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Abstract

The ability to control wave propagation is of fundamental interest in many areas of physics.
Photonic and phononic crystals have proved very useful for this purpose but, because they are based
on Bragg interference, these artificial media require structures with large dimensions. In [Ammari et
al., Subwavelength phononic bandgap opening in bubbly media, J. Diff. Eq., 263 (2017), 5610–5629],
it has been proved that a subwavelength bandgap opening occurs in bubbly phononic crystals. To
demonstrate the opening of a subwavelength phononic bandgap, a periodic arrangement of bubbles is
considered and their subwavelength Minnaert resonance is exploited. In this paper, this subwavelength
bandgap is used to demonstrate cavities, very similar to those obtained in photonic and phononic
crystals, albeit of deeply subwavelength dimensions. The key idea is to perturb the size of a single
bubble inside the crystal, thus creating a defect. The goal is then to analytically and numerically
show that this crystal has a localized eigenmode close to the defect bubble.

Mathematics Subject Classification (MSC2000). 35R30, 35C20.

Keywords. bubble, subwavelength resonance, subwavelength phononic crystal, subwavelength cav-
ity.

1 Introduction

It is well-known in solid state physics that the periodicity of atoms composing crystals is responsible for
the existence of both conducting bands and bandgaps for electrons. This property is a consequence of
the Floquet-Bloch theory applied to the wave-function of electrons. Similarly, electromagnetic and elastic
waves propagating in periodic media are subject to the same formalism giving rise to the existence of
ranges of frequencies for which no propagation is allowed, so called bandgaps. Such materials are known
as photonic and phononic crystals. At an interface with free space, these types of crystals act as mirrors
for incoming waves, termed Bragg mirrors. Similarly, a point defect can be created by locally modifying
the properties of a crystal. This results in a cavity if the mode supported by the defect is resonant
within the bandgap. Physically, the underlying mechanism is Bragg interference. In these periodic
media, the Bragg condition typically occurs when the period of the medium scales with the wavelength
[7, 8, 9, 19, 25, 21, 32, 33]. As a consequence, photonic and phononic crystals are typically structured
with a period corresponding to half the operating wavelength. This constrains the range of applications,
specifically in low-frequency regimes where the wavelength is large [35, 39].

Based on the phenomenon of subwavelength resonance, a class of phononic crystals that exhibit
bandgaps with deep subwavelength spatial scales have been fabricated [34]. In [5], the opening of a
subwavelength phononic bandgap in bubbly crystals has been proved. This subwavelength bandgap is
mainly due to the cell resonance of the bubbles in the quasi-static regime and is quite different from the
usual bandgaps in photonic/phononic crystals where the gap opens at wavelengths which, as mentioned
previously, are comparable to the period of the structure. In [10], it has been further proved that the first
Bloch eigenvalue achieves its maximum at the corner of the Brillouin zone. Moreover, by computing the
asymptotic behaviour of the Bloch eigenfunctions in the periodic structure near that critical frequency, it
has been demonstrated that these eigenfunctions can be decomposed into two parts: one which is slowly
varying and satisfies a homogenized equation, while the other is periodic across each elementary crystal
cell and is varying more rapidly. The asymptotic analysis of wave fields near the critical frequency where
a subwavelength bandgap opens rather than the zero frequency has been performed. This rigorously
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justifies the observed superfocusing of acoustic waves in bubbly crystals near and below the maximum of
the first Bloch eigenvalue and confirms the bandgap opening near and above this critical frequency. We
refer the reader to [1, 12, 13] for the mathematical analysis of the superfocusing phenomenon in resonant
media.

Bubbly media is a natural model for the control of wave propagation at the deep subwavelength scale
because of the simplicity of the constituent resonant structure, the air bubbles. It is well-known that a
single bubble in water possesses a subwavelength resonance which is called the Minnaert resonance [2, 36].
By the subwavelength resonance, we mean that the resonator (in our case, the bubble) is of size smaller
than the the wavelength. This resonance is due to the high contrast in density between the bubble and
the surrounding medium and it makes the air bubble an ideal subwavelength resonator (the bubble can
be two order of magnitude smaller than the wavelength at the resonant frequency).

In phononic crystals, a point defect can be created by locally removing a scatterer. This results in a
small cavity because a resonant mode is created by the defect within the bandgap [15, 14, 16, 18, 22, 23,
28, 29]. Following this concept, many components have been demonstrated based on periodic media such
as waveguides using line defects [11, 30]. However, because of their wavelength scale period, phononic
crystals result in relatively large devices. This seriously constrains the range of applications, especially
in the low frequency regime where the wavelength is large.

If we remove one bubble inside the bubbly crystal, we cannot create a defect mode. The defect created
in this fashion is actually too small to support a resonant mode, while in a phononic crystal removing one
scatterer allows for the existence of a stationary defect mode since the typical scale of such a defect is the
wavelength. This illustrates a strong difference between Bragg bandgaps and subwavelength bandgaps in
bubbly crystals.

In order to tackle this issue, we have to physically introduce a resonant defect inside the crystal of
subwavelength resonators, and this is achieved by simply detuning one resonator with respect to the rest
of the medium. In the case of the bubbly medium, we prove in this paper that by perturbing the radius
of one bubble we create a detuned resonator with a resonance frequency that is upward shifted, thus
falling within the subwavelength bandgap. Moreover, we will show that the way to shift the frequency
upwards depends on the crystal: in the dilute regime we have to decrease the defect bubble size while in
the non-dilute regime we have to increase the size.

The aim of this paper is to prove the existence of this defect mode. Through the application of layer
potential techniques, Floquet-Bloch theory, and Gohberg-Sigal theory we derive an original formula for
the defect mode frequency, along with proving the existence of a subwavelength localized mode. Our
results are complemented by several numerical examples which serve to validate them in two dimensions.
Our results formally explain the experimental observations reported in [26, 27] in the case of Helmholtz
resonators. They lay the mathematical foundation for the analysis of wave propagation control the deeply
subwavelength scale. Subwavelength cavities have a high quality factor and a low mode volume. These
two effects are typically associated with the enhancement of the emission rate of an emitter or the so-called
Purcell factor [37].

The paper is organized as follows. In Section 2 we formulate the spectral problem for a bubble phononic
crystal and introduce some basic results regarding the quasi-periodic Green’s function, stability of the
essential spectrum, and Floquet-Bloch theory. In Section 3 we use the fictitious source superposition
method introduced in [40] for modelling the defect and characterize the fictitious sources as the solution
of some system of integral equations. In Section 4, we prove existence of a localized defect mode and
derive an asymptotic formula for the resonant frequency created inside the subwavelength bandgap by
perturbing the size of a single bubble in terms of the difference between its radius and the radius of
the original bubbles. In Section 5 we perform numerical simulations to illustrate the main findings of
this paper. We make use of the multipole expansion method to compute the defect mode inside the
subwavelength bandgap. The paper ends with some concluding remarks.
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2 Preliminaries

2.1 Layer potentials

Let Γ0 and Γk, k > 0 be the fundamental solution of the Laplace and Helmholtz equations in dimension
two, respectively, i.e., 




Γk(x, y) = − i

4
H

(1)
0 (k|x− y|), k > 0,

Γ0(x, y) =
1

2π
ln |x− y|,

where H
(1)
0 is the Hankel function of the first kind and order zero.

