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Abstract

In this paper we develop a deep learning method for optimal stopping problems which directly
learns the optimal stopping rule from Monte Carlo samples. As such it is broadly applicable in
situations where the underlying randomness can efficiently be simulated. We test the approach
on two benchmark problems: the pricing of a Bermudan max-call option on different underlying
assets and the problem of optimally stopping a fractional Brownian motion. In both cases it
produces very accurate results in high-dimensional situations with short computing times.

Keywords: optimal stopping, deep learning, Bermudan option, fractional Brownian motion

1 Introduction

We consider optimal stopping problems of the form supτ E g(τ,Xτ ), where X = (Xn)
N
n=0 is an

R
d-valued discrete-time Markov process and the supremum is over all stopping times τ based on

observations of X. Formally, this just covers situations where the stopping decision can only be
made at finitely many times. But practically all relevant continuous-time stopping problems can be
approximated with time-discretized versions. The Markov assumption means no loss of generality.
We make it because it simplifies the presentation and many important problems already are in
Markovian form. But every optimal stopping problem can be made Markov by including all relevant
information from the past in the current state of X (albeit at the cost of increasing the dimension
of the problem).

In theory, optimal stopping problems with finitely many stopping opportunities can be solved
exactly. The optimal value is given by the smallest supermartingale that dominates the reward
process – the so-called Snell envelope – and the smallest (largest) optimal stopping time is the
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first time when the immediate reward dominates (exceeds) the continuation value; see, e.g., [33,
38]. But traditional numerical methods suffer from the curse of dimensionality. For instance, the
complexity of standard tree- and lattice-based methods increases exponentially in the dimension.
For typical problems they yield good results up to three dimensions. To treat higher dimensional
problems, various Monte Carlo based methods have been developed over the last years. For different
approaches to approximate the Snell envelope or continuation value, we refer to [36, 44, 11, 12, 4,
30, 19, 9, 29, 25] and the references therein. A different strand of the literature has focused on
computing the exercise boundary; see, e.g., [2, 20, 5]. Based on an idea of [15], a dual approach
was developed by [39, 24]; see [27, 13] for a multiplicative version and [3, 10, 7, 40, 17, 6, 8, 34] for
extensions and primal-dual methods.

In this paper we use deep learning to directly approximate an optimal stopping time. While
conceptually, our approach is simpler than most of the existing methods, its challenge lies in the
implementation of a deep learning method that can well approximate stopping times. We do this by
decomposing an optimal stopping time into a sequence of 0-1 stopping decisions and learning them
recursively with a multilayer feedforward neural network using backpropagation together with a
stochastic gradient ascent optimization algorithm. Since our method produces a candidate optimal
stopping time, it leads to a low-biased estimate of the optimal value supτ E g(τ,Xτ ). However, in
examples for which there exist reference solutions in the literature, it yields highly accurate results
with short computing times.

The rest of the paper is organized as follows: In Section 2 we introduce the setup and explain
our method of approximating optimal stopping times by multilayer feedforward neural networks.
In Section 3 we test the approach on two benchmark examples: the pricing of a Bermudan max-call
option on different underlying assets and the problem of optimally stopping a fractional Brownian
motion. In the first case we use a multi-dimensional Black–Scholes model to describe the dynamics
of the underlying assets. Then the pricing of a Bermudan max-call option amounts to solving a
d-dimensional optimal stopping problem, where d is the number of assets. We provide numerical
results for d = 5, 10, 20, 30, 50, 100, 200 and 500. In the second example we only consider a one-
dimensional fractional Brownian motion. But fractional Brownian motion is not a Markov process.
In fact, all of its increments are correlated. So to optimally stop it, one has to keep track of all
past movements. To make it tractable, we approximate the continuous-time problem with a time-
discretized version, which if formulated as a Markovian problem, has as many dimensions as there
are time-steps. We compute a solution for 100 time-steps.

