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Abstract

The problem of reconstructing a function from the magnitudes of its frame coefficients has recently
been shown to be never uniformly stable in infinite-dimensional spaces [5]. This result also holds for
frames that are possibly continuous [2]. On the other hand, the problem is always stable in finite-
dimensional settings.

A prominent example of such a phase retrieval problem is the recovery of a signal from the
modulus of its Gabor transform. In this paper, we study Gabor phase retrieval and ask how the
stability degrades on a natural family of finite-dimensional subspaces of the signal domain L2(R). We
prove that the stability constant scales at least quadratically exponentially in the dimension of the
subspaces. Our construction also shows that typical priors such as sparsity or smoothness promoting
penalties do not constitute regularization terms for phase retrieval.

1 Introduction

Phase retrieval is a broad term for reconstruction problems, in which one aims at recovering a signal,
a density distribution or some other quantity from complex- (or real-valued) measurements that do not
contain phase (or sign) information. The most prominent example is X-ray crystallography that can
be modeled as the reconstruction of an electron density distribution from the modulus of its Fourier
transform.

More formally, one can state the phase retrieval problem for any Hilbert space H and an associated
measurement system (ψλ)λ∈Λ ⊂ H which constitutes a frame (that is not necessarily discrete, depending
on the index set Λ). While any f ∈ H can be uniquely and stably recovered from {〈f, ψλ〉H}λ∈Λ, these
properties are not so evident for the reconstruction of f from the phaseless measurements {|〈f, ψλ〉H|}λ∈Λ.

In the real-valued setting, i.e. when f and the measurement system (ψλ)λ∈Λ are real-valued, the so-
called complement property (CP) is a necessary and sufficient condition on (ψλ)λ∈Λ for injectivity of the
phase retrieval problem, both in the case when H is finite-dimensional [3] and infinite-dimensional [5, 2].
In the complex-valued case, the CP is only a necessary condition for injectivity [3, 5, 2]. A stronger
condition on the family (ψλ)λ∈Λ is the strong complement property (SCP). Introduced in [4] for the
finite-dimensional case, it is shown that the SCP is a necessary and sufficient condition for stable phase
retrieval in the real-valued setting and also conjectured, that the SCP is a necessary condition for stability
in the complex-valued setting. In [2], we consider the phase retrieval problem for the general framework
of infinite-dimensional Banach spaces and associated continuous Banach frames. We prove that in this
generalized setting the SCP is necessary and sufficient for stable phase retrieval in the real-valued case
and indeed necessary in the complex-valued case. In addition, we show that the SCP can never hold in
infinite-dimensional spaces, hence phase retrieval is never uniformly stable in infinite dimensions. Such a
result has been derived before in [5] for the case of discrete frames of Hilbert spaces without employing
the SCP.

While these results suggest that the instability of phase retrieval is truly inherent of the problem,
numerical experiments indicate that phase retrieval is unstable whenever the phaseless measurements
{|〈f, ψλ〉H|}λ∈Λ carry ”modes of silence”, i.e., whenever the magnitude measurements are concentrated
on at least two disconnected components of Λ and small outside of these regions. This observation has
led the authors, together with Ingrid Daubechies and Rujie Yin, to study the phase retrieval problem in
a relaxed notion of atoll functions for which stability can in fact be restored [1] when the measurement
system is the Gabor transform or the Cauchy wavelet transform. One of the authors, together with
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Martin Rathmair, has recently derived significantly improved stability estimates for the Gabor transform
case and, in particular, showed that all instabilities are of this kind [10], thereby providing a rather
complete picture of the stability properties of Gabor phase retrieval.

1.1 Gabor phase retrieval

This paper likewise studies the reconstruction of functions in L2(R) from the magnitude of their Gabor

transforms, i.e., of their windowed Fourier transforms with Gaussian window ϕ(t) = e−πt2 . This prob-
lem arises in ptychographic imaging, a variation of X-ray crystallography in which an electron density
distribution is reconstructed from the modulus of its short-time/windowed Fourier transform, or STFT
in short. Gabor phase retrieval can also be employed in certain audio processing applications such as
the phase vocoder. A phase vocoder is a device that modifies audio signals (such as time-stretching or
pitch-shifting them) and can be implemented by retrieving phase information from the STFT modulus.

The Gabor transform Vϕf of a function f ∈ L2(R) is defined as

Vϕf(x, y) :=

∫

R

f(t)ϕ(t− x)e−2πitydt. (1.1)

The problem of Gabor phase retrieval then amounts to recovering f from {|Vϕf(x, y)|}(x,y)∈R2 . Note
that phase retrieval is always to be understood up to a global phase (or sign) factor: Given magnitude
measurements of f , one will never be able to distinguish f from τf , for any τ ∈ S1 := {z ∈ C | |z| = 1}.
Thus, to make the notions of uniqueness and stability meaningful, one has to discard global phase factors
by introducing the following metric:

dist(f, g) := inf
τ∈S1

‖f − τg‖L2(R).

Gabor phase retrieval would be stable (in a strong sense), if there existed uniform constants c1, c2 > 0
such that for all f, g ∈ L2(R)

c1dist(f, g) ≤ ‖|Vϕf | − |Vϕg|‖L2(R2) ≤ c2dist(f, g). (1.2)

As discussed above, we know that such uniform stability cannot hold. Instead, we want to quantify this
instability by studying the degradation of stability on nested finite-dimensional subspaces of L2(R). We
note that in [5], Cahill, Casazza & Daubechies give such an example for a sign retrieval problem in 1D:
the recovery of a real-valued bandlimited function from its unsigned samples. There, the authors consider
finite-dimensional subspaces of the Paley-Wiener space and demonstrate that the stability constant for
this sign retrieval problem grows exponentially in the dimension of the subspace.

Contributions. In this paper, we study two questions for Gabor phase retrieval:

• Can the degree of ill-posedness of this inverse problem be quantified in some sense?

• Is it possible to regularize the problem with a prior on the smoothness or sparsity of the solution?

