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Summary

TheMultiple Multipole Program is a Trefftz method approximating the electromagnetic field in a

domainfilledwith ahomogeneous linearmedium.MMPcaneasily copewith unboundeddomains;

yet, it cannot accommodate either inhomogeneous or nonlinear materials, situations well within

the scope of the standard Finite ElementMethod.

We propose to couple FEM andMMP tomodel Maxwell’s equations for materials with nonlinear

local properties in an unbounded domain. In some bounded parts of the domain, we useNédélec’s

first family of curl-conforming elements; in the unbounded complement, multipole expansions.

Several approaches are developed to couple both discretizations across the common interface:

1. Least-squares-based coupling using techniques from PDE-constrained optimization.

2. Multi-field variational formulation in the spirit of mortar finite elementmethods.

3. Discontinuous Galerkin between the FEMmesh and the single-entityMMP subdomain.

4. Coupling through tangential components traces.

We study the convergence of these approaches in a series of numerical experiments.

KEYWORDS:

finite element method, multiple multipole program, method of auxiliary sources, Trefftz method,
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1 INTRODUCTION

We consider the following second-order vector elliptic boundary value problem that expresses a magnetostatic regime in vector potential

formulation:
{

∇× [M (x) ∇× u] +∇φ = f

−∇ · u = 0
in R

3, (1a)

u (x) = O
(

‖x‖−1
)

for ‖x‖ → ∞ uniformly. (1b)

• M : R3 → R
3,3 is a symmetric, bounded, uniformly positive-definitematerial coefficient.We assume thatM agreeswith the identitymatrix

I ∈ R
3,3 outside of a bounded domainΩ⋆:

Ω⋆ ⊂ R
3 : M (x) = I ∀x ∈ R

3 \ Ω⋆ . (2)

0Abbreviations: FEM: Finite Element Method. MMP: Multiple Multipole Program. Index f in formulas: FEM. Index m in formulas: MMP. PDE: Partial
Differential Equation. DG: Discontinuous Galerkin.
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• u : R
3 → R

3 represents the vector magnetic potential. The former equation in (1a) is the Ampère’s law, the latter the Coulomb gauge.

• φ : R
3 → R is a Lagrange multiplier to impose the Coulomb gauge. φmust be subject to a further constrain such that it is uniquely defined

by (1a). In the scope of this work, we set
∫

R3 φ dx = 0 .

• f : R
3 → R

3, with∇ · f = 0, represents the static current that generates themagnetic field. f has compact support inΩ⋆.

• For the decay condition (1b), please refer to [1, p. 180, (5.28)].

The weak solutionu ∈ Hloc

(

curl,R3
)

of (1) belongs to the continuous Trefftz space

T (D) :=
{

v ∈ Hloc (curl,D) : ∇×∇× v = 0 , ∇ · v = 0 , v satisfies the decay condition (1b)
}

(3)

forD = R
3 \ Ω⋆.

Trefftz methods seek to approximate u on subdomains of R3 \ Ω⋆ by means of some finite-dimensional subspace of T (D). Our approach uses

spaces spanned by multipole expansions that exhibit central singularities outside ofD. We refer to this discretization as the MMP approximation

after the Trefftz method known asMultiple Multipole Program; see Section 2 for details.

However, functions in a Trefftz space cannot approximate u in Ω⋆. There we use a standard finite element spaceVn, Vn|Ω⋆
⊂ H (curl,Ω⋆),

together with the usual primal variational formulation of (1).

The main issue arising is how to impose the coupling between the MMP domain and the finite element domain. Several algorithms will be

presented in Section 3. Their convergence will be shown numerically in Section 4.1. We will discuss their complete numerical analysis in a next

publication.

1.1 RelatedWork

The coupling between FEM and MMP for the Poisson’s equation has been discussed by the authors from the perspective of numerical analysis in

[2]. The approaches we propose to realize the coupling have been described there for the first time, except for the approach of Section 3.3.

