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Abstract

The aim of this paper is to present and analyze a new direct method for solving
the linear elasticity inverse problem. Given measurements of some displacement
fields inside a medium, we show that a stable reconstruction of elastic parameters
is possible, even for discontinuous parameters and without boundary information.
We provide a general approach based on the weak definition of the stiffness-to-
force operator which conduces to see the problem as a linear system. We prove
that in the case of shear modulus reconstruction, we have an L

2-stability with only
one measurement under minimal smoothness assumptions. This stability result is
obtained though the proof that the linear operator to invert has closed range. We
then describe a direct discretization which provides stable reconstructions of both
isotropic and anisotropic stiffness tensors.
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1 Introduction

Elastography is an imaging modality that aims at reconstructing the mechanical proper-
ties of tissues. The local values of the elastic parameters can be used as a discriminatory
criterion to differentiate healthy tissues from diseased tissues [30]. Elasticity imaging
emerged in the late 80’s and early 90’s as a way to improve the diagnostics on ultrasound
images [22]. A variety of techniques have been developed since then to assess the elastic
parameters of tissues in vivo. For a comprehensive list of the different seminal works on
the subject, we refer the reader to the reviews [16, 27, 15, 34].

Most of the elastography methods are based on the following four steps:

(i) Perturb a medium with a mechanical stimulation (static, harmonic, or transient);
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(ii) Image the deformation of the medium (usually via ultrasound imaging, magnetic
resonance imaging, or optical coherence tomography);

(iii) Reconstruct the displacement field or some of its components in the medium;

(iv) Reconstruct the mechanical properties of the medium by solving an inverse problem.

In most cases, the scale of the imaging resolution and the amplitude of the displace-
ment field justify the use of linear elasticity model:

−∇ · (C : ∇su) = f ,

where C = {Cijkl}1≤i,j,k,l≤d is the order four unknown elasticity tensor in dimension
d ∈ {2, 3}, ∇su := (∇u + ∇uT )/2 is the strain tensor associated to the displacement
field u. The internal force density f depends on the type of source excitation: In the
elastostatic regime, f is zero, in elastodynamics, f = ∂ttu or f = −ω2u in the time
harmonic regime.

1.1 Scientific context

We consider the problem of reconstructing the elasticity tensor C from the knowledge of
a finite number n of displacement fields {uℓ}nℓ=1 solutions of the system of linear elasticity

−∇ · (C : ∇suℓ) = f ℓ,

where the force densities f ℓ are assumed to be known. In the isotropic elastic cases, the
tensor C can be written as

C = 2µI+ λI ⊗ I,

where µ and λ are the Lamé coefficients, I is the identity tensor Iijkl = δikδjl and I is
the identity matrix Iij = δij. Note that some results about the stability of this inverse
problem can be found in [6, 35, 9].

Before reviewing the different inversion methods already developed for the fourth
step, it is important to have in mind the methods available for the reconstruction of the
displacement field (third step). Displacement field reconstructions methods fall into two
categories:

(i) Methods that, given images of the unperturbed and the perturbed medium, use
a mathematical treatment to recover the geometrical transformation between the
images. Such methods can be based, for exemple, on speckle correlation technique
[32], optimal control [3] or optimal transport [20].

(ii) Direct reconstruction of the displacement field (or one of its components) during the
imaging procedure. Since ultrasound and OCT are imaging modalities that rely on
the computation of a travel time in a single scattering regime, axial displacements
that are one or two orders of magnitude below the resolution of the imaging modality
can be directly reconstructed by measuring a phase shift of the backscattered echo,
with a very high frame rate (∼ 10 KHz for ultrasound [29], ∼ 700 Hz for OCT [33,
26]). Although generally only the axial displacement is recovered by this method,
a smart illumination sequence allows for a recovery of the axial and the lateral
displacements [31, 8]. Step 2 and 3 are therefore performed simultaneously.
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A variety of methods are already available to perform the recovery problem (fourth
step), depending on the type of mechanical stimulation, the data available (full internal
displacement field or partial displacement field, single or multiple measurements), or
the used model (linear compressible elasticity or incompressible Navier equation). Most
inversion algorithms roughly fall into one of these categories:

(i) Resolution of a first-order transport equation [21, 23, 24, 7];

(ii) Algebraic inversions [10, 29, 12, 9];

(iii) Iterative inversions [2, 4, 5].

First order methods and algebraic inversions are stable under some regularity assump-
tions on the elastic parameters of the medium and the reconstructed displacement field,
but their performances decrease when the Lamé parameters are not locally differentiable,
which is often the case in biological media, or when the reconstruction of the displacement
field is noisy. Moreover, they assume boundary knowledge which is usually not available
in biomedical applications.

Iterative inversions assume less regularity for the elastic parameters, but are com-
putationally more costly, since a forward problem needs to be simulated at each step.
In practice, it is difficult to use this approach because some boundary information is
required.

In clinical applications, the current state of the art for ultrasound and OCT based
shear modulus imaging [28, 11, 14, 26] is the algebraic inversion method developed in
[12, 25]. It relies on the assumption that the medium is locally homogeneous (but not
necessarily isotropic [17]) and is based on the computation of the group speed of a shear
wave. In this locally homogeneous case, the different polarizations of the elastic waves
are decoupled, and only one component of the displacement field is required to compute
the shear modulus. More precisely, the shear wave equation is

−∇ · (µ∇su) = −∂ttu

and if µ is constant almost everywhere, one can assume that

− µ∇ · (∇su) ≈ −∂ttu almost everywhere. (1)

This approximation is in general false but it allows to simply approach µ as the square
of the group speed of the shear wave. One just has to observe shear waves displacement
using a fast enough imaging method. Another possible technique is to directly use the
approximation

µ ≈ |∂ttu|
|∇ · (∇su)| (2)

at positions and times such that ∇ · (∇su) does not vanish. These methods have the
advantages of being able to reconstruct a good image of the shear modulus from small
sub-wavelength displacement fields, at a very low computational cost (no matrix inversion
needed). Nevertheless, the method fails to quantitatively reconstruct the shear modulus
where the medium exhibits discontinuities or strong variations. It is also not applicable
to elastostatic experiments as the term ∂ttu must not vanish.
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The method that we propose in this article is directly inspired by the previous for-
mulae. If one defines the linear operator Au : µ 7→ −∇ · (µ∇su), the approximation
made in (1) is in fact a diagonal approximation of Au defining the diagonal operator
Du = µ 7→ −µ∇ · (∇su) and the inverse formula (2) is equivalent to Du(µ) ≈ −∂ttu.

As we can imagine, approaching Au by Du can be very optimistic in strongly hetero-
geneous media. In this article, we directly study the operator Au in order to stably invert
it when it is possible.

1.2 Outline of the article and the main results

In this paper, we study a new direct inversion method for reconstructing coefficients of
the elasticity tensor from internal fields measurements. The outline of the paper is the
following:

(i) we introduce a general weak formulation for the inverse problem (Section 2);

(ii) we theoretically study the operator to invert (null space, closed range property,
stability of the inversion) in the isotropic shear modulus imaging case (Section 3);

(iii) we study the numerical performance of the method in the previous case as well
as in some more general frameworks, in particular, for reconstructing both Lamé
coefficients and anisotropic media (Section 4).

The strength of this direct inversion method is the fact that it combines the low
computational cost of an algebraic inversion method (compared to the costly iterative
methods) without requiring the high regularity assumptions on the coefficients to be
reconstructed.

The determination of the null space of the operator to invert (Theorem 3) and the
main stability result (Theorem 6) for the inversion are obtained under a weak regularity
assumption on the coefficients of the elasticity tensor, allowing the reconstruction of
discontinuous coefficients. To the best of our knowledge, it is the first time that a non-
iterative inversion method is theoretically studied for discontinuous elastic coefficients.
The main consequence of this theoretical study is that the stable reconstruction of a
discontinuous shear modulus is possible from one single measurement.

The numerical experiments shown in Section 4 are also new. We introduce a P1−P0

finite elements basis for the resolution of the inverse problem. We show that the sharp
reconstruction of discontinuous coefficients from a minimal number of measurements is
possible, and therefore that the theoretical results of Section 3 numerically hold in a more
general setting.

