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Abstract

We study the optimal liquidation problem in a market model where the bid price follows

a geometric pure jump process whose local characteristics are driven by an unobservable

finite-state Markov chain and by the liquidation rate. This model is consistent with stylized

facts of high frequency data such as the discrete nature of tick data and the clustering in

the order flow. We include both temporary and permanent effects into our analysis. We use

stochastic filtering to reduce the optimal liquidation problem to an equivalent optimization

problem under complete information. This leads to a stochastic control problem for piecewise

deterministic Markov processes (PDMPs). We carry out a detailed mathematical analysis

of this problem. In particular, we derive the optimality equation for the value function, we

characterize the value function as continuous viscosity solution of the associated dynamic

programming equation, and we prove a novel comparison result. The paper concludes with

numerical results illustrating the impact of partial information and price impact on the value

function and on the optimal liquidation rate.

Keywords: Optimal liquidation, Stochastic filtering, Piecewise deterministic Markov process,
Viscosity solutions and comparison principle.

1 Introduction

In financial markets, traders frequently face the task of selling a large amount of a given asset
over a short time period. This has led to a lot of research on optimal portfolio execution, largely
in the context of market impact models. In these models one directly specifies the impact of a
given trading strategy on the bid price of the asset and the fundamental price (i.e. the price if
the trader is inactive) is usually modelled as a diffusion process. However, portfolio liquidation
strategies are executed at relatively high trading frequency. Hence a sound market impact model
should be consistent with key stylized facts of high frequency data as discussed for instance by
Cartea et al. [13] or Cont [17]. First, on fine time scales the bid price of an asset is best described
by a pure jump process, since in reality prices move on a discrete grid defined by the tick size.
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Second, the order flow is clustered in time: there are random periods with a lot of buy orders
or with a lot of sell orders, interspersed by quieter times with less trading activity. Cont [17]
attributes this to the fact that many observed orders are components of a larger parent order
that is executed in small blocks. A further reason for the clustering in the inter-event times are
random fluctuations in the arrival rate of new information, see, e.g. Andersen [4]. Third, the
distribution of returns over short time intervals is strongly non-Gaussian but has heavy tails and
a large mass around zero; to a certain extent this is a consequence of the first two stylized facts.
Finally, there is permanent price impact, that is the implementation of a liquidation strategy
pushes prices downwards.

To capture these stylized facts we model the bid price as a marked point process with Markov
switching whose local characteristics (intensity and jump size distribution) depend on the trader’s
current liquidation rate νt and on the value Yt of a finite state Markov chain Y . The fact that the
local characteristics depend on νt is used to model permanent price impact. Markov switching
allows us to reproduce the observed clustering in the order flow. Our framework encompasses
models with a high intensity of downward jumps in one state of Y and a high intensity of upward
jumps in another state of Y and models where inter-event times are given by a mixture of
exponential distributions. We view the process Y as an abstract modelling device that generates
clustering and assume therefore that Y is unobservable by the trader. This is consistent with
the fact that economic sources for clustering such as the trading activity of other investors are
not directly observable. Markov modulated marked point processes with partial information
(without price impact) were considered previously in the statistical modelling of high frequency
data, see for instance Cvitanic et al. [19] or Cartea and Jaimungal [12]; however, we are the first
to study optimal liquidation in such a setting.

The first step in the analysis of a control problem with partial information is to formulate an
equivalent problem under full information via stochastic filteringand hence to derive the stochas-
tic filtering equations for our setup. These equations describe the dynamics of the conditional
distribution of Yt given the bid price history up to time t. Note that this provides a further ratio-
nale for modelling the bid price as a marked point process. In fact, the strong non-normality of
short-period returns implies that it is problematic to use high frequency data as input in the nu-
merical solution of the classical filtering equations for models with diffusive observation process,
as the resulting filters may become unstable. To overcome this issue we prefer to work in a point
process framework. We use the reference probability approach to give a rigorous construction of
our model and to derive the filtering equations. We end up with a control problem whose state
process, denoted by X, consists of the stock price, the inventory level, and the filter process. We
provide a detailed mathematical analysis of this problem. The form of the asset return dynamics
implies that X is a piecewise deterministic Markov process (PDMP) so that we rely on control
theory for PDMPs; a general introduction to this theory is given in Davis [22] or in Bäuerle
and Rieder [9]. We establish the dynamic programming equation for the value function and we
derive conditions on the data of the problem that guarantee the continuity of the value function.
This requires a careful analysis of the behaviour of the value function close to the boundary
of the state space. As a further step we characterize the value function as the unique continu-
ous viscosity solution of the Hamilton-Jacobi-Bellman (HJB) partial integro-differential equation
and we give an example showing that in general the HJB equation does not admit a classical
solution. Moreover, we prove a novel comparison theorem for the HJB equation which is valid
in more general PDMP setups. A comparison principle is necessary to ensure the convergence
of numerical schemes to the value function, see Barles and Souganidis [7].

The paper closes with a section on applications. We discuss properties of the optimal liquidation
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rate and of the expected liquidation profit and we use a finite difference approximation of the
HJB equation to analyze the influence of the temporary and permanent price impact parameters
on the form of the optimal liquidation rate. Among others, we find that for certain parameter
constellations the optimal strategy displays a surprising gambling behaviour of the trader that
cannot be guessed upfront and we give an economic interpretation that is based on the form of
the HJB equation. Moreover, we study the additional liquidation profit from the use of a filtering
model, and we report results from a small calibration study that provides further support for
our model.

We continue with a brief discussion of the existing literature, concentrating on market impact
models. The first contribution is Bertsimas and Lo [10] who analyze the optimal portfolio
execution problem for a risk-neutral agent in a model with linear and purely permanent price
impact. This model has been generalized by Almgren and Chriss [1] who consider also risk
aversion and temporary price impact. Since then, market impact models have been extensively
studied. Important contributions include He and Mamaysky [29], Schied and Schöneborn [34],
Schied [33], Guo and Zervos [28], Casgrain and Jaimungal [14]. All these models work in a
(discretized) diffusion framework. From a methodological point of view our analysis is also
related to the literature on expected utility maximization for pure jump process such as Bäuerle
and Rieder [8]. Important contributions to the control theory of PDMPs include Davis [22],
Almudevar [3], Costa and Dufour [18]. Viscosity solutions for PDMP control problems were
previously considered in Davis and Farid [23].

The outline of the paper is the following. In Section 2, we introduce our model, the main
assumptions and the optimization problem. In Section 3, we derive the filtering equations for
our model. Section 4 contains the mathematical analysis of the optimization problem via PDMP
techniques. In Section 5 we provide a viscosity solution characterization of the value function.
Finally, in Section 6, we present the results of our numerical experiments. The appendix contains
additional proofs.

2 The Model

2.1 The optimal liquidation problem Throughout we work on the filtered probability
space (Ω,F ,F,P), where the filtration F = {Ft}t≥0 satisfies the usual conditions. Here F is the
global filtration, i.e. all considered processes are F-adapted, and P is the historical probability
measure. We consider a trader who has to liquidate w0 > 0 units of a given security (referred to
as the stock in the sequel) over the period [0, T ] for a given time horizon T . We denote the bid
price process by S = (St)0≤t≤T and F

S is the right-continuous and complete filtration generated
by S.

We assume that the trader sells the shares at a nonnegative F
S-adapted rate ν = (νt)0≤t≤T .

Hence her inventory, i.e. the amount of shares she holds at time t ∈ [0, T ], is given by the
absolutely continuous process

Wt = w0 −

∫ t

0
νudu, 0 ≤ t ≤ T. (2.1)

The inventory dynamics (2.1) is a stylized model of real trading where orders are placed at
discrete points in time. Our interpretation follows the literature on price impact models such as
Almgren and Chriss [1] or Cartea et al. [13], Section 6.2. We split the time interval [0, T ] into
small subintervals of fixed length δ, leading to a partition 0 = t0 < t1 < · · · < tn = T . At each

3



time tj , the investor decides on the amount of inventory she wants to liquidate over the period
[tj , tj+1). This quantity is described in terms of the FS

tj
-measurable nonnegative trading rate

νtj = (Wtj − Wtj+1
)/δ, j = 0, . . . , n − 1. We assume that the revenue generated by this share

sale is given by
(νtjδ)Stj (1− f(νtj )), j = 0, . . . , n− 1. (2.2)

Here Stj (1 − f(νtj )) is the execution price per share, and the nonnegative, continuous and in-
creasing function f models temporary price impact. A simple interpretation of (2.2) is that νtjδ

shares are sold in a market order, and the quantity f(νtj ) describes in a stylized way the impact
on the execution price as the order “walks the order book”. More abstractly, one may view (2.2)
as (expected) revenue of some ultra-high frequency trading algorithm for the liquidation of the
child order νtjδ over (tj , tj+1], see for instance Lehalle et al. [31]. Note that the price impact
described by f is purely temporary as it pertains only to the execution price of the current trade.
Permanent price impact (the impact of trading on the dynamics of S) is discussed in the next
section.

Consider now a discrete list of share sales {νt0 , . . . , νtn−1
} and define the associated continuous-

time liquidation strategy ν by

νt =
n−1∑

j=0

νtj1(tj ,tj+1](t) , 0 ≤ t ≤ T .

Then for small δ the inventory process generated by the discrete trades is approximately equal
to (2.1), and the cumulative revenue process of the discrete trades is approximately equal to the
absolutely continuous cash flow stream

∫ t

0
νsSs(1− f(νs))ds , 0 ≤ t ≤ T. (2.3)

In this paper we work with the absolutely continuous inventory dynamics (2.1) and with the
revenue stream (2.3). This facilitates comparison with the literature and permits us to use tools
from stochastic calculus and continuous-time stochastic control.

Now we describe the ingredients of the liquidation problem in detail. First, we consider the
temporary price impact. Empirical evidence suggests that f can be modelled as a power function,
f(ν) = cfν

ς , with 0 < ς < 1, see for instance Cartea et al. [13], Section 6.7 or Almgren et al. [2].
In that case νf(ν), the cost of trading at the rate ν, is increasing, strictly convex and exhibits
superlinear growth, that is limν→∞ f(ν) = ∞. In the theoretical part of our analysis we do not
specify explicitly the functional form of f , but we assume throughout that νf(ν) is increasing
and strictly convex with superlinear growth. Second, in order to account for the case where not
all shares have been sold strictly prior to time T , we model the value of the remaining share
position by h(WT )ST . Here h is an increasing, continuous and concave function with h(w) ≤ w

and h(0) = 0. We also view the difference (WT − h(WT ))ST as a penalization of a nonzero
terminal inventory position. Third, we confine the trader to F

S adapted strategies. Moreover,
observe that convexity and superlinear growth of νf(ν) imply that the mapping ν 7→ νSt(1−f(ν))

(the instantaneous revenue generated by a share sale at rate ν) has a unique maximum at some
νmax > 0. Hence it is never optimal for the agent to liquidate shares at a rate larger than νmax.
We may therefore assume without loss of generality that the liquidation rate is bounded by νmax,
and we call a liquidation strategy ν = (νt)0≤t≤T admissible if ν is FS adapted and if νt ∈ [0, νmax]

for all 0 ≤ t ≤ T .1 The exact form of f for large ν large is hard to estimate empirically, since one
1Imposing an upper bound on the liquidation rate facilitates the mathematical analysis, since existing results

on the control of piecewise deterministic Markov processes rely on the assumption of a compact control space.
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needs to extrapolate beyond the typical order size. Consequently it is difficult to estimate the
value of νmax precisely. In Section 2.3 we therefore show that the value of the optimal liquidation
problem is fairly insensitive to the exact value of the this parameter.

Finally we describe the objective of the trader. Fix some admissible liquidation strategy ν and
denote by ρ ≥ 0 the (subjective) discount rate of the trader. The expected discounted value of
the revenue generated by ν is equal to

J(ν) = E

(∫ τ

0
e−ρuνuS

ν

u (1− f(νu))du+ e−ρτSν

τ h(Wτ )

)
. (2.4)

Here Sν denotes the bid price given that the trader follows the strategy ν (see Section 2.2), and
the F

S stopping time τ is given by

τ := inf{t ≥ 0 : Wt ≤ 0} ∧ T . (2.5)

The goal of the trader is to maximize (2.4) over all admissible strategies; the corresponding
optimal value is denoted by J∗.

Note that the form of the objective function in (2.4) implies that the trader is risk neutral. Risk
neutrality seems a reasonable assumption in our setup since the time period [0, T ] is fairly short
and since the trader is confined to pure selling strategies so that the risk she may take is limited.
A straightforward way to incorporate risk aversion into our model is to include a penalty of the
form −

∫ τ

0 e−ρuSuWudu into the reward function. Such term penalizes slow execution and hence
strategies with high price risk. Similar ideas are discussed for instance in Cartea et al. [13],
Section 6.5.

