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Uncertainty Quantification for Spectral Fractional Diffusion:
Sparsity Analysis of Parametric Solutions*

Lukas Herrmann, Christoph Schwab, and Jakob Zechf

Abstract. In bounded, polygonal domains D C R, we analyze solution regularity and sparsity for compu-
tational uncertainty quantification for spectral fractional diffusion. Two types of uncertainty are
considered: i) uncertain, parametric diffusion coefficients, and ii) uncertain physical domains D. For
either of these problem classes, we analyze sparsity of countably-parametric solution families. Princi-
pal novel technical contribution of the present paper is a sparsity analysis for operator equations with
distributed uncertain inputs which, in particular, may be given as a general gpc representation, gen-
eralizing earlier results which required an affine-parametric representation. The summability results
established here imply best N-term approximation rate bounds as well as dimension-independent
convergence rates of numerical approximation methods such as stochastic collocation, Smolyak and
Quasi-Monte Carlo integration methods and compressed sensing or least-squares approximations.

Key words. Fractional diffusion, nonlocal operators, uncertainty quantification, sparsity, generalized polyno-
mial chaos.
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1. Introduction. The mathematical analysis of numerical approximation methods for par-
tial differential equations (PDEs) with uncertain input data has received substantial atten-
tion in recent years. In theoretical, mathematical analysis, particular focus has been on
distributed uncertain input data taking values in function spaces. Uncertainty parametriza-
tion with suitable (countable) representation systems of such inputs renders corresponding
responses countably parametric. Numerical approximation of response manifolds is there-
fore intimately related to approximation on high-dimensional parameter spaces. Sparsity of
collections of (parametric) solutions have been found to play a crucial role in convergence
rate bounds which are free from the so-called curse of dimensionality. Specific results on un-
certainty quantification (UQ) for diffusion problems in heterogeneous media with uncertain
constitutive properties were considered in, e.g., [10, 12, 20] and the references there.

In recent years, there has been significant interest in the numerical analysis of fractional
diffusion equations; we mention only [4, 5, 3] and the references there. This is due to the
widespread appearance of fractional diffusion models in applications, ranging from biology to
financial modelling.

The present paper is, to our knowledge, the first mathematical sparsity analysis in UQ for
fractional PDEs. We consider two types of uncertainty for spectral fractional diffusion: first,
parametric uncertainty in the diffusion coefficient of the spectral fractional diffusion operators
and, second, domain uncertainty of the spectral fractional diffusion operator. In either case,
our analysis relies on the localization of the spectral fractional diffusion operator which was
emphasized by Caffarelli, Stinga and coworkers (see, e.g., [8, 26] and the references there).

*This work was supported in part by the Swiss National Science Foundation (SNSF) under grant SNF 159940.
fSeminar for Applied Mathematics, ETH Ziirich, Ramistrasse 101, CH-8092 Ziirich, Switzerland
(lukas.herrmann@sam.math.ethz.ch, christoph.schwab®@sam.math.ethz.ch, jakob.zech@sam.math.ethz.ch).
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This localization of the spectral fractional diffusion (at the expense of admitting one extra
“spacial” variable in the problem) allows the mathematical analysis of sensitivities which is
necessary for the analysis of efficient computational UQ, such as higher order Quasi-Monte
Carlo (QMC) and Smolyak quadrature (see, e.g., [19, 15, 18] for details). We also note that
in numerical computations, the extra “spacial” variable introduced through the Caffarelli-
Stinga extension is, in fact, not causing undue inflation of the computational work for the
numerical solution: as it was shown in [3] and the references there, anisotropic tensor product
FE discretizations of the extended (local) parametric problem allow numerical solution of the
parametric fractional diffusion problem for any value of the parameter.

The new contributions of the present paper are as follows: we prove new sparsity re-
sults for solutions of spectral fractional diffusion problems, where the diffusion matrix can
be anisotropic and may depend on possibly countably many parameters (y;)jen. We admit
affine-parametric dependence as well as analytic dependence of the diffusion coefficient on the
parameters. We prove that summability of the coefficients in the parametric expansion of the
diffusion coefficients will, in turn, imply corresponding summability in the sequence of gpc
(“generalized polynomial chaos”) coefficients of the parametric solution.

These gpc summability results for divergence form equations with non-affine, gpc input
obtained in the present paper are the first results on sparsity in gpc expansions of fractional
diffusion problems. They generalize, in the case of analytic dependence of the diffusion coeffi-
cient, known summability results e.g. from [2] even in the diffusion case, see Remark 2.16. In
particular, they allow to track possibly local supports of basis functions in representation sys-
tems used in uncertainty parametrization also for non-affine, parametric inputs. Summability
results of this type were, so far, available only for linear or nonlinear, elliptic and parabolic
differential operators, i.e., for operators which are local. The present mathematical sparsity
analysis of nonlocal fractional diffusion operators is based on their localization by the so-called
Caffarelli-Stinga-Torres extension of the fractional operators, see [8]. It quantifies sparsity of
parametric solutions for fractional differential operators which are defined in parametric fam-
ilies of domains. The present results also allow to infer dimension-independent convergence
rates of Quasi-Monte Carlo and Smolyak type quadrature algorithms as analyzed in [27, 16].
This will be developed in [21].

1.1. Spectral fractional diffusion. To prepare the ensuing presentation of the fractional
diffusion problem with uncertain input data and the error analysis of sparse discretization
schemes, we present the spectral fractional diffusion operator, initially without uncertain
inputs.

For some 0 < s < 1, and in a bounded domain D C R?, for given f € L?(D) we consider
the Dirichlet problem of the fractional power L£° of the linear, elliptic, self-adjoint, second
order divergence form differential operator

(1.1) Lw = —div(AVw),

In (1.1), the diffusion coefficient A € L>°(D;R%*%) is assumed symmetric, uniformly posi-
tive definite in the sense that there exists yu > 0 such that

(1.2) VEERY:  ess irellf)§TA(x)§ > plé)? .
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We denote the set of symmetric matrices with real-valued entries by ngxlg. Identifying £ in
(1.1) with a bounded, linear operator from H}(D) to H~!(D), the Dirichlet problem for the
fractional diffusion in D reads, formally:

Given a fractional order s € (0,1) and f € L?(D), we seek u such that

(1.3) Lu=f inD.

In (1.3) and throughout the following, the domain D C R? is a bounded domain with Lipschitz
boundary 0D. Further conditions on D will be introduced as needed for the ensuing analysis.

Throughout we adhere to the following notational conventions. For z € C% and A € C4*¢
we denote by ||z||2, ||All2 the Euclidean norm of x and the spectral norm of A respectively.
Moreover, if A € L>®(D;R%*9) then | All oo (D;raxay == esssupyrep | A(2') |2, i.e. with respect
to the spectral norm on R%*9, and similarly we always assume || - [|2 as the underlying norm
for vector valued functions. If ¢ : D — C" is a vector valued function for some n € N, then
|| : D — [0,00)" shall refer to the componentwise modulus of ¢. Finally, for a Banach
space X we denote by B;X the open ball with center 0 € X and radius » > 0 in X. If
v = (v)jer € (0,00)! is a sequence, then B,)f is understood as X, Big C X! In case
X =R we omit the superscript R.

1.2. Caffarelli-Stinga extension. For 0 < s < 1, £° in (1.3) is a nonlocal operator [6, 7,
8, 9], which admits several possible interpretations. We consider the so-called spectral version
of the fractional Laplacean. It was proposed by Caffarelli and Silvestre in [8] to localize the
(nonlocal) operator £* on the unbounded domain R? via a singular elliptic PDE depending on
one extra variable. Cabré and Tan [7] and Stinga and Torrea [26] extended this to bounded
domains D and more general operators, thereby obtaining an extension posed on the semi-
infinite cylinder C := D x (0, 00). The extension is defined via the local boundary value problem

LU = —div(z*AV%)=0 inC,
(1.4) U =0 on 9;C ,
O = dsf on D x {0},
where A = diag(4,1) € L®(C;RETV* @Y 5, ¢ .= 9D x (0, 00), dy 1= 21725T(1—5)/T(s) > 0

and where « =1 —2s € (—1,1) [8, 26]. In (1.4), the so—called conormal exterior derivative of
U at D x {0} is

(1.5) Opa U = — lim y“%,.

y—0t

The limit in (1.5) is in the distributional sense [7, 8, 26]. Fractional powers of £ in (1.3) and
the Dirichlet-to-Neumann operator of problem (1.4) are related by

(1.6) dsL%uw = 0ya?Z inD.

We write 2 = (2/,2) € C and V = (V,,0.)" with 2/ € D and z > 0. Let us introduce the
bilinear form ac : H'(2%,C) x H'(2*,C) — R defined by

(1.7) ac(v,w) = /CZO‘(AVU -Vw) da' dz.
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In #'(2%,C) we introduce the following norm (see [24, eq. (2.21)] for definiteness)

0l g1 e = 190020

where HUH%?(za,@ = 7 [p 2*[v[*dzdz. This norm is equivalent to the quadratic functional
defined by

(1.8) [0]|g == ac(v,v) ~ VU] 2(a 0y = ||UH2};1(

With these definitions at hand, the weak formulation of (1.4) reads: Find % € H'(2*,C)
such that

(1.9) ac(% ,v) = ds(f,trpv) Yo e HY(22,0).

We introduce, for s > 0, the domain of L as

(1.10) Hi(D)z{wzzwksokeL( ) ol oy = ZAk wk<oo}

k=1

Here, {\r, ¢k }ren € RT x HE(D) is the countable collection of eigenpairs of £ with homoge-
neous Dirichlet boundary conditions, with ¢ normalized such that {¢y }ken is an orthonormal
basis of L#(D) and an orthogonal basis of (H(D),ap(:,-)). Here, as A was assumed sym-
metric, the “energy” inner product associated with the operator £ is a symmetric, coercive
bilinear form ap(-,-) on HE(D) x HE(D), i.e

(1.11) ap(w,v) = /D (AVw - Vv) da’

Under the coercivity assumption (1.2), the operator £ in (1.1) induced by this bilinear form
is an isomorphism £ : H}(D) — H~!(D). The spectral fractional diffusion operator is, for
0 < s <1, then defined by

[e’) o0
Low:= Nawkpr, forw =" wrpy € HY(D).
k=1 k=1

Tacitly, the eigenpairs {Ag, ¢k }ren also depend on A, which is not explicit in our notation.
The ellipticity condition in (1.2) implies that Hf (D) is isomorphic to Hy,(D) with equivalent
norms, where Id denotes the indentity matrix on R?. We shall denote H*(D) = H,(D).