2 Deep learning optimal stopping rules

Let X = (Xn)
N
n=0 be an R

d-valued discrete-time Markov process on a probability space (Ω,F ,P),
where N and d are positive integers. We denote by Fn the σ-algebra generated by X0,X1, . . . ,Xn

and call a random variable τ : Ω → {0, 1, . . . , N} an X-stopping time if the event {τ = n} belongs
to Fn for all n ∈ {0, 1, . . . , N}.
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Our aim is to develop a deep learning method that can efficiently learn an optimal policy for
stopping problems of the form

sup
τ∈T

E g(τ,Xτ ), (1)

where g : {0, 1, . . . , N} ×R
d → R is a measurable function and T denotes the set of all X-stopping

times. To make sure that problem (1) is well-defined and admits an optimal solution, we assume
that g satisfies the integrability condition

E |g(n,Xn)| <∞ for all n ∈ {0, 1, . . . , N} (2)

(see, e.g., [33, 38]).

2.1 Expressing stopping times in terms of stopping decisions

Any X-stopping time can be decomposed into a sequence of 0-1 stopping decisions. In principle, the
decision whether to stop the process at time n if it has not been stopped before, can be made based
on the whole evolution of X from time 0 until n. But to optimally stop the Markov process X, it is
enough to make stopping decisions according to fn(Xn) for measurable functions fn : R

d → {0, 1},
n = 0, 1, . . . , N . Theorem 1 below extends this well-known fact and serves as the theoretical basis
of our method.

Consider the auxiliary stopping problems

Vn = sup
τ∈Tn

E g(τ,Xτ ) (3)

for n = 0, 1, . . . , N , where Tn is the set of all X-stopping times satisfying n ≤ τ ≤ N . Obviously,
TN consists of the unique element τN = N , and one can write τN = NfN (XN ) for the constant
function fN ≡ 1. Moreover, for given n ∈ {0, 1, . . . , N} and a sequence of measurable functions
fn, fn+1, . . . , fN : Rd → {0, 1} with fN ≡ 1,

τn =

N
∑

k=n

kfk(Xk)

k−1
∏

j=n

(1− fj(Xj)) (4)

defines1 a stopping time in Tn. The following result shows that, for our method of recursively
computing an approximate solution to the optimal stopping problem (1), it will be sufficient to
consider stopping times of the form (4).

Theorem 1. For a given n ∈ {0, 1, . . . , N − 1}, let τn+1be a stopping time in Tn+1 of the form

τn+1 =

N
∑

k=n+1

kfk(Xk)

k−1
∏

j=n+1

(1− fj(Xj)), (5)

1In expressions of the form (4), we understand the empty product
∏n−1

j=n
(1− fj(Xj)) as 1.
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for measurable functions fn+1, . . . , fN : Rd → {0, 1} with fN ≡ 1. Then there exists a measurable

function fn : R
d → {0, 1} such that the stopping time τn ∈ Tn given by (4) satisfies

E g(τn,Xτn) ≥ Vn −
(

Vn+1 − E g(τn+1,Xτn+1
)
)

,

where Vn and Vn+1 are the optimal values defined in (3).

Proof. Denote ε = Vn+1 − E g(τn+1,Xτn+1
), and fix a stopping time τ ∈ Tn. By the Doob–Dynkin

lemma (see, e.g., Theorem 4.41 in [1]), there exists a measurable function hn : R
d → R such that

hn(Xn) is a version of the conditional expectation E
[

g(τn+1,Xτn+1
) | Xn

]

. Moreover, due to the
special form (5) of τn+1,

g(τn+1,Xτn+1
) =

N
∑

k=n+1

g(k,Xk)I{τn+1=k} =

N
∑

k=n+1

g(k,Xk)I{fk(Xk)
∏k−1

j=n+1
(1−fj(Xj))=1}

is a measurable function of Xn+1, . . . ,XN . So it follows from the Markov property of X that hn(Xn)
is also a version of the conditional expectation E

[

g(τn+1,Xτn+1
) | Fn

]

. Since the events

D = {g(n,Xn) ≥ hn(Xn)} and E = {τ = n}

are in Fn, τn = nID + τn+1IDc belongs to Tn and τ̃ = τn+1IE + τIEc to Tn+1. It follows from the
definitions of Vn+1 and ε that E g(τn+1,Xτn+1

) = Vn+1 − ε ≥ E g(τ̃ , Xτ̃ )− ε. This implies

E
[

g(τn+1,Xτn+1
)IEc

]

≥ E[g(τ̃ , Xτ̃ )IEc ]− ε = E[g(τ,Xτ )IEc ]− ε,

from which one obtains

E g(τn,Xτn) = E
[

g(n,Xn)ID + g(τn+1,Xτn+1
)IDc

]

= E[g(n,Xn)ID + hn(Xn)IDc ]

≥ E[g(n,Xn)IE + hn(Xn)IEc ] = E
[

g(n,Xn)IE + g(τn+1,Xτn+1
)IEc

]

≥ E[g(n,Xn)IE + g(τ,Xτ )IEc ]− ε = E g(τ,Xτ )− ε.