2.2 Dynamics of the bid price. To capture the discrete nature of high-frequency price
trajectories we model the bid price as a Markov-modulated geometric finite activity pure jump
process. Let Y = (Yt)0≤t≤T be a continuous-time finite-state Markov chain on (Ω,F ,F,P) with
state space E = {e1, e2, ..., eK} (ek is k-th unit vector in R

K), generator matrix Q = (qij)i,j=1,...,K

and initial distribution π0 = (π1
0, · · · , π

K
0 ). The bid price has the dynamics

dSt = St−dRt, S0 = s ∈ (0,∞) ,

where the return process R = (Rt)0≤t≤T is a finite activity pure jump process. Moreover, it
holds that ∆Rt := Rt − Rt− > −1 for all t, so that S is strictly positive. Note that F

S is equal
to F

R, the filtration generated by the return process R; in the sequel we will use both filtrations
interchangeably. Denote by µR the random measure associated with R, defined by

µR(dt, dz) :=
∑

u≥0,∆Ru 6=0

δ{u,∆Ru}(dt, dz),

and by ηP the (F,P)-dual predictable projection (or compensating random measure) of µR. We
assume that ηP is absolutely continuous and of the form ηP(t, Yt− , νt− ; dz)dt, for a finite measure
ηP(t, e, ν; dz) on R and that the processes R and Y have no common jumps. Hence R and Y

are orthogonal, i.e. [R, Y ]t ≡ 0 for all t ∈ [0, T ], P-a.s.

The measure ηP(t, e, ν; dz) is a crucial quantity as it determines the law of the bid price with
respect to filtration F under the probability P. The fact that ηP depends on the current liquida-
tion rate serves to model permanent price impact; the dependence of ηP on Yt− can be used to
reproduce the clustering in inter-event durations observed in high frequency data and to model
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the feedback effect from the trading activity of the rest of the market. Finally, time-dependence
of ηP can be used to model the strong intra-day seasonality patterns observed for high frequency
data. These aspects are explained in more detail in Example 2.3 below.

Next we provide further motivation for our setup. The discrete nature of high frequency price
trajectories is illustrated in Figure 1 where we plot of Google share price sampled at a one-second
frequency, together with a QQ plot of the corresponding returns. The latter plot clearly shows
that the returns are strongly non-Gaussian. The discretisation parameter δ in (2.2) is typically
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Figure 1: Properties of high frequency returns. Left plot: Google share price on 2012-06-21
sampled between 15:58:02 and 15:59:02 at the frequency of one second; right plot: QQ plot of
the corresponding returns.

of the order of a few minutes and hence larger than the time scale used in Figure 1, so that
on the δ-timescale a diffusion approximation for S might make sense. In our setup with partial

information a point process framework is nonetheless more appropriate, for the following reason.
As the process Y is not directly observable, the optimal liquidation rate νt depends on the
trader’s estimate of the state of the market as summarized by the conditional state probabilities
πi
t = P (Yt = ei|F

S
t ), i = 1, . . . ,K. For instance, in the context of Example 2.3 below it is

intuitively clear that if the conditional probability to be in the good state is high (π1
t close to

one), the trader might want to wait in anticipation that the price will rise. In mathematical terms
this means that one has to add the filter process (π1

t , . . . , π
K
t )0≤t≤T to the state variables of the

problem. The latter solves a K dimensional SDE (called Kushner-Stratonovich equation) that
is driven by the return observations. Here the following issue arises. In the numerical analysis of
the optimal liquidation problem one needs to solve this SDE on a very fine time scale to make
good use of the available information.2 This leads to numerical difficulties if one works with
a diffusion model for R, essentially because high frequency returns are strongly non-Gaussian.
For this reason we prefer to model the return as a marked point process. Consistency between
the model used for the computation of the filter process π and the model used in the optimal
liquidation problem itself thus implies that the latter problem should be analyzed in a point
process framework.

Further empirical support for our setup comes from a small calibration study with simulated and
real data presented in Section 6.3. There we use the fact that for ν ≡ 0 the model is a hidden
Markov model with point process observation and we apply the expectation maximization (EM)

2For instance we used one second returns for our calibration study in Section 6.3.
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methodology for Markov modulated point processes to estimate the generator matrix of Y and
the parameters of the compensator ηP.

It is interesting to consider the semimartingale decomposition of the bid price with respect to
the full information filtration F. Denote for all (t, e, ν) ∈ [0, T ]×E × [0, νmax] the mean of ηP by

ηP(t, e, ν) :=

∫

R

z ηP(t, e, ν; dz) ; (2.6)

ηP(t, e, ν) exists under Assumption 2.1 below. Fix some liquidation strategy ν. Then the martin-
gale part MR of the return process is given by MR

t = Rt−
∫ t

0 η
P(s, Ys−, νs−)ds, for all t ∈ [0, T ],

and the F-semimartingale decomposition of S equals

St = S0 +

∫ t

0
Ss−dM

R
s +

∫ t

0
Ss−η

P(s, Ys−, νs−)ds , t ∈ [0, T ] . (2.7)

In the sequel we assume that for all (t, e) ∈ [0, T ]× E , the mapping ν 7→ ηP(t, e, ν) is decreasing
on [0,∞), that is the drift in the semimartingale decomposition (2.7) of S is decreasing in the
liquidation rate. This is similar to the modeling of permanent price impact in Almgren and
Chriss [1] where liquidation adds a negative drift to bid price.

Finally we introduce some technical assumptions on the compensator ηP .

Assumption 2.1. There is a deterministic finite measure ηQ on R whose support, denoted by
supp(η), is a compact subset of (−1,∞), such that for all (t, e, ν) ∈ [0, T ] × E × [0,∞) the
measure ηP(t, e, ν; dz) is equivalent to ηQ(dz). Furthermore, for every νmax < ∞ there is some
constant M > 0 such that

M−1 <
dηP(t, e, ν)

dηQ
(z) < M for all (t, e, ν) ∈ [0, T ]× E × [0, νmax] . (2.8)

The assumption implies that for every fixed νmax there is a λmax < ∞ such that

sup{ηP(t, e, ν;R) : (t, e, ν) ∈ [0, T ]× E × [0, νmax]} ≤ λmax ; (2.9)

in particular the counting process associated to the jumps of S is P-nonexplosive. Moreover,
it provides a sufficient condition for the existence of a reference probability measure, i.e. a
probability measure Q equivalent to P on (Ω,FT ), such that under Q, µR is a Poisson random
measure with intensity measure ηQ(dz), independent of Y and ν. This is needed in the analysis
of the filtering problem of the trader in Section 3. Note that the equivalence of ηP and ηQ implies
that for all (t, e, ν) ∈ [0, T ]× E × [0,∞) the support of ηP is equal to supp(η). The assumption
that supp(η) is compact is not restrictive, since in reality the bid price moves only by a few ticks
at a time.

The following examples serve to illustrate our framework; they will be taken up in Section 6.

Example 2.2. Consider the case where the return process R follows a bivariate point process, i.e.
there are two possible jump sizes, ∆R ∈ {−θ, θ} for some θ > 0. In this example we assume that
the dynamics of S is independent of Y and t. Moreover, the intensity λ+ of an upward jump is
constant and equal to cup > 0, and the intensity λ− of a downward jump depends on the rate of
trading and is given by λ−(ν) = cdown(1 + aν) for constants cdown, a > 0. Note that, with this
choice of λ−, the intensity of a downward jump in S is linearly increasing in the liquidation rate
ν. The function ηP from (2.6) given by ηP(ν) = θ(cup−cdown(1+aν)) is clearly independent of t
and e and linearly decreasing in ν. Linear models for the permanent price impact are frequently
considered in the literature as they have theoretical and empirical advantages; see for instance
Almgren et al. [2] or Gatheral and Schied [27].
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Example 2.3. Now we generalize Example 2.2 and allow ηP to depend on the state process Y .
We consider a two-state Markov chain Y with the state space E = {e1, e2} and we assume that e1
is a ‘good’ state and e2 a ‘bad’ state in the following sense: in state e1 the intensity of an upward
move of the stock is larger than in state e2; the intensity of a downward move on the other hand
is larger in state e2 than in e1. We therefore choose constants cup

1 > cup
2 > 0, cdown

2 > cdown
1 > 0

and a price impact parameter a > 0 and we set for i = 1, 2,

λ+(ei, ν) = (cup
1 , cup

2 )ei and λ−(ei, ν) = (1 + aν)(cdown
1 , cdown

2 )ei.

Then, ηP(ei, ν, dz) = λ+(ei, ν)δ{θ}(dz)+λ−(ei, ν)δ{−θ}(dz), for i = 1, 2. Since cup
1 > cup

2 , in state
e1 one has on average more buy orders; this might represent a scenario where another trader is
executing a large buy program. Similarly, since cdown

2 > cdown
1 , there are on average more sell

orders in state e2, for instance because another trader is executing a large sell program. The
form of ηP implies that the permanent price impact is linear and proportional to the intensity
of a downward move and hence larger in the ‘bad’ state e2 than in the good state e1.

Note that within our general setup this example could be enhanced in a number of ways. For
instance, the transition intensities cup

i and cdown
i and the liquidity parameter a could be made

time dependent to reflect the fact that on most markets trading activity during the day is U -
shaped with more trades occurring at the beginning and the end of a day than in the middle.
Moreover, one could introduce an additional state where the market is moving sideways, or one
could consider the case where the liquidity parameter a depends on Y .

2.3 Bounds on the value function In the previous section we have seen that having a tem-
porary price impact described by a superlinear and convex function νf(ν) implies an endogenous
upper bound νmax for the liquidation strategy. However it is difficult to estimate this value if
the exact form of the function f is unknown. In this section we provide a robustness result by
showing that the optimal proceeds from liquidation are almost independent of the precise value
of νmax. To this, we define J∗,m as the optimal liquidation value if the trader uses F

S-adapted
strategies with νt ≤ m for all t and prove in Proposition 2.4 that J∗,m is bounded independently
of m. Now the sequence {J∗,m}m∈N is obviously increasing, since a higher m means that the
trader can optimize over a larger set of strategies. Hence, {J∗,m}m∈N is Cauchy which leads to
the result.

Proposition 2.4. Suppose that Assumption 2.1 holds and that the function (t, e, ν) → ηP(t, e, ν)

from (2.6) is decreasing in ν, and set

η = 0 ∨ sup{ηP(t, e, 0)− ρ : t ∈ [0, T ], e ∈ E}.

Then supm>0 J
∗,m ≤ w0S0e

ηT .

Note that the upper bound on J∗ corresponds to the liquidation value of the inventory in a
frictionless model where the expected value of the bid price grows at the maximum rate η + ρ.

Proof. Fix some F
S-adapted strategy ν with values in [0,m], denote the corresponding bid price

by Sν and let S̃ν

t = e−ρtSν

t . Since Wt = w0 −
∫ t

0 νsds we get by partial integration that

∫ τ

0
νsS̃

ν

s ds = −

∫ τ

0
S̃ν

s dWs = S0w0 − S̃ν

τ Wτ +

∫ τ

0
WsdS̃

ν

s .
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Since h(w) ≤ w and f(ν) ≥ 0 we thus get that
∫ τ

0
νuS̃

ν

u (1− f(νu))du+ S̃ν

τ h(Wτ ) ≤

∫ τ

0
νuS̃

ν

udu+ S̃ν

τ Wτ = S0w0 +

∫ τ

0
WudS̃

ν

u .

Notice that
∫ τ

0 WudS̃
ν

u =
∫ τ

0 WuS̃
ν

udM
R
u +

∫ τ

0 WuS̃
ν

u (η
P(u, Yu−, νu−) − ρ)du. Moreover the

process
∫ ·∧τ
0 WuS̃

ν

udM
R
u is a true martingale. As 0 ≤ Wu ≤ w0, a similar argument as in

the proof of Lemma A.1 shows that this process is of integrable quadratic variation. Since
ηP(u, Yu−, νu−)− ρ ≤ η, τ ≤ T and Wu ≤ w0, we get

J(ν) ≤ S0w0 + E

(∫ τ

0
WuS̃

ν

u (η
P(u, Yu−, νu−)− ρ)du

)

≤ S0w0 + E

(∫ T

0
w0S̃

ν

u η du
)
. (2.10)

Next we show that E
(
S̃ν

t

)
≤ S0e

ηt. To this end, note that by Lemma A.1,
∫ ·
0 S

ν

s−dM
R
s is a true

martingale so that

E
(
S̃ν

t

)
= S0 + E

(∫ t

0
S̃ν

u (η
P(u, Yu−, νu−)− ρ)du

)
≤ S0 + η

∫ t

0
E
(
S̃ν

u

)
du,

and the claim follows from the Gronwall inequality. Using (2.10) we finally get that J(ν) ≤

S0w0(1 +
∫ T

0 ηeηudu) = S0w0e
ηT , and hence the result.

3 Partial Information and Filtering

In this section we derive the filtering equations for our model. Filtering for point process ob-
servations is for instance considered in Frey and Schmidt [25], Ceci and Colaneri [15, 16]. This
literature is mostly based on the innovations approach. In this paper, instead, we address the fil-
tering problem via the reference probability approach. This methodology relies on the existence of
an equivalent probability measure such that the observation process is driven by a random mea-
sure with dual predictable projection independent of the Markov chain, see for instance Brémaud
[11, Chapter 6]. The reference probability approach permits us to give a rigorous construction
of our model, see Lemma 3.1.