The spaces H*(D) and H'(z%,C) are related by

(1.12) trp ]—f’[l(zajc) = H*(D), || trp w”Hs )y < CtrDHwH )
The result of Caffarelli and Silvestre [8] (see [7, Prop. 2.2] and [26, Thm. 1.1] for bounded
domains and for general elliptic operators) relates the fractional diffusion operator to a certain
Dirichlet-to-Neumann map:
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Proposition 1.1. Given f € H*(D), let u € H*(D) solve (1.3). If % € H'(z*,C) solves
(1.9), then u = trp % and

(1.13) ds L% = 0y =dsf in H (D).

As a consequence of the Lax-Milgram lemma, (1.12), and (1.2), there holds the a-priori
estimate

2

(1.14) llligsy < Comp 10 o0 < — i fllecn
©) < Cinll% | g ) < it s )

where Cyy, is the constant from the trace estimate (1.12).

1.3. Objectives of the present paper. The objective of this paper is to analyze spar-
sity of parametric solution famlies to the fractional diffusion problem (1.3) with uncertain,
parametrized coefficients A(y) and parametric right hand side f(y), for parameter sequences
Yy = (y;)jen of real-valued y;.

We consider two classes of problems: i) affine-parametric, non-isotropic coefficients A(y)
with bounded y, and ii) parametrized domains D, with bounded y. The latter class will,
via suitable parametric domain transformations, reduce to parametric fractional diffusion
problems in a fixed, so-called nominal domain where, however, coefficients and right-hand side
are non-affine, parametric. The analysis of sparsity in gpc expansions of parametric solutions
performed in this paper is based on tools which are novel, even for diffusion problems, and
which could be of independent interest.

The new gpc coefficient bounds and summability statements which we establish in the
present paper imply novel, sufficient conditions on the representation of the uncertain data
for dimension-independent convergences rates of sparse collocation, Smolyak-type quadrature
algorithms, and Quasi-Monte Carlo quadratures, for the numerical approximation of the para-
metric solution as well as of certain statistical moments of these. The summability results
for gpc expansions of parametric solutions are also relevant for other approximation meth-
ods, such as compressed sensing and least squares techniques. We refer to [25, 13] and the
references there for details.

2. Uncertainty Quantification. As mentioned, we consider UQ for two types of uncer-
tainty for the fractional diffusion operator: i) affine-parametric uncertainty of the diffusion
coefficient A(z’) in (1.1), and ii) domain uncertainty in the fractional boundary value problem
(1.3).

In each case, the uncertain inputs are parametrized by a sequence y = (y;);en of param-
eters, which implies that the solution of (1.3) becomes, in turn, parametric, which we denote
by u(y). Placing a probability measure on the set U of all admissible parameter sequences
will allow to evaluate, for example, statistical quantities by means of (numerical) integra-
tion of (functionals of) the parametric solution u(y) over the (in general infinite-dimensional)
parameter space U.

2.1. Affine-parametric models. In affine parametric models, the coefficients A in (1.1)
are assumed to depend on a sequence y = (y;)jen € U = [—1, 1N of parameters y; in an affine
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fashion. Specifically,

(2.1) Aly) = A+ ;¥ € L2(D;RE)

JEN
for a nominal diffusion coeﬁiciemLZ € L>®(D; R‘Siyxnﬁl) and for a sequence (V) jen C L>(D; Rg;ig)
of fluctuations. We assume that A satisfies the coercivity condition (1.2), with coercivity con-
stant ¢ > 0, and that the fluctuations W; are small w.r. to p in the sense that for some

k€ (0, p)

(2:2) Yy e UVEERT: ess inf &1 A(y;2))E > (- n)lE”

The parametric uncertainty quantification for the fractional diffusion problem then takes the
following form: for a given parameter y € U and for a fractional power 0 < s < 1, define £°(y)
as the fractional s power of the parametric diffusion operator L(y) := =V, - (A(y;2") V) :
H}(D) — H~Y(D). Then, for given f € L?(D) and y € U, and for given 0 < s < 1, the
parametric fractional diffusion problem is to find u(y) € H¥(D) such that for every y € U

(2.3) Li(y)u(y) = f in H*(D).

Here, the fractional order space H*(D) is as in (1.10). The localization result Prop. 1.1 has
an immediate parametric analog.

Proposition 2.1. Assume (2.1), (2.2). Then, for the affine-parametric diffusion coefficient
A(y) € L=(D;RI*%) with y € U, define A(y) = diag(A(y),1) € L=(C,RED* D) For

Sym

given f € H™*(D) and for given y € U, let u(y) € H¥(D) solve (2.3).
Then there holds the following parametric localization result: if % (y) € H'(2*,C) solves

(2.4) ac(y; % (y),v) = ds(f, trp v) Vo e H'(2%,0).

with the affine-parametric bilinear form ac(y;-,-) defined by
o
ac(y;v,w) := / 2 / (A(y)Vv - Vw)dz'dz,
0 D

(with ¥V = (V,0.) ") then u(y) = trp % (y) € H*(D) and
(2.5) dsLP(y)u(y) = Ope % (y) inH *(D).

We observe that not only does Prop. 2.1 localize the nonlocal parametric operator £5(y),
but the localized problem in C also preserves the affine-parametric structure (2.1) of the
uncertain diffusion coefficient. We shall exploit this observation in establishing bounds on the
derivatives of the parametric solution U > y — u(y) of (2.3), and to investigate summability
of gpc expansions of u(y).

To this end, let F := {v € N} : |[v| < oo}, Ng = NU {0} denote the (countable) set
of “finitely supported” multiindices. For every v € F, denote its support by supp(v) :=
{k € N : v # 0} and define the parametric partial derivatives by 0} := 8""/1_[].GN 8y;'j.
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Prop. 2.1 facilitates the quantitative analysis of the “sensitivities” 0y u(y) of the parametric
solution u(y) of the parametric fractional diffusion problem (2.3) with respect to the parameter
sequence y via the corresponding sensitivities 0y % (y) of the extended parametric problem
(2.4): there holds

(2.6) Vv e F: trpdi%(y) =0 uly) in HYD).

To see (2.6), we observe that by Prop. 2.1

Oyu(y) = Oy trp % (y) -

Then, (2.6) follows from commutation of trp and Jy, i.e., 9" (trp u(y)) = trp 9" u(y) follows
by an application of the chain rule (with the y independent bounded linear operator trp),
if the function % (y) is differentiable in y. In particular, with (2.1) the structure of the
extended parametric problem (2.5) is analogous to that of affine-parametric diffusion problems
considered in [2].

Bounds on the sensitivities 9yu(y) immediately imply convergence rates of N-term trun-
cated polynomial chaos expansions of the parametric solution map U 3 y — u(y): for exam-
ple, for the Taylor polynomial chaos expansion

(2'7) u(y) = Z ty”, by = 7(8;u(y))
veF

Via (2.5), we shall deduce unconditional (in H*(D)) convergence of (2.7) in H*(D) for y € U
from the unconditional convergence of the corresponding Taylor gpc expansion of % (y) in
H'(2*,C). Summability results for the sequence (I[tv |l (D))wer of Taylor gpc coefficients of
the parametric solution u(y) of (2.3) can now be established along the lines of [11, 12].

A first result on the summability of the Taylor coefficients (¢, ),er of u(y) and sparsity
of gpc expansions exploits the affine-parametric nature of the coefficient A(y;z’) in (2.1). We
work under the following assumptions.

Assumption 2.2. Let A, U, e LOO(D;RdXd), for every 7 € N.

y=0

= Sym
i) There exists a constant Amin > 0 such that for a.e. ' € D
— L ETAR)E
2.8 Apin < inf >X—+—2 .
( ) min > 220 ng

ii) For some sequence p = (pj)jen of positive weights there holds the weighted uniform
ellipticity assumption

——1
(2.9) 0= |max{1, [A7 ()2} D o Z; ()12 <1,
TR L>(D)

Theorem 2.3. Consider the affine-parametric coefficient (2.1) and suppose that Assump-
tion 2.2 holds for some p € (1,00)N. Then,

(2.10) (P” It llezs(py)wer € £2(F)
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and there holds

2ot 2
Il s 0)? <
,,;f” Il o)™ < e 32

-9
- 25||f||1%1—s(1)) < oo

Moreover, if in (2.9) the sequence p = (p;)jen is such that (pj_l)jeN € (1(N) with g = 2p/(2—p)
for some 0 < p <2, then (|[ty||ms(p))ver € P(F).

Proof. The idea of the proof is to relate bounds on J;u(y) to corresponding bounds on
Oy (y) via (2.6). In turn, the bounds for 9y % (y) follow from an analysis of the localized
extension, problem (2.4), the structure of which is an affine-parametric, linear second order
diffusion problem analogous to those considered in [2]. The degeneracy w.r. to the variable
z and the general coefficients do not require fundamentally different arguments. The proof
proceeds in several steps.

Step 1: (pj = 1) When p; = 1 for every j, the bound (2.10) amounts to proving
square summability of (||t |lgs(p))ver. We start with recursive estimates: from the affine
parameter dependence (2.1) follows an analogous, affine-parametric structure of A(y;x’) =
diag(A(y; '), 1) as follows: we denote A := diag(4, 1) and ¥; := diag(¥;,0) so that A(y;2’) =
A+ > jen ¥ ¥;. The bounds (2.8) remain valid also for A(2"). Furthermore, we point out
that since HZ_l(aj’)Hg = max{L, |4~ " (z)]2} as well as 1% (2)l2 = [[¥;(a)]2, (2.9) is also
satisfied by the boldface matrices.

