)

and
Ω ∋ ω 7→ (❳t(ω))t∈[0,T] ∈ C([0, T],Rd) (47)

are F/B(C([0, T],Rd))-measurable. Combining this with the fact that the function Φ:
C([0, T],Rd) → R is B(C([0, T],Rd))/B(R)-measurable implies that for every x ∈ [a, b]d it
holds that the functions Ω ∋ ω 7→ Φ((Xx

t (ω))t∈[0,T]) ∈ R and Ω ∋ ω 7→ Φ((❳t(ω))t∈[0,T]) ∈
R are F/B(R)-measurable. This proves item (i). Next observe that (45), the hypothesis
that µ : Rd → R

d and σ : Rd → R
d×m are globally Lipschitz continuous, and the fact that

for every p ∈ (0,∞) it holds that ❊[‖ξ‖p
Rd] < ∞ ensure that for every p ∈ (0,∞) it holds

that

sup
N∈N

sup
x∈[a,b]d

(

❊

[

sup
t∈[0,T]

‖ΨN
x,W (t)‖p

Rd

]

+❊

[

sup
t∈[0,T]

‖ΨN
ξ,W (t)‖p

Rd

])

= sup
N∈N

sup
x∈[a,b]d

(

❊

[

max
n∈{0,1,...,N}

∥
∥ΨN

x,W

(
nT
N

)∥
∥
p

Rd

]

+❊

[

max
n∈{0,1,...,N}

∥
∥ΨN

ξ,W

(
nT
N

)∥
∥
p

Rd

])

<∞
(48)

12

(cf., for example, Kloeden & Platen [41, Section 10.6]). Next note that (40), (41), (45), the
fact that µ : Rd → R

d and σ : Rd → R
d×m are locally Lipschitz continuous functions, and

e.g., Hutzenthaler & Jentzen [32, Theorem 3.3] ensure that for every x ∈ [a, b]d, ε ∈ (0,∞)
it holds that

lim sup
N→∞

P

(

sup
t∈[0,T]

‖Xx
t −ΨN

x,W (t)‖Rd ≥ ε

)

= 0 (49)

and

lim sup
N→∞

P

(

sup
t∈[0,T]

‖❳t −ΨN
ξ,W (t)‖Rd ≥ ε

)

= 0. (50)

Combining (46), (47), and, e.g., Hutzenthaler & Jentzen [32, Lemma 3.10] hence demon-
strates that for every x ∈ [a, b]d, p ∈ (0,∞) it holds that

❊

[

sup
t∈[0,T]

‖Xx
t ‖p
]

≤ lim inf
N→∞

❊

[

sup
t∈[0,T]

‖ΨN
x,W (t)‖p

]

≤ sup
N∈N

❊

[

sup
t∈[0,T]

‖ΨN
x,W (t)‖p

] (51)

and

❊

[

sup
t∈[0,T]

‖❳t‖p
]

≤ lim inf
N→∞

❊

[

sup
t∈[0,T]

‖ΨN
ξ,W (t)‖p

]

≤ sup
N∈N

❊

[

sup
t∈[0,T]

‖ΨN
ξ,W (t)‖p

]

.

(52)

This and (48) assure that for every p ∈ (0,∞) it holds that

sup
x∈[a,b]d

(

❊

[

sup
t∈[0,T]

‖Xx
t ‖pRd

]

+❊

[

sup
t∈[0,T]

‖❳t‖pRd

])

<∞. (53)

Combining (44) and the fact that ∀ r ∈ (0,∞), a, b ∈ R : |a+ b|r ≤ 2r(|a|r + |b|r) therefore
demonstrates that for every p ∈ (0,∞) it holds that

sup
x∈[a,b]d

(
❊
[
|Φ((Xx

t)t∈[0,T])|p
]
+❊

[
|Φ((❳t)t∈[0,T])|p

])

≤ sup
x∈[a,b]d

(
cp❊

[
|1 + supt∈[0,T] ‖Xx

t ‖Rd |cp
]
+ cp❊

[
|1 + supt∈[0,T] ‖❳t‖Rd |cp

])

≤ 2cp cp

(

sup
x∈[a,b]d

❊
[
2 + supt∈[0,T] ‖Xx

t ‖cpRd + supt∈[0,T] ‖❳t‖cpRd

]

)

<∞.

(54)

13

This establishes item (iii). In the next step we observe that (40) ensures that for every
x, y ∈ [a, b]d, t ∈ [0, T] it holds P-a.s. that

Xx
t −Xy

t = x− y +

∫ t

0

(µ(Xx
s)− µ(Xy

s)) ds+

∫ t

0

(σ(Xx
s)− σ(Xy

s)) dWs. (55)

The triangle inequality hence ensures that for every x, y ∈ [a, b]d, t ∈ [0, T] it holds P-
a.s. that

sup
s∈[0,t]

‖Xx
s −Xy

s ‖Rd

≤ ‖x− y‖Rd + sup
s∈[0,t]

∫ s

0

‖µ(Xx
r)− µ(Xy

r)‖Rd dr + sup
s∈[0,t]

∥
∥
∥
∥

∫ t

0

(σ(Xx
r)− σ(Xy

r)) dWr

∥
∥
∥
∥
Rd

≤ ‖x− y‖Rd + L

[

sup
s∈[0,t]

∫ s

0

‖Xx
r −Xy

r ‖Rd dr

]

+ sup
s∈[0,t]

∥
∥
∥
∥

∫ s

0

(σ(Xx
r)− σ(Xy

r)) dWr

∥
∥
∥
∥
Rd

= ‖x− y‖Rd + L

∫ t

0

‖Xx
r −Xy

r ‖Rd dr + sup
s∈[0,t]

∥
∥
∥
∥

∫ s

0

(σ(Xx
r)− σ(Xy

r)) dWr

∥
∥
∥
∥
Rd

.

(56)

Therefore, we obtain for every p ∈ [1,∞), x, y ∈ [a, b]d, t ∈ [0, T] that

(

❊

[

sup
s∈[0,t]

‖Xx
s −Xy

s ‖pRd

])1/p

≤ ‖x− y‖Rd + L

∫ t

0

(
❊
[
‖Xx

r −Xy
r ‖pRd

])1/p
dr

+

(

❊

[

sup
s∈[0,t]

∥
∥
∥
∥

∫ s

0

(σ(Xx
r)− σ(Xy

r)) dWr

∥
∥
∥
∥

p

Rd

])1/p

.

(57)

The Burkholder-Davis-Gundy type inequality in Da Prato & Zabczyk [13, Lemma 7.2]
hence shows that for every p ∈ [2,∞), x, y ∈ [a, b]d, t ∈ [0, T] it holds that

(

❊

[

sup
s∈[0,t]

‖Xx
s −Xy

s ‖pRd

])1/p

≤ ‖x− y‖Rd + L

∫ t

0

(
❊
[
‖Xx

r −Xy
r ‖pRd

])1/p
dr

+ p

[∫ t

0

(

❊
[
‖σ(Xx

r)− σ(Xy
r)‖pHS(Rd,Rm)

])2/p

dr

]1/2

.

(58)

This demonstrates that for every p ∈ [2,∞), x, y ∈ [a, b]d, t ∈ [0, T] it holds that

(

❊

[

sup
s∈[0,t]

‖Xx
s −Xy

s ‖pRd

])1/p

≤ ‖x− y‖Rd + L

∫ t

0

(
❊
[
‖Xx

r −Xy
r ‖pRd

])1/p
dr

+ Lp

[∫ t

0

(
❊
[
‖Xx

r −Xy
r ‖pRd

])2/p
dr

]1/2

.

(59)

14

Hölder’s inequality hence proves that for every p ∈ [2,∞), x, y ∈ [a, b]d, t ∈ [0, T] it holds
that
(

❊

[

sup
s∈[0,t]

‖Xx
s −Xy

s ‖pRd

])1/p

≤ ‖x− y‖Rd + L
√
t

[∫ t

0

(
❊
[
‖Xx

r −Xy
r ‖pRd

])2/p
dr

]1/2

+ Lp

[∫ t

0

(
❊
[
‖Xx

r −Xy
r ‖pRd

])2/p
dr

]1/2

≤ ‖x− y‖Rd + L
[
p+

√
T
]
[∫ t

0

(
❊
[
‖Xx

r −Xy
r ‖pRd

])2/p
dr

]1/2

.

(60)

The fact that ∀ v, w ∈ R : |v + w|2 ≤ 2v2 + 2w2 therefore shows that for every p ∈ [2,∞),
x, y ∈ [a, b]d, t ∈ [0, T] it holds that

(

❊

[

sup
s∈[0,t]

‖Xx
s −Xy

s ‖pRd

])2/p

≤ 2‖x− y‖2
Rd + 2L2

[
p+

√
T
]2
∫ t

0

(
❊
[
‖Xx

r −Xy
r ‖pRd

])2/p
dr

≤ 2‖x− y‖2
Rd + 2L2

[
p+

√
T
]2
∫ t

0

(

❊

[

sup
s∈[0,r]

‖Xx
s −Xy

s ‖pRd

])2/p

dr.

(61)

Combining the Gronwall inequality (cf., e.g., Andersson et al. [2, Lemma 2.6] (with α = 0,

β = 0, a = 2‖x−y‖2
Rd , b = 3L2

[
p+

√
T
]
, e = ([0, T] ∋ t 7→

(
❊
[
sups∈[0,t] ‖Xx

s −Xy
s ‖pRd

])2/p ∈
[0,∞]) in the notation of Lemma 2.6)) and (53) hence establishes that for every p ∈ [2,∞),
x, y ∈ [a, b]d, t ∈ [0, T] it holds that

(

❊

[

sup
s∈[0,t]

‖Xx
s −Xy

s ‖pRd

])2/p

≤ 2‖x− y‖2
Rd exp

(

2L2t
[
p+

√
T
]2
)

. (62)

Therefore, we obtain that for every p ∈ [2,∞), x, y ∈ [a, b]d it holds that

(

❊

[

sup
t∈[0,T]

‖Xx
t −Xy

t ‖p
])1/p

≤
√
2 exp

(

L2T
[
p+

√
T
]2
)

‖x− y‖Rd . (63)

This establishes item (ii). Next observe that item (ii) and Jensen’s inequality imply that
for every p ∈ (0,∞) it holds that

sup
x,y∈[a,b]d,x 6=y

((
❊
[
supt∈[0,T] ‖Xx

t −Xy
t ‖pRd

])1/p

‖x− y‖Rd

)

<∞. (64)

15

The hypothesis that the function Φ: C([0, T],Rd) → R is continuous and Lemma 2.5 hence
ensure that for every ε ∈ (0,∞), (xn)n∈N0 ⊆ [a, b]d with lim supn→∞ ‖x0 − xn‖Rd = 0 it
holds that

lim sup
n→∞

P
(
|Φ((Xx0

t)t∈[0,T])− Φ((Xxn

t)t∈[0,T])| ≥ ε
)
= 0. (65)

Combining (54) with, e.g., Hutzenthaler et al. [35, Proposition 4.5] therefore implies that
for every (xn)n∈N0 ⊆ [a, b]d with lim supn→∞ ‖x0 − xn‖Rd = 0 it holds that

lim sup
n→∞

❊
[
|Φ((Xx0

t)t∈[0,T])− Φ((Xxn

t)t∈[0,T])|
]
= 0. (66)

This establishes item (iv). In the next step we observe that (49) and (50) ensure that for
every ε ∈ (0,∞), x ∈ [a, b]d it holds that

lim sup
N→∞

[

P

(

sup
t∈[0,T]

‖ΨN
x,W (t)−Xx

t ‖Rd ≥ ε

)

+P

(

sup
t∈[0,T]

‖ΨN
ξ,W (t)−❳t‖Rd ≥ ε

)]

= 0.

(67)
The hypothesis that the function Φ is continuous and Lemma 2.5 therefore demonstrate
that for every ε ∈ (0,∞), x ∈ [a, b]d it holds that

lim sup
N→∞

[
P
(
|Φ(ΨN

x,W)− Φ((Xx
t)t∈[0,T])|+ |Φ(ΨN

ξ,W)− Φ((❳t)t∈[0,T])| ≥ ε
)]

= 0. (68)

Next observe that (44) assures that for every N ∈ N, x ∈ [a, b]d, p ∈ (0,∞) it holds that

❊
[
|Φ(ΨN

x,W)− Φ((Xx
t)t∈[0,T])|p + |Φ(ΨN

ξ,W)− Φ((❳t)t∈[0,T])|p
]

≤ 2p❊
[
|Φ(ΨN

x,W)|p + |Φ((Xx
t)t∈[0,T])|p

]
+ 2p❊

[
|Φ(ΨN

ξ,W)|p + |Φ((❳t)t∈[0,T])|p
]

≤ 2pcp❊
[∣
∣1 + supt∈[0,T] ‖ΨN

x,W (t)‖Rd

∣
∣
cp
+
∣
∣1 + supt∈[0,T] ‖Xx

t ‖Rd

∣
∣
cp
]

+ 2pcp❊
[∣
∣1 + supt∈[0,T] ‖ΨN

ξ,W (t)‖Rd

∣
∣
cp
+
∣
∣1 + supt∈[0,T] ‖❳t‖Rd

∣
∣
cp
]

≤ 4pcp❊
[
2 + supt∈[0,T] ‖ΨN

x,W (t)‖cp
Rd + supt∈[0,T] ‖Xx

t ‖cpRd

]

+ 4pcp❊
[
2 + supt∈[0,T] ‖ΨN

ξ,W (t)‖cp
Rd + supt∈[0,T] ‖❳t‖cpRd

]
.