Let Sk
D : L2(∂D) → H1

loc
(R2) be the single layer potential defined by

Sk
D[ϕ](x) =

∫

∂D

Γk(x, y)ϕ(y) dσ(y), x ∈ R
2.

We also define the Neumann-Poincaré operator
(
Kk

D

)∗
: L2(∂D) → L2(∂D) by

(
Kk

D

)∗
=

∫

∂D

∂

∂νx
Γk(x, y)ϕ(y) dσ(y), x ∈ ∂D.

In the case when k = 0, we will omit the superscripts and write SD and K∗
D, respectively. The following

so-called jump relations of Sk
D on the boundary ∂D are well-known (see, for instance, [8]):

Sk
D[ϕ]

∣∣
+
= Sk

D[ϕ]
∣∣
−,

and
∂

∂ν
Sk
D[ϕ]

∣∣∣∣
±
=

(
±1

2
I +

(
Kk

D

)∗
)
[ϕ].

Here, ∂/∂ν denotes the outward normal derivative, and |± denotes the limits from outside and inside
D. In two dimensions, the fundamental solution of the free-space Helmholtz equation has a logarithmic
singularity given by [8]

− i

4
H0(k|x− y|) = 1

2π
ln |x− y|+ ηk +

∞∑

j=1

(bj ln(k|x− y|) + cj) (k|x− y|)2j , (1)

where ln is the principal branch of the logarithm and

ηk =
1

2π
(ln k + γ − ln 2)− i

4
, bj =

(−1)j

2π

1

22j(j!)2
, cj = bj

(
γ − ln 2− iπ

2
−

j∑

n=1

1

n

)
,

and γ is the Euler constant. Define

Ŝk
D[ϕ](x) = SD[ϕ](x) + ηk

∫

∂D

ϕ dσ.

Then the following expansion holds:
Sk
D = Ŝk

D +O(k2 ln k). (2)

We also introduce a quasi-periodic version of the layer potentials. Let Y be the unit cell [−1/2, 1/2)2

in R
2. For α ∈ [0, 2π)2, the function Γα,k is defined to satisfy

(∆x + k2)Γα,k(x, y) =
∑

n∈R2

δ(x− y − n)ein·α,

where δ is the Dirac delta function and Γα,k is α-quasi-periodic, i.e., e−iα·xΓα,k(x, y) is periodic in x with
respect to Y .

We define the quasi-periodic single layer potential Sα,k
D by

Sα,k
D [ϕ](x) =

∫

∂D

Γα,k(x, y)ϕ(y)dσ(y), x ∈ R
2.
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It satisfies the following jump formulas:

Sα,k
D [ϕ]

∣∣
+
= Sα,k

D [ϕ]
∣∣
−,

and
∂

∂ν

∣∣∣
±
Sα,k
D [ϕ] =

(
±1

2
I + (K−α,k

D )∗
)
[ϕ] on ∂D,

where (K−α,k
D )∗ is the operator given by

(K−α,k
D )∗[ϕ](x) = p.v.

∫

∂D

∂

∂νx
Γα,k(y, y)ϕ(y)dσ(y).

We remark that it is known that Sα,0
D : L2(∂D) → H1(∂D) is invertible for α 6= 0 [8].

2.2 Floquet transform

A function f(x) is said to be α-quasi-periodic in the variable x ∈ R
2 if e−iα·xf(x) is periodic. Given a

function f ∈ L2(R2), the Floquet transform is defined as

F [f ](x, α) =
∑

m∈Z2

f(x−m)eiα·m, (3)

which is α-quasi-periodic in x and periodic in α. Let Y = [−1/2, 1/2)2 be the unit cell and BZ :=
R

2/2πZ2 ≃ [0, 2π)2 be the so-called first Brillouin zone. The Floquet transform is an invertible map
F : L2(R2) → L2(Y ×BZ), with inverse (see, for instance, [24, 8])

F−1[g](x) =
1

(2π)2

∫

BZ

g(x, α) dα.

2.3 Bubbly crystals and subwavelength bandgaps

Here we briefly review the subwavelength bandgap opening of a bubbly crystal from [5].
Assume that a single bubble occupies D, which is a disk of radius R < 1/2 centred at the origin. We

denote by ρb and κb the density and the bulk modulus of the air inside the bubble, respectively. We let
ρw and κw be the corresponding parameters for the water. We introduce

vw =

√
κw
ρw

, vb =

√
κb
ρb
, kw =

ω

vw
and kb =

ω

vb

to be the speed of sound outside and inside the bubbles, and the wavenumber outside and inside the
bubbles, respectively. ω corresponds to the operating frequency of acoustic waves. We also introduce two
dimensionless contrast parameters

δ =
ρb
ρw

and τ =
kb
kw

=
vw
vb

=

√
ρbκw
ρwκb

.

We assume that the wave speeds outside and inside the bubbles are comparable to each other and that
there is a large contrast in the bulk moduli, that is,

δ ≪ 1, τ = O(1).

In this paper, for the sake of simplicity of presentation, we shall assume vw = vb = 1 .
Let C = ∪n∈Z2(D+n) be the periodic bubbly crystal. Consider the following quasi-periodic scattering

problem: 



∇ · 1

ρw
∇v + ω2

κw
v = 0 in Y \D,

∇ · 1

ρb
∇v + ω2

κb
v = 0 in D,

v|+ − v|− = 0 on ∂D,

1

ρw

∂v

∂ν

∣∣∣∣
+

− 1

ρb

∂v

∂ν

∣∣∣∣
−
= 0 on ∂D,

e−iα·xv is periodic.

(4)
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It is known that (4) has non-trivial solutions for discrete values of ω such as

0 ≤ ωα
1 ≤ ωα

2 ≤ · · ·

and thus we have the following band structure of propagating frequencies for the periodic bubbly crystal
C:

[0,max
α

ωα
1 ] ∪ [min

α
ωα
2 ,max

α
ωα
2 ] ∪ · · · .

In [5], it is proved that there exists a subwavelength spectral gap opening in the band structure. Let
us briefly review this result. We look for a solution of (4) which has the following form:

v =

{
Sα,kw

D [ϕα] in Y \ D̄,
Skb

D [ψα] in D,
(5)

for some densities ϕα, ψα ∈ L2(∂D). Using the jump relations for the single layer potentials, one can
show that (4) is equivalent to the boundary integral equation

Aα(ω, δ)[Φα] = 0, (6)

where

Aα(ω, δ) =

(
Skb

D −Sα,k
D

− 1
2 +Kkb,∗

D −δ( 12 + (K−α,k
D )∗)

)
, Φα =

(
ϕα

ψα

)
.