The FEM–MMP coupling has also been tackled before from an engineering perspective by one of the authors [3]. The numerical experiment

proposed in that work is a 2-dimensional version of themodel discussed here in Section 4.2. A differentmethodology for coupling FEMandMMP is

used: coupling is done by ad-hoc pointmatching of field values, theDirichlet data, on the interface between the FEMandMMPdomains (collocation

method), while the Neumann data enter through a boundary term of the variational formulation. The resulting overdetermined FEM–MMP system

of equations is solved in the least-squares sense.

To the best of our knowledge, outside of these papers little work has been devoted to the investigation of strategies combining Trefftz methods

with conventional finite elementmethods.

2 MULTIPLEMULTIPOLE PROGRAM

The concept of the Multiple Multipole Program was proposed by Ch. Hafner in his dissertation [4] based on the much older work of G. Mie and

I. N. Vekua [5, 6]. Essentially, theMie-Vekua approach expands the field in a 2Dmultiply-connected domain by amultipole expansion supplemented

with generalized harmonic polynomials. Extending these ideas, MMP introduces more multipoles (multiple multipoles) than required according to

Vekua’s theory [6].

2.1 Multipoles

Basis functions spanning the MMP Trefftz spaces (3) are the so-called multipoles, potentials spawned by (anisotropic) point sources. Given (3),

multipoles are exact solutions of the homogeneous system of PDEs∇×∇× u = 0, ∇ · u = 0 subject to the decay condition (1b).

A multipole can be formulated as v (x) := f (rxc) g (θxc, ϕxc) in a spherical coordinate system in R3 (r ∈ [0,∞), θ ∈ [0, 2π), ϕ ∈ [0, π]) with

respect to its center c ∈ R
3. Here, (rxc, θxc, ϕxc)

⊤ are coordinates of the vectorxc := x− c.

The radial dependence f (rxc) includes a singularity at the center, |f (r)| → ∞ for r → 0, and the desired decay condition at infinity. Because of

the singularity, multipoles must always be centered outside of the domain where they are used as a tool for approximation.

The spherical dependence g (θxc, ϕxc) is generally formulated in terms of vector spherical harmonics [7, p. 289]. Additional constraints to the

basis functions, like the Coulomb gauge in (1), are embedded in the vector spherical harmonics that express g.
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Specificmultipoles chosen for our numerical experiments of Section 4 are:

vlm (rxc, θxc, ϕxc) = − 1
l(2l+1)

1

r
l+1
xc

Φlm (θxc, ϕxc) , l = 1, . . . ,∞, m = −l, . . . , l,

Φlm (θ, ϕ) := r×∇sphYlm (θ, ϕ) , r = (r, 0, 0)⊤ ,
(4)

where∇sph indicates the gradient in spherical coordinates and Ylm (θ, ϕ) the spherical harmonics [1, p. 108–109]. It can be shown that Φlm (θ, ϕ)

does not depend on r despite the presence of r in its expression. Thesemultipoles satisfy the decay condition (1b).

Each multipole is characterized by a location, i.e. its center c, and the parameters l (degree) and m. In our convergence tests we always place

several multipoles at a given location up to a certain order, which is the maximum degree of multipoles with that center. Hence, we use the term

multipole expansionwhen referring to several multipoles in one point up to a certain order, which is the degree where the expansion is truncated.

3 COUPLING STRATEGIES

We consider the partition R3 = Ωf ∪ Γ ∪ Ωm, Γ := ∂Ωf = ∂Ωm, Ωf ∩ Ωm = ∅. Ωf is a bounded Lipschitz domain, the FEM domain, whereasΩm

is dubbed theMMP domain. The terminology indicates the type of approximation of u to be employed in each subdomain. Coupling is done across

the interface Γ. We demandΩ⋆ ⊂ Ωf, but not necessarilyΩ⋆ = Ωf. IfΩ⋆ 6= Ωf, Γ is an artificial interface.