2 The inverse problem

2.1 The direct weak formulation

Consider a smooth elastic medium Ω̃ ⊂ R
d, d = 2 or 3 with linear elastic properties

described by the unknown elasticity tensor C(x) ∈ T 4
sym. The space T 4

sym as well as
the different tensor products are all defined in Definition A.1. We assume that the
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unknown tensor C belongs to L∞(Ω̃, T 4
sym). Consider now that one has measured internal

displacement field u, which corresponds to the internal force density f in some smooth
subdomain of interest Ω ⊂ Ω̃. The field u ∈ H1(Ω̃,Rd) satisfies the linear elasticity
equation

−∇ · (C : ∇su) = f in Ω,

in the sense of distributions, i.e., in D′(Ω,Rd). In the case of multiple measurements,
we assume knowledge of a finite number n of force densities f ℓ and the corresponding
displacement fields uℓ satisfying linear elasticity equation

−∇ · (C : ∇suℓ) = f ℓ in Ω,

in the sense of distributions. As C ∈ L∞(Ω, T 4
sym) and ∇su ∈ L2(Ω,Rd×d

sym), the previous
equation makes sense in H−1(Ω,Rd) writing

∫

Ω

(C : ∇suℓ) : ∇sv =
〈
f ℓ,v

〉
H−1,H1

0
, ∀v ∈ H1

0 (Ω,R
d). (3)

Here, 〈 , 〉H−1,H1
0
denotes the duality pairing between H−1 and H1

0 . Note that, by consid-

ering this problem in H−1 (taking test functions in H1
0 ), we naturally forget what happens

on the boundary. This classical weak formulation naturally introduces a bilinear form aC
such that the forward problem reads

aC(u,v) = l(v), ∀v ∈ H1
0 (Ω,R

d).

The method that we present is based on the simple idea of changing the point of view
and, given a vector field u, writing (3) as a bilinear form acting on (C,v) instead of
(u,v):

au(C,v) = l(v), ∀v ∈ H1
0 (Ω,R

d). (4)

In order to stay in a Hilbert space framework, we make the non-restrictive assumption
that the strain tensor ∇su is bounded. We will stand under this hypothesis in the whole
paper.

Definition 2.1 (Stiffness-to-force operator). If ∇su ∈ L∞(Ω,Rd×d
sym), then (4) canonically

defines the bounded operator:

Au : L2(Ω, T 4
sym)−→H−1(Ω,Rd)

C 7−→ −∇ · (C : ∇su),

which is called the stiffness-to-force operator.

Hence, the general inverse problem that we want to solve simply reads AuC = 0 in
the elastostatic case and AuC = f in the elastodynamic case.

In most of the cases, we do not look for a general tensor C(x) ∈ T 4
sym and we know,

a priori, that it can be decomposed as a sum of known directions:

C(x) =
N∑

k=1

µ(k)(x)Ck, ∀x ∈ Ω,
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where µ(k) are unknown functions of L2(Ω) and Ck are known constant tensors. For
instance, in isotropic cases C(x) = 2µ(x)I or C(x) = 2µ(x)I+ λ(x)I ⊗ I, where µ and λ
are the two Lamé parameters. Hence, the reconstruction of C(x) can be obtained from
the reconstruction of the µ(k)(x) solutions of the variational problem:

N∑

k=1

∫

Ω

µ(k)(x)
(
Ck : ∇suℓ(x)

)
: ∇sv(x)dx =

〈
f ℓ,v

〉
H−1,H1

0
∀v ∈ H1

0 (Ω,R
d),

or equivalently

N∑

k=1

〈
ACk

uℓ (µ
(k)),v

〉
H−1,H1

0

= 〈f ℓ,v〉H−1,H1
0
.

Here, for all u ∈ W 1,∞(Ω,Rd) and C ∈ T 4
sym, the bounded linear operator AC

u : L2(Ω) →
H−1(Ω,Rd) is defined by

AC
u (µ) = −∇ · (µC : ∇su).

The general recovery problem with multiple measurements reads as the following system:


AC1

u1 . . . ACN

u1

...
...

AC1

un . . . ACN

un






µ(1)

...
µN)


 =



f1

...
fn


 .

Remark 2.1. As we will see in Section 4, this formulation is naturally adapted to a finite
element discretization when looking for the coefficients µ(k)(x) in P0 using test functions
in P1

0 .

2.2 Existing stability results

Although the question of the injectivity is very hard without extra regularity assumptions
on C, there exists some stability results for the reconstruction of the tensor C. The most
important one can be found in [9]. We include here, for the sake of completeness, the
following stability result for data with W 2,∞ regularity for u.

Theorem 1 (see [9]). Let (u1, . . . ,un) and (ũ1, . . . , ũn) be two families of displacement
fields of size n = d(d+ 1)/2 +N/d and A := (Au1 , . . . , Aun), Ã := (Aũ1 , . . . , Aũn) be the

corresponding multiple data stiffness-to-force operators. If the tensors C and C̃ satisfy

AC = 0 and ÃC̃ = 0,

under some extra assumptions on the linear independence of these families of displacement
fields, then C and C̃ can each be uniquely reconstructed over Ω up to a multiplicative
constant. Moreover, if we assume that ‖C‖L∞(Ω) = ‖C̃‖L∞(Ω), then

‖C− C̃‖L∞(Ω) + ‖∇ ·C−∇ · C̃‖L∞(Ω) ≤ k
n∑

ℓ=1

‖∇suℓ −∇sũ(ℓ)‖W 1,∞(Ω),

where k does not depend on C and C̃.
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We refer the reader to [9] for more details.

Remark 2.2. If we assume that the elasticity tensor C is of the form C = 2µI or
C = 2µI+ λI ⊗ I, in dimension 2, then Theorem 1 implies that one needs at least 4 sets
of measurements in order to reconstruct C up to a multiplicative constant. Moreover, one
needs ∇suℓ to be Lipschitz.

2.3 Classical elastic media inversion problems

2.3.1 Shear modulus inversion

In the ideal case where λ is equal to zero or it is assumed to be known in the medium,
the elasticity equation reads as

−∇ · (µ∇suℓ) = f ℓ in H−1(Ω,Rd)

which corresponds to the previous model with N = 1, µ = µ(1) and C1 = I. Note that in
the static case (f ℓ = 0), the recovery problem is equivalent to finding µ in the null space
of (AI

u). In particular, formally, if uℓ is smooth and if ∇suℓ is invertible, then

∇ · (µ∇suℓ) = 0 and µ > 0

implies that
µ∇suℓ

(
∇ log(µ) + (∇suℓ)−1∆suℓ

)
= 0,

which suggests that this equation has a non-trivial solution if and only if there exists ϕ
such as

(∇suℓ)−1∆uℓ = ∇ϕ.

In that case,
N(AI

uℓ) = span {exp(−ϕ)} .
The problem of showing that the null space of AI

uℓ is at most of dimension one has been
solved in [10] in the case of smooth coefficients. The aim of the next section is to generalize
this approach for discontinuous strain tensors.

Remark 2.3. The method developed in [10] can be numerically implemented by using the
Helmholtz decomposition of (∇suℓ)−1∆uℓ. Moreover, it suggests also that only one set of
data is required to reconstruct µ up to a multiplicative constant.

2.3.2 Inversion of Lamé coefficients

In the general isotropic case, i.e, P = 2, µ(1) = µ, C1 = I, µ(2) = λ and C2 = I ⊗ I, the
coefficient λ is associated to the operator AI⊗I

u defined by

AI⊗I
u (λ) = ∇ (λ∇ · u) .

Formally, its null space is at most of dimension one and is given by

N
(
AI⊗I

u

)
= Span

{
1

∇ · u

}
.
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In practice, this shows that the reconstruction of Lamé coefficients (µ, λ) requires at least
two sets of data u1 and u2:

(
2AI

u1 AI⊗I
u1

2AI
u2 AI⊗I

u2

)(
µ
λ

)
=

(
f (1)

f (2)

)
,

which satisfy the necessary condition N
(
AI⊗I

u1

)
6= N

(
AI⊗I

u2

)
or in other terms,

∀c ∈ R, ∇ · u1 6= c∇ · u2.

2.3.3 Anisotropic medium inversion

The last example is an anisotropic medium such that the tensor takes 3 independent
directions:

C(x) = µ(1)(x)C1 + µ(2)(x)C2 + µ(3)(x)C3,

where the tensors C1, C2 and C3 are defined by

C1 : A =

(
A11 0
0 0

)
, C2 : A =

(
0 0
0 (A)22

)
, (5)

and

C3 : A =

(
0 (A12 + A21)/2

(A12 + A21)/2 0

)
. (6)

for any squared matrix A.
This is an ideal case, and doesn’t necessarily correspond to a biomedical imaging ap-

plication. It is used as a an example to show the versatility of our method. Anisotropic
shear wave imaging is of great use in cardiac imaging. The anisotropic model for the
myocardium and the imaging of the degree of anisotropy will be investigated in a forth-
coming paper.

