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Abstract

We consider second-order scalar elliptic boundary value problems on un-
bounded domains, which model, for instance, electrostatic fields. We propose
a discretization that relies on a Trefftz approximation by multipole auxiliary
sources in some parts of the domain and on standard mesh-based primal
Lagrangian finite elements in other parts. Several approaches are developed
and, based on variational saddle point theory, rigorously analyzed to couple
both discretizations across the common interface:

1. Least-squares-based coupling using techniques from PDE-constrained
optimization.

2. Coupling through Dirichlet-to-Neumann operators.

3. Three-field variational formulation in the spirit of mortar finite element
methods.

We compare these approaches in a series of numerical experiments.
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1. Introduction

As model problem we consider the second-order scalar elliptic transmis-
sion problem

−∇ · [A (x)∇u] = f in R
d, d = 2, 3, (1a)

u (x) =

{

c log‖x‖+O (‖x‖−1) in R
2, c ∈ R ,

O (‖x‖−1) in R
3 for ‖x‖ → ∞ uniformly,

(1b)

where A : R
d → R

d,d is a symmetric, bounded, uniformly positive-definite
diffusion coefficient. We assume that A agrees with the identity matrix
I ∈ R

d,d outside of a bounded domain Ω⋆ ⊂ R
d: A (x) = I for all x ∈ R

d\Ω⋆.
In addition, f : Rd → R has compact support in Ω⋆. For the decay conditions
(1b), please refer to [1, p. 259, Theorem 8.9].

Thus, the weak solution u ∈ H1
loc

(

R
d
)

of (1) is harmonic in R
d \ Ω⋆, i.e.

it belongs to the continuous Trefftz space

T (D) :=
{

v ∈ H1
loc (D) : △v = 0,

v satisfies decay conditions (1b)
}

(2)

for D = R
d \ Ω⋆.

Trefftz methods seek to approximate u on subdomains of R
d \ Ω⋆ by

means of some finite-dimensional subspace of T (D). Our method uses spaces
spanned by potentials due to external multipole sources. We refer to them
as the MMP approximation after the Trefftz method known as Multiple Mul-
tipole Program; see section 2 for details.

However, functions in a Trefftz space cannot approximate u in Ω⋆. There
we use a standard finite element space Vn, Vn|Ω⋆

⊂ H1 (Ω⋆), together with
the usual primal variational formulation of (1).

The two linked main issues arising are (i) the principle governing the
selection of the MMP approximant and (ii) the coupling between the MMP
domain and the Finite Element domain. Several options for (ii) will be
proposed and discussed in section 3.

0Abbreviations. FEM: Finite Element Method. MMP: Multiple Multipole Program.
Index f in formulas: FEM. Index m in formulas: MMP. MAS: Method of Auxiliary Sources.
PDE: Partial Differential Equation. DtN: Dirichlet-to-Neumann.
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1.1. Related Work

Trefftz methods for elliptic boundary value problems have a venerable
history. A particular class are Methods of Auxiliary Sources, of which MMP
is an example; see [2, 3] for comprehensive surveys.

Algorithm development of MAS has been pursued by groups worldwide,
for instance in Georgia (group of R. Zaridse), UK [4], Greece [5, 6], Japan
[7, 8, 9], Russia [10], and also at ETH Zurich (see section 2). Most sim-
ulations reported in the literature tackle dimensionally reduced 2D models
(translational or rotational symmetry, Poisson’s or Helmholtz equation), but
full 3D computations are becoming more common.

MAS coefficients are generally computed by least-squares or weighted
residual methods, which simply enforce (weak) continuity and boundary
conditions irrespectively of the considered PDE. On the other hand, Dis-
continuos Galerkin formulations for Trefftz methods arrive at a local varia-
tional formulation by applying integration by parts to the PDE, similarly to
FEM. Together with A. Moiola and I. Perugia, the second author established
a complete and rigorous convergence theory for the class of Discontinuos
Galerkin Trefftz methods for both acoustic and electromagnetic scattering
[11, 12, 13, 14, 15].

Concerning accuracy, it is universally reported that MAS achieves expo-
nential convergence, provided that 1. the solution is smooth and possesses
an analytic extension, and 2. both the curve Σ where the Trefftz functions
are disposed and (adaptive) quadrature rules are chosen judiciously (see sec-
tion 2.2 and [16, 17, 9]). However, in case of nonanalytic boundaries Γ of the
MAS domain or nonsmooth data, it may not be possible to find an analytic
extension of the solution beyond Γ at all. In 2D, this can be remedied by
including special corner singular functions in the representation formula, see
[17], or by letting Γ jut towards the corner [5, Section 4].

The ill-conditioning resulting fromMAS augmentation, though inevitable,
remains manageable [16]. In fact, MAS linear systems are usually ill-conditioned,
something that can drastically reduce the accuracy. However, there exists a
numerical algorithm that allows to obtain errors close to machine precision
for the Helmholtz equation by performing a suitable change of basis [18].

Yet, there is no rigorous mathematical guidance for finding suitable curves
Σ in 3D, especially if Γ features corners. For simple and canonical geome-
tries, good choices can be made based on heuristics and experience, but this
severely limits the applicability of pure MAS in 3D.
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At the same time, little work has been devoted to the investigation of
methods combining MAS with conventional finite element methods. To the
best of our knowledge, this coupling has only been tackled from an engineer-
ing perspective.