For every v € F, define the Taylor coefficient T,, := %65%(1/; ', z)|y=0, of the parametric
solution % (y). Here, v! = v1l!... is well-defined for v € F due to the convention 0! := 1.
Then, from (2.4) and (2.1),

(2.11) ac(0;To,v) = ds{f, trp v) Vo e HY(2,0).
For 0 # v € F, the T}, € H'(2%,C) satisfy the following recurrence: for every v € H'(2*,C),
(2.12) /zO‘VT,, - AVodr' dz = — Z /zO‘VT,,ej - W, Vo dz’ dz .
C . C
jiv;#0

We introduce the following notation: for 0 # v € F we define

Gy :=ac(0;T,,T,) = / 2°VT, - AVT, dx' dz = ||T,,||22,
C

where we defined HUH% = [, 2°VvAVuvda'dz, v € HY(2%C). For j € supp(v) = {k : v, # 0},

we denote

(2.13) G = /Cza||VTu||g||\1:j||2dx' dz .

Then, choosing in (2.12) the testfunction v = T,, and bounding the right hand side using the
Cauchy—Schwarz and Young’s inequality, we find the recursive estimate

1
1) Gy Y [ VI ol VT fede' 4 < 5 3 (Gumey + G
Jiwi#0 ¢ J:v;#0
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The uniform ellipticity assumption (2.9) with p; = 1 implies for every 0 # £ € R4 for every
y € U and for a.e. 2’ € D

ETA(y; ) = ¢ (A(f’)—zyj‘l’j(ﬂﬂ’)>€

jeN

sT( N(I= DI @) )@ (@ >||2)>5

j>1

> (1-9)ETA@)E.

Y

Due to (2.8), we obtain

inf ess 1nf§ A(y;2)¢ > (1 — 6)min{ Apin, 1}||£||%
yeU a'eD

From (2.13) and from (2.9) (with p; = 1) and using symmetry of ZI/Q, we obtain

S Guy= [FIVEIE S 19, 2 ds’d:

JEN jEN
_ /zGVT,jA”Q <A1 3 ||\Ilj||2>A1/2VTl, dz’ dz
¢ jeN

<0Gy

By (2.14), this implies for every 0 # v € F
2-0)G, < Y Gueyy-
jivi#0
Summing over all v € F such that [v| =k > 1, we get
=) > G Y DY Guei<h Y Gy,
v|=k |v|=k j:vj#0 lv|=k—1

so that

With 0 < § < 1 this bound implies, upon summation over k > 1,

(2.15) oI5 < 2 H Tol% -

veF

Step 2: We relate the Taylor coefficients 7, = 58;%\1,:0 to t, as follows: from Prop. 2.1,
we obtain with (2.6) that
YveF: t,=trpT,.
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Since [|To||% = ds(f, trp % (0)), (1.12) and (1.14) imply

212

dsC5
(2.16) I1Tol1% < ——="2— Il (),
min{ Apin, 1}

where we used that Tp solves the nominal extended problem in C, i.e., (2.11). From the
continuity estimate (1.12), (2.15), and (2.16), we find

tlfD 2 CthD 2— 2
> it lls oy 7y 2 Z 1T )15 < HToH < Cl fll-s (o>

= min{ Amin, min{Amin, 1} 2 —

where C := (d2C%_ (2 - 6))/((2 — 20)(min{Amin, 1})?). This proves (2.10) in the case p; = 1.
Step 3: Consider now p; > 1. Then, defining the dilated coefficient A,(y) := A(Gpy)
with G,y = (p;y;)jen, we find that for every v € F

(2.17) tow 3" pW)| o uey) = u(Goy) .

We observe that the weighted condition (2.9) for the parametric coefficient A(y) is equivalent
to the same condition with p; = 1 for the coefficient A,(y). Applying step 2 to A, and to u,,
the assertion (2.10) in the case p; € N follows.

Step 4: We show the 7 summability of the sequence ||ty ||gspy. Assume that (p;)jen is
such that (pj_l)jeN € (1(N) where ¢ = 2p/(2—p) for some 0 < p < 2. Then Hoélder’s inequality
implies
(2-p)/2

p/2 ,
v ——Ev
Z Htl/H]%IS(D) < (Z P’ ”tVH]?-I[S(D)> p r2

veF veF
Observing that

o T ) <o <
k=0

pEF JjEN
if and only if (pjfl)jeN € (P(N) completes the proof. [ ]

The preceding result on summability of the Taylor gpc coefficients (t,)pecr of the so-
lution family {u(y) : y € U} of the parametric fractional diffusion problem implies corre-
sponding summability results for coefficients in gpc Legendre and, more generally, in gpc
Jacobi expansions: Let L; be the jth Legendre polynomial on [—1, 1], where we assume the
normalization f_ll Lij(z)*dz = 2. Let p(dy) = & ,endy;j/2 be the probability measure ob-
tained as the inifinite product of the Lebesgue measure weighted by 1/2 on [—1,1]. Then
Ly = [ljen Lo, (v)) € L?(U, p) for v € F is an orthonormal basis of L?(U, ). Reasoning as
in the proof of [2, Thm. 3.1, Remark 3.5], one obtains (see also Cor. 2.15 ahead):

Corollary 2.4. Under the assumptions of Thm. 2.3, with the Legendre coefficients [,
o ul y) du(y) and the weights wy := [;on /215 + 1 it holds

(wy, Pl s (0) JweF € £2(F).
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2.2. Nonaffine-parametric uncertainty. We now extend the results of the previous sub-
section to more general diffusion coefficients A(y;x’). More precisely, rather than affine de-
pendence on y;, we admit this dependence to be of gpc type, with given summability, as
could be implied, for example, by holomorphic dependence on parameters in the uncertainty
parametrization. This comprises in particular the case where A is a rational function of y;,
which occurs for instance when the diffusion coefficient arises from pulling back the fractional
PDE to some nominal domain via a parametric domain transformation.

This section is structured as follows. In Sec. 2.2.1 we first present an extension of Thm. 2.3
to the case when the uncertain diffusion coefficient A(y;z’) in the elliptic divergence form
operator (1.1) has a non-affine parameter dependence. Again, under suitable summability
assumptions on the gpc coefficients of A(y;x’), we establish corresponding summability of the
gpc expansion of the parametric solutions u(y) of the fractional diffusion problem. Contrary
to results obtained via analytic continuation as for example in [10], the result can account for
localized supports of the coefficients in the gpc uncertainty parametrization of the diffusion
coefficients. This generalizes, in particular, also [2], [1] to the non-affine parametric setting. In
Sec. 2.2.2, we apply the foregoing, general results to the particular case of domain uncertainty
quantification where a nonaffine-parametric diffusion coefficient A(y, 2') naturally arises under
pullback into the nominal domain Dy.

2.2.1. Solution sparsity for a non-affine, gpc coefficient. We consider the following
setting. Generalizing (2.1), we formally let

(2.18a) Aly)=A+ > y"¥, € L°D;RYY)

0#veF
for a nominal diffusion coefficient A € L°(D; ngxnﬁl) which is uniformly positive definite in D
and where (¥,)oxper C L®(D; REXY) is again a sequence of fluctuations. In the following it
will be convenient to write Ug := A. With p = (pj)jen being a sequence of positive numbers,
t he weighted uniform ellipticity assumption (2.9) then becomes

(2.18b) 6= [max{L, A ()2} Y pIT.()2 <1l.
0#£veF LOO(D)

Similarly we allow parametric right-hand sides

(2.19a) f) =Y y’f, e H*(D)
veF
where
(2.19Db) D I fulli-+ny)* < oo
veF

Let us comment on the meaning of the gpc expansions (2.18a), (2.19a). Assuming (2.19b)
we note that for some constant C' > 0 it holds || fu|[g-s)y < Cp~". An analogous estimate
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can be deduced for the ¥,, based on assumption (2.18b). This entails that the gpc expansions
(2.18a), (2.19a) converge uniformly and unconditionally for all y belonging to some complex
polydisc centered at 0 as the next lemma shows.

For a real Banach space X, in the following we denote by XC its complexification: by this
we mean the vector space

(2.20) )((C = {1’1 + iy : xr1,T9 € X},

where i is a complex square root of —1, and the space is equipped with the norm ||z +izs|| xc =
SUPyefo,2n) |71 cos(t) — z2 sin(?)||x, which generalizes the norm on X, cf. [23].

Lemma 2.5. Let X be a Banach space over R.

i) Assume given a sequence {t, : v € F} C X such that for some constant C it holds
ltullx < Cp™ for allv € F, where p = (p;)jen € (0,00)N. Let v € (0,00)N be such
that 3 e ’yjpj_l < 00 and sup; ’yjpj_l < 1. Then ), . rtu,z” converges uniformly and
unconditionally on the polydisc Bg = Xjen B%_ C CN centered at 0 to a uniformly
bounded function z > BS — u(z) € X© which is a holomorphic function of each Zj.

i) Let p € (0,00)N. Assume that z — u(z) € XC is a uniformly bounded function on the
polydisc BS = Xjen Bf):j C CN centered at 0, such that u(z) is holomorphic in each
zj € Bg. Let the weight sequence v be as defined in i). Then the Taylor gpc expansion
S ertvz”, where t, = L0Yu(z)|z—0, converges uniformly and unconditionally in
XC tou(z) € XC forall z € BS which satisfy

(2.21) lim |lu(z1,...,2n5,0,...) —u(2)||x =0.
N—o00
Proof. i) We have by assumption of this lemma
S Il < O3 A < o0
veF veF

for all z € BS,

uniform convergence of the series towards some function u(z). Fix z € Bf(y: . The fact

where finiteness holds according to [11, Lemma 7.1] This proves

that u(z) € H*(D) is holomorphic as a function of z; € Bﬂ% is a direct consequence of

the unconditional convergence in X of the Taylor series

Z k Z 2"
keNg veF J
vi=k

where the kth Taylor coefficient satisfies the bound

zY —k ; vi —k - A —k
( E z’?tu> < ij E H'YV Hpi < ij E p v < ij
veF J vEeF i#k i#k veF
vi=k XC vi=
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for every fixed (zi)i%; € X, .; By,- Thus the convergence radius of the series (2.22) in
zj is at least p; > ;, where we used 'yjp;l < 1. Moreover, the Taylor series (2.22)

converges towards u(z) € X C on BSJ_, which is a consequence of the unconditional
convergence of the original series u(z) = Y, 2%ty € XC, for all z € BS.