2.4 Regularity of the coefficients of elasticity tensor

The choice of the functional spaces for the elasticity tensor’s coefficients and for u is a
crucial question. The standard theory of elliptic systems shows that the regularity of C’s
coefficients determines the regularity of the solution u of the linear elasticity equation.
For instance, it is well-known that, under some ellipticity conditions, if the coefficients of
C are in L∞, the solution u is in H1(Ω,R2) and therefore no more than L2 regularity can
be expected for ∇su. The standard Hölder theory for elliptic systems tells us that if the
coefficients are piecewise Hölder continuous, then the same regularity can be expected
for ∇su.

As we mainly focus on imaging mechanical properties of biological tissues, we should
use an appropriate model for the elastic coefficients. Typically, it is not realistic to assume
that the elastic coefficients are everywhere differentiable, since biological tissues are often
constituted of different types of embedded materials which exhibit discontinuities.

A good acceptable model for a biological medium is to assume that the biological
parameters are piecewise smooth with smooth discontinuity surfaces. Out of these dis-
continuities, we suppose a Sobolev type smoothness. We call such a space of function
W 1,p

pw (Ω), and give its precise definition in Definition 3.1.
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We will also use spaces that include discontinuous functions and that are more general
than those in W 1,p

pw (Ω). We introduce the subspace SBV (Ω) ⊂ BV (Ω) of the functions
of bounded variations whose discontinuity sets have no Cantor parts. The full precise
definition is given in Definition 3.2.

The relations between the functional spaces that we use are the following:

W 1,p(Ω) ⊂ W 1,p
pw (Ω) ⊂ SBV p(Ω) ⊂ Lp(Ω).

Remark 2.4. The condition that the coefficients of the tensor belong to W 1,p
pw (Ω) or

SBV (Ω) makes an important difference between this work and the aforementioned theo-
retical works on elastography. Under this assumption, we cannot assume that ∇su ∈ W 1,p

and the analysis becomes more complicated. This is the reason for Section 3 to be quite
lengthy and technical.

3 Shear modulus imaging: invertibility and stability

in the isotropic case

In this section, we study the so-called shear-to-force operator

AI
u : L2(Ω) −→ H−1(Ω,Rd)

µ 7−→ −∇ · (µ∇su) .

The outline of this section is the following:

(i) In Subsection 3.2, we study the null space of AI
u and we extend the results of

[10] by showing that under low regularity assumptions for u (typically, SBV type
regularity for ∇su), the null space is of dimension zero or one.

(ii) In Subsection 3.3, we study the solvability of the inverse problem by giving sufficient
conditions on ∇su for the operator AI

u to be of closed range, therefore ensuring the
continuity of the inverse on the orthogonal of the null space. We first prove that the
operator AI

u as closed range under invertibility and W 1,p smoothness assumption
for ∇su, for some p > d. We then relax the regularity assumption to a piecewise
regularity ∇su ∈ W 1,p

pw (Ω), ensuring the solvability of the inverse problem when
looking for piecewise smooth shear modulii.

(iii) In Subsection 3.4, we give quantitative results on the stability of the inversion of
AI

u.

3.1 Spaces of discontinuous functions

In order to prove invertibility and stability of the inverse problem under minimal smooth-
ness assumptions on the coefficients and the data, we introduce here two spaces of dis-
continuous functions.
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3.1.1 The space W 1,p
pw(Ω)

Definition 3.1. A function f is said to be in W 1,p
pw (Ω) for 1 ≤ p ≤ +∞, if there exists a

smooth covering Ω1,. . . ,Ωk, for k ≥ 1, such that

(i) Ωi is a smooth open connected subdomain of Ω for every i ∈ {1, . . . , k};

(ii) Ωi ∩ Ωj = ∅ if i 6= j;

(iii)
k⋃

i=1

Ωi = Ω;

(iv) ∀i ∈ {1, . . . , k}, f
∣∣
Ωi

∈ W 1,p (Ωi) .

In order to have an even more general set of discontinuous functions, we introduce
the following space inspired by the space SBV (Ω).

3.1.2 The space SBVp(Ω)

Since the derivative of a function f ∈ BV (Ω) can be decomposed as:

Df = ∇fHd + [f ]nSHd−1
S +Dcf,

where Hd is the Lebesgue measure on Ω, Hd−1
S is the surface Hausdorff measure on a

rectifiable surface S, nS is a normal vector defined almost everywhere on S, f ∈ L1(Ω)
is the smooth derivative of f , [f ] ∈ L1(S,Hd−1

S ) is the jump of f across S and Dcf is a
vector measure supported on a set of Hausdorff dimension less than (d−1), which means
that its (d− 1)-Hausdorff-measure is zero. The well-known space SBV (Ω) introduced by
De Giorgi and Ambrosio [1] is the subclass of BV (Ω) of functions whose derivative Cantor
parts are zero: Dcf = 0. Following this idea, we introduce a very large piecewise-W 1,p

class of functions:

Definition 3.2. For 1 ≤ p ≤ +∞, we define

SBVp(Ω) =
{
f ∈ SBV(Ω) ∩ Lp(Ω), ∇f ∈ Lp(Ω,Rd)

}
,

where ∇f is the Lebesgue part of the measure Df .

Note that we clearly have the inclusion W 1,p
pw (Ω) ⊂ SBV p(Ω).

3.2 Null space of the shear-to-force operator

In this subsection, we prove Theorems 2 and 3, which give simple conditions on S := ∇Su
in order to ensure that the operator AI

u has a null space of dimension zero or one.

Theorem 2 (Characterization inW 1,p). Assume that ∇su ∈ L∞(Ω,Rd×d
sym)∩W 1,p(Ω,Rd×d)

for some p > d and that | det∇su| ≥ c > 0. Then the space

Ku :=
{
µ ∈ L2(Ω), ∇ · (µ∇su) = 0

}
,

is of dimension zero or one. In the second case, there exists a positive continuous function
µ0, such that Ku = span{µ0}. If Ω is Lipschitz, then µ0 belongs to W 1,p(Ω).
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Theorem 3 (Characterization in SBV p). Assume that ∇su ∈ L∞(Ω,Rd×d
sym)∩SBV p(Ω,Rd×d)

for some p > d and that | det∇su| ≥ c > 0. Then, the space

Ku :=
{
µ ∈ L2(Ω), ∇ · (µ∇su) = 0

}

is of dimension zero or one.

Proof. The proof of Theorem 3 is given in Appendix B.

Proof of Theorem 2 As | detS| ≥ c > 0, there exists S−1 ∈ L∞(Ω,Rd×d
sym) such that

SS−1 = I almost everywhere in Ω. We successively apply Propositions 3.1 and 3.3 with
b = −S−1∇ · S, which ends the proof.

Proposition 3.1 (Decomposition). Assume that S ∈ L∞(Ω,Rd×d
sym) ∩ W 1,p(Ω,Rd×d) for

some p ∈ [2,+∞] and there exists S−1 ∈ L∞(Ω,Rd×d) such that SS−1 = I almost
everywhere on Ω. Then, any solution µ of ∇ · (µS) = 0 is in W 1,1(Ω) and satisfies

∇µ+ µS−1(∇ · S) = 0.

Proof. As (∇ · S) ∈ Lp(Ω,Rd), we have for every v ∈ L∞(Ω,Rd) ∩ W 1,p(Ω,Rd) that
∇ · (Sv) ∈ Lp(Ω) and ∇ · (Sv) = (∇ · S) · v + S : ∇v. Then, we write

∫

Ω

µ∇ · (Sv) =
∫

Ω

µ(∇ · S) · v.

For any w ∈ D(Ω,Rd), the test function v = S−1w belongs to L∞(Ω,Rd) and ∇v =
∇S−1 ·w + S−1 · ∇w ∈ Lp(Ω,Rd×d), and can be used in the previous equation to get,

∫

Ω

µ∇ ·w =

∫

Ω

µ(∇ · S) · S−1w, ∀w ∈ D(Ω,Rd).

This means

∇µ = −µS−1(∇ · S).

Proposition 3.2 (Regularity). Take p > d and consider b ∈ Lp(Ω,Rd). Any solution of

{
µ ∈ L2(Ω),

∇µ = µb,

belongs to C0(Ω). If Ω is Lipschitz, then it belongs to W 1,p(Ω).

Proof. Consider a ball B ⊂ Ω. As p > d, the injection W 1,p(B) →֒ C0(B) holds. Let
us prove that µ ∈ W 1,p(B). First, note that as p ≥ 2, ∇µ = µb ∈ L1(B,Rd) and so
µ ∈ W 1,1(B). Call now q∗ = sup{q ≥ 1, µ ∈ W 1,q(B)}.

