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DISCONTINUOUS GALERKIN METHODS FOR ACOUSTIC

WAVE PROPAGATION IN POLYGONS

FABIAN MÜLLER, DOMINIK SCHÖTZAU, AND CHRISTOPH SCHWAB

Abstract. We analyze space semi-discretization of linear, second-order wave
equation by discontinuous Galerkin methods in two-dimensional polygonal do-
mains where solutions exhibit singular behavior near corners. To resolve these
singularities, we consider two families of locally refined meshes: graded meshes
and bisection refinement meshes. We prove that for appropriately chosen re-
finement parameters, optimal asymptotic rates of convergence with respect
to the total number of degrees of freedom are obtained, both in the energy
norm errors and the L2-norm errors. The theoretical convergence orders are
confirmed in a series of numerical experiments which also indicate that analo-
gous results hold for incompatible data which is not covered by the currently
available regularity theory.

1. Introduction

Linear, second-order hyperbolic partial differential equations (PDEs) play a cru-
cial role in simulating wave propagation phenomena appearing in electromagnetics,
elastodynamics or acoustics. To numerically approximate wave equations, we use
the standard “method of lines” approach: the solution u(x, t) is viewed as a map-
ping from t ∈ J = [0,T] into a function space V over a spatial domain Ω (in our case
a closed subspace of H1(Ω)). A Galerkin ansatz with a family of finite-dimensional
subspaces of V leads to an ordinary differential equation (ODE) which can be nu-
merically solved by means of suitable time-stepping methods.

However, even when using an explicit time-stepping scheme, each time-step re-
quires the inversion of a mass-matrix. Therefore, it is desirable to use a spatial semi-
discretization for which mass-matrices are easily invertible. One popular technique
that yields block-diagonal mass-matrices for low-order continuous finite element
methods (FEMs) in space is mass-lumping, see for example [8] and the references
therein. An alternative approach is based on employing discontinuous Galerkin
finite element methods (DGFEMs). By construction, these methods provide block-
diagonal mass-matrices, which can be readily inverted in a block-by-block fashion.

Here, as in the works [13, 18, 16], we focus on symmetric interior penalty dis-
continuous Galerkin (SIPDG) finite element methods, which yield symmetric pos-
itive definite stiffness matrices in space (for symmetric elliptic spatial operators).
Hence, SIPDG semi-discretizations conserve (a discrete version of) the energy for
all times and are free of any (unnecessary) damping. In addition, SIPDG methods
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2 F. Müller, D. Schötzau and Ch. Schwab

are adjoint-consistent in the sense of [2] and yield optimal order L2-norm errors
in space. We point out that although we consider SIPDG methods in detail, our
techniques are equally well and mutatis mutandis applicable to a much wider range
of DG methods, for example, by employing the unifying framework of [2]. We refer
to [33, 30] and the references therein for further details and developments on DG
error analyses.

For elliptic PDEs in polygonal domains Ω, the values of the opening angles
determine the Sobolev regularity of the solutions; see [20, 12, 6] (we also refer
to [24] for polyhedral domains). Analogous regularity results for linear, second-
order wave equations are due to [31, 19, 23] and more recently to [28]. There,
the regularity of a wide class of boundary-transmission problems for second-order
linear hyperbolic systems with piecewise constant coefficients was investigated in
polygonal domains. The regularity results in [28, Section 2.6.2] are the basis of our
convergence analysis.

A natural way to approximate singular solutions is to use local mesh refine-
ment near corners of the domain. Here we consider the following two strategies:
(i) graded mesh families as in [5] (we refer to [7, 1] for more recent variants, and
to the LNG FEM software package [22]), and (ii) bisection refinement meshes ob-
tained by new newest vertex bisection (NVB) as in [11]. In [26, 27] and based on
the regularity results in [31, 19, 23], it was shown that conforming finite element
semi-discretizations of the wave equation on such mesh families indeed yield quasi-
optimal convergence rates (with respect to the total number of degrees of freedom).
For discontinuous and non-conforming Galerkin methods for wave equations, no
such results seem to be available in the literature. For example, the analysis of [13]
is based on uniform mesh families and on sufficient regularity of the underlying
solutions. Similar assumptions have recently been made in [18, 16]. On the other
hand, for linear elliptic PDEs in polygonal domains, SIPDG discretizations based
on graded mesh families were investigated in the thesis [37], the results of which
were then substantially extended in the recent work [25]. In particular, bisection
refinement mesh families as in [11] were also included in the analysis there. Thus,
the main goal of the present article is to extend the results of [13] to problems with
singular solutions. Analogous to the elliptic case studied in [25], we show optimal
error estimates for the DG energy norm and the L2-norm errors for the above-
mentioned two families of locally refined meshes. These estimates are proved with
the crucial help of the (elliptic) Galerkin projection, whose approximation proper-
ties were established in [25]. We present some numerical experiments to confirm the
quasi-optimality of our error estimates on mesh sequences with local refinement.

The paper is structured as follows: In Section 2, we introduce polygonal domains,
define our model wave equation and review the regularity of solutions in polygonal
domains. In Sections 3 and 4, we recall the SIPDG method and state our main
results (see Theorem 4.3). The proofs of these results are provided in Section 5.
Finally, in Section 6, numerical tests are shown.

Throughout, we use standard notation. In particular, for a domain G ⊆ R
d,

d ≥ 1, we write C∞
0 (G) for the space of all smooth functions with compact support

in G. For q ∈ [1,∞], the Lebesgue space of q-integrable functions is denoted by
Lq(G). The standard inner product in L2(G) or L2(Ω)d is written as (·, ·)G or
simply as (·, ·) if G is clear from the context. For k ∈ N, the classical Sobolev
spaces of functions in Lq(G) with q-integrable derivatives of order up to k will
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be denoted by W k,q(G), and by Hk(G) if q = 2. For J = (a, b) and a Sobolev
space X(G) in space, we denote by Ck(J ;X(G)) and Lq(J ;X(G)) the spaces of
all functions J → X(G) which are k-times continuously differentiable in J and
q-integrable in J with values in X(G), respectively.

2. Model problem

We define polygonal domains, introduce our model wave equation and review
regularity results in weighted Sobolev spaces.

2.1. Polygonal domains. Let Ω ⊆ R
2 be an open, bounded two-dimensional

domain with straight edges. Throughout, we assume Ω to be a polygonal domain
i.e., its boundary ∂Ω can be written as the closure of a finite union of M ∈ N open
and straight line segments ei of positive one-dimensional measure:

∂Ω =

M⋃

i=1

ei ,

∫

ei

dS > 0 ∀ i = 1, . . .M . (2.1)

The vertices of the polygon Ω are denoted by ci := ei∩ei+1, i = 1, . . .M, where the
indices i are taken modulo M, i.e., we have eM+1 = e1. We assume the vertices to be
numbered clockwise. We define the set of all vertices as S := {ci : i = 1, . . . ,M}.
For all i, the interior opening angle of the domain at ci is measured in positive
orientation and will be denoted by ωi ∈ (0, 2π], i = 1, . . . ,M. The case ωi = π is
used to describe changing boundary conditions at ci along the straight line segment
ei ∩ ei+1. The case ωi = 2π corresponds to a slit (non Lipschitz) domain which is
commonly used in fracture mechanics to model a cracked specimen.

At each vertex ci, we introduce local conical domains defined by

Ωi := {x ∈ Ω : |x− ci| < Ri} , i = 1, . . . ,M, (2.2)

where 0 < Ri <
1

2
min
j 6=i

|ci − cj |. The cones Ωi are mutually disjoint and ∂Ωi∩∂Ω ⊂

ei ∪ ei+1.