C
p’
morphic with respect to each z; € Bfocj, from the Cauchy integral theorem, one can

ii) Since u(z) is uniformly bounded in X© with respect to z € BS, and moreover holo-
deduce ||t ||x < Cp~" for some constant C' which is independent of both, p and v
(see for example [11, Lemma 2.4]). By the first item, this shows uniform convergence
of the Taylor series towards some #(z) € XC for all z € BS.

Fix z € B. Due to the assumed holomorphy of u(z) in each z;, j € N, for every fixed
finite N € N the Taylor series

Z t,z"

veF
supprC{l,...,N}

converges to u(z1,...,2n,0,...) € XC, see e.g. [22, Thm. 2.1.3]. Letting N — oo, a
diagonal argument proves (z) = u(z) € X for all z € BS satisfying (2.21). [ ]

At this point we do not assume the series (2.18a), (2.19a) to converge for all y € U
w.r.t. the L>(D), H™*(D) topologies. Nonetheless, due to (2.18b), as long as p; > 1 for all
j €N, for fixed y € U the pointwise limit of (2.18a) describes a function in L>°(D).

Theorem 2.6. Let A, f admit unconditionally convergent exrpansions (2.18a), (2.19a) in
[Lien(=7j:7j) for some v € (0,00)N such that A € LOO(D;ngXH‘f) in (2.18a) is uniformly
positive definite, i.e.

CTA@)C 4

(2.23) essinf inf = Apnin > 0.

2/€D 0£cert  (TC

Let further p = (p;)jen be a sequence of nonnegative real numbers such that (2.18b) and
(2.19b) are satisfied. Denote L(y) = —Vu - (A(y)Vy) : HI(D) — H Y(D). For some
s€(0,1), letu:U — H*(D) : y — u(y) denote the weak solution of the parametric fractional

diffusion problem L5%(y)u(y) = f(y).
Then, for every v € F the Taylor gpc coefficient t, = Oyu(y)|y=o/v! € H*(D) is well-
defined, and it holds (p ||ty ||lusp))ver € (*(F) as well as

C
(2.24) Z(Puutu‘|HS(D))2 < 1-35 Z ”fl/H%H*S(D)
veF veF
for a constant C which depends on A, but is independent of f.
The ensuing lemma will be required in the proof.

Lemma 2.7. Let (Fi)ren, (Gn)ner, (dvk)ver ken be sequences of nonnegative real numbers
such that sup,e 7 > ey dvp < 0 < 1 and (Fy)ren € (*(N). Assume Go < 0o and, for allk > 1,

k—1
Y G < P4 Y Gudyg

[m|=k 1=0 |v]=1
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Then (Gy)ner € (1 (F) and

| (Fi)kz1ller + Go
(2.25) e - .

neF

IN

Proof. By assumption d,,; < < 1 for allv € F, 1 € N. Since Gg < 0o and since for all
k € N, the series szk Gy can be bounded by the (Zln\=l Gy)i<k and by Fj, < oo, we have
zlnlzk Gy < oo for all k € N. Next, for arbitrary, fixed n € N

n k—1
> Y <Go+ZFk+ZZZG ot
k=0 |n|=k kllO\u|l

n

—GO+ZFk+ZZGV > dygeis

1=0 [v|=l  k=l+1

and since Y7 ;. dy x—; < 0, there holds

(1-4) ZZG <GO+ZFk— > G, <G0+2Fk

k=0 |n|=k v|=n

Letting n — 0o we obtain (Gp)ner € £1(F) and (2.25). [ |

Proof of Thm. 2.6. We proceed as in the proof of Thm. 2.3: first the case p; = 1 for all
j € N is considered for the solution of (2.4). Then we deduce the general result by taking the
trace and rescaling w.r.t. p;.

Step 1: We start by showing that ¢, is well-defined: By Lemma 2.5 i), we can find v €
(0,00)N such that the expansions (2.18a), (2.19a) converge uniformly for all z in the complex
polydisc Bg C CN centered at 0 to elements A(z) € (L>(D; ngﬁg))@, f(z) € (H3(D))®
respectively (cf. (2.20)). Moreover, the dependence of A(z), f(z) on z; € ng is holomorphic.

In particular, we have uniform convergence for all y € B, := X jeN(—'yj,'yj) C RY to-
wards A(y) € L*(D, R‘siyxnﬁl) f(y) € H*(D). Further decreasing 7; > 0 such that v; <

min{1, pj Amin/2}, j € N, implies that for all y € B,

e CTA®ys2)C /
f f 22> Anin — E YW,
YeD opcerd (¢ - V(e

v#0 £(D)
’Y] Zmin
>Am1n_supH ZP H\I/ H Z 2 .
0Fv son \FJ v#£0 Lo (D)

Hence A(y; ') is uniformly SPD for all y € B, and for almost every 2’ € D. This implies
that £°: H*(D) — H™*(D) is an isomorphism. Therefore, u(y) € H*(D) is well-defined for all
Yy € By.
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Let {ji}I"y € N be an arbitrary finite subset. Fixing y; = 0 for all & € N\{j;}};, we
claim that u(y) € H*(D) is real analytic as a function of (y;,,...,¥;,) in a neighbourhood
of 0 € R". To prove the claim, we note that for any multiindex p € Nf, (2.18) implies
H\I/“HLOO(D;ngXrg) < Cp~H. Thus, there holds

1 olul
- M1 Mn
ML E

Zin

(2.26) A(z)|2=0

n
s
< CHpji E
Lo (D;RE%E i=1
( i Sym)

By (2.18a), A(y) € L>®(D,R%X%) admits the unconditional Taylor gpc expansion

sym

] n
(2.27) A=Y Ao 4"
j=1

7[ H1 . QMn
HENY K 8Zjl 82.7'n

for (yj,,...,u5,) € Xi_i(—pj;»pj;). Hence, for each n € N, the matrix function A(y) is
analytic as a function of (yj,, - ,y;,) € X', (—pji, pj;)- With the same argument we obtain
that f(y) € H *(D) is analytic as a function of (y;,,---,y;,) € X'_i(=pj,,pj,).- Next, for
arbitrary, fixed v € H%(D), define N (v,y) := L%(y)v — f(y) € H*(D). For every v € H*(D),
at every fixed y € U, the map y — N (v,y) is real analytic, taking values in H™*(D), when
considered as a function of (y;,,...,y;,) € X\ (—pj,, pj;). Furthermore, for every v € H*(D),
the differential O N (u, y)|u=y = L5(y) € L(H*(D), H (D)) is an isomorphism. It then follows
from the (analytic) implicit function theorem (see for example [14, Thm. 15.3]), that u(y) €
H*(D) is real analytic as a function of (y;,,...,¥;,) in a neighbourhood of the origin in R"™.
As the selection (j;)7_; was arbitrary, it follows that for every v € F, the Taylor coefficient
ty = %(0;u(y))]y:0 exists and is well-defined.

Step 2: Assume p; = 1 for all j € N. As before let A(y;2’) = diag(A(y;2'),1), A= ¥y =
diag(4,1) as well as ¥, (z) = diag(¥(z),0) for 0 # v € F. Since the parametric solution
% (y) is a weak solution of (2.4), i.e.

(2.28) /ZO‘V% (y;2',2) T A(y; 2')Vo(2/, 2) do’ dz = ds(f (y), trp v) Yo e HY(22,0),
c

we get for 0 # 1 € F (with the notation A = ¥q, and omitting the argument (2, z) € C for
simplicity)

0=an /C 2V ()T A(y)Voda' dz — Oy (f(y), trp v)

=0y /c VU (y)" (Z y”‘I’,,) Voda' dz — dgd, <Z foy”, trp v>

vEF VEF
|
- / NS (M) Sy 0 v (y) TR, Ve da de
c v) (v =)
ueffygn
y<v

v!
—ds ———y” fy, trpv ).
(% o2
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The elementwise differentiation is justified, since these are convergent Taylor series (in a
neighbourhood of 0, considered as a function of the finitely many parameters y; for which
n; # 0). Evaluating at y = 0 results in the identity

0= Z <Z> V! /c za(agf"V?/(yﬂy:O)T\Il,,Vv dz’ dz — nlds(fy, trp v) Yo e HY(2%,0).

v<n
By () = #lu), with the Taylor coefficient T, := 0% % (y)ly=o € H'(2%,0), for every
v e H'(2%,C) there holds

n T
/zaVTnTAVU de’ dz = /zaV <Wy)|y:0> AVvdr' dz
C C

v!

orwU —o0)"
(2.29) = ds(fn,trp V) — Z/zo‘< Y (i?‘y o) V¥, ,Vvda' dz
C .

v<n

= ds(fn,trpv) — Z /CzO‘VTl,T\II,,_,,Vv da’ dz.
v<n

To obtain recursive bounds on the gpc coefficients, we introduce the notation
Gy = /czaVTnTAVT,, dz’ dz = ac(0; T, Tyy)
and
G = [ IV Ty (@) 1 0(a') 2’
C

Choosing in (2.29) the test function v = T}, we arrive at the recursive estimates

G < dall fnllm=s) | trp Tyl oy + > /cz0‘||VTl,||2|\Iln,,|2||VT,7||2 dz’dz

v<n
CtrD ds
~ min{1, Apin }/2

1 follzr—e () G2

(2.30) 1/2 1/2
=50 ([0 laaras) ([ 19T I, aar a:)
v<n C C
< Cirp % 2oy + 2G2S (Gum o+ G o)
S 20 Dy min(L A} B+ 5 G g 2 (G )

where we used Young’s inequality |ab| < a?/(2(1 — 6)) + (1 — 6)b%/2 for a, b € R, and
continuity of the trace trp : H'(2®,C) — H*(D), i.e. (1.12). In particular Cy := C2_d?/(2(1 —

trp“'s

§) min{1, Apin}) is independent of . Now, employing (2.18b) and symmetry of A% e
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obtain
1 —1\ -1
ZGnn v < Z Gy < / TnTAQ Z 5] A A>T, da’ dz
v<n 0#vyEF 0#~eF
(2.31) < 6/Cz°‘T,7TAT,, da’ dz = 6G,,

and conclude with (2.30) and with the constant C defined above that
Gy < 2COanH]%I—s(D) + Z Gum-v-
v<n

For every v € F and | € N we define d,,; := Zh\:l Gv~/Gy if G, # 0, and dy,; := 0
otherwise. In both cases this entails Z‘ |= _1Gv~ = dy, G, because G = 0 implies T, = 0

and thus } 1 Gy = 0. For k > 1 define Fj, :=2Co 3}, Hf,,HH . We obtain
ST 3 SIONPRIE S SO
n|=k In|=kv<n v|<k |y|=k—|v]|
k—1 k-1
=Fetd > D GuySFet ) ) dugiCu
1=0 |w|=l |y| =k~ 1=0 |v|=l

For v € F fixed, as in (2.31) it holds Gu > jenduy = D g syer Gvy < 6Gy, Which shows
SUPLer Y iendip < 6 < 1. Furthermore, by assumption Go < oo. Therefore, Lemma 2.7
gives

2CO Zue]—‘ Hfu”]%-ﬂfs([)) + GO
(1—0) |

ZGn:iZGW

neF k=0 |n|=k

This shows Zne}‘ Gp = Zue]-‘ HTV”% < (2Cy Zue]-‘ HfUH%H—s(D) + ||T0HZK)/(1 —9).