Suppose that q∗ ≤ d. For any 1 ≤ q < q∗, µ ∈ W 1,q(B) →֒ Lr(B) with 1
r
= 1

q
− 1

d
and

µb belongs to Ls(B,Rd) with 1
s
= 1

r
+ 1

p
= 1

q
− 1

d
+ 1

p
. Let β = 1

d
− 1

p
> 0. We get that

µ ∈ W 1,s(B) with 1
s
= 1

q
− β. One can choose q such that s > q∗ which contradicts the

definition of q∗. Then q∗ > d.

12



Considering that µ ∈ W 1,q(B) for some q ∈ (d, q∗] and that for such q, W 1,q(B) →֒
L∞(B), we get that µb ∈ Lp(B,Rd) and so µ ∈ W 1,p(B). As a consequence, µ is
continuous in Ω.

If Ω is Lipschitz, one can restart the proof replacing B by Ω to obtain that µ ∈
W 1,p(Ω).

Proposition 3.3 (Existence of non-zero solutions). Take p > d and consider b ∈
Lp(Ω,Rd). The problem

{
µ ∈ L2(Ω),

∇µ = µb in D′(Ω,Rd),

admits a non-zero solution if and only if the vector field b is conservative which means
that

∇ν = b in D′(Ω,Rd),

admits a continuous solution. In this case, the set of solutions is given by {αeν , α ∈ R}.
Moreover, if Ω is Lipschitz, then ν is bounded and there exists a constant m > 0 such
that µ0 := eν ≥ m.

Proof. If the equation ∇ν = b admits a solution ν ∈ C0(Ω), then eν is continuous and
positive in Ω. It satisfies in the weak sense ∇(eν) = eνb. Its inverse e−ν has the same
properties. Take µ ∈ L2(Ω) a solution of ∇µ = µb and define α = µe−ν ∈ L2

loc(Ω), then
in the weak sense, ∇α = e−ν∇µ− µe−νb = 0, so, as Ω is connected, α is constant in Ω.
This proves the first part of the result.

Assume now that ∇ν = b has no solution in C0(Ω) and consider a solution µ ∈ L2(Ω)
of the equation ∇µ = µb. Using Proposition 3.2, it follows that µ ∈ C0(Ω).

Suppose that µ does not vanish in Ω, then µ > 0 in Ω (take −µ if µ < 0), then
ν := lnµ is continuous and satisfies ∇ν = b, which is impossible.

As a consequence, µ does vanish somewhere in Ω. If µ 6= 0, then there exists a ball
B ⊂ Ω such that µ > 0 (take −µ if µ < 0) in B and µ vanishes somewhere on ∂B.
Inside B, ν := lnµ is continuous and satisfies ∇ν = b ∈ Lp(B,Rd) so ν ∈ W 1,p(B) →֒
L∞(B). Thus, µ = eν ≥ e−‖ν‖L∞(B) > 0 on B, which contradicts the fact that µ vanishes
somewhere on ∂B. Finally, it follows that µ = 0 is the only solution.

3.3 Closed range property of the shear-to-force operator

In the case of existence of a non-trivial null space for the shear-to-force operator (elas-
tostatic case), we study the possibility of a stable reconstruction of the parameter µ in
L2(Ω). We recall that a linear operator A : H → E where H is an Hilbert space and E a
Banach space has closed range if R(A) := A(H) is closed in E. The following proposition
gives an equivalent definition of this property:

Proposition 3.4 (Closed range operator). Let H and E be en Hilbert and a Banach
space. A linear operator A : H → E has closed range if and only if there exists a
constant c > 0 such that

13



∀x ∈ N(A)⊥, ‖x‖H ≤ c ‖Ax‖E .

In particular, this implies the existence of a bounded inverse operator from R(A) to
N(A)⊥. We refer the reader to [13, Section 2.7] for more details.

Theorem 4 (Closed range with strain in W 1,p). Take u such that S := ∇su ∈ W 1,p(Ω),
and that |det ∇su| > m > 0 in Ω. If N

(
AI

u

)
6= {0}, then AI

u : L2(Ω) → H−1(Ω,Rd) has
closed range.

Proof. According to Theorem 2, there exists µ0 ∈ W 1,p(Ω) such thatN
(
AI

u

)
= Span {µ0}.

By construction of µ0, there exists a constant m̃ ≥ 0 such that µ0 > m̃ in Ω. Take
f ∈ R(AI

u) and µ ∈ {µ0}⊥ such that AI
u(µ) = f . Define α = µ

µ0
∈ L2(Ω). One can write

−∇ · (αµ0S) =f in H−1(Ω,Rd),

−µ0S∇α =f in H−1(Ω,Rd),

which makes sense because µ0S ∈ W 1,p(Ω) (see Lemma A.1) and ∇ · (µ0S) = 0. Multi-
plying by µ−1

0 S−1 ∈ W 1,p yields

∇α =
S−1

µ0

f in H−1(Ω,Rd).

Using Lemma A.1, it follows that

‖∇α‖H−1(Ω) ≤
∥∥∥∥
S−1

µ0

∥∥∥∥
W 1,p(Ω)

‖f‖H−1(Ω).

Since µ = αµ0 ∈ {µ0}⊥, we have
∫
Ω
αµ2

0 = 0 and by Lemma A.2, there exists c > 0 such
that

‖α‖L2(Ω) ≤ c ‖∇α‖H−1(Ω)

≤ c

∥∥∥∥
S−1

µ0

∥∥∥∥
W 1,p(Ω)

‖f‖H−1(Ω) .

Turning now to µ = αµ0, we obtain that

‖µ‖L2(Ω) ≤ ‖α‖L2(Ω) ‖µ0‖L∞(Ω)

≤ c ‖µ0‖L∞(Ω)

∥∥∥∥
S−1

µ0

∥∥∥∥
W 1,p(Ω)

‖f‖H−1(Ω) ,

≤ c ‖µ0‖L∞(Ω)

∥∥∥∥
S−1

µ0

∥∥∥∥
W 1,p(Ω)

‖∇ · (µS)‖H−1(Ω) .

Theorem 5 (Closed range with strain inW 1,p
pw ). Take u such that S := ∇su ∈ W 1,p

pw (Ω,Rd×d),

and that |det ∇su| ≥ m > 0 in Ω. If N
(
AI

u

)
6= {0}, then AI

u : L2(Ω) → H−1(Ω,Rd) has
closed range.
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Proof. According to Theorem 3, there exists µ0 ∈ L2(Ω) and ‖µ0‖L2(Ω) = 1 and such

that N(AI
u) = span {µ0}. By construction, there exists m > 0 such that |µ0| ≥ m̃.

Take f ∈ R(AI
u) and µ ∈ L2(Ω) such that AI

uµ = f . Define α = µ
µ0

∈ L2(Ω). As

S ∈ W 1,p
pw (Ω,Rd×d), there exists a domain decomposition Ω1, . . . ,Ωk. Note that, for αi

and fi the restrictions to Ωi, we have for any i,

AI
u(αiµ0) = fi in H−1(Ωi).

Following the proof of the previous theorem, we can control ∇αi in H−1 norm. There
exists ci > 0 such that

‖∇αi‖H−1(Ωi)
≤ ci ‖f‖H−1(Ωi)

.

Denote αΩi
:= |Ωi|−1

∫
Ωi
αi. From Lemma A.2, it follows that

‖αi − αΩi
‖L2(Ωi)

≤ ci ‖f‖H−1(Ωi)
.

Then, taking C1 = max{ci} gives

‖αi − αΩi
‖L2(Ωi)

≤ C1 ‖f‖H−1(Ω) ∀i = 1 . . . k. (7)

Consider now the following decomposition:

‖α‖2L2(Ω) =
k∑

i=1

‖αi‖2L2(Ωi)
≤

k∑

i=1

‖αi − αΩi
‖2L2(Ωi)

+ |Ωi|α2
Ωi
. (8)

It remains to prove that the mean values αΩi
are controlled by f . Going back to the

variational formulation,

∫

Ω

αµ0S : ∇v = 〈f ,v〉H−1,H1
0
,

we decompose it as follows:

k∑

i=1

∫

Ωi

αiµ0S : ∇v = 〈f ,v〉H−1,H1
0
,

k∑

i=1

∫

Ωi

(αi − αΩi
)µ0S : ∇v + αΩi

∫

Ωi

µ0S : ∇v = 〈f ,v〉H−1,H1
0
.

Recalling that µ0S is divergence free, we write
∫
Ωi
µ0S : ∇v = −

∫
∂Ωi

µ0Sni · v to get
that

k∑

i=1

αΩi

∫

∂Ωi

µ0Sni · v =
k∑

i=1

∫

Ωi

(αi − αΩi
)µ0S : ∇v − 〈f ,v〉H−1,H1

0
.