2.2. Model wave equation. Let Ω be a polygonal domain with straight edges. We
write {1, . . . ,M} = D∪N , where D and N denote the index sets of the edges ei, on
which Dirichlet and Neumann boundary conditions are applied, respectively. This
leads to the partition ∂Ω = ΓD ∪ ΓN , where ΓD = ∪i∈Dei and ΓN = ∪i∈N ei. In
order to avoid technicalities associated with the pure Neumann case and to lighten
the notation, we shall assume in the following that D 6= ∅. We then introduce the
energy space

V := { v ∈ H1(Ω) : v|ΓD
= 0 } . (2.3)

Then, let 0 < T <∞ and J := (0,T). For given initial data u0 ∈ V , u1 ∈ L2(Ω),
a given forcing term f ∈ L2(J;L2(Ω)) and a constant wave speed coefficient c > 0,
we introduce the model acoustic wave equation:
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∂2t u−∇ · (c∇u) = f in Ω× J , (2.4)

u = 0 on ΓD × J , (2.5)

ν · (c∇u) = 0 on ΓN × J , (2.6)

u(·, 0) = u0 in Ω , (2.7)

∂tu(·, 0) = u1 in Ω , (2.8)

where ν is the outward pointing unit normal on the boundary ∂Ω. Since c is a
constant, by rescaling we could assume without loss of generality that c = 1.

We consider a standard weak form of (2.4)–(2.8), which is pointwise in time and

variationally in space. It reads as follows: Find u ∈ C0(J;V ) with ∂tu ∈ C0(J;L2(Ω))
such that u(·, 0) = u0 in V , ∂tu(·, 0) = u1 in L2(Ω) and

〈∂2t u(·, t), v〉V ∗,V + a(u(·, t), v) = (f(·, t), v) , (2.9)

for all t ∈ J and v ∈ V , where the Galerkin form a(w, v) on V × V is given by

a(w, v) :=

∫

Ω

c∇w · ∇v dx . (2.10)

Problem (2.9)– (2.10) is a special case of the class of problems called “Problème
P2” in [9]. Therefore, we deduce from [9, Chpt. XVIII.5, Thms. 3 and 4] the
existence and uniqueness of weak solutions u, as well as the stability estimate

‖u‖C0(J;V ) + ‖∂tu‖C0(J;L2(Ω)) + ‖∂2t u‖C0(J;V ⋆)

≤ C
(
‖f‖L2(J;L2(Ω)) + ‖u0‖V + ‖u1‖L2(Ω)

)
,

(2.11)

with V ∗ denoting the dual space of V , and with a constant C > 0 depending on Ω,
T, D, N and on the coefficient c. Moreover, if u0, u1 ∈ C∞

0 (Ω) and f ∈ C∞
0 (Ω× J),

we have for all s ∈ N0 that

u ∈ Cs+2(J;V ⋆) ∩ Cs+1(J;L2(Ω)) ∩ Cs(J;V )); (2.12)

see, e.g., [38, Thm 30.1]. This property can also be seen by expanding the solutions
into eigenfunctions using separation of variables.

2.3. Weighted Sobolev spaces. To each vertex ci of Ω, we assign a weight
exponent δi ∈ [0, 1). The entries δi are collected in the weight exponent vector
δ = {δi}

M

i=1 ∈ [0, 1)M. For ξ ∈ R, we introduce the notation δ + ξ := {δi + ξ}Mi=1.
Similarly, inequalities of the form δ < ξ are understood componentwise.

Next, we introduce the weight function:

Φδ(x) :=

M∏

i=1

ri(x)
δi . (2.13)

where ri(x) = |x − ci|. Given integers k ≥ ℓ ≥ 0, we define the weighted Sobolev

spaces Hk,ℓ
δ (Ω) as the completion of C∞(Ω) with respect to the norm

‖w‖2
Hk,ℓ

δ
(Ω)

:=





|w|2
Hk,0

δ
(Ω)
, ℓ = 0,

‖w‖2Hℓ−1(Ω) + |w|2
Hk,ℓ

δ
(Ω)
, ℓ ≥ 1.

(2.14)
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Here, the semi-norm |w|Hk,ℓ

δ
(Ω) is given by

|w|2
Hs,ℓ

δ
(Ω)

:=

k∑

m=ℓ

‖Φδ+m−ℓ |D
mw|‖2L2(Ω) , (2.15)

and |Dmw|2 :=
∑

|α|=m |Dαw|2, with D
αw denoting the partial derivative of w with

respect to the multi-index α ∈ N
2
0.

We shall also make use of the weighted spaces Hk,l
δi

(Ω), their associated norms
‖w‖Hk,l

δi
(Ω) and semi-norms |w|Hk,l

δi
(Ω), which are defined completely analogously,

but with respect to the weight ri(x)
δi . Furthermore, over subdomains Ω′ ⊆ Ω

the weighted spaces and norms are defined by replacing the domains of integration
by Ω′.

We recall the following properties; see [25, Lem. 2.3] and the references there.

Lemma 2.1. Let δ ∈ [0, 1)M. There holds:

(i) We have the continuous embeddings

Hk,2
δ (Ω) →֒ H2,2

δ (Ω) →֒ C0(Ω) , k ≥ 2. (2.16)

(ii) For k ≥ ℓ ≥ 1, let w ∈ Hk,ℓ
δ (Ω) and let α ∈ N

2
0 be such that |α| ≤ ℓ. Then,

we have D
αw ∈ H

k−|α|,ℓ−|α|
δ (Ω) and

‖Dαw‖
H

k−|α|,ℓ−|α|
δ

(Ω)
≤ ‖w‖Hk,ℓ

δ
(Ω). (2.17)

(iii) Let f ∈ H0,0
δ (Ω). Then

∫
Ω fv dx is a linear continuous functional on H1(Ω)

and
∣∣
∫

Ω

fv dx
∣∣ ≤ C‖f‖H0,0

δ
(Ω)‖v‖H1(Ω), v ∈ H1(Ω), (2.18)

with a constant C > 0 depending on δ.

2.4. Regularity in weighted spaces. In polygonal domains, solutions to prob-
lem (2.4)–(2.8) typically have low regularity due to the appearance of singular so-
lution components near corners. Sharp regularity estimates in two dimensions are
now available in scales of weighted Sobolev spaces, including solution asymptotics
towards corners ci ∈ S. These results are due to [31, 19, 23] and, in the particular
form required here, to [28] and to [26, 27]. Specifically, in [28, Cor. 2.6.6], regular-
ity results for solutions u of wave equations with Cs-regularity with respect to the

time variable, taking values in Hk+1,2
δ (Ω) were proved for boundary-transmission

problems for linear second-order hyperbolic systems with piecewise constant coeffi-
cients on polygons, of which the wave equation (2.4)-(2.8) is a particular case. This
regularity result will be the basis of our analysis.

Proposition 2.2. For smooth data u0, u1 ∈ C∞
0 (Ω) and for f ∈ C∞

0 (Ω × J), let u
be the weak solution of (2.4)–(2.8) in the sense of (2.9). Then, there exists δ =
{δi}Mi=1 ∈ [0, 1)M such that for all s ∈ N0 and k ∈ N,

u ∈ Cs(J;Hk+1,2
δ (Ω)) . (2.19)

Remark 2.3. The weights δ = {δi}Mi=1 in Proposition 2.2 are chosen according to
δi > δ∗i , i = 1, . . . ,M, with the lower bounds δ∗i defined as follows: There exists a
singular exponent λi > 0 such that

δ∗i := max(0, 1− λi), i = 1, . . . ,M , (2.20)



6 F. Müller, D. Schötzau and Ch. Schwab

where λi depends on Ω, D, N and, in general, on the elliptic part of the spatial
operator in (2.4). Note that the conditions

max(0, δ∗i ) < δi < 1, i = 1, . . . ,M (2.21)

correspond to the range of the elliptic regularity shifts of [5, 4, 3] in the scale of

corner-weighted spaces Hk,ℓ
δ (Ω), which arises naturally in the study of polygonal

corner singularities for linear, elliptic problems. More precisely, for weight expo-
nents δi satisfying (2.21), the weak solution z ∈ V of the elliptic problem

−∇ · (c∇z) = g in Ω , (2.22)

z = 0 on ΓD , (2.23)

ν · (c∇z) = 0 on ΓN , (2.24)

satisfies the following elliptic regularity property: for k ≥ 1 and g ∈ Hk−1,0
δ (Ω), we

have z ∈ Hk+1,2
δ (Ω) and

‖z‖Hk+1,2

δ
(Ω) ≤ Cstab,k‖g‖Hk−1,0

δ
(Ω) , (2.25)

for a constant Cstab,k > 0 depending on the order k, the domain Ω, the sets D,N ,
and the coefficient c. In fact, if the coefficient c > 0 is constant in (2.4)– (2.8), we
have

λi =

{
π/ωi if {i, i+ 1} ∈ D or {i, i+ 1} ∈ N ,

π/(2ωi) otherwise ;
(2.26)

see [21, Chpt. 2.1].