Recently, J. Smajic, Ch. Hafner, and collaborators have demonstrated a
simple methodology for FEM–MMP coupling at the level of 2D nonlinear
magnetostatic analysis in [19]. Coupling is done by ad-hoc point matching
of field values, the Dirichlet data, on the interface between the FEM and
MMP domains (collocation method), while the Neumann data enter through a
boundary term of the variational formulation. The resulting overdetermined
FEM–MMP system of equations is solved in the least-squares sense.

1.2. Novelty & Outline

The authors are not aware of any prior work discussing the coupling of
FEM and MAS from the perspective of numerical analysis. The approaches
we propose to realize the coupling are described here for the first time.

After section 2 on MMP, the specific MAS employed in our work, in
section 3 we illustrate the coupling approaches with details on their well-
posedness and numerical stability. Numerical experiments are included in
section 4, followed by some conclusive remarks (section 5).

2. MMP Trefftz Spaces

The concept of the Multiple Multipole Program was proposed by Ch. Hafner
in his dissertation [20] based on the much older work of G. Mie and I. N. Vekua
[21, 22]. Essentially, the Mie-Vekua approach approximates the field in a 2D
multiply-connected domain by a multipole expansion (see section 2.1) sup-
plemented with some generalized harmonic polynomials (Bessel functions).
Extending these ideas, MMP introduces more multipoles (multiple multi-
poles) than required according to Vekua’s theory [22].

2.1. Multipoles

Basis functions spanning the MMP Trefftz spaces (2) are the so-called
multipoles, potentials spawned by (anisotropic) point sources. This is why
MMP belongs to the class of Methods of Auxiliary Sources (section 1.1).
Given (2), multipoles are exact solutions of the homogeneous PDE △u = 0
subject to the decay conditions (1b).
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Figure 1: Sample multipoles of (3), i.e. basis functions of the 2D MMP Trefftz space (2).

Amultipole can be written as v (x) := f (rxc) g (θxc) or v (x) := f (rxc) g (θxc, ϕxc)
in a polar/spherical coordinate system in R

2/R3 (r ∈ [0,∞), θ ∈ [0, 2π),
ϕ ∈ [0, π]), with respect to its center c ∈ R

d, d = 2, 3. Here, (rxc, θxc, ϕxc)
⊤

are coordinates of the vector xc := x− c.
The function f (rxc) describing the radial dependence induces a singu-

larity at the center c, because |f (r)| → ∞ for r → 0. It also yields the
desired decay condition at infinity. Because of their singularity, multipoles
must always be centered outside of the domain where they are used as a tool
for approximation.

The spherical dependence g (θxc, ϕxc) is generally formulated in terms
of spherical harmonics [1, p. 250]. The special multipoles chosen for our
numerical experiments are:

In R
2 :







v00 (rxc, θxc) = log rxc
vl0 (rxc, θxc) = r−l

xc cos (lθxc) , l = 1, . . . ,∞,

vl1 (rxc, θxc) = r−l
xc sin (lθxc) , l = 1, . . . ,∞.

(3)

Figure 1 shows three examples of multipoles according to (3) with center
c = 0.

In R
3 : vlm (rxc, θxc, ϕxc) = r−l−1

xc Ylm (θxc, ϕxc) , l = 0, . . . ,∞ (4)

m = −l, . . . , l

Here, Ylm (θ, ϕ) are spherical harmonics [1, p. 250]. These multipoles are
used for the numerical experiment of sections 4.1 and 4.2, and section 4.3
They also comply with (1b) [1, p. 259, Theorem 8.9].

Each multipole is characterized by a location, i.e. its center c, and the
(degree) parameters l and m. In our convergence studies we always place
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several multipoles at a given location up to a certain order, which is the
maximum degree of multipoles with that center. Hence, we use the term
multipole expansion when referring to several multipoles in one point up to
a certain order, which is the degree where the expansion is truncated. The
total number of multipoles used for approximation is added to yield the total
number of degrees of freedom of the discretization of the Trefftz space.

2.2. Approximation Properties

If the solution u of the 2-dimensional equation (1) possesses an analytic
extension beyond the MMP domain Ωm ∈ R

2, into the region of Ωc

m :=
R

2 \ Ωm between Γ := ∂Ωm and the curve Σ along which the multipole
expansions are placed, then we expect exponential convergence in terms of the
number of degrees of freedom, both when the number of multipole expansions
and the order of the expansions is raised. This result has been proven in [9,
p. 1385, Theorem 4.1] for the dipole simulation method, but the author of
[9] expects that the proof can be extended to MMP [9, p. 1392, Section 6].

Moreover, one can prove that convergence results in H1-seminorm for
harmonic polynomials inside a domain Ω⋆ ∈ R

2 also hold for multipoles in
the complement Ωc

⋆ := R
2 \ Ω⋆. This is stated in the following theorem. A

corresponding result for d = 3 remains elusive.