Hence, we obtain that

k∑

i=1

αΩi

∫

∂Ωi

µ0Sni · v ≤
(
1 + ‖µ0S‖L∞(Ω)

k∑

i=1

ci

)
‖f‖H−1(Ω) ‖v‖H1

0 (Ω) .
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Consider now a boundary Γij := ∂Ωi ∩ ∂Ωi 6= ∅. Remark that the left and right
normal traces of µ0S are the same (divergence free jump condition). That is to say

that µ0Sni = −µ0Snj on Γij and µ0Sni belongs to H
1
2 (Γij). Consider the continuous

extension operator Rij : H
1
2 (Γij) → H1

0 (Ω) defined by Riju|Γij
= u and such that Riju

vanishes on all other boundaries Γpq where (p, q) 6= (i, j). These operators exist because
the boundaries are distant from one another and their continuity constants can be chosen
without being dependent on Γij.

Taking now the test function vij = Rij(αΩi
− αΩj

)µ0Sni ∈ H1
0 (Ω,R

d) and using it in
the last equation gives

|αΩi
−αΩj

|2
∫

Γij

|µ0Sni|2 ≤ cR

(
1 + ‖µ0S‖L∞(Ω)

k∑

i=1

ci

)
‖f‖H−1(Ω) |αΩi

−αΩj
| ‖µ0Sni‖H 1

2 (Γij)
,

where cR is such that ‖Riju‖H1
0 (Ω) ≤ cR ‖u‖

H
1
2 (Γij)

for all Γij and u ∈ H
1
2 (Γij). Note that

the constant
∫
Γij

|µ0Sni|2 cannot be zero because |µ0| ≥ m̃ > 0 and | detS| ≥ m > 0. To

summarise, we have shown that there exists a constant C2 > 0 depending only on µ0, S,
and the decomposition (Ωi)

k
i=1 such that

|αΩi
− αΩj

| ≤ C2 ‖f‖H−1(Ω) , (9)

for all i, j such that Ωi and Ωj share a boundary. This clearly can be extended to non-
adjacent subdomains by transitivity and triangular inequality.

We now use the fact that µ ∈ {µ0}⊥, that is,
∫
Ω
αµ2

0 = 0. In other terms,

k∑

i=1

∫

Ωi

αiµ
2
0 = 0,

or

k∑

i=1

αΩi

∫

Ωi

µ2
0 = −

k∑

i=1

∫

Ωi

(αi − αΩi
)µ2

0.

We deduce from (7) that there exists a constant C3 > 0 such that

∣∣∣∣∣

k∑

i=1

αΩi

∫

Ωi

µ2
0

∣∣∣∣∣ ≤ C3 ‖f‖H−1(Ω) . (10)

From (9) and (10), we can now bound all the αΩi
by just writing

∣∣∣∣∣

k∑

i=1

αΩi

∫

Ωi

µ2
0

∣∣∣∣∣ =
∣∣∣∣∣αΩj

∫

Ω

µ2
0 +

∑

i 6=j

(αΩi
− αΩj

)

∫

Ωi

µ2
0

∣∣∣∣∣ ≤ C3 ‖f‖H−1(Ω) ,

|αΩj
|
∫

Ω

µ2
0 ≤ C3 ‖f‖H−1(Ω) +

∑

i 6=j

|αΩi
− αΩj

|
∫

Ωi

µ2
0,

and finally obtaining
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|αΩj
| ≤ (C3 + kC2) ‖f‖H−1(Ω) , ∀j.

Combining (7), (8), and the previous inequality, we arrive at

‖α‖L2(Ω) ≤ C ‖f‖H−1(Ω) .

Turning to µ = αµ0, we have

‖µ‖L2(Ω) ≤ ‖α‖L2(Ω) ‖µ0‖L∞(Ω)

≤ C ‖µ0‖L∞(Ω) ‖f‖H−1(Ω)

≤ C ‖µ0‖L∞(Ω)

∥∥AI
uµ
∥∥
H−1(Ω)

.

Hence, the proof is complete.

3.4 Stability estimates in L2(Ω)

Theorem 6 (Stability estimate for the null space estimation). Consider a displacement
field u such that ∇su ∈ L∞(Ω,Rd×d

sym) and AI
u has closed range. Take µ ∈ L2(Ω) such that

‖µ‖L2(Ω) = 1 and AI
u(µ) = 0. Take ũ ∈ H1(Ω,Rd) such that ∇sũ ∈ L∞(Ω,Rd×d

sym) and
consider

µ̃ := argmin
‖µ′‖

L2(Ω)=1,
∫
Ω µ′µ>0

∥∥AI
ũ(µ

′)
∥∥
H−1(Ω)

.

Then

‖µ̃− µ‖L2(Ω) ≤ C ‖∇sũ−∇su‖L∞(Ω)

for some constant C independent of ũ and µ̃.

Proof. Write µ̃ = αµ+ν, with ν ⊥ µ, α ∈ [0, 1]. Pythagoras theorem gives α2 + ‖ν‖2L2(Ω) = 1

and ‖µ̃− µ‖2L2(Ω) = (α − 1)2 + ‖ν‖2L2(Ω) = (α − 1)2 + (1 − α2) = 2(1 − α). Since

1− α ≤ 1− α2 = ‖ν‖2L2(Ω),

‖µ̃− µ‖2L2(Ω) ≤ 2 ‖ν‖2L2(Ω) .

Since AI
u has the closed range property, Theorem 4 yields

‖ν‖L2(Ω) ≤ c
∥∥AI

u(ν)
∥∥
H−1(Ω)

≤ c
∥∥AI

u(µ̃− αµ)
∥∥
H−1(Ω)

≤ c
∥∥AI

u(µ̃)
∥∥
H−1(Ω)

≤ c
(∥∥AI

ũ(µ̃)
∥∥
H−1(Ω)

+
∥∥[AI

u − AI
ũ

]
(µ̃)
∥∥
H−1(Ω)

)

≤ c
(∥∥AI

ũ(µ)
∥∥
H−1(Ω)

+
∥∥[AI

u − AI
ũ

]
(µ̃)
∥∥
H−1(Ω)

)

≤ c
(∥∥[AI

ũ − AI
u

]
(µ)
∥∥
H−1(Ω)

+
∥∥[AI

u − AI
ũ

]
(µ̃)
∥∥
H−1(Ω)

)
.
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Since
∥∥[AI

ũ − AI
u

]
(µ)
∥∥
H−1(Ω)

= ‖∇ · [(∇sũ−∇su)µ]‖H−1(Ω)

≤ ‖(∇sũ−∇su)µ‖L2(Ω)

≤ ‖∇sũ−∇su‖L∞(Ω) ‖µ‖L2(Ω)

≤ ‖∇sũ−∇su‖L∞(Ω)

and
∥∥[AI

u − AI
ũ

]
(µ̃)
∥∥
H−1(Ω)

≤ ‖∇sũ−∇su‖L∞(Ω) ,

the following holds:

‖µ̃− µ‖L2(Ω) ≤ 2
√
2c ‖∇sũ−∇su‖L∞(Ω) .

Theorem 7 (General stability estimate). Consider two displacement fields u, ũ such that
∇su and such that ∇sũ ∈ L∞(Ω,Rd×d

sym) and AI
u has closed range. Take a real number

r > 0 and µ, µ̃ ∈ L2(Ω) respectively solutions of

AI
u(µ) = f ,

∫

Ω

µ = 1, ‖µ‖L2(Ω) ≤ r,

AI
ũ(µ̃) = f̃ ,

∫

Ω

µ̃ = 1, ‖µ̃‖L2(Ω) ≤ r.

There exists a constant C > 0 independent on ũ, µ̃, f̃ such that,

‖µ̃− µ‖L2(Ω) ≤ C

(∥∥∥f̃ − f
∥∥∥
H−1(Ω)d

+ r ‖∇sũ−∇su‖L∞(Ω)

)
.

Proof. By difference, we write that AI
u(µ̃ − µ) = f̃ − f + (AI

u − AI
ũ)µ̃. If N(AI

u) = {0}
then µ̃− µ ∈ N(AI

u)
⊥ and applying the closed range property in the same manner than

for the previous Theorem we get

‖µ̃− µ‖L2(Ω) ≤ C

(∥∥∥f̃ − f
∥∥∥
H−1(Ω)

+ r ‖∇sũ−∇su‖L∞(Ω)

)
.