Since τ ∈ Tn was arbitrary, this shows that E g(τn,Xτn) ≥ Vn − ε.
Now, note that if one defines fn : R

d → {0, 1} by

fn(x) =

{

1 if g(n, x) ≥ hn(x)

0 if g(n, x) < hn(x)
,

one has ID = fn(Xn). Therefore,

τn = nfn(Xn) + τn+1(1− fn(Xn)) =

N
∑

k=n

kfk(Xk)

k−1
∏

j=n

(1− fj(Xj)),

which concludes the proof of the theorem.
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Remark 2. Since for fN ≡ 1, the stopping time τN = fN (XN ) is optimal in TN , Theorem 1
inductively yields measurable functions fn : R

d → {0, 1} such that for all n ∈ {0, 1, . . . , N − 1}, the
stopping time τn given by (4) is optimal among Tn. In particular,

τ =

N
∑

n=1

nfn(Xn)

n−1
∏

k=0

(1− fk(Xk)) (6)

is an optimal stopping time for problem (1).

Remark 3. In many applications, the Markov process X starts from a deterministic initial value
x0 ∈ R

d. Then the function f0 enters the representation (6) only through the value f0(x0) ∈ {0, 1};
that is, at time 0, only a constant and not a whole function has to be learned.

2.2 Neural network approximation

Our numerical method for problem (1) consists in iteratively approximating optimal stopping de-
cisions fn : R

d → {0, 1}, n = 0, 1, . . . , N − 1, by a neural network f θ : Rd → {0, 1} with parameter
θ ∈ R

q. We do this by starting with the terminal stopping decision fN ≡ 1 and proceeding by
backward induction.

More precisely, let n ∈ {0, 1, . . . , N − 1}, and assume parameter values θn+1, θn+2, . . . , θN ∈ R
q

have been found such that f θN ≡ 1 and the stopping time

τn+1 =

N
∑

k=n+1

kf θk(Xk)

k−1
∏

j=n+1

(1− f θj(Xj))

produces an expected value E g(τn+1,Xτn+1
) close to the optimum Vn+1. Since f θ takes values in

{0, 1}, it cannot be continuous in θ unless it is constant. As a result, it does not directly lend itself
to a gradient-based optimization method. So, as an intermediate step, we introduce a multilayer
feedforward neural network F θ : Rd → (0, 1) of the form

F θ = ψ ◦ aθ3 ◦ ϕq2 ◦ aθ2 ◦ ϕq1 ◦ aθ1,

where

• q1 and q2 are positive integers specifying the number of nodes in the two hidden layers,

• aθ1 : R
d → R

q1 , aθ2 : R
q1 → R

q2 and aθ3 : R
q2 → R are affine functions,

• for j ∈ N, ϕj : R
j → R

j is the component-wise ReLU activation function given by
ϕj(x1, . . . , xj) = (x+1 , . . . , x

+
j )

• ψ : R → (0, 1) is the standard logistic function given by ψ(x) = ex/(1 + ex) = 1/(1 + e−x).
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The components of the parameter θ ∈ R
q of F θ consist of the entries of the matrices A1 ∈ R

q1×d,
A2 ∈ R

q2×q1 , A3 ∈ R
1×q2 and the vectors b1 ∈ R

q1 , b2 ∈ R
q2 , b3 ∈ R given by the representation of

the affine functions
aθi (x) = Aix+ bi, i = 1, 2, 3.

So the dimension of the parameter space is q = q1(d+ q2+1)+2q2+1, and for given x ∈ R
d, F θ(x)

is almost everywhere smooth in θ. Our aim is to determine θn ∈ R
q so that

E

[

g(n,Xn)F
θn(Xn) + g(τn+1,Xτn+1

)(1− F θn(Xn))
]

is close to the supremum supθ∈Rq E
[

g(n,Xn)F
θ(Xn) + g(τn+1,Xτn+1

)(1− F θ(Xn))
]

. Once this has
been achieved, we define the function f θn : Rd → {0, 1} by

f θn = I[0,∞) ◦ aθn3 ◦ ϕq2 ◦ aθn2 ◦ ϕq1 ◦ aθn1 , (7)

where I[0,∞) : R → {0, 1} is the indicator function of [0,∞). The only difference between F θn and

f θn is the final nonlinearity. While F θn produces a stopping probability in (0, 1), the output of f θn

is a true stopping decision given by 0 or 1, depending on whether F θn takes a value below or above
1/2.