Proposition 1. Let d = 2. If the solution u : Ωc

⋆ → R

• is harmonic in the complement Ωc

⋆ of a 2D bounded uniformly star-
shaped [23, p. 56, Assumption 3.1.1] (w.r.t. the origin) domain Ω⋆,

• satisfies the decay condition (1b) at infinity,

• and possesses a harmonic extension into parts of the domain Ω⋆,

then its best approximation by multipoles located in the origin converges ex-
ponentially with respect to the order of the multipole expansion in the H1-
seminorm.

Proof. The proof is based on the Kelvin transform [1, p. 259, Equation 8.30]:

u → Φ∗u with (Φ∗u) (x) := u (Φ (x)) , Φ (x) :=
x

‖x‖2
, x ∈ R

2 \ {0} . (5)

For the H1-seminorm we can show that

|u|H1(D) = |Φ∗u|H1(Φ(D)) ∀u : D ⊂ R
2 → R, (6)
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where D is any domain. When the Kelvin transform is applied to harmonic
polynomials p (r, θ) = rl cs (lθ), with r, θ polar coordinates, l ∈ Z

∗, cs ∈
{cos, sin}, we obtain multipoles:

(Φ∗p) (r, θ) = r−l cs (lθ) . (7)

Let us now consider a solution u respecting the conditions stated above
and the domain Ωm := Ωc

⋆ where we want to estimate the MMP approxi-
mation. We first define ũ := u − c log r, c ∈ R, whose decay condition is
ũ (x) = O (‖x‖−1) for ‖x‖ → ∞ uniformly. Under the Kelvin transform,
Φ∗ũ = O (‖x‖) for ‖x‖ → 0.

Without loss of generality, we assume that Φ (Ωm) contains the unit disk
and Φ∗ũ is harmonic in Φ (Ωm), which implies that Φ∗ũ possesses a harmonic
extension beyond Φ (Ωm). Thus we can conclude exponential convergence
in H1-seminorm for the approximation by harmonic polynomials of Φ∗ũ in
Φ (Ωm) [23, p. 61, Remark 3.2.6]:

∀p ∈ Z
∗, ∃α

(p)
l , β

(p)
l ∈ R , l = 1, . . . , p :

∣

∣

∣
Φ∗ũ−

p
∑

l=1

α
(p)
l rl cos (lθ) + β

(p)
l rl sin (lθ)

∣

∣

∣

H1(Φ(Ωm))
≤ C qp (8a)

for some 0 ≤ q ≤ 1, C ∈ R
+ independent of p.

By applying (6) and (7) to (8a), we get that

∀p ∈ Z
∗, ∃α

(p)
l , β

(p)
l ∈ R , l = 1, . . . , p :

∣

∣

∣
ũ−

p
∑

l=1

α
(p)
l r−l cos (lθ) + β

(p)
l r−l sin (lθ)

∣

∣

∣

H1(Ωm)
≤ C qp (8b)

for some 0 ≤ q ≤ 1, C ∈ R
+ independent of p.

Finally we can restore the proper decay condition of u, u(x) = c log r +

O (‖x‖−1) for ‖x‖ → ∞, where c ∈ R is given by the coefficient α
(p)
0 of

the zeroth-order multipole v00 (r, θ) = log r (see (3)). This concludes the
proof.

By means of a simple numerical experiment we illustrate these conver-
gence results in R

2. Ωm is the complement of the unit square [0, 1]2. We test
the following solution which enjoys a O (‖x‖−1) decay for ‖x‖ → ∞:

u (x) = ρ−2
xc sin (2θxc) , (9)
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where rxc ∈ [0,∞) and θxc ∈ [0, 2π) are polar coordinates of vector x − c.
We consider two positions of c: (0.4, 0.4)⊤ and (0.2, 0.2)⊤. (9) represents a
harmonic function ∈ H1

(

R
2 \ [0, 1]2

)

that uniformly decays for ‖x‖ → ∞
with a singularity in c.

Multipoles are chosen from (3). We consider two configurations:

1. Multipole expansions up to a fixed order 1 uniformly located on a circle
at the center of the unit square [0, 1]2 with radius 0.25. During the test
we increase the number of expansions.
Note that, given this choice of multipoles, the singularity of the solution
with c = (0.4, 0.4)⊤ lies inside the circle of multipoles, i.e. the solution
has an analytic extension between Γ and the circle of multipoles Σ. On
the other hand, the solution with c = (0.2, 0.2)⊤ has the singularity
outside Σ and does not have an analytic extension.

2. A single multipole expansion of a given order placed in the center of
the unit square [0, 1]2. During the test we increase the order.

We compute the best approximation of the solutions in spaces spanned by
multipoles by means of the collocation method on uniformly spaced points
on the edges of the unit square (corners are avoided). The number of points
is chosen to make the overdetermined system almost square. The system is
then solved by QR decomposition.

The approximation error in H1-seminorm is computed using

∫

Ωm

|∇ (u− um)|
2 dx =

∫

∂Ωm

(u− um)
[

n · ∇ (u− um)
]

dS (10)

and the integral is approximated by Gaussian quadrature.
For the solution with an analytic extension (c = (0.4, 0.4)⊤), we observe

exponential convergence given both fixed-order multipole expansions on a
circle and one variable-order expansion placed in the origin, as shown in
figs. 2a and 2b, respectively. This is in accordance with Proposition 1 and
the literature.