(69)

Combining (48) and (53) hence shows that for every p ∈ (0,∞) it holds that

sup
N∈N

sup
x∈[a,b]d

(
❊
[
|Φ(ΨN

x,W)− Φ((Xx
t)t∈[0,T])|p + |Φ(ΨN

ξ,W)− Φ((❳t)t∈[0,T])|p
])
<∞. (70)

This, (68), and, e.g., Hutzenthaler et al. [35, Proposition 4.5] imply that for every x ∈ [a, b]d

it holds that

lim sup
N→∞

(
❊
[
|Φ(ΨN

x,W)− Φ((Xx
t)t∈[0,T])|

]
+❊

[
|Φ(ΨN

ξ,W)− Φ((❳t)t∈[0,T])|
])

= 0. (71)

16

Combining (70) with Lebesgue’s dominated convergence theorem therefore demonstrates
that

lim sup
N→∞

(∫

[a,b]d
❊
[
|Φ(ΨN

x,W)− Φ((Xx
t)t∈[0,T])|

]
dx

)

= 0. (72)

In addition, observe that (69), (48), and (53) prove that for all p ∈ (0,∞) it holds that

sup
N∈N

sup
x∈[a,b]d

❊
[
|Φ(ΨN

x,W)|p
]
<∞. (73)

Next observe that (71) and the fact that ξ and W are independent imply that

❊
[
Φ((❳t)t∈[0,T])

]
= lim

N→∞
❊

[

Φ
(
ΨN

ξ,W

)]

= lim
N→∞

[∫

Ω

Φ
(

ΨN
ξ(ω),(Wt(ω))t∈[0,T]

)

P(dω)

]

= lim
N→∞

[∫

[a,b]d×C([0,T],Rd)

Φ
(
ΨN

x,W

) (
(ξ,W)(P)

)
(dx, dw)

]

= lim
N→∞

[∫

[a,b]d×C([0,T],Rd)

Φ
(
ΨN

x,w

) (
(ξ(P))⊗ (W (P))

)
(dx, dw)

]

.

(74)

Combining Fubini’s theorem, (72), and (73) with Lebesgue’s dominated convergence the-
orem therefore assures that

❊
[
Φ((❳t)t∈[0,T])

]
= lim

N→∞

[∫

[a,b]d

(∫

C([0,T],Rd)

Φ
(
ΨN

x,w

)
(W (P))(dw)

)

(ξ(P))(dx)

]

= lim
N→∞

[∫

[a,b]d

(∫

Ω

Φ
(
ΨN

x,w

)
P(dw)

)

(ξ(P))(dx)

]

= lim
N→∞

[∫

[a,b]d
❊

[

Φ
(
ΨN

x,W

)]

(ξ(P))(dx)

]

=

∫

[a,b]d
lim

N→∞
❊

[

Φ
(
ΨN

x,W

)]

(ξ(P))(dx)

=

∫

[a,b]d
❊
[
Φ((Xx

t)t∈[0,T])
]
(ξ(P))(dx)

=
1

(b− a)d

(∫

[a,b]d
❊
[
Φ((Xx

t)t∈[0,T])
]
dx

)

.

(75)

This establishes item (v). The proof of Lemma 2.6 is thus completed.

Proposition 2.7. Let d,m ∈ N, T ∈ (0,∞), a ∈ R, b ∈ (a,∞), let µ : Rd → R
d and

σ : Rd → R
d×m be globally Lipschitz continuous functions, let ϕ : Rd → R be a function,

let u = (u(t, x))(t,x)∈[0,T]×Rd ∈ C1,2([0, T] × R
d,R) be a function with at most polynomially

17

growing partial derivatives which satisfies for every t ∈ [0, T], x ∈ R
d that u(0, x) = ϕ(x)

and
∂u
∂t
(t, x) = 1

2
TraceRd

(
σ(x)[σ(x)]∗(Hessx u)(t, x)

)
+ 〈µ(x), (∇xu)(t, x)〉Rd , (76)

let (Ω,F ,P) be a probability space with a normal filtration (Ft)t∈[0,T], let W : [0, T]× Ω →
R

m be a standard (Ft)t∈[0,T]-Brownian motion, let ξ : Ω → [a, b]d be a continuous uniformly
distributed F0/B([a, b]d)-measurable random variable, and let ❳ = (❳t)t∈[0,T] : [0, T]×Ω →
R

d be an (Ft)t∈[0,T]-adapted stochastic process with continuous sample paths which satisfies
that for every t ∈ [0, T] it holds P-a.s. that

❳t = ξ +

∫ t

0

µ(❳s) ds+

∫ t

0

σ(❳s) dWs. (77)

Then

(i) it holds that the function ϕ : Rd → R is twice continuously differentiable with at most
polynomially growing derivatives,

(ii) it holds that there exists a unique continuous function U : [a, b]d → R such that

❊
[
|ϕ(❳T)− U(ξ)|2

]
= inf

v∈C([a,b]d,R)
❊
[
|ϕ(❳T)− v(ξ)|2

]
, (78)

and

(iii) it holds for every x ∈ [a, b]d that U(x) = u(T, x).

Proof of Proposition 2.7. Throughout this proof let Xx = (Xx
t)t∈[0,T] : [0, T] × Ω → R

d,
x ∈ [a, b]d, be (Ft)t∈[0,T]-adapted stochastic processes with continuous sample paths

a) which satisfy that for every t ∈ [0, T], x ∈ [a, b]d it holds P-a.s. that

Xx
t = x+

∫ t

0

µ(Xx
s) ds+

∫ t

0

σ(Xx
s) dWs (79)

and

b) which satisfy that for every ω ∈ Ω it holds that the function [a, b]d ∋ x 7→ Xx
T (ω) ∈ R

d

is continuous (cf., for example, Cox et al. [11, Theorem 3.5] and item (ii) in Lemma 2.6).

Note that the assumption that ∀ x ∈ R
d : u(0, x) = ϕ(x) and the assumption that u ∈

C1,2([0, T]×R
d,R) has at most polynomially growing partial derivatives establish item (i).

Next note that item (i) and the fact that for every p ∈ (0,∞), x ∈ [a, b]d it holds that

sup
t∈[0,T]

❊[‖Xx
t ‖pRd] <∞ (80)

18

assure that for every x ∈ [a, b]d it holds that

❊
[
|ϕ(Xx

T)|2] <∞. (81)

Item (i), the assumption that for every ω ∈ Ω it holds that the function [a, b]d ∋ x 7→
Xx

T (ω) ∈ R
d is continuous, and, e.g., Hutzenthaler et al. [35, Proposition 4.5] hence ensure

that the function
[a, b]d ∋ x 7→ ❊[ϕ(Xx

T)] ∈ R (82)

is continuous. In the next step we combine the fact that for every x ∈ [a, b]d it holds that
the function Ω ∋ ω 7→ ϕ(Xx

T (ω)) ∈ R is F/B(R)-measurable, the fact that for every ω ∈ Ω
it holds that the function [a, b]d ∋ x 7→ ϕ(Xx

T (ω)) ∈ R is continuous, and Lemma 2.4 to
obtain that the function

[a, b]d × Ω ∋ (x, ω) 7→ ϕ(Xx
T (ω)) ∈ R (83)

is (B([a, b]d) ⊗ F)/B(R)-measurable. Combining this, (81), (82), and Proposition 2.2
demonstrates

A) that there exists a unique continuous function U : [a, b]d → R which satisfies that

∫

[a,b]d
❊
[
|ϕ(Xx

T)− U(x)|2
]
dx = inf

v∈C([a,b]d,R)

(∫

[a,b]d
❊
[
|ϕ(Xx

T)− v(x)|2
]
dx

)

(84)

and

B) that it holds for every x ∈ [a, b]d that

U(x) = ❊[ϕ(Xx
T)]. (85)

Next note that for every continuous function V : [a, b]d → R it holds that

sup
x∈[a,b]d

|V (x)| <∞. (86)

Item (i) hence implies that for every continuous function V : [a, b]d → R it holds that

C([0, T],Rd) ∋ (zt)t∈[0,T] 7→ |ϕ(zT)− V (z0)|2 ∈ R (87)

is an at most polynomially growing continuous function. Combining Lemma 2.6 (with
Φ = (C([0, T],Rd) ∋ (zt)t∈[0,T] 7→ |ϕ(zT) − V (z0)|2 ∈ R) for V ∈ C([a, b]d,Rd) in the
notation of Lemma 2.6), (77), item (i), and (79) hence ensures that for every continuous
function V : [a, b]d → R it holds that

❊
[
|ϕ(❳T)− V (ξ)|2

]
=

1

(b− a)d

[∫

[a,b]d
❊
[
|ϕ(Xx

T)− V (x)|2
]
dx

]

. (88)

19

Hence, we obtain that for every continuous function V : [a, b]d → R with ❊[|ϕ(❳T) −
V (ξ)|2] = infv∈C([a,b]d,R)❊[|ϕ(❳T)− v(ξ)|2] it holds that

∫

[a,b]d
❊
[
|ϕ(Xx

T)− V (x)|2
]
dx

= (b− a)d
(

1

(b− a)d

[∫

[a,b]d
❊
[
|ϕ(Xx

T)− V (x)|2
]
dx

])

= (b− a)d
(
❊
[
|ϕ(❳T)− V (ξ)|2

])

= (b− a)d
(

inf
v∈C([a,b]d,R)

❊
[
|ϕ(❳T)− v(ξ)|2

]
)

= (b− a)d
(

inf
v∈C([a,b]d,R)

(
1

(b− a)d

[∫

[a,b]d
❊
[
|ϕ(Xx

T)− v(x)|2
]
dx

]))

= inf
v∈C([a,b]d,R)

[∫

[a,b]d
❊
[
|ϕ(Xx

T)− v(x)|2
]
dx

]

.

(89)

Combining this with (84) proves that for every continuous function V : [a, b]d → R with
❊[|ϕ(❳T)− V (ξ)|2] = infv∈C([a,b]d,R)❊[|ϕ(❳T)− v(ξ)|2] it holds that

U = V. (90)

Next observe that (88) and (84) demonstrate that

❊
[
|ϕ(❳T)− U(ξ)|2

]
=

1

(b− a)d

(∫

[a,b]d
❊
[
|ϕ(Xx

T)− U(x)|2
]
dx

)

= inf
v∈C([a,b]d,R)

[
1

(b− a)d

(∫

[a,b]d
❊
[
|ϕ(Xx

T)− v(x)|2
]
dx

)]

= inf
v∈C([a,b]d,R)

❊
[
|ϕ(❳T)− v(ξ)|2

]
.

(91)

Combining this with (90) proves item (ii). Next note that (76), (85), and the Feynman-
Kac formula (cf., for example, Hairer et al. [22, Corollary 4.17]) imply that for every
x ∈ [a, b]d it holds that U(x) = ❊[ϕ(Xx

T)] = u(T, x). This establishes item (iii). The proof
of Proposition 2.7 is thus completed.

In the next step we use Proposition 2.7 to obtain a minimization problem which is
uniquely solved by the function [a, b]d ∋ x 7→ u(T, x) ∈ R. More specifically, let ξ : Ω →
[a, b]d be a continuously uniformly distributed F0/B([a, b]d)-measurable random variable,
and let ❳ : [0, T] × Ω → R

d be an (Ft)t∈[0,T]-adapted stochastic process with continuous
sample paths which satisfies that for every t ∈ [0, T] it holds P-a.s. that

❳t = ξ +

∫ t

0

µ(❳s) ds+

∫ t

0

σ(❳s) dWs. (92)

20

Proposition 2.7 then guarantees that the function [a, b]d ∋ x 7→ u(T, x) ∈ R is the unique
global minimizer of the function

C([a, b]d,R) ∋ v 7→ ❊
[
|ϕ(❳T)− v(ξ)|2

]
∈ R. (93)

In the following two subsections we derive an approximated minimization problem by
discretizing the stochastic process ❳ : [0, T] × Ω → R

d (see Subsection 2.4 below) and by
employing a deep neural network approximation for the function R

d ∋ x 7→ u(T, x) ∈ R

(see Subsection 2.5 below).

2.4 Discretization of the stochastic differential equation

In this subsection we use the Euler-Maruyama scheme (cf., for example, Kloeden & Platen [41]
and Maruyama [44]) to temporally discretize the solution process ❳ of the SDE (92).

More specifically, let N ∈ N, let t0, t1, . . . , tN ∈ [0,∞) be real numbers which satisfy
that

0 = t0 < t1 < . . . < tN = T. (94)

Note that (92) implies that for every n ∈ {0, 1, . . . , N − 1} it holds P-a.s. that

❳tn+1 = ❳tn +

∫ tn+1

tn

µ(❳s) ds+

∫ tn+1

tn

σ(❳s) dWs. (95)

This suggests that for sufficiently small mesh size supn∈{0,1,...,N−1}(tn+1 − tn) it holds that

❳tn+1 ≈ ❳tn + µ(❳tn) (tn+1 − tn) + σ(❳tn) (Wtn+1 −Wtn). (96)

Let X : {0, 1, . . . , N} × Ω → R
d be the stochastic process which satisfies for every n ∈

{0, 1, . . . , N − 1} that X0 = ξ and

Xn+1 = Xn + µ(Xn) (tn+1 − tn) + σ(Xn) (Wtn+1 −Wtn). (97)

Observe that (96) and (97) suggest, in turn, that for every n ∈ {0, 1, 2, . . . , N} it holds
that

Xn ≈ ❳tn (98)

(cf., for example, Theorem 2.8 below for a strong convergence result for the Euler-Maruyama
scheme).

Theorem 2.8 (Strong convergence rate for the Euler-Maruyama scheme). Let T ∈ (0,∞),
d ∈ N, p ∈ [2,∞), let (Ω,F ,P) be a probability space with a normal filtration (Ft)t∈[0,T], let
W : [0, T]×Ω → R

d be a standard (Ft)t∈[0,T]-Brownian motion, let ξ : Ω → R
d be a random

variable which satisfies that ❊[‖ξ‖p
Rd] <∞, let µ : Rd → R

d and σ : Rd → R
d×d be Lipschitz

21

continuous functions, let ❳ : [0, T] × Ω → R
d be an (Ft)t∈[0,T]-adapted stochastic process

with continuous sample paths which satisfies that for every t ∈ [0, T] it holds P-a.s. that

❳t = ξ +

∫ t

0

µ(❳s) ds+

∫ t

0

σ(❳s) dWs, (99)

for every N ∈ N let tN0 , t
N
1 , . . . , t

N
N ∈ [0, T] be real numbers which satisfy that

0 = tN0 < tN1 < . . . < tNN = T, (100)

and for every N ∈ N let XN : {0, 1, . . . , N} × Ω → R
d be the stochastic process which

satisfies for every n ∈ {0, 1, . . . , N − 1} that XN
0 = ξ0 and

XN
n+1 = XN

n + µ
(
XN

n

)
(tNn+1 − tNn) + σ

(
XN

n

)(
WtNn+1

−WtNn

)
. (101)

Then there exists a real number C ∈ (0,∞) such that for every N ∈ N it holds that

sup
n∈{0,1,...,N}

(

❊
[
‖❳tNn

−XN
n ‖p

Rd

])1/p

≤ C

[

max
n∈{0,1,...,N−1}

|tn+1 − tn|
]1/2

. (102)

The proof of Theorem 2.4 is well-known in the literature (cf., for instance, Kloeden &
Platen [41], Milstein [46], Hofmann, Müller-Gronbach, & Ritter [30], Müller-Gronbach &
Ritter [49], and the references mentioned therein).