For answering the first question, we construct pairs of functions (f+a , f
−
a ) that depend on a positive

parameter a ∈ R. Then, for (1.2) to hold for some c1 and this particular pair of functions, we show

c1 . e−a2π/2. Such exponential degradation of stability for inverse problems is often referred to as severe
ill-posedness, a term more commonly used for problems with linear operators that have purely discrete
spectrum (cf. Remark 3.3). Our construction also gives an insight to the answer of the second question:
the functions used are both smooth and have sparse approximations in any time-frequency/time-scale
representation. Therefore, this ill-posed problem cannot be regularized through a smoothness penalty or
a sparsity-promoting penalty.

Outline. In Section 2 we briefly give the link between the phase retrieval operator and general inverse
problems theory for non-linear operators, showing that the phase retrieval operator is not compact. In
Section 3, we construct a pair of functions, depending on some parameter a, and state that for such a pair
the stability constant of Gabor phase retrieval is at least exponential in a2. The parameter a can also be
linked to the dimension of a subspace of L2(R) so that the stability constant scales at least quadratically
exponentially in the dimension of the problem. Based on our construction, one can then deduce that the
typical remedy to ill-posedness – adding a regularization penalty – does not help in phase retrieval, see
Section 3.3. The proof of our main proposition is presented in Section 4 and some proofs of Section 3.3.1
are outsourced to Section 5.
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2 Inversion of the Gabor phase retrieval operator

We may formulate Gabor phase retrieval as the inverse problem with the nonlinear forward operator

Aϕ : L2(R)/S1 → L2(R2,R+
0 ), f 7→ |Vϕf |, (2.1)

where |Vϕf | denotes the Gabor transform magnitude, |Vϕf |(x, y) := |Vϕf(x, y)|, for all (x, y) ∈ R
2. The

operator Aϕ has the following properties:

Proposition 2.1. The operator Aϕ is injective and weakly sequentially closed. Moreover, its range
R(Aϕ) is closed and A−1

ϕ is continuous on R(Aϕ).

Proof. The injectivity of Aϕ is well-known, see e.g. [10]. The fact that R(Aϕ) is closed and the continuity
of A−1

ϕ on R(Aϕ) have been shown in [1]. It only remains to establish that the operator is weakly
sequentially closed. For this, we need to show that for a sequence {fn}n∈N ⊂ L2(R) converging weakly
to f ∈ L2(R) the weak convergence of {|Vϕfn|}n∈N to v ∈ L2(R2,R+

0 ) implies |Vϕf | = v. This, however,
is immediate, as the weak convergence of {fn}n∈N implies pointwise convergence of |Vϕfn| to |Vϕf |. In
L2(R2), the pointwise and weak limit of a sequence must coincide, so that |Vϕf | = v.

For compact linear operators C : X → Y , it is well known that a sufficient condition for ill-posedness is
injectivity of C, provided that X is infinite-dimensional [8]. A similar result exists for nonlinear operators
A : X → Y . Proposition 10.1 in [8] implies that if A is compact, injective and weakly sequentially
closed and X is an infinite-dimensional separable Hilbert space, then A−1 is not continuous (the original
statement is stronger in that it implies ill-posedness from local properties of the operator).

This result seems in contrast to Proposition 2.1. The reason these results are not in contradiction is
that Aϕ is not compact:

Proposition 2.2. The operator Aϕ is not compact.

To prove this result we use the following

Lemma 2.3. Let L > 0 and

B := {f ∈ L2(R)/S1 : ‖f‖L2(R) ≤ L}.

Then, the set
VB := {Vϕf : f ∈ B} ⊂ L2(R2)

is strongly equicontinuous, meaning that for all ε > 0 and all (x, y) ∈ R
2, there exists an open set

Uε((x, y)) ⊂ R
2 such that for all (x′, y′) ∈ Uε((x, y)),

sup
f∈B

|Vϕf(x, y)− Vϕf(x
′, y′)| ≤ ε.

Proof. Denoting by ϕx,y the modulated and time-shifted Gaussian ϕx,y(t) := e2πitye−π(t−x)2 , the bound-
edness of elements in B implies

|Vϕf(x, y)− Vϕf(x
′, y′)| ≤ L · ‖ϕx,y − ϕx′,y′‖L2(R2).

The statement then follows, since for every ε > 0, there is an open set Uε((x, y)) ⊂ R
2 such that

‖ϕx,y − ϕx′,y′‖L2(R2) ≤
ε

L
.

With this property at hand, we can now give the proof of the non-compactness of Aϕ:

3



Proof of Proposition 2.2. Let L > 0 and consider the image Aϕ(B) of the set

B := {f ∈ L2(R)/S1 : ‖f‖L2(R) ≤ L}.

Since VB is strongly equicontinuous by our previous lemma, we can use Corollary A.4 in our previous
work [1], to state that Aϕ(B) is relatively compact if and only if VB is relatively compact. Theorem A.3
in [1] gives a characterization of VB being relatively compact: the property holds if and only if VB is
bounded and for all ε > 0 there is a compact set Cε ⊂ R

2 such that

sup
w∈VB

‖w‖L2(R2\Cε) ≤ ε.

It is clear that this cannot hold: for any ε > 0 and any choice of Cε one can simply find a signal in B,
for which the Gabor transform is concentrated outside of Cε (realized by a sufficiently large time-delay
or frequency shift). Hence, VB and consequently also Aϕ(B) are not relatively compact.

The continuity of A−1
ϕ is of course not as significant as in the case of linear operators: as we have

shown in [1], A−1
ϕ is not uniformly continuous, so that a quantitative result as in (1.2) cannot hold. In

fact, although for Aϕ(fn) converging to u, fn is guaranteed to converge to A−1
ϕ (u), so that the problem

is not ill-posed in the classical sense, the convergence can be arbitrarily slow.
In what follows, we will use the term ill-posed to include also this lack of strong stability. We intend to

characterize this ill-posedness with our goal being two-fold: on the one hand, we show that the degree of
this instability is in some sense severe. On the other hand, we demonstrate the stability degradation for
very simple pairs of signals: they are smooth and also sparse in any time-frequency/time-scale localized
representation. Therefore, classical regularization penalties become infeasible for phase retrieval.