For the solution without an analytic extension (c = (0.2, 0.2)⊤), we see
convergence from fig. 3, but without the same regular pattern as fig. 2 (and
the error is much higher).
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Figure 2: Convergence plots of MMP for solution ρ−2
xc sin (2θxc) with c = (0.4, 0.4)

⊤
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error-dimension is in logarithmic scale. The exponential convergence curve C exp
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)
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C, γ, δ ∈ R, is fitted to the data.

20 40 60 80
dofs (number)

10 -4

10 -2

H
1 

re
la

tiv
e 

er
ro

r

R2  = 0.7791

(a) Increasing number of expansions.

10 20 30 40 50
dofs (order)

10 -2

10 -1

H
1 

re
la

tiv
e 

er
ro

r

R2  = 0.8175

(b) Expansion with increasing order.
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3. Coupling Strategies

We consider the partition R
d = Ωf ∪ Γ ∪ Ωm, d = 2, 3, Γ := ∂Ωf = ∂Ωm,

Ωf ∩ Ωm = Ø. Ωf is a bounded Lipschitz domain, the FE domain, whereas
Ωm is dubbed the MMP domain. The terminology indicates the type of
approximation of u to be employed in the subdomain. Coupling is done
across the interface Γ. We demand Ω⋆ ⊂ Ωf, but not necessarily Ω⋆ = Ωf. If
Ω⋆ 6= Ωf. In this case Γ is an artificial interface.

We define

uf := u|Ωf
∈ H1 (Ωf) , um := u|Ωm

∈ H1
loc (Ωm) . (11)

As natural norms we use energy norms. For uf defined on the bounded
domain Ωf, the energy norm is ‖uf‖H1(Ωf). For um ∈ T (Ωm) and d = 3, we
use ‖um‖T (Ωm) := |um|H1(Ωm) := ‖∇um‖L2(Ωm). For d = 2, the energy norm is
not necessarily well-defined. In this case we rely on the norm

‖um‖T (Ωm) := |c|+ ‖∇ (um − c log‖x‖)‖L2(Ωm) . (12)

with c ∈ R, such that

(um − c log‖x‖) (x) = O
(

‖x‖−1
)

for ‖x‖ → ∞ . (13)

We denote by γn the co-normal trace operator γn : H1
loc (△,Ω◦) →

H−
1

2 (Γ), γnv := n · A∇v, v ∈ H1
loc (△,Ω◦), H

1
loc (△,Ω◦) the space of func-

tions v ∈ H1
loc (Ω◦) for which △v ∈ L2

loc (Ω◦), given ◦ = f,m. We always take
n as the normal pointing outwards with respect to Ωf into Ωm.

Across Γ the solution u of (1) has to satisfy the transmission conditions
[24, p. 107, Lemma 5.3]

uf
∣

∣

Γ
= um|Γ , (14a)

γnu
f
∣

∣

Γ
= γnu

m|Γ . (14b)

The starting point of all the coupling approaches is the weak form of (1)
in Ωf. By testing the PDE with vf ∈ H1 (Ωf), integrating by parts over Ωf,
and using the transmission condition (14b), we obtain

∫

Ωf

A∇uf · ∇vf dx−

∫

Γ

γnu
m vf dS =

∫

Ωf

f vf dx ∀vf ∈ H1 (Ωf) . (15)
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Depending on how we impose the additional transmission condition (14a),
we end up with different coupling approaches that lead to different linear
variational saddle point problems to be discussed in the following sections.
Throughout, we will rely on the abstract saddle point theory, as presented,
for instance, in [25, Chapter III, Section 4].

3.1. PDE-constrained Least-Squares Coupling

Taking the cue from (14a), we seek uf ∈ H1 (Ωf), u
m ∈ T (Ωm),

• minimizing
JΓ

(

uf, um
)

:= ‖uf − um‖2L2(Γ) (16)

• and satisfying the constraint (15).

This is a quadratic minimization problem under a linear variational con-
straint, whose necessary and sufficient optimality conditions (KKT-conditions)
give rise to the following saddle point problem:

Seek uf ∈ H1 (Ωf) , u
m ∈ T (Ωm) , p

f ∈ H1 (Ωf) :
{

aLS
((

uf, um
)

,
(

vf, vm
))

+ bLS
((

vf, vm
)

, pf
)

= 0
bLS

((

uf, um
)

, qf
)

=
∫

Ωf

f qf dx

∀vf ∈ H1 (Ωf) , ∀v
m ∈ T (Ωm) , ∀q

f ∈ H1 (Ωf) , (17)

where

aLS
((

uf, um
)

,
(

vf, vm
))

:=

∫

Γ

(

uf − um
) (

vf − vm
)

dS, (18a)

bLS
((

uf, um
)

, qf
)

:=

∫

Ωf

A∇uf · ∇qf dx−

∫

Γ

γnu
m qf dS. (18b)

The constraint implied by the second line of (17) uniquely defines a function
uf = uf (um), satisfying γnu

f = γnu
m from (14b). Thus, the existence and

uniqueness of a solution to (17) follows from those for (1). However, stability
in energy norms cannot be expected as aLS fails to be coercive on the kernel
of bLS.
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Remark 1. If we relied on the H
1

2 (Γ)-inner product 〈·, ·〉
H

1
2 (Γ)

and defined

aLS
((

uf, um
)