We define

uf := u|Ωf ∈ H (curl,Ωf) , um := u|Ωm ∈ Hloc (curl,Ωm) , (5a)

and

φf := φ|Ωf ∈ H1
∗ (Ωf) , φm := φ|Ωm = 0 , (5b)

as the divergence-free condition is already imposed strongly for functionsum ∈ T (Ωm) . H1
∗ (Ωf) is defined as

{

v ∈ H1 (Ωf) :
∫

Ωf
v dx = 0

}

.

Wedenote by γm themagnetic trace operator:

γm : Hloc (∇×∇,Ω◦) → H− 1
2 (Γ) , γmv := n×M∇× v , v ∈ Hloc (∇×∇,Ω◦) . (6)

• Hloc (∇×∇,Ω◦) is the space of functionsv ∈ Hloc (curl,Ω◦) for which∇×∇v ∈ L2
loc (Ω◦), given ◦ = f,m.

• We always taken as the normal pointing outwards with respect toΩf intoΩm.

Across Γ the solutionu of (1) has to satisfy the transmission conditions [8, p. 107, Lemma 5.3]

n× uf
∣

∣

Γ
= n× um

∣

∣

Γ
, (7a)

γmu
f
∣

∣

Γ
= γmu

m
∣

∣

Γ
, (7b)

n · uf
∣

∣

Γ
= n · um

∣

∣

Γ
. (7c)

(7a) and (7b) stem from the first line (Ampère’s law) of the system (1a), (7c) from the second line (Coulomb gauge).

The starting point of all coupling approaches is the weak form of (1) in Ωf. By testing the first PDE with v
f ∈ H (curl,Ωf) and the second with

ψf ∈ H1
∗ (Ωf), integrating by parts overΩf, and using the transmission conditions (7b) and (7c), we obtain















∫

Ωf

(

M∇× uf
)

·
(

∇× vf
)

dx+
∫

Γ

γmu
m · vf dS+

∫

Ωf

∇φf · vf dx =
∫

Ωf

f · vf dx ∀vf ∈ H (curl,Ωf)

∫

Ωf

uf · ∇ψf dx−
∫

Γ

(n · um) ψf dS = 0 ∀ψf ∈ H1
∗ (Ωf)

(8)

We end upwith different coupling approaches depending on howwe impose the additional transmission condition (7a). Each coupling approach

can be expressed as a minimization problem for different Lagrangian functionals, to be discussed in the following sections. The resulting linear varia-

tional saddle point problemswill also be illustrated. Exception to this scheme is the approach described in Section 3.4,where a Lagrangian formulation

is not possible.

Discretization

Throughoutwe use tetrahedralmeshesMf onΩf.We discretizeu
f ∈ H (curl,Ωf)with the lowest-orderH (curl,Ωf)-conforming edge elements of

the first family due to Nédélec [9], i.e.

Vn (Mf) :=
{

vn ∈ H0 (curl,Ωf) : vn|K (x) = aK + bK × x, aK,bK ∈ R
3, x ∈ K ∀K ∈ Mf

}

, (9a)
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and φf ∈ H1
∗ (Ωf)with piecewise linear Lagrangian finite elements, i.e.

Vn (Mf) :=
{

vn ∈ C0 (Ωf) : vn|K (x) = aK + bK · x, aK ∈ R, bK ∈ R
3, x ∈ K ∀K ∈ Mf

}

. (9b)

On discrete functions φfn ∈ Vn (Mf) ⊂ H1 (Ωf)we impose the condition
∫

Ωf
φfn dx = 0 bymeans of a scalar Lagrangemultiplier.

ForΩm we take somemultipoles to form the discrete space T n (Ωm) ⊂ T (Ωm). The size of T n (Ωm) is determined by the number of multipole

expansions chosen for the approximation and their orders.