The following result shows that for sufficiently large numbers q1 and q2 of hidden nodes, the
neural network f θ is flexible enough to make close to optimal stopping decisions.

Proposition 4. Let n ∈ {0, 1, . . . , N − 1} and fix a stopping time τn+1 ∈ Tn+1. Then, for every

constant ε > 0, there exist positive integers q1 and q2 such that

sup
θ∈Rq

E

[

g(n,Xn)f
θ(Xn) + g(τn+1,Xτn+1

)(1− f θ(Xn))
]

≥ sup
f∈D

E
[

g(n,Xn)f(Xn) + g(τn+1,Xτn+1
)(1 − f(Xn))

]

− ε,

where D is the set of all measurable functions f : Rd → {0, 1}.

Proof. Fix ε > 0. It follows from the integrability condition (2) that there exists a measurable
function f̃ : Rd → {0, 1} such that

E

[

g(n,Xn)f̃(Xn) + g(τn+1,Xτn+1
)(1− f̃(Xn))

]

≥ sup
f∈D

E
[

g(n,Xn)f(Xn) + g(τn+1,Xτn+1
)(1− f(Xn))

]

− ε/4.
(8)

f̃ can be written as f̃ = IA for the Borel set A = {x ∈ R
d : f̃(x) = 1}. Moreover, by (2),

B 7→ E[|g(n,Xn)|IB(Xn)] and B 7→ E
[

|g(τn+1,Xτn+1
)|IB(Xn)

]
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define finite Borel measures on R
d. Since every finite Borel measure on R

d is tight (see e.g. [1]),
there exists a compact subset K ⊆ A such that

E
[

g(n,Xn)IK(Xn) + g(τn+1,Xτn+1
)(1− IK(Xn))

]

≥ E

[

g(n,Xn)f̃(Xn) + g(τn+1,Xτn+1
)(1− f̃(Xn))

]

− ε/4.
(9)

Let ρK : Rd → [0,∞) be the distance function given by ρK(x) = infy∈K ‖x− y‖2. Then

kj(x) = max {1− jρK(x),−1} , j ∈ N,

defines a sequence of continuous functions kj : R
d → [−1, 1] that converge pointwise to IK − IKc.

So it follows from Lebesgue’s dominated convergence theorem that there exists a j ∈ N such that

E

[

g(n,Xn) I{kj(Xn)≥0} + g(τn+1,Xτn+1
)(1 − I{kj(Xn)≥0})

]

≥ E
[

g(n,Xn)IK(Xn) + g(τn+1,Xτn+1
)(1− IK(Xn))

]

− ε/4.
(10)

By Theorem 1 of [35], kj can be approximated uniformly on compacts by functions of the form

r
∑

i=1

(vTi x+ ci)
+ −

s
∑

i=1

(wT
i x+ di)

+ (11)

for r, s ∈ N, v1, . . . , vr, w1, . . . , ws ∈ R
d and c1, . . . , cr, d1, . . . , ds ∈ R. So there exists a function

h : Rd → R which can be written as in (11) such that

E
[

g(n,Xn) I{h(Xn)≥0} + g(τn+1,Xτn+1
)(1− I{h(Xn)≥0})

]

≥ E

[

g(n,Xn) I{kj(Xn)≥0} + g(τn+1,Xτn+1
)(1− I{kj(Xn)≥0})

]

− ε/4.
(12)

Clearly, the composite mapping I[0,∞) ◦ h can be expressed as a neural net f θ of the form (7) for
suitable integers q1, q2 and a parameter value θ ∈ R

q. Hence, one obtains from (8), (9), (10) and
(12) that

E

[

g(n,Xn) f
θ(Xn) + g(τn+1,Xτn+1

)(1 − f θ(Xn))
]

≥ sup
f∈D

E
[

g(n,Xn)f(Xn) + g(τn+1,Xτn+1
)(1 − f(Xn))

]

− ε,

and the proof is complete.