3.1 Reference probability. We start from a filtered probability space (Ω,F ,F,Q) that sup-
ports a Markov chain Y with state space E and generator matrix Q, and an independent Poisson
random measure µR with compensator ηQ(dz)dt as in Assumption 2.1.2; Q is known as the
reference probability measure. Note that the independence of Y and µR implies that R and Y

have no common jumps. For (t, e, ν, z) ∈ [0, T ]× E × [0, νmax]× supp(η), we define the function
β by

β(t, e, ν, z) :=
dηP(t, e, ν; dz)

dηQ(dz)
(z)− 1 ,

i.e. β(t, e, ν, z) + 1 is the Radon-Nikodym derivative of the measure ηP(t, e, ν; dz) with respect
to ηQ(dz).

We denote by F
R the filtration generated by µR. Fix some F

R-adapted liquidation strategy ν

with νt ∈ [0, νmax], t ≤ T and define for t ∈ [0, T ] the stochastic exponential Z̃ by

Z̃t = 1 +

∫ t

0

∫

R

Z̃s−β(s, Ys− , νs− , z)
(
µR(ds, dz)− ηQ(dz)ds

)
. (3.1)
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Then we have the following result.

Lemma 3.1. Let Assumption 2.1 prevail. Then the process Z̃ is a strictly positive martingale

with E
Q
(
Z̃T

)
= 1. Define a measure P on FT by setting dP

dQ

∣∣
FT

= Z̃T . Then P and Q are

equivalent and, under P, the random measure µR has the compensator ηP.

The proof of the lemma is postponed to Appendix A.

Note that Lemma 3.1 gives a rigorous construction of the model introduced in Section 2.2. The
advantage of using a change-of-measure approach is the fact that the Poisson random measure
µR and the observation filtration F

R are exogenously given. If one attempts a direct construction
circularities arise, as the process R depends on the strategy ν which is in turn adapted to the
filtration F

R.

3.2 Filtering equations. For a function f : E → R, we introduce the filter π(f) as the
optional projection of the process f(Y ) on the filtration F

S , i.e. π(f) is a càdlàg process such
that for all t ∈ [0, T ], it holds that πt(f) = E

(
f(Yt) | F

S
t

)
. Note that since Y is a finite state

Markov chain f(Yt) = 〈f , Yt〉 for all t ∈ [0, T ], where 〈 , 〉 denotes the scalar product on R
K

and fi = f(ei), i ∈ {1, . . . ,K}, and therefore functions of the Markov chain can be identified
with K-vectors. Let for all t ∈ [0, T ] and i ∈ {1, . . . ,K}, πi

t := E
(
1{Yt=ei} | F

S
t

)
. Then, we can

represent the filter as

πt(f) =

K∑

i=1

fiπ
i
t = 〈f , πt〉, 0 ≤ t ≤ T.

The objective of this section is to derive the dynamics of the process π = (π1, . . . , πK). To

this end, we first observe that by the Kallianpur-Striebel formula we have πt(f) :=
pt(f)

pt(1)
for all

t ∈ [0, T ], where p(f) denotes the unnormalized version of the filter, which is defined by

pt(f) := E
Q
(
Z̃t〈f , Yt〉 | F

S
t

)
, 0 ≤ t ≤ T. (3.2)

The dynamics of p(f) is given in the next theorem.

Theorem 3.2 (The Zakai equation). Suppose Assumption 2.1 holds and let f : E → R. Then,

for all t ∈ [0, T ], the unnormalized filter (3.2) solves the equation:

pt(f) = π0(f) +

∫ t

0
ps(Qf)ds+

∫ t

0

∫

R

ps− (β(z)f) (µR(ds, dz)− ηQs (dz)ds), (3.3)

where pt− (β(z)f) = E
Q
(
f(Yt−)Z̃t−β(t, Yt− , νt− , z) | F

S
t

)
and pt(Qf) = E

Q
(
Z̃t〈Qf , Yt〉 | F

S
t

)
.

We now provide the general idea of the proof, details are given in Appendix A. Consider the
process Z̃ defined in (3.1) and some function f : E → R. Then by Itô’s formula the product
Z̃tf(Yt) has the following (Q,F)-semimartingale decomposition

Z̃tf(Yt) =f(Y0) +

∫ t

0
Z̃s〈Qf , Yt〉ds+

∫ t

0
Z̃sdM

f
s

+

∫ t

0
Z̃sf(Ys)

∫

R

β(s, Ys− , νs− , z)
(
µR(ds, dz)− ηQs (dz)ds

)
,

10



where Mf = (Mf )0≤t≤T is the true (F,Q)-martingale appearing in the semimartingale decom-
position of f(Y ). Taking the conditional expectation with respect to FS

t yields the result, since
it can be shown that E

Q
( ∫ t

0 Z̃sdM
f
s | FS

t

)
= 0.

We introduce the notation

πt−(η
P(dz)) :=

K∑

i=1

πi
t−η

P(t, ei, νt, dz), 0 ≤ t ≤ T.

By applying [11, Ch. II, Theorem T14] it is easy to see that πt−(η
P(dz))dt gives the (FS ,P)-dual

predictable projection of the measure µR. The next proposition provides the dynamics of the
conditional state probabilities.

Proposition 3.3. The process π = (π1, . . . , πK) solves the following system of equations:

πi
t = πi

0 +

∫ t

0

K∑

j=1

qjiπj
sds+

∫ t

0

∫

R

πi
s−u

i(s, νs− , πs, z)(µ
R(ds, dz)− πs−(η

P(dz))ds), (3.4)

for every t ∈ [0, T ] and 1 ≤ i ≤ K, where ui(t, ν, π, z) :=
(dηP(t, ei, ν)/dη

Q)(z)
∑K

j=1 π
j(dηP(t, ej , ν)/dηQ)(z)

− 1.

Proof. By the Kallianpur-Striebel formula we have that πt(f) :=
pt(f)

pt(1)
, for every t ∈ [0, T ].

Then, by (3.3) and Itô formula we get the dynamics of the normalized filter π(f). The claimed
result is obtained by setting f(Yt) = 1{Yt=ei}, for every i ∈ {1, . . . ,K}.

Note that the filtering equation (3.4) does not depend on the particular choice of ηQ.

Filter equations for Example 2.3. In the following we give the dynamics of the process
π for Example 2.3. For a two-state Markov chain it is sufficient to specify the dynamics of
π = π1, since π2 = 1 − π1. Define two point processesNup

t =
∑

Tn≤t 1{∆RTn=θ} and Ndown
t =∑

Tn≤t 1{∆RTn=−θ}, for all t ∈ [0, T ], that count the upward and the downward jumps of the
return process. It is easily seen that for every (ν, π, z) ∈ [0, νmax]× [0, 1]× {−θ, θ}, the function
u1 is given by

u1(ν, π, z) =
λ+(e1, ν)

πλ+(e1, ν) + (1− π)λ+(e2, ν)
1{z=θ} +

λ−(e1, ν)

πλ−(e1, ν) + (1− π)λ−(e2, ν)
1{z=−θ}.

(3.5)
By Corollary 3.3 we get the following equation for πt = π1

t :

dπt =
(
q11πt + q21(1− πt)

)
dt

+ πt(1− πt)
(
(λ+(e1, νt) + λ−(e1, νt))− (λ+(e2, νt) + λ−(e2, νt))

)
dt

+ πt−

( λ+(e1, νt)

πt−λ+(e1, νt) + (1− πt−)λ+(e2, νt)
− 1
)
dNup

t

+ πt−

( λ−(e1, νt)

πt−λ−(e1, νt) + (1− πt−)λ−(e2, νt)
− 1
)
dNdown

t . (3.6)
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4 Control Problem I: Analysis via PDMPs

We begin with a brief overview of our analysis of the control problem (2.4). In Proposition 4.3 be-
low we show that the Kushner-Stratonovich equation (3.4) has a unique solution. Then standard
arguments ensure that the original control problem under incomplete information is equivalent to
a control problem under complete information with state process equal to the (K+2)-dimensional
process X := (W,S,π). This process is a PDMP in the sense of Davis [22], that is a trajec-
tory of X consists of a deterministic part which solves an ordinary differential equation (ODE),
interspersed by random jumps. Therefore, to solve the optimal liquidation problem we apply
control theory for PDMPs. This theory is based on the observation that a control problem for
a PDMP is discrete in time: loosely speaking, at every jump-time of the process one chooses a
control policy to be followed up to the next jump time or until maturity. Therefore, one can
identify the control problem for the PDMP with a control problem for a discrete-time, infinite-
horizon Markov decision model (MDM). Using this connection we show that the value function
of the optimal liquidation problem is continuous and that is the unique solution of the dynamic
programming or optimality equation for the MDM. These results are the basis for the viscosity-
solution characterization of the value function in Section 5.

4.1 Optimal liquidation as a control problem for a PDMP. From the viewpoint of
the trader endowed with the filtration F

S , the state of the economic system at time t ∈ [0, T ]

is given by Xt = (Wt, St, πt). Since it is more convenient to work with autonomous Markov
processes we include time into the state and define X̃t := (t,Xt). The state space of X̃ is
X̃ = [0, T ] × X where X = [0, w0] × R

+ × SK with SK being the K-dimensional simplex. Let
ν be the liquidation strategy followed by the trader. It follows from (2.1), (3.4), and from the
fact that the bid price is a pure jump process that between jump times the state process follows
the ODE dX̃t = g(X̃t, νt)dt, where the vector field g(x̃, ν) ∈ R

K+3 is given by g1(x̃, ν) = 1,
g2(x̃, ν) = −ν, g3(x̃, ν) = 0, and for k = 1, . . . ,K,

gk+3(x̃, ν) =
K∑

j=1

qjkπj − πk
K∑

j=1

πj

∫

R

uk(t, ν, π, z)ηP(t, ej , ν, dz).

For our analysis we need the following regularity property of g.

Lemma 4.1. Under Assumption 2.1, the function g is Lipschitz continuous in x̃ uniformly in

(t, ν) ∈ [0, T ]× [0, νmax]; the Lipschitz constant is denoted by Kg.

The proof is postponed to Appendix B.

The jump rate of the state process X̃ is given by λ(X̃t− , νt−), for all t ∈ (0, T ], where for every
(x̃, ν) ∈ X̃ × [0, νmax],

λ(x̃, ν) = λ(t, w, s, π, ν) :=
K∑

j=1

πjηP(t, ej , ν,R).

Next, we identify the transition kernel Q
X̃

that governs the jumps of X̃. Denote by {Tn}n∈N the

sequence of jump times of X̃. It follows from (3.4) that for any measurable function f : X̃ → R
+,

Q
X̃
f(x̃, ν) := E

(
f(X̃Tn) | Tn = t,XTn− = x, νTn− = ν

)
=

1

λ(x̃, ν)
Q

X̃
f(x̃, ν) ,
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where the unnormalized kernel Q
X̃

is given by

Q
X̃
f(x̃, ν) =

K∑

j=1

πj

∫

R

f
(
t, w, s(1 + z), π1(1 + u1), . . . , πK(1 + uK)

)
ηP(t, ej , ν, dz).

Here ui is short for ui(t, ν, π, z). Summarizing, X̃ is a PDMP with characteristics given by the
vector field g, the jump rate λ and the transition kernel Q

X̃
.

It is standard in control theory for PDMPs to work with so-called open-loop controls. In the
current context this means that the trader chooses at each jump time Tn < τ a liquidation policy
νn to be followed up to Tn+1 ∧ τ . This policy may depend on the state X̃Tn = (Tn, XTn).

Definition 4.2. Denote by A the set of measurable mappings α : [0, T ] → [0, νmax]. An admis-

sible open loop liquidation strategy is a sequence of mappings {νn}n∈N with νn : X̃ → A; the
liquidation rate at time t is given by νt =

∑∞
n=0 1(Tn∧τ,Tn+1∧τ ](t)ν

n(t− Tn, X̃Tn).

It follows from Brémaud [11, Theorem T34, Appendix A2] that an admissible strategy is of the
form given in Definition 4.2, but for FS

Tn
measurable mappings νn : Ω → A for every n ∈ N, that

νn may depend on the entire history of the system. General results for Markov decision models
(see Bäuerle and Rieder [9, Theorem 2.2.3]) show that the expected profit of the trader stays the
same if instead we consider the smaller class of admissible open loop strategies, so that we may
restrict ourselves to this class.

Proposition 4.3. Let Assumption 2.1 hold. For every admissible liquidation strategy {νn}n∈N
and every initial value x̃, a unique PDMP with characteristics g, λ, and Q

X̃
as above exists. In

particular the Kushner-Stratonovic equation (3.4) has a unique solution.