Since it can be shown that ω = 0 is a characteristic value for the operator-valued analytic function
A(ω, 0), we can conclude the following result by the Gohberg-Sigal theory [8, 20].

Lemma 1. For any δ sufficiently small, there exists a characteristic value ωα
1 = ωα

1 (δ) to the operator-
valued analytic function Aα(ω, δ) such that ωα

1 (0) = 0 and ωα
1 depends on δ continuously.

The next theorem gives the asymptotic expansion of ωα
1 as δ → 0.

Theorem 1. [5] For α 6= 0 and sufficiently small δ, we have

ωα
1 =

√
δCapD,α

πR2
+O(δ3/2), (7)

where the constant CapD,α is given by

CapD,α := −〈(Sα,0
D )−1[χ∂D], χ∂D〉.

Let ω∗
1 = maxα ω

α
1 . The following theorem specifies the subwavelength bandgap opening.

Theorem 2. [5] For every ε > 0, there exists δ0 > 0 and ω̃ > ω∗
1 such that

[ω∗
1 + ε, ω̃] ⊂ [max

α
ωα
1 ,min

α
ωα
2 ] (8)

for δ < δ0.

3 Integral representation for bubbly crystals with a defect

3.1 Bubbly crystals with a defect: problem formulation

Consider now a perturbed crystal, where the central disk D is replaced by a defect disk Dd of ra-
dius Rd with Rd < 1/2. We will consider both the cases when Rd > R and Rd < R. Let Cd =
Dd ∪

(
∪n∈Z2\{0,0}D + n

)
be the perturbed crystal and let ε = Rd − R ∈ (−R, 0) ∪ (0, 1/2 − R) be the

perturbation of the radius. We consider the following problem:




∇ · 1

ρw
∇u+

ω2

κw
u = 0 in R

2\Cd,

∇ · 1

ρb
∇u+

ω2

κb
u = 0 in Cd,

u|+ − u|− = 0 on ∂Cd,
1

ρw

∂u

∂ν

∣∣∣∣
+

− 1

ρb

∂u

∂ν

∣∣∣∣
−
= 0 on ∂Cd.

(9)

5



Dd

D

· · ·· · ·

...

...

ρw, κwρb, κb

Y

Figure 1: Illustration of the defect crystal and the material parameters in the case of a smaller defect bubble.

As discussed in Subsection 2.3, the unperturbed problem (with C instead of Cd in (9)), has the following
essential spectrum for the propagating frequencies:

[0,max
α

ωα
1 ] ∪ [min

α
ωα
2 ,max

α
ωα
2 ] ∪ · · · .

In fact, it can be easily shown that the perturbed crystal problem (9) has the same essential spectrum.
This is because the essential spectrum is stable under compact perturbations [17, 38].

In this paper, we want to show that by modifying the central bubble D, there exists a frequency
ωε, slightly above maxα ω

α
1 , which results in a non-trivial solution to the problem (9). The solution u

associated with the frequency ωε should be localized since ωε lies in the bandgap. Moreover, it is of a
subwavelength nature.

3.2 Effective sources for the defect

It is difficult to obtain the boundary integral formulation of the problem (9) directly. Here we consider
the effective source solution which models the defect Dd by placing non-trivial sources onto the boundary
of the central bubble D of the unperturbed crystal C. Since the geometry of the unperturbed crystal is
periodic, we can use the Floquet-Bloch theory. This is motivated by the fictitious source superposition
method introduced in [40].

Let us consider the following problem:




∇ · 1

ρw
∇ũ+

ω2

κw
ũ = 0 in R

2 \ C,

∇ · 1

ρb
∇ũ+

ω2

κb
ũ = 0 in C,

ũ|+ − ũ|− = fδm,(0,0) on ∂D +m, m ∈ Z
2,

1

ρw

∂ũ

∂ν

∣∣∣∣
+

− 1

ρb

∂ũ

∂ν

∣∣∣∣
−
= gδm,(0,0) on ∂D +m, m ∈ Z

2.

(10)

where f, g are the source terms and δm,n is the Kronecker delta function. Note that the non-zero sources
are present only on the boundary of the central bubble D.

Introduce the notation

Dl =

{
Dd if ε > 0

D if ε < 0,
Ds =

{
D if ε > 0

Dd if ε < 0.

Thus, Dl and Ds denotes the largest and smallest of D,Dd, respectively. If the source terms f and g
satisfy some appropriate conditions, then we will have

u ≡ ũ in (R2 \Dl) ∪Ds.

Once this is achieved, the original solution u can be recovered by extending the solution ũ to the whole
region including Dl \ Ds with boundary conditions on ∂D and ∂Dd. The conditions for the effective
sources f and g, which are necessary in order to correctly model the defect, will be characterized in the
next subsection.
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3.3 Characterization of the effective sources

Here we clarify the relation between the effective source pair (f, g) and the density pair (ϕ, ψ).
First we consider the integral equation for the solution ũ inside the central unit cell Y . Inside Y , the

solution ũ can be decomposed as

ũ =

{
H + Skw

D [ψ] in Y \D,
Skb

D [ϕ] in D,
(11)

where H satisfies the homogeneous equation (∆+k2w)H = 0 in Y and the pair (ϕ, ψ) ∈ L2(∂D)2 satisfies

AD

(
ϕ
ψ

)
:=

(
Skb

D −Skw

D

∂νSkb

D |− −δ∂νSkw

D |+

)(
ϕ
ψ

)
=

(
H|∂D − f

∂νH|∂D − g

)
. (12)

Next, let us consider the central cell Y in the original problem (9). The central cell Y contains a
defect bubble Dd and no sources. Inside Y , the solution u is represented as

u =

{
H + Skw

Dd
[ψd] in Y \Dd,

Skb

Dd
[ϕd] in Dd,

where

ADd

(
ϕd

ψd

)
:=

(
Skb

Dd
−Skw

Dd

∂νSkb

Dd
|− −δ∂νSkw

Dd
|+

)(
ϕd

ψd

)
=

(
H|∂Dd

∂νH|∂Dd

)
. (13)

In order for the effective sources f and g to model the defect Dd correctly, we should impose u ≡
ũ in (Y \Dl)∪Ds, which implies u ≡ ũ in R

2 \Y as well by an argument using analytic continuation. In
other words, the following conditions should be satisfied:

Skb

Dd
[ϕd] ≡ Skb

D [ϕ] in Ds, (14)

and
Skw

Dd
[ψd] ≡ Skw

D [ψ] in Y \Dl. (15)

Since D and Dd are circular disks, we can use a Fourier basis for functions on ∂D or ∂Dd in polar
coordinates (r, θ) to make (13)-(15) more explicit. Let us write ϕ and ψ in the form of Fourier series:

ϕ(θ) =
∑

n∈Z

ϕne
inθ, ψ(θ) =

∑

n∈Z

ψne
inθ.