3. Discontinuous Galerkin Discretization

We introduce discontinous finite element spaces and review the symmetric inte-
rior penalty DG method for the spatial approximation of (2.4)–(2.8).

3.1. Meshes, edges and trace operators. Let T be a partition of Ω into straight-
sided triangles K. For ease of presentation, we restrict ourselves to regular trian-
gulations and comment on extensions to irregular meshes in Section 7. The trian-
gulations are supposed to be sufficiently fine so that each element K contains at
most one vertex ci. For K ∈ T , we denote by Pp(K) the polynomials on K of total
degree at most p. The diameter of K ∈ T is denoted by hK and is referred to as the
elemental mesh size of K. Furthermore, we denote by ρK inradius of K. The mesh-
width of T is given by h = h(T ) := maxK∈T hK . We assume the triangulations to
be shape-regular: there exists a constant κ > 0 such that

ρK ≤ hK ≤ κρK , ∀K ∈ T , (3.1)

uniformly in the mesh sequence.
Edges are defined as follows: If K and K ′ are adjacent elements of the triangula-

tion T with
∫
∂K∩∂K′ dS > 0, we call the intersection e = ∂K∩∂K ′ an interior edge.

Elemental edges of K are supposed to lie at most on one boundary segment ei, and
if
∫
∂K∩ei

dS > 0, we call the intersection e = ∂K ∩ ei a boundary edge; it belongs

to either ΓD or ΓN . Accordingly, we distinguish between Dirichlet and Neumann
edges. The set of interior edges of a triangulation T is denoted by E◦

T , the set of
Dirichlet boundary edges by ED

T , and the set of Neumann boundary edges by EN
T .

Moreover, we define ET := E◦
T ∪ ED

T ∪ EN
T . For e ∈ ET , we denote by Pp(e) the
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polynomials of degree at most p on e, and by he the length of e is denoted by he.
With the shape-regularity assumption (3.1), it can be readily verified that

κhK ≤ he ≤ hK , (3.2)

for all e ⊂ K with e ∈ ET and K ∈ T .
We next define the usual trace operators. Let K+,K− ∈ T be two adjacent

elements which share the interior edge e = ∂K ∩ ∂K ′ ∈ E◦
T . We denote by ν± the

outward pointing unit normals on ∂K±. For a sufficiently smooth scalar function w
or vector field q, we denote the traces of w and q on e taken from within K± by w±

and q±, respectively. We then define the jumps and the averages of w and q along e
by

[[w]] := w+ν+ + w−ν− , 〈〈v〉〉 :=
1

2
(w+ + w−) , (3.3)

[[q]] := q+ · ν+ + q− · ν− , 〈〈q〉〉 :=
1

2
(q+ + q−) . (3.4)

If e ∈ ED
T is a Dirichlet boundary edge, we set similarly [[w]] := w|eν, [[q]] = q|e · ν,

as well as 〈〈w〉〉 := w|e, 〈〈q〉〉 := q|e.

3.2. Corner elements. For a mesh T on Ω, we introduce the set Ki(T ) of corner
elements of T abutting at corner ci

Ki(T ) := {K ∈ T : K ∩ ci 6= ∅ } . (3.5)

Without loss of generality, we will assume that Ki(T ) ∩ Kj(T ) = ∅ for i 6= j and
that K ∈ Ki(T ) is located in the cone Ωi (i.e., K ⊂ Ωi). We then set

K(T ) :=

M⋃

i=1

Ki(T ). (3.6)

The following properties are from [37, Lems. 1.3.2 and 1.3.4]; see also [25, Lem. 5.2].

Lemma 3.1. Let K ∈ Ki(T ) be a corner element at corner ci and δi ∈ [0, 1) a
weight exponent. Then:

(i) H0,0
δi

(K) ⊂ L1(K) and ‖w‖L1(K) . h1−δi
K |w|H0,0

δi
(K) for w ∈ H0,0

δi
(K).

(ii) |
∫
K wv dx| . h1−δi

K |w|H0,0

δi
(K)‖v‖L∞(K) for w ∈ H0,0

δi
(K) and v ∈ L∞(K).

(iii) ‖w‖L1(∂K) . ‖w‖L2(K) + h1−δi
K |w|H1,1

δi
(K) for w ∈ H1,1

δi
(K).

(iv) [[w]]|e = 0 in L1(e)2 for w ∈ H1,1
δi

(K) and e ∈ E◦
T with e ∩ ci 6= ∅.

3.3. Discretization in space. For an approximation order p ∈ N and a given
triangulation T of Ω, we introduce the discontinuous finite element space

Vp(T ) := {v ∈ L2(Ω) : v|K ∈ Pp(K), K ∈ T } , (3.7)

Remark 3.2. The dimension N(p, T ) := dim(Vp(T )) is finite and convergence is
usually achieved if N → ∞. Here, we are interested in h-version SIPDG methods,
where convergence is obtained by letting h → 0 at a fixed, typically low polynomial
order p. If clear from the context, we write N in place N(p, T ).
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Let u0N , u
1
N ∈ Vp(T ) be discrete approximations to the initial data u0 ∈ V ,

u1 ∈ L2(Ω). The SIPDG semi-discretization of (2.9) reads as follows: find uN ∈
C2(J;Vp(T )) such that uN(·, 0) = u0N , ∂tuN (·, 0) = u1N and

(∂2t uN(·, t), vN ) + aDG(uN(·, t), vN ) =
∑

K∈T

(f(·, t), vN )K , (3.8)

for all t ∈ J and vN ∈ Vp(T ). Here, aDG(·, ·) is the symmetric interior penalty
bilinear form defined for v, w ∈ Vp(T ) by

aDG(w, v) :=
∑

K∈T

∫

K

c∇w · ∇v dx−
∑

e∈E◦
T ∪ED

T

∫

e

[[v]] · 〈〈c∇w〉〉 dS

−
∑

e∈E◦
T ∪ED

T

∫

e

[[w]] · 〈〈c∇v〉〉 dS +
∑

e∈E◦
T ∪ED

T

∫

e

ae[[w]] · [[v]] dS .

(3.9)

The interior penalty function a in (3.9) is defined edgewise as

ae := j ch−1

e
, e ∈ E◦

T ∪ ED
T , (3.10)

where c > 0 is the (constant) coefficient in (2.4), j > 0 is a sufficiently large constant
as specified in Lemma 3.4 ahead, and where we recall that he denotes the length of
edge e.

Remark 3.3. For f ∈ H0,0
δ (Ω) and vN ∈ Vp(T ), the integrals (f, vN )K in the

right-hand side of (3.8) are well-defined for all K ∈ T . In particular, for corner
elements K ∈ Ki(T ) at ci, these integrals are to be understood as bounded and
bilinear forms in L1(K)×L∞(K). This follows from the properties in Lemma 3.1
below.

Upon introducing a basis of the FE space Vp(T ), the semi-discrete problem (3.8)
yields a system of linear, second-order ordinary differential equations in time, which
we assume here to be solved exactly. An error analysis for a fully discrete DG
scheme, for sufficiently smooth solutions, was presented in [14]; an extension to the
present framework will be presented elsewhere.

We further recall the discrete stability of the DG form aDG(·, ·) over the FE
space Vp(T ) with respect to the “DG energy norm” ||| · |||DG defined for v ∈ Vp(T )
by

|||v|||2DG :=
∑

K∈T

∥∥∥c1/2∇v
∥∥∥
2

L2(K)
+J(v), J(v) :=

∑

e∈E◦
T ∪ED

T

∥∥∥a1/2e
[[v]]

∥∥∥
2

L2(e)
. (3.11)

Here, the constants j in the definition (3.10) of ae are assumed bounded from below
by a sufficiently large, positive constant j∗ > 0 as specified next.