Step 8: From Prop. 2.1, we obtain with (2.6) that ¢, = trp T),. The rest of the proof is
now completely analogous to the one of Thm. 2.3: From the continuity estimate (1.12), there
exists a constant C' such that

C Yver Ifvllf-«oy + I Toll%

Dol < =2 D Il <C < 0.
veF min{ Amin, 1} veF 1=0

Since Ty solves (2.28), we have the apriori bound || Tp||5 < Cirpds min{l,Zmin}_lnfOHH—s(D)
due to (1.14).This proves (2.10) in the case p; =1 for all j € N. As in Step 3 of the proof of
Thm. 2.3 we obtain the statement for general p; > 1 by rescaling the equation. |

2.2.2. Domain Uncertainty Quantification. Let Do € R? be a Lipschitz domain, and
let T : Dg — T(Dg) =: Dy € R? be a bi-Lipschitz transformation such that D7 is also a
Lipschitz domain. Denote Cq := Dg x (0, 00) as well as Cr := Dr x (0, 00). For some diffusion
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coefficient A € L*°(Dr Rg;ff) we consider again problem (1.3) on Dr, i.e. L% = f in Dr,
with homogeneous Dirichlet boundary condition ulgp = 0, fractional exponent s € (0,1),
f € L*(D7) and the differential operator Lu = —V, - (A(2')V,). As explained in Sec. 1.2,

with A = diag(A, 1) this problem is equivalent to the weak formulation

(2.32) / (VU T AVv)da' dz = ds/ ftrpvda’ Vo e HY (2%, Crp),
Cr D

for % € H'(2*,Cr) in the sense of Prop. 1.1. Denote in the following by T : Co — Cr the
transformation T'(2',2) := (T(2'), 2). Transforming the integrals in (2.32) to the extended
nominal domain Co = Dg x (0,00), the pullback % := % o T is a weak solution of

/ 2V (DT 'AoTDT ")V (voT))det DT dz’ dz
Co

(2.33) =d, [ foTtrp(voT)det DT d2x’  Yve H'Y(2*Cr).
Do

Lemma 2.8. Let s € (0,1). Let f € L*(D7), A € LOO(DT,RgB,Xrg) be uniformly SPD and
denote by u € H*(Dr) the solution to L3u = f where L = =V - (AVy). Then 4 :=
woT € H¥(Dg) is the unique solution to L51 = f, where f := foTdet DT € L*(Dg) and
L:= -V (DT'AoTD;" det DT)V,).

Proof. By Prop. 1.1, we know that u = trp % where % € H'(z*,Cr) is the solution of
(2.32). Since T : Dg — D is bi-Lipschitz, we observe that ® : v — v o T is a bounded
linear map from H'(z* Dr) to H'(2%,Dg). Its inverse is clearly given by v — v o T~ with
T (', 2) = (T'(2'), z), and consequently ® : H'(2* Dr) — H'(2% Dg) is an isomorphism.
Transforming the weak formulation we obtain (2.33) as a weak formulation on the nominal
domain. By construction its solution is given by % = % oT. Due to the fact that ® is an
isomorphism we note that {voT : v € H'(2*,Dr)} = H'(2*,Dg). Hence we may again
employ Prop. 1.1, to observe that & = trp U e H*(Dr) is the solution to L0 = f Since
DT 'Ao TD;—r det DT is uniformly SPD, the solution of L5 = f is unique. |

We characterize uncertainty in the domain through a parametric family of domain map-
pings Ty : Do — Dy so that Dy, := T(Dog) for all y € U. The fractional diffusion problem
pulled back to the nominal domain Dg then reads: find @ : U — H?(Dg) such that for all
yelU

(2.34a) L:(y)i(y) = f(y) in H*Do),
where 0 < s < 1 and

(2.34b) L(y) = —Vu - (DT, (Ao Ty)DT, " det DT,V /) € L(H}(Do), H ' (Do)),
' f(y) := f o Tydet DT,y € H*(Dy) .

Next, we introduce further assumptions on the admissible domain transformations. The con-
stant 0 > 0 appearing below will be specified in Thm. 2.10 ahead.



UQ FOR SPECTRAL FRACTIONAL DIFFUSION 19

Assumption 2.9. There ezists § > 0 and (1;)jen € W (Do; R?) such that with the Jaco-
bian matriz D; € L°°(Dg; R¥*?)

(2.35) > pi () |2 + 1D (2)]|2) <3,

JEN L% (Do)
where p; > 1 for all j € N and pj — o0 as j — oco. Fory € U let Ty := Id—l—ZjeNy]wj €
W1(Dg; RY), and set Dy, := Ty (Do) C RY. It holds that Dy, is a Lipschitz domain such that
Ty : Do — Dy is bi-Lipschitz for every y € U = [—1, 1]N.

The goal of this section is to prove the following statement on the domain sensitivities.

Theorem 2.10. Let s € (0,1), 2 < d € N and let Dg C RY be a bounded Lipschitz domain.
Assume that the hold-all domain Dy C R¢ is bounded and let f : Dy — R and A : Dy — R‘Siyxrff
allow real analytic extensions to an open superset O C R% with Dy C O, such that A satisfies
the uniform ellipticity assumption

CTA@)S _ +

(2.36) essinf inf = Amin > 0.

2'eDy 04CeR? (¢
There exists § = 6(f, A, Do) > 0 depending on (the holomorhpy domains of) f, A and Do
such that the following holds: If Assumption 2.9 is satisfied (with this ¢ ), and if additionally
Dy C Dy for ally € U, then for the parametric solution {u(y) : y € U} C H¥(Do) of (2.34),
we have
i) with £ = =V - (A(2")Vy) it holds L5(i(y) o T, ') = flp, € H *(Dy) for ally € U,
ii) u(y) € H*(Dg) depends continuously on y € U (with the product topology on U ),
iii) the Taylor gpc coefficients ty,, = OYi(2)|s—y/V!, v € F, fulfill

(2.37) sup Y (p” [ty |15 (D))? < 0.
yEUVEf

Item iii) can in particular be used to deduce summability of the Taylor coefficients at
0 € U as in Step 4 of the proof of Thm. 2.3: Applying Hoélder’s inequality, we obtain
(HtAO;,,HHs(DO)),,G; € (24/(2+9)(N) under the presumption that (pj_l)jeN € (9(N) and inf jen pj >
1. To prove iii), we will employ Thm. 2.6 for the pullback solutions on the nominal domain.
The purpose of the next lemma is to verify the assumptions of Thm. 2.6 for the corresponding
(pullback) coefficients occuring in (2.34b). After proving the lemma we proceed with the proof
of Thm. 2.10.

Lemma 2.11. Let d, m, n € N and let Dg C R¢ be bounded. Assume further that F €
L>®(0 x Op;C™) is holomorphic, where O C C", Op C C? are open, 0 € O and Dy C Op.

Then, for every v > 0 there exists § > 0 (depending on F and ) such that for every
sequence {¢j}jen C L>(Do; C") satisfying || > en 145 ()|l Lo (Dorny < & there holds

azl;'(F(je%yj%(')w))’ <7,

Lo (Dg;R™)

1
(2.38) sup ; o

yeu 0AveF

where |0y F(---)| denotes the componentwise modulus.
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Proof. Without loss of generality we assume m = 1, since for general m € N the statement
follows by applying the result to each component of F' separately.

Step 1: We show that, if § > 0 is small enough, then F(3_;cyy;v;(-),-) € L>(Do) is
complex differentiable in each y; at y € U, and all partial derivatives in (2.38) are well-
defined as elements of L>(Dg;C). To this end let 6 > 0 be small enough such that the ball
of radius 39 with center 0 € C" is contained in O. Then ®(¢)(-) := F(¢(),-) € L>®(Dg;C) is
well-defined for all ¢ € L>°(Dg; C") with [[9)[| oo (pg;cny < 9. Additionally let h € L% (Do; C™)
with components h = (h;)}_; have sufficiently small L>°(Do;C")-norm. For ¢ € O C C"
we write 5= 9 F(¢,2') € C to denote the partial derivative of F(¢,2’) w.r.t. ¢;. Then, for
a.e. ¥’ € Do, there holds

(2.39)  F(¥(@) +h(@),2) - F(¢(a'),a") = ZE,&C] F(y(a),2")hj (') | + R(h(2"))

with a remainder term R(h(z')). To estimate the remainder term we note that if ||| oo (Dg;cny,
|2l oo (Dg;cny < 6, then for a.e. z' € Do

F(p(2') + h(2),2") — / 3@ (2) + th(z'),z")h(2") dt
(2.40)
"9 / t non U
:;%F(#}(x) / / 284}8@ (') + sh(2'), 2’ hi(x'Yh;(2") ds dt .