2.5 Deep artificial neural network approximations

In this subsection we employ suitable approximations for the solution R
d ∋ x 7→ u(T, x) ∈

R of the PDE (1) at time T .
More specifically, let ν ∈ N and let U = (U(θ, x))(θ,x)∈Rν×Rd : Rν × R

d → R be a
continuous function. For every suitable θ ∈ R

ν and every x ∈ [a, b]d we think of U(θ, x) ∈ R

as an appropriate approximation

U(θ, x) ≈ u(T, x) (103)

of u(T, x). We suggest to choose the function U : Rν × R
d → R as a deep neural network

(cf., for example, Bishop [6]). For instance, let Ld : R
d → R

d be the function which satisfies
for every x = (x1, x2, . . . , xd) ∈ R

d that

Ld(x) =

(
exp(x1)

exp(x1) + 1
,

exp(x2)

exp(x2) + 1
, . . . ,

exp(xd)

exp(xd) + 1

)

(104)

(multidimensional version of the standard logistic function), for every k, l ∈ N, v ∈ N0 =
{0} ∪ N, θ = (θ1, . . . , θν) ∈ R

ν with v + l(k + 1) ≤ ν let Aθ,v
k,l : R

k → R
l be the function

22

which satisfies for every x = (x1, . . . , xk) ∈ R
k that

Aθ,v
k,l (x) =










θv+1 θv+2 . . . θv+k

θv+k+1 θv+k+2 . . . θv+2k

θv+2k+1 θv+2k+2 . . . θv+3k
...

...
...

...
θv+(l−1)k+1 θv+(l−1)k+2 . . . θv+lk



















x1
x2
x3
...
xk










+










θv+kl+1

θv+kl+2

θv+kl+3
...

θv+kl+l










, (105)

let s ∈ {3, 4, 5, 6, . . .}, assume that (s − 1)d(d + 1) + d + 1 ≤ ν, and let U : Rν × R
d → R

be the function which satisfies for every θ ∈ R
ν , x ∈ R

d that

U(θ, x) =
(
A

θ,(s−1)d(d+1)
d,1 ◦ Ld ◦ Aθ,(s−2)d(d+1)

d,d ◦ . . . ◦ Ld ◦ Aθ,d(d+1)
d,d ◦ Ld ◦ Aθ,0

d,d

)
(x). (106)

The function U : Rν×R
d → R in (106) describes an artificial neural network with s+1 layers

(1 input layer with d neurons, s− 1 hidden layers with d neurons each, and 1 output layer
with d neurons) and standard logistic functions as activation functions (cf., for instance,
Bishop [6]).

2.6 Stochastic gradient descent-type minimization

As described in Subsection 2.5 for every suitable θ ∈ R
ν and every x ∈ [a, b]d we think of

U(θ, x) ∈ R as an appropriate approximation of u(T, x) ∈ R. In this subsection we intend
to find a suitable θ ∈ R

ν as an approximate minimizer of the function

R
ν ∋ θ 7→ ❊

[
|ϕ(XN)− U(θ, ξ)|2

]
∈ R. (107)

To be more specific, we intend to find an approximate minimizer of the function in
(107) through a stochastic gradient descent-type minimization algorithm (cf., for instance,
Ruder [53, Section 4], Jentzen et al. [37], and the references mentioned therein). For this we
approximate the derivative of the function in (107) by means of the Monte Carlo method.

More precisely, let ξ(m) : Ω → [a, b]d, m ∈ N0, be independent continuously uniformly
distributed F0/B([a, b]d)-measurable random variables, let W (m) : [0, T] × Ω → R

d, m ∈
N0, be independent standard (Ft)t∈[0,T]-Brownian motions, for every m ∈ N0 let X (m) =

(X (m)
n)n∈{0,1,...,N} : {0, 1, . . . , N}×Ω → R

d be the stochastic process which satisfies for every

n ∈ {0, 1, . . . , N − 1} that X (m)
0 = ξ(m) and

X (m)
n+1 = X (m)

n + µ(X (m)
n) (tn+1 − tn) + σ(X (m)

n) (W
(m)
tn+1

−W
(m)
tn), (108)

let γ ∈ (0,∞), and let Θ: N0 × Ω → R
ν be a stochastic process which satisfies for every

m ∈ N0 that

Θm+1 = Θm − 2γ ·
(
U(Θm, ξ

(m))− ϕ(X (m)
N)

)
· (∇θU)(Θm, ξ

(m)). (109)

23

Under appropriate hypotheses we think for every sufficiently large m ∈ N of the random
variable Θm : Ω → R

ν as a suitable approximation of a local minimum point of the func-
tion (107) and we think for every sufficiently large m ∈ N of the random function [a, b]d ∋
x 7→ U(Θn, x) ∈ R as a suitable approximation of the function [a, b]d ∋ x 7→ u(T, x) ∈ R.

2.7 Description of the algorithm in a special case

In this subsection we give a description of the proposed approximation method in a special
case, that is, we describe the proposed approximation method in the specific case where a
particular neural network approximation is chosen and where the plain-vanilla stochastic
gradient descent method with a constant learning rate is the employed stochastic min-
imization algorithm (cf. (109) above). For a more general description of the proposed
approximation method we refer the reader to Subsection 2.8 below.

Framework 2.9. Let T, γ ∈ (0,∞), a ∈ R, b ∈ (a,∞), d,N ∈ N, s ∈ {3, 4, 5, . . .}, let
ν = sd(d+ 1), let t0, t1, . . . , tN ∈ [0, T] be real numbers with

0 = t0 < t1 < . . . < tN = T, (110)

let µ : Rd → R
d and σ : Rd → R

d×d be continuous functions, let (Ω,F ,P, (Ft)t∈[0,T]) be a fil-
tered probability space, let ξ(m) : Ω → [a, b]d, m ∈ N0, be independent continuously uniformly
distributed F0/B([a, b]d)-measurable random variables, let W (m) : [0, T]×Ω → R

d, m ∈ N0,
be i.i.d. standard (Ft)t∈[0,T]-Brownian motions, for every m ∈ N0 let X (m) : {0, 1, . . . , N}×
Ω → R

d be the stochastic process which satisfies for every n ∈ {0, 1, . . . , N − 1} that

X (m)
0 = ξ(m) and

X (m)
n+1 = X (m)

n + µ(X (m)
n) (tn+1 − tn) + σ(X (m)

n) (W
(m)
tn+1

−W
(m)
tn), (111)

let Ld : R
d → R

d be the function which satisfies for every x = (x1, x2, . . . , xd) ∈ R
d that

Ld(x) =

(
exp(x1)

exp(x1) + 1
,

exp(x2)

exp(x2) + 1
, . . . ,

exp(xd)

exp(xd) + 1

)

, (112)

for every k, l ∈ N, v ∈ N0 = {0} ∪ N, θ = (θ1, . . . , θν) ∈ R
ν with v + l(k + 1) ≤ ν let

Aθ,v
k,l : R

k → R
l be the function which satisfies for every x = (x1, . . . , xk) ∈ R

k that

Aθ,v
k,l (x) =










θv+1 θv+2 . . . θv+k

θv+k+1 θv+k+2 . . . θv+2k

θv+2k+1 θv+2k+2 . . . θv+3k
...

...
...

...
θv+(l−1)k+1 θv+(l−1)k+2 . . . θv+lk



















x1
x2
x3
...
xk










+










θv+kl+1

θv+kl+2

θv+kl+3
...

θv+kl+l










, (113)

24

let U : Rν × R
d → R be the function which satisfies for every θ ∈ R

ν, x ∈ R
d that

U(θ, x) =
(
A

θ,(s−1)d(d+1)
d,1 ◦ Ld ◦ Aθ,(s−2)d(d+1)

d,d ◦ . . . ◦ Ld ◦ Aθ,d(d+1)
d,d ◦ Ld ◦ Aθ,0

d,d

)
(x), (114)

and let Θ: N0 × Ω → R
ν be a stochastic process which satisfies for every m ∈ N0 that

Θm+1 = Θm − 2γ ·
(
U(Θm, ξ

(m))− ϕ(X (m)
N)

)
· (∇θU)(Θm, ξ

(m)) (115)

Under appropriate hypotheses we think for every sufficiently large m ∈ N and every x ∈
[a, b]d of the random variable U(Θm, x) : Ω → R in Framework 2.9 as a suitable approxima-
tion U(Θm, x) ≈ u(T, x) of u(T, x) ∈ R where u = u(t, x)(t,x)∈[0,T]×Rd ∈ C1,2([0, T]× R

d,R)
is a function with at most polynomially growing partial derivatives which satisfies for every
t ∈ [0, T], x ∈ R

d that u(0, x) = ϕ(x) and

∂u
∂t
(t, x) = 1

2
TraceRd

(
σ(x)[σ(x)]∗(Hessx u)(t, x)

)
+ 〈µ(x), (∇xu)(t, x)〉Rd (116)

(cf. (1) above).

2.8 Description of the algorithm in the general case

In this subsection we provide a general framework which covers the approximation method
derived in Subsections 2.1–2.6 above and which allows, in addition, to incorporate other
minimization algorithms (cf., for example, Kingma & Ba [38], Ruder [53], E et al. [14],
Han et al. [24], and Beck et al. [3]) than just the plain vanilla stochastic gradient descent
method. The proposed approximation algorithm is an extension of the approximation
algorithm in E et al. [14], Han et al. [24], and Beck et al. [3] in the special case of linear
Kolmogorov partial differential equations.

Framework 2.10. Let T ∈ (0,∞), N, d, ̺, ν, ς ∈ N, let H : [0, T]2 × R
d × R

d → R
d,

ϕ : Rd → R be functions, let (Ω,F ,P, (Ft)t∈[0,T]) be a filtered probability space, letWm,j : [0, T]×
Ω → R

d, m ∈ N0, j ∈ N, be independent standard (Ft)t∈[0,T]-Brownian motions on
(Ω,F ,P), let ξm,j : Ω → R

d, m ∈ N0, j ∈ N, be i.i.d. F0/B(Rd)-measurable random
variables, let t0, t1, . . . , tN ∈ [0, T] be real numbers with 0 = t0 < t1 < . . . < tN = T , for
every θ ∈ R

ν, j ∈ N, s ∈ R
ς let Uθ,j,s : Rd → R be a function, for every m ∈ N0, j ∈ N

let Xm,j = (Xm,j
n)n∈{0,1,...,N} : {0, 1, . . . , N}×Ω → R

d be a stochastic process which satisfies

for every n ∈ {0, 1, . . . , N − 1} that Xm,j
0 = ξm,j and

Xm,j
n+1 = H(tn, tn+1,Xm,j

n ,Wm,j
tn+1

−Wm,j
tn), (117)

let (Jm)m∈N0 ⊆ N be a sequence, for every m ∈ N0, s ∈ R
ς let φm,s : Rν × Ω → R be the

function which satisfies for every (θ, ω) ∈ R
ν × Ω that

φm,s(θ, ω) =
1

Jm

Jm∑

j=1

[
U

θ,j,s
(
ξm,j(ω))− ϕ

(
Xm,j

N (ω)
)]2

, (118)

25

for every m ∈ N0, s ∈ R
ς let Ψm,s : Rν × Ω → R

ν be a function which satisfies for every
ω ∈ Ω, θ ∈ {η ∈ R

ν : φm,s(·, ω) : Rν → R is differentiable at η} that

Ψm,s(θ, ω) = (∇θφ
m,s)(θ, ω), (119)

let S : Rς × R
ν × (Rd)N → R

ς be a function, for every m ∈ N0 let Φm : R̺ → R
ν and

Ψm : R̺×R
ν → R

̺ be functions, let Θ: N0×Ω → R
ν, S : N0×Ω → R

ς , and Ξ: N0×Ω → R
̺

be stochastic processes which satisfy for every m ∈ N0 that

Sm+1 = S
(
Sm,Θm, (Xm,i

N)i∈N
)
, Ξm+1 = Ψm(Ξm,Ψ

m,Sm+1(Θm)), (120)

and Θm+1 = Θm − Φm(Ξm+1). (121)

Under appropriate hypotheses we think for every sufficiently large m ∈ N and every
x ∈ [a, b]d of the random variable U

Θm,1,Sm(x) : Ω → R in Framework 2.10 as a suit-
able approximation U

Θm,1,Sm(x) ≈ u(T, x) of u(T, x) ∈ R where u = u(t, x)(t,x)∈[0,T]×Rd ∈
C1,2([0, T] × R

d,R) is a function with at most polynomially growing partial derivatives
which satisfies for every t ∈ [0, T], x ∈ R

d that u(0, x) = ϕ(x) and

∂u
∂t
(t, x) = 1

2
TraceRd

(
σ(x)[σ(x)]∗(Hessx u)(t, x)

)
+ 〈µ(x), (∇xu)(t, x)〉Rd , (122)

where µ : Rd → R
d and σ : Rd → R

d×d are sufficiently regular functions (cf. (1) above).

3 Examples

In this section we test the proposed approximation algorithm (see Section 2 above) in the
case of several examples of SDEs and Kolmogorov PDEs, respectively. In particular, in this
section we apply the proposed approximation algorithm to the heat equation (cf. Subsec-
tion 3.2 below), to independent geometric Brownian motions (cf. Subsection 3.3 below), to
the Black-Scholes model (cf. Subsection 3.4 below), to stochastic Lorenz equations (cf. Sub-
section 3.5 below), and to the Heston model (cf. Subsection 3.6 below). In the case of each
of the examples below we employ the general approximation algorithm in Framework 2.10
above in conjunction with the Adam optimizer (cf. Kingma & Ba [38]) with mini-batches
of size 8192 in each iteration step (see Subsection 3.1 below for a precise description).
Moreover, we employ a fully-connected feedforward neural network with one input layer,
two hidden layers, and one one-dimensional output layer in our implementations in the
case of each of these examples. We also use batch normalization (cf. Ioffe & Szegedy [36])
just before the first linear transformation, just before each of the two nonlinear activation
functions in front of the hidden layers as well as just after the last linear transformation.
For the two nonlinear activation functions we employ the multidimensional version of the
function R ∋ x 7→ tanh(x) ∈ (−1, 1). All weights in the neural network are initialized
by means of the Xavier initialization (cf. Glorot & Bengio [18]). All computations were

26

performed in single precision (float32) on a NVIDIA GeForce GTX 1080 GPU with 1974
MHz core clock and 8 GB GDDR5X memory with 1809.5 MHz clock rate. The underlying
system consisted of an Intel Core i7-6800K CPU with 64 GB DDR4-2133 memory running
Tensorflow 1.5 on Ubuntu 16.04.