Proof. Lemma 4.1 implies that for α ∈ A the ODE dX̃t = g(X̃t, αt)dt has a unique solution
so that between jumps the state process is well-defined. At any jump time Tn, X̃Tn is uniquely
defined in terms of observable data (Tn,∆RTn). Moreover, since the jump intensity is bounded
by λmax, jump times cannot accumulate.

Denote by P
{νn}
(t,x) (equiv. P

{νn}
x̃

) the law of the state process provided that Xt = x ∈ X and that
the trader uses the open-loop strategy {νn}n∈N. The reward function associated to an admissible
liquidation strategy {νn}n∈N is defined by

V (t, x, {νn}n∈N) = E
{νn}
(t,x)

(∫ τ

t

e−ρ(u−t)νuSu(1− f(νu))du+ eρ(τ−t)h (Wτ )Sτ

)
,

and the value function of the liquidation problem under partial information is

V (t, x) = sup {V (t, x, {νn}n∈N) : {ν
n}n∈N admissible liquidation strategy} . (4.1)

Remark 4.4. Note that the compensator ηP and the dynamics of the filter π are independent
of the current bid price s, and that the payoff of a liquidation strategy {νn}n∈N is positively
homogeneous in s. This implies that the reward and the value function of the liquidation problem
are positively homogeneous in s and, in particular, V (t, w, s, π) = sV (t, w, 1, π).
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4.2 Associated Markov decision model. The optimization problem in (4.1) is discrete in
time since the control policy is chosen at the discrete time points Tn, n ∈ N , and the value of
the state process at these time points forms a discrete-time Markov chain (for Tn < τ). Hence
(4.1) can be rewritten as a control problem in an infinite horizon Markov decision model. The
state process of the MDM is given by the sequence {Ln}n∈N of random variables with

Ln = X̃Tn for Tn < τ and Ln = ∆̄ for Tn ≥ τ, n ∈ N ,

where ∆̄ is the cemetery state. In order to derive the transition kernel of the sequence {Ln}n∈N
and the reward function of the MDM, we introduce some notation. For a function α ∈ A we
denote by ϕ̃α

t (x̃) or by ϕ̃t(α, x̃) the flow of the initial value problem d
dtX̃(t) = g

(
X̃(t), αt

)
with

initial condition X̃(0) = x̃. Whenever we want to make the dependence on time explicit we write
ϕ̃α in the form (t, ϕα). Moreover, we define the function λα

u by

λα
u(x̃) = λ(ϕ̃α

u(x̃), αu) = λ((t+ u, ϕα
u), αu) u ∈ [0, T − t],

and we let Λα
u(x̃) =

∫ u

0 λα
v (x̃)dv.

Next we take a closer look at the boundary of X̃. First note that the process π takes values in
the hyperplane HK = {x ∈ R

K :
∑K

i=1 xi = 1}, so that X̃ is contained in the set H = R
3 ×HK ,

which is a hyperplane of RK+3. When considering the boundary or the interior of the state space
we always refer to the relative boundary or the relative interior with respect to H. Of particular
interest to us is the active boundary Γ of the state space, that is the part of the boundary of X̃
which can be reached by the flow ϕ̃α

· (x̃) starting in an interior point x̃ ∈ int(X̃ ). The boundary
of X̃ can only be reached if w = 0, if t = T , or if the filter process reaches the boundary of the
K-dimensional simplex. The latter is not possible: indeed, if πi

0 > 0, then πi
t > 0 for all t ∈ [0, T ],

since there is a positive probability that the Markov chain has not changed its state and since
the conditional distribution of Yt given FS

t is equivalent to the unconditional distribution of Yt
by the Kallianpur-Striebel formula. Hence the active boundary equals Γ = Γ1 ∪ Γ2, where

Γ1 = [0, T ]× {0} × (0,∞)× SK
0 and Γ2 = {T} × [0, w0]× (0,∞)× SK

0 , (4.2)

and where SK
0 is the interior of SK , i.e. SK

0 := {x ∈ SK : xi > 0 for all i}. In (4.2) Γ1 is the
lateral part of the active boundary corresponding to an inventory level equal to zero, and Γ2

is the terminal boundary corresponding to the exit from the state space at maturity T . In the
sequel we denote the first exit time of the flow ϕ̃α

· (x̃) from X̃ by

τϕ = τϕ(x̃, α) = inf{u ≥ 0 : ϕ̃α
u(x̃) ∈ Γ} .

Notice that the stopping time τ defined in (2.5) corresponds to the first time the state process
X̃ reaches the active boundary Γ.

Using similar arguments as in Bäuerle and Rieder [9, Section 8.2] or in Davis [22, Section 44], it
is easily seen that the transition kernel QL of the sequence {Ln}n∈N is given by

QLf
(
(t, x), α

)
=

∫ τϕ(x̃)

0
e−Λα

u(x̃)Q
X̃
f(u+ t, ϕu(x̃), αu

)
du+ e−Λα

τϕ
(x̃)f(∆̄) ;

we omit the details. Moreover, since the cemetery state is absorbing, QL1{∆̄}(∆̄, α) = 1. Finally

we define the one-period reward function r : X̃ × A → R
+ by

r(x̃, α) =

∫ τϕ

0
e−ρue−Λα

u(x̃)αus(1− f(αu))du+ e−ρτϕe−Λα
τα

(x̃)h(wτϕ)s, (4.3)
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and wτϕ the inventory-component of ϕ̃α, and we set r(∆̄) = 0. For an admissible strategy

{νn}n∈N we set J
{νn}
∞ (x̃) = E

{νn}
x̃

(∑∞
n=0 r (Ln, ν

n(Ln))
)
, and

J∞(x̃) := sup
{
J{νn}
∞ (x̃) : {νn}n∈N admissible liquidation strategy

}
. (4.4)

The next lemma shows that the MDM with transition kernel QL and one-period reward r(L, α)

is equivalent to the optimization problem (4.1).

Lemma 4.5. For every admissible strategy {νn} it holds that V {νn} = J
{νn}
∞ . Hence V = J∞,

and the control problems (4.1) and (4.4) are equivalent.

The proof is similar to the proof of Davis [22, Theorem 44.9] and is therefore omitted.

4.3 The Bellman equation. In this section we study the Bellman equation for the value
function V . Define for α ∈ A and a measurable function v : X̃ → R

+ the function Lv(·, α) by

Lv(x̃, α) = r(x̃, α) +QLv(x̃, α), x̃ ∈ X̃ .

The maximal reward operator T is then given by T v(x̃) = supα∈A Lv(x̃, α). Since the one-period
reward function is nonnegative we have a so-called positive MDM and it follows from Bäuerle and
Rieder [9, Theorem 7.4.3] that the value function satisfies the so-called Bellman or optimality

equation

V (x̃) = T V (x̃), x̃ ∈ X̃ ,

that is V is a fixed point of the operator T . In order to characterize V as viscosity solution of the
HJB equation associated with the PDMP X̃ (see Section 5) we need a stronger result. We want
to show: i.) that the value function V is the unique fixed point of T in a suitable function class
M; ii.) that for a starting point v0 ∈ M iterations of the form vn+1 = T vn, n ∈ N1, converge
to V ; and iii.) that V is continuous on X̃ .

Points i.) and ii.) follow from the next lemma.

Lemma 4.6. Define for γ > 0, the function b : X̃ ∪ {∆̄} → R
+ by b(x̃) = b(t, x) := sweγ(T−t),

x̃ ∈ X̃ , and b(∆̄) = 0. Then under Assumption 2.1, b is a bounding function for the MDM with

transition kernel QL and reward function r, that is there are constants cr, cQ such that for all

(x̃, α) ∈ X̃ × A.

|r(x̃, α)| ≤ crb(x̃) and QLb(x̃, α) ≤ cQb(x̃) .

Moreover, for γ sufficiently large it holds that cQ < 1, that is the MDM is contracting.

The proof is postponed to Appendix B. In the sequel we denote by Bb the set of functions

Bb :=
{
v : X̃ → R such that sup

x̃∈X̃

∣∣v(x̃)/b(x̃)
∣∣ < ∞

}
,

and we define for v ∈ Bb the norm ‖v‖b = sup
x̃∈X̃

|v(x̃)/b(x̃)|. Then the following holds, see
Bäuerle and Rieder [9, Section 7.3]: a) (Bb, ‖ · ‖)b is a Banach space; b) T (Bb) ⊂ Bb; c)
‖T v − T u‖b ≤ cQ‖v − u‖b.

If the MDM is contracting, the maximal reward operator is a contraction on (Bb, ‖ · ‖)b, and the
value function is an element of Bb. Banach’s fixed point theorem thus gives properties i.) and
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ii.) above with M = Bb. In order to establish property iii.) (continuity of V ) we observe that
the set

Cb := {v ∈ Bb : v is continuous}

is a closed subset of (Bb, ‖ · ‖)b, see Bäuerle and Rieder [9, Section 7.3]. Moreover, we show in
Proposition 4.8 that under certain continuity conditions (see Assumptions 2.1 and 4.7), T maps
Cb into itself. Hence it follows from Banach’s fixed point theorem that V ∈ Cb.

Assumption 4.7. 1. The measure ηj(t, ν; dz) for j ∈ {1, . . . ,K} is continuous in the weak
topology, i.e. for all bounded and continuous φ, the mapping (t, ν) 7→

∫
R
φ(z)ηj(dz) is

continuous on [0, T ]× [0, νmax].

2. For the functions uj introduced in Proposition 3.3 the following holds: for any sequence
{(tn, νn, πn)}n∈N with (tn, νn, πn) ∈ [0, T ) × [0, νmax] × SK for every n ∈ N, such that
(tn, νn, πn) −−−→

n→∞
(t, ν, π), one has

lim
n→∞

supz∈supp(η) |u
j(tn, νn, πn, z)− uj(t, ν, π, z)| = 0 .

Proposition 4.8. Suppose that Assumptions 2.1 and 4.7 hold and let v ∈ Cb. Then T v ∈ Cb.

Proof. Consider some sequence x̃n → x̃ for n → ∞. Since |T v(x̃n)−T v(x̃)| ≤ supα∈A |Lv(x̃n, α)−

Lv(x̃, α)|, it suffices to estimate the difference supα∈A |Lv(x̃n, α)−Lv(x̃, α)|. First, note that by
the Lipschitz continuity of g, established in Lemma 4.1, we have

∣∣ϕ̃α
t (x̃n)− ϕ̃α

t (x̃)
∣∣ ≤ |x̃n − x̃|+Kg

∫ t

0

∣∣ϕ̃α
u(x̃n)− ϕ̃α

u(x̃)
∣∣ du .

Gronwall inequality hence yields that

supt∈[0,T ],α∈A

∣∣ϕ̃α
t (x̃n)− ϕ̃α

t (x̃)
∣∣ ≤ |x̃n − x̃|eKgT , (4.5)

and thus uniform convergence for n → ∞ of the flow ϕ̃α(x̃n) to ϕ̃α(x̃). This does however
not imply that τϕn , the entrance time of ϕ̃α(x̃n) into the active boundary of the state space,
converges to τϕ for n → ∞. To deal with this issue we distinguish two cases:

Case 1. The flow ϕ̃α
· (x̃) exits the state space X̃ at the terminal boundary Γ2 (see (4.2)). This

implies that τϕ = T − t and that the inventory level wu is strictly positive for u < T − t. We
therefore conclude from (4.5) that τϕn converges to T − t. Under Assumptions 2.1 and 4.7 the
uniform convergence limn→∞ supα∈A |Lv(x̃n, α) − Lv(x̃, α)| = 0 thus follows immediately using
the definition of r and the continuity of the mapping (x̃, ν) 7→ Q̄v(x̃, ν) established in Lemma B.1,
see Appendix B.

Case 2. The flow ϕ̃α
· (x̃) exits X̃ at the lateral boundary Γ1 so that wτϕ = 0. In that case (4.5)

implies that lim infn→∞ τϕn ≥ τϕ; it is however possible that this inequality is strict. We first
show continuity of the reward function for that case. We decompose r(x̃n, α) as follows, setting
ρ = 0 for simplicity:

r(x̃n, α) = s

∫ τϕ∧τϕn

0
e−Λα

u(x̃n)αu(1− f(αu))du (4.6)

+ s

∫ τϕn

τϕ∧τϕn

e−Λα
u(x̃n)αu(1− f(αu))du+ se−Λα

τϕn (x̃n)h(wτϕn ). (4.7)

Now it follows from (4.5) that the integral in (4.6) converges for n → ∞ to r(x̃, α) uniformly
in α ∈ A. The terms in (4.7) are bounded from above by swτϕ∧τϕn ; this can be shown via a
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similar partial integration argument as in the proof of Lemma 4.6. Moreover, wτϕ∧τϕn converges
uniformly in α ∈ A to wτϕ = 0, so that (4.7) converges to zero. Next we turn to the transition
kernel. We decompose QLv:

QLv
(
x̃n, α

)
=

∫ τϕ∧τϕn

0
e−Λα

u(x̃n)Qv(ϕ̃u(x̃n), αu)du+

∫ τϕn

τϕ∧τϕn

e−Λα
u(x̃n)Qv(ϕ̃α

u(x̃n), αu

)
du .