Lemma 3.4. There is j∗ > 0 only depending on κ in (3.1) and on the polynomial
degree p ≥ 1 such that for all j > j∗ in (3.10) there holds

aDG(vN , vN ) ≥ Ccoer|||vN |||2DG, vN ∈ Vp(T ), (3.12)

|aDG(wN , vN )| ≤ Ccont|||wN |||DG|||vN |||DG, vN , wN ∈ Vp(T ) , (3.13)

with constants Ccoer > 0 and Ccont > 0 independent of the elemental mesh sizes.
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4. Main Results

Our goal is now to prove that for singular solutions in polygonal domains, optimal
convergence rates in terms of N can be obtained on meshes with suitable refine-
ment towards the vertices of the polygon Ω, analogous to what is well-known in
conforming adaptive FEMs for elliptic problems; cf. [29] and the references therein.
To this end, we introduce two types of mesh families with local refinement towards
corners: graded mesh families and bisection refinement meshes. Our main results
are stated in Theorem 4.3. They show that optimal asymptotic convergence rates
can be recovered on the two locally refined mesh families, subject to sufficiently
strong mesh refinement towards the singular points.

4.1. Graded mesh families. We first recall the definition of graded mesh families
as introduced in [5]. Recall further rom (3.6) that K(T ) denotes the set of all
elements abutting at corners.

Definition 4.1. A family of triangulations Tβ is called graded towards the vertices
in S with grading vector β = (β1, . . . , βM), if there exists a uniform constant Cgr >
0 such that for all elements K ∈ Tβ in each triangulation one of the following
conditions holds:

(i) If K ∈ Tβ \ K(Tβ), then C−1
gr hΦβ(x) ≤ hK ≤ CgrhΦβ(x) for all x ∈ K.

(ii) If K ∈ K(Tβ), then C
−1
gr sup

x∈K Φβ(x) ≤ hK ≤ Cgrh supx∈K Φβ(x).

In [37] and [25], it was shown that DG methods for elliptic problems on graded
mesh families converge optimally with respect to N , both in the DG energy norm
and in the L2-norm. Other examples of graded mesh families and their construc-
tions are well-known by now. We refer to [7] and to [22] for the software package
LNG FEM.

4.2. Bisection refinement meshes. Alternatively, we consider meshes generated
by the bisection refinement algorithm in [11, Pg. 926]. Its outline is as follows: Given
an initial regular triangulation T0, the algorithm there takes as input parameters a
granularity parameter h, a weight parameter γ > 0 and the number L of refinements
(towards S). In a first loop, it ensures that all elemental mesh sizes hK are smaller
than h. In a second loop, it refines 2L+1 times towards corners using newest vertex
bisection, where L is selected in dependence of h, p and the weight parameter γ as
in (4.2) ahead. This results in a regular mesh denoted by Th,2(L+1). We emphasize
that the bisection refinement meshes constructed from the regular, simplicial initial
mesh T0 gives rise to a shape-regular mesh family, where the condition (3.1) is
satisfied with a constant κ depending on T0; see [11, Rem. 4.3, item (iv)].

For conforming finite element methods, it has been shown in [11, Thms 5.1
through 5.3] that the bisection refinement algorithm based on choosing suitable
parameters captures solutions of elliptic problems that allow decompositions into
regular parts and corner singularities at optimal convergence orders in N . In [25,
Sect. 5.7], this result was generalized to the SIPDG framework and to functions in

the weighted spaces Hk+1,2
δ (Ω).

4.3. Optimal error estimates. We first introduce the notion of a locally refined
mesh.
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Definition 4.2. Let p ≥ 1 and δ ∈ [0, 1)M be a weight exponent vector. We call a
a family of triangulations T of Ω locally refined towards S with respect to δ and p
if it is either

(i) a graded mesh family of meshes Tβ as in Definition 4.1, with grading pa-
rameters βi ∈ [β∗

i , 1), where

β∗
i := 1−

1− δi
p

, i = 1, . . . ,M. (4.1)

(ii) or a family of bisection refinement meshes Th,2(L+1) as in [11, Pg. 926],
obtained by newest vertex bisection with parameters h, γ ∈ (0, γ∗] and L
satisfying

γ∗ := 1−
M

max
i=1

δi > 0 and h ∈ [2−(L+1)γ/(p+1), 2−Lγ/(p+1)); (4.2)

see [11, Eqn. (4.1) with d = 2].

Then, to state our a-priori error bounds, we follow [2] and introduce the (“lifted”)
space

Vp(T ) := V + Vp(T ) , (4.3)

with the energy space V in (2.3). The space Vp(T ) is equipped with the energy
norm ||| · |||DG in (3.11), which is a norm for D 6= ∅. In the pure Neumann case
(D = ∅), the map w 7→ |||w|||DG is a semi-norm, which is zero if and only if w
is constant. We further introduce the space L∞(J;Vp(T )) and equip it with the
supremum norm

‖w‖L∞(J;Vp(T )) := sup
t∈J

|||w(t)|||DG . (4.4)

The discrete initial data u0N , u
1
N in (3.8) are chosen as:

u0N = Πpu
0, u1N = Πpu

1, (4.5)

where we denote by Πp : L2(Ω) → Vp(T ) the L2-projection.
We now state our main results: optimal L∞(J;Vp(T ))-norm and L∞(J;L2(Ω))-

norm error estimates (in space) on locally refined meshes.

Theorem 4.3. Let p ≥ 1 and δ ∈ [0, 1)M be as in (2.21). For 1 ≤ k ≤ p, let the
solution u of the wave equation (2.4)–(2.8) satisfy

u ∈ C2(J;Hk+1,2
δ (Ω)) ; (4.6)

Let T be a mesh (family) which is locally refined to S with respect to δ and p as in
Definition 4.2. Let uN be the SIPDG approximation obtained in (3.8) with j > j∗
and with the discrete initial data u0N , u

1
N ∈ Vp(T ) in (4.5). By introducing the

semi-discrete error

eN (·, t) := u(·, t)− uN(·, t), t ∈ J , (4.7)

we have the bound

‖eN‖L∞(J;Vp(T )) + ‖∂teN‖L∞(J;L2(Ω)) . N−k/2‖u‖C2(J;Hk+1,2

δ
(Ω)). (4.8)

In addition, we have the L∞(J;L2(Ω))-norm error estimate

‖eN‖L∞(J;L2(Ω)) . N−(k+1)/2‖u‖C1(J;Hk+1,2

δ
(Ω)). (4.9)

The constants C > 0 are independent of N .
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Remark 4.4. Note that, if u0, u1 ∈ C∞
0 (Ω) and f ∈ C∞

0 (Ω × J) as in Proposi-
tion 2.2, then the regularity assumption (4.6) holds with k = p. Hence, in this
case, the error bounds (4.8) and (4.9) hold true with k = p, i.e,. the SIPDG semi-
discretization (3.8) yields quasi-optimal convergence rates in space, which are of
order N−p/2 in the DG energy norm and of order N−(p+1)/2 in the L2-norm, as
N → ∞.

Remark 4.5. In contrast to the analysis in [13], our results are based on the
weighted regularity shift in (2.25). Therefore, for the L2-norm error estimate (4.9)
we do not need to impose any additional smoothness assumptions on the domain
(or on the regularity of the interfaces for piecewise constant coefficients c).

We also recall that we assume D 6= ∅ for simplicity; for the pure Neumann
problem, zero energy “rigid body” related solution components must be removed by
appropriate factor spaces.

5. Proof of Theorem 4.3

In this section, we provide the proof of Theorem 4.3. We shall often use the
short-hand notation a . b for inequalities of the form a ≤ Cb, where C > 0 is
independent of the elemental mesh sizes, but may depend on κ in (3.1), on the
coefficient c, on the parameter j in (3.10), the polynomial degree p, and on the
particular exponent vector δ under consideration. Also, a ≃ b if a . b and b . a.

5.1. Approximation on locally refined meshes. We review from [25, Sects. 5.6
and 5.7] the following approximation properties on locally refined meshes.

5.1.1. Consistency norm. We first introduce the consistency norm which is appro-
priate for our analysis; cf. [25, Sect. 5.1.3].

For elements away from corners, we introduce the weighted elemental norm

MK [w]2 := h−2
K ‖w‖2L2(K)+‖∇w‖2L2(K)+h

2
K‖D2w‖2L2(K), K ∈ T \K(T ). (5.1)

For elements at corner ci and δi ∈ [0, 1), we set

NK,δi [w]
2 := h−2

K ‖w‖2L2(K) + ‖∇w‖2L2(K) + h2−2δi
K |w|2

H2,2

δi

(K), K ∈ Ki(T ) .