3.1 Setting

Framework 3.1. Assume Framework 2.10, let ε = 10−8, β1 =
9
10
, β1 =

999
1000

, (γm)m∈N0 ⊆
(0,∞), let Powr : R

ν → R
ν, r ∈ (0,∞), be the functions which satisfy for every r ∈ (0,∞),

x = (x1, . . . , xν) ∈ R
ν that

Powr(x) = (|x1|r, . . . , |xν |r), (123)

assume for every m ∈ N0, i ∈ {0, 1, . . . , N} that Jm = 8192, ti =
iT
N
, ̺ = 2ν, T = 1, γm =

10−3
✶[0,250000](m) + 10−4

✶(250000,500000](m) + 10−5
✶(500000,∞)(m), assume for every m ∈ N0,

x = (x1, . . . , xν), y = (y1, . . . , yν), η = (η1, . . . , ην) ∈ R
ν that

Ψm(x, y, η) = (β1x+ (1− β1)η, β2y + (1− β2) Pow2(η)) (124)

and

ψm(x, y) =

([√
|y1|

1−(β2)m
+ ε

]−1
γmx1

1− (β1)m
, . . . ,

[√
|yν |

1−(β2)m
+ ε

]−1
γmxν

1− (β1)m

)

. (125)

Equations (124) and (125) in Framework 3.1 describe the Adam optimizer (cf. Kingma
& Ba [38], e.g., E et al. [24, (32)–(33) in Section 4.2 and (90)–(91) in Section 5.2], and line
84 in Python code 1 in Section 4 below).

3.2 Heat equation

In this subsection we apply the proposed approximation algorithm to the heat equation
(see (126) below).

Assume Framework 2.10, assume for every s, t ∈ [0, T], x, w ∈ R
d, m ∈ N0 that N = 1,

d = 100, ν = d(2d) + (2d)2 +2d = 2d(3d+1), ϕ(x) = ‖x‖2
Rd , H(s, t, x, w) = x+

√
2 IdRd w,

assume that ξ0,1 : Ω → R
d is continuous uniformly distributed on [0, 1]d, and let u =

(u(t, x))(t,x)∈[0,T]×Rd ∈ C1,2([0, T] × R
d,R) be an at most polynomially growing function

which satisfies for every t ∈ [0, T], x ∈ R
d that u(0, x) = ϕ(x) and

(∂u
∂t
)(t, x) = (∆xu)(t, x). (126)

Combining, e.g., Lemma 3.2 below with, e.g., Hairer et al. [22, Corollary 4.17 and Remark
4.1] shows that for every t ∈ [0, T], x ∈ R

d it holds that

u(t, x) = ‖x‖2
Rd + t d. (127)

27

Table 1 approximately presents the relative L1(λ[0,1]d ;R)-approximation error associated to
(UΘm,1,Sm(x))x∈[0,1]d (see (128) below), the relative L

2(λ[0,1]d ;R)-approximation error associ-
ated to (UΘm,1,Sm(x))x∈[0,1]d (see (129) below), and the relative L∞(λ[0,1]d ;R)-approximation
error associated to (UΘm,1,Sm(x))x∈[0,1]d (see (130) below) against m ∈ {0, 10000, 50000,
100000, 150000, 200000, 500000, 750000} (cf. Python code 2 in Subsection 4.2 below). Fig-
ure 1 approximately depicts the relative L1(λ[0,1]d ;R)-approximation error associated to
(UΘm,1,Sm(x))x∈[0,1]d (see (128) below), the relative L

2(λ[0,1]d ;R)-approximation error associ-
ated to (UΘm,1,Sm(x))x∈[0,1]d (see (129) below), and the relative L∞(λ[0,1]d ;R)-approximation
error associated to (UΘm,1,Sm(x))x∈[0,1]d (see (130) below) against m ∈ {0, 100, 200, 300, . . . ,
299800, 299900, 300000} (cf. Python code 2 in Subsection 4.2 below). In our numerical
simulations for Table 1 and Figure 1 we calculated the exact solution of the PDE (126)
by means of Lemma 3.2 below (see (127) above), we approximately calculated the relative
L1(λ[0,1]d ;R)-approximation error

∫

[0,1]d

∣
∣
∣
∣

u(T, x)− U
Θm,1,Sm(x)

u(T, x)

∣
∣
∣
∣
dx (128)

form ∈ {0, 10000, 50000, 100000, 150000, 200000, 500000, 750000} by means of Monte Carlo
approximations with 10240000 samples, we approximately calculated the relative L2(λ[0,1]d ;R)-
approximation error

√
∫

[0,1]d

∣
∣
∣
∣

u(T, x)− UΘm,1,Sm(x)

u(T, x)

∣
∣
∣
∣

2

dx (129)

form ∈ {0, 10000, 50000, 100000, 150000, 200000, 500000, 750000} by means of Monte Carlo
approximations with 10240000 samples, and we approximately calculated the relative
L∞(λ[0,1]d ;R)-approximation error

sup
x∈[0,1]d

∣
∣
∣
∣

u(T, x)− U
Θm,1,Sm(x)

u(T, x)

∣
∣
∣
∣

(130)

form ∈ {0, 10000, 50000, 100000, 150000, 200000, 500000, 750000} by means of Monte Carlo
approximations with 10240000 samples (see Lemma 3.5 below). Table 2 approximately
presents the relative L1(P;L1(λ[0,1]d ;R))-approximation error associated to (UΘm,1,Sm(x))x∈[0,1]d

(see (131) below), the relative L2(P;L2(λ[0,1]d ;R))-approximation error associated to (UΘm,1,Sm(x))x∈[0,1]d
(see (132) below), and the relative L2(P;L∞(λ[0,1]d ;R))-approximation error associated to

(UΘm,1,Sm(x))x∈[0,1]d (see (133) below), againstm ∈ {0, 10000, 50000, 100000, 150000, 200000,
500000, 750000} (cf. Python code 2 in Subsection 4.2 below). In our numerical simula-
tions for Table 2 we calculated the exact solution of the PDE (126) by means of Lemma 3.2
below (see (127) above), we approximately calculated the relative L1(P;L1(λ[0,1]d ;R))-
approximation error

❊

[
∫

[0,1]d

∣
∣
∣
∣

u(T, x)− U
Θm,1,Sm(x)

u(T, x)

∣
∣
∣
∣
dx

]

(131)

28

form ∈ {0, 10000, 50000, 100000, 150000, 200000, 500000, 750000} by means of Monte Carlo
approximations with 10240000 samples for the Lebesgue integral and 5 samples for the
expectation, we approximately calculated the relative L2(P;L2(λ[0,1]d ;R))-approximation
error

(

❊

[
∫

[0,1]d

∣
∣
∣
∣

u(T, x)− U
Θm,1,Sm(x)

u(T, x)

∣
∣
∣
∣

2

dx

])1/2

(132)

form ∈ {0, 10000, 50000, 100000, 150000, 200000, 500000, 750000} by means of Monte Carlo
approximations with 10240000 samples for the Lebesgue integral and 5 samples for the ex-
pectation, and we approximately calculated the relative L2(P;L∞(λ[0,1]d ;R))-approximation
error

(

❊

[

sup
x∈[0,1]d

∣
∣
∣
∣

u(T, x)− U
Θm,1,Sm(x)

u(T, x)

∣
∣
∣
∣

2
])1/2

(133)

form ∈ {0, 10000, 50000, 100000, 150000, 200000, 500000, 750000} by means of Monte Carlo
approximations with 10240000 samples for the supremum (see Lemma 3.5 below) and 5
samples for the expectation. The following elementary result, Lemma 3.2 below, specifies
the explicit solution of the PDE (126) above (cf. (127) above). For completeness we also
provide here a proof for Lemma 3.2.

Number
of steps

Relative
L1(λ[0,1]d ;R)-error

Relative
L2(λ[0,1]d ;R)-error

Relative
L∞(λ[0,1]d ;R)-error

Runtime
in seconds

0 0.998253 0.998254 1.003524 0.5
10000 0.957464 0.957536 0.993083 44.6
50000 0.786743 0.786806 0.828184 220.8
100000 0.574013 0.574060 0.605283 440.8
150000 0.361564 0.361594 0.384105 661.0
200000 0.150346 0.150362 0.164140 880.8
500000 0.000882 0.001112 0.007360 2200.7
750000 0.000822 0.001036 0.007423 3300.6

Table 1: Approximative presentations of the relative approximation errors in (128)–(130)
for the heat equation in (126).

29

0 50000 100000 150000 200000 250000 300000

Number of iterations

0.0

0.2

0.4

0.6

0.8

1.0

1.2

E
st

im
a
te

d
 r

e
la

ti
v
e
 e

rr
o
rs

L1([0, 1]d;)
L2([0, 1]d;)
L ([0, 1]d;)

Figure 1: Approximative plots of the relative approximation errors in (128)–(130) for the
heat equation in (126).

30

Number
of

steps

Relative
L1(P;L1(λ[0,1]d ;R))-

error

Relative
L2(P;L2(λ[0,1]d ;R))-

error

Relative
L2(P;L∞(λ[0,1]d ;R))-

error

Mean
runtime

in
seconds

0 1.000310 1.000311 1.005674 0.6
10000 0.957481 0.957554 0.993097 44.7
50000 0.786628 0.786690 0.828816 220.4
100000 0.573867 0.573914 0.605587 440.5
150000 0.361338 0.361369 0.382967 660.8
200000 0.001387 0.001741 0.010896 880.9
500000 0.000883 0.001112 0.008017 2201.0
750000 0.000822 0.001038 0.007547 3300.4

Table 2: Approximative presentations of the relative approximation errors in (131)–(133)
for the heat equation in (126).

Lemma 3.2. Let T ∈ (0,∞), d ∈ N, let C ∈ R
d×d be a strictly positive and symmetric

matrix, and let u : [0, T]×R
d → R be the function which satisfies for every (t, x) ∈ [0, T]×R

d

that

u(t, x) = ‖x‖2
Rd + tTraceRd(C). (134)

Then

(i) it holds that u ∈ C∞([0, T]× R
d,R) is at most polynomially growing and

(ii) it holds for every t ∈ [0, T], x ∈ R
d that

(∂u
∂t
)(t, x) = 1

2
TraceRd

(
C(Hessx u)(t, x)

)
. (135)

Proof of Lemma 3.2. First, note that u is a polynomial. This establishes item (i). More-
over, note that for every (t, x) ∈ [0, T]× R

d it holds that

(∂u
∂t
)(t, x) = TraceRd(C), (∇xu)(t, x) = 2x, (136)

and (Hessx u)(t, x) =
(

∂
∂x
(∇xu)

)
(t, x) = 2 IdRd . (137)

Hence, we obtain for every (t, x) ∈ [0, T]× R
d that

(∂u
∂t
)(t, x)− 1

2
TraceRd

(
C(Hessx u)(t, x)

)
= TraceRd(C)− 1

2
TraceRd(2C) = 0. (138)

This proves item (ii). The proof of Lemma 3.2 is thus completed.

31

Lemma 3.5 below discloses the strategy how we approximatively calculate the L∞(λ[0,1]d ;R)-
errors in (130) and (133) above. Our proof of Lemma 3.5 employs the elementary auxiliary
results in Lemma 3.3 and Lemma 3.4 below. For completeness we also include proofs for
Lemma 3.3 and Lemma 3.4 here.

Lemma 3.3. Let (Ω,F ,P) be a probability space and let A,O ∈ F satisfy that P(O) = 1.
Then it holds that

P(A) = P(A ∩ O). (139)

Proof of Lemma 3.3. Observe that the monotonicity of P ensures that

P(A ∩ O) ≤ P(A) = P
(
[A ∩ O] ∪ [A\(A ∩ O)]

)

= P(A ∩ O) +P(A\(A ∩ O))

= P(A ∩ O) +P(A\O)

≤ P(A ∩ O) +P(Ω\O)

= P(A ∩ O) +P(Ω)−P(O) = P(A ∩ O).

(140)

Hence, we obtain that for every A,O ∈ F with P(O) = 1 it holds that P(A) = P(A∩O).
The Proof of Lemma 3.3 is thus completed.

Lemma 3.4. Let (Ω,F ,P) be a probability space, let Xn : Ω → [0,∞), n ∈ N0, be random
variables, assume for every n ∈ N that P(Xn ≥ Xn+1) = 1, and assume for every ε ∈ (0,∞)
that

lim sup
n→∞

P(Xn > ε) = 0. (141)

Then

P

(

lim sup
n→∞

Xn = 0

)

= 1. (142)

Proof of Lemma 3.4. Throughout this proof let O ⊆ Ω be the set given by

O = ∩∞
n=1{Xn ≥ Xn+1} = {∀n ∈ N : Xn ≥ Xn+1}. (143)

Observe that Lemma 3.3 and the hypothesis that for every n ∈ N it holds that P(Xn ≥
Xn+1) = 1 assure that for every N ∈ N it holds that

P(∩N
n=1{Xn ≥ Xn+1}) = P([∩N−1

n=1 {Xn ≥ Xn+1}] ∩ {XN ≥ XN+1})
= P(∩N−1

n=1 {Xn ≥ Xn+1}).
(144)

This implies that for every N ∈ N it holds that

P(∩N
n=1{Xn ≥ Xn+1}) = P(∩0

n=1{Xn ≥ Xn+1})
= P(Ω) = 1.

(145)

32

The fact that the measure P is continuous from above hence demonstrates that

P(O) = P(∩∞
n=1{Xn ≥ Xn+1}) = P(∩∞

N=1[∩N
n=1{Xn ≥ Xn+1}])

= lim
N→∞

P(∩N
n=1{Xn ≥ Xn+1}) = 1.

(146)

Next note that

P

(

lim sup
n→∞

Xn > 0

)

= P

(

∃ k ∈ N :

[

lim sup
n→∞

Xn >
1
k

])

= P
(

∃ k ∈ N : ∀m ∈ N : ∃n ∈ N ∩ [m,∞) :
[
Xn >

1
k

])

= P
(

∪k∈N ∩m∈N ∪n∈N∩[M,∞)

{
Xn >

1
k

})

≤
∞∑

k=1

P

(

∩∞
m=1 ∪∞

n=m

{
Xn >

1
k

})

=
∞∑

k=1

[

lim sup
m→∞

P(∪∞
n=m{Xn >

1
k
})
]

.