3 Analysis of the phase retrieval instability

3.1 A simple parameter-dependent couple

First, let us introduce the translation operator Ta on L2(R) defined as

Taf(t) := f(t− a) (3.1)

for f ∈ L2(R) and a ∈ R.
The goal is to construct two functions f+a , f−a ∈ L2(R), for which the Gabor transform measurements

are close to each other in absolute value but such that ‖f+a − τf−a ‖L2(R) is not small for any phase factor
τ ∈ S1. We proceed by defining the shifted Gauss functions

ua := Taϕ, u−a := T−aϕ. (3.2)

and fixing our pair of functions to be

f+a := u−a + ua, f−a := u−a − ua. (3.3)

For a > 0 not too small, the Gabor transforms Vϕf
+
a and Vϕf

−
a are concentrated on two disconnected

components. We note that
f+a − f−a = 2ua, f+a + f−a = 2u−a,

and hence,
inf
τ∈S1

‖f+a − τf−a ‖L2(R) = min
τ∈{±1}

‖f+a − τf−a ‖L2(R) = 2‖ϕ‖L2(R) = 23/4, (3.4)

where the first equality is due to f+a and f−a being real-valued.
We remark that if we confine the parameter a to a discrete set {ak := k q | k ∈ N}, for some fixed

q > 0, then the spaces

Hk := span {Tsϕ | s ∈ {−k q,−(k − 1) q, . . . , (k − 1) q, k q}}
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are nested finite-dimensional subspaces of L2(R) and f+ak
, f−ak

∈ Hk. Hence, bounding

‖|Vϕf+ak
| − |Vϕf−ak

|‖L2(R2) (3.5)

from above yields a lower bound on the stability constant of the phase retrieval problem in the finite-
dimensional subspace Hk. As we show in the next section, the term in (3.5) is bounded from above by
an expression decaying exponentially in a2k. Therefore, the deterioration of stability of phase retrieval in
Hk is such that the stability constant grows exponentially in a2k.

In fact, we show a stronger result by upper bounding

‖|Vϕf+ak
| − |Vϕf−ak

|‖W 1,2(R2),

where the Sobolev norm ‖ · ‖W 1,2(R2) of F ∈W 1,2(R2) is defined as

‖F‖W 1,2(R2) := ‖F‖L2(R2) + ‖∇F‖L2(R2).

-5 5

-1.0

-0.5

0.5

1.0

Figure 1: The functions f+a (blue) and f−a (orange) for a = 5.

3.2 Severe ill-posedness

In terms of stable reconstruction from the measurements we obtain that the W 1,2-distance between the
measurements decays exponentially in a2:

Proposition 3.1. There exists a uniform constant C > 0 such that for all a > 0 and for all k ∈ (0, π/2),

‖|Vϕf+a | − |Vϕf−a |‖W 1,2(R2) ≤ C · e−k·a2

. (3.6)

Proof. Combining Lemma 4.3, Lemma 4.5 and Lemma 4.7 yields the result.

Together with (3.4), this implies that for a stability estimate to hold, the stability constant scales at
least exponentially in a2:

Corollary 3.2. There exists a uniform constant C̃ > 0 such that for all a > 0 and for all k ∈ (0, π/2),

min
τ∈{±1}

‖f+a − τf−a ‖L2(R) ≥ C̃ek·a
2‖|Vϕf+a | − |Vϕf−a |‖W 1,2(R2). (3.7)

Proof. Equation (3.4) implies
inf
τ∈S1

‖f+a − τf−a ‖L2(R) ≥ 1.

Applying Proposition 3.1 yields (3.7).
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(a) The modulus of the Gabor transform of
f+
a for a = 2.

(b) The modulus of the Gabor transform of
f−

a for a = 2.

0

0.001

0.002

0.003

(c) The difference between |Vϕf
+

2 | and |Vϕf
−

2 |.

Remark 3.3. In inverse problems, the ill-posedness of a linear operator equation can be quantified if
the operator (or its normal form) has a discrete spectrum: instabilities are caused by accumulation of
the eigen- (or singular) values of the operator at zero. Depending on the decay rate one typically speaks
of mild (polynomial rate) or severe ill-posedness (exponential rate). In a similar way, the above result
quantifies that the non-linear inverse problem of Gabor phase retrieval is also severely ill-posed: the
stability degrades at a rate that is at least exponential in the parameter a that describes the moving apart
of two Gaussians.

Remark 3.4. As mentioned in Section 1, a stability estimate for phase retrieval can be shown for the
infinite-dimensional setting, if the notion of phase reconstruction is relaxed. Instead of recovering up
to one global phase factor, so-called atoll domains are introduced. These consist of n bounded regions
Dj ⊂ C, j = 1, . . . , n, that are pairwise disjoint. One then seeks to reconstruct the Gabor transform up
to a phase factor τj on each component Dj, allowing for different phase factors. We note that with this
concept, our example presented in this section can be stably recovered. We refer to [1] for an introduction
to atoll functions and stable phase retrieval and to [10] for significantly improved stability constants.

3.3 Regularization penalties

Given the inherent nature of instability of the phase retrieval problem, the question of regularizing this
inverse problem becomes inevitable. Regularization typically consists of adding a regularizing term to
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the minimization functional, that amounts to a prior on the solution. Given some data u, instead of
searching for the least-squares solution

flsq := argmin
f∈L2(R)/S1

‖Aϕ(f)− u‖2L2(R2)

one would find the minimizer of
‖Aϕ(f)− u‖2L2(R2) + τ |||f |||, (3.8)

where τ is some regularization parameter and the term |||f ||| is a regularization penalty that carries a-priori
information that one might have on the solution. For example, if one knows that the solution has its
L2−norm bounded by b > 0, ‖f‖L2(R) ≤ b, then, a solution with small L2−norm can be enforced by
adding the penalty ‖f‖2L2(R).

Typical choices for regularization penalties on functions f ∈ L2(R) include terms |||·||| that favour
smooth functions or functions with small bounded variation. It is clear, however, that such regularization
penalties would not improve the stability properties of the phase retrieval problem. The example con-
structed in Section 3.1 consists of functions f+a , f−a , that are sums of two translated Gaussians, so that
they enjoy infinite regularity and have small variation. A regularization penalty favouring such properties
would not stably discriminate between f+a and f−a .