3.1 PDE-constrained Least-Squares Coupling

Taking the cue from (7a), we seekuf ∈ H (curl,Ωf) , u
m ∈ T (Ωm) ,

• minimizing

JΓ

(

uf,um
)

:= ‖n× uf − n× um‖2
H

− 1
2 (divΓ,Γ)

(10)

• and satisfying the constraint (8).

These two conditions determine a quadraticminimization problemunder a linear variational constraintwherewe switch the usualmeaning of these

two components: here the constraint is given by the variational form of the minimization problem that satisfies the system of PDEs (8) inΩf, while

the functional JΓ to beminimized is the additional transmission condition not imposed by the variational form.

This problem can be rephrased as seeking a saddle point of the following Lagrangian:

L
(

uf,um, φf,pf, ξf
)

:= 1
2
‖n× uf − n× um‖2

H
− 1

2 (divΓ,Γ)
+

∫

Ωf

(

M∇× uf
)

·
(

∇× pf
)

dx+
∫

Γ

γmu
m · pf dS+

∫

Ωf

∇φf · pf dx−
∫

Ωf

f · pf+

∫

Ωf

uf · ∇ξf dx−
∫

Γ

(n · um) ξf dS .

(11)

• φf ∈ H1
∗ (Ωf), as discussed in Section 3.

• pf ∈ H (curl,Ωf) is the Lagrangemultiplier imposing the first line of (8).

• ξf ∈ H1
∗ (Ωf) is the Lagrangemultiplier imposing the second line of (8).

For convenience we replace (10) with theL2 (Γ)-norm,

JΓ

(

uf,um
)

:= ‖n× uf − n× um‖2
L2(Γ) , (12)

by seekinguf ∈ HΓ (curl,Ωf) :=
{

v ∈ H (curl,Ωf) : n× v|Γ ∈ L2
t (Γ)

}

.

The necessary and sufficient optimality conditions of (11) considering (12) give rise to the saddle point problem

Seek uf ∈ HΓ (curl,Ωf) , u
m ∈ T (Ωm) , φ

f ∈ H1
∗ (Ωf) , p

f ∈ H (curl,Ωf) , ξ
f ∈ H1

∗ (Ωf) :










aLS
[(

uf,um
)

,
(

vf,vm
)]

+ bLS
[(

vf,vm, ψf
)

,
(

pf, ξf
)]

= 0

bLS
[(

uf,um, φf
)

,
(

qf, ζf
)]

=
∫

Ωf

f · qf dx
(13)

∀vf ∈ HΓ (curl,Ωf) , ∀v
m ∈ T (Ωm) , ∀ψ

f ∈ H1
∗ (Ωf) , ∀q

f ∈ H (curl,Ωf) , ∀ζ
f ∈ H1

∗ (Ωf) ,

where

aLS
[(

uf,um
)

,
(

vf,vm
)]

:=

∫

Γ

[

n×
(

uf − um
)]

·
[

n×
(

vf − vm
)]

dS , (14a)

bLS
[(

uf,um, φf
)

,
(

qf, ζf
)]

:=

∫

Ωf

(

M∇× uf
)

·
(

∇× qf
)

dx+

∫

Γ

γmu
m · qf dS+

∫

Ωf

∇φf · qf +

∫

Ωf

uf · ∇ζf dx−

∫

Γ

(n · um) ζf dS . (14b)

We propose the following discretization for (13):

• uf,vf,pf,qf ∈ Vn (Mf) of (9a),

• φf, ψf, ξf, ζf ∈ Vn (Mf) of (9b), and

• um,vm ∈ T n (Ωm) .
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3.2 Multi-Field Coupling

The multi-field domain decomposition method allows to use FEM with nonconforming meshes on different domains for the same boundary value

problem [10]. This is well-suited for the coupling because one can think of MMP as FEMwith special functions acting on a “mesh of a single entity”

defined onΩm.

For Maxwell’s equations, the multi-field method imposes tangential continuity in a weak sense by means of a Lagrange multiplier λ := γmu
m.