,
(

vf, vm
))

:= 〈uf − um, vf − vm〉
H

1
2 (Γ)

, (19)

then the ellipticity on the kernel condition of abstract saddle point theory
would be satisfied for (17). To see it note that, if

(

uf, um
)

∈ H1 (Ωf)×T (Ωm)

satisfy bLS
((

uf, um
)

, qf
)

= 0 for all qf ∈ H1 (Ωf), then integration by parts
in Ωm shows

|uf|2H1(Ωf)
+ |um|2H1(Ωm) ≤ C

{

‖uf − um‖2
H

1
2 (Γ)

+ ‖γnu
f − γnu

m‖2
H−

1
2 (Γ)

}

(20)

for some C ∈ R
+. The second term on the right-hand side vanishes. Yet, the

H
1

2 (Γ)-inner product is nonlocal and, consequently, not suitable for numer-
ical purposes.

The Galerkin discretization of (17) is straightforward:

1. We replace H1 (Ωf) with a Lagrangian finite element space1 Vn built on
a mesh of Ωf.

2. We approximate um and vm in a finite-dimensional Trefftz space Tn ⊂
T (Ωm).

We appeal to variational saddle point theory and note that a uniform discrete
inf-sup condition of abstract saddle point theory for bLS is immediate.

Yet, ellipticity on the discrete kernel,

kern b
LS :=

{(

vfn, v
m
n

)

∈ Vn × Tn : bLS
((

vf, vm
)

, qf
)

= 0 ∀qf ∈ Vn

}

, (21)

hinges on an inverse inequality. Define

Kn := sup
{

‖γnu
m
n ‖L2(Γ) : um

n ∈ Tn , ‖γnu
m
n ‖H−

1
2 (Γ)

= 1
}

. (22)

By the equivalence of all norms on finite dimensional spaces, a finiteKn ∈ R
+

will exist. Let
(

uf
n, u

m
n

)

∈ kern b
LS. This means that

∫

Γ
γnu

m
n dS = 0, which

1The subscript n tags spaces, functions, etc. connected with discrete transmission prob-
lems.
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implies ∇um
n (x) = O (‖x‖−2). As a consequence, ∇um

n ∈ L2 (Ωm) also for
d = 2. Thus, we get

∫

Ωf

A∇uf
n · ∇uf

n dx+

∫

Ωm

‖∇um
n ‖

2 dx =

∫

Γ

(

uf
n − um

n

)

γnu
m
n dS. (23)

We conclude that, with C ∈ R
+ independent of the choice of both Vn and

Tn,

‖∇uf
n‖

2
L2(Ωf)

+ ‖∇um
n ‖

2
L2(Ωm) ≤ C ‖uf

n − um
n ‖L2(Γ) · ‖γnu

m
n ‖L2(Γ). (24)

Next, we use the inverse inequality implicit in (22) together with the
estimate ‖γnu

m‖
H−

1
2 (Γ)

≤ C ‖∇um‖L2(Ωm) ∀um ∈ T (Ωm), C ∈ R
+, and

obtain
‖∇uf

n‖L2(Ωf) + ‖∇um
n ‖L2(Ωm) ≤ C Kn ‖u

f
n − um

n ‖L2(Γ), (25)

which proves the ellipticity of aLS on kern b
LS, albeit with a constantKn tend-

ing to zero as the Trefftz space Tn is refined. Hence, the discrete variational
problem is stable, but convergence is guaranteed only if, asymptotically, the
approximation errors decay faster than Kn increases.

3.2. Dirichlet-to-Neumann-based Coupling

We take into account the continuity transmission condition (14a) in weak
form, testing it with co-normal traces γnv

m of vm ∈ T (Ωm):
∫

Γ

uf γnv
m dS −

∫

Γ

um γnv
m dS = 0 ∀vm ∈ T (Ωm) . (26)

Combining (26) with the variational form of (15), we end up with:

Seek uf ∈ H1 (Ωf) , u
m ∈ T (Ωm) :







∫

Ωf

A∇uf · ∇vf dx −
∫

Γ

γnu
m vf dS =

∫

Ωf

f vf dx ∀vf ∈ H1 (Ωf)
∫

Γ

uf γnv
m dS −

∫

Γ

um γnv
m dS = 0 ∀vm ∈ T (Ωm)

(27)

The analysis of (27) on both the continuous and discrete levels is based on
splitting uf, vf ∈ H1 (Ωf) as

uf = uf
⋆ + µ

vf = vf⋆ + ν
, uf

⋆, v
f
⋆ ∈ H1

⋆ (Ωf) :=
{

w ∈ H1 (Ωf) :

∫

Ωf

w dx = 0
}

, µ, ν ∈ R,

(28)

13



which leads to the following saddle point problem:

Seek uf
⋆ ∈ H1

⋆ (Ωf) , u
m ∈ T (Ωm) , µ ∈ R :























∫

Ωf

A∇uf
⋆ · ∇vf⋆ dx −

∫

Γ

γnu
m vf⋆ dS =

∫

Ωf

f vf⋆ dx
∫

Γ

uf
⋆ γnv

m dS −
∫

Γ

um γnv
m dS +

∫

Γ

µ γnv
m dS = 0

−
∫

Γ

γnu
m dS =

∫

Ωf

f dx

∀vf⋆ ∈ H1
⋆ (Ωf) , ∀v

m ∈ T (Ωm) . (29)

Galerkin discretization of (29) is straightforward: as in section 3.1, we
replace H1 (Ωf) with a Lagrangian finite element space and T (Ωm) with a
finite-dimensional subspace Tn.