The following is an immediate consequence of Theorem 1 and Proposition 4:
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Corollary 5. For a given optimal stopping problem of the form (1) and a constant ε > 0, there
exist positive integers q1, q2 and functions f θ0 , f θ1 , . . . , f θN : Rd → {0, 1} of the form (7) such that

f θN ≡ 1 and the stopping time

τ̂ =

N
∑

n=1

nf θn(Xn)

n−1
∏

k=0

(1− f θk(Xk))

satisfies E g(τ̂ , Xτ̂ ) ≥ supτ∈T E g(τ,Xτ )− ε.

2.3 Parameter optimization and testing of the trained stopping rule

We train neural networks of the form (7) with given numbers q1 and q2 of nodes in the two hid-
den layers2. To numerically find parameters θn ∈ R

q yielding good stopping decisions f θn for all
times n ∈ {0, 1, . . . , N − 1}, we approximate expected values with averages of Monte Carlo samples
calculated from simulated paths of the process (Xn)

N
n=0.

Let (xmn )Nn=0, m = 1, 2, . . . be independent realizations of such paths. We choose θN ∈ R
q

such that f θN ≡ 1 and determine θn ∈ R
q for n ≤ N − 1 recursively. So suppose that for a given

n ∈ {0, 1, . . . , N − 1}, parameters θn+1, . . . , θN ∈ R
q, have been found so that the stopping decisions

f θn+1 , . . . , f θN generate a stopping time

τn+1 =

N
∑

k=n+1

kf θk(Xk)

k−1
∏

j=n+1

(1− f θj(Xj))

with corresponding expectation E g(τn+1,Xτn+1
) close to the optimal value Vn+1. If n = N − 1,

then τn+1 = N , and if n ≤ N − 2, τn+1 can be written as

τn+1 = ln+1(Xn+1, . . . ,XN−1)

for a measurable function ln+1 : R
d(N−n−1) → {n+ 1, n + 2, . . . , N}. Accordingly, denote

lmn+1 =

{

N if n = N − 1

ln+1(x
m
n+1, . . . , x

m
N−1) if n ≤ N − 2

.

If at time n, one applies the continuous stopping decision F θ and afterward behaves according to
f θn+1 , . . . , f θN , the realized reward along the m-th simulated path of X is

rmn (θ) = g(n, xmn )F θ(xmn ) + g(lmn+1, x
m
lmn+1

)(1 − F θ(xmn )).

2For a given application, one can try out different choices of q1 and q2 to find a suitable trade-off between accuracy
and efficiency. Alternatively, the determination of q1 and q2 could be built into the training algorithm.
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For large M ∈ N,

1

M

M
∑

m=1

rmn (θ) (13)

approximates the expected value

E

[

g(n,Xn)F
θ(Xn) + g(τn+1,Xτn+1

)(1 − F θ(Xn))
]

.

Since rmn (θ) is almost everywhere smooth in θ, a stochastic gradient ascent method can be applied
to find an approximate optimizer θn ∈ R

q of (13). In the numerical examples in Section 3 below, we
employed mini-batch gradient ascent with Xavier initialization [23], batch normalization [26] and
Adam updating [28].

The same simulations (xmn )Nn=0, m = 1, 2, . . . can be used to train the stopping decisions f θn at
all times n ∈ {0, 1, . . . , N − 1}. But to test the trained decision rules, a second set of independent
realizations (ymn )Nn=0, m = 1, 2, . . . ,M, of (Xn)

N
n=0 has to be simulated. The trained stopping time

is of the form

τ̂ =

N
∑

n=1

nf θn(Xn)

n−1
∏

k=0

(1− f θk(Xk)). (14)

So it can be expressed as τ̂ = l(X0, . . . ,XN−1) for a measurable function l : RdN → {0, 1, . . . , N}.
Denote lm = l(ym0 , . . . , y

m
N−1). We use the Monte Carlo approximation

V̂ =
1

M

M
∑

m=1

g(lm, ymlm)

to E g(τ̂ , Xτ̂ ) as our estimate of supτ∈T E g(τ,Xτ ).
For E g(τ̂ , Xτ̂ ), V̂ is an unbiased estimate whose accuracy can be assessed with standard methods.