(5.2)
For δ ∈ [0, 1)M, we will measure consistency in the norm

|||w|||2∗,δ :=
∑

K∈T \K(T )

MK [w]2 +

M∑

i=1

∑

K∈Ki(T )

NK,δi [w]
2 . (5.3)

The DG energy norm (3.11) can be bounded by the consistency norm in (5.3);
cf. [25, Lem. 5.5]. Specifically, there holds

|||w|||2DG .
∑

K∈T

(
h−2
K ‖w‖2L2(K) + ‖∇w‖2L2(K)

)
, (5.4)

for all w ∈ Vp(T ).
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5.1.2. Approximation bounds. We develop approximation error bounds for an ab-
stract family of local (quasi-)interpolants A : C0(Ω) → Vp(T ), which are given
elementwise as A|K = AK for K ∈ T , with elemental interpolants

AK : C0(K) → Pp(K), K ∈ T . (5.5)

We suppose that AK satisfies standard error bound in elements away from S: for
1 ≤ k ≤ p, there holds

MK [w −AKw]
2 . h2kK ‖Dk+1w‖2L2(K), K ∈ T \ K(T ). (5.6)

In elements K abutting at S, we assume that

NK,δi [w −AKw]
2 . h2−2δi

K |w|2
H2,2

δi
(K)

, K ∈ Ki(T ). (5.7)

Remark 5.1. We will be working with the following two instances of elemental
(quasi-)interpolants AK : C0(K) → Pp(K) satisfying (5.6), (5.7):

(i) (Nodal interpolation): For K ∈ T , let Ip
K : C0(K) → Pp(K) be the elemen-

tal nodal interpolant (at standard Lagrange nodes). Then, the bounds (5.6)
are well-known interpolation estimates, and estimate (5.7) for the linear
interpolant I1

K is proved in [35, Lem. 4.16]. As in [25], we introduce

Ip : C0(Ω) → Vp(T ) by

Ipw|K :=

{
I1
K(w|K) if K ∈ K(T ) ,

Ip
K(w|K) otherwise .

(5.8)

Note that Ip : C0(Ω) → Vp(T ) obtained as in (5.8) is well-defined for

w ∈ H2,2
δ (Ω) →֒ C(Ω) due to (2.16).

(ii) (L2-projection): We denote by Πp
K : L2(K) → Pp(K) the elemental L2-

projection on K ∈ T . We then denote by Πp : L2(Ω) → Vp(T ) the (global)

L2-projection. Clearly, Πp
K is well-defined on C0(K), cf. (5.5), and it sat-

isfies the error bounds in (5.6). The approximation estimate (5.7) follows
from a minor modification of [34, Lem. 8.4] where this result was shown for
quadrilateral corner elements and tensor-product polynomial spaces. For
the sake of completeness, we present a proof.

Lemma 5.2. For 1 ≤ i ≤ M, let K ∈ Ki(T ) and w ∈ H2,2
δi

(K). Then, for
any polynomial degree p ≥ 1, there holds

NK,δi [w −Πp
Kw]

2 ≤ Ch2−2δi
K |w|2

H2,2

δi
(K)

, (5.9)

with C > 0 independent of the elemental mesh sizes, but depending on p.

Proof. Let K̂ be a reference triangle of unit size and denote by Π̂p the

L2-projection onto the polynomial space Pp(K̂). We first claim that

‖D̂k(Π̂pŵ)‖2
L2(K̂)

. max{p, 1}4k‖D̂kŵ‖2
L2(K̂)

, p ≥ 0 , k ≥ 0 , (5.10)

see also [34, Lem. 4.1]. Here we note that (5.10) holds trivially for k ≥ p+1

(since then D
k(Π̂pŵ) = 0). Note further that the case k = 0 follows from

the L2-stability of Π̂p with constant one. This already implies the result
for p = 0, and it remains to consider the case 1 ≤ k ≤ p. Then, we have
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D̂
k(Π̂pŵ) = D̂

kΠ̂p(ŵ−Π̂k−1ŵ). With the inverse estimate in [35, Thm. 4.76]
and standard approximation properties, we conclude that

‖D̂k(Π̂pŵ)‖2
L2(K̂)

. p4k‖ŵ − Π̂k−1ŵ‖2
L2(K̂)

. ‖D̂kŵ‖2
L2(K̂)

,

which is (5.10) for 1 ≤ k ≤ p.
With this auxiliary result in place, we now establish (5.9). Again, we

first consider the reference triangle K̂. Let p ≥ 1. Applying (5.10) for
k = 0, 1, 2, we see that

‖ŵ − Π̂pŵ‖2
H2(K̂)

. ‖ŵ − Π̂1ŵ‖2
H2(K̂)

+ ‖Π̂p(ŵ − Π̂1ŵ)‖2
H2(K̂)

. p8‖ŵ − Π̂1ŵ‖2
H2(K̂)

.

As we are interested in convergence rate estimates for h→ 0, it now suffices

to prove (5.9) for Π̂1, i.e., for p = 1. To do so, we next claim that there is

a constant Ĉ > 0 independent of ŵ such that

‖ŵ‖H2,2

δi
(K̂) ≤ Ĉ

(
|ŵ|H2,2

δi
(K̂) + ‖Π̂1ŵ‖L2(K̂)

)
. (5.11)

The bound (5.11) follows with standard arguments from the Peetre-Tartar

lemma (see [10, Lem. A.38]) and the fact that the embedding H2,2
δi

(K̂) →֒

H1(K̂) is compact (see [15, Lem. 3.4]). Applying (5.11) to ŵ − Π̂1ŵ and

noting that |Π̂1ŵ|H2,2

δi
(K̂) = 0, Π̂1(ŵ − Π̂1ŵ) = 0 result in

‖ŵ − Π̂1ŵ‖H2,2

δi
(K̂) ≤ Ĉ|ŵ|H2,2

δi
(K̂), (5.12)

which is (5.9) on the reference element K̂. For a general elementK ∈ Ki(T ),
the desired bound in (5.9) follows from (5.12) and a scaling argument. This
finishes the proof. �

We are now in position to state the convergence rate estimates on locally refined
triangulations in Ω.

Proposition 5.3. Let p ≥ 1 and δ ∈ [0, 1)M. Consider a family of locally refined

meshes T as in Definition 4.1. For 1 ≤ k ≤ p, let w ∈ Hk+1,2
δ (Ω) and let Av be a

local (quasi-)interpolant as in (5.5), which satisfies (5.6), (5.7). Then we have

|||w −Aw|||∗,δ ≤ CN−k/2|w|Hk+1,2

δ
(Ω) , (5.13)

with a constant C > 0 independent of N .

Proof. In [25, Props. 5.17 and 5.18], this was proved for the nodal interpolant Ip
in (5.8) for graded and bisection refinement meshes, respectively. Careful inspec-
tion of the proofs there reveals that the estimate (5.13) remains valid for generic
approximants A as in (5.5) provided that the error bounds (5.6) and (5.7) are
fulfilled. �

5.2. Boundedness. Next, we review the continuity of the DG form aDG(·, ·). The
following result was established in [25, Prop. 5.7], by employing Lemma 3.1 to
handle corner weights.

Proposition 5.4. Let δ, δ′ ∈ [0, 1)M. Then:
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(i) For w = w0 + wN with w0 ∈ H2,2
δ (Ω) and wN ∈ Vp(T ), we have

|aDG(w, vN )| ≤ CA,1|||w|||∗,δ |||vN |||DG , vN ∈ Vp(T ) . (5.14)

(ii) For w = w0 + wN and v = v0 + vN with w0 ∈ H2,2
δ (Ω), v0 ∈ H2,2

δ′ (Ω) and
wN , vN ∈ Vp(T ), we have

|aDG(w, v)| ≤ CA,2|||w|||∗,δ |||v|||∗,δ′ . (5.15)

The constants CA,1 > 0 and CA,2 > 0 are independent of the elemental mesh sizes.

We further recall the following integration-by-parts formula; cf. [25, Lem. 5.12].