To apply saddle point theory to (29), let us define the following operators:

aDtN
((

uf
⋆, u

m
)

,
(

vf⋆, v
m
))

:=

∫

Ωf

A∇uf
⋆ · ∇vf⋆ dx−

∫

Γ

γnu
m vf⋆ dS +

+

∫

Γ

uf
⋆ γnv

m dS −

∫

Γ

um γnv
m dS, (30a)

bDtN (um, µ) :=

∫

Γ

γnu
m µ dS. (30b)

For um ∈ ker bDtN, we have that
∫

Γ
γnu

m dS = 0, which implies∇um (x) =
O (‖x‖−2) for ‖x‖ → ∞. As a consequence,

aDtN
((

uf
⋆, u

m
)

,
(

uf
⋆, u

m
))

=

∫

Ωf

A∇uf
⋆ · ∇uf

⋆ dx+

∫

Ωm

‖∇um‖2 dx. (31)

This proves the ellipticity on the kernel in both the continuous and dis-
crete settings: the variational problems are uniformly stable. The inf-sup
condition for bDtN of (30b) is trivial considering that µ ∈ R and

∫

Γ
γnu

m dS 6=
0 for some um ∈ T (Ωm).

3.3. Multi-Field Coupling

We introduce the unknown λ := γnu
m and insert it into (15), while we

enforce both the defining equation λ := γnu
m and the transmission condition

14



(14a) in a weak sense. Note that (14a) is an equation connecting traces in

H
1

2 (Γ) and therefore it has to be tested with functions in the dual space

H−
1

2 (Γ). We end up with:

Seek uf ∈ H1 (Ωf) , u
m ∈ T (Ωm) , λ ∈ H−

1

2 (Γ) :


















∫

Ωf

A∇uf · ∇vf dx −
∫

Γ

λ vf dS =
∫

Ωf

f vf dx

−
∫

Γ

γnu
m vm dS +

∫

Γ

λ vm dS = 0

−
∫

Γ

uf vλ dS +
∫

Γ

um vλ dS = 0

∀vf ∈ H1 (Ωf) , ∀v
m ∈ T (Ωm) , ∀vλ ∈ H−

1

2 (Γ) . (32)

For the Galerkin discretization of (32), we replace H1 (Ωf) with a La-
grangian finite element space Vn and T (Ωm) with a finite-dimensional sub-
space Tn, as in sections 3.1 and 3.2. For discretizing λ we use the traces of
the finite element functions in Vn on the boundary.

In order to apply saddle point theory to (32), let us consider the left-hand
side of (32) and define the following bilinear form:

aMF
((

uf, um
)

,
(

vf, vm
))

:=

∫

Ωf

A∇uf · ∇vf dx−

∫

Γ

γnu
m vm dS. (33)

Let us also define

bMF
((

uf, um
)

, λ
)

:=

∫

Γ

(

uf − um
)

λ dS. (34)

We restrict ourselves to d = 3 and observe that, in this case,

aMF
((

uf, um
)

,
(

uf, um
))

=

∫

Ωf

A∇uf · ∇uf dx+

∫

Ωm

‖∇um‖2 dx. (35)

In the continuous case we have that

ker bMF =
{

vf ∈ H1 (Ωf) , v
m ∈ T (Ωm) : vf = vm on Γ

}

(36)

and ellipticity on the kernel is clear because aMF induces a norm on ker bMF

that is equivalent to the energy norm.
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In the discrete case, since Vn contains constant functions, the kernel of
aMF again contains only piecewise constant functions inside Ωf combined with
the zero function in Ωm. Obviously, the intersection of this space with the
discrete kernel kern b

MF must be trivial. This amounts to ellipticity on the
kernel in the discrete case.

The continuous inf-sup condition for bMF is a consequence of the duality
of H

1

2 (Γ) and H−
1

2 (Γ).
We discuss the discrete inf-sup condition for the concrete case of piecewise

linear Lagrangian finite elements on a tetrahedral mesh Mf of Ωf: Vn =
S0
1 (Mf), with

S0
1 (Mf) :=

{

v ∈ C0 (Ωf) : ∀K ∈ Mf : v|K (x) = αK + βK · x ,

αK ∈ R, βK ∈ R
3, x ∈ K

}

⊂ H1 (Ωf) , Mf mesh of Ωf . (37)

The H−
1

2 -norm of λn ∈ Vn can be expressed as

‖λn‖
H−

1
2 (Γ)

:= sup
v∈H

1
2 (Γ)

∫

Γ

Qn v λn dS

‖v‖
H

1
2 (Γ)

≤ C sup
v∈H

1
2 (Γ)

∫

Γ

Qn v λn dS

‖Qn v‖H
1
2 (Γ)

, (38)

where Qn : L2 (Γ) → Vn|Γ is the L2-orthogonal projection operator such that,
given u ∈ L2 (Γ),

Qn u ∈ Vn|Γ :

∫

Γ

(u−Qn u) vn dS = 0 ∀vn ∈ Vn . (39)

Under mild assumptions on the surface mesh Mf|Γ, we have that ‖Qn uΓ‖H1(Γ) ≤
C ‖uΓ‖H1(Γ) ∀uΓ ∈ H1 (Γ), C ∈ R

+ independent of Vn [26, 27, 28]. Appealing
to interpolation between L2 (Γ) and H1 (Γ), we conclude with

‖Qn uΓ‖
H

1
2 (Γ)

≤ C ‖uΓ‖
H

1
2 (Γ)

, (40)

which shows (38).