For n → ∞, the first integral converges to QLv
(
x̃, α

)
using (4.5) and the continuity of the

mapping (x̃, ν) 7→ Qv(x̃, ν) (Lemma B.1). To estimate the second term note that Qv(x̃, ν) ≤

‖v‖bswλ(x̃, ν) (as 1
λ
Q̄ is a probability transition kernel), so that the integral is bounded by

‖v‖bswτϕ∧τϕn

∫ τϕn

τϕ∧τϕn

λα
ue

−Λα
u(x̃n)du ≤ ‖v‖bswτϕ∧τϕn ,

and the last term converges to zero for n → ∞, uniformly in α ∈ A.

Remark 4.9. Note that existing continuity results for Lv(·, α) such as Davis [22, Theorem 44.11]
make the assumption that the flow ϕα reaches the active boundary at a uniform speed, inde-
pendent of the chosen control. In order to ensure this hypothesis in our framework we would
have to impose a strictly positive lower bound on the admissible liquidation rate. This is an
economically implausible restriction of the strategy space which is why we prefer to rely on a
direct argument.

We summarize the results of this section in the following theorem.

Theorem 4.10. Suppose that Assumptions 2.1 and 4.7 hold. Then the value function V is

continuous on X̃ and satisfies the boundary conditions V (x̃) = 0 for x̃ in the lateral boundary Γ1

and V (T, x) = sh(w). Moreover, V is the unique solution of the Bellman or optimality equation

V = T̃ V in Bb.

5 Control Problem II: Viscosity Solutions

In this section we show that the value function is a viscosity solution of the standard HJB equation
associated with the controlled Markov process (W,π) and we derive a comparison principle for
that equation. These results are crucial to ensure the convergence of suitable numerical schemes
for the HJB equation and thus for the numerical solution of the optimal liquidation problem.
In Section 5.2 we provide an example which shows that in general the HJB equation does not
admit a classical solution.

5.1 Viscosity solution characterization. As a first step we write down the Bellman equa-
tion and we use the positive homogeneity of V in the bid price (see Remark 4.4) to eliminate s

from the set of state variables. Define Ỹ = [0, T ]× [0, w0]×SK and denote by int Ỹ and ∂Ỹ the
relative interior and the relative boundary of Ỹ with respect to the hyperplane R

2 × HK . For
ỹ ∈ Ỹ we set

V ′(ỹ) = V ′(t, w, π) := V (t, w, 1, π) ,

so that the value function satisfies the relation V (x̃) = sV ′(ỹ). For ν ∈ [0, νmax], ỹ ∈ Ỹ, and any
measurable function Ψ: Ỹ → R

+, define

Q
′
Ψ(ỹ, ν) :=

K∑

j=1

πj

∫

R

(1 + z)Ψ
(
t, w, (πi(1 + ui(t, π, ν, z)))i=1,...,K

)
ηP(t, ej , ν, dz)

17



and note that QV (x̃, ν) = sQ
′
V ′(ỹ, ν). From now on we denote by ϕ̃α

u(ỹ) the flow of the vector
field g with price component g3 omitted, and we write τϕ for the first time this flow reaches the
active boundary of Ỹ given by Γ := [0, T ]× {0} × SK

0 ∪ {T} × [0, w0]× SK
0 of Ỹ.

By positive homogeneity, the Bellman equation for V reduces to the following optimality equation
for V ′:

V ′(ỹ) = sup
α∈A

{∫ τϕ

0
e−(ρu+Λα

u(ỹ))
(
αu(1− f(αu)) +Q

′
V ′(ϕ̃α

u(ỹ), αu)
)
du

+ e−(ρτϕ+Λα
τϕ

(ỹ))h(wτϕ)
}
.

(5.1)

For Ψ: Ỹ → R
+ bounded, define the function ℓΨ : Ỹ × [0, νmax] → R

+ and the operator T ′ by

ℓΨ(ỹ, ν) = ν(1− f(ν)) +Q
′
Ψ(ỹ, ν) , (5.2)

T ′Ψ(ỹ) = sup
α∈A

{∫ τϕ

0
e−(ρu+Λα

u(ỹ))ℓΨ
(
ϕ̃α
u(ỹ), αu)du+ e−(ρτϕ+Λα

τϕ
(ỹ))h(wτϕ)

}
. (5.3)

Note that for fixed Ψ, vΨ := T ′Ψ is the value function of a deterministic exit-time optimal
control problem with instantaneous reward ℓΨ and boundary value h. Viscosity solutions for this
problem are studied extensively in Barles [6]. Moreover, the optimality equation (5.1) for V ′ can
be written as the fixed point equation V ′ = T ′V ′. Davis and Farid [23] observed that this can
be used to obtain a viscosity solution characterization of the value function in a PDMP control
problem, and we now explain how this idea applies in our framework. Define for Ψ: Ỹ → R

+

the function FΨ : Ỹ × R
+ × R

K+2 → R by

FΨ(ỹ, v, p) = − sup
{
− (ρ+ λ(ỹ, ν))v + g(ỹ, ν)′p+ ℓΨ(ỹ, ν) : ν ∈ [0, νmax]

}
.

The dynamic programming equation associated with the control problem (5.3) is

FΨ

(
ỹ, vΨ(ỹ),∇vΨ(ỹ)

)
= 0 for ỹ ∈ intỸ, vΨ(ỹ) = h(ỹ) for ỹ ∈ ∂Ỹ . (5.4)

Moreover, since V ′ = T ′V ′, we expect that V ′ solves in a suitable sense the equation

FV ′

(
ỹ, V ′(ỹ),∇V ′(ỹ)

)
= 0, for ỹ ∈ intỸ, V ′(ỹ) = h(ỹ) for ỹ ∈ ∂Ỹ. (5.5)

Remark 5.1. Notice that, equations (5.4) and (5.5) differ in the sense that in (5.4) the function
FΨ enters with Ψ fixed, whereas in (5.5) one works with the function FV ′ . This reflects the fact
that control problem (5.3) associated to equation (5.4) has an exogenously given running cost,
while in the optimization problem (5.1), leading to equation (5.5), function V ′ is the solution of
a fixed point equation, and therefore the running cost is endogenous.

There are two issues with equations (5.4) and (5.5): vΨ and V ′ are typically not C1 functions,
and the value of these functions on the non-active part ∂Ỹ \ Γ of the boundary is determined
endogenously. Following Barles [6] we therefore work with the following notion of viscosity
solutions.

Definition 5.2. 1. A bounded upper semi-continuous (u.s.c.) function v on Ỹ is a viscosity

subsolution of (5.4), if for all φ ∈ C1(Ỹ) and all local maxima ỹ0 ∈ Ỹ of v − φ one has

FΨ

(
ỹ0, v(ỹ0),∇φ(ỹ0)

)
≤ 0 for ỹ0 ∈ intỸ,

min
{
FΨ

(
ỹ0, v(ỹ0),∇φ(ỹ0)

)
, v(ỹ0)− h(ỹ0)

}
≤ 0 for ỹ0 ∈ ∂Ỹ.

(5.6)
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A bounded lower semi-continuous (l.s.c.) function u on Ỹ is a viscosity supersolution of
(5.4), if for all φ ∈ C1(Ỹ) and all local minima ỹ0 ∈ Ỹ of u− φ one has

FΨ

(
ỹ0, u(ỹ0),∇φ(ỹ0)

)
≥ 0 for ỹ0 ∈ intỸ,

max
{
FΨ

(
ỹ0, u(ỹ0),∇φ(ỹ0)

)
, u(ỹ0)− h(ỹ0)

}
≥ 0 for ỹ0 ∈ ∂Ỹ.

(5.7)

A viscosity solution vΨ of (5.4) is either a continuous function on Ỹ that is both a sub and
a supersolution of (5.4), or a bounded function with u.s.c. and l.s.c. envelopes that are a
sub and a supersolution of (5.4).

2. A bounded u.s.c. function v on Ỹ is a viscosity subsolution of (5.5), if the relation (5.6)
holds for F = Fv. Similarly, a bounded l.s.c. function u on Ỹ is a viscosity supersolution

of (5.4), if (5.7) holds for F = Fu. Finally, V ′ is a viscosity solution of (5.5), if it is both a
sub and a supersolution of that equation.

Note that Definition 5.2 allows for the case that vΨ(ỹ0) 6= h(ỹ0) for certain boundary points
ỹ0 ∈ ∂Ỹ. In particular, if FΨ

(
ỹ0, v

Ψ(ỹ0),∇vΨ(ỹ0)
)
= 0 in the viscosity sense, (5.6) and (5.7)

hold irrespectively of the value of h(ỹ0).

Theorem 5.3. Suppose that Assumptions 2.1 and 4.7 hold. Then the value function V ′ is a

continuous viscosity solution of (5.5) in Ỹ. Moreover, a comparison principle holds for (5.5):
if v ≥ 0 is a subsolution and u ≥ 0 a supersolution of (5.5) such that v(ỹ)/w and u(ỹ)/w are

bounded on Ỹ and such that v = u = h on the active boundary Γ of Ỹ, then v ≤ u on int Ỹ. It

follows that V ′ is the only continuous viscosity solution of (5.5).

Proof. First, by Theorem 4.10, V ′ is continuous. Moreover, Barles [6, Theorem 5.2] implies that
V ′ is a viscosity solution of (5.4) with Ψ = V ′ and hence of equation (5.5).

Next we prove the comparison principle. In order to establish the inequality v ≤ u we use an
inductive argument based on the monotonicity of T ′ and on a comparison result for (5.4). Let
u0 := u and define u1 = T u0. It follows from Barles [6, Theorem 5.2] that u1 is a viscosity
solution of (5.4) with Ψ = u0. Moreover, u1(ỹ)/w is bounded on Ỹ so that u1 = h on Γ. Since
u0 is a supersolution of (5.5) it is also a supersolution of (5.4) with Ψ = u0. Barles [6, Theorem
5.7] gives the inequality u1 ≤ u0 on int Ỹ, since the functions u+ and u− defined in that theorem
coincide in our case. Define now inductively un = T ′un−1, and suppose that un ≤ un−1. Then,
using the monotonicity of T ′, we have

un+1 = T ′un ≤ T ′un−1 = un.

This proves that un+1 ≤ un for every n ∈ N. Moreover, as explained in Section 4.3, the sequence
{un}n∈N converges to V ′ , so that un ≥ V ′ for all n. In the same way we can construct a
sequence of functions {vn} with v0 = v such that vn ↑ V ′, and we conclude that v ≤ V ′ ≤ u.
The remaining statements are clear.

Remark 5.4. Note that the results in Davis and Farid [23] do not apply directly to our case since
their assumptions regarding the behaviour of the vector field g on the lateral boundary are not
satisfied in our model. Moreover, Davis and Farid [23] do not give a comparison principle for
(5.5).
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Finally, we write the dynamic programming equation (5.5) explicitly. To this end, we use the
fact that λ(ỹ, ν) =

∑K
k=1 π

kηP(t, ek, ν,R), the definition of g, and the definition of lV
′

in (5.2)
to obtain

0 =
∂V ′

∂t
(t, w, π) + sup

{
H(ν, t, w, π, V ′,∇V ′) : ν ∈ [0, νmax]

}
, with (5.8)

H(ν, t, w, π, V ′,∇V ′) = −ρV ′ + ν(1− f(ν))− ν
∂V ′

∂w
(t, w, π)

+
K∑

k,j=1

∂V ′

∂πk
(t, w, π)πj

(
qjk − πk

∫

R

uk(t, ν, π, z)ηP(t, ej , ν, dz)
)

+
K∑

j=1

πj

∫

R

∆V ′(t, w, π, z)ηP(t, ej , ν, dz), (5.9)

and ∆V ′(t, w, π, z) := (1 + z)V ′
(
t, w, (πi(1 + ui(t, ν, π, z)))i=1,...,K

)
− V ′(t, w, π). This equation

coincides with the standard HJB equation associated with the controlled Markov process (W,π).
The advantage of using viscosity solution theory is that we are able to give a mathematical
meaning to this equation even if V ′ is merely continuous. This is relevant in our context. Indeed,
in the next section we present a simple example where V ′ is not C1.

5.2 A counterexample. We now give an example within a setup where the value function is
a viscosity solution of the dynamic programming equation but not a classical solution. Precisely,
we work in the context of Example 2.2 with linear permanent price impact and deterministic
compensator ηP. For simplicity we let ρ = 0, s = 1, h(w) ≡ 0, f(ν) ≡ 0 (zero terminal
liquidation value and no temporary price impact). In this case an exogenous upper bound νmax

on the liquidation rate need to be imposed, in order to ensure that the set of controls is compact
and that a viscosity solution exists (see Remark 5.5). Moreover, we assume that cup < cdown.
The function ηP from (2.6) is thus given by ηP(ν) := θ(cup − cdown(1 + aν)) and ηP(ν) < 0 for
ν > 0. It follows that Sν is a supermartingale for any admissible ν, and we conjecture that it
is optimal to sell as fast as possible to reduce the loss due to the falling bid price. Denote by
τ(w) := w/νmax the minimal time necessary to liquidate the inventory w. The optimal strategy
is thus given by ν∗t = νmax1[0,τ(w0)∧T ](t). Moreover, for t < τ(w0)∧T one has ηP(νt) = ηP(νmax)

and E(S∗
t ) = exp

(
t ηP(νmax)

)
. Hence we get that

J(ν∗) =

∫ τ(w0)∧T

0
νmax exp

(
u ηP(νmax)

)
du .