However, given the defining equation of λ and the generalized Stokes’ theorem inH (curl,Ω) [8, p. 59, Theorem 3.31], what is actually imposed is

the continuity of the tangential components trace,

n×
(

n× uf
)
∣

∣

Γ
= n×

(

n× um
)
∣

∣

Γ
, (15)

instead of the continuity between twisted tangential traces implied by (7a). Note that (15) is an equation connecting traces inH− 1
2 (curlΓ, Γ) and

therefore it has to be tested with functions in the dual spaceH− 1
2 (divΓ, Γ).

Hence, themulti-field coupling can be expressed by the following Lagrangian:

L
(

uf,um, φf,λ
)

:= JΩf

(

uf, φf
)

+ JΩm

(

um
)

+

∫

Γ

{

n×
[

n×
(

uf − um
)]}

· λ dS . (16)

The functional JΩf expresses the saddle point problem that satisfies (1a) foru
f inΩf:

JΩf

(

uf, φf
)

:=
1

2

∫

Ωf

(

M∇× uf
)

·
(

∇× uf
)

dx−

∫

Ωf

f · uf dx+

∫

Ωf

uf · ∇φf dx−

∫

Γ

(

n · uf
)

φf dS . (17a)

The functional JΩm foru
m inΩm has a similar formulation, but for a homogeneous problem:

JΩm

(

um
)

:=
1

2

∫

Ωm

‖∇ × um‖2
ℓ2

=
1

2

∫

Γ

γmu
m · um dS . (17b)

A Lagrangemultiplier φ to impose the divergence-free condition is not required givenum ∈ T (Ωm): see (5b).

We therefore obtain the following saddle point problem:

Seek uf ∈ H (curl,Ωf) , u
m ∈ T (Ωm) , φ

f ∈ H1
∗ (Ωf) , λ ∈ H− 1

2 (divΓ, Γ) :










aMF
[(

uf,um
)

,
(

vf,vm
)]

+ bMF
[(

vf,vm
)

,
(

φf,λ
)]

=
∫

Ωf

f · vf dx

bMF
[(

uf,um
)

,
(

ψf,χ
)]

= 0

(18)

∀vf ∈ H (curl,Ωf) , ∀v
m ∈ T (Ωm) , ∀ψ

f ∈ H1
∗ (Ωf) , χ ∈ H− 1

2 (divΓ, Γ) ,

where

aMF
[(

uf,um
)

,
(

vf,vm
)]

:=

∫

Ωf

(

M∇× uf
)

·
(

∇× vf
)

dx+

∫

Γ

γmu
m · vm dS , (19a)

bMF
[(

uf,um
)

,
(

ψf,χ
)]

:=

∫

Ωf

uf · ∇ψf dx−

∫

Γ

(n · um) ψf dS+

∫

Γ

{

n×
[

n×
(

uf − um
)]}

· χ dS . (19b)

We inserted (7c) into (17a) to define bMF (·, ·).

For the discretization of (18), we suggestuf,vf ∈ Vn (Mf) of (9a), φ
f, ψf ∈ Vn (Mf) of (9b), andu

m,vm ∈ T n (Ωm).

The discretization of λ ∈ H− 1
2 (divΓ, Γ) is a topic debated in the literature [11, Section 4]. We opted for the trace on Γ of the elements of the

Nédélec’s spaceVn. Note that we ignore the duality of λ, choosing a nonconforming λn 6∈ H− 1
2 (divΓ, Γ), which represents the most common

discretization strategy [11, Section 4.1].

3.3 Discontinuous Galerkin

As for themulti-field coupling (Section 3.2), we again treatMMPas an element of FEM.Herewe exploit the othermain approach for imposingweak

continuity onnon-conformingmeshes,which isDiscontinuousGalerkin. Specifically,wewant to imposeweak continuity of the tangential components

(7a) [12].