If N(AI
u) = Span{µ0}, where ‖µ0‖L2(Ω) = 1 and m0 :=

∫
Ω
µ0 6= 0, we decompose µ as

µ = αµ0 + ν and µ̃ as µ̃ = α̃µ0 + ν̃ where ν, ν̃ ∈ N(AI
u)

⊥. Then we have

‖ν − ν̃‖L2(Ω) ≤ C

(∥∥∥f̃ − f
∥∥∥
H−1(Ω)

+ r ‖∇sũ−∇su‖L∞(Ω)

)
. (11)

By Pythagoras’ theorem, ‖µ̃− µ‖2L2(Ω) = (α̃− α)2 + ‖ν̃ − ν‖2L2(Ω). Now using that

∫

Ω

(µ̃− µ) = (α̃− α)

∫

Ω

µ0 +

∫

Ω

(ν̃ − ν) = 0,

we get that
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ΓNeu

ΓDir

Ω

gℓ
Original mesh Deformed mesh

Figure 4.1: Numerical experimental setting: a non-structured meshing of the domain Ω
and the computed elastic deformation.

(α̃− α)2m2
0 ≤ |Ω| ‖ν̃ − ν‖2L2(Ω) ,

and hence,

‖µ̃− µ‖2L2(Ω) ≤
(
1 +

|Ω|
m2

0

)
‖ν̃ − ν‖2L2(Ω) . (12)

We conclude by combining inequalities (11) and (12).

4 Numerical experiments in the static case

The objective here is to numerically reconstruct an elasticity tensor C(x) in a smooth

domain Ω ⊂ Ω̃ ∈ R
2 from the knowledge of a set of data {(uℓ, f ℓ)}nℓ=1 satisfying the linear

elasticity equation

−∇ ·
(
C : ∇suℓ

)
= 0.

4.1 Forward problem and data generation

In order to generate different displacement fields uℓ ∈ H1(Ω,R2) of static elastic defor-
mation, we use the classic finite elements approach to solve the boundary-value problem





−∇ ·
(
C : ∇suℓ

)
= 0 in Ω̃,

uℓ = 0 on ΓDir,(
C : ∇suℓ

)
· n = gℓ on ΓNeu,(

C : ∇suℓ
)
· n = 0 elsewhere on ∂Ω̃,

where gℓ could be any surface force density. In the simulations, we use Ω̃ = (−1, 1)2 and
ΓDir and ΓNeu are as described in Figure 4.1.

The computations of direct data are made using the P0 −P1 finite elements method.
The solution uℓ is then interpolated and recorded on a structured Cartesian grid over Ω̃.
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The inverse problem is solved on a subdomain Ω ⊂ Ω̃ endowed with a new non-structured
mesh. This prevents from committing an inverse crime in inverting the problem using
the same discrete operator as the one used for the direct problem.

4.2 Finite elements discretization

We assume here without loss of generality that the chosen domain Ω ∈ R
2 is polygonal

that admits an exact triangular mesh Th = {Ti}NT

i=1 for any small maximum edge length
h > 0. More precisely, Th is a set of NT open triangles such that Ti ∩ Tj = ∅ if i 6= j and

Ω =
⋃NT

i=1 Ti. Let us introduce the classic function spaces associated to Th:

(i) The space P0(Th) is the set of functions that are constant on each triangle:

P0(Th) =
{
u ∈ L2(Ω,R), ∀i, u|Ti

is constant
}
.

Its canonical basis (ξj)
NT

j=1 is given by ξj := 1Ti
.

(ii) The space P1(Th) is the set of continuous functions that are linear on each triangle
Ti:

P1(Th) =
{
v ∈ H1(Ω), ∀i, v|Ti

is linear
}
.

Its canonical basis (ei)
Nn

i=1 is defined by ei(xj) = δij for any node xj of the triangu-
lation Th.

(iii) The space P1(Th,R
2) is the set of vector-valued P1(Th) functions. Its canonical

basis is denoted (ei)
2Nn

i=1 .

(iv) The space P1
0 (Th), (resp. P1

0 (Th,R
2)) is the space of P1(Th) (resp. P1(Th,R

2))
functions that vanish on ∂Ω:

P1
0 (Th) := P1(Th) ∩H1

0 (Ω) and P1
0 (Th,R

2) := P1(Th) ∩H1
0 (Ω,R

2).

(v) Its canonical basis is denoted by (ẽi)
Nint
i=1 ⊂ (ei)

Nn

i=1 (resp. (ẽi)
2Nint
i=1 ⊂ (ei)

2Nn

i=1 ) where
Nint is the number of internal nodes of the mesh.

Scalar functions µ(k) and displacement fields uℓ are then projected respectively on the
bases of P0(Th) and P1(Th):

µ(k)(x) =

NT∑

j=1

µ
(k)
j ξj(x) and uℓ(x) =

2Nn∑

i=1

uℓ
iei(x).

4.3 Discrete formulation of the inverse problem

We assume the knowledge of a model for the elasticity tensors C of the form

C(x) =
N∑

k=1

µ(k)(x)Ck,
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where all the unknown scalar fields µ(k) belong to L2(Ω) and the constant tensors Ck

are known. Recall that the reconstruction problem of each fields µ(k) reads as the linear
problem



AC1

u1 . . . ACN

u1

...
...

AC1

un . . . ACN

un







µ1

...
µN


 =



f1

...
fn


 , (13)

where the operator AC
u is defined by AC

u µ = −∇ · (µC : ∇su) , or in a weak sense by

〈AC
u µ,v〉H−1,H1

0
=

∫

Ω

µ(x)(C : ∇su(x)) : ∇sv(x)dx, ∀v ∈ H1
0 (Ω,R

d). (14)

These operators admit a straightforward finite elements discretization defining the ma-
trices AC

u ∈ R
Nint×NT and F

ℓ ∈ R
Nint as

(AC
u )ij := 〈AC

u ξj, ẽi〉H−1,H1
0
=

∫

Ω

ξj(x)(C : ∇su(x)) : ∇sẽi(x)dx,

F
ℓ
i := 〈f ℓ, ẽi〉H−1,H1

0
.

(15)

Introducing now the block matrices

A :=



A

C1

u1 . . . A
CN

u1

...
...

A
C1

un . . . A
CN

un


 ∈ R

nNint×NNT , F :=



F
1

...
F
n


 ∈ R

nNint , M =




µ1

...
µN


 ∈ R

NNT ,

the general inverse problem admits a simple discrete projection on the finite elements
spaces and reads as

AM = F. (16)

Note that, in the static case, F = 0 leads to an eigenvector problem. In this case, the
formulation becomes

AM = 0, ‖M‖2 = 1. (17)

As will be seen later, in practice it might be more convenient to impose a positivity
constraint over M := (µ1, . . . , µn)T of the form

µ(k) ≥ µ
(k)
min > 0, ∀k, (18)

since the unknown elastic parameters are indeed positive valued functions.

4.4 Least squares approach and regularization

We recall that, we have proved for the shear modulus case that the reconstruction problem
of µ from {(uℓ, f ℓ)}ℓ=1:n is theoretically well-posed in the continuous setting. This is not
clearly the case in the discretized version as the linear system AM = F has NNT degrees
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of freedom with only nNn equations. In practice, we compute the fields µ by minimizing
a regularized mean squares functional of the form

J(µ) = ‖AM− F‖22 +RTV(M),

where the regularization RTV(M) penalizes the total variation of each µ(k). More precisely,
in the case where µ ∈ P0(Th) that admits the decomposition µ(x) =

∑NT

j=1 µjξj(x), we

can show that the TV semi-norm can be directly expressed as a linear L1-penalization.
As it is clear that P0(Th) ⊂ BV (Ω), we have

|µ|TV (Ω) =

∫

Ω

|Dµ|.

Call E = {(i, j) ∈ {1, . . . , Nn}2, i 6= j, ∂Ti ∩ ∂Tj 6= ∅} the set of all the oriented internal
edges. As µ is constant on each triangle Ti, the Radon measure derivative Dµ is given by

Dµ =
1

2

∑

(i,j)∈E

(µi − µj)H1
∂Ti∩∂Tj

νij,

where νij is the normal vector from triangles Ti to Tj and H1
∂Ti∩∂Tj

is the restriction of

the dimension one Hausdorff measure to the edge (i, j). Hence,

|µ|TV (Ω) =

∫

Ω

|Dµ| = 1

2

∑

(i,j)∈E

|µi − µj|H1(∂Ti ∩ ∂Tj).

We observe that if one defines the linear operator L : P0(Th) → R
card(E) by

(Lµ)(i,j)∈E = (µi − µj)H1(∂Ti ∩ ∂Tj),

then

|µ|TV (Ω) =
1

2
‖Lµ‖ℓ1(E) .