3.3.1 Sparsity promoting penalties

Another family of regularization penalties consists of so-called sparsity promoting terms. The underlying
idea is that the a priori knowledge on the solution f ∈ L2(R) can be expressed through its representation
in a frame of L2(R). For a Hilbert space H, a frame is a family {ψλ}λ∈Λ ⊂ H, where the index set Λ is
discrete and for which there exist bounds A,B > 0, such that

A‖f‖2H ≤
∑

λ∈Λ

|〈f, ψλ〉|2 ≤ B‖f‖2H for all f ∈ H. (3.9)

Given a frame {ψλ}λ∈Λ of L2(R), one could choose a regularization term for (3.8), that is a weighted
ℓp−norm of the frame coefficients, i.e. |||f ||| = ‖{〈f, ψλ〉}λ∈Λ‖pℓpw . Choices of p in [1, 2) would then favour

functions f with rapidly decaying frame coefficients [7].
We consider the most prominent examples for time-frequency localized representations of signals:

frames of wavelets and frames constituted by short-time Fourier transforms (STFTs).
Given a mother wavelet ψ ∈ L2(R), a scaling function χ ∈ L2(R) and parameters α > 1, β > 0, a

wavelet system can be introduced as

{χ0,k := χ(· − βk)}k∈Z ∪ {ψj,k(t) := αj/2ψ(αjt− βk)}j∈N0,k∈Z. (3.10)

In this case, the (wavelet) frame condition (3.9) becomes

A‖f‖2L2(R) ≤
∑

k∈Z

|〈f, χ0,k〉|2 +
∑

j∈N0,k∈Z

|〈f, ψj,k〉|2 ≤ B‖f‖2L2(R) for all f ∈ L2(R).

For wavelet frames, the sparsity promoting regularization penalty is typically chosen as the following
weighted ℓp−norm of the coefficients:

|||f ||| := ‖f‖ps,p :=
∑

k∈Z

|〈f, χ0,k〉|p +
∑

j∈N0

αjσp
∑

k∈Z

|〈f, ψj,k〉|p, (3.11)

where σ = s + 1/2 − 1/p and p ∈ [1, 2). If χ, ψ ∈ CM (R) for M > s, then ‖ · ‖s,p is a norm equivalent
to the Besov space norm ‖ · ‖Bs

p,p
. The parameter s indicates the smoothness of the function class Bs

p,p.
Roughly speaking, the Besov space Bs

p,p consists of functions that have s derivatives in Lp.
Similarly, we will consider frames of short-time Fourier transforms. Given a window g and parameters

x0, y0 > 0, the system defined as {gn,k(t) := e2πiky0tg(t− nx0)}n,k∈Z is an STFT frame of L2(R) if there
exist constants A,B > 0 such that

A‖f‖2L2(R) ≤
∑

n,k∈Z

|〈f, gn,k〉|2 ≤ B‖f‖2L2(R) for all f ∈ L2(R).
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A sparsity promoting penalty in this setting would be of the form

|||f ||| := ‖{〈f, gn,k〉}‖pℓpw :=
∑

k,n∈Z

|〈f, gn,k〉|pw(nx0, ky0)p, (3.12)

where for some s ≥ 0, the weight is defined as w(x, y) :=
(
(1 + |x|)(1 + |y|)

)s
or an equivalent weight of

polynomial type.
We now want to show that

1. the functions f+a , f−a can be sparsely approximated in wavelet frames or STFT frames, i.e.

∣∣∣∣∣∣f+a
∣∣∣∣∣∣,

∣∣∣∣∣∣f−a
∣∣∣∣∣∣ <∞, and

2.
∣∣∣|||f+a ||| − |||f−a |||

∣∣∣ ≤ CLa
−L for some L ≥ 1 and a constant CL.

The second property is important to show that a regularization scheme as in (3.8) can not stably dis-
tinguish f+a from f−a for any of the considered sparsity promoting penalties. For item 1, we note that
since f+a , f−a are linear combinations of two translated Gaussians, we only need to state that |||ϕ||| < ∞
for ϕ(t) = e−πt2 and the norms defined as in (3.11) and (3.12). This is of course not surprising (under
mild assumptions on the window or on the mother wavelet and scaling function), due to the nice decay
properties of ϕ in both time and frequency.

More precisely, for the case of an expansion in an STFT frame with a window g in the Schwartz space
S(R)\{0}, we have the following

Proposition 3.5. Let g ∈ S(R)\{0}, s ≥ 0 and 1 ≤ p ≤ ∞. Then,

‖{〈ϕ, gn,k〉}‖ℓpw <∞.

Proof. Since ϕ, g ∈ S(R), Vgϕ ∈ S(R2) [9, Theorem 11.2.5]. Thus,

‖Vgϕ‖Lp,p
w

:=
(∫∫

|Vgϕ(x, y)|pw(x, y)pdxdy
)1/p

<∞.

On the other hand, classical results [9] guarantee

‖{〈ϕ, gn,k〉}‖ℓpw ≤ C · ‖Vgϕ‖Lp,p
w

where the constant C depends on g, x0, y0 and s.

Proposition 3.6. Let g ∈ S(R)\{0} and |||·||| := ‖{〈·, gn,k〉}‖pℓpw with s ≥ 0 and p ∈ [1, 2]. Then, for
every m ∈ N, m > sp+ 1, there exists a constant Cm,x0,y0

> 0 that depends on only m,x0 and y0, s.t.

∣∣∣
∣∣∣∣∣∣f+a

∣∣∣∣∣∣−
∣∣∣∣∣∣f−a

∣∣∣∣∣∣
∣∣∣ ≤ Cm,x0,y0

(
1 + a

)sp−m+1
.

Proof. See Section 5.

For the case of wavelet frames we employ standard results (see e.g. [11]) and adapt them for our case
to obtain specific decay rates for the wavelet coefficients of ϕ. If ψ has m ∈ N vanishing moments, i.e.

∫

R

xℓψ(x)dx = 0 for all ℓ ∈ {0, . . . ,m− 1},

and both ψ and χ have sufficient spatial decay, then the wavelet and scaling coefficients of ϕ(t) = e−πt2

decay at the order (αjβ|k|)−m−1:
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Proposition 3.7. Let ψ ∈ L2(R) have m ∈ N vanishing moments and suppose that there exist constants

C2m+2, C̃m+2 such that

|ψ(x)| ≤ C2m+2

1 + |x|2m+2
for all x ∈ R, (3.13)

|χ(x)| ≤ C̃m+2

1 + |x|m+2
for all x ∈ R. (3.14)

Then, there exists a constant C > 0 depending on only m, such that

|〈ϕ, ψj,k〉| ≤ C α−j(m+3/2)(β|k|)−m−1, (3.15)

|〈ϕ, χ0,k〉| ≤ C (β|k|)−m−1. (3.16)

Proof. See Section 5.