Solving this integral we get the following candidate for the value function

V ′(t, w) :=
νmax

ηP(νmax)

{
exp

(
ηP(νmax)(τ(w)∧ (T − t))

)
− 1
}
, (t, w) ∈ [0, T ]× [0, νmax]. (5.10)

In order to verify that V ′ is in fact the value function we show that V ′ is a viscosity solution of
the HJB equation 5.8. In the current setting this equation becomes

−
∂V ′

∂t
− sup

{
ν − ν

∂V ′

∂w
+ ηP(ν)V ′ : ν ∈ [0, νmax]

}
= 0. (5.11)

First note that V ′ satisfies the correct terminal and boundary conditions. Define the set

G := {(t, w) ∈ [0, T ]× [0, w0] : τ(w) = (T − t)} .
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The function V ′ is C1 on [0, T ] × [0, w0] \ G, and it is a classical solution of (5.11) on this set.
However V ′ is not differentiable on G and hence not a classical solution everywhere.

Fix some point (t, w) ∈ G. In order to show that V ′ is a viscosity solution of the (5.8) we
need to verify the subsolution property in this point. (For the supersolution property there is
nothing to show as there is no C1-function φ such that V ′ − φ has a local minimum in (t, w).)
Consider φ ∈ C1 such that V ′ − φ has a local maximum in (t, w). By considering the left and
right derivatives of the functions t 7→ (V ′ − φ)(t, w) respectively w 7→ (V ′ − φ)(t, w) we get the
following inequalities for the partial derivatives of φ

−νmaxeη
P(νmax)(T−t) ≤

∂φ

∂t
(t, w) ≤ 0 and 0 ≤

∂φ

∂w
(t, w) ≤ exp

(
ηP(νmax)τ(w)

)
.

Moreover, it holds on G that V ′(t, w) = νmax

ηP(νmax)

{
exp

(
ηP(νmax)(T−t)

)
−1
}
. As w = νmax(T−t)

on G, differentiating with respect to t gives that

(∂φ
∂t

− νmax ∂φ

∂w

)
(t, w) = −νmax exp

(
ηP(νmax)(T − t)

)
. (5.12)

Applying the inequalities for ∂φ
∂w

we get that

sup
{
ν − ν

∂φ

∂w
+ ηP(ν)V ′ : ν ∈ [0, νmax]

}
= νmax

(
−

∂φ

∂w
+ eη

P(νmax)(T−t)
)
.

Using (5.12) this gives −∂φ
∂t

− sup
{
ν − ν ∂φ

∂w
+ ηP(ν)V ′ : ν ∈ [0, νmax]

}
= 0 and hence the

subsolution property.

Remark 5.5. It is easily seen that for νmax → ∞ the value function V ′ from (5.10) converges to
V ′,∞(t, w) := − 1

θcdowna

(
exp(−wθacdown) − 1

)
and that V ′,∞ is a strict (classical) supersolution

of equation (5.11) since

ν − ν
∂V ′

∂w
+ ηP(ν)V ′ =

(
1− e−wθacdown

)(cup − cdown

acdown

)
< 0.

Hence we get that V ′,∞ is larger or equal than the value function of the optimal liquidation
problem for νmax = ∞, by the supersolution property and that it is also smaller or equal than
that, since it is the limit of value functions with bounded maximum selling rate. This allows to
conclude that V ′,∞ is indeed the value function of the optimal liquidation problem for νmax = ∞.

6 Examples and numerical results

In this section we study the optimal liquidation rate and the expected liquidation profit in our
model. For concreteness we work in the framework of Example 2.3, that is the example where
ηP depends on the liquidation strategy as well as on a two-state Markov chain. We focus on two
different research questions: i.) the influence of model parameters on the form of the optimal
liquidation rate; ii.) the additional liquidation profit from the use of stochastic filtering and a
comparison to classical approaches. Moreover, we report the results of a small calibration study.

Numerical method. Since equation in (5.9) in the setting of Example 2.3, cannot be solved
analytically, we resort to numerical methods. We apply an explicit finite difference scheme to
solve the HJB equation and to compute the corresponding liquidation strategy. First, we turn
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the HJB equation into an initial value problem via time reversion. Given a time discretization
0 = t0 < · · · < tk < · · · < tm = T we set V ′

t0
= h, and given V ′

tk
, we approximate the liquidation

strategy as follows:

ν∗tk(w, π) := argmaxν∈[0,νmax]H(ν, tk, w, π, V
′
tk
,∇discV ′

tk
) , (6.1)

where ∇disc is the gradient operator with derivatives replaced by suitable finite differences. In
the sequel we refer to ν∗tk from (6.1) as the candidate optimal liquidation rate. With this we
obtain the next time iterate of the value function,

V ′
tk+1

= V ′
tk
+ (tk+1 − tk)H(ν∗tk , tk, w, π, V

′
tk
,∇discV ′

tk
) . (6.2)

Since the comparison principle holds, as shown in Theorem 5.3, and the value function is the
unique viscosity solution of our HJB equation, we get convergence of the proposed procedure to
the value function by similar arguments as in Barles and Souganidis [7], Dang and Forsyth [21];
details are presented in Appendix C. The motivation for using the candidate optimal strategy
is as follows: the value function obtained by the finite difference approximation (6.2) can be
viewed as value function in an approximating control problem where the state process follows
a discrete time Markov chain, and the candidate optimal strategy (6.1) is the optimal strategy
in the approximating problem, see for instance Chapter IX of Fleming and Soner [24]. The
convergence result for the finite difference approximation of the value function suggests that
the candidate optimal strategy is nearly optimal in the original problem. A formal analysis of
the optimality properties of the candidate optimal strategy is however beyond the scope of the
present paper.

6.1 Candidate optimal liquidation rate. We start by computing the candidate optimal
liquidation rate ν∗tk for Example 2.3, assuming that the temporary price impact is of the form
f(ν) = cfν

ς for ς > 0. Since π1
t + π2

t = 1 for all t ∈ [0, T ], we can eliminate the process π2

from the set of state variables. In the sequel we denote by πt the conditional probability of
being in the good state e1 at time t and by V ′(t, w, π) the value function evaluated at the point
(t, w, (π, 1− π)). To compute ν∗tk we substitute the functions ui given in (3.5) and the dynamics
of the process (πt)0≤t≤T from (3.6) into the general HJB equation (5.8). Denote by

πpost
t =

πtc
down
1

πtcdown
1 + (1− πt)cdown

2

, 0 ≤ t ≤ T,

the updated (posterior) probability of state e1 given that a downward jump occurs at t. Moreover,
denote the discretized partial derivatives of V ′ appearing in (6.1) by δV ′

δw
and δV ′

δπ
. Substitution

into (5.9) leads to

ν∗tk = argmaxν∈[0,νmax]

{
ν(1− cfν

ς)− νC(tk, w, π)
}
, with (6.3)

C(tk, w, π) =
δV ′

δw
(tk, w, π) +

δV ′

δπ
(tk, w, π)π(1− π)a(cdown

1 − cdown
2 )

−
{
(1− θ)V ′(tk, w, π

post)− V ′(tk, w, π)
}
(πcdown

1 + (1− π)cdown
2 )a . (6.4)

Maximizing (6.3) with respect to ν, we get that ν∗tk = 0 if C(tk, w, π) > 1; for C(tk, w, π) ≤ 1

one has ν∗tk = ν̃∗ ∧ νmax, where ν̃∗ solves the equation

1− cf (ς + 1)νς = C(tk, w, π) . (6.5)
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In our numerical examples we choose νmax large enough so that the constraint νt ≤ νmax is never
binding. The characterization (6.5) of ν∗tk is very intuitive: 1 − cf (ς + 1)νς gives the marginal
liquidation benefit due to an increase in ν and C(tk, w, π) can be viewed as marginal cost of an
increase in ν (see below). For C(tk, w, π) ≤ 1, ν̃∗ is found by equating marginal benefit and
marginal cost; for C(tk, w, π) > 1 the marginal benefit is smaller than the marginal cost for all
ν ≥ 0 and ν∗tk = 0.

The candidate optimal liquidation rate ν∗tk is thus determined by the marginal cost C(tk, w, π),

and we now give an economic interpretation of the terms in (6.4). First, δV ′

δw
is a marginal

opportunity cost, since selling inventory reduces the amount that can be liquidated in the future.
Moreover, it holds that

−
(
(1− θ)V ′(tk, w, π

post)− V ′(tk, w, π)
)
= θV ′(tk, w, π

post)−
(
V ′(tk, w, π

post)− V ′(tk, w, π)
)
.

The term θV ′(tk, w, π
post) represents the reduction in the expected liquidation value due to a

downward jump in the return process, and (πcdown
1 + (1− π)cdown

2 )a is the marginal increase in
the intensity of a downward jump, so that the term

θV (tk, w, π
post)(πcdown

1 + (1− π)cdown
2 )a (6.6)

measures the marginal cost due to permanent price impact; in the sequel we refer to (6.6) as

illiquidity cost. Finally, note that πpost − π =
π(1−π)(cdown

1
−cdown

2
)

πcdown
1

+(1−π)cdown
2

. Hence the remaining terms in

(6.4) are equal to

−
(
V ′(tk, w, π

post)− V ′(tk, w, π)−
δV ′

δπ
(tk, w, π)(π

post − π)
)
a(πcdown

1 + (1− π)cdown
2 ) . (6.7)

Simulations indicate that V ′ is convex in π; this is quite natural as it implies that uncertainty
about the true state reduces the optimal liquidation value. It follows that (6.7) is negative which
leads to an increase in the candidate optimal liquidation rate (6.5). Since πpost − π is largest
for π ≈ 0.5, this effect is most pronounced if the investor is uncertain about the true state.
Hence (6.7) can be viewed as an uncertainty correction that makes the trader sell faster if he is
uncertain about the true state.

Numerical analysis and varying price impact parameters. To gain further insight on
the structure of the candidate optimal liquidation rate we resort to numerical experiments. We
work with the parameter set given in Table 1. Moreover, we set the liquidation value h(w) ≡ 0;
this amounts to a strong penalization of any remaining inventory at T . Without loss of generality
we set s = 1, so that the expected liquidation profit is equal to V ′.

w0 T ρ θ cup
1
, cdown

2
cdown
1

, cup
2

a ς q12 q21

6000 2 days 0.00005 0.001 1000 900 7× 10−6 0.6 4 4

Table 1: Parameter values used in numerical experiments.

First, we discuss the form of the candidate optimal liquidation rate for varying size of the
temporary price impact, that is for varying cf , keeping the permanent price impact parameter
a constant at the moderate value a = 7 × 10−6. Figure 2 shows the liquidation rate at t = 0

for intermediate and large temporary price impact as a function of w and π. The figure is a
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contour plot: white areas correspond to ν0 = 0, grey areas correspond to selling at a moderate
speed, see also the color bars below the graphs. Comparing the graphs we see that for higher
temporary price impact (high cf ) the trader tends to trade more evenly over the state space to
keep the cost due to the temporary price impact small. The candidate optimal strategy is then
characterized by two regions: a sell region, where the trader sells at some (varying) speed, and
a wait region, where she does not sell at all. This reaction of ν∗tk to variations in cf can also be
derived theoretically by inspection of (6.5).

Figure 2: Contour plot of the liquidation policy as a function of w (abscissa) and π (ordinate)
for cf = 10−5 (left), and cf = 5× 10−5 (right) and t = 0 for Example 2.3.

Now we study the impact of the permanent price impact a on the form of the candidate optimal
liquidation rate. Figure 2 shows that for moderate a the liquidation rate is decreasing in π

and increasing in the inventory level. The situation changes when the permanent price impact
becomes large. Figure 3 depicts the sell and wait regions under partial information in dependence
of the inventory level w and the filter probability π for a = 7 × 10−5. For this value of a the
sell region forms a band from low values of w and π to high values of w and π. In particular,
for large w and small π there is a gambling region where the trader does not sell, even if a small
value of π means that the bid price is trending downward (recall that π gives the probability
that Y is in the good state).

Figure 3: Contour plot of the liquidation policy as a function of w (abscissa) and π (ordinate)
for cf = 10−5 and for a = 7× 10−5 and t = 0 for Example 2.3.