(147)

Lemma 3.3 and (146) therefore ensure that

P

(

lim sup
n→∞

Xn > 0

)

≤
∞∑

k=1

[

lim sup
m→∞

P

(

[∪∞
n=m{Xn >

1
k
}] ∩ O

)]

≤
∞∑

k=1

[

lim sup
m→∞

P

(

[∪∞
n=m{Xn >

1
k
}] ∩ {∀n ∈ N ∩ [m,∞) : Xm ≥ Xn}

)]

=
∞∑

k=1

[

lim sup
m→∞

P

(

{Xm > 1
k
} ∩ {∀n ∈ N ∩ [m,∞) : Xm ≥ Xn}

)]

≤
∞∑

k=1

[

lim sup
m→∞

P
(
Xm > 1

k

)
]

.

(148)

Combining this and (141) establishes (142). The proof of Lemma 3.4 is thus completed.

Lemma 3.5. Let d ∈ N, a ∈ R, b ∈ (a,∞), let f : [a, b]d → R be a continuous function,
let (Ω,F ,P) be a probability space, let Xn : Ω → [a, b]d, n ∈ N, be i.i.d. random variables,
and assume that X1 is continuous uniformly distributed on [a, b]d. Then

33

(i) it holds that

P

(

lim sup
N→∞

∣
∣
∣
∣
∣

[

max
1≤n≤N

f(Xn)

]

−
[

sup
x∈[a,b]d

f(x)

]∣
∣
∣
∣
∣
= 0

)

= 1 (149)

and

(ii) it holds for every p ∈ (0,∞) that

lim sup
N→∞

❊





∣
∣
∣
∣
∣

[

max
1≤n≤N

f(Xn)

]

−
[

sup
x∈[a,b]d

f(x)

]∣
∣
∣
∣
∣

p


 = 0. (150)

Proof of Lemma 3.5. First, observe that the fact that f : [a, b]d → R is a continuous func-
tion and the fact that [a, b]d ⊆ R

d is a compact set demonstrate that there exists ξ ∈ [a, b]d

which satisfies that f(ξ) = supx∈[a,b]d f(x). Next note that the fact that for every N ∈ N,
n ∈ {1, 2, . . . , N} it holds that f(Xn) ≤ supx∈[a,b]d f(x) implies that for every N ∈ N it
holds that max1≤n≤N f(Xn) ≤ supx∈[a,b]d f(x). Hence, we obtain that for every N ∈ N it
holds that
∣
∣
[
max1≤n≤N f(Xn)

]
−
[
supx∈[a,b]d f(x)

]∣
∣ =

[
supx∈[a,b]d f(x)

]
−
[
max1≤n≤N f(Xn)

]
. (151)

Combining this with the fact that f(ξ) = supx∈Rd f(x) ensures that for every ε ∈ (0,∞),
N ∈ N it holds that

{
|max1≤n≤N f(Xn)− supx∈[a,b]d f(x)| ≤ ε

}

=
{
max1≤n≤N f(Xn) ≥ supx∈[a,b]d f(x)− ε

}

=
N
∪

n=1

{
f(Xn) ≥ supx∈[a,b]d f(x)− ε

}
=

N
∪

n=1

{
|f(Xn)− supx∈[a,b]d f(x)| ≤ ε

}

=
N
∪

n=1

{
|f(Xn)− f(ξ)| ≤ ε

}
.

(152)

In the next step we observe that the fact that f : [a, b]d → R is continuous ensures that for
every ε ∈ (0,∞) there exists δ ∈ (0,∞) such that for every x ∈ [a, b]d with ‖x− ξ‖Rd ≤ δ
it holds that |f(x)− f(ξ)| ≤ ε. Combining this and (152) shows that for every ε ∈ (0,∞)
there exists δ ∈ (0,∞) such that for every N ∈ N it holds that

P
(
|max1≤n≤N f(Xn)− supx∈[a,b]d f(x)| ≤ ε

)
= P

(
∪N
n=1 {|f(Xn)− f(ξ)| ≤ ε}

)

≥ P
(
∪N
n=1 {‖Xn − ξ‖Rd ≤ δ}

)
= 1−P

(
∩N

n=1 {‖Xn − ξ‖Rd > δ}
)
.

(153)

Hence, we obtain that for every ε ∈ (0,∞) there exists δ ∈ (0,∞) such that

lim inf
N→∞

P
(
|max1≤n≤N f(Xn)− supx∈[a,b] f(x)| ≤ ε

)

≥ 1− lim inf
N→∞

P
(
∩N

n=1 {‖Xn − ξ‖Rd > δ}
)
.

(154)

34

Next observe that the fact that the random variables Xn : Ω → [a, b]d, n ∈ {1, 2, . . . , N},
are i.i.d. ensures that for every δ ∈ (0,∞), N ∈ N it holds that

P
(
∩N

n=1 {‖Xn − ξ‖Rd > δ}
)
=

N∏

n=1

P(‖Xn − ξ‖Rd > δ)

=
[
P(‖X1 − ξ‖Rd > δ)

]N
.

(155)

In addition, note that the fact that for every δ ∈ (0,∞) it holds that the set {x ∈
[a, b]d : ‖x− ξ‖Rd ≤ δ} ⊆ R

d has strictly positive d-dimensional Lebesgue measure and the
fact that X1 is continuous uniformly distributed on [a, b]d ensure that for every δ ∈ (0,∞)
it holds that

P(‖X1 − ξ‖Rd > δ) = 1−P(‖X1 − ξ‖Rd ≤ δ) < 1. (156)

Hence, we obtain that for every δ ∈ (0,∞) it holds that

lim sup
N→∞

([
P(‖X1 − ξ‖Rd > δ)

]N
)

= 0. (157)

Combining this with (155) demonstrates that for every δ ∈ (0,∞) it holds that

lim sup
N→∞

P
(
∩N
n=1 {‖Xn − ξ‖Rd > δ}

)
= 0. (158)

This and (154) assure that for every ε ∈ (0,∞) it holds that

lim inf
N→∞

P
(
|max1≤n≤N f(Xn)− supx∈[a,b]d f(x)| ≤ ε

)
= 1. (159)

Therefore, we obtain that for every ε ∈ (0,∞) it holds that

lim sup
N→∞

P
(
|max1≤n≤N f(Xn)− supx∈[a,b]d f(x)| > ε

)
= 0. (160)

Combining this with with Lemma 3.4 establishes item (i). It thus remains to prove item (ii).
For this note that the fact that f : [a, b]d → R is globally bounded, item (i), and Lebesgue’s
dominated convergence theorem ensure that for every p ∈ (0,∞) it holds that

lim sup
N→∞

❊

[∣
∣max1≤i≤N f(Xi)− supx∈[a,b]d f(x)

∣
∣
p
]

= 0. (161)

This establishes item (ii). The proof of Lemma 3.5 is thus completed.

35

3.3 Geometric Brownian motions

In this subsection we apply the proposed approximation algorithm to a Black-Scholes PDE
with independent underlying geometric Brownian motions.

Assume Framework 2.10, let r = 1
20
, µ = r− 1

10
= − 1

20
, σ1 =

1
10
+ 1

200
, σ2 =

1
10
+ 2

200
,. . . ,

σ100 =
1
10

+ 100
200

, assume for every s, t ∈ [0, T], x = (x1, x2, . . . , xd), w = (w1, w2, . . . , wd) ∈
R

d, m ∈ N0 that N = 1, d = 100, ϕ(x) = exp(−rT)max
{
[maxi∈{1,2,...,d} xi]− 100, 0

}
, and

H(s, t, x, w) =
(

x1 exp
((
µ1 − |σ1|2

2

)
(t− s) + σ1w1

)
, . . . , xd exp

((
µd − |σd|

2

2

)
(t− s) + σdwd

))

,
(162)

assume that ξ0,1 : Ω → R
d is continuous uniformly distributed on [90, 110]d, and let u =

(u(t, x))(t,x)∈[0,T]×Rd ∈ C1,2([0, T] × R
d,R) be an at most polynomially growing function

which satisfies for every t ∈ [0, T], x ∈ R
d that u(0, x) = ϕ(x) and

(∂u
∂t
)(t, x) = 1

2

d∑

i=1

|σixi|2(∂
2u

∂x2
i

)(t, x) +
d∑

i=1

µixi(
∂u
∂xi

)(t, x). (163)

The Feynman-Kac formula (cf., for example, Hairer et al. [22, Corollary 4.17]) shows that
for every standard Brownian motion W = (W (1), . . . ,W (d)) : [0, T] × Ω → R

d and every
t ∈ [0, T], x = (x1, . . . , xd) ∈ R

d it holds that

u(t, x) =

❊

[

ϕ
(

x1 exp
(

σ1W (1)
t +

(

µ1 − |σ1|2

2

)

t
)

, . . . , xd exp
(

σdW (d)
t +

(

µd − |σd|
2

2

)

t
))]

.
(164)

Table 3 approximately presents the relative L1(λ[0,1]d ;R)-approximation error associated to
(UΘm,1,Sm(x))x∈[0,1]d (see (165) below), the relative L

2(λ[0,1]d ;R)-approximation error associ-
ated to (UΘm,1,Sm(x))x∈[0,1]d (see (166) below), and the relative L∞(λ[0,1]d ;R)-approximation
error associated to (UΘm,1,Sm(x))x∈[0,1]d (see (167) below) against m ∈ {0, 25000, 50000,
100000, 150000, 250000, 500000, 750000} (cf. Python code 3 in Subsection 4.3 below). In
our numerical simulations for Table 3 we approximately calculated the exact solution of
the PDE (163) by means of (164) and Monte Carlo approximations with 1048576 samples,
we approximately calculated the relative L1(λ[0,1]d ;R)-approximation error

∫

[0,1]d

∣
∣
∣
∣

u(T, x)− U
Θm,1,Sm(x)

u(T, x)

∣
∣
∣
∣
dx (165)

form ∈ {0, 25000, 50000, 100000, 150000, 250000, 500000, 750000} by means of Monte Carlo
approximations with 81920 samples, we approximately calculated the relative L2(λ[0,1]d ;R)-
approximation error

√
∫

[0,1]d

∣
∣
∣
∣

u(T, x)− UΘm,1,Sm(x)

u(T, x)

∣
∣
∣
∣

2

dx (166)

36

form ∈ {0, 25000, 50000, 100000, 150000, 250000, 500000, 750000} by means of Monte Carlo
approximations with 81920 samples, and we approximately calculated the relative L∞(λ[0,1]d ;R)-
approximation error

sup
x∈[0,1]d

∣
∣
∣
∣

u(T, x)− U
Θm,1,Sm(x)

u(T, x)

∣
∣
∣
∣

(167)

form ∈ {0, 25000, 50000, 100000, 150000, 250000, 500000, 750000} by means of Monte Carlo
approximations with 81920 samples (see Lemma 3.5 above).

Number
of steps

Relative
L1(λ[0,1]d ;R)-error

Relative
L2(λ[0,1]d ;R)-error

Relative
L∞(λ[0,1]d ;R)-error

Runtime
in seconds

0 1.004285 1.004286 1.009524 1
25000 0.842938 0.843021 0.87884 110.2
50000 0.684955 0.685021 0.719826 219.5
100000 0.371515 0.371551 0.387978 437.9
150000 0.064605 0.064628 0.072259 656.2
250000 0.001220 0.001538 0.010039 1092.6
500000 0.000949 0.001187 0.005105 2183.8
750000 0.000902 0.001129 0.006028 3275.1

Table 3: Approximative presentations of the relative approximation errors in (165)–(167)
for the Black-Scholes PDE with independent underlying geometric Brownian motions in
(163).

3.4 Black-Scholes model with correlated noise

In this subsection we apply the proposed approximation algorithm to a Black-Scholes PDE
with correlated noise.

Assume Framework 2.10, let r = 1
20
, µ = r− 1

10
= − 1

20
, β1 =

1
10
+ 1

200
, β2 =

1
10
+ 2

200
,. . . ,

β100 =
1
10
+ 100

200
, Q = (Qi,j)(i,j)∈{1,2,...,100}, Σ = (Σi,j)(i,j)∈{1,2,...,100} ∈ R

100×100, ς1, ς2, . . . , ς100 ∈
R

100, assume for every s, t ∈ [0, T], x = (x1, x2, . . . , xd), w = (w1, w2, . . . , wd) ∈ R
d,m ∈ N0,

i, j, k ∈ {1, 2, . . . , 100} with i < j that N = 1, d = 100, ν = d(2d)+(2d)2+2d = 2d(3d+1),
Qk,k = 1, Qi,j = Qj,i = 1

2
, Σi,j = 0, Σk,k > 0, ΣΣ∗ = Q (cf., for example, Golub

& Van Loan [19, Theorem 4.2.5]), ςk = (Σk,1, . . . ,Σk,100), ϕ(x) = exp(−µT)max
{
110 −

[mini∈{1,2,...,d} xi], 0
}
, and

H(s, t, x, w) =
(

x1 exp
(
(µ− 1

2
‖β1ς1‖2Rd)(t− s) + 〈ς1, w〉Rd

)
, . . . ,

xd exp
(
(µ− 1

2
‖βdςd‖2Rd)(t− s) + 〈ςd, w〉Rd

))

, (168)

37

assume that ξ0,1 : Ω → R
d is continuous uniformly distributed on [90, 110]d, and let u =

(u(t, x))t∈[0,T],x∈Rd ∈ C1,2([0, T] × R
d,R) be an at most polynomially growing continuous

function which satisfies for every t ∈ [0, T], x ∈ R
d that u(0, x) = ϕ(x) and

(∂u
∂t
)(t, x) = 1

2

d∑

i,j=1

xixjβiβj〈ςi, ςj〉Rd(∂
2u

∂x2
i

)(t, x) +
d∑

i=1

µixi(
∂u
∂xi

)(t, x). (169)

The Feynman-Kac formula (cf., for example, Hairer et al. [22, Corollary 4.17]) shows that
for every standard Brownian motion W = (W (1), . . . ,W (d)) : [0, T] × Ω → R

d and every
t ∈ [0, T], x = (x1, . . . , xd) ∈ R

d it holds that

u(t, x) = ❊
[

ϕ
(

x1 exp
(〈
ς1,W (1)

t

〉

Rd +
(

µ1 −
‖β1ς1‖2

Rd

2

)

t
)

, . . . ,

xd exp
(〈
ςd,W (d)

t

〉

Rd +
(

µd −
‖βdςd‖

2
Rd

2

)

t
))]

. (170)

Table 4 approximately presents the relative L1(λ[0,1]d ;R)-approximation error associated to
(UΘm,1,Sm(x))x∈[0,1]d (see (171) below), the relative L

2(λ[0,1]d ;R)-approximation error associ-
ated to (UΘm,1,Sm(x))x∈[0,1]d (see (172) below), and the relative L∞(λ[0,1]d ;R)-approximation
error associated to (UΘm,1,Sm(x))x∈[0,1]d (see (173) below) against m ∈ {0, 25000, 50000,
100000, 150000, 250000, 500000, 750000} (cf. Python code 4 in Subsection 3.4 below). In
our numerical simulations for Table 4 we approximately calculated the exact solution of
the PDE (169) by means of (170) and Monte Carlo approximations with 1048576 samples,
we approximately calculated the relative L1(λ[0,1]d ;R)-approximation error

∫

[0,1]d

∣
∣
∣
∣

u(T, x)− U
Θm,1,Sm(x)

u(T, x)

∣
∣
∣
∣
dx (171)

form ∈ {0, 25000, 50000, 100000, 150000, 250000, 500000, 750000} by means of Monte Carlo
approximations with 81920 samples, we approximately calculated the relative L2(λ[0,1]d ;R)-
approximation error

√
∫

[0,1]d

∣
∣
∣
∣

u(T, x)− UΘm,1,Sm(x)

u(T, x)

∣
∣
∣
∣

2

dx (172)

form ∈ {0, 25000, 50000, 100000, 150000, 250000, 500000, 750000} by means of Monte Carlo
approximations with 81920 samples, and we approximately calculated the relative L∞(λ[0,1]d ;R)-
approximation error

sup
x∈[0,1]d

∣
∣
∣
∣

u(T, x)− U
Θm,1,Sm(x)

u(T, x)

∣
∣
∣
∣

(173)

form ∈ {0, 25000, 50000, 100000, 150000, 250000, 500000, 750000} by means of Monte Carlo
approximations with 81920 samples (see Lemma 3.5 above).