Similarly, we also write ϕd and ψd as

ϕd(θ) =
∑

n∈Z

ϕd,ne
inθ, ψd(θ) =

∑

n∈Z

ψd,ne
inθ.

We define the subspace Vmn of L2(∂D)2 as

Vmn := span{eimθ} × span{einθ}, m, n ∈ Z.

Similarly, let V d
mn be the subspace of L2(∂Dd)

2 with the same Fourier basis.
It is known that (see, for instance, [5])

Sk
D[einθ] =

(−1)iπR

2
×
{
Jn(kR)H

(1)
n (kr)einθ, r ≥ R,

H
(1)
n (kR)Jn(kr)e

inθ, 0 ≤ r < R.
(16)

Therefore, the operator AD in (12) has the following matrix representation as an operator from Vmn to
Vm′n′ :

(AD)Vmn→V
m′n′

= δmnδm′n′

(−i)πR
2

(
Jn(kbR)H

(1)
n (kbR) −Jn(kwR)H(1)

n (kwR)

kbJ
′
n(kbR)H

(1)
n (kbR) −δkwJn(kwR)

(
H

(1)
n

)′
(kwR)

)
. (17)
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Similarly, the operator ADd
in (13), as a mapping from V d

mn to V d
m′n′ , is represented as follows:

(ADd
)V d

mn
→V d

m′n′

= δmnδm′n′

(−i)πRd

2

(
Jn(kbRd)H

(1)
n (kbRd) −Jn(kwRd)H

(1)
n (kwRd)

kbJ
′
n(kbRd)H

(1)
n (kbRd) −δkwJn(kwRd)

(
H

(1)
n

)′
(kwRd)

)
. (18)

Now, we consider (14) and (15). We have from (16) that, inside Ds,

Skb

D [ϕ] =
∑

n∈Z

ϕnSkb

D [einθ] =
(−i)πR

2

∑

n∈Z

ϕnH
(1)
n (kbR)Jn(kbr)e

inθ

=
(−i)πR

2

∑

n∈Z

ϕn
H

(1)
n (kbR)

H
(1)
n (kbRd)

H(1)
n (kbR)Jn(kbr)e

inθ

= Skb

Dd

[∑

n∈Z

ϕn
R

Rd

H
(1)
n (kbR)

H
(1)
n (kbRd)

einθ
]
.

Similarly, outside Dl,

Skw

D [ψ] = Skw

Dd

[∑

n∈Z

ψn
R

Rd

Jn(kwR)

Jn(kwRd)
einθ

]
.

So, from (14) and (15), we see that (
ϕd

ψd

)
= P1

(
ϕ

ψ

)
,

where the operator P1 : L2(∂D)2 → L2(∂Dd)
2 is given by

(P1)Vmn→V d

m′n′

= δmnδm′n′

R

Rd




H
(1)
n (kbR)

H
(1)
n (kbRd)

0

0
Jn(kwR)

Jn(kwRd)


 .

In the same way, we can obtain that

(
H|∂Dd

∂νH|∂Dd

)
= P2

(
H|∂D
∂νH|∂D

)
,

where the operator P2 : L2(∂D)2 → L2(∂Dd)
2 is given by

(P2)Vn→V d
m
= δmn




Jn(kwRd)

Jn(kwR)
0

0
J ′
n(kwRd)

J ′
n(kwR)


 .

Therefore, using (13), we arrive at

Aε
D

(
ϕ

ψ

)
:= (P2)

−1ADd
P1

(
ϕ

ψ

)
=

(
H|∂D
∂νH|∂D

)
. (19)

Thus, (12) yields

(Aε
D −AD)

(
ϕ

ψ

)
=

(
f

g

)
. (20)

We have obtained an explicit relation between the pair (ϕ, ψ) and the effective sources (f, g). If the
effective sources f and g satisfy (20), then the pair (f, g) will result in the generation of the same scattered
field as the one induced by the defect bubble Dd. In other words, ũ ≡ u outside Dl \Ds. In what follows,
for convenience of notation, we will identify the solution ũ with the original one u.
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3.4 Floquet transform of the solution

Here we derive an integral equation for the effective source problem (10). We apply the Floquet transform
to the solution u with the quasi-periodic parameter α as follows

uα =
∑

m∈Z2

u(x−m)eiα·m.

The transformed solution uα satisfies



∇ · 1

ρw
∇uα +

ω2

κw
uα = 0 in Y \D,

∇ · 1

ρb
∇uα +

ω2

κb
uα = 0 in D,

uα|+ − uα|− = f on ∂D,

1

ρw

∂uα

∂ν

∣∣∣∣
+

− 1

ρb

∂uα

∂ν

∣∣∣∣
−
= g on ∂D,

e−iα·xuα is periodic.

(21)

The solution uα can be represented using quasi-periodic layer potentials as

uα =

{
Sα,kw

D [ψα], in Y \D,
Skb

D [ϕα], in D,

where the pair (ϕα, ψα) ∈ L2(∂D)2 is the solution to

Aα(ω, δ)

(
ϕα

ψα

)
:=

(
Skb

D −Sα,kw

D

∂νSkb

D |− −δ∂νSα,kw

D |+

)(
ϕα

ψα

)
=

(
−f
−g

)
. (22)

Since the operator Aα is invertible for ω in the bandgap [5], we have
(
ϕα

ψα

)
= Aα(ω, δ)−1

(
−f
−g

)
.

The original solution u can be recovered by the inversion formula as follows

u(x) =
1

(2π)2

∫

BZ

uα(x)dα. (23)

Then, inside the region D, the solution u satisfies

u = Skb

D

[ 1

(2π)2

∫

BZ

ϕαdα
]
.

Similarly, inside the region Y \D, we have

u =
1

(2π)2

∫

BZ

Sα,kw

D [ψα]dα = Skw

D

[ 1

(2π)2

∫

BZ

ψαdα
]
+

1

(2π)2

∫

BZ

∑

m∈Z2,m 6=0

Skw

D [ψα]( · −m)eim·αdα.

Note that the second term in the right-hand side satisfies the homogeneous Helmholtz equation (∆ +
k2w)u = 0 in Y \D. So, in view of (11), we can identify ϕ, ψ and H as follows:

ϕ =
1

(2π)2

∫

BZ

ϕαdα, ψ =
1

(2π)2

∫

BZ

ψαdα,

and

H =
1

(2π)2

∫

BZ

∑

m∈Z2,m 6=0

Skw

D [ψα]( · −m)eim·αdα.

Therefore, from (22), we get the following result.