The observed form of ν∗tk has the following explanation. Our numerical experiments show that
for the chosen parameter values V ′ is almost linear in π, so that the uncertainty correction (6.7)
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is negligible. Hence the liquidation rate ν∗tk is determined by the interplay of the opportunity cost
δV ′

δw
(tk, w, π) and of the illiquidity cost (6.6). We found that the opportunity cost is increasing in

π. This is very intuitive: in the good state the investor expects an increase in the expected bid
price which makes additional inventory more valuable. Moreover, we found that δV ′

δw
(tk, w, π) is

decreasing in w, that is the optimal liquidation problem has decreasing returns to scale. The
illiquidity cost has the opposite monotonicity behaviour: it is increasing in w (as it is proportional
to V ′(tk, w, π

post)) and, for the given parameters, decreasing in π. Now for small values of a the
opportunity cost dominates the illiquidity cost for all (w, π) and C(tk, w, π) is increasing in π

and decreasing in w. By (6.5), the liquidation rate is thus decreasing in π and increasing in w,
which is in line with the monotonicity behaviour observed in Figure 2. If a is large the situation
is more involved. The opportunity cost dominates for small w, leading to a liquidation rate that
is decreasing in π. For large w the illiquidity cost dominates, C is decreasing in π, and the
candidate optimal liquidation rate is increasing in π. For w large enough this effect is strong
enough to generate the unexpected gambling region observed in Figure 3.

Impact of other model components. In reality the support of ηP is larger than {−θ, θ}

as the price may jump by more than one tick. Hence it is important to test the sensitivity of
ν∗tk with respect to the precise form of the support. To this end, we computed the candidate

optimal strategy for a different parameter set θ̃, c̃up
i , c̃down

i , i = 1, 2 with θ̃ = 2θ and c̃up
i = 0.5cup

i ,
c̃down
i = 0.5cdown

i , i = 1, 2. Note that for the new parameters the support of ηP is different but
the expected return of the bid price in each of the two states is the same. We found that the
liquidation value and the candidate optimal strategy were nearly identical to the original case.
This shows that our approach is quite robust with respect to the exact form of the support of
ηP and justifies the use of a simple model with only two possible values for the jump size of R.

6.2 Gain from filtering and comparison to classical approaches. In this section we
compare the expected proceeds of using the optimal liquidation rate to the expected proceeds of a
trader who mistakenly uses a model with deterministic ηP as in Example 2.2. We use the following
parameters for the deterministic model: cup = 0.5cup

1 + 0.5cup
2 , cdown = 0.5cdown

1 + 0.5cdown
2 , that

is the trader ignores regime switching but works with the stationary distribution of the Markov
chain throughout, and we set cf = 5 × 10−5 (high temporary price impact). To compute the
resulting liquidation rate ν∗,det

tk
, we consider the value function V ′,det for Example 2.2. V ′,det is

a function of t and w and it is the unique viscosity solution of the HJB equation

∂V ′,det

∂t
− ρV ′,det + sup

ν∈[0,νmax]

{
ν(1− cfν

ς)− ν
∂V ′,det

∂w
− η̄P(ν)V ′,det

}
= 0, (6.8)

with η̄P(ν) = θcdowna. Then ν∗,det
tk

is the maximizer in (6.8) (with partial derivatives replaced by
finite differences) and depends only on time and inventory level. In our numerical experiments
the expected gain from the use of filtering was equal to 7.56% of the original w0 = 6000. This
shows that the additional complexity of using a filtering model may be worthwhile.

Remark 6.1 (Comparison to Almgren and Chriss [1]). It is interesting that the optimal liquidation
rate ν∗,det

tk
is identical to the optimal rate in a geometric version of the well-known model of

Almgren and Chriss [1], referred to as geometric AC-model in the sequel, see, e.g. Gatheral and
Schied [26] and references therein. In particular, the performance comparison applies also to the
case where the investor uses this classical model. In the geometric AC-model it is assumed that
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that the bid price has dynamics

dSν

t = η̄P(νt)S
ν

t dt+ σSν

t dBt , (6.9)

for a Brownian motion B. By standard arguments the HJB equation for the value function V AC

of the optimal liquidation problem in the geometric AC-model is

∂V AC

∂t
− ρV AC + sup

ν∈[0,νmax]

{
sν(1− cfν

ς)− ν
∂V AC

∂w
− η̄P(ν)s

∂V AC

∂s
+

1

2
σ2s2

∂2V AC

∂s2

}
= 0 .

Moreover, since V AC is homogeneous in s, V AC(t, s, w) = sV ′,AC(t, w). It follows that ∂2V AC

∂s2
= 0,

and the HJB equation for V ′,AC reduces to (6.8). Hence the optimal liquidation rate in the
geometric AC model and in the jump-model with deterministic compensator coincide. Note that
the equivalence between the jump model and the geometric AC-model (6.9) holds only for the
case where the compensator is deterministic: a model of the form (6.9) with drift driven by an
unobservable Markov chain would lead to a diffusion equation for the filter and hence to a control
problem for diffusion processes.

6.3 Model calibration. Finally we report the results of a small calibration study. We used
a robust version of the EM algorithm to estimate the parameters of the bid price dynamics for
the model specification from Example 2.3; see Damian et al. [20] for details on the methodology.
First, in order to test the performance of the algorithm we ran a study with simulated data for
two different parameter sets. In set 1 we use the parameters from Table 1; in set 2 we work with
cup
1 = cup

2 = cdown
1 = cdown

2 = 1000, that is we consider a situation without Markov switching
in the true data-generating process. However, the EM algorithm allows for different parameters
in the two states, so that parameter set 2 is a test, if the EM methodology points out spurious
regime changes and trading opportunities which are not really in the data. The outcome of this
exercise is presented in Figure 4, where we plot the hidden trajectory of Y together with the filter
estimate Ŷ generated from the simulated data using the estimated model parameters. We see
that in the left plot the filter nicely picks up the regime change, in the right plot the estimate Ŷt
is close to 1.5 throughout, that is the estimated model correctly indicates that there is no Markov
switching in the data. Finally we applied the algorithm to bid price data from the share price of
Google, sampled at a frequency of one second. The EM estimates are ĉup

1 = 2128, ĉup
2 = 1751,

ĉdown
1 = 1769, ĉdown

2 = 1888, which shows the same qualitative behaviour as the values used in
our simulation study. A trajectory of the ensuing filter is given in Fig 5.

One would need an extensive empirical study to confirm and refine these results, but this is
beyond the scope of the present paper.
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Figure 4: A trajectory of the Markov chain Y (dashed) and of the corresponding filter Ŷ (straight
line) computed using the parameter estimates from the EM algorithm as input. Left plot:
results for parameter set 1 (with Markov switching); right plot: results for parameter set 2 (no
Markov switching) In the graphs state e1 (e2) is represented by the value 1 (the value 2), and
Ŷt = πt1 + (1 − πt)2. The estimated parameters for parameter set 1 are as follows: ĉup

1 = 993;
ĉup
2 = 875; ĉdown

1 = 842; ĉdown
2 = 960. For parameter set 2 we obtained ĉup

1 = 940; ĉup
2 = 941;

ĉdown
1 = 945; ĉdown

2 = 957.
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Figure 5: Trajectory of Ŷ computed from the Google share price on 2012-06-21, sampled at a fre-
quency of one second. (Data are from the LOBSTER database, see https://lobsterdata.com)
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A Setup and filtering: proofs and additional results

Lemma A.1. Suppose that Assumption 2.1 holds. Fix m > w0/T and consider some F
S-adapted

strategy ν with values in [0,m]. Define

C := 0 ∨ sup
{∫

R

(z2 + 2z)ηP(t, e, ν, dz) : (t, e, ν) ∈ [0, T ]× E × [0,m]
}
.

Then C < ∞, E((Sν

t )
2) ≤ S2

0e
Ct, and (

∫ t

0 S
ν

s−dM
R
s )0≤t≤T is a true martingale.

Proof. To ease the notation we write St for Sν

t . We begin with the bound on S2
t . First note that

C is finite by Assumption 2.1. At a jump time Tn of R it holds that STn = STn−(1+∆RTn) and
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therefore
S2
Tn

− S2
Tn− = S2

Tn−∆R2
Tn

+ 2S2
Tn−∆RTn .

Hence S2
t = S2

0 +
∫ t

0

∫
R
S2
s−(z

2 + 2z)µR(dz, ds) and we get

E(S2
t ) = S2

0 + E

(∫ t

0

∫

R

S2
s (z

2 + 2z)ηP(s, Ys−νs−, dz) ds
)

≤ S2
0 + C

∫ t

0
E
(
S2
s

)
ds ,

so that E((Sν

t )
2) ≤ S2

0e
Ct by the Gronwall inequality. To show that

∫ ·
0 Ss−dM

R
s is a true

martingale we show that this process has integrable quadratic variation. Since
[ ∫ ·

0 Ss−dM
R
s

]
t
=∫ t

0

∫
R
S2
s−z

2µR(dz, ds), we have

E

([∫ ·

0
Ss−dM

R
s

]
t

)
= E

(∫ t

0
S2
s

∫

R

z2ηP(s, Ys−, νs−dz)ds

)
≤ S2

0C̃

∫ t

0
eCsds ,

for every t ∈ [0, T ], where C̃ = sup
{ ∫

R
z2ηP(t, e, ν, dz) : t ∈ [0, T ], e ∈ E , ν ∈ [0,m]

}
is finite by

Assumption 2.1.

Proof of Lemma 3.1. Conditions (2.8) and (2.9) imply that Z̃ is a true martingale, see Protter
and Shimbo [32]. Moreover, β(t, Yt− , νt− , z) > −1, since

(
dηPt (t, ei, ν; dz)/dη

Q
t (dz)

)
(z) > 0 by

assumption. This implies that Z̃T > 0, and hence the equivalence of P and Q. The Girsanov
theorem for random measures (see [11, VIII, Theorem T10]) shows that under P, µR(dt, dz)

has the predictable compensator (β(t, Yt−, νt, z)+ 1)ηQt (dz)dt. By definition of β this is equal to
ηP (t, Yt−, νt, dz)dt . Moreover, Z̃ and Y are orthogonal, since R and Y have no common jumps,
so that the law of Y is the same under P and under Q.

Proof of Theorem 3.2. Our derivation parallels the proof of [5, Theorem 3.24], which deals with
the classical case where the observation process is a Brownian motion with drift. Recall that
for a function f : E → R the semimartingale decomposition of f(Yt) is given by f(Yt) = f(Y0) +∫ t

0 〈Qf , Ys〉ds +Mf
t , where Mf is a true (F,Q)-martingale. Define the process Z̃ǫ = (Z̃ǫ

t )0≤t≤T

by

Z̃ǫ
t :=

Z̃t

1 + ǫZ̃t

,

and note that Z̃ǫ
t < 1/ǫ for every t ∈ [0, T ]. Now we compute Z̃ǫf(Y ). Notice that [Z̃ǫ, Y ]t = 0

for every t ∈ [0, T ], as R and Y have no common jumps. Hence, from Itô’s product rule we get

d
(
Z̃ǫ
t f(Yt)

)
= Z̃ǫ

t−〈Qf , Yt〉dt+ Z̃ǫ
t−dM

f
t − f(Yt−)Z̃

ǫ
t−

∫

R

β(t, Yt− , νt−, z)

1 + ǫZ̃t−

ηQt (dz)dt

+ f(Yt−)Z̃
ǫ
t−

∫

R

β(t, Yt− , ν, z)

1 + ǫZ̃t−(1 + β(t, Yt− , νt−, z))
µR(dt, dz). (A.1)

Next we show that EQ
(∫ t

0 Z̃
ǫ
s−
dMf

s | FS
t

)
= 0. By the definition of conditional expectation, this

is equivalent to E
Q
(
H
∫ t

0 Z̃
ǫ
s−
dMf

s

)
= 0 for every bounded, FS

t -measurable random variable H.

Define an (FS ,Q)-martingale by Hu = E
Q
(
H | FS

u

)
, 0 ≤ u ≤ t ≤ T , and note that H = Ht.
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By the martingale representation theorem for random measures, see, e.g., [30, Ch. III, Theorem
4.37] or [11, Ch. VIII, Theorem T8], we get that there is a bounded F

S-predictable random
function φ such that

Ht = H0 +

∫ t

0

∫

R

φ(s, z)(µR(ds, dz)− ηQ(dz)ds), 0 ≤ t ≤ T .

Now, applying the Itô product rule and using that [Mf , H]t = [Y,R]t = 0 for every t ∈ [0, T ],
we obtain

Ht

∫ t

0
Z̃ǫ
s−dM

f
s =

∫ t

0
Hs−Z̃

ǫ
s−dM

f
s +

∫ t

0

∫

R

(∫ s

0
Z̃ǫ
u−dM

f
u

)
φ(s, z)

(
µR(ds, dz)− ηQ(dz)ds

)
.

Both integrals on the right hand side of the above representation are martingales. This follows
from the finite-state property of the Markov chain Y and the boundedness of Z̃ǫ and H. Hence,

taking the expectation we get that E
Q
(
H
∫ t

0 Z̃
ǫ
s−
dMf

s

)
= 0 as claimed.