Lemma 5.5. Let δ, δ′ ∈ [0, 1)M. For w ∈ H2,2
δ (Ω), we have c∇w ∈ H1,1

δ (Ω)2,

∇ · (c∇w) ∈ H0,0
δ (Ω) and

∑

K∈T

∫

K

c∇w ·∇v dx = −
∑

K∈T

∫

K

∇· (c∇w)v dx+
∑

e∈ET

∫

e

[[v]] · 〈〈c∇w〉〉 dS , (5.16)

for any v = v0 + vN with v0 ∈ H2,2
δ′ (Ω) and vN ∈ Vp(T ). For corner elements K,

the volume integrals are well-defined over L1(K) × L∞(K) and the integrals over
edges e ∈ ET running into corners are well-defined over L1(e) × L∞(e); see the
embedding (2.16) and Lemma 3.1.

5.3. Galerkin projection. For δ ∈ [0, 1)M and w ∈ H2,2
δ (Ω), the Galerkin pro-

jection Gpw ∈ Vp(T ) is defined by

Gpw ∈ Vp(T ) : aDG(Gpw, vN ) = aDG(w, vN ) ∀ vN ∈ Vp(T ) . (5.17)

Note that Gpw is well-defined and, in view of the coercivity (3.12) and the continuity
bound (5.14), that there holds

|||Gpw|||DG ≤ C−1
coerCA,1|||w|||∗,δ . (5.18)

In addition, we clearly have

aDG(w − Gpw, vN ) = 0, vN ∈ Vp(T ), (5.19)

Moreover, it can be easily seen that Gp reproduces DG functions, i.e.,

GpwN = wN , wN ∈ Vp(T ) . (5.20)

5.3.1. Energy norm approximation. The following DG energy norm approximation
bound is proved as in [25, Lem. 5.15].

Lemma 5.6. For p ≥ 1 and δ ∈ [0, 1)M, let w ∈ H2,2
δ (Ω) and let Gpw ∈ Vp(T ) be

the Galerkin projection in (5.17). Then we have the energy norm bound

|||w − Gpw|||DG . inf
vN∈Vp(T )

|||w − vN |||∗,δ . (5.21)

5.3.2. L2-norm approximation. To prove an L2-norm approximation result for Gpw,
we consider the dual problem

−∇ · (c∇z) = w − Gpw in Ω , (5.22)

z = 0 on ΓD , (5.23)

ν · (c∇z) = 0 on ΓN . (5.24)
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Let δ ∈ [0, 1)M be as in (2.21). Then, the regularity shift in (2.25) shows that

z ∈ H2,2
δ (Ω) and

‖z‖H2,2

δ
(Ω) ≤ Cstab,2‖w − Gpw‖H0,0

δ
(Ω) ≤ C‖w − Gpw‖L2(Ω). (5.25)

As in [25, Lem. 5.16], we obtain the following result.

Lemma 5.7. Let p ≥ 1 and δ ∈ [0, 1)M as in (2.21). Let w ∈ H2,2
δ (Ω) and let

Gpw ∈ Vp(T ) be the Galerkin projection in (5.17). Let z ∈ H2,2
δ (Ω) be the dual

solution of (5.22)–(5.24). Assume the approximation property

inf
zN∈Vp(T )

|||z − zN |||∗,δ ≤ Capproxd(p, T , δ)‖z‖H2,2

δ
(Ω). (5.26)

Then we have the L2-norm bound

‖w − Gpw‖L2(Ω) ≤ Cd(p, T , δ) inf
vN∈Vp(T )

|||w − vN |||∗,δ , (5.27)

with a constant C > 0 independent of the elemental mesh sizes.

Proof. We test (5.22) with w −Gpw, integrate by parts with the aid of (5.16), and
use the Neumann boundary conditions (5.24) and the fact that [[z]]|e = 0 for all
e ∈ E◦

T ∪ ED
T . This yields

‖w − Gpw‖
2
L2(Ω) =

∑

K∈T

∫

K

c∇z · ∇(w − Gpw) dx −
∑

e∈ET

∫

e

[[w − Gpw]] · 〈〈c∇z〉〉 dS

= aDG(z, w − Gpw),

where all the integrals over edges are well-defined as in (5.16) and (5.15). We
now proceed analogously to [25, Lem. 5.16]. That is, we invoke the symmetry of
aDG(·, ·), the orthogonality (5.19), the continuity bound (5.15), the approximation
assumption (5.26) and the stability bound (5.25). The estimate (5.27) readily
follows. �

Consequently, the following approximation properties hold for the Galerkin pro-
jection in (5.17):

Proposition 5.8. Let p ≥ 1 and δ ∈ [0, 1)M as in (2.21). Consider a family
of meshes T , which are locally refined towrds S with respect to δ and p as in

Definition 4.1. For 1 ≤ k ≤ p, let w ∈ Hk+1,2
δ (Ω) and let Gpw be the Galerkin

projection of w defined in (5.17). Then there holds

|||w − Gpw|||DG +N1/2‖w − Gpw‖L2(Ω) . N−k/2|w|Hk+1,2

δ
(Ω) . (5.28)

Proof. This follows from the bounds in Lemma 5.6 (DG energy norm error) and
Lemma 5.7 (L2-norm error), in conjunction with the approximation properties in
Proposition 5.3 for the nodal interpolant Ip in (5.8) and by noting that d(p, T , δ) ≤
CN−1/2 in (5.26), due to (5.13) for Ip. �

5.4. Error estimates. We now derive semi-discrete error estimates in space.
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5.4.1. Error equations. We first discuss the error equations.

Lemma 5.9. For δ ∈ [0, 1)M, let the solution u of (2.4)–(2.8) satisfy the regularity
assumption

u ∈ C2(J;H2,2
δ (Ω)) (5.29)

Let uN ∈ C2(J;Vp(T )) be the semi-discrete solution obtained by (3.8) with j > j∗
and consider the error eN (·, t) = u(·, t)− uN (·, t). Then we have

(∂2t eN (t), v) + aDG(eN (t), v) = 0 , (5.30)

for all t ∈ J and v ∈ Vp(T ).

Proof. For fixed t ∈ J, we test the equation (2.4) with v ∈ Vp(T ) and use integration-
by-parts as in (5.16). This results in

∑

K∈T

∫

K

fv dx =
∑

K∈T

∫

K

c∇u · ∇v dx −
∑

e∈ET

∫

e

[[v]] · 〈〈c∇u〉〉 dS . (5.31)

Since [[u]]|e = 0 in L2(e)2 for e ∈ E◦
T ∪ED

T and [[c∇u]]|e = 0 in L1(e)2 for e ∈ E◦
T ∪EN

T ,
we readily find that

∑

K∈T

∫

K

fv dx = aDG(u, v),

which in turn implies the error equation (5.30). �

5.4.2. Galerkin projection in space. For w ∈ C0(J;H2,2
δ (Ω)), we apply the Galerkin

projection in space by setting

aDG(Gpw(t), v) = aDG(w(t), v), (5.32)

for all t ∈ J and v ∈ Vp(T ). We have Gpw ∈ C0(J;Vp(T )) and

(Gpw)(0) = Gp(w(0)) . (5.33)

In addition, if also ∂tw ∈ C0(J;H2,2
δ (Ω)), then ∂tGpw ∈ C0(J;Vp(T )) and

∂tGpw(t) = Gp

(
∂tw(t)

)
, t ∈ J. (5.34)

Let now u ∈ C2(J;H2,2
δ (Ω)) be the solution of (2.4)–(2.8), Gpu its Galerkin pro-

jection in (5.32), and uN ∈ C2(J;Vp(T )) the semi-discretization obtained by (3.8)
with j > j∗. We split the error eN = u− uN into

eN (t) =
(
u(t)− Gpu(t)

)
+
(
Gpu(t)− uN (t)

)
=: η(t) + ξ(t), t ∈ J. (5.35)

Then the following result holds.

Lemma 5.10. Let u ∈ C2(J;H2,2
δ (Ω)). With (5.35), there holds

(∂2t ξ, v) + aDG(ξ, v) = −(∂2t η, v) , (5.36)

for all t ∈ J and v ∈ Vp(T ).