Propostition 1. The density pair (ϕ, ψ) and the effective source pair (f, g) satisfy
(
ϕ

ψ

)
=

(
1

(2π)2

∫

BZ

Aα(ω, δ)−1dα

)(−f
−g

)
(24)

for ω in the bandgap.
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3.5 The integral equation for the effective sources

Here we derive the integral equation for the effective source pair (f, g). We have the following result.

Propostition 2. The effective source pair (f, g) ∈ L2(∂D)2 satisfies the following integral equation:

Mε(ω)

(
f
g

)
:=

(
I + (Aε

D(ω, δ)−AD(ω, δ))
1

(2π)2

∫

BZ

Aα(ω, δ)−1dα

)(
f

g

)
=

(
0

0

)
, (25)

for ω in the bandgap.

Proof. Equation (25) is an immediate consequence of equations (24) and (20).

Thus, if we find a value of ω in the bandgap such that there exists a non-trivial solution pair (f, g) to
(25), then we will find a resonant frequency for the localized mode.

4 Subwavelength localized modes

4.1 The resonant frequency of the localized mode

Here we prove that a frequency for the localized mode exists slightly above maxα ω
α
1 . In what follows,

let us omit the subscript in ωα
1 for ease of notation. We also do not make explicit the dependence on δ.

We need to study the characteristic value of the operator Mε appearing in (25). Let us first analyse
the operator

∫
BZ

(Aα)−1dα. Since ωα is a simple pole of the mapping ω 7→ Aα(ω, )−1 in a neighbourhood
of ωα, according to [8], we can write

Aα(ω)−1 =
Lα

ω − ωα
+Rα(ω), (26)

where the operator-valued function Rα(ω) is holomorphic in a neighbourhood of ωα, and the operator
Lα maps L2(∂D)2 onto kerAα(ωα, δ). Let us write

kerAα(ωα) = span{Ψα}, ker
(
Aα(ωα)

)†
= span{Φα},

where † denotes the adjoint operator. Then, as in [8, 3], it can be shown that

Lα =
〈Φα, · 〉Ψα

〈Φα, d
dωAα

∣∣
ω=ωα

Ψα〉 ,

where 〈 · , · 〉 stands for the standard inner product of L2(∂D)2.
Hence the operator Mε can be decomposed as

Mε = I + (Aε
D −AD)

1

(2π)2

∫

BZ

Lα

ω − ωα
dα+ (Aε

D −AD)
1

(2π)2

∫

BZ

Rαdα.

Note that the third term in the right-hand side is holomorphic with respect to ω.
Denote by α∗ = (π, π) and ω∗ = ω(π,π). In [10], it was proved that, using the symmetry of the square

array of bubbles, ωα attains its maximum at α = α∗. Since we are assuming that each bubble is a circular
disk, we can derive a slightly more refined result as shown in the following lemma.

Lemma 2. The characteristic value ωα attains its maximum at α = α∗. Moreover, for α near α∗, we
have

ωα = ω∗ − 1

2
cδ|α− α∗|2 + o(|α− α∗|2).

Here, cδ is a positive constant depending on δ and scales as cδ = O(
√
δ).

In view of the above lemma, we can expect that the operator
∫
BZ

Lα

ω−ωα becomes singular when
ω → ω∗(= maxα ω

α). Let us extract its singular part explicitly. Before doing this, we introduce some
notations. Denote by A∗ = A(π,π),Φ∗ = Φ(π,π), and L∗ = L(π,π). We also define a small neighbourhood
V of ω∗ which excludes the real interval (−∞, ω∗], namely,

V = {|ω − ω∗| < r∗} \ (−∞, ω∗],
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for some small enough r∗ > 0. By Lemma 2, we have

1

(2π)2

∫

BZ

Lα

ω − ωα
dα = L∗ 1

(2π)2

∫

BZ

1

ω − ω∗ + 1
2cδ|α− α∗|2 dα+B1(ω)

= L∗ 1

(2π)2

∫

|α−α∗|<1 ω − ω∗ + 1
2cδ|α− α∗|2 dα+B2(ω).

Hereafter, Bj means a bounded function with respect to ω in V . Then, using the polar coordinates
α− α∗ = (r′, θ′), we get

1

(2π)2

∫

BZ

Lα

ω − ωα
dα =

1

(2π)2

∫ 1

0

2πr′

ω − ω∗ +
1
2cδr

′2 dr
′ +B2(ω)

= − 1

2πcδ
ln(ω − ω∗) +B3(ω).

Here, the usual principal branch is taken for the logarithm and so the operator
∫
BZ

Lα

ω−ωα dα has a branch
cut on (−∞, ω∗]. We also observe that, for ω ∈ V ,

ln(ω − ω∗)(Aε
D(ω)−AD(ω)) = ln(ω − ω∗)(Aε

D(ω∗)−AD(ω)∗) +B4(ω).

Therefore, the integral equation (25) can be rewritten as

Mε(ω)

(
f
g

)
=
(
I − ln(ω − ω∗)

2πcδ
(Aε

D(ω∗)−AD(ω∗))L∗ +Rε(ω)
)(f

g

)
=

(
0
0

)
,

where Rε is analytic and bounded with respect to ω in V and satisfies Rε = O(ε). We first consider the
principal part N ε(ω), namely,

N ε : ω 7→ N ε(ω) = I − 1

2πcδ
ln(ω − ω∗)(Aε

D(ω∗)−AD(ω∗))L∗.

Let us find its characteristic value ω̂, i.e., ω̂ ∈ V such that there exists a non-trivial function Φ̂ satisfying
N ε(ω̂)Φ̂ = 0. Equivalently, we have

Φ̂− 1

2πcδ
ln(ω̂ − ω∗)

(Aε
D −AD)(ω∗)Ψ∗

〈Φ∗, d
dωA∗

∣∣
ω=ω∗

Ψ∗〉 〈Φ
∗, Φ̂〉 = 0.

Then, by multiplying by Φ∗,

〈Φ∗, Φ̂〉
(
1− 1

2πcδ
ln(ω̂ − ω∗)

〈Φ∗, (Aε
D −AD)(ω∗)Ψ∗〉

〈Φ∗, d
dωA∗

∣∣
ω=ω∗

Ψ∗〉

)
= 0.

Since 〈Φ∗, Φ̂〉 = 0 would imply Φ̂ = 0, we get

1− 1

2πcδ
ln(ω̂ − ω∗)

〈Φ∗, (Aε
D −AD)(ω∗)Ψ∗〉

〈Φ∗, d
dωA∗

∣∣
ω=ω∗

Ψ∗〉 = 0. (27)

Before solving the above equation for ω, we need the following Lemma whose proof will be given in
Subsection 4.2.

Lemma 3. The following results hold:

(i) When δ → 0, we have

〈
Φ∗,

d

dω
A∗(ω∗, δ)Ψ∗〉 = −2πω∗ lnω∗R3 +O(

√
δ),

which is positive for δ small enough.