Now note that for t ∈ [0, T ] and a generic integrable Ft-measurable random variable U it holds
that

E
Q
(
U | FS

t

)
= E

Q
(
U | FS

T

)
; (A.2)

this can be shown with similar arguments as in [5, Proposition 3.15]. Taking the conditional
expectation from (A.1) and applying (A.2) and Fubini Theorem we get for every t ∈ [0, T ],

E
Q
(
Z̃ǫ
t f(Yt) | F

S
t

)
=

π0(f)

1 + ǫ
+

∫ t

0
E
Q
(
Z̃ǫ
s−〈Qf , Ys〉 | F

S
T

)
ds

+

∫ t

0

∫

R

E
Q

(
f(Ys−)Z̃

ǫ
s−

β(s, Ys− , νs− , z)

1 + ǫZ̃s−(1 + β(s, Ys− , ν, z))
| FS

T

)
µR(ds, dz)

−

∫ t

0

∫

R

E
Q

(
f(Ys−)Z̃

ǫ
s−

β(s, Ys− , νs− , z)

1 + ǫZ̃s−

| FS
T

)
ηQs (dz)ds . (A.3)

Note that, for every t ∈ [0, T ], Z̃ǫ
t < Z̃t and that Z̃t is integrable. Since β is bounded by

assumption, by dominated convergence we get the following three limits

lim
ǫ→0

E
Q
(
Z̃ǫ
t f(Yt) | F

S
t

)
= E

Q
(
Z̃tf(Yt) | F

S
t

)
,

lim
ǫ→0

∫ t

0
E
Q
(
Z̃ǫ
s−〈Qf , Ys〉 | F

S
T

)
ds =

∫ t

0
E
Q
(
Z̃s−〈Qf , Ys〉 | F

S
T

)
ds ,

lim
ǫ→0

∫ t

0

∫

R

E
Q

(
f(Ys−)Z̃

ǫ
s−

β(s, Ys− , νs− , z)

1 + ǫZ̃s−

| FS
T

)
ηQs (dz)ds

=

∫

R

E
Q
(
f(Ys−)Z̃s−β(s, Ys− , νs− , z) | F

S
T

)
ηQs (dz)ds.

Finally we consider the integral with respect to µR(ds, dz) in (A.3). Let {Tn, Zn} be the sequence
of jump times and the corresponding jump sizes of the process R. Denote by n(t) the number
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of jumps up to time t, so that Tn(t) is the last jump time before t. Then

lim
ǫ→0

∫ t

0

∫

R

E
Q

(
f(Ys−)Z̃

ǫ
s−

β(s, Ys− , ν, z)

1 + ǫZ̃s−(1 + β(s, Ys− , ν, z))
| FS

T

)
µR(ds, dz)

= lim
ǫ→0

n(t)∑

n=1

E
Q

(
f(YT−

n
)Z̃ǫ

T−
n

β(Tn, YT−
n
, ν,∆RTn)

1 + ǫZ̃T−
n
(1 + β(Tn, YT−

n
, νT−

n
,∆RTn))

| FS
T

)

=

n(t)∑

n=1

E
Q
(
f(YT−

n
)Z̃T−

n
β(Tn, YT−

n
, νT−

n
,∆RTn) | F

S
T

)

=

∫ t

0

∫

R

E
Q
(
f(Ys−)Z̃s−β(s, Ys− , νs− , z) | F

S
T

)
µR(ds, dz) .

Assembling the previous results we obtain

E
Q
(
Z̃tf(Yt) | F

S
T

)
= π0(f) +

∫ t

0
E
Q
(
Z̃s−〈Qf , Ys〉 | F

S
T

)
ds

+

∫ t

0

∫

R

E
Q
(
f(Ys−)Z̃s−β(s, Ys− , νs− , z) | F

S
T

) (
µR(ds, dz)− ηQs (dz)

)
,

and hence the claim of the theorem follows from (A.2).

B Optimization via MDMs: proofs and additional results

Proof of Lemma 4.1. To establish the claim we show that the first derivatives of the vector field
g are bounded, uniformly in ν. The components of ∂g

∂w
and ∂g

∂s
are all 0, and, using Assumption

2.1, the nonzero components of ∂g
∂πi , i = 1, . . . ,K, can be estimated as follows. For i 6= k,

∣∣∣∣
∂gk+3

∂πi

∣∣∣∣=

∣∣∣∣∣∣
qik−πk

∫

R

uk(t, ν, π, z)ηP(t, ei, ν, dz)− πk
K∑

j=1

πj

∫

R

∂uk(t, ν, π, z)

∂πi
ηP(t, ej , ν, dz)

∣∣∣∣∣∣

<max
i,k

qik + πk

∫

R

uk(t, ν, π, z)ηP(t, ei, ν, dz)

+ πk
K∑

j=1

πj

∫

R

dηP(t, ei, ν)/dη
Q
t (z)dηP(t, ek, ν)/dη

Q
t (z)

(∑K
l=1 π

ldηP(t, el, ν)/dη
Q
t (z)

)2 ηP(t, ej , ν, dz),

and this is smaller than maxi,k q
ik + (M4 +M2)λmax. For i = k we get

∣∣∣∣
∂gi+3

∂πi

∣∣∣∣ =

∣∣∣∣∣∣
qii − 2πi

∫

R

ui(t, ν, π, z)ηP(t, ei, ν, dz)−
∑

j 6=i

πj

∫

R

ui(t, ν, π, z)ηP(t, ej , ν, dz)

−πi
K∑

j=1

πj

∫

R

∂ui(t, ν, π, z)

∂πi
ηP(t, ej , ν, dz)

∣∣∣∣∣∣
< max

i
qii(M4 + 3M2)λmax .
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Proof of Lemma 4.6. First we estimate the reward function introduced in (4.3). Since f ≥ 0,
e−ρt ≤ 1, and h(w) ≤ w, we get that r(x̃, α) ≤ s

∫ τϕ

0 e−Λα
uαudu+se−Λα

τϕwα
τϕ . Partial integration

gives ∫ τϕ

0
e−Λα

uαudu =
[
− wα

ue
−Λα

u
]τϕ
0

−

∫ τϕ

0
λα
ue

−Λα
uwα

udu ≤ w − e
−Λα

τφwα
τφ ,

and hence r(x̃, α) ≤ sw. Next we estimate QLb(x̃, α). Recall the definition of η̄P from (2.6) and
let cη := sup

{
η̄P(t, e, 0) : (t, e) ∈ [0, T ]× E

}
. It holds that

QLb(x̃, α) =

∫ τϕ

0
eγ(T−(u+t))e−Λα

u

K∑

j=1

πjsw
α
u (1 + η̄P(t+ u, ej , αu))du≤sweγ(T−t)cη

∫ τϕ

0
e−γu du ,

where we have used that wα
u ≤ w and e−Λα

u < 1. The last term is bounded by b(x̃)
cη
γ

, and the
MDM is contracting for γ > cη.

The following lemma is needed in the proof of Proposition 4.8.

Lemma B.1. Consider a function v ∈ Cb. Then the mapping (x̃, ν) 7→ Q̄v(x̃, ν) is continuous

on X̃ × [0, νmax].

Proof. It suffices to show that for j = 1, . . . ,K the mapping

(t, w, s, π, ν) 7→

∫

R

v
(
t, s(1 + z), π1(1 + u1(t, ν, π, z), . . . , πK(1 + uK(t, ν, π, z)

)
ηj(t, ν, dz)

is continuous on X̃ × [0, νmax], where ηj(t, ν, dz) := η(t, ej , ν, dz). Consider a sequence with
elements (tn, νn, πn) −−−→

n→∞
(t, ν, π). Note that, for sufficiently large n, the set {sn(1 + z) : z ∈

supp(η)} is contained in a compact subset [s, s] ⊂ (0,∞). Moreover, v is uniformly continuous
on the compact set [0, T ] × [0, w0] × [s, s] × SK × [0, νmax] . Then, Assumption 4.7-(2) implies
that the sequence {vn} with

vn(z) := v
(
tn, sn(1 + z), π1

n(1 + u1(tn, νn, πn, z), . . . π
K
n (1 + uKn (tn, νn, πn, z)

)

converges uniformly in z ∈ supp(η) to v(z) := v(t, s, π, ν, z). Hence the following estimate holds:

∣∣∣
∫

supp(η)
vn(z)ηj(tn, νn, dz)−

∫

supp(η)
v(z)ηj(t, ν, dz)

∣∣∣

≤

∫

supp(η)

∣∣vn(z)− v(z)
∣∣ηj(tn, νn, dz) +

∣∣∣
∫

supp(η)
v(z)ηj(tn, νn, dz)−

∫

supp(η)
v(z)ηj(t, ν, dz)

∣∣∣ . (B.1)

Finally, the first term in (B.1) can be estimated by λmax sup{|vn(z)−v(z)| : z ∈ supp(η)}, which
converges to zero as vn converges to v uniformly; the second term in (B.1) converges to zero by
Assumption 4.7-(1) (continuity of the mapping (t, ν) 7→ ηj(t, ν, dz) in the weak topology).

C Convergence of the finite difference approximation

Barles and Souganidis [7] introduced conditions under which a numerical scheme converges to the
viscosity solution of an HJB equation. These conditions are consistency, which means that the
difference operators converge to the differential operators, stability, that is the finite difference
operator stays bounded as the time and space steps converge to zero, and monotonicity, which
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means that the mapping Vtk 7→ Vtk+1
from (6.2) is monotone. Moreover, a comparison principle

for the limiting HJB equation needs to hold.

In the sequel we present the discretization scheme for Example 2.3, treated numerically in Section
6, and verify the above conditions. For the discretization of the differential operators we use the
standard difference scheme as stated in Fleming and Soner [24, Chapter IX]. In order to satisfy
the monotonicity condition we need to discretize the first order terms appropriately by using
an upwinding scheme: depending on the sign of the coefficient, we use a forward or a backward
difference operator. In Example 2.3 the integral w.r.t. ηP reduces to a sum, which is evaluated
by interpolation between the grid points.

It is easier to verify convergence conditions from Barles and Souganidis [7], Dang and Forsyth
[21] for the HJB equation that includes s as a state variable than the reduced one. Convergence
for the reduced equation follows by using homogeneity of V in s,.

Let m1,m2 be the step-sizes in w, π1-direction. In our computations we choose m1 = 10 and
m2 = 1/20. For fixed time point tk we determine the control ν = ν∗tk(s, w, π) by maximizing H,
see (6.1). The discretized version of the HJB equation is

V (tk+1, s, w, π
1) = V (tk, s, w, π

1) + (tk+1 − tk)
[
− ζ1(tk, w, π

1)V (tk, s, w, π
1)

+ ζ2(tk, w, π
1)V (tk, s, w −m1, π

1)

+
1

2
(ζ3(tk, w, π

1) + |ζ3(tk, w, π
1)|)V (tk, s, w, π

1 +m2)

+
1

2
(ζ3(tk, w, π

1)− |ζ3(tk, w, π
1)|)V (tk, s, w, π

1 −m2)

+ λ1(tk, w, π
1)V

(
tk, s(1− θ), w,

π1cdown
1

π1cdown
1 + (1− π1)cdown

2

)

+ λ2(tk, w, π
1)V

(
tk, s(1 + θ), w,

π1cup
1

π1cup
1 + (1− π1)cup

2

)]

+ (tk+1 − tk)(ν − cf ςν
ς+1)s , (C.1)

where

ζ2(tk, w, π
1) =

ν

m1
,

ζ3(tk, w, π
1) = (π1q11 + (1− π1)q21)− π1(1− π1)

(
(1 + aν∗tk(w, π

1))(cdown
1 − cdown

2 ) + cup
1 − cup

2

)
,

λ1(tk, w, π
1) = (π1cdown

1 + (1− π1)cdown
2 )(1 + a ν) ,

λ2(tk, w, π
1) = (π1cup

1 + (1− π1)cup
2 ) ,

ζ1(tk, w, π
1) = ρ+ ζ2(tk, w, π

1) + |ζ3(tk, w, π
1)|+ λ1(tk, w, π

1) + λ2(tk, w, π
1) .

On the active boundary we set V = h. Due to the use of an upwinding scheme, on the non-active
part of the boundary the solution to (C.1) is determined endogenously, i.e. by the values of V
in the interior of the state space. Note that this is in line with the formulation of the boundary
conditions for the limiting equation in Definition 5.2.

By construction this scheme is consistent. In order to get stability we need to choose the time
step sufficiently small, namely tk+1 − tk ≤ 1/ζ1(tk, w, π

1). Monotonicity requires positivity of
the coefficients of the difference operators and suitable quadrature weights for the integral term
(for the latter see Dang and Forsyth [21]). In our context, this holds since ζ2, λ1, λ2 are positive,
and the coefficients of V (tk, s, w, π

1 +m2), V (tk, s, w, π
1 −m2) are positive by construction (the
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construction we used is an easy implementable way of decomposing the coefficient ζ3 into its
positive and its negative part). Hence, ζ1 is also positive. Since we also showed in Theorem 5.3
that the comparison principle holds and that the value function is the unique viscosity solution
to our HJB equation, we get convergence of the proposed scheme to the value function.
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