Proof. The splitting (5.35), the error equation (5.30) and the definition (5.32) imply

(∂2t ξ, v) + aDG(ξ, v) = (∂2t eN , v) + aDG(eN , v)− (∂2t η, v)− aDG(η, v) = −(∂2t η, v),

which finishes the proof. �



DGDEMs for acoustic wave propagation in polygons 17

5.4.3. Error bounds. We next prove the following error bounds.

Proposition 5.11. Let δ ∈ [0, 1)M. Let the solution u of (2.4)–(2.8) satisfy the
regularity assumption

u ∈ C2(J;H2,2
δ (Ω)) (5.37)

Let uN be the semi-discretization obtained by (3.8) with j > j∗ and with the discrete
initial data u0N , u

1
N ∈ Vp(T ) in (4.5):

u0N = Πpu
0, u1N = Πpu

1. (5.38)

Let the error eN = η + ξ be split as in (5.35). Then we have

‖eN‖L∞(J;Vp(T )) + ‖∂teN‖L∞(J;L2(Ω)) ≤ C
(
|||u0 −Πpu

0|||∗,δ

+ ‖u1 − Gpu
1‖L2(Ω) + ‖η‖L∞(J;Vp(T ))

+ ‖∂tη‖L∞(J;L2(Ω)) + ‖∂2t η‖L1(J;L2(Ω))

)
.

(5.39)

In addition, the L∞(J;L2(Ω))-norm error is bounded by

‖eN‖L∞(J;L2(Ω)) ≤ C
(
‖u0 − Gpu

0‖L2(Ω)

+ ‖η‖L∞(J;L2(Ω)) + ‖∂tη‖L∞(J;L2(Ω))

)
.

(5.40)

The constants C > 0 are independent of the elemental mesh sizes.

Proof. We show (5.39): With (5.35) and the triangle inequality, we have

‖eN‖L∞(J;Vp(T )) + ‖∂teN‖L∞(J;L2(Ω)) ≤ E1 + E2, (5.41)

where

E1 = ‖η‖L∞(J;Vp(T ))+‖∂tη‖L∞(J;L2(Ω)) , E2 = ‖ξ‖L∞(J;Vp(T ))+‖∂tξ‖L∞(J;L2(Ω)) .

It remains to bound E2. To this end, we choose v(t) = ∂tξ(t) ∈ Vp(T ) in (5.36)
and use the symmetry of aDG(·, ·). This yields

1

2

d

dt

(
‖∂tξ‖

2
L2(Ω) + aDG(ξ, ξ)

)
= −(∂2t η, ∂tξ), t ∈ J.

Fix s ∈ J. By integrating the equation above with respect to t over (0, s), we see
that

1

2
‖∂tξ(s)‖

2
L2(Ω) +

1

2
aDG(ξ(s), ξ(s))

2 ≤
1

2
‖∂tξ(0)‖

2
L2(Ω) +

1

2
aDG(ξ(0), ξ(0))

+

∫ s

0

|(∂2t η, ∂tξ)| dt.

With the inequalities of Hölder and Young, we have
∫ s

0

|(∂2t η, ∂tξ)| dt ≤ ‖∂tξ‖L∞(J;L2(Ω))‖∂
2
t η‖L1(J;L2(Ω))

≤
ε

2
‖∂tξ‖

2
L∞(J;L2(Ω)) +

1

2ε
‖∂2t η‖

2
L1(J;L2(Ω)) ,

for any ε > 0. Hence, combined with the coercivity (3.12) and continuity (3.13) of
the form aDG(·, ·), we find that

‖∂tξ(s)‖
2
L2(Ω) + Ccoer|||ξ(s)|||

2
DG ≤ ‖∂tξ(0)‖

2
L2(Ω) + Ccont|||ξ(0)|||

2
DG

+ ε‖∂tξ‖
2
L∞(J;L2(Ω)) + ε−1‖∂2t η‖

2
L1(J;L2(Ω)) .
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Since this holds for any s ∈ J, it also holds for the respective suprema over J. Then,
choosing ε sufficiently small allows us to absorb the term ε‖∂tξ‖2L∞(J;L2(Ω)) in the

left-hand side, which results in

E2
2 ≃ ‖∂tξ‖

2
L∞(J;L2(Ω)) + ‖ξ‖2L∞(J;Vp(T ))

. ‖∂tξ(0)‖
2
L2(Ω) + |||ξ(0)|||2DG + ‖∂2t η‖

2
L1(J;L2(Ω)).

(5.42)

Consider now discrete initial data u0N , u
1
N ∈ Vp(T ) in (5.38). Then, with (5.33)

and (5.20), we notice that ξ(0) = Gpu
0 − Πpu

0 = Gp(u
0 − Πpu

0). Hence, from the
stability property (5.18), we see that

|||ξ(0)|||DG = |||Gp(u
0 −Πpu

0)|||DG . |||u0 −Πpu
0|||∗,δ .

Moreover, with (5.34), we see that ∂tξ(0) = Gpu
1 − Πpu

1 = Πp(Gpu
1 − u1). The

stability of the L2-projection yields ‖∂tξ(0)‖L2(Ω) ≤ ‖u1 − Gpu
1‖L2(Ω). Hence, we

conclude from (5.42) that

E2
2 . |||u0 −Πpu

0|||2∗,δ + ‖u1 − Gpu
1‖2L2(Ω) + ‖∂2t η‖

2
L1(J;L2(Ω)). (5.43)

The definition of E1 and the bound (5.43) imply the error estimate (5.39). Next,
we establish (5.40). From the splitting (5.35), we obtain

‖eN‖L∞(J;L2(Ω)) ≤ ‖η‖L∞(J;L2(Ω)) + ‖ξ‖L∞(J;L2(Ω)) .

To bound ‖ξ‖L∞(J;L2(Ω)), we proceed as in the proof of [13, Thm. 4.2]. That is, we
first rewrite (5.36) as

d

dt
(∂tξ, v)− (∂tξ, ∂tv) + aDG(ξ, v) = −

d

dt
(∂tη, v) + (∂tη, ∂tv),

and use that eN = η + ξ, which results in the identity

− (∂tξ, ∂tv) + aDG(ξ, v) = −
d

dt
(∂teN , v) + (∂tη, ∂tv), (5.44)

for all t ∈ J and v ∈ Vp(T ). Then, for τ ∈ J, we define the function

v(·, t) =

∫ τ

t

ξ(·, s) ds, t ∈ J.

Note that v(·, t) ∈ Vp(T ) and

v(·, τ) = 0, ∂tv(·, t) = −ξ(t). (5.45)

We choose v(·, t) in (5.44) and employ (5.45) as well as the symmetry of aDG(·, ·)
to obtain

1

2

d

dt
‖ξ‖2L2(Ω) −

1

2

d

dt
aDG(v, v) = −

d

dt
(∂teN , v)− (∂tη, ξ).

By integrating this identity over (0, τ), using that v(·, τ) = 0 and the fact that
aDG(v(0), v(0)) ≥ 0 due to (3.12), and by applying the Cauchy-Schwarz inequality,
we conclude that

‖ξ(τ)‖2L2(Ω) ≤ ‖ξ(0)‖2L2(Ω) + 2|(∂teN (0), v(0))|+ 2

∫

J

‖∂tη‖L2(Ω)‖ξ‖L2(Ω) dt.

Since the above bound holds for any τ ∈ J, it also holds for ‖ξ‖L∞(J;L2(Ω)).
From (5.38) and since Πp reproduces functions in Vp(T ), we have as before that
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ξ(0) = Gpu
0 − Πpu

0 = Πp(Gpu
0 − u0). The stability of the L2-projection thus

implies

‖ξ(0)‖L2(Ω) ≤ ‖u0 − Gpu
0‖L2(Ω).