38

Number
of steps

Relative
L1(λ[0,1]d ;R)-error

Relative
L2(λ[0,1]d ;R)-error

Relative
L∞(λ[0,1]d ;R)-error

Runtime
in seconds

0 1.003383 1.003385 1.011662 0.8
25000 0.631420 0.631429 0.640633 112.1
50000 0.269053 0.269058 0.275114 223.3
100000 0.000752 0.000948 0.00553 445.8
150000 0.000694 0.00087 0.004662 668.2
250000 0.000604 0.000758 0.006483 1119.3
500000 0.000493 0.000615 0.002774 2292.8
750000 0.000471 0.00059 0.002862 3466.8

Table 4: Approximative presentations of the relative approximation errors in (171)–(173)
for the Black-Scholes PDE with correlated noise in (169).

3.5 Stochastic Lorenz equations

In this subsection we apply the proposed approximation algorithm to the stochastic Lorenz
equation.

Assume Framework 2.10, let α1 = 10, α2 = 14, α3 = 8
3
, β = 3

20
, let µ : Rd → R

d be
a function, assume for every s, t ∈ [0, T], x = (x1, x2, . . . , xd), w = (w1, w2, . . . , wd) ∈ R

d,
m ∈ N0 that N = 100, d = 3, ν = (d + 20)d + (d + 20)2 + (d + 20) = (d + 20)(2d + 21),
µ(x) = (α1(x2 − x1), α2x1 − x2 − x1x3, x1x2 − α3x3), ϕ(x) = ‖x‖2

Rd , and

H(s, t, x, w) = x+ µ(x)(t− s)✶[0,N/T](‖µ(x)‖Rd) + βw (174)

(cf., for example, Hutzenthaler et al. [32], Hutzenthaler et al. [33], Hutzenthaler et al. [34],
Milstein & Tretyakov [48], Sabanis [54, 55], and the references mentioned therein for related
temporal numerical approximation schemes for SDEs), assume that ξ0,1 : Ω → R

d is con-
tinuous uniformly distributed on [1

2
, 3
2
]× [8, 10]× [10, 12], and let u = (u(t, x))(t,x)∈[0,T]×Rd ∈

C1,2([0, T]× R
d,R) be an at most polynomially growing function (cf., for example, Hairer

et al. [22, Corollary 4.17] and Hörmander [31, Theorem 1.1]) which satisfies for every
t ∈ [0, T], x ∈ R

d that u(0, x) = ϕ(x) and

(∂u
∂t
)(t, x) = β2

2
(∆xu)(t, x) + α1(x2 − x1)(

∂u
∂x1

)(t, x)

+ (α2x1 − x2 − x1x3)(
∂u
∂x2

)(t, x) + (x1x2 − α3x3)(
∂u
∂x3

)(t, x).
(175)

Table 5 approximately presents the relative L1(λ[0,1]d ;R)-approximation error associated to
(UΘm,1,Sm(x))x∈[0,1]d (see (176) below), the relative L

2(λ[0,1]d ;R)-approximation error associ-
ated to (UΘm,1,Sm(x))x∈[0,1]d (see (177) below), and the relative L∞(λ[0,1]d ;R)-approximation
error associated to (UΘm,1,Sm(x))x∈[0,1]d (see (178) below) against m ∈ {0, 25000, 50000,

39

100000, 150000, 250000, 500000, 750000} (cf. Python code 5 in Subsection 4.5 below). In
our numerical simulations for Table 5 we approximately calculated the exact solution of
the PDE (175) by means of Monte Carlo approximations with 104857 samples and tempo-
ral SDE-discretizations based on (174) and 100 equidistant time steps, we approximately
calculated the relative L1(λ[0,1]d ;R)-approximation error

∫

[0,1]d

∣
∣
∣
∣

u(T, x)− U
Θm,1,Sm(x)

u(T, x)

∣
∣
∣
∣
dx (176)

form ∈ {0, 25000, 50000, 100000, 150000, 250000, 500000, 750000} by means of Monte Carlo
approximations with 20480 samples, we approximately calculated the relative L2(λ[0,1]d ;R)-
approximation error

√
∫

[0,1]d

∣
∣
∣
∣

u(T, x)− UΘm,1,Sm(x)

u(T, x)

∣
∣
∣
∣

2

dx (177)

form ∈ {0, 25000, 50000, 100000, 150000, 250000, 500000, 750000} by means of Monte Carlo
approximations with 20480 samples, and we approximately calculated the relative L∞(λ[0,1]d ;R)-
approximation error

sup
x∈[0,1]d

∣
∣
∣
∣

u(T, x)− U
Θm,1,Sm(x)

u(T, x)

∣
∣
∣
∣

(178)

form ∈ {0, 25000, 50000, 100000, 150000, 250000, 500000, 750000} by means of Monte Carlo
approximations with 20480 samples (see Lemma 3.5 above).

Number
of steps

Relative
L1(λ[0,1]d ;R)-error

Relative
L2(λ[0,1]d ;R)-error

Relative
L∞(λ[0,1]d ;R)-error

Runtime
in seconds

0 0.995732 0.995732 0.996454 1.0
25000 0.905267 0.909422 1.247772 750.1
50000 0.801935 0.805497 1.115690 1461.7
100000 0.599847 0.602630 0.823042 2932.1
150000 0.392394 0.394204 0.542209 4423.3
250000 0.000732 0.000811 0.002865 7327.9
500000 0.000312 0.000365 0.003158 14753.0
750000 0.000187 0.000229 0.001264 21987.4

Table 5: Approximative presentations of the relative approximation errors in (176)–(178)
for the stochastic Lorenz equation in (175).

3.6 Heston model

In this subsection we apply the proposed approximation algorithm to the Heston model in
(180) below.

40

Assume Framework 2.10, let δ = 25, α = 1
20
, κ = 6

10
, θ = 1

25
, β = 1

5
, ̺ = −4

5
, let

ei ∈ R
50, i ∈ {1, 2, . . . , 50}, be the vectors which satisfy that e1 = (1, 0, 0, . . . , 0, 0) ∈ R

50,
e2 = (0, 1, 0, . . . , 0, 0) ∈ R

50, . . . , e50 = (0, 0, 0, . . . , 0, 1) ∈ R
50, assume for every s, t ∈

[0, T], x = (x1, x2, . . . , xd), w = (w1, w2, . . . , wd) ∈ R
d that N = 100, d = 2δ = 50, ν = (d+

50)d+(d+50)2+(d+50) = (d+50)(2d+51), ϕ(x) = exp(−αT)max
{
110−[

∑δ
i=1

x2i−1

δ
], 0
}
,

and

H(s, t, x, w) =
δ∑

i=1

([

x2i−1 exp
(

(α− x2i

2
)(t− s) + w2i−1

√
x2i

)]

e2i−1

+

[

max

{[

max
{

β
2

√
t− s,max

{
β
2

√
t− s,

√
x2i
}
+ β

2

(
ρw2i−1 + [1− ρ2]1/2w2i

)}]2

+
(
κθ − β2

4
− κx2i

)
(t− s), 0

}]

e2i

)

(179)

(cf. Hefter & Herzwurm [25, Section 1]), assume that ξ0,1 : Ω → R
d is continuous uni-

formly distributed on ×δ
i=1

(
[90, 110] × [0.02, 0.2]

)
, and let u = (u(t, x))(t,x)∈[0,T]×Rd ∈

C1,2([0, T] × R
d,R) be an at most polynomially growing function (cf., for example, Al-

fonsi [1, Proposition 4.1]) which satisfies for every t ∈ [0, T], x ∈ R
d that u(0, x) = ϕ(x)

and

(∂u
∂t
)(t, x) =

[
δ∑

i=1

(

αx2i−1(
∂u

∂x2i−1
)(t, x) + κ(θ − x2i)(

∂u
∂x2i

)(t, x)
)
]

+

[
δ∑

i=1

|x2i|
2

(

|x2i−1|2(∂2u
∂x2

2i−1
)(t, x) + 2x2i−1β̺(

∂2u
∂x2i−1∂x2i

)(t, x) + β2(∂2u
∂x2

2i
)(t, x)

)
]

. (180)

Table 6 approximately presents the relative L1(λ[0,1]d ;R)-approximation error associated to
(UΘm,1,Sm(x))x∈[0,1]d (see (181) below), the relative L

2(λ[0,1]d ;R)-approximation error associ-
ated to (UΘm,1,Sm(x))x∈[0,1]d (see (182) below), and the relative L∞(λ[0,1]d ;R)-approximation
error associated to (UΘm,1,Sm(x))x∈[0,1]d (see (183) below) against m ∈ {0, 25000, 50000,
100000, 150000, 250000, 500000, 750000} (cf. Python code 6 in Subsection 4.6 below). In
our numerical simulations for Table 6 we approximately calculated the exact solution of
the PDE (180) by means of Monte Carlo approximations with 1048576 samples and tempo-
ral SDE-discretizations based on (179) and 100 equidistant time steps, we approximately
calculated the relative L1(λ[0,1]d ;R)-approximation error

∫

[0,1]d

∣
∣
∣
∣

u(T, x)− U
Θm,1,Sm(x)

u(T, x)

∣
∣
∣
∣
dx (181)

form ∈ {0, 25000, 50000, 100000, 150000, 250000, 500000, 750000} by means of Monte Carlo

41

approximations with 10240 samples, we approximately calculated the relative L2(λ[0,1]d ;R)-
approximation error

√
∫

[0,1]d

∣
∣
∣
∣

u(T, x)− UΘm,1,Sm(x)

u(T, x)

∣
∣
∣
∣

2

dx (182)

form ∈ {0, 25000, 50000, 100000, 150000, 250000, 500000, 750000} by means of Monte Carlo
approximations with 10240 samples, and we approximately calculated the relative L∞(λ[0,1]d ;R)-
approximation error

sup
x∈[0,1]d

∣
∣
∣
∣

u(T, x)− U
Θm,1,Sm(x)

u(T, x)

∣
∣
∣
∣

(183)

form ∈ {0, 25000, 50000, 100000, 150000, 250000, 500000, 750000} by means of Monte Carlo
approximations with 10240 samples (see Lemma 3.5 above).

Number
of steps

Relative
L1(λ[0,1]d ;R)-error

Relative
L2(λ[0,1]d ;R)-error

Relative
L∞(λ[0,1]d ;R)-error

Runtime
in seconds

0 1.038045 1.038686 1.210235 1.0
25000 0.005691 0.007215 0.053298 688.4
50000 0.005115 0.006553 0.036513 1375.2
100000 0.004749 0.005954 0.032411 2746.8
150000 0.006465 0.008581 0.051907 4120.2
250000 0.005075 0.006378 0.024458 6867.5
500000 0.002082 0.002704 0.019604 13763.7
750000 0.00174 0.002233 0.012466 20758.8

Table 6: Approximative presentations of the relative approximation errors in (181)–(183)
for the Heston model in (180).

4 Python source codes

4.1 Python source code for the algorithm

In Subsections 4.2–4.6 below we present Python source codes associated to the numerical
simulations in Subsections 3.2–3.6 above. The following Python source code, Python
code 1 below, is employed in the case of each of the Python source codes in Subsec-
tions 4.2–4.6 below.

Python code 1: common.py

1 import numpy as np

2 import tensorflow as tf

42

3 import time

4 from tensorflow.python.ops import init_ops

5 from tensorflow.contrib.layers.python.layers import initializers

6 from tensorflow.python.training.moving_averages import assign_moving_average

7

8

9 def neural_net(x, neurons, is_training, name,

10 mv_decay=0.9, dtype=tf.float32):

11

12 def _batch_normalization(_x):

13 beta = tf.get_variable(’beta’, [_x.get_shape()[-1]],

14 dtype, init_ops.zeros_initializer())

15 gamma = tf.get_variable(’gamma’, [_x.get_shape()[-1]],

16 dtype, init_ops.ones_initializer())

17 mv_mean = tf.get_variable(’mv_mean’, [_x.get_shape()[-1]],

18 dtype, init_ops.zeros_initializer(),

19 trainable=False)

20 mv_variance = tf.get_variable(’mv_variance’, [_x.get_shape()[-1]],

21 dtype, init_ops.ones_initializer(),

22 trainable=False)

23 mean, variance = tf.nn.moments(_x, [0], name=’moments’)

24 tf.add_to_collection(tf.GraphKeys.UPDATE_OPS,

25 assign_moving_average(mv_mean, mean,

26 mv_decay, True))

27 tf.add_to_collection(tf.GraphKeys.UPDATE_OPS,

28 assign_moving_average(mv_variance, variance,

29 mv_decay, False))

30 mean, variance = tf.cond(is_training,

31 lambda: (mean, variance),

32 lambda: (mv_mean, mv_variance))

33 return tf.nn.batch_normalization(_x, mean, variance,

34 beta, gamma, 1e-6)

35

36 def _layer(_x, out_size, activation_fn):

37 w = tf.get_variable(’weights’,

38 [_x.get_shape().as_list()[-1], out_size],

39 dtype, initializers.xavier_initializer())

40 return activation_fn(_batch_normalization(tf.matmul(_x, w)))

41

42 with tf.variable_scope(name):

43 x = _batch_normalization(x)

44 for i in range(len(neurons)):

45 with tf.variable_scope(’layer_%i_’ % (i + 1)):

46 x = _layer(x, neurons[i],

47 tf.nn.tanh if i < len(neurons)-1 else tf.identity)

48 return x

49

50

51 def kolmogorov_train_and_test(xi, x_sde, phi, u_reference, neurons,

43

52 lr_boundaries, lr_values, train_steps,

53 mc_rounds, mc_freq, file_name,

54 dtype=tf.float32):

55

56 def _approximate_errors():

57 lr, gs = sess.run([learning_rate, global_step])

58 l1_err, l2_err, li_err = 0., 0., 0.