By the law of large numbers, V̂ converges to E g(τ̂ , Xτ̂ ) for M → ∞. Moreover, assuming g(τ̂ , Xτ̂ )
has finite variance3, it can be derived from the central limit theorem that for any given α ∈ (0, 1),

[

V̂ − zα/2
σ̂√
M
, V̂ + zα/2

σ̂√
M

]

(15)

is an asymptotically valid 1−α confidence interval for E g(τ̂ , Xτ̂ ), where zα/2 is the 1−α/2 quantile
of the standard normal distribution and σ̂ is the sample standard deviation given by

σ̂ =

√

√

√

√

1

M − 1

M
∑

m=1

(

g(lm, ymlm)− V̂
)2

3This follows for instance, if E
[

g(n,Xn)
2
]

< ∞ for all n ∈ {0, 1, . . . , N}.
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(see, e.g., [21, Appendix A.2]).
On the other hand, as an estimate of supτ∈T E g(τ,Xτ ), V̂ is a low-biased, and its accuracy

depends on the quality of the trained stopping time τ̂ . However, in the examples of Section 3 below,
it yields very good results.

Remark 6. If the Markov process X starts from a deterministic initial value x0 ∈ R
d, the initial

stopping decision is given by a constant I0 ∈ {0, 1}. To learn I0 from simulated paths of X, it is
enough to compare the initial reward g(0, x0) to a Monte Carlo estimate V̂1 of E g(τ1,Xτ1), where
τ1 ∈ T1 is of the form

τ1 =

N
∑

n=1

nf θn(Xn)

n−1
∏

k=1

(1− f θk(Xk))

for f θN ≡ 1 and trained parameters θ1, . . . , θN−1 ∈ R
q. Then one sets I0 = 1 (that is, stop

immediately) if g(0, x0) ≥ V̂1 and I0 = 0 (continue) otherwise. The resulting stopping time is of the
form

τ̂ =

{

0 if I0 = 1

τ1 if I0 = 0
.

3 Examples

In this section we test4 our method on two examples: the pricing of a Bermudan max-call option
on different underlying assets and the problem of optimally stopping a fractional Brownian motion.

3.1 Bermudan max-call options

Early exercise max-call options are one of the most studied examples in the numerics literature for
optimal stopping problems; see, e.g., [36, 39, 20, 11, 24, 12, 3, 10, 9, 5, 6, 25, 34]. Their payoff
depends on the maximum of d underlying assets.

Assume the assets evolve according to a multi-dimensional Black–Scholes model

Si
t = si0 exp

(

[r − δi − σ2i /2]t + σiW
i
t

)

, i = 1, 2, . . . , d, (16)

for initial values si0 ∈ (0,∞), a risk-free interest rate r ∈ R, dividend yields δi ∈ [0,∞), volatilities
σi ∈ (0,∞) and a d-dimensional Brownian motion W with constant instantaneous correlations5

ρij ∈ R between different components W i and W j. A Bermudan max-call option on S1, S2, . . . , Sd

4All computations were performed in single precision (float32) on a NVIDIA GeForce GTX 1080 GPU with 1974
MHz core clock and 8 GB GDDR5X memory with 1809.5 MHz clock rate. The underlying system consisted of an
AMD Ryzen 1700X 3.4 GHz CPU with 32 GB DDR4-2400 memory running Tensorflow 1.5 on Ubuntu 16.04.

5That is, E[(W i
t −W i

s)(W
j
t −W i

s)] = ρij(t− s) for all i 6= j and s < t.
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has payoff
(

max1≤i≤d S
i
t −K

)+
and can be exercised at any point of a time grid 0 = t0 < t1 < · · · <

tN . Its price is given by

sup
τ

E

[

e−rτ

(

max
1≤i≤d

Si
τ −K

)+
]

,

where the supremum is over all S-stopping times taking values in {t0, t1, . . . , tN} (see, e.g., [42]).
Denote Xi

n = Si
tn , n = 1, 2, . . . , N , and let T be the set of X-stopping times. Then the price can

be written as supτ∈T E g(τ,Xτ ) for

g(n, x) = e−rtn

(

max
1≤i≤d

xi −K

)+

,

and it is straight-forward to simulate (Xn)
N
n=0.