(ii) For a fixed ε, when δ → 0 we have

〈
Φ∗,

(
Aε

D(ω∗, δ)−AD(ω∗, δ)
)
Ψ∗〉 = δε lnω∗

(
R‖ψα∗‖2L2(∂D) − 2CapD,α∗

)
+O(εδ + ε2δ ln δ),

:= ε
(
δ lnω∗S(R)

)
+O(εδ + ε2δ ln δ),

where ψα∗ = (Sα∗,0
D )−1[χ∂D] and CapD,α∗ = −〈ψα∗ , χ∂D〉. For small ε and δ, the sign of δ lnω∗S(R)

varies with R as follows: δ lnω∗S(R) > 0 for small enough R, while δ lnω∗S(R) < 0 for R close
enough to 1/2.
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In view of Lemma 3, we have two different regimes: The dilute regime when R is small and the
non-dilute regime when R is close to 1/2. For equation (27) to have a real solution ω̂ close to ω∗, we need
ε < 0 in the dilute regime and ε > 0 in the non-dilute regime. Under this assumption we have

ω̂ − ω∗ = exp
(
2πcδ

〈
Φ∗,

d

dω
A∗(ω∗)Ψ∗〉〈Φ∗,

(
Aε

D(ω∗)−AD(ω∗)
)
Ψ∗〉−1)

.

We can also see that the right-hand side is positive and goes to zero as ε tends to zero. In other words,
ω̂ → ω∗ as ε → 0. Now we turn to the full operator Mε. Recall that Mε = N ε + Rεand Rε is
holomorphic, bounded and satisfies Rε = O(ε) in V . So by Gohberg-Sigal theory [8], we can conclude
that there exists a characteristic value ωε of the operator-valued function Mε near ω∗. Let us denote its
associated root function by Φε. We choose Φε so that 〈Φ∗,Φε〉 = 1. Then, as in the derivations of (27),
we can obtain

1− 1

2πcδ
ln(ωε − ω∗)µ(ε, δ, R) + 〈Φ∗,Rε(ωε)Φε〉 = 0,

where

µ(ε, δ, R) =
〈Φ∗, (Aε

D −AD)(ω∗)Ψ∗〉
〈Φ∗, d

dωA∗
∣∣
ω=ω∗

Ψ∗〉 .

Note that 〈Φ∗,Rε(ω)Φε〉 = O(ε) for small ε. We see from Lemma 3 that

µ(ε, δ, R) =
δε
(
R‖ψα∗‖2L2(∂D) − 2CapD,α∗

)

−2πω∗R3
+O

(
ε

√
δ

ln δ
+

√
δε2
)
,

as δ → 0 and ε → 0, and the leading order term is negative. We remark that the frequency ωε is a real
number since the operator in the defect problem (9) can be considered as a real compact perturbation of
a self-adjoint periodic operator [18, 38].

Therefore, we have proved the following theorem which is the main result of this paper.

Theorem 3. Assume that δ is small enough and the pair (R, ε) satisfies one of the two assumptions

(i) R small enough and ε < 0 small enough in magnitude (Dilute regime),

(ii) R close enough to 1/2 and ε > 0 small enough (Non-dilute regime).

Then there exists one frequency value ωε such that the problem (9) has a non-trivial solution. Moreover,
in both cases, ωε is slightly above ω∗ and we have

ωε − ω∗ = exp


− 4π2cδω

∗R3

δε
(
R‖ψα∗‖2L2(∂D) − 2CapD,α∗

) +O

(
1

ε ln δ
+ 1

)
 ,

when ε and δ goes to zero.

Remark 1. Since ωε is slightly above ω∗ = maxα ω
α, we have that ωε is located in the bandgap region.

This means that the corresponding function uε, the solution to (9), should be localized around the defect.

Remark 2. We have shown that it is enough to perturb the size of the defect slightly to create the
localized mode in the subwavelength case. This is different from the photonic crystal case where the
defect should be large enough to ensure the existence of the localized mode.

Remark 3. There are different physical mechanisms at work in the two different regimes. In the dilute
regime, the interactions are weak between the resonators. Decreasing the defect bubble size increases the
Minnaert resonance of that single resonator [2], creating a mode inside the bandgap. In the non-dilute
regime, the bubbles are closely separated and have strong interactions. Increasing the defect bubble size
reduces the separation, which increases the resonance frequency of that system of bubbles [4]. As we will
numerically verify in Section 5, the shift occurs at R = 1/3, which corresponds to the case where the
bubble radius and the bubble separation are equal.
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4.2 Proof of Lemma 3

Computation of Φ∗ and Ψ∗. Recall that kerA∗(ω∗, δ) is spanned by Ψ∗ and ker
(
A∗(ω∗, δ)

)†
is spanned

by Φ∗. Let us write

Ψ∗ =

(
ψ∗
1

ψ∗
2

)
, Φ∗ =

(
ϕ∗
1

ϕ∗
2

)
,

and assume that Ψ∗ and Φ∗ are chosen so that
∫
∂D

ψ∗
1 = 2πR and

∫
∂D

ϕ∗
2 = 2πR. Next we consider the

kernel of the limiting operator of A∗(ω, δ) when ω → 0, δ → 0. Recall that Sω
D has a log-singularity as

ω → 0, given by (2). Define

Â∗(ω∗) =

(
Ŝω∗

D −Sα∗,0
D

− 1
2I +K∗

D 0

)
.

It is known that ker(− 1
2I + K∗

D) is one-dimensional (see, for instance, [6]). We choose an element

ψ0,∗
1 ∈ L2(∂D) such that

(
− 1

2
I +K∗

D

)
[ψ0,∗

1 ] = 0,

∫

∂D

ψ0,∗
1 = 2πR.

Then we define ψ0,∗
2 = (Sα∗,0

D )−1[Ŝω∗

D

[
ψ0,∗
1 ]
]

and denote

Ψ0,∗ =

(
ψ0,∗
1

ψ0,∗
2

)
.

It can be shown that Ψ∗ = Ψ0,∗ + O(δ ln δ) as δ → 0. To compute Φ∗, we use the well-known fact that
the kernel ker(− 1

2I +KD) is spanned by the constant function χ∂D. Denote

Φ0,∗ =

(
0

χ∂D

)
.

Then it can be shown that Φ∗ = Φ0,∗ +O(δ) as δ → 0.
Since D is a disk we can compute ψ0,∗

1 and ψ0,∗
2 explicitly. Since

∫
∂D

ψ0,∗
1 = 2πR, we have ψ0,∗

1 = χ∂D.
Moreover, we have

Ŝω∗

D [χ∂D] = SD[χ∂D] + 2πRηω∗χ∂D

= (R lnR+ 2πRηω∗)χ∂D

= R lnω∗χ∂D +O(1). (28)

Define
ψα∗ = (Sα∗,0

D )−1[χ∂D].