Remark 2. Summing up, the mesh-independent stability can be confirmed
for DtN-based coupling from section 3.2 and for the multi-field approach from
section 3.3, whereas it remains elusive for the least-squares technique exam-
ined in section 3.1. However, numerical tests, some of which are reported in
the next section, do not confirm a superior performance of the two former
approaches compared to the latter.
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4. Numerical Experiments

Throughout we use piecewise linear Lagrangian finite elements, i.e. Vn =
S0
1 (Mf) (see (37)), on triangular/tetrahedral meshes Mf of Ωf.
To study the convergence we employ uniform h-refinement of Mf and

p-refinement of the Trefftz approximation, in the sense that we increase the
number of multipole expansions. The p-refinement of the multipoles is carried
out depending on h-refinement of Mf. Details on this dependence are given
for each convergence test.

We monitor the following L2-errors:

1. The error in the FE domain, which is the relative L2 (Ωf)-error com-

pared to the reference solution in Ωf, i.e. ‖u− un‖L2(Ωf)

/

‖u‖L2(Ωf) ,

un ∈ S0
1 (Mf) the finite element solution.

2. The MMP error on the interface, which is the relative L2 (Γ)-error
compared to the reference solution on Γ.

The average between the relative L2-error for FEM in Ωf and the relative
L2-error for MMP on Γ is the total relative error of the coupling.

To control the impact of numerical integration for FEM, we use a Gaus-
sian quadrature rule that is exact for polynomials of degree 2 (order 3).

Implementation. The code is written in C++14, using C++11 multithreading
for parallelization. We use Eigen v3.2.10 [29] for linear algebra and HyDi

[30] for the FEM component. The PARDISO v5.0.0 solver [31, 32] provides the
sparse LU decomposition to invert the matrices of the coupling, characterized
by nontrivial sparsity patterns.

4.1. 2D Poisson’s Equation With Exact Solution

We solve −△u = j in R
2, with piecewise constant source j, |j| = 1.05·106

in Ω⋆ and = 0 elsewhere. Ω⋆ is formed by two disks, with j having a different
sign in each of them. The geometry is shown in fig. 4; the coupling boundary
Γ is artificial.

The exact solution is given by the fundamental solution of 2D Poisson’s
equation integrated with Gaussian quadrature of order 3. Multipole expan-
sions are uniformly positioned on a circle of radius 1 centered in the origin.
We only use multipoles up to order 1.
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Figure 4: The geometry represents the FEM domain Ωf. The violet disks of radius 0.1
represent Ω⋆, the area where j is nonzero: in one it is = 1.05·106, in the other = −1.05·106.
They are centered at (0.5, 0.5)

⊤
and (−0.5, 1)

⊤
. The black circle centered in the origin

with radius 2 represents the artificial coupling boundary Γ.
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Figure 5: h-refinement log-log plot for 2D Poisson with exact solution. The number of
multipoles is set to the logarithm of the number of vertices of the FEM meshes on Γ. Plot
obtained with the DtN-based approach.
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Figure 6: Meshwidth h vs. MMP degrees of freedom for 2D Poisson with exact solution:
total relative error. The h- and error-dimensions are in logarithmic scale. Plot obtained
with the DtN-based approach.

Figure 5 shows the h-refinement convergence plot for the DtN-based ap-
proach. In order to balance the errors, the number of multipoles is set to
the natural logarithm of the number of vertices of the FEM meshes on the
boundary Γ. This reflects the expected exponential convergence of the MMP
approximation versus the algebraic convergence of the FE approximation.

Plots obtained with the other approaches look the same. We can clearly
identify a quadratic convergence of the FEM and MMP errors in terms of
the meshwidth.

Figure 6 shows a surface plot of the total relative L2-error for the DtN-
based approach. Plots obtained with the other approaches look the same.
The error decreases with h (algebraic convergence) and is generally indepen-
dent from the number of multipoles. This is due to the fact that the exact
solution is so easy to approximate in the MMP domain that it can already be
represented by very few multipoles. However, the error also becomes worse
with the coarsest meshes and the highest number of multipoles considered:
the FE error dominates.
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(a) The geometry represents the
FEM domain Ωf = Ω⋆. Γ coin-
cides with the discontinuities of
κ and j.

(b) The geometry represents the
FEM domain Ωf that has differ-
ent κ and j. Γ lies at a positive
distance from Ω⋆ and is polygo-
nal.

(c) The geometry represents the
FEM domain Ωf that has differ-
ent κ and j. Γ lies at a positive
distance from Ω⋆ and is C1.