As an immediate consequence, the weighted ℓp−norm (3.11) of the wavelet coefficients of ϕ is finite:

Corollary 3.8. For α > 1, β > 0, let {χ0,k, ψj,k}j∈N0,k∈Z be a wavelet frame of L2(R), where ψ has
m ∈ N vanishing moments and ψ and χ decay as in (3.13) and (3.14), respectively. Then, for p ≥ 1 and
s ≤ m+ 1,

|||ϕ||| :=
∑

k∈Z

|〈ϕ, χ0,k〉|p +
∞∑

j=0

αjσp
∑

k∈Z

|〈ϕ, ψj,k〉|p <∞, (3.17)

where again σ = s+ 1/2− 1/p.

Proposition 3.9. As before, let {χ0,k, ψj,k}j∈N0,k∈Z be a wavelet frame of L2(R), so that ψ and χ decay
as in (3.13) and (3.14), respectively. If for p ∈ [1, 2] and s ≥ 0, ψ has m ∈ N vanishing moments with
2m− σp+ 3/2 > 0, then ∣∣∣

∣∣∣∣∣∣f+a
∣∣∣∣∣∣−

∣∣∣∣∣∣f−a
∣∣∣∣∣∣
∣∣∣ ≤ Cm,α,β a

−m,

for some constant Cm,α,β depending on only m,α and β.

Proof. The derivation can be done similarly to the one in Proposition 3.6, employing the bounds (3.15)
and (3.16).

3.3.2 Penalties on the Gabor transform Vϕf

Algorithms for phase retrieval often recover the signal transform Vϕf instead of reconstructing f directly.
This way, the problem of Gabor phase retrieval can be formulated in two dimensions as reconstructing
the phase of a function in L2(R2). Of course f can be retained from Vϕf , once the latter is known.

In this case, the minimizing functional becomes

argmin
F∈L2(R2)/S1

‖|F | − u‖2L2(R2)

and one could add a regularization penalty on the Gabor transform:

argmin
F∈L2(R2)/S1

‖|F | − u‖2L2(R2) + τ |||F |||

for some regularization parameter τ and regularization term |||·||| on L2(R2).
As in the previous section, we ask whether typical regularization penalties can stably discriminate the

functions constructed in Section 3.1, this time in the transform domain, i.e. Vϕf
+
a and Vϕf

−
a . As one can

see from Lemma 4.1, these functions are the sums of two translated and modulated 2D Gauss functions.
Therefore it is clear that regularization penalties promoting smoothness will not improve the stability of
the reconstruction problem.

Furthermore, since Vϕf
+
a and Vϕf

−
a are in the Schwartz space S(R2), their frame coefficients with

respect to space-frequency or space-scale representations in L2(R2) are rapidly decaying.

9



More precisely, for a window g ∈ S(R2) and a signal F ∈ S(R2), the transform VgF is an element of
S(R4) [9, Theorem 11.2.5]. From this one can deduce analogous results to Propositions 3.5 and 3.6.

The smoothness of Vϕf
+
a and Vϕf

−
a also implies that these functions can be sparsely approximated

in space-scale systems, such as two-dimensional wavelets, curvelets, shearlets, etc., given that the frame
consists of functions that have fast spatial decay and sufficient regularity. As an example, we refer to [6,
Theorem 8.2] for the decay of curvelet coefficients of functions that lie in a Sobolev space.

4 Proof of Proposition 3.1

We start with some simple observations. First, we note that computing Vϕϕ gives

Vϕϕ(x, y) =
1√
2
e−πixye−π/2(x2+y2). (4.1)

A straightforward calculation yields

VϕTaf(x, y) = e−2πiayVϕf(x− a, y), (4.2)

where Ta is the translation operator defined in (3.1). Furthermore, Equations (4.1) and (4.2) imply the
following:

Lemma 4.1. Let ua be the shifted Gaussian defined in (3.2). Then,

Vϕua(x, y) =
1√
2
e−πiaye−πixye−

π
2
(x−a)2e−

π
2
y2

.

Proof.

Vϕua(x, y) = VϕTaϕ(x, y) = e−2πiayVϕϕ(x− a, y)

= e−2πiay 1√
2
e−πi(x−a)ye−

π
2
((x−a)2+y2)

=
1√
2
e−πiaye−πixye−

π
2
(x−a)2e−

π
2
y2

.

The goal of this section is to find an upper bound on the expression
∥∥|Vϕf+a | − |Vϕf−a |

∥∥
W 1,2(R2)

(4.3)

that is of the order e−a2π/2. We start with a pointwise estimate to obtain a bound for the L2-norm.

4.1 Pointwise estimates

Lemma 4.2. Let f+a , f
−
a be the functions defined in (3.3). For (x, y) ∈ R

2, the following two inequalities
hold:

∣∣|Vϕf+a (x, y)| − |Vϕf−a (x, y)|
∣∣ ≤

√
2e−

π
2
((x−a)2+y2), (4.4)

∣∣|Vϕf+a (x, y)| − |Vϕf−a (x, y)|
∣∣ ≤

√
2e−

π
2
((x+a)2+y2). (4.5)

Proof. We only derive the first estimate, the other being analogous:
∣∣|Vϕf+a (x, y)| − |Vϕf−a (x, y)|

∣∣ =

=
1√
2

∣∣∣|e−π
2
((x+a)2+y2) + e−2πiaye−

π
2
((x−a)2+y2)| − |e−π

2
((x+a)2+y2) − e−2πiaye−

π
2
((x−a)2+y2)|

∣∣∣

=
1√
2
e−

π
2
((x+a)2+y2) ·

∣∣|1 + e−2πiaye2axπ| − |1− e−2πiaye2axπ|
∣∣

≤ 1√
2
e−

π
2
((x+a)2+y2) · 2e2axπ

≤
√
2e−

π
2
((x−a)2+y2),
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where the first inequality holds due to the reverse triangle inequality.