59 rel_l1_err, rel_l2_err, rel_li_err = 0., 0., 0.

60 for _ in range(mc_rounds):

61 l1, l2, li, rl1, rl2, rli \

62 = sess.run([err_l_1, err_l_2, err_l_inf,

63 rel_err_l_1, rel_err_l_2, rel_err_l_inf],

64 feed_dict={is_training: False})

65 l1_err, l2_err, li_err = (l1_err + l1, l2_err + l2,

66 np.maximum(li_err, li))

67 rel_l1_err, rel_l2_err, rel_li_err \

68 = (rel_l1_err + rl1, rel_l2_err + rl2,

69 np.maximum(rel_li_err, rli))

70 l1_err, l2_err = l1_err / mc_rounds, np.sqrt(l2_err / mc_rounds)

71 rel_l1_err, rel_l2_err \

72 = rel_l1_err / mc_rounds, np.sqrt(rel_l2_err / mc_rounds)

73 t_mc = time.time()

74 file_out.write(’%i, %f, %f, %f, %f, %f, %f, %f, ’

75 ’%f, %f\n’ % (gs, l1_err, l2_err, li_err,

76 rel_l1_err, rel_l2_err, rel_li_err, lr,

77 t1_train - t0_train, t_mc - t1_train))

78 file_out.flush()

79

80 t0_train = time.time()

81 is_training = tf.placeholder(tf.bool, [])

82 u_approx = neural_net(xi, neurons, is_training, ’u_approx’, dtype=dtype)

83 loss = tf.reduce_mean(tf.squared_difference(u_approx, phi(x_sde)))

84

85 err = tf.abs(u_approx - u_reference)

86 err_l_1 = tf.reduce_mean(err)

87 err_l_2 = tf.reduce_mean(err ** 2)

88 err_l_inf = tf.reduce_max(err)

89 rel_err = err / tf.maximum(u_reference, 1e-8)

90 rel_err_l_1 = tf.reduce_mean(rel_err)

91 rel_err_l_2 = tf.reduce_mean(rel_err ** 2)

92 rel_err_l_inf = tf.reduce_max(rel_err)

93

94 global_step = tf.get_variable(’global_step’, [], tf.int32,

95 tf.constant_initializer(0),

96 trainable=False)

97 learning_rate = tf.train.piecewise_constant(global_step,

98 lr_boundaries,

99 lr_values)

100 optimizer = tf.train.AdamOptimizer(learning_rate)

44

101 update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS, ’u_approx’)

102 with tf.control_dependencies(update_ops):

103 train_op = optimizer.minimize(loss, global_step)

104

105 file_out = open(file_name, ’w’)

106 file_out.write(’step, l1_err, l2_err, li_err, l1_rel, ’

107 ’l2_rel, li_rel, learning_rate, time_train, time_mc\n’)

108

109 with tf.Session() as sess:

110

111 sess.run(tf.global_variables_initializer())

112

113 for step in range(train_steps):

114 if step % mc_freq == 0:

115 t1_train = time.time()

116 _approximate_errors()

117 t0_train = time.time()

118 sess.run(train_op, feed_dict={is_training: True})

119 t1_train = time.time()

120 _approximate_errors()

121

122 file_out.close()

4.2 A Python source code associated to the numerical simula-
tions in Subsection 3.2

Python code 2: example3 2.py

1 import numpy as np

2 import tensorflow as tf

3 from common import kolmogorov_train_and_test

4

5 tf.reset_default_graph()

6 dtype = tf.float32

7 T, N, d = 1., 1, 100

8 batch_size = 8192

9 neurons = [d + 100, d + 100, 1]

10 train_steps = 750000

11 mc_rounds, mc_freq = 1250, 100

12 lr_boundaries = [250001, 500001]

13 lr_values = [0.001, 0.0001, 0.00001]

14 xi = tf.random_uniform(shape=(batch_size, d), minval=0.,

15 maxval=1., dtype=dtype)

16 x_sde = xi + tf.random_normal(shape=(batch_size, d),

17 stddev=np.sqrt(2. * T / N), dtype=dtype)

18

45

19

20 def phi(x):

21 return tf.reduce_sum(x ** 2, axis=1, keepdims=True)

22

23

24 u_reference = phi(xi) + 2. * T * d

25

26 kolmogorov_train_and_test(xi, x_sde, phi, u_reference, neurons,

27 lr_boundaries, lr_values, train_steps,

28 mc_rounds, mc_freq, ’example3_1.csv’, dtype)

4.3 A Python source code associated to the numerical simula-
tions in Subsection 3.3

Python code 3: example3 3.py

1 import numpy as np

2 import tensorflow as tf

3 from common import kolmogorov_train_and_test

4

5 tf.reset_default_graph()

6 dtype = tf.float32

7 T, N, d = 1., 1, 100

8 r, c, K = 0.05, 0.1, 100.

9 sigma = tf.constant(0.1 + 0.5 * np.linspace(start=1. / d, stop=1., num=d,

10 endpoint=True), dtype=dtype)

11 batch_size = 8192

12 neurons = [d + 100, d + 100, 1]

13 train_steps = 750000

14 mc_rounds, mc_freq = 10, 25000

15 mc_samples_ref, mc_rounds_ref = 1024, 1024

16 lr_boundaries = [250001, 500001]

17 lr_values = [0.001, 0.0001, 0.00001]

18 xi = tf.random_uniform((batch_size, d), minval=90., maxval=110., dtype=dtype)

19

20

21 def phi(x, axis=1):

22 return np.exp(-r * T) \

23 * tf.maximum(tf.reduce_max(x, axis=axis, keepdims=True) - K, 0.)

24

25

26 def mc_body(idx, p):

27 _x = xi * tf.exp((r - c - 0.5 * sigma ** 2) * T + sigma

28 * tf.random_normal((mc_samples_ref, batch_size, d),

29 stddev=np.sqrt(T / N), dtype=dtype))

30 return idx + 1, p + tf.reduce_mean(phi(_x, 2), axis=0)

46

31

32

33 x_sde = xi * tf.exp((r - c - 0.5 * sigma ** 2) * T

34 + sigma * tf.random_normal((batch_size, d),

35 stddev=np.sqrt(T / N),

36 dtype=dtype))

37 _, u = tf.while_loop(lambda idx, p: idx < mc_rounds_ref, mc_body,

38 (tf.constant(0), tf.zeros((batch_size, 1), dtype)))

39 u_reference = u / tf.cast(mc_rounds_ref, tf.float32)

40

41 kolmogorov_train_and_test(xi, x_sde, phi, u_reference, neurons,

42 lr_boundaries, lr_values, train_steps,

43 mc_rounds, mc_freq, ’example3_2.csv’, dtype)

4.4 A Python source code associated to the numerical simula-
tions in Subsection 3.4

Python code 4: example3 4.py

1 import numpy as np

2 import tensorflow as tf

3 from common import kolmogorov_train_and_test

4

5 tf.reset_default_graph()

6 dtype = tf.float32

7 T, N, d = 1., 1, 100

8 r, c, K = 0.05, 0.1, 110.

9 Q = np.ones([d, d]) * 0.5

10 np.fill_diagonal(Q, 1.)

11 L = np.linalg.cholesky(Q).transpose()

12 sigma_norms = tf.constant(np.linalg.norm(L, axis=0), dtype=dtype)

13 sigma = tf.constant(L, dtype=dtype)

14 beta = tf.constant(0.1 + 0.5 * np.linspace(start=1. / d, stop=1., num=d,

15 endpoint=True), dtype=dtype)

16 batch_size = 8192

17 neurons = [d + 100, d + 100, 1]

18 train_steps = 750000

19 mc_rounds, mc_freq = 10, 25000

20 mc_samples_ref, mc_rounds_ref = 1024, 1024

21 lr_boundaries = [250001, 500001]

22 lr_values = [0.001, 0.0001, 0.00001]

23 xi = tf.random_uniform((batch_size, d), minval=90., maxval=110., dtype=dtype)

24

25

26 def phi(x, axis=1):

27 return np.exp(-r * T) \

47

28 * tf.maximum(K - tf.reduce_min(x, axis=axis, keepdims=True), 0.)

29

30

31 def mc_body(idx, p):

32 _w = tf.matmul(tf.random_normal((mc_samples_ref * batch_size, d),

33 stddev=np.sqrt(T / N), dtype=dtype),

34 sigma)

35 _w = tf.reshape(_w, (mc_samples_ref, batch_size, d))

36 _x = xi * tf.exp((r - c - 0.5 * (beta * sigma_norms) ** 2) * T

37 + beta * _w)

38 return idx + 1, p + tf.reduce_mean(phi(_x, 2), axis=0)

39

40

41 x_sde = xi * tf.exp((r - c - 0.5 * (beta * sigma_norms) ** 2) * T + beta

42 * tf.matmul(tf.random_normal((batch_size, d),

43 stddev=np.sqrt(T / N),

44 dtype=dtype),

45 sigma))

46 _, u = tf.while_loop(lambda idx, p: idx < mc_rounds_ref, mc_body,

47 (tf.constant(0), tf.zeros((batch_size, 1), dtype)))

48 u_reference = u / tf.cast(mc_rounds_ref, tf.float32)

49

50 kolmogorov_train_and_test(xi, x_sde, phi, u_reference, neurons,

51 lr_boundaries, lr_values, train_steps,

52 mc_rounds, mc_freq, ’example3_3.csv’, dtype)

4.5 A Python source code associated to the numerical simula-
tions in Subsection 3.5

Python code 5: example3 5.py

1 import numpy as np

2 import tensorflow as tf

3 from common import kolmogorov_train_and_test

4

5

6 tf.reset_default_graph()

7 dtype = tf.float32

8 batch_size = 1024

9

10 T, N, d = 1., 100, 3

11 alpha_1, alpha_2, alpha_3 = 10., 14., 8./3.

12 beta = tf.constant([0.15, 0.15, 0.15], dtype=dtype)

13 h = T / N

14 neurons = [d + 20, d + 20, 1]

15 train_steps = 750000

48

16 mc_rounds, mc_freq = 20, 25000

17 mc_samples_ref, mc_rounds_ref = 1024, 1024

18 lr_boundaries = [250001, 500001]

19 lr_values = [0.001, 0.0001, 0.00001]

20 xi = tf.stack([tf.random_uniform((batch_size,), minval=0.5,

21 maxval=2.5, dtype=dtype),

22 tf.random_uniform((batch_size,), minval=8.,

23 maxval=10., dtype=dtype),

24 tf.random_uniform((batch_size,), minval=10.,

25 maxval=12., dtype=dtype)], axis=1)

26

27

28 def phi(x, axis=1):

29 return tf.reduce_sum(x ** 2, axis=axis, keepdims=True)

30

31

32 def mu(x):

33 x_1 = tf.expand_dims(x[:, :, 0], axis=2)

34 x_2 = tf.expand_dims(x[:, :, 1], axis=2)

35 x_3 = tf.expand_dims(x[:, :, 2], axis=2)

36 return tf.concat([alpha_1 * (x_2 - x_1),

37 alpha_2 * x_1 - x_2 - x_1 * x_3,

38 x_1 * x_2 - alpha_3 * x_3], axis=2)

39

40

41 def sde_body(idx, s, samples):

42 return tf.add(idx, 1), s \

43 + tf.cast(T / N * tf.sqrt(phi(mu(s), 2 if samples > 1 else 1))

44 <= 1., dtype) * mu(s) * T / N \

45 + beta * tf.random_normal((samples, batch_size, d),

46 stddev=np.sqrt(T / N), dtype=dtype)

47

48

49 def mc_body(idx, p):

50 _, _x = tf.while_loop(lambda _idx, s: _idx < N,

51 lambda _idx, s: sde_body(_idx, s,

52 mc_samples_ref),

53 loop_var_mc)

54 return idx + 1, p + tf.reduce_mean(phi(_x, 2), axis=0)

55

56

57 loop_var_mc = (tf.constant(0),

58 tf.ones((mc_samples_ref, batch_size, d), dtype) * xi)

59 loop_var = (tf.constant(0), tf.ones((1, batch_size, d), dtype) * xi)

60 _, x_sde = tf.while_loop(lambda idx, s: idx < N,

61 lambda idx, s: sde_body(idx, s, 1),

62 loop_var)

63 _, u = tf.while_loop(lambda idx, p: idx < mc_rounds_ref,

64 mc_body,

49

65 (tf.constant(0), tf.zeros((batch_size, 1), dtype)))

66 u_reference = u / tf.cast(mc_rounds_ref, tf.float32)

67

68 kolmogorov_train_and_test(xi, tf.squeeze(x_sde, axis=0), phi, u_reference,

69 neurons, lr_boundaries, lr_values, train_steps,

70 mc_rounds, mc_freq, ’example3_4.csv’, dtype)

4.6 A Python source code associated to the numerical simula-
tions in Subsection 3.6

Python code 6: example3 6.py

1 import numpy as np

2 import tensorflow as tf

3 from common import kolmogorov_train_and_test

4

5 tf.reset_default_graph()

6 dtype = tf.float32

7 batch_size = 1024

8

9 T, N, d = 1., 100, 50

10 alpha, K = 0.05, 110.

11 kappa, sigma = 0.6, 0.2

12 theta, rho = 0.04, -0.8

13 S_0 = tf.random_uniform((batch_size, d / 2),

14 minval=90., maxval=110., dtype=dtype)

15 V_0 = tf.random_uniform((batch_size, d / 2),

16 minval=0.02, maxval=0.2, dtype=dtype)

17 h = T / N

18 neurons = [d + 50, d + 50, 1]

19 train_steps = 750000

20 mc_rounds, mc_freq = 10, 25000

21 mc_samples_ref, mc_rounds_ref = 256, 4096

22 lr_boundaries = [250001, 500001]

23 lr_values = [0.001, 0.0001, 0.00001]

24 xi = tf.reshape(tf.stack([S_0, V_0], axis=2),

25 (batch_size, d))

26

27

28 def phi(x, axis=1):

29 return np.exp(-alpha * T) \

30 * tf.maximum(K - tf.reduce_mean(tf.exp(x), axis=axis,

31 keepdims=True), 0.)