Then we get ψ0,∗
2 = R lnω∗ψα∗ +O(1) as δ → 0. Expand ψ0,∗

2 in the Fourier basis as

ψ2 =
∑

m∈Z

ame
imθ.

We will need the first coefficient a0. Using (28) it follows that

a0 =
lnω∗

2π

∫

∂D

(
Sα∗

D

)−1

[χ∂D] dσ +O(1)

= − lnω∗

2π
CapD,α∗ +O(1).

Finally, using the method from [3] section 4.3, we can derive the following improved formula for Φ∗ as
δ → 0:

Φ∗ =

(
0

χ∂D

)
− δ

(
ψα∗

0

)
+O(δ2 ln δ).

Proof of (i). We need the low frequency asymptotics of the operator A∗(ω∗, δ). We use the following
asymptotic expansions of the Hankel function for small arguments:

(
H

(1)
0

)′
(z) =

2i

π

1

z
− i

π
z ln z +O(z),

(
H

(1)
0

)′′
(z) = −2i

π

1

z2
− i

π
ln z +O(1).
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Straightforward computations show that, for small k,

d

dk
Sk
D[ϕ] =

1

2πk

∫

∂D

ϕ(y)dσ(y)− k ln k

4π

∫

∂D

|x− y|2ϕ(y)dσ(y) +O(k),

and

d

dk
(Kk

D)∗[ϕ] = −k ln k
2π

∫

∂D

〈x− y, νx〉ϕ(y)dσ(y) +O(k).

Using low-frequency asymptotics of the quasi-periodic Green’s function Γα,k [8], it follows that

d

dk
Sα∗,k
D [ϕ] = O(k), and

d

dk

(
Kα∗,k

D

)∗
[ϕ] = O(1).

Using ω = O(
√
δ) we find, on the subspace V00,

(
d

dω
A∗(ω∗, δ)Ψ∗

)

V00

=

(
O( 1√

δ
)

d
dk (Kk

D)∗[χ∂D] +O(δ ln δ)

)

V00

.

In total, as δ → 0 we have

〈
Φ∗,

d

dω
A∗(ω∗, δ)Ψ∗〉 = 〈χ∂D,

d

dω
(Kω

D)∗[χ∂D]〉+O(
√
δ)

= −ω
∗ lnω∗

2π

∫

∂D

∫

∂D

〈x− y, νx〉dσ(y)dσ(x) = −2πω∗ lnω∗R3 +O(
√
δ).

So, (i) is proved.

Proof of (ii). Using equation 19, we have

(Aε
D)Vmn→V

m′n′
= δmnδm′n′

(−i)πR
2

(
Jn(ωR)H

(1)
n (ωR) −Jn(ωR)H(1)

n (ωRd)
Jn(ωR)
Jn(ωRd)

ωJ ′
n(ωR)H

(1)
n (ωR) −δωJn(ωR)

(
H

(1)
n

)′
(ωRd)

J ′

n
(ωR)

J ′

n
(ωRd)

)
.

Consequently, the operator (Aε
D −AD) is given by

(Aε
D −AD)Vmn→V

m′n′
= δmnδm′n′

(−i)πRJn(ωR)
2



0 H

(1)
n (ωR)− Jn(ωR)H(1)

n
(ωRd)

Jn(ωRd)

0 δω

((
H

(1)
n

)′
(ωR)− J ′

n
(ωR)

(
H(1)

n

)
′

(ωRd)

J ′

n
(ωRd)

)

 .

Using asymptotic expansions of the Bessel function Jn(z) and the Hankel function H
(1)
n (z), for small z,

straightforward computations show that

(−i)πR
2

Jn(ωR)

Jn(ωRd)

(
H(1)

n (ωR)Jn(ωRd)− Jn(ωR)H
(1)
n (ωRd)

)
=

{
R ln R

Rd

+O(ω lnω) n = 0

− R
2n

(
1− R2n

R2n
d

)
+O(ω) n 6= 0

= −ε+O(ε2 + ω lnω),

as ε→ 0. Moreover, we have

(−i)πRJn(ωR)
2

δω

(
(
H(1)

n

)′
(ωR)− J ′

n(ωR)
(
H

(1)
n

)′
(ωRd)

J ′
n(ωRd)

)
=

{
δ
(
1− R2

R2
d

)
+O(δω2 lnω) n = 0

O(δ) n 6= 0

=

{
2δ ε

R +O(δε+ δω2 lnω) n = 0

O(δ) n 6= 0

We are now ready to compute
〈
Φ∗,

(
Aε

D(ω∗, δ)−AD(ω∗, δ)
)
Ψ∗〉. Using the expressions for Φ∗ and

Ψ∗, and using (ω∗)2 = O(δ), we have that as δ → 0 and ε→ 0,

〈
Φ∗,

(
Aε

D(ω∗, δ)−AD(ω∗, δ)
)
Ψ∗〉 =

〈
− δψα∗ ,−Rε lnω∗ψα∗

〉
+
〈
χ∂D, 2a0δ

ε

R
χ∂D

〉
+O(δ + ε2δ ln δ),

= δε lnω∗
(
R‖ψα∗‖2L2(∂D) − 2CapD,α∗

)
+O(εδ + ε2δ ln δ).
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It remains to study the sign of the above expression. Define the factor S = S(R) as

S(R) =
(
R‖ψα∗‖2L2(∂D) − 2CapD,α∗

)
.

We will show that S(R) < 0 in the dilute case while S(R) > 0 in the non-dilute case.

Dilute case. When the bubbles are small, we can compute S(R) explicitly. Assume R = η for some small
η. Then we have [5]

Sα,0
D = SD +O(η).

Using the fact that D is a circle, it is easily verified that

‖ψα∗‖2L2(∂D) =
2π

R(lnR)2
+O(η), CapD,α∗ = − 2π

lnR
+O(η).

We then have (
R‖ψα∗‖2L2(∂D) − 2CapD,α∗

)
=

2π

lnR

(
1

lnR
+ 2

)
,

which is negative for small R.

Non-dilute case. We will show that S(R) is positive for R large enough. We decompose ψα∗ as follows:

ψα∗ = cχ∂D + ϕα∗
,

∫

∂D

ϕα∗
dσ = 0.

Then it is easily verified that

c = −CapD,α∗

2πR
,

so that

‖ψα∗‖2L2(∂D) =
Cap2D,α∗

2πR
+ ‖ϕα∗‖2L2(∂D) ≥

Cap2D,α∗

2πR
.

Consequently,

S(R) ≥ CapD,α∗

2π

(
CapD,α∗ − 4π

)
.

Moreover, we have that CapD,α∗ → ∞ as R → 1/2. Indeed, using the characterisation found in [10], we
have that

CapD,α∗ =

∫

Y \D
|∇v0|2 dx,

where v0 is the harmonic function in Y \D with boundary values

v0 =

{
1, on ∂D

0, on ∂Y.