Finally, it can be shown that the TV-regularization term RTV(M) can be expressed under
the form

RTV(M) =
n∑

k=1

ε
(k)
TV

∥∥Lµ(k)
∥∥
ℓ1(E)

, (19)

where ε
(k)
TV are regularizing parameters. The reconstruction of µ can then be computed

by minimizing the functional

J(M) = ‖AM− F‖22 +
n∑

k=1

ε
(k)
TV

∥∥Lµ(k)
∥∥
ℓ1(E)

, (20)

subject to M ≥ Mmin where Mmin := (µ(1)U, . . . , µ(n)U)T with U := (1, . . . , 1) ∈ R
NT .

Remark 4.1. In practice the minimisation of (20) can be achieved with any efficient
optimisation routine. Here, we used the CVX Matlab toolbox [19, 18] which is well-
adapted to this kind of convex optimization problems under linear constraints.
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Remark 4.2. As the given displacement fields uℓ are in general noisy, which significantly
affect the eigenvalues of the associated operator A, it could be convenient to introduce a
beforehand smoothing of these vector fields. More precisely, a natural way is to consider
an elastic regularization uℓ

εelas
defined by

uℓ
εelas

= argminu

{
1

εelas
‖u− uℓ‖2L2(Ω) + ‖∇su‖2L2(Ω)

}
.

This is also equivalent to compute uℓ
εelas

in the finite elements context as the solution of
the following linear system

uℓ
εelas

= (εelasM + L)−1(Muℓ),

where M and L are respectively the mass and the vector stiffness matrix and εelas > 0 is
a regularization parameter.

4.5 Numerical experiments

The motivation is now to present some numerical experiments in the static case where
the tensor C is assumed to be of the form:

(i) A shear modulus reconstruction only: C = µI;

(ii) A two Lamé parameters reconstruction: C = 2µI+ λI ⊗ I;

(iii) An anisotropic stiffness reconstruction: C = µ(1)C1+µ(2)C2+µ(3)C3, where tensors
C1, C2 and C3 are defined by (5) and (6).

We only present in this paper some numerical experiments in the static case but other
experiments have be done in the harmonic regime with similar results. In each case, we
then use the following additional constraints on µ(k):

µ(k) ≥ 1.

We first consider the simplest case of shear medium C = µI in order to illustrate
and analyze the influence of each of the regularization parameters εTV and εelas on the
reconstruction. In particular, we will see that the reconstruction of µ is very accurate as
soon as the choice of εTV and εelas is appropriate.

We show that our methodology still works in the case of more complex tensor C. In
particular, we highlight that the reconstruction of (λ, µ) in the isotropic elastic case and
(µ(1), µ(2), µ(3)) in the anisotropic shear case are also accurate provided that the number
of the sets of data {uℓ} is sufficiently large.

4.5.1 Shear modulus inversion

In this subsection, we first focus on the case C = µ(x)I, where we consider three different
choices for the shear modulus (µ1, µ2, µ3), which are illustrated in Figure 4.2. In each
case, we compute the direct elastic vector fields u(1) associated to the same boundary
conditions. Each solution is plotted in Figure 4.3 and we can observe the similarity of
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Figure 4.2: Examples of shear modulus phantoms: µ, µ̃ and µ3

the different elastic fields u(1). Notice that the mesh used to compute the elastic vector
fields has been build such as the characteristic size of each triangle is about h = 0.01.

About the reconstruction of the shear modulus µ, we recall that we need to fix only
the two regularization parameters εTV and εelas. In each case, we also use the same mesh
where the triangles have now a characteristic size of the order of h = 0.03.

The first experiments illustrated in Figure 4.4 have been done with εelas = 10−5. Each
column corresponds to different values of εTV which are respectively equal to εTV = 10−6,
εTV = 10−5, and εTV = 10−4. Each line corresponds to the data associated with µ, µ̃,
and µ3.

We can observe that the reconstruction is perturbed if εTV is too small and becomes
very quantitative with an appropriate choice of εTV . These first experiments show the
advantage of the TV regularization which preserves the discontinuities. Finally, it shows
the real possibility of reconstructing a non-smooth shear modulus µ with only one set of
data {u(1)}.

The second experiments (presented in Figure 4.5) show the influence of an elastic
regularization on the data. Indeed, the estimation can be noisy and need in practice to
be regularized. We then try here to understand the influence of an elastic regularization
on the quality of the reconstruction. We then fix the value of εTV = 10−4 and compare
the reconstruction of µ obtained with εelas = 10−5, εelas = 10−4 and εelas = 10−3. It then
clearly appears that the effect of the elastic regularization is to smooth the reconstruction
of the shear modulus µ.

Finally, as expected by our theoretical results, these experiments clearly demonstrate
the ability of our methodology to reconstruct non-smooth shear modulus µ using only
one set of data {uℓ}.

4.5.2 Two Lamé coefficients inversion

We now consider the case of isotropic elasticity tensor

C = 2µI+ λI ⊗ I.

The numerical reconstructions of Lamé coefficients are presented in Figures 4.6 and 4.7,
where two different choices of Lamé coefficients are used. In all experiments, we take
the regularization parameters: εTV = 10−4 and εelas = 10−4. Moreover, each column
corresponds to the numerical reconstruction of (λ, µ) obtained respectively with n = 1,

24



−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

−2

0

2

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

−2

−1

0

1

2

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

−2

0

2

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

0

2

4

6

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

0

1

2

3

4

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

0

1

2

3

4

5

Figure 4.3: Lines: first and second components of vector fields u; Each column (from left
to right) corresponds to the use of µ, µ̃ and µ3, respectively.
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Figure 4.4: Reconstruction of µ: influence of the parameter εTV ; Lines: shear modulus
µ, µ̃ and µ3. Columns: εTV = 10−6, εTV = 10−4 and εTV = 10−3. In each case, we use
εelas = 10−5.
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Figure 4.5: Reconstruction of µ: influence of the parameter εelas; Lines: shear modulus
µ, µ̃ and µ3. Columns: εelas = 10−5, εelas = 10−4 and εelas = 10−3. In each case, we use
εTV = 10−4.

n = 2 and n = 4 sets of data {uℓ}. We also plot the exact Lamé coefficient on the first
column.

Notice that in the case of one set of data, we succeeded in reconstructing a first rough
approximation of (λ, µ). Finally, using n = 2 and n = 4 sets of data leads to a precise
reconstruction of (λ, µ) even for complex Lamé coefficients.

4.5.3 Anisotropic tensor inversion

The last example concerns the case of an anisotropic shear tensor

C = µ(1)C1 + µ(2)C2 + µ(3)C3.

The motivation is to show that our methodology can be adapted to any kind of model
for the elasticity tensor C. Like previously, we use εTV = 10−4, εelas = 10−4, and the
reconstructions obtained with different number of data sets are plotted on each column
of Figure 4.8.

Notice that as in the case of an isotropic elastic medium, we successfully reconstructed
a quantitative approximation of the scalar fields µ(k) even in the case of one set of data.

5 Concluding remarks

In this paper, we have introduced a new direct and stable method for reconstructing
discontinuous elastic parameters from internal measurements of the displacement fields.
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Figure 4.6: Reconstruction of the Lamé coefficients (λ1, µ1): influence of the number
of data {uℓ} ; Lines: λ and µ; From left to right: Exact Lamé coefficients and their
reconstructions obtained respectively with 1, 2 and 4 sets of data {uℓ}. Here, we used
εTV = 10−4 and εelas = 10−4.
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Figure 4.7: Reconstruction of the Lamé coefficients (λ2, µ2): influence of the number
of data {uℓ}; Lines: λ and µ; From left to right: Exact Lamé coefficients and their
reconstructions obtained respectively with 1, 2 and 4 sets of data {uℓ}. Here, we used
εTV = 10−4 and εelas = 10−4.
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Figure 4.8: Reconstruction of the anisotropic coefficients (µ(1), µ(2), µ(3)): influence of the
number of data {uℓ} ; Lines: µ(1), µ(1) and µ(3) ; From left to right: Exact coefficients
µ(k) and their reconstructions obtained respectively with 1, 2 and 4 sets of data {uℓ}.
Here, we used εTV = 10−4 and εelas = 10−4.

We have proved an L2-stability result with only one measurement. We have described a
direct discretization of the inverse problem in both the isotropic and anisotropic cases.
We have presented a variety of numerical results to illustrate the performance of our
approach. In a forthcoming paper, we will apply our approach to real and clinical data
using only measurements of one component of the displacement field and to shear wave
spectroscopy.