In the following we assume the time grid to be of the form tn = nT/N , n = 0, 1, . . . , N , for a
maturity T > 0 and N +1 equidistant possible exercise dates. Even though g(n,Xn) does not carry
any information that is not already contained in Xn, our method worked more efficiently when we
trained the optimal stopping decisions on Monte Carlo simulations of the d+1-dimensional Markov
process (Yn)

N
n=0 = (Xn, g(n,Xn))

N
n=0 instead of (Xn)

N
n=0. So we first trained stopping times τ1 ∈ T1

of the form

τ1 =

N
∑

n=1

nf θn(Yn)

n−1
∏

k=1

(1− f θk(Yk))

for f θN ≡ 1 and f θ1 , . . . , f θN−1 : Rd+1 → {0, 1} given by (7) with d+ 1 in place of d and q1 = q2 =
d+ 50. Then we determined our candidate optimal stopping times as

τ̂ =

{

0 if I0 = 1

τ1 if I0 = 0

for a constant I0 ∈ {0, 1} depending6 on whether it was optimal to stop immediately at time 0 or
not (see Remark 6 above).

Symmetric case

First, we considered the special case, where si0 = s0, δi = δ, σi = σ for every i ∈ {1, 2, . . . , d} and
ρij = ρ for all i 6= j. The results are reported in Table 1.

Asymmetric case

As a second example we considered model (16) with si0 = s0, δi = δ for every i = {1, 2, . . . , d}
and ρij = ρ for all i 6= j, but different volatilities σ1 < σ2 < · · · < σd. For d = 5, we chose the
same specification as [10]: σi = i × 0.08, i = 1, 2, . . . , 5. For d > 5, we set σi = 0.1 + i × 0.5/d,
i = 1, 2, . . . , d. Our results are reported in Table 2.

6In fact, in none of the examples in this paper it is optimal to stop at time 0. So τ̂ = τ1 in all these cases.
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d s0 Point Est. 95% CI Comp. Time BC 95% CI

5 90 16.635 [16.619, 16.650] 42.3 [16.620, 16.653]
5 100 26.148 [26.129, 26.167] 42.1 [26.115, 26.164]
5 110 36.770 [36.748, 36.790] 42.0 [36.710, 36.798]

10 90 26.195 [26.176, 26.213] 44.7
10 100 38.313 [38.292, 38.334] 44.7
10 110 50.845 [50.822, 50.868] 44.7

20 90 37.685 [37.665, 37.704] 50.2
20 100 51.567 [51.545, 51.589] 50.1
20 110 65.526 [65.502, 65.550] 50.4

30 90 44.819 [44.798, 44.839] 56.3
30 100 59.506 [59.484, 59.528] 56.4
30 110 74.213 [74.189, 74.237] 56.2

50 90 53.883 [53.863, 53.904] 70.4
50 100 69.551 [69.528, 69.574] 70.6
50 110 85.255 [85.230, 85.279] 70.4

100 90 66.353 [66.332, 66.374] 108.9
100 100 83.405 [83.382, 83.428] 108.9
100 110 100.421 [100.396, 100.447] 108.9

200 90 78.987 [78.966, 79.009] 188.1
200 100 97.390 [97.366, 97.413] 188.2
200 110 115.830 [115.804, 115.856] 188.3

500 90 95.965 [95.943, 95.987] 533.5
500 100 116.256 [116.232, 116.281] 533.1
500 110 136.522 [136.495, 136.549] 534.1

Table 1: Summary results for max-call options on d symmetric assets for parameter values of r = 5%,
δ = 10%, σ = 20%, ρ = 0, K = 100, T = 3, N = 9. 95% CI is the 95% confidence interval (15)
for E g(τ̂ , Xτ̂ ), where τ̂ is our candidate optimal stopping time. Computing times are reported in
seconds. BC 95% CI is the 95% confidence interval for supτ∈T E g(τ,Xτ ) computed in [10].
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d s0 Point Est. 95% CI Comp. Time BC 95% CI

5 90 27.659 [27.627, 27.690] 42.1 [27.468, 27.686]
5 100 37.976 [37.940, 38.012] 42.1 [37.730, 38.020]
5 110 49.488 [49.448, 49.528] 42.0 [49.155, 49.531]

10 90 85.913 [85.833, 85.993] 44.8
10 100 104.630 [104.541, 104.719] 44.7
10 110 123.727 [123.629, 123.825] 44.7

20 90 126.00 [125.903, 126.097] 50.6
20 100 149.621 [149.513, 149.730] 50.7
20 110 173.340 [173.221, 173.459] 50.4