=R(h(z"))

We claim that [|[R(A(-)) ||z (Dg;c) = O(”h”%w(Do;cn)) for [|h|| pec (Dg;cny — 0. This is true since
we have a uniform bound on the second derivatives esssup,cp, Sup1<; j<n |$§QF (¢, 2")| for
¢ in the compact set {¢ € C" : ||¢|l2 < 26} C O and for 2’ in the compact set Dg C Op. This

shows that ® is (complex) differentiable at 1) € Bg;oo(DO;(Cn) with differential

(2.41) Do) (h)(-) = ) 7= F@W(),)h;(-) € L=(Do; C)

for every h € L*°(Dgo;C").

Next we show existence of the partial derivatives dy®(3_;cy y;¢5) € L>(Dy; C) for every
veFandyeU. Fixy e U. For i € N denote by e; = (€;)jen € N the multiindex with
ei;j = 1 if j =i and e;;; = 0 otherwise. By assumption it holds

(2.42) > yii() <10 <6.

JeN Leo(Doscny SN L% (Do;R™)
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L% (Do;C")

Therefore, @ is differentiable at > ..y y;v;(-) € B , and with the chain rule we

conclude for arbitrary i € N

6;3@(21/]-%) = agiF<Zyj¢j(')» )

jeN JjeN

(S (). )el) € L¥(Do: ),

C jEN

3

(2.43)
k=1

where we use the notation ¥; = (v;,1)}}_; for the components of 1);. The last term is a finite
sum of functions of the type G(3_,cn yj¥; (), )n(+), where G € L>(O x Op; C) is holomorphic
on O x Op and n € L>(Dg; C). Note that G(3_;cnyj¥;(), ) € L®(Do;C) is differentiable
w.rt. y; it GO enyii(), )n(-) € L(Do; C) is differentiable w.r.t. y;, and in this case

(2.44) 05 G [ D hyss (), | | n() =05 | G 1D s (), | n(-) | € L®(Do; C).

JEN JEN

Therefore, applying again the above argument we find for i1, io € N arbitrary,

a;i185i2q) Zijj Z Z 8Ck 8@4 (Zijj )wil;kl(')wh;kz(') € LOO(D();(C)'

JjeN k1=1 ko= jEN

By further repeated application of the previous arguments, for arbitrary (ii,...,%,) € N
with finite m € N, we get

36”" elm(j[) Zyﬂ/}]

jEN
(245) —kZl Z 8% 5o (Do), )b ()Y () € L¥(D0;0).
1 km= EN
Finally, since F' : O x Op — C is holomorphic, for any permutation 7 : {1,...,m} —

{1,...,m}, ¢ € O and 2’ € Op it holds

om , om ,
oa,aa, " (¢7) = i 0G F(¢').

m(m)

(2.46)
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Therefore
o [ S,

jEN

-y ?_76@( )F(Zyj%(-),-)wh;kl(-)---wim;kmc)

JjeN

n n am
— Z e Z aCk — a(:k o F(ZN y]¢]()’ -)wiﬂ.(l);kﬂ(l) () e wi,r(mﬁk‘,r(m) ()

:ay (1) ay ( )q) Zijj ELOO(D(),(C)
jEN

For an arbitrary multiindex 0 # v € F, let now (iy;1, .-, iy;y|) € Nl be arbitrary such that
H{leN : iy =3} =v; for all j € N. With (2.47) we conclude that

oy F Zijj(.%. = Oy Zyj% =0y -0, Zijj
jEN jEN JEN
(2.48)
n n 8‘”'

= Z Z WF<ZZJJ%('), ')%.,;1;1@1(') ) "wi,,;|.,|;k‘,,‘(‘) € L>(Do; C)
=1 OOk Wl jen
is well-defined and any permutation of (i1, . . .,iy,,) in (2.48) gives the same result. There-
fore, in what follows for every 0 # v € F we always assume (iy.1, ..., %) € Nl to be an
arbitrarily fixed choice with the above stated property.

Step 2: We prove the assertion of the lemma. Recall, that in the first step we chose § > 0
to be so small that the ball Bé%" with radius 30 > 0 and center 0 € C" is contained in O. Let
e > 0 be so small that for all ¢ = (¢;)7_; € B~ we have BE((1) x -+ x BE(Cn) € O.

Before proving (2.38), we give an estimate on the partial derivatives of F({,z') w.r.t. ¢ €
O. Fix I € N and let (k1,...,k) € {1,...,n}! be arbitrary. Moreover, let m = (m;)?_, € N&
be such that |{i : k; = j}| = m; for all j =1,...,n. This implies |m| =[. By (2.45), (2.46)
and repeated application of Cauchy’s integral formula, we get for ¢ € Bgcn and 2’ € Dg

.

agkl . 8Cle(C7w)

= |0 F(¢,a')]

m! F(z,2)

(27ri)n /{‘zle(C: |z1|=¢} . /{znG(C: |zn|=¢} (Zl - Cl)m1+1 ce (Zn — Cn)m"+1

dzy -+ dzp,

(2.49)
m!||F| e 0x0p) - M F | Lo (0x0p)
glml - el

Y
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where {z € C : |z| = ¢} in the line integral is oriented positively. In particular, due to the
assumption || 37y 15 ()l oo (Dg;rn) < 9, there exists a null set ' C Do C R9, such that

sup sup Yy < sup sup (Y fyslli@)l]| < sup Y[y <6

z'€Do\N yeU jeN ) z'€Do\N yeU jeN ) z’€Do\N jeN )
Therefore (2.49) holds for every ' € Dg and for every
(2.50) CeQD yib(a) 1 yeU, o/ € De\N 3 C Bf" CO.
jEN
With (2.48) we obtain for a.e. 2’ € Dg and for all y € U
Y ol (Su)
0£veEF
<y Loy o F(Yyis(a).o') H| Bivitr (@)
= vl o - OCr JRINE ) bvsrikr
0tveF U ki oy =1 Oy~ O jEN r=1
oo n l
1
=22 X 2_vivs(@): ) 1] [ (o
=1 =t " k=1 80“ aCkl <jEN > r=1
<1 & B o I
=D 2. mf’(Zyj%(f”)’x) > 71—[ Vi (
=1 " ki,...k=1 1 ! jEN lvj=l " r=1
S5 Y g P (Sune) ¥ lﬂk@X%m@”
=1 " k=1 |k ki e |u| i el
15 [ (S| [Sge o
=1 " ki k=1 | k1 ki N ieN €{1,..m

n

= IFllz(0x0 (20
S %(né)l < Il z(0x0p) Y (5) '

1=1 k1,...k =1 =1

For the second to last inequality we have used the bound (2.49) for the partial derivatives of
F(ZJEN y;vj(x’), ") with respect to ¢ (due to (2.50) the bound holds for every y € U, and
for a.e. 2’ € Dyg), as well as the assumption || > jen [0 (Lo (Do;rn) < &, which implies for
a.e. ' € Do

l l l
I 2], s, an@)] ) < TS et < TTZI3 S ws@n] < no)
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Choosing § > 0 so that n%6/e < /(v 4 | F|| L (0x0p)), We obtain

1F || 2o (0x0p)170/ (€ = n8) <

as a bound (for a.e. 2/ € Dg) for the sum in (2.51). [ ]

Proof of Thm. 2.10. The proof proceeds in six steps. In the first two steps, we verify i)
and ii). Steps 3-6 serve the purpose of proving iii) with the help of Thm. 2.6 and Lemma 2.11.
Up to step 3, the constant §, appearing in the formulation of the theorem, is treated as some
fixed positive number in the interval (0,1/2), that is still at our disposal. The arguments
in those steps do not depend on the concrete value of §. In step 3 we will make use of the
upper bound ¢ < 1/2. In step 4 we shall finally give conditions on § > 0 depending on the
holomorphy domains of A and f, such that the assertion of the theorem is satisfied.

Step 1: We start with i). Consider (2.34). For every y € U, this equation has the
parametric diffusion coefficient and right-hand side given by

A(y) = DT, (Ao T,)DT, T det DT, € L>(Do, RE:Y),

(2.52) R sym
f(y) = f oTydet DT, € L*(Dg) — H *(Do),

respectively. In Step 3 below we shall see that A(y) € L>(Do; Rg;rg) is uniformly elliptic on
Do for every y € U, and thus u(y) € H*(Dg) exists and is well-defined. The connection to
the initial problem on the physical domain stated in item i) follows from Lemma 2.8.

Step 2: We verify continuity as stated in ii). As a consequence of the Strang Lemma, see
for example [17, Lemma 2.27], the solution @& € H*(Dg) of L1 = f with £ = — V- (A(z/) V),
locally depends continuously on the diffusion coefficient Ae L*>°(Do; RdXd) and the right-hand
side f € H*(Dy), as long as A is uniformly SPD on Dg. Furthermore, A(y) € L>(Dg; R%*%)
and f(y) € L*(Dy) in (2.52) depend continuously on T, € W1 (Dy; Rd). The transformation
Ty in turn depends continuously on the quantity CI‘(y) = ZJEN Y5 € Wh(Dg; RY), since
Ty(2') = 2"+ 3 jen yj¥j(2’) by definition of Ty (cf. Assumption 2.9). To show continuity of
i(y) € H*(Dg) as a function of y € U, it suffices to verify that ®(y) € W*°(Dg; R?) depends
continuously on y € U.

To this end fix yy = (y0,;)jen € U and let at first No € WH(Dg;RY) be an arbitrary
neighbourhood of ®(y,) € W (Dg; R?). We need to find a neighbourhood Ny, C U of yj
such that

(2.53) {®(y) : y € Ny, } € No.