Under this idea, the coupling can be expressed as a discreteminimization problem for the following Lagrangian:

L
(

ufn,u
m
n , φ

f
n

)

:= JΩf

(

ufn, φ
f
n

)

+ JΩm

(

umn

)

+

∫

Γ

[

n×
(

ufn − umn

)]

·Pn

[

n×
(

ufn − umn

)]

dS , (20)

whereufn ∈ Vn (Mf) of (9a), φ
f
n ∈ Vn (Mf) of (9b), andu

m
n ∈ T n (Ωm) . JΩf and JΩm are the same as in (17a) and (17b).
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Depending on the choice of the discrete operatorPn : H
1
2 (Γ) → H− 1

2 (Γ), we obtain different DG approaches. We follow the Interior Penalty

DGmethod [13]:

Pn (u) := −ǫn M ∇× u+
η

h
M u . (21)

• ǫn (x) : R
3 → R is = +1 if you are integrating on an intersection of the FEM meshMf on Γ from the side of Ωf and = −1 if you are

integrating from the side ofΩm.

• M (x) : R
3 → R

3 is themean of thematerial parameters ofΩf andΩm on Γ:

M (x) :=
M (x) + I

2
∀x ∈ Γ . (22)

• η ∈ R is a penalty parameter that needs to be set heuristically. It should depend on the number of degrees of freedom ofMMP.

• h ∈ R is the diameter of the intersection ofMf on Γwhere you are integrating.

Finding the stationary point of (20) leads to the discrete saddle point problem

Seek ufn ∈ Vn ⊂ H (curl,Ωf) , u
m
n ∈ T n ⊂ T (Ωm) , φ

f
n ∈ Vn ⊂ H1

∗ (Ωf) :










aDGn
[(

ufn,u
m
n

)

,
(

vfn,v
m
n

)]

+ bDGn
[(

vfn,v
m
n

)

, φfn
]

=
∫

Ωf

f · vfn dx

bDGn
[(

ufn,u
m
n

)

, ψfn
]

= 0

(23)

∀vfn ∈ Vn ⊂ H (curl,Ωf) , ∀v
m
n ∈ T n ⊂ T (Ωm) , ∀ψ

f
n ∈ Vn ⊂ H1

∗ (Ωf) .

As usual, we define a symmetric bilinear form aDGn (·, ·) and linear form bDGn (·, ·):

aDGn

[(

ufn,u
m
n

)

,
(

vfn,v
m
n

)]

:=

∫

Ωf

(

M∇× ufn

)

·
(

∇× vfn

)

dx+

∫

Γ

γmu
m
n · vmn dS − (24a)

∫

Γ

[

M ∇×
(

ufn + umn

)]

·
[

n×
(

vfn − vmn

)]

dS−

∫

Γ

[

n×
(

ufn − umn

)]

·
[

M ∇×
(

vfn + vmn

)]

dS +

∫

Γ

2 η

h

[

M n×
(

ufn − umn

)]

·
[

n×
(

vfn − vmn

)]

dS ,

bDGn

[(

ufn,u
m
n

)

, ψfn

]

:=

∫

Ωf

uf · ∇ψf dx−

∫

Γ

(n · um) ψf dS . (24b)

We inserted (7c) into (17a) to define bDGn (·, ·).

3.4 Coupling by Tangential Traces

Instead of the continuity between twisted tangential traces implied by (7a), we take into account the continuity of the tangential components trace

(15), as in Section 3.2. (15) is imposed in weak form by testing it withvm ∈ T (Ωm):
∫

Γ

[

n×
(

n× uf
)]

· vm dS −

∫

Γ

[

n×
(

n× um
)]

· vm dS = 0 ∀vm ∈ T (Ωm) . (25)

Combining (25) with the variational form of (8), we end upwith the following system:

Seek ufn ∈ Vn ⊂ H (curl,Ωf) , u
m
n ∈ T n ⊂ T (Ωm) , φ

f
n ∈ Vn ⊂ H1

∗ (Ωf) :


























∫

Ωf

(

M∇× uf
)