It is easily verified that this integral is unbounded as R → 1/2. Hence S(R) is positive for R close to
1/2.

5 Numerical illustration

Here we provide numerical examples showing the existence of the subwavelength localized modes.

Asymptotic formula. Observe that the δ-error terms in Lemma 3 only differ from the leading-order
terms by a factor of ln δ, making these expressions unsuitable for numerical computations. Using the
same arguments, it is straight-forward to derive the following more precise asymptotic expressions:

〈
Φ∗,

d

dω
A∗(ω∗, δ)Ψ∗〉 = −2πω∗R3 ln(ω∗R)− πω∗R3 − δR

ω∗ CapD,α∗ +O(δ ln δ),

and

〈
Φ∗,

(
Aε

D(ω∗, δ)−AD(ω∗, δ)
)
Ψ∗〉 = δε (lnR+ 2πηω∗)

(
R‖ψα∗‖2L2(∂D) − 2CapD,α∗

)
+O(εδ3/2 ln δ+ε2δ ln δ).
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Figure 2: Illustration of S(R) as a function of R. The zero S(R0) = 0 is attained at R0 = 0.326.

Implementation. To verify the asymptotic formula, we also compute the localised frequency by dis-
cretizing the operator Mε appearing in (25). Recall that it is given by

Mε(ω) =

(
I +

(
Aε

D(ω, δ)−AD(ω, δ)
) 1

(2π)2

∫

BZ

Aα(ω, δ)−1dα

)
.

We use the Fourier basis for the discretisation as in [5]. Specifically, we use einθ, n = −N, . . . , N as basis
where N is the truncation order. If we increase N , then we should get more accurate results.

The operators AD and Aε
D are already represented in the Fourier basis in (17) and (19), respectively.

We next consider the operator Aα. In [5], it was shown that the operators Sα,k and ∂Sα,k
D /∂ν

∣∣±
∂D

have
the following matrix representations in the Fourier basis:

Sα,k
D |∂D ≈ (Sα

m,n)
N
m,n=−N ,

∂Sα,k
D

∂ν

∣∣±
∂D

≈ (S̃α,±
m,n)

N
m,n=−N ,

where the matrix elements Sα
m,n and S̃α

m,n are given by

Sα
m,n = − iπR

2
Jn(kR)H

(1)
n (kR)δmn − iπR

2
Jn(kR)(−1)n−mQn−mJm(kR),

S̃α,±
m,n = ±1

2
− k

iπR

2

(
Jn · (H(1)

n )′ + J ′
n ·H(1)

n

)
(kR)δmn − iπR

2
Jn(kR)(−1)n−mQn−mkJ

′
m(kR).

(29)
Here, Qn is so called the lattice sum defined by

Qn :=
∑

m∈Z2,m 6=0

H(1)
n (k|m|)ein arg(m)eim·α.

For an efficient method for computing the lattice sum Qn, we refer the reader to [31]. From (29), the
matrix representation of Aα immediately follows. We used N = 7 for the truncation order of the Fourier
basis.

It remains to consider the integral
∫
BZ

(Aα)−1dα. We compute the two-dimensional integration with
respect to α using Gauss quadrature. Then, we finally get the discretization (Mε

m,n) of the operator
Mε(ω). To find the resonant frequency for the localized mode, we apply Muller’s method [8] to the
determinant of the matrix (Mε

m,n). The maximum frequency ω∗ of the first band can be used as a good
initial guess. The band structure of the unperturbed crystal is computed exactly as in [5].

For the material parameters, we use ρw = κw = 5000 and ρb = κb = 1. In this case, we have
δ = 0.0002. Moreover, in both examples below we consider the two cases ε = −0.03R and ε = 0.03R.

In Figure 2, we show the function S(R) over the range R ∈ (0, 0.4). As it can be seen, the function
has a zero at R0 = 0.326 ≈ 1/3. For R below this zero, the crystal is dilute and we expect that ε must
be negative in order to have a defect frequency in the bandgap. For R above this zero, we expect that ε
must be positive.

Example 1. We first consider the dilute case with R = 0.05. In Figure 3, we show the computed band
structure for this case and the frequency ωε for the localized mode in the case ε = −0.03R. In the case
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Figure 3: (Dilute case) Band structure of the unperturbed crystal (black circles) and frequency of localized mode
for the perturbed crystal Cd (red line), with bubble radius R = 0.05 and ε = −0.03×R = −0.0015.

ε = 0.03R, no singular values of Mε(ω) were found. The black circles represents the band structure
of the unperturbed crystal C. The horizontal red line corresponds to the frequency ωε for the localized
mode. The points Γ, X and M represent α = (0, 0), α = (π, 0), and α = (π, π), respectively.

In Figure 3 (right), we plot the magnified subwavelength band. In the first band, the maximum
of ω is attained at the point M (or α = α∗ = (π, π)). The maximum frequency ω∗ of the first band is
ω∗ ≈ 0.2591. The defect frequency computed by discretizing the operator is ωε

d ≈ 0.2592, while the defect
frequency computed using the asymptotic formula is ωε

a ≈ 0.2604. Observe that the defect frequency is
exponentially close to ω∗, leading to a high relative error in the computations. However, the frequency
ωε is clearly located in the bandgap and in the subwavelength regime. Therefore, the numerical results
indicate the existence of a subwavelength localized mode when ε < 0 but not when ε > 0.

Example 2. We next consider the non-dilute case with R = 0.45. In Figure 4, we show the computed
band structure for this non-dilute case, and the frequency ωε for the localized mode in the case ε =
0.03R. No defect frequency was found for ε = −0.03R The maximum frequency ω∗ of the first band is
ω∗ ≈ 0.10806. The defect frequency computed by discretizing the operator is ωε

d ≈ 0.10807, while the
defect frequency computed using the asymptotic formula is ωε

a ≈ 0.10844. Again, the frequency ωε is
located above the subwavelength band.

6 Concluding remarks

In this paper, we have proved for the first time the possibility of localizing waves at the deep subwavelength
scale. We have considered a bubbly crystal and produced a localized mode by perturbing the size of one
bubble. Moreover, we have proven that the sign of the perturbation depends of the crystal: in the
dilute regime the defect bubble should be smaller than the unperturbed bubbles, while in the non-dilute
regime the defect bubble should be larger. We have illustrated our findings with numerical experiments.
Our results in this paper shed light on the mechanism behind the control and guiding of waves at deep
subwavelength scales. In forthcoming works, we plan to investigate the robustness of such subwavelength
defect modes with respect to spatial disorder. We will also consider the possibility of guiding waves at
deep subwavelength scales using line defects. Another challenging problem we plan to tackle is to prove
or disprove the existence of fundamental limits on the Purcell factor in subwavelength bandgap materials.
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