30 90 154.475 [154.366, 154.583] 56.6
30 100 181.317 [181.196, 181.437] 56.4
30 110 208.157 [208.024, 208.290] 56.4

50 90 196.059 [195.934, 196.183] 70.9
50 100 227.483 [227.345, 227.622] 70.7
50 110 258.720 [258.568, 258.872] 70.7

100 90 263.293 [263.143, 263.443] 108.8
100 100 302.084 [301.918, 302.251] 108.7
100 110 340.766 [340.584, 340.949] 108.7

200 90 344.503 [344.323, 344.682] 189.0
200 100 392.109 [391.911, 392.307] 188.2
200 110 440.058 [439.839, 440.276] 188.8

500 90 476.346 [476.121, 476.571] 534.4
500 100 538.657 [538.407, 538.907] 533.6
500 110 601.419 [601.146, 601.693] 534.5

Table 2: Summary results for max-call options on d asymmetric assets for parameter values of
r = 5%, δ = 10%, ρ = 0, K = 100, T = 3, N = 9. 95% CI is the 95% confidence interval (15) for
E g(τ̂ , Xτ̂ ), where τ̂ is our candidate optimal stopping time. Computing times are in seconds. BC
95 % CI is the 95% confidence interval for supτ∈T E g(τ,Xτ ) computed in [10].
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3.2 Optimally stopping a fractional Brownian motion

A fractional Brownian motion with Hurst parameter H ∈ (0, 1] is a continuous centered Gaussian
process (WH

t )t≥0 with covariance structure

E[WH
t W

H
s ] =

1

2

(

t2H + s2H − |t− s|2H
)

(see, e.g., [37, 41]). For H = 1/2, WH is a standard Brownian motion. So, by the optional stopping

theorem, EW
1/2
τ = 0 for every W 1/2-stopping time τ bounded above by a constant (see, e.g., [22]).

However, for H 6= 1/2, the increments of WH are correlated – positively correlated for H ∈ (1/2, 1]
and negatively correlated for H ∈ (0, 1/2). In both cases, WH is neither a martingale nor a Markov
process, and there exist bounded WH-stopping times τ such that EWH

τ > 0; see, e.g., [32] for two
classes of simple stopping rules 0 ≤ τ ≤ 1 and simulations of the corresponding expected values
EWH

τ .
In order to approximate the supremum

sup
0≤τ≤1

EWH
τ (17)

over all WH -stopping times 0 ≤ τ ≤ 1, we denote tn = n/100, n = 0, 1, 2, . . . , 100, and introduce
the 100-dimensional Markov process (Xn)

100
n=0 given by

X0 = (0, 0, . . . , 0)

X1 = (WH
t1 , 0, . . . , 0)

X2 = (WH
t2 ,W

H
t1 , 0, . . . , 0)

...

X100 = (WH
t100 ,W

H
t99 , . . . ,W

H
t1 ).

The discretized stopping problem
sup
τ∈T

E g(Xτ ), (18)

where T is the set of all X-stopping times and g : R100 → R the function given by g(x1, . . . , x100) =
x1, approximates (17) from below.

For our numerical approximation of (18), we trained networks of the form (7) with d = 100,
q1 = 110, and q2 = 55. To simulate paths of (Xn)

100
n=0, we used the fact that the increments

Y H
n = WH

tn − WH
tn−1

, n = 1, 2, . . . , N , form a centered stationary Gaussian sequence (so-called
fractional Gaussian noise) with autocovariance

E[Y H
n Y H

n+k] =
|k + 1|2H − |k|2H + |k − 1|2H

2× 1002H
.
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Figure 1: Estimates of sup0≤τ≤1 EW
H
τ for different values of H. For each choice of H, the compu-

tation took about 500 seconds. The 95% confidence intervals were of the order of 10−3.

So (Y H
1 , . . . , Y H

100) can efficiently be simulated by embedding its covariance matrix in a positive
definite symmetric circulant matrix7, which can be diagonalized using fast Fourier transformation
(see [14, 45, 18]). From there, sample paths of (Xn)

100
n=0 are obtained via WH

tn =
∑n

k=1 Y
H
k . We

computed estimates of (18) for H = 0.01, 0.05, 0.1, 0.15, . . . , 1. The results are shown in Figure 1.
It can be seen that for H > 1/2, our methods yields up to three times higher expected payoffs than
the heuristic stopping rules of [32]. For H < 1/2, they are up to five times higher.
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