Figure 7: The violet U-shape, which fits into [−1, 1]
2
, represents Ω⋆ with κ = 1

10
and

j = 1.05 · 106. The other part of the geometry is characterized by κ = 1 and j = 0. The
brown line is the curve along which multipoles are positioned uniformly. Local refinement
at the corners of the internal square (where the meshwidth h is ∼ r3, with r distance from
the closest corner) is needed because the solution is not smooth there.

4.2. 2D Diffusion Problem with Jumping Coefficients

We solve −∇ · (κ∇u) = j in R
2, with κ = 1

10
, j = 1.05 · 106 in Ω⋆ and

κ = 1, j = 0 elsewhere. Ω⋆ is the U-shaped region displayed in fig. 7. For
want of an exact solution, as reference solution we rely on the numerical
solution provided by a mesh substantially more refined than the finest mesh
used in the convergence study.

All types of meshes employed are shown in fig. 7: we consider three
examples where the boundary Γ has different positions and shapes.

With Γ at the discontinuities of κ and j, multipoles are uniformly posi-
tioned along the skeleton inside Ωf (see fig. 7a). With Γ at a positive distance
from Ω⋆, that is, in the case of an artificial coupling boundary, multipoles
are uniformly positioned along a line following the skeleton of Ωf \Ω⋆, which
is positioned at a distance of 0.15 from ∂Ω⋆ (see figs. 7b and 7c). We only
use multipoles of order 0 (fundamental solutions of −△u = 0).

Given the different boundaries Γ, for a fair comparison the MMP error has
not been computed as a boundary error, but on coarser meshes encompassing
the area around Ωf bounded by [−4, 4]2. The number of multipoles is set to
the natural logarithm of the number of vertices of the FEM meshes on the
boundary Γ, multiplied by 10.
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(a) Obtained with the DtN-
based approach.
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(c) Obtained with the multi-field
approach.

Figure 8: h-refinement log-log plots for 2D Poisson without exact solution. Along the
x-axis we show the number of entities of the FEM mesh. The number of multipoles is set
to the logarithm of the number of vertices of the FEM meshes on Γ, multiplied by 10. Γ
coincides with the discontinuities of κ and j (see fig. 7a).

Figure 8 shows the h-refinement convergence plots for all coupling ap-
proaches given Γ at the discontinuities. We can identify an algebraic conver-
gence of the FEM and MMP errors, but with quite different rates depending
on the coupling approach.

Figure 9 shows the h-refinement convergence plots for the DtN-based
approach given Γ at a positive distance from Ω⋆, either with or without
corners. Plots obtained with the other approaches look the same. We can
clearly identify an algebraic convergence of the FEM and MMP errors.

4.3. 3D Poisson’s Equation With Exact Solution

We solve −△u = q in R
2, with q = 3

4π
in Ω⋆ and = 0 elsewhere. Ω⋆

is formed by a sphere of radius 1 centered at (0, 0, 0.5)⊤. The geometry is
shown in fig. 10; the coupling boundary Γ is artificial.

The exact solution is given by an exact integration inside Ω⋆ and the
fundamental solution of 3D Poisson’s equation (integrated with Gaussian
quadrature of order 3) outside. Multipole expansions are uniformly posi-
tioned on a circle of radius 1 centered in the origin and lying on the XY -
plane. We only use multipoles up to order 1.

Figure 11 shows the h-refinement convergence plot for the DtN-based
approach. The number of multipoles is set to the natural logarithm of the
number of vertices of the FEM meshes on the boundary Γ. Plots obtained
with the other approaches look the same. We can identify an algebraic con-
vergence of the FEM and MMP errors.
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(a) Γ is polygonal (see fig. 7b).
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(b) Γ is C1 (see fig. 7c).

Figure 9: h-refinement log-log plots for 2D Poisson without exact solution. Along the
x-axis we show the number of entities of the FEM mesh. The number of multipoles is set
to the logarithm of the number of vertices of the FEM meshes on Γ, multiplied by 10. Γ
lies at a positive distance from Ω⋆. Plots obtained with the DtN-based approach.

Figure 10: Cross-section of 3D geometry along the XZ-plane. The big sphere represents
the FEM domain Ωf. The violet sphere of radius 1 represents Ω⋆, the volume where
q 6= 0. It is centered at (0, 0, 0.5)

⊤
. The large sphere centered in the origin with radius 2

represents the artificial coupling boundary Γ.
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Figure 11: h-refinement plot for 3D Poisson with exact solution. The number of multipoles
is set to the logarithm of the number of vertices of the FEM meshes on Γ. Plot obtained
with the DtN-based approach.
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Figure 12: Meshwidth h vs. MMP degrees of freedom for 3D Poisson with exact solution:
total relative error. Plot obtained with the DtN-based approach.
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Figure 12 shows the surface plot of the total relative L2-error for the
DtN-based approach. Plots obtained with the other approaches look the
same. The error decreases with h (algebraic convergence) and is generally
independent from the number of multipoles.

5. Conclusions

Among the three coupling approaches presented in sections 3.1 to 3.3,
none is clearly superior. We recommend the DtN-based approach thanks
to its complete convergence theory and good practical performance. We
point out that in this work several important issues have not been addressed:
solving the linear systems (iteratively), ill-conditioning when using many or
high-order multipoles, and vector Maxwell’s equations.
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