·
(

∇× vf
)

dx +
∫

Γ

γmu
m · vf dS +

∫

Ωf

∇φf · vf dx =
∫

Ωf

f · vf dx

∫

Γ

[

n×
(

n× uf
)]

· vm dS −
∫

Γ

[

n×
(

n× um
)]

· vm dS = 0

∫

Ωf

uf · ∇ψf dx −
∫

Γ

(n · um) ψf dS = 0

(26)

∀vfn ∈ Vn ⊂ H (curl,Ωf) , ∀v
m
n ∈ T n ⊂ T (Ωm) , ∀ψ

f
n ∈ Vn ⊂ H1

∗ (Ωf) .

Galerkin discretization of (26) is straightforward: as in Section 3.3, we replaceH (curl,Ωf)with the Nédélec’s finite element spaceVn (Mf) of

(9a),H1 (Ωf)with the Lagrangian finite element spaceVn (Mf) of (9b), andT (Ωm)with a finite-dimensional subspaceT n (Ωm).
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FIGURE 1 Cross-section of the 3D mesh of

the FEMdomainΩf along theYZ-plane.

The blue mesh represents Ω⋆. The green

mesh is a hollow ball centered in the origin

that, in themesh shown, has radius 2.

4 NUMERICAL EXPERIMENTS

To study the convergence we employ uniform h-refinement ofMf and p-refinement of the Trefftz approximation, in the sense that we increase the

number of multipole expansions.Wemonitor the followingL2-errors:

• The error in the FEMdomain, which is the relativeL2 (Ωf)-error compared to the reference solution inΩf, i.e.
∥

∥

∥

∥

∥

u−

n
∑

i=1

αi vi (x)

∥

∥

∥

∥

∥

L2(Ωf)

/

‖u‖
L2(Ωf)

, αi ∈ R , vi ∈ Vn (Mf) , i = 1, . . . , n . (27)

• TheMMP error on the interface, which is the relativeL2 (Γ)-error compared to the reference solution on Γ.

The sum of the relativeL2-error for FEM inΩf and the relativeL
2-error forMMP on Γ is the total relative error of the coupling.

To ignore the impact of numerical integration for FEM, we use a Gaussian quadrature rule that is exact for polynomials of degree 2 (order 3).

Implementation

Meshes were generated using COMSOL [14] and Gmsh [15].

Our code iswritten in C++14, using C++11multithreading for parallelization.Weuse Eigen v3.3.4 [16] for linear algebra and HyDi [17] for theFEM

component. The PARDISO v5.0.0 solver [18] provides the sparse LUdecomposition to invert thematrices of the coupling, characterized by nontrivial

sparsity patterns.

4.1 Maxwell’s Equations with Exact Solution

We solve∇×∇×u = j, ∇ ·u = 0. Ω⋆ is a loop of radius 0.1 centered at (0, 0, 0.5)
⊤ andwith normal axis

(

0,
√
2

2
,
√
2

2

)⊤
. InΩ⋆, ‖j‖ = 1.05 · 106

and is tangential to the loop; elsewhere, j = 0. A samplemesh is shown in Figure 1.

We consider two different auxiliary boundaries Γ between Ωf and Ωm: two spheres centered in the origin of radius 4 and 2. Given that we use

tetrahedral meshes, Γ is actually a polyhedral approximation of a sphere.

Multipole expansions are uniformly positioned on a circle of radius 1 centered in the origin and lying on theXY-plane. This positioning has been

chosen to show that with auxiliary boundaries Γ one can properly approximate u in Ωm regardless of the locations of the multipoles. We only use

multipole expansions of order 1.

Figure 2 shows h-refinement convergence plots for the PDE-constrained coupling.We can clearly identify a linear convergence of the FEMerror

when Γ has radius 4, while the convergence is much slower with radius 2, when the multipoles are closer to the source of the field in Ω⋆. In both

cases, theMMP error decreases muchmore slowly. This is due to the fact that the exact solution is so easy to approximate inΩm that it can already

be represented by very fewmultipoles. The number ofmultipoles is set to the natural logarithmof the number of vertices of the FEMmeshes on the

boundary Γ.