A Notations and tools

A.1 Tensor notations

Definition A.1. We denote by R
d×d the space of real matrices and R

d×d
sym the space of

real symmetric matrices. Notice that Rd×d
sym ∼ R

d(d+1)/2. We denote by T 4 = R
d4 the space

of order 4 real tensors. We recall that

(i) A : B =
∑

ij AijBij ∈ R for A,B ∈ R
d×d;

(ii) (A⊗ B)ijkl = AijBkl ∈ T 4 for A,B ∈ R
d×d;

(iii) (A : B)ij =
∑

kl AijklBkl ∈ R
d×d for A ∈ T 4 and B ∈ R

d×d;

(iv) (B : A)ij =
∑

kl BklAklij ∈ R
d×d for A ∈ T 4 and B ∈ R

d×d;
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(v) (A : B)ijkl =
∑

mn AijmnBmnkl ∈ T 4 for A,B ∈ T 4;

(vi) A|B =
∑

ijkl AijklBijkl ∈ R for A,B ∈ T 4.

We define T 4
sym to be the space of all tensors T such that for any symmetric matrix

S ∈ R
d×d
sym , the matrix T : S is also symmetric and for any antisymmetric matrix A,

we have T : A = 0. Remark that in dimension two, T 4
sym ∼ R

6 and in dimension 3,
T 4
sym ∼ R

21.

A.2 Sobolev spaces

Definition A.2. For any Lipschitz domain Ω ⊂ R
d, we define

W 1,p(Ω) :=
{
u ∈ Lp(Ω), |∇u| ∈ L2(Ω)

}
.

We also define the following space:

H1
0 (Ω,R

d) :=
{
u ∈ L2(Ω,Rd), |∇u| ∈ L2(Ω),u|∂Ω = 0

}
,

equipped with the norm:

‖u‖H1
0 (Ω) := ‖∇su‖L2(Ω) ,

where ∇su = (∇u+∇uT )/2.

Remark A.1. The fact that this definition for the norm is correct is a direct consequence
of Korn’s inequality and Poincaré’s inequality.

Proposition A.1. Properties of W 1,p(Ω): If p > d, the following results hold.

(i) W 1,p(Ω) →֒ L∞(Ω);

(ii) If u, v ∈ W 1,p(Ω), then uv ∈ W 1,p(Ω);

(iii) If u ∈ W 1,p(Ω) and ϕ ∈ H1
0 (Ω), then uϕ ∈ H1

0 (Ω);

(iv) u ∈ W 1,p(Ω), f ∈ H−1(Ω) implies that uf ∈ H−1(Ω) and

‖uf‖H−1 ≤ C‖u‖W 1,p‖f‖H−1

for some constant C independent of u and f .

Lemma A.2 (∇ has a closed range in {µ0}⊥). Let Ω be a Lipschitz domain of Rd and
µ0 ∈ L∞(Ω) be such that µ0 ≥ m ≥ 0. Then, there exists a constant c > 0 such that

∀µ ∈ {µ0}⊥, ‖µ‖L2(Ω) ≤ c ‖∇µ‖H−1(Ω) .

Proof. Suppose that this is false. Take a sequence (µn) such that ‖µn‖L2(Ω) = 1 and

‖∇µn‖H−1(Ω) → 0. Up to an extraction µn
L2(Ω)
⇀ µ and

∫
Ω
µnµ0 →

∫
Ω
µµ0 = 0. Moreover,

∇µ = 0 and so µ is constant. Then µ = 0. As the embedding L2(Ω) →֒ H−1(Ω) is
compact, we get that ‖µn‖H−1(Ω) → 0. Saying now that

‖µn‖2L2(Ω) = ‖µn‖2H−1(Ω) + ‖∇µn‖2H−1(Ω) ,

we arrive at a contradiction.
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B Proof of Theorem 3

Proof. Denote Σ the closure of the discontinuity surface of S. The open set Ω\Σ can be
decomposed as a countable union of connected open sets:

Ω\Σ =
⋃

i∈I

Ωi.

One may apply Theorem 2 on each subset and say that there exists some νi ∈ C0(Ωi)
such that any solution of the problem is written as

µ =
∑

i∈I

αie
νi1Ωi

in Ω\Σ,

where αi’s are some real numbers.
We show now that these numbers are linked by the jump condition over Σ. Consider

two subdomain Ωi and Ωj in contact in the sense that their common boundary

Σij := ∂Ωi ∩ ∂Ωj

is of positive surface measure: Hd−1(∂Ωi ∩ ∂Ωj) > 0. As Σ is rectifiable, there exists
x0 ∈ Σij and B := B(x0, ε) such that ΩB

i := Ωi ∩ B and ΩB
j := Ωj ∩ B are Lipschitz

domains. As µ and S are W 1,p in ΩB
i and ΩB

j , so is the product µS and it admits two-
sided traces µiSi and µjSj defined as functions of Lp(Σij ∩ B). From the variational
formulation, the jump condition at Σij ∩B reads as

µiSiν = µjSjν almost everywhere on Σij ∩ B.

This jump condition gives a vectorial equation linking αi and αj which is

αie
νiSiν = αje

νjSjν. (21)

As νi, νj are bounded in B and | detSi|, | detSj| ≥ c > 0, there exists c′ > 0 such that
|eνiSiν| ≥ c′ and |eνjSjν| ≥ c′. A first consequence is that if one αi = 0 then they are all
zero and µ = 0.

Now consider another solution µ′ =
∑

i∈I βie
νi1Ωi

and assume that µ′

µ
is not constant.

There exist Ωi, Ωj in contact such that βi/αi 6= βj/αj. Using (21) for both couples
(αi, αj) and (βi, βj), it follows that there exists γ 6= 0 such that αj = γαi and βj = γβi,
which leads to βi/αi = βj/αj. Since this is absurd, µ′/µ is constant.
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[8] Guillaume Bal and Sébastien Imperiale. Displacement reconstructions in ultrasound
elastography. SIAM Journal on Imaging Sciences, 8(2):1070–1089, 2015.

[9] Guillaume Bal, François Monard, and Gunther Uhlmann. Reconstruction of a fully
anisotropic elasticity tensor from knowledge of displacement fields. SIAM Journal
on Applied Mathematics, 75(5):2214–2231, 2015.

[10] Paul E Barbone and Assad A Oberai. Elastic modulus imaging: some exact solutions
of the compressible elastography inverse problem. Physics in Medicine and Biology,
52(6):1577, 2007.

[11] J Bercoff, S Chaffai, M Tanter, L Sandrin, S Catheline, M Fink, JL Gennisson, and
M Meunier. In vivo breast tumor detection using transient elastography. Ultrasound
in Medicine & Biology, 29(10):1387–1396, 2003.
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[31] Mickaël Tanter, Jeremy Bercoff, Laurent Sandrin, and Mathias Fink. Ultrafast com-
pound imaging for 2-d motion vector estimation: Application to transient elastog-
raphy. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,
49(10):1363–1374, 2002.

[32] William Thielicke and Eize Stamhuis. Pivlab–towards user-friendly, affordable and
accurate digital particle image velocimetry in matlab. Journal of Open Research
Software, 2(1), 2014.

[33] Ruikang K Wang, Zhenhe Ma, and Sean J Kirkpatrick. Tissue doppler optical
coherence elastography for real time strain rate and strain mapping of soft tissue.
Applied Physics Letters, 89(14):144103, 2006.

[34] Shang Wang and Kirill V Larin. Optical coherence elastography for tissue charac-
terization: a review. Journal of Biophotonics, 8(4):279–302, 2015.

[35] Thomas Widlak and Otmar Scherzer. Stability in the linearized problem of quanti-
tative elastography. Inverse Problems, 31(3):035005, 2015.

33


	Introduction
	Scientific context
	Outline of the article and the main results

	The inverse problem
	The direct weak formulation
	Existing stability results
	Classical elastic media inversion problems
	Shear modulus inversion
	Inversion of Lamé coefficients
	Anisotropic medium inversion

	Regularity of the coefficients of elasticity tensor

	Shear modulus imaging: invertibility and stability in the isotropic case
	Spaces of discontinuous functions
	The space W1,ppw()
	The space SBVp()

	Null space of the shear-to-force operator
	Closed range property of the shear-to-force operator
	Stability estimates in L2()

	Numerical experiments in the static case
	Forward problem and data generation
	Finite elements discretization
	Discrete formulation of the inverse problem
	Least squares approach and regularization
	Numerical experiments
	Shear modulus inversion
	Two Lamé coefficients inversion
	Anisotropic tensor inversion


	Concluding remarks
	Notations and tools
	Tensor notations
	Sobolev spaces

	Proof of Theorem 3