4.2 L
2−estimates

The previous two estimates can now be combined to obtain an upper bound on the L2-norm. Within
B2a(0), i.e. a disk of radius 2a around the origin, we will employ (4.4) on the half disk corresponding
to x < 0 and (4.5) on the half disk corresponding to x ≥ 0. For bounding the portion outside of B2a(0)
either of the estimates (4.4), (4.5) will do.

Lemma 4.3. Let f+a , f
−
a be the functions defined in (3.3). Then,

∥∥|Vϕf+a | − |Vϕf−a |
∥∥
L2(R2)

≤ 2
√
1 + 2a2π e−a2π/2.

Proof. First, we derive a bound on B2a(0) in which we transform to polar coordinates x = r cosϕ, y =
r sinϕ:

∫

B2a(0)

(
|Vϕf+a (x, y)| − |Vϕf−a (x, y)|

)2

d(x, y) ≤

≤ 2

∫ 3π/2

π/2

∫ 2a

0

e−π(r2−2ra cosϕ+a2)r dr dϕ+ 2

∫ π/2

−π/2

∫ 2a

0

e−π(r2+2ra cosϕ+a2)r dr dϕ

≤ 2 e−a2π
(∫ 3π/2

π/2

∫ 2a

0

e2raπ cosϕr dr dϕ+

∫ π/2

−π/2

∫ 2a

0

e−2raπ cosϕr dr dϕ
)

≤ 2 e−a2π

∫ 2π

0

r2

2

∣∣∣∣
2a

0

dϕ = 8a2π e−a2π,

where in the last line we use that e2raπ cosϕ ≤ 1 for ϕ ∈ [π2 ,
3π
2 ] and e−2raπ cosϕ ≤ 1 for ϕ ∈ [−π

2 ,
π
2 ].

Next, the norm on R
2\B2a(0) can be bounded from above using (4.4):

∫

R2\B2a(0)

(
|Vϕf+a (x, y)| − |Vϕf−a (x, y)|

)2

d(x, y) ≤

≤ 2

∫

R2\B2a(0)

e−π((x−a)2+y2)d(x, y)

≤ 2

∫ 2π

0

∫ ∞

2a

e−π(r2+a2−2ar cosϕ)rdrdϕ

≤ 4π

∫ ∞

2a

e−π(r−a)2rdr.

Substituting t =
√
π(r − a) then results in

∫

R2\B2a(0)

(
|Vϕf+a (x, y)| − |Vϕf−a (x, y)|

)2

d(x, y) ≤ 4π

∫ ∞

2a

e−π(r−a)2rdr

≤ 4π

∫ ∞

a
√
π

e−t2(
t√
π
+ a)

1√
π
dt

≤ 8

∫ ∞

a
√
π

te−t2dt = 4e−a2π,

where the last inequality is obtained by using that the integration bounds guarantee a ≤ t/
√
π.

4.3 W
1,2−estimates

What remains to be shown is an upper bound on

‖∇|Vϕf+a | − ∇|Vϕf−a |‖L2(R2) =
(
‖ ∂
∂x

|Vϕf+a | − ∂

∂x
|Vϕf−a |‖2L2(R2) + ‖ ∂

∂y
|Vϕf+a | − ∂

∂y
|Vϕf−a |‖2L2(R2)

)1/2

.
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For this, we start with a pointwise estimate on

∣∣∣∣
∂

∂x
|Vϕf+a (x, y)| − ∂

∂x
|Vϕf−a (x, y)|

∣∣∣∣ ,

where again we derive two upper bounds between which one needs to switch on B2a(0) depending on the
sign of x.

Lemma 4.4. The following bounds hold for the Gabor transform magnitudes of f+a and f−a for all points
(x, y) ∈ R

2:

∣∣∣∣
∂

∂x
|Vϕf+a (x, y)| − ∂

∂x
|Vϕf−a (x, y)|

∣∣∣∣ ≤
√
2(3a− x)πe−

π
2
((x−a)2+y2), (4.6)

∣∣∣∣
∂

∂x
|Vϕf+a (x, y)| − ∂

∂x
|Vϕf−a (x, y)|

∣∣∣∣ ≤
√
2(3a+ x)πe−

π
2
((x+a)2+y2). (4.7)

Proof. To show (4.6), define
η+a (x, y) := |1 + e−2πiay+2πax|

so that we can write

|Vϕf+a (x, y)| = 1√
2
e−

π
2
((x+a)2+y2)η+a (x, y)

and

∂

∂x
|Vϕf+a (x, y)| = 1√

2
(−π(x+ a))e−

π
2
((x+a)2+y2)η+a (x, y) +

1√
2
e−

π
2
((x+a)2+y2) ∂

∂x
η+a (x, y).

For ∂
∂xη

+
a (x, y) we obtain

∂

∂x
η+a (x, y) = 2πae2πax

cos(2πay) + e2πax

|1 + e−2πiay+2πax| .

This implies

∂

∂x
|Vϕf+a (x, y)| = − 1√

2
π(x+ a)e−

π
2
((x+a)2+y2)|1 + e−2πiay+2πax|+ (4.8)

+
1√
2
e−

π
2
((x+a)2+y2)2πae2πax

cos(2πay) + e2πax

|1 + e−2πiay+2πax| .

A similar calculation for ∂
∂x |Vϕf−a (x, y)| yields

∂

∂x
|Vϕf−a (x, y)| = − 1√

2
π(x+ a)e−

π
2
((x+a)2+y2)|1− e−2πiay+2πax|+

+
1√
2
e−

π
2
((x+a)2+y2)2πae2πax

− cos(2πay) + e2πax

|1− e−2πiay+2πax| .