32

33

34 def sde_body(idx, s, v, samples):

50

35 _sqrt_v = tf.sqrt(v)

36 dw_1 = tf.random_normal(shape=(samples, batch_size, d / 2),

37 stddev=np.sqrt(h), dtype=dtype)

38 dw_2 = rho * dw_1 + np.sqrt(1. - rho ** 2) \

39 * tf.random_normal(shape=(samples, batch_size, d / 2),

40 stddev=np.sqrt(h), dtype=dtype)

41 return tf.add(idx, 1), s + (alpha - v / 2.) * h + _sqrt_v * dw_1, \

42 tf.maximum(tf.maximum(np.float32(sigma / 2. * np.sqrt(h)),

43 tf.maximum(np.float32(sigma / 2. * np.sqrt(h)),

44 _sqrt_v)

45 + sigma / 2. * dw_2) ** 2

46 + (kappa * theta - sigma ** 2 / 4. - kappa * v) * h, 0.)

47

48

49 def mc_body(idx, p):

50 _, _x, __v = tf.while_loop(lambda _idx, s, v: _idx < N,

51 lambda _idx, s, v: sde_body(_idx, s, v,

52 mc_samples_ref),

53 loop_var_mc)

54 return idx + 1, p + tf.reduce_mean(phi(_x, 2), axis=0)

55

56

57 loop_var_mc = (tf.constant(0), tf.ones((mc_samples_ref, batch_size, d / 2),

58 dtype) * tf.log(S_0),

59 tf.ones((mc_samples_ref, batch_size, d / 2),

60 dtype) * V_0)

61 loop_var = (tf.constant(0), tf.ones((1, batch_size, d / 2),

62 dtype) * tf.log(S_0),

63 tf.ones((1, batch_size, d / 2), dtype) * V_0)

64 _, x_sde, _v = tf.while_loop(lambda idx, s, v: idx < N,

65 lambda idx, s, v: sde_body(idx, s, v, 1),

66 loop_var)

67 _, u = tf.while_loop(lambda idx, p: idx < mc_rounds_ref, mc_body,

68 (tf.constant(0), tf.zeros((batch_size, 1), dtype)))

69 u_reference = u / tf.cast(mc_rounds_ref, tf.float32)

70

71 kolmogorov_train_and_test(xi, tf.squeeze(x_sde, axis=0), phi, u_reference,

72 neurons, lr_boundaries, lr_values, train_steps,

73 mc_rounds, mc_freq, ’example3_5.csv’, dtype)

References

[1] Alfonsi, A. On the discretization schemes for the CIR (and Bessel squared) pro-
cesses. Monte Carlo Methods and Applications mcma 11, 4 (2005), 355–384.

51

[2] Andersson, Adam and Jentzen, Arnulf and Kurniawan, Ryan. Existence,
uniqueness, and regularity for stochastic evolution equations with irregular initial
values. arXiv:1512.06899 (2015), 35 pages. Revision requested from J. Math. Anal.
Appl.

[3] Beck, C., E, W., and Jentzen, A. Machine learning approximation algorithms for
high-dimensional fully nonlinear partial differential equations and second-order back-
ward stochastic differential equations. arXiv:1709.05963 (2017), 56 pages. Revision
requested from J. Nonlinear Sci.

[4] Becker, S., Cheridito, P., and Jentzen, A. Deep optimal stopping.
arXiv:1804.05394 (2018), 18 pages.

[5] Bellman, R. E. Dynamic Programming. Princeton University Press, 1957.

[6] Bishop, C. M. Pattern recognition and machine learning. Information Science and
Statistics. Springer, New York, 2006.

[7] Brennan, M. J., and Schwartz, E. S. The valuation of american put options.
The Journal of Finance 32, 2 (1977), 449–462.

[8] Brennan, M. J., and Schwartz, E. S. Finite difference methods and jump
processes arising in the pricing of contingent claims: A synthesis. The Journal of
Financial and Quantitative Analysis 13, 3 (1978), 461–474.

[9] Brenner, S., and Scott, R. The mathematical theory of finite element methods,
vol. 15. Springer Science & Business Media, 2007.

[10] Ciarlet, P. G. Basic error estimates for elliptic problems.

[11] Cox, S., Hutzenthaler, M., and Jentzen, A. Local Lipschitz continuity in the
initial value and strong completeness for nonlinear stochastic differential equations.
arXiv:1309.5595 (2013), 84 pages.

[12] Cox, Sonja and Jentzen, Arnulf and Kurniawan, Ryan and Pušnik,

Primož. On the mild Itô formula in Banach spaces. arXiv:1612.03210 (2016), 27
pages. Accepted in Discrete Contin. Dyn. Syst. Ser. B.

[13] Da Prato, G., and Zabczyk, J. Stochastic Equations in Infinite Dimensions.
Encyclopedia of Mathematics and its Applications. Cambridge University Press, 2008.

[14] E, W., Han, J., and Jentzen, A. Deep learning-based numerical methods for
high-dimensional parabolic partial differential equations and backward stochastic dif-
ferential equations. Communications in Mathematics and Statistics (2017), 349–380.

52

[15] E, W., and Yu, B. The Deep Ritz method: A deep learning-based numerical
algorithm for solving variational problems. arXiv:1710.00211 (2017), 14 pages.

[16] Fujii, M., Takahashi, A., and Takahashi, M. Asymptotic Expansion as Prior
Knowledge in Deep Learning Method for high dimensional BSDEs. arXiv:1710.07030
(2017), 16 pages.

[17] Giles, M. B. Multilevel Monte Carlo path simulation. Oper. Res. 56, 3 (2008),
607–617.

[18] Glorot, X., and Bengio, Y. Understanding the difficulty of training deep feed-
forward neural networks. In Proceedings of the thirteenth international conference on
artificial intelligence and statistics (2010), pp. 249–256.

[19] Golub, G. H., and Van Loan, C. F. Matrix computations, fourth ed. Johns Hop-
kins Studies in the Mathematical Sciences. Johns Hopkins University Press, Baltimore,
MD, 2013.

[20] Graham, C., and Talay, D. Stochastic simulation and Monte Carlo methods,
vol. 68 of Stochastic Modelling and Applied Probability. Springer, Heidelberg, 2013.
Mathematical foundations of stochastic simulation.

[21] Gyöngy, I. A note on Euler’s approximations. Potential Anal. 8, 3 (1998), 205–216.

[22] Hairer, M., Hutzenthaler, M., and Jentzen, A. Loss of regularity for Kol-
mogorov equations. Ann. Probab. 43, 2 (2015), 468–527.

[23] Han, H., and Wu, X. A fast numerical method for the black–scholes equation of
american options. SIAM Journal on Numerical Analysis 41, 6 (2003), 2081–2095.

[24] Han, J., Jentzen, A., and E, W. Overcoming the curse of dimensionality: Solving
high-dimensional partial differential equations using deep learning. arXiv:1707.02568
(2017), 13 pages.

[25] Hefter, M., and Herzwurm, A. Strong convergence rates for Cox-Ingersoll-Ross
processes—full parameter range. J. Math. Anal. Appl. 459, 2 (2018), 1079–1101.

[26] Henry-Labordere, P. Deep Primal-Dual Algorithm for BSDEs: Applica-
tions of Machine Learning to CVA and IM. 16 pages. Available at SSRN:
https://ssrn.com/abstract=3071506.

[27] Higham., D. J. An Algorithmic Introduction to Numerical Simulation of Stochastic
Differential Equations. SIAM Review 43, 3 (2001), 525–546.

53

[28] Higham, D. J. Stochastic ordinary differential equations in applied and computa-
tional mathematics. IMA journal of applied mathematics 76, 3 (2011), 449–474.

[29] Higham, D. J., Mao, X., and Stuart, A. M. Strong convergence of Euler-type
methods for nonlinear stochastic differential equations. SIAM J. Numer. Anal. 40, 3
(2002), 1041–1063.

[30] Hofmann, N., Müller-Gronbach, T., and Ritter, K. Optimal approximation
of stochastic differential equations by adaptive step-size control. Math. Comp. 69, 231
(2000), 1017–1034.

[31] Hörmander, L. Hypoelliptic second order differential equations. Acta Math. 119
(1967), 147–171.

[32] Hutzenthaler, M., and Jentzen, A. Numerical approximations of stochastic
differential equations with non-globally Lipschitz continuous coefficients. Mem. Amer.
Math. Soc. 236, 1112 (2015), v+99.

[33] Hutzenthaler, M., Jentzen, A., and Kloeden, P. E. Strong convergence of an
explicit numerical method for SDEs with nonglobally Lipschitz continuous coefficients.
Ann. Appl. Probab. 22, 4 (2012), 1611–1641.

[34] Hutzenthaler, M., Jentzen, A., and Wang, X. Exponential integrability prop-
erties of numerical approximation processes for nonlinear stochastic differential equa-
tions. Math. Comp. 87, 311 (2018), 1353–1413.

[35] Hutzenthaler, Martin and Jentzen, Arnulf and Salimova, Diy-

ora. Strong convergence of full-discrete nonlinearity-truncated accelerated expo-
nential Euler-type approximations for stochastic Kuramoto-Sivashinsky equations.
arXiv:1604.02053 (2016), 40 pages. Accepted in Comm. Math. Sci.

[36] Ioffe, S., and Szegedy, C. Batch normalization: Accelerating deep network
training by reducing internal covariate shift. arXiv:1502.03167 (2015), 11 pages.

[37] Jentzen, A., Kuckuck, B., Neufeld, A., and von Wurstemberger, P.

Strong Lp-error analysis for stochastic gradient descent optimization algorithms.
(2018), 51 pages.

[38] Kingma, D., and Ba, J. Adam: a method for stochastic optimization. Proceedings
of the International Conference on Learning Representations (ICLR), 2015.

[39] Klenke, A. Probability theory, second ed. Universitext. Springer, London, 2014. A
comprehensive course.

54

[40] Kloeden, P. E. The systematic derivation of higher order numerical schemes for
stochastic differential equations. Milan J. Math. 70 (2002), 187–207.

[41] Kloeden, P. E., and Platen, E. Numerical solution of stochastic differential
equations, vol. 23 of Applications of Mathematics (New York). Springer-Verlag, Berlin,
1992.

[42] Kloeden, P. E., Platen, E., and Schurz, H. Numerical solution of SDE through
computer experiments. Springer Science & Business Media, 2012.

[43] Kushner, H. Finite difference methods for the weak solutions of the kolmogorov
equations for the density of both diffusion and conditional diffusion processes. Journal
of Mathematical Analysis and Applications 53, 2 (1976), 251 – 265.

[44] Maruyama, G. Continuous Markov processes and stochastic equations. Rend. Circ.
Mat. Palermo (2) 4 (1955), 48–90.

[45] Milstein, G. N. Approximate integration of stochastic differential equations. Teor.
Verojatnost. i Primenen. 19 (1974), 583–588.

[46] Milstein, G. N. Numerical integration of stochastic differential equations, vol. 313
of Mathematics and its Applications. Kluwer Academic Publishers Group, Dordrecht,
1995. Translated and revised from the 1988 Russian original.

[47] Milstein, G. N., and Tretyakov, M. V. Stochastic numerics for mathematical
physics. Scientific Computation. Springer-Verlag, Berlin, 2004.

[48] Milstein, G. N., and Tretyakov, M. V. Numerical Integration of Stochas-
tic Differential Equations with Nonglobally Lipschitz Coefficients. SIAM Journal on
Numerical Analysis 43, 3 (2005), 1139–1154.

[49] Müller-Gronbach, T., and Ritter, K. Minimal errors for strong and weak
approximation of stochastic differential equations. In Monte Carlo and quasi-Monte
Carlo methods 2006. Springer, Berlin, 2008, pp. 53–82.

[50] Øksendal, B. Stochastic differential equations, sixth ed. Universitext. Springer-
Verlag, Berlin, 2003. An introduction with applications.

[51] Raissi, M. Forward-backward stochastic neural networks: Deep learning of high-
dimensional partial differential equations. arXiv:1804.07010 (2018).

[52] Rößler, A. Runge-Kutta Methods for the Strong Approximation of Solutions of
Stochastic Differential Equations. Shaker, Aachen, 2009.

55

[53] Ruder, S. An overview of gradient descent optimization algorithms.
arXiv:1609.04747 (2016), 14 pages.

[54] Sabanis, S. A note on tamed Euler approximations. Electron. Commun. Probab. 18
(2013), no. 47, 10.

[55] Sabanis, S. Euler approximations with varying coefficients: the case of superlinearly
growing diffusion coefficients. Ann. Appl. Probab. 26, 4 (2016), 2083–2105.

[56] Schwartz, E. S. The valuation of warrants: Implementing a new approach. Journal
of Financial Economics 4, 1 (1977), 79 – 93.

[57] Sirignano, J., and Spiliopoulos, K. DGM: A deep learning algorithm for solving
partial differential equations. arXiv:1708.07469 (2017), 16 pages.

[58] Zhao, J., Davison, M., and Corless, R. M. Compact finite difference method
for american option pricing. Journal of Computational and Applied Mathematics 206,
1 (2007), 306 – 321.

[59] Zienkiewicz, O. C., Taylor, R. L., Zienkiewicz, O. C., and Taylor, R. L.

The finite element method, vol. 3. McGraw-hill London, 1977.

56

	Introduction
	Derivation and description of the proposed approximation algorithm
	Kolmogorov partial differential equations (PDEs)
	On stochastic differential equations and Kolmogorov PDEs
	Formulation as minimization problem
	Discretization of the stochastic differential equation
	Deep artificial neural network approximations
	Stochastic gradient descent-type minimization
	Description of the algorithm in a special case
	Description of the algorithm in the general case

	Examples
	Setting
	Heat equation
	Geometric Brownian motions
	Black-Scholes model with correlated noise
	Stochastic Lorenz equations
	Heston model

	Python source codes
	Python source code for the algorithm
	A Python source code associated to Subsection ??
	A Python source code associated to Subsection ??
	A Python source code associated to Subsection ??
	A Python source code associated to Subsection ??
	A Python source code associated to Subsection ??