Since Ng was arbitrary, this then implies continuity of U > y +— ®(y) € W1>(Dg;R%). Now,
by Assumption 2.9,

Jim sup >yt < lim > 05 05 (15 C)ll2 + 1D ()l2)
v Jj>n W10 (Dg;R4) j>n L~ (Do)
(2.54) <C h_>m supp; =0,

ji>n
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where the limit is 0 since p; — oo by assumption. Let € € (0,1/2) be so small that the ball

BELOO(DO;Rd)(tI)(y)) of radius & with center ®(y) € WH>(Dg;RY) lies in Ng. Due to (2.54), we
can find n € N such that

(2.55) sup Z Y <

yeU ||’
j>n Wl’OO(DO;Rd)

N ™

Additionally choose v := ¢/(2dn), with 6 > 0 sufficiently small as in Assumption 2.9 (and to
be specified in step 4), define

(2.56) Nyy = X (o — 7oy +7) N [-1,1]) X [~1,1] € U
j=1

i>n

Then Ny, is open w.r.t. the product topology on U. Obviously, y, € Ny, so that Ny, is indeed
an open neighbourhood of y,. From (2.35) we deduce sup ey |||l 1.00 (Dg;rd) < SUPjen6/pj <
. Therefore by (2.55)

n
3 (3
(2.57) sup 12(y) — 2(Yo) ly1.00 (Do ey < 72 9 llw1.00 (Doiray + 3= ynd + 5S¢
YNy

j=1
This proves (2.53), which overall implies ii). X

Step 3: We now begin with the proof of iii). In this step we show that A(y) in (2.52) is
uniformly elliptic on Dg for all y € U.

For y € U, with I € R™9 denoting the identity matrix, by definition of Ty there holds

VyeU: o' DTy(a') =T+ y;Dip(a’) € L®(Do; R?) .
JEN

At the beginning of the proof we imposed the restriction § < 1/2 on ¢ > 0. By Assumption
2.9 this implies

1

(2.58) sup ess sup Z y; Dyj(2')|| < esssup Z | D ()2 < =.
yeU 2'€Dg . z'€Dg 2
JEN 9 JEN

For a matrix M € R with || M| < 1/2, by a Neumann series argument I+ M is nonsingular
and it holds [[(I + M)7!|l < 2. Thus the minimal singular value of I + M (which is the
reciprocal of the maximal singular value of (I+M)~!, which in turn equals ||(I+M)"t|2 < 2)
is bounded from below by 1/2. Then, with (Uj)}izl denoting the singular values of I + M, we
get

d d
1
2.59 det(I + M) = o> < min a-> = >974
(259 Fean=1les= i, 0) = frang
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Therefore with (2.58)

(2.60) inf essinfdet DTy (') >27¢  and sup esssup || DTy (z')||2 < ||I]|2 +

1 <
yeU z'€Dg yeU z2/€Dg 2

N w

Then for every y € U

e CA@C 5 ¢ DTy (@) A(Ty (+) DT, ¢
Teby odtens” ¢ PeBy e (DT e

- : : o IIDT, T EC3
(2.61) > Amin ( essinfdet DTy (z") ) | essinf inf ——F—"—"=].
a’€Do a’€Do 0£(ER <113

Here we used D, C Dy, i.e. Ty(2’) € Dy for all 2’ € Do, so that (2.36) could be applied.
By (2.60), [[Cll2 = |IDT, (z')DT, " (2')¢|l2 < (3/2)| DT, T (2')¢|l2, for a.e. 2’ € Do and there-
fore

DT—T ! 2
(2.62) inf essinf inf M

2 = é
yeU z/€Dg 0#£CcR ||C||2 9

Thus, for every y € U the right-hand side of (2.61) is bounded from below by

_ DT; ()¢l - 224
Amin2_d essinf inf M > Anin—— =: Amin > 0,
a/€Do 0#£(ERd 11915 9
which shows
TA 5
(2.63) inf essinf inf ¢ Aly)e > Anin.

yeU z'€Do 0£¢eRd (¢

Step 4: The idea for the proof of iii) is to apply Thm. 2.6. In order to do so, in this step
we establish some preliminaries, which will be used to verify the prerequisites of Thm. 2.6
stated in (2.18) and (2.19). Lemma 2.11 plays a key role here.

Due to the assumed analyticity of A and f on an open superset of Dy, we may holomorphi-
cally extend A and f to some open set Oy C (0% containing the compact set Dy. Throughout
the rest of the proof, let € > 0 be so small that Dy + Bg:sd C Og. As a further condition on
5 € (0,1/2) in Assumption 2.9, we impose that

€

(2.64) 6< 5

For 2y € B, X5 € C¥4 with || X3z < 1/2 and 2/ € Dy 4+ BE” define
(2.65) G((x1, Xa),2") == (I+ Xo) TA(2 + 21) (T + X3)~ " det(I+ Xp) € C¥4,

For y € U and ' € Dg with A(y) € L= (Dg; R%9) as in (2.52) we have

sym

(2.66) Ay:a') = G( D ui(ey (@), Dy (), o)

jeN
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and thus

1 O A(z; )| 2=
G (D ui(s(a), Duy(a')), ') = EEEEEY,

! et !
We claim that G is uniformly bounded and holomorphic as a function of

d dxd d

(2.67) ((x1,Xa),2") € (BS" x Byjy ) x (Du+ BY)) =: 8.
To see this, note at first that each component of (I + X5)~ " € C%*? is a rational function in
the entries of X», for all Xy € C%*? guch that I + X5 is contained in the open set of invertible
matrices in C4*?. Since I + X is regular if | Xa|[2 < 1/2, we obtain that (I 4+ X5)~! € C?*¢

and (I + X3)~ T € C%9 are holomorphic as a function of Xy € B(lc/d;d. Next, we observe

that the map X5 — det(I + X2) € C is holomorphic as a function of Xy € Bic/dQXd (being a
multivariate polynomial in the components of X5). Finally, A(t) is holomorphic as a function
oft € Dy + Bécgd by definition of €. Thus A(2’ 4+ x1) is holomorphic as a function of (z1,2') €
Bécd x (Dyg + Bg:d). We conclude that G in (2.65) must be jointly holomorphic as a function
of ((z1,X2),2’) € S. By continuity, G is uniformly bounded on S: as S is a bounded set, its
closure is compact, and G is holomorphic (and therefore continuous) on an open superset of
S.

Applying Lemma 2.11 to G and using (2.35), we obtain that if 6 > 0 in Assumption 2.9
is small enough, then it holds

2 P

0#veF

< Amina
Lo (Do)

(2.68) sup
yeU

%%G ( > yi(wi(a’), Dyy(ah)), Jj/)

jeN

2

Vv
— agA(zﬁ?/Hz:y
- v!

with Ay > 0 as in (2.63). Observe that G((z1, X2),2) in (2.65) is in fact symmetric if
x' + x1 € Dy, since A : Dy — ngxnﬁl. Moreover, if additionally z; € BERd, X, € B%d;d, then
G((z1, X»),2') is also real valued i.e. G((x1, X2),2") € REXE. Hence for any y € U, the partial
derivative of G in (2.68) must be in L°°(Do; Rg;rff).

We proceed similary for the right-hand side f. Define
(2.69) F((l’l,XQ),[E/) = f(x’ +x1)det(I+X2)
for (1, X2),2') € S and observe that for f as in (2.52)
(2.70) flysa) = F( Y 5 (5(a), D)), ).
JEN
As for G, we note that F' is well-defined, holomorphic and bounded on S defined in (2.67). If
0 > 0 in Assumption 2.9 is small enough, then Lemma 2.11 gives

> r”

0AveF

(2.71) sup
yeU

< 00
Loo(Do)

%%F(Z y; (15 (2"), Dipj(a')), x/>
jeN

2

_ 3lz'f(z)\z:y
- v!
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analogous to (2.68). Throughout the rest of the proof, § € (0,1/2) in Assumption 2.9 is fixed
and small enough such that (2.64), (2.68) and (2.71) hold.
Step 5: In this step we show that for every fixed y, € U, A(yy+y) and f(y,+y) in (2.52)
allow Taylor chaos expansions as functions of y (for y in some suitable set defined below).
Fix yo = (yo,j)jen € U arbitrary. With (pj)jen € (1,00)Y as in Assumption 2.9, and d,
e >0 as in step 4, let v € (0,00)" be such that

% < i {1 €
(2.72) sup — < min {1, 5} and

jeN Pj

T+,
Pj

0,

which is possible because p; — 0o as j — co. Next, for z € Bﬂ(; and with G and F as in (2.65)
and (2.69), we claim that the quantities

Ayo(z) = G(Z(y()%j + Zj)(wj(x/)7ij(x/))7xl> < LOO(DO;(CdXd)v
JEN

Fuo(®) 1= F (Yo + ) (5 (), Dy ()),2') € L*(Doi ©),

JjEN

(2.73)

are well-defined. First note that by (2.66) and (2.70), we have
(2.74) Ay (y) = Alyo +y) € L*(DusREY)  and  fy, (y) = f(yo +y) € L*(Do)

whenever y, +y € U. Next, for z € BS it holds by (2.35) and because sup,cy7;/p; < 1 as
well as p; > 1 for all j € N

v +1
> (o + )5 () < jp. pi 15Oz + 1DY;()ll2)
JEN W10 (Dg;C4) JEN J L~ (Do)
(2.75) <sup Vs o5 <,
jeEN  Pj

where we have also employed (2.64). This proves that for a.e. 2’ € Dg

(2.76) S oy +2)(«') € BET and Y (o + 2)Dy(2) € BET
JEN JEN

In step 4 we showed that G and F' are holomorphic and uniformly bounded on S in (2.67),
and thus Ay (z), fy,(z) in (2.73) are well-defined for z € Bf(); due to (2.76) (and because

e <1/2 50 that BE™" € BE™),

Next we prove that Ayo(z) € L>®(Dg; C™?) and fyo(z) € L?(Dg;C) allow convergent
Taylor expansions for z € BS as in (2.18a), (2.19a) and the corresponding Taylor coefficients
satisfy (2.18b), (2.19b) respectively. We begin with (2.18) for Ayo' For a multiindex v € F,
denote the corresponding Taylor coefficient of flyo(z) at z =0 by

. O Ay (%))
(2.77) Ay = zyOV(')'O € L®(Do; RE).
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Using (2.72) and (2.35) we have

(2.78)  lim sup | ) (yoy + 2)t;(")

n—oo ZEBC

j>n lew(Do,CdXd)
. 1+’Y 1“")/'
2.79 < lim J + || D;(- < lim su L —0.
(2.79) < B 120 = e (95Ol + 1040l Jim sup =
e (Do)

Due to the continuous dependence of Ayo(z) € L®(Dg;C%?) in (2.73) on the quantity
ZjeN(yO;j + z;); € W1 (Dg; C?), we conclude

(2.80) lim sup |4y, oz, 20,0,.00) — Ayo(z)HLoo(DO;(cdxd) =0.