We can use these estimates to obtain an upper bound on the distance between the two quantities as
follows:

∣∣∣∣
∂

∂x
|Vϕf+a (x, y)| − ∂

∂x
|Vϕf−a (x, y)|

∣∣∣∣ ≤

≤ 1√
2
|x+ a|πe−π

2
((x+a)2+y2)

∣∣|1 + e−2πiay+2πax| − |1− e−2πiay+2πax|
∣∣+

+
1√
2
e−

π
2
((x−a)2+y2)2πa

( | cos(2πay) + e2πax|
|1 + e−2πiay+2πax| +

| e2πax − cos(2πay)|
|1− e−2πiay+2πax|

)

≤
√
2|x+ a|πe−π

2
((x+a)2+y2)e2πax +

√
2e−

π
2
((x−a)2+y2)2πa (4.9)

≤
√
2(3a− x)πe−

π
2
((x−a)2+y2), (4.10)
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where in the last step we have used the reverse triangle inequality and

| cos(2πay) + e2πax|
|1 + e−2πiay+2πax| +

|e2πax − cos(2πay)|
|1− e−2πiay+2πax| ≤ 2. (4.11)

Similarly, Equation (4.7) can be shown by defining

η̃+a (x, y) := |e−2πax + e−2πiay|
which allows to write

|Vϕf+a (x, y)| = 1√
2
e−

π
2
((x−a)2+y2)η̃+a (x, y).

Combining the inequalities in (4.6) and (4.7), we arrive at:

Lemma 4.5. There exists a uniform constant C1 > 0 such that for all a > 0,
∥∥∥
∂

∂x
|Vϕf+a | − ∂

∂x
|Vϕf−a |

∥∥∥
L2(R2)

≤ C1 a
2 e−a2π/2.

Proof. As before, the norm on B2a(0) can be bounded by employing (4.6) and (4.7) for the cases x < 0
and x ≥ 0, respectively:

∫

B2a(0)

( ∂

∂x
|Vϕf+a (x, y)| − ∂

∂x
|Vϕf−a (x, y)|

)2

d(x, y) ≤

≤ 2π2

∫ 3π/2

π/2

∫ 2a

0

(3a− r cosϕ)2e−π(r2−2ra cosϕ+a2)r dr dϕ+

+ 2π2

∫ π/2

−π/2

∫ 2a

0

(3a+ r cosϕ)2e−π(r2+2ra cosϕ+a2)r dr dϕ

≤ 50a2π2 e−a2π
(∫ 3π/2

π/2

∫ 2a

0

e2raπ cosϕr dr dϕ+

∫ π/2

−π/2

∫ 2a

0

e−2raπ cosϕr dr dϕ
)

≤ 200a4π3 e−a2π.

For the estimation of the norm on R
2\B2a(0), one can use the pointwise estimate (4.6) as follows:

∫

R2\B2a(0)

( ∂

∂x
|Vϕf+a (x, y)| − ∂

∂x
|Vϕf−a (x, y)|

)2

d(x, y) ≤

≤ 2π2

∫

R2\B2a(0)

(3a− x)2e−π((x−a)2+y2)d(x, y)

≤ 2π2

∫ 2π

0

∫ ∞

2a

(3a− r cosϕ)2e−π(r2−2ar cosϕ+a2)rdrdϕ

≤ 2π2

∫ 2π

0

∫ ∞

2a

25

4
r3e−π(r−a)2drdϕ

≤ 25π3

∫ ∞

2a

r3e−π(r−a)2dr.

Simplification of the last integral, yields

25π3

∫ ∞

2a

r3e−π(r−a)2dr ≤

≤ 25

4
π
(
2e−a2π(1 + 7a2π) + aπ(3 + 2a2π)

∫ ∞

a
√
π

e−t2dt
)

≤ 25

4
π
(
2e−a2π(1 + 7a2π) + aπ(3 + 2a2π)

∫ ∞

a
√
π

t

a
√
π
e−t2dt

)

≤ 25

4
π
(
(2 +

3

2

√
π) + a2π(14 +

√
π)
)
e−a2π.

13



We conclude this section by providing the last missing upper bound, the one on the L2-norm of the
partial derivatives w.r.t. y. Again, we can find pointwise estimates:

Lemma 4.6. The following bounds hold for the Gabor transform magnitudes of f+a and f−a for all points
(x, y) ∈ R

2:
∣∣∣∣
∂

∂y
|Vϕf+a (x, y)| − ∂

∂y
|Vϕf−a (x, y)|

∣∣∣∣ ≤
√
2(|πy|+ 2πa)e−

π
2
((x−a)2+y2), (4.12)

∣∣∣∣
∂

∂y
|Vϕf+a (x, y)| − ∂

∂y
|Vϕf−a (x, y)|

∣∣∣∣ ≤
√
2(|πy|+ 2πa)e−

π
2
((x+a)2+y2). (4.13)

Proof. To show the validity of (4.12), we proceed as in the proof of Lemma 4.4 and obtain

∂

∂y
|Vϕf+a (x, y)| = 1√

2
(−πy)e−π

2
((x+a)2+y2)|1 + e−2πiay+2πax|

+
1√
2
e−

π
2
((x+a)2+y2)e2πax2πa

− sin(2πay)

|1 + e−2πiay+2πax| , (4.14)

as well as

∂

∂y
|Vϕf−a (x, y)| = 1√

2
(−πy)e−π

2
((x+a)2+y2)|1− e−2πiay+2πax|

+
1√
2
e−

π
2
((x+a)2+y2)e2πax2πa

sin(2πay)

|1− e−2πiay+2πax| .

Noting that ∣∣∣∣
sin(2πay)

|1 + e−2πiay+2πax|

∣∣∣∣ ≤ 1,

∣∣∣∣
sin(2πay)

|1− e−2πiay+2πax|

∣∣∣∣ ≤ 1 (4.15)

and repeating the arguments of the proof of Lemma 4.4, one arrives at
∣∣∣∣
∂

∂y
|Vϕf+a (x, y)| − ∂

∂y
|Vϕf−a (x, y)|

∣∣∣∣

≤ 1√
2
|πy|e−π

2
((x+a)2+y2)

∣∣|1 + e−2πiay+2πax| − |1− e−2πiay+2πax|
∣∣+

+
1√
2
e−

π
2
((x−a)2+y2)2πa

∣∣∣∣
sin(2πay)

|1 + e−2πiay+2πax| +
sin(2πay)

|1− e−2πiay+2πax|

∣∣∣∣

≤
√
2e−

π
2
((x−a)2+y2)(|πy|+ 2πa).

The proof of (4.13) is similar.