Plots obtainedwith the other approaches look the same as Figure 2.

Figure 3 shows surface plots of the total relative L2-error for the PDE-constrained coupling. The error is much lower for Γ of radius 4 than 2,

decreases with h (algebraic convergence), and is generally independent from the number of multipoles. However, the error also becomes worse

with the coarsest meshes and the highest numbers of multipoles considered, when the coupling is mostly difficult due to a disproportionately large

number of degrees of freedom forMMP (dense blocks of the couplingmatrices) with respect to FEM (sparse blocks). TheMMP error dominates.
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(a) Γ is a sphere of radius 4.
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(b) Γ is a sphere of radius 2.

FIGURE 2 h-refinement plots forMaxwell’s equations with exact solution. Plots obtainedwith the PDE-constrained coupling.
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(a)Ωf is a sphere of radius 4.
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(b)Ωf is a sphere of radius 2.

FIGURE 3 Meshwidth h vs. MMP degrees of freedom for Maxwell’s equations with exact solution: total relative error. Plots obtained with the

PDE-constrained coupling.

Plots obtainedwith the other approaches look the same as Figure 3, except for even larger errorswith the coarsestmeshes and highest numbers

of multipoles considered.

4.2 Magnetostatic Inductor

Wesolve∇× (κ∇× u) = j, ∇·u = 0. Ω⋆ is composed of three regions: two hollow cylinders and one hollow rectangular prism. In the cylinders,

j is tangential to the lateral surfaces, with opposite directions and ‖j‖ = 1.05 · 106 or= 1.25 · 106 in each of the cylinders. In the prism, κ ∼ ∇× u

according to a given curve (hysteresis loop). Elsewhere, j = 0 and κ = 1. Themesh is shown in Figure 4a.

Multipole expansions are positioned in the centers of the entities of a very coarse surface mesh (24 triangles) on a rectangular prism with sizes

0.15× 0.15× 0.1. We only usemultipole expansions of order 1.

Figure 4b shows a plot of the magnitude of the numerical solution ‖un‖ for the multi-field coupling. A plot obtained with the PDE-constrained

coupling looks the same. Results were collected after 10 iterations to let κ ∼ ∇× u converge to a stable value for each entity ofMf .
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(a)Cross-section of the 3Dmesh of the FEMdomainΩf along theXY-plane.

The blue and violet meshes represents the two regions of Ω⋆ where ‖j‖ = 1.05 · 106 and= 1.25 · 106 ,

respectively. The orange mesh represents the third region of Ω⋆ where κ ∼ ∇ × u, which forms a hollow

rectangular prism. Local refinement at the edges and corners of this prism is needed because the solution is not

smooth there. The greenmesh is a hollow rectangular prismwith sizes 0.2 × 0.2 × 0.15.

(b) Cross-section of the ℓ2-norm of the numerical solution ‖un‖2 on the FEM domain Ωf along the XY-plane.

Colors are in logarithmic scale. Plot obtainedwith themulti-field coupling.

FIGURE 4 Mesh and result of themagnetostatic inductor experiment.

5 CONCLUSIONS

Among the four coupling approaches presented in Section 3, we recommend the PDE-constrained coupling thanks to its reliability. The multi-field

and DG-based coupling methods are less expensive, as they rely on less variables, but both suffer from ill-conditioning when dealing with coarse

meshes and high numbers of multipoles. Furthermore, the DG-based coupling requires the additional user input of a penalty parameter.

However, as indicated by the numerical experiments of Section 4, as long as one defines an auxiliary boundary Γ far from the field sources, the

number and positions of multipoles do not impact much on the numerical solution.

Future research will involve a full numerical analysis of the coupling approaches forMaxwell’s equations and an extension to the time domain.
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