’n—)OOZeB

By item ii) of Lemma 2.5, our choice of v in (2.72), and due to (2.78), the Taylor chaos
expansion

(2.81) Ayy(2) = > Ay wz” € L®(Do; )
veF

converges (uniformly) for all z € BCC To apply Lemma 2.5, we have also used the fact that
flyo (z) is holomorphic in each z; € B(C for fixed z € B(C, which can be shown using its
definition (2.73) and the same arguments as in step 1 of the proof of Lemma 2.5. This shows
(2.18a). Next, the Taylor coefficient of Ayo( z) at z = 0 corresponding to the multiindex 0
is given by flyo;o = Ayo (0) = A(y,) € LOO(DO,Rgl;H‘f) Moreover, (2.63) gives a lower bound
on the minimal singular value of A(yq;a’) for a.e. 2/ € Dg. Its reciprocal Al < oo is thus
an upper bound of ||A(yy; ') "]z for a.e. 2/ € Dg. Therefore, (2.68) implies (2.18b) for Ayoa
since (cf. (2.77))

1
Amin

A0l D P Ay ()2 <

0AVEF L> (Do)

Z PV||Ayo;V(‘)H2 <l1.

0AVvEF L>(Do)

We have shown (2.18) for the parametric diffusion coefficient flyo(z) for arbitrary y, € U.
To prove (2.19) for fyo(z) we proceed analogously: With the Taylor coefficient fyo;,, =
8 fy, (2)|2=0, (2.71) implies

2
(2.82) sup Z P nyu”L?(Do )2 < SUP/ (Z P ’fyv ) da’ < oo,
YeU yer Do \yer

showing (2.19b) for fyo (2) =D Ler fyo;,,z”. Convergence of the series for z € BS towards

fyo (z), i.e. (2.19a), follows by similar arguments as for flyo(z) with Lemma 2.5.
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Step 6: Ultimately, as previously announced, we now employ Thm. 2.6 to conclude that
item iii) is satisfied. Let again y, € U. Recall that Ay (y) = A(yy +y) € L>®(Do; REX)
and fyo(y) = f(yo +y) € L?*(Dg) — H (Do) whenever y, + y € U. Denote the parametric
solution corresponding to the parametric diffusion coefficient flyo (y) and parametric right-
hand side fy (y) by iy, (y) € H¥(D), ie. iy (y) = a(yo + y). Observe 0y iy (y)ly=0 =
Oy () ly=y, -

Therefore, iii) follows from Thm. 2.6: according to (2.63), flyo;o € LOO(DO;ngXan) is uni-
formly elliptic, i.e. (2.23) holds. Moreover, by step 5, Ayo(z) € L>®(Do; C¥*9) allows a
uniformly convergent expansion of the type (2.18a) for z in the complex polydisc BS with a
sequence v € (0,00)N that is independent of y, € U. Also by step 5, the Taylor expansion of
Ayo (z) satisfies (2.18b) and finally, fyo(z) satisfies (2.19). In particular the estimate (2.19b)
on the summability of the Taylor coefficients ( fyo;l,),,e 7, holds with a uniform bound inde-
pendent of y, € U, cf. (2.82). Since all occurring constants were independent of y, € U, we
conclude that

< 00,
v!

(2.83) sup Z pY
YoeU per

which is (2.37). [ |

Remark 2.12. Item ii) of Thm. 2.10 implies imy o0 ||4(y1, - - -, yn, 0, ... ) =(y) ||z ) =0
for ally € U (cf. (2.54)). Moreoever, exploiting the implicit function theorem as we did in
Step 1 of the proof of Thm. 2.6, one can show that u(y) is holomorphic as a function of each
y; on some complex polydisc centered at 0 € CN and containing U. Thus Lemma 2.5 ii)
implies uniform convergence of the Taylor expansion of u(y) on U. The same remark applies
to the setting of Thm. 2.3.

Example 2.13. Consider the unit ball Do := {z € R? : |z|2 < 1} in R%. Using polar
coordinates x = (x1,x2) = r(cos(p),sin(y)) we define the transformation

H# (Do)

Ty(wr,x) =7 | 14+ Y y;€(9) <Cos(¢)> :

= sin(y)

where & : [0,2m] — R are suitable 2m-periodic Lipschitz continuous functions. In order for
this transformation to be well-defined such that Dy := Ty (Do) is a Lipschitz domain, it suffices
to assume that 3y y;&;(p) is in W1>0(0,27) allowing a periodic extension to WH*(R) for
every y € U and such that infy, 3oy y;€i(¢) > 0. We may then write Ty = Id + 3,y y;9;
where ;(x], xbh) = r&;(p)(cos(p),sin(p)), which fits the setting of Assumption 2.9.

One possibility is to use a Fourier type expansion of the boundary, e.g. by setting §; :=
05~ *sin(jp) for some 6 >0, o > 1. Observe that for a > 2 and 0 > 0 small enough it indeed
holds that 3y ;€ (p) € W122(0,27) with periodic boundary conditions and such that Ty is
bi-Lipschitz. Next, computing the Jacobian Dij(x},x4) at ' = (2], x4) = r(cos(p),sin(y))
we obtain

£i(p) — &) cos(i) sin(yp) & () cos*(p)
(284) ( — () sin?(p) £5(p) + €(9) cos(p) Sin(¢)> '
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Thus, if (¢j)jen € (1(N), we get with p; := c;/(0571)

esssuprj 13 (")l + 1D (2')]}) < C Y sup ]pj(lfj(so)l +185()l)

xz'eD jeN JEN p€el0,2m
<O ol < o0,
JEN

Defining ¢; == j~17¢ we obtain (p]l)jeN e (M(e=2+e(N) for any € > 0. In the setting
of Thm. 2.10 (for some appropriate A and f) this yields (||ty|[g-sDg))ver € P(F) with
p=2/(2a —3) +¢ and € > 0 arbitrary.

Example 2.14. Consider again the setting of FExample 2.13. Another possible choice for
the &; comprises wavelet bases, which have the advantage of allowing to exploit the locality of

supports: For a generating wavelet £ € W1°(R) such that suppé C [0, 27], at level | € Ny we
consider the 2 functions

Ex(p) = 02742l + k2n) k=0,...,2' -1,

defined for ¢ € [0,2n] with A\ = (I,k) and some fired 6 > 0, « > 1. By construction for
v € [0,2n] and | € N fized, there is at most one A\ = (I, k) such that £x\(¢) # 0. Hence, for
any B < o — 1 and with py = 28 we get

sup ZPA (@) + EA()]) < OllEllwroeo2m Y 2727 +2717Y) <00
p€[0,27] 1EN,

since « — 1 — B > 0. More precisely, the last quantity behaves like O(0) as 8 — 0. Let
pj(x) = &r(cos(p),sin(p)). Using (2.84), as in Example 2.13 we conclude that

sup Y pa(l[va(z)) 2 + [ID¥a(a))]l2) = O(B)  as 6 — 0.

on)\

Denote now by (§;)jen some rearrangement of (§x)x. For § > 0 small enough, we observe that
the assumptions of Thm. 2.10 will be satisfied (if additionally A, f are as stated there). Finally,
we remark that (pjfl)jeN constitutes an 01/8+e sequence for any e > 0. Hence Thm. 2.10 gives

(HtAy;VHHs(DO))VG}‘ € P(F) withp=2/(26+ 1)+ ¢ for any € > 0 in this case.
We now show summability of the Legendre coefficients: adopting the notation of Cor. 2.4,
we have the following result.

Corollary 2.15. Under the assumptions of Thm. 2.10, denote by l,, := Jor w(y) Ly (y) du(y)
the Legendre coefficients of u(y). Then

(8" |l |liss (Do) Jwer € £(F).

Proof. We use the Rodriguez formula as was done in [2]: The multivariate Legendre
polynomials allow the representation
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By repeated integration by parts in the definition of [, we obtain

R » 2v;+1
z,,—/Uuy v(y) dpu(y) '”/ %; (Vj!;jf(l—%) )CW )

jEsuppu
v [ 9%a(y) V21
1) (11— ) 1 .
U v! AL
]Gsuppu
Thus, by (2.37) and since p(U) =1 and [[;cquppw 7”22Z§+1 <1,
. 2
> (Pl (0g))* < sup > p” ( —y?) < . n
veF Uper Hs (Do)

Remark 2.16. The proofs of Thm. 2.6, Thm. 2.10, Cor. 2.15 do not restrict to fractional
operators. Verbatim arguments apply in the case s = 1 (where no extension w.r.t. the z
variable is needed), thus generalizing the results of [2], and also of [20] to fully anisotropic, as
well as to non-affine parametric dependence.

3. Conclusions. We performed a mathematical analysis of solution sparsity of countably
parametric solutions of the spectral fractional Laplacean.

Specifially, we obtained summability results of parametric solution families of the frac-
tional Laplace equation for parametric inputs of either the coefficients or of the domain of
definition, for bounded parameter domains, constituting the first UQ analysis of nonlocal op-
erator equations with parametric inputs. We considered fractional powers of affine-parametric
operators, as well as also non-affine, parametric inputs of gpc type. The present results gen-
eralize previous analyses even in the local case, i.e., for UQ of the second order diffusion
operator. Our analysis allows to exploit, in particular, also uncertainty parametrizations of
the distributed input data with locally supported representation systems, such as splines,
wavelets, etc. As our main result, Theorem 2.6, admits gpc-structured parametric input data
(rather than merely affine-parametric data), this result opens also an avenue for the sparsity
analysis in uncertainty propagation. The corresponding sparsity result in Theorem 2.6 is to
our knowledge new even in the case s = 1, i.e. for local diffusion PDEs with gpc-parametric
uncertain diffusion coefficients. The tools developed in proving our results on parametric
regularity and sparsity are of independent interest beyond the presently considered problem
classes. The present sparsity results also imply dimension independent convergence rates of
several constructive numerical approximations, such as sparse grid interpolation, Smolyak
approximation and higher order Quasi-Monte Carlo quadrature. These will be developed in
detail in our forthcoming work [21].
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