As in the case of the partial derivatives with respect to x, one can derive an estimate as in Lemma
4.5:

Lemma 4.7. There exists a uniform constant C2 > 0 such that for all a > 0 the following holds:

∥∥∥
∂

∂y
|Vϕf+a | − ∂

∂y
|Vϕf−a |

∥∥∥
L2(R2)

≤ C2 a
2 e−a2π/2.

5 Proofs of Section 3.3.1

Proof of Proposition 3.6. Since p ∈ [1, 2] and we can assume ‖g‖L2(R) ≤ 1 without loss of generality, the
basic estimate ∣∣∣|〈f+a , gn,k〉|p − |〈f−a , gn,k〉|p

∣∣∣ ≤ 2
∣∣∣|〈f+a , gn,k〉| − |〈f−a , gn,k〉|

∣∣∣,

holds. Applying the reverse triangle inequality twice on the RHS of the above, one obtains (where we
recall the definition of ua, u−a in (3.2):

∣∣∣|〈f+a , gn,k〉|p − |〈f−a , gn,k〉|p
∣∣∣ ≤ 4min{|〈u−a, gn,k〉|, |〈ua, gn,k〉|}.
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Thus,

∑

n,k∈Z

(
|〈f+a , gn,k〉|p − |〈f−a , gn,k〉|p

)
w(nx0, ky0)

p ≤

≤ 4
∑

n∈Z
+

0

k∈Z

|〈u−a, gn,k〉|w(nx0, ky0)p + 4
∑

n∈Z
−

k∈Z

|〈ua, gn,k〉|w(nx0, ky0)p. (5.1)

The property that Vgϕ ∈ S(R2), implies that for any m ∈ N there exists a constant C̃m > 0, s.t.

∣∣Vgϕ(x, y)
∣∣ ≤ C̃m

1(
(1 + |x|)(1 + |y|)

)m .

Further note that |Vgua(x, y)| = |Vgϕ(x− a, y)|, |Vgu−a(x, y)| = |Vgϕ(x+ a, y)| and hence,

|〈u−a, gn,k〉|w(nx0, ky0)p ≤ C̃m

(
(1 + |x0n|)(1 + |y0k|)

)sp
(
(1 + |x0n+ a|)(1 + |y0k|)

)m ≤ C̃m

(
(1 + |x0n+ a|)(1 + |y0k|)

)sp−m
,

for n ≥ 0, and similarly

|〈ua, gn,k〉|w(nx0, ky0)p ≤ C̃m

(
(1 + |x0n− a|)(1 + |y0k|)

)sp−m
, for n < 0.

These estimates can now be inserted into (5.1) to obtain

∑

n,k∈Z

(
|〈f+a , gn,k〉|p − |〈f−a , gn,k〉|p

)
w(nx0, ky0)

p ≤

≤ 4C̃m

( ∑

n∈Z
+

0

k∈Z

(
(1 + |nx0 + a|)(1 + |ky0|)

)sp−m
+

∑

n∈Z
−

k∈Z

(
(1 + |nx0 − a|)(1 + |ky0|)

)sp−m
)

≤ 4C̃m

(
(1 + a)sp−m + 2

∫ ∞

0

(1 + xx0 + a)sp−mdx
)
·
(
1 + 2

∫ ∞

0

(1 + yy0)
sp−mdy

)

≤ Cm

(
1 + a

)sp−m+1
,

for some constant Cm depending on m,x0 and y0, where the last line follows from m > sp+ 1.

Proof of Proposition 3.7. Let pw,m(t) be the Taylor polynomial of ϕ at point w := α−jβk and of degree
m− 1. Then,

|ϕ(t)− pw,m(t)| ≤ e−πw2/8|t− w|m, for all t ∈ Iw := [w/2, 3w/2]. (5.2)

On the other hand, since ψ has m vanishing moments, we have that

〈ϕ, ψj,k〉 = 〈ϕ− pw,m, ψj,k〉 =
∫

R

(ϕ(t)− pw,m(t))αj/2ψ(αjt− βk)dt.

To estimate this integral, we split it into a piece on Iw and a piece on the remaining interval on which
ψj,k has small energy. Substituting x = αjt− βk we obtain

|〈ϕ, ψj,k〉| ≤ |
∫

Iw

(ϕ(t)− pα−jβk,m(t))αj/2ψ(αjt− βk)dt|+ |
∫

R\Iw
(ϕ(t)− pα−jβk,m(t))αj/2ψ(αjt− βk)dt|

≤ e−πw2/8|
∫

Iw

|t− α−jβk|mαj/2ψ(αjt− βk)dt|+ |
∫

R\Iw
|t− α−jβk|mαj/2ψ(αjt− βk)dt|

≤ e−πw2/8α−j(m+3/2)

∫ β|k|
2

− β|k|
2

|x|m|ψ(x)|dx+ α−j(m+3/2)

∫

R\[− β|k|
2

,
β|k|
2

]

|x|m|ψ(x)|dx.
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Employing the decay property (3.13) of ψ further yields

|〈ϕ, ψj,k〉| ≤ α−j(m+3/2)C2m+2

(
e−πw2/8

∫ β|k|
2

− β|k|
2

|x|m
1 + |x|2m+2

dx+

∫

R\[− β|k|
2

,
β|k|
2

]

|x|m
1 + |x|2m+2

dx
)

≤ α−j(m+3/2)C2m+2

(
e−πw2/8β|k|+

∫

R\[− β|k|
2

,
β|k|
2

]

|x|−m−2dx
)

≤ α−j(m+3/2)C2m+2

(
β|k| e−π(α−jβk)2/8 +

2m+2

(β|k|)m+1

)

≤ C α−j(m+3/2)(β|k|)−m−1.

To show inequality (3.16), we note that for β|k| ≥ 2:

|〈ϕ, χ0,k〉| ≤ C̃m+2

∫

R

e−πt2 1

1 + |t− βk|m+2
dt

≤ C̃m+2

(∫ β|k|
2

− β|k|
2

1

1 + |t− βk|m+2
dt+

∫

R\[− β|k|
2

,
β|k|
2

]

e−πt2dt
)

≤ C̃m+2

(
2m+2(β|k|)−m−1 +

1

π
e−π(βk)2/4

)
≤ C̃(β|k|)−m−1.

The constant C := max{C, C̃} depends on only m.
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