In addition, u1N = Πpu
1 so that (∂teN (0), v(0)) = (u1 − Πpu

1, v(0)) = 0. The last
term above is bounded with the help of the weighted Cauchy-Schwarz inequality as
follows

2

∫

J

‖∂tη‖L2(Ω)‖ξ‖L2(Ω) dt ≤
1

2
‖ξ‖2L∞(J;L2(Ω)) + C‖∂tη‖

2
L∞(J;L2(Ω).

Combining these arguments and bringing the first term above to the left-hand side
implies (5.40). �

5.5. Proof of Theorem 4.3. For δ ∈ [0, 1)M and k ∈ N, we write Ck(J; ||| · |||∗,δ)for
all functions w : Ω → R which are k-times continuously differentiable in t ∈ J with
finite norm ||| · |||∗,δ in space, i.e.,

‖w‖Ck(J;|||·|||∗,δ)
:=

k∑

m=0

sup
t∈J

|||∂mt w|||∗,δ <∞ . (5.46)

With this definition at hand, we now complete the proof of Theorem 4.3. To do so,
let δ ∈ [0, 1)M be as in (2.20). Then, from the error bound (5.39) and the regularity
assumptions (5.37), (4.6) and the definition of the consistency norm (5.3), it follows
that

‖eN‖L∞(J;Vp(T )) + ‖∂teN‖L∞(J;L2(Ω)) ≤ C
(
|||u0 −Πpu

0|||∗,δ + ‖u− Gpu‖C2(J;|||·|||∗,δ)

)
.

The approximation results for the Galerkin projection in Proposition 5.8 (along
with (5.34)) imply

‖u− Gpu‖C2(J;|||·|||∗,δ)
. N−k/2‖u‖C2(J;Hk+1,2

δ
(Ω)).

Proposition 5.3 for the L2-projection Πp shows that

|||u0 −Πpu
0|||∗,δ . N−k/2|u0|Hk+1,2

δ
(Ω) .

These arguments yield the energy norm bound (4.8).
Similarly, with (5.40), (5.34) and Proposition 5.8, we obtain

‖eN‖L∞(J;L2(Ω)) ≤ C‖η‖C1(J;L2(Ω)) ≤ CN−(k+1)/2‖u‖C1(J;Hk+1,2

δ
(Ω)) .

This shows (4.9) and completes the proof of Theorem 4.3.

6. Numerical Experiments

In this section, we conduct some numerical experiments for the piecewise linear
(p = 1) and the piecewise quadratic (p = 2) SIPDG methods on graded meshes
and bisection refinement meshes. The value of the penalty parameter j is chosen
in a standard way as j = 10p2. Our main goal is to confirm the theoretical error
estimates in Theorem 4.3.

6.1. The setting. We first detail the set-up of our experiments.
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Domains. We consider the wave equation (2.4)–(2.8) with constant c = 1. The
physical domain Ω is one of the two polygons displayed in Figure 1: Both are situ-
ated in the square (−1, 1)2 and have the origin c1 := (0, 0) as sole re-entrant corner.
The interior opening angle at ci is selected either as ω1 = 1.5π or as ω1 = 1.9π.
Homogeneous Dirichlet boundary conditions are imposed on the edges {(x, y) ∈

Figure 1. The domains Ω used in the experiments with re-entrant
corner c1 = (0, 0) and opening angle ω1 ∈ {1.5, 1.9}π.

.

∂Ω : x = ±1}, and homogeneous Neumann conditions on all other edges.
At the re-entrant corner c1, the exponent λ1 in (2.26) satisfies λ1 ∈ {2/3, 10/19}.

Hence, in (2.20), we have

δ∗1 = max{0, 1− λ1} =

{
1/3 if ω1 = 1.5π ,

9/19 if ω1 = 1.9π ,
(6.1)

where 9/19 ∈ (0.473, .474).

Initial data and right-hand side. In the following, we denote by χA the characteristic
function of a set A ⊂ R

d. Then, let ψ0(x) := χ(−1,1)(x) exp(−(1 − x2)−1). This
function is an element of C∞

0 (R) with compact support in [−1, 1]. For any x0 ∈ R

and ε > 0, we denote by φx0,ε the affine equivalence from [x0 − ε, x0 + ε] to [−1, 1].
We set ψx0,ε := ψ0◦φx0,ε, which is in C∞

0 (R) with compact support in [x0−ε, x0+ε].
In the experiments, we now take f ≡ 0, u1 ≡ 0. As initial condition u0, we select

u0(x, y) := χ{(x,y):x≥0}(x, y)ψ0.2,0.1(x) . (6.2)

That is, the initial displacement u0 is smooth, homogeneous in y-direction and
diffracts over the re-entrant corner c1 = (0, 0). The function u0 satisfies the ho-
mogeneous Dirichlet conditions on ΓD (i.e., u0 ∈ V ), but does not have compact
support in Ω. Strictly speaking, the hypotheses of Proposition 2.2 are not satisfied
by this initial data. On the other hand, we expect the regularity results in [28,
Section 2] to hold for wider classes of compatible C∞-data. This conjecture is in
fact numerically corroborated for the data here.
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Discretization in time. To obtain fully discrete approximations, the space semi-
discrete scheme (3.8) is time-discretized with a Newmark time-stepping scheme;
cf. [32, Chpt. 8] or [13, Sect. 5.1]. To this end, we introduce an equidistant partition
of J given by 0 = t0 < ∆t < · · · < N∆t = T, with the time-step ∆t := T/N. We
denote by {u(n)}Nn=0 the fully discrete approximations u(n) ≃ uN (tn) ∈ Vp(T ).

We also write f (n) := f(·, tn). For ̺ ∈ [0, 1/2], v ∈ Vp(T ), the approximations

{u(n)}Nn=0 are determined by:

u(0) := Πpu
0 , (6.3)

∆t−2(u(1) − u(0) −∆tΠpu
1, v)+ (6.4)

aDG(̺(u
(1) − u(0)) + u0/2, v) = (̺f (1) + (1/2− ̺)f (0), v) ,

(D2[u
(n)], v) + aDG(Ξ2,̺[u

(n)], v) = (Ξ2,̺[f
(n)], v) , (6.5)

where, for a generic sequence {w(n)}Nn=0,

D2[w
(n)] := ∆t−2

(
w(n+1) − 2w(n) + w(n−1)

)
, (6.6)

Ξ2,̺[w
(n)] := ̺w(n+1) + (1 − 2̺)w(n) + ̺w(n−1). (6.7)

We remark that the iteration (6.3)–(6.5) coincides with the standard two-parameter
Newmark scheme as in e.g. [32, Chpt. 8], with fixed value γ = 1/2 for the second
parameter γ in the notation of [32]. It is then second-order accurate in the time-
step ∆t.

For ̺ = 0, the time-stepping (6.3)–(6.5) amounts to solving for a (block-diagonal)
DG mass-matrix in each time-step and thus leads essentially to an explicit scheme.
One the other hand, ̺ > 0 gives rise to an implicit method which is conditionally
stable for 0 ≤ ̺ < 1/4 and unconditionally stable for ̺ ≥ 1/4; cf. [32, Lem. 8.5.1].

To confirm the spatial error bounds in Theorem 4.3 numerically, we take T = 1
and discretize (3.8) in time by using the Newmark method (6.3)–(6.5) with ̺ = 1/4
and time-step ∆t = 10−4. This time-step is sufficiently small in relation to the
spatial dimension N and thus ensures that the approximation errors stemming
from the time-discretization are negligible with respect to the space discretization
errors.

Error computation and reference solution. In our error computations, we compare

the numerical solutions {u(n)}Nn=0 to a reference solution {u
(n)
ref }

2N
n=0, which is ob-

tained by the same algorithm, but for a reference mesh where two additional refine-
ments are performed on the finest grid used and for a time partition with time-step
∆t/2. We then compute the errors

N

max
n=0

‖u(n) − u
(2n)
ref ‖, (6.8)

for ‖ · ‖ = ||| · |||DG and ‖ · ‖ = ‖ · ‖L2(Ω), which are discrete versions of the norms
‖ · ‖L∞(J;Vp(T )) and ‖ · ‖L∞(J;L2(Ω)) appearing in (4.8) and (4.9), respectively.

We visualize the relative errors thus obtained on a bi-logarithmic scale with
#T ≃ N on the abscissa and the error on the ordinate axis. In this scale, the
convergence order O(N−r) with respect to N is represented by a line of slope −r.
Conversely, a line of slope −r is said to be convergent of order r. The convergence
order of the line fitted through the data points in the least-squares sense is called
the empirical convergence order.
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Specifications of the code. The code used in our tests is written in Python 2.7 and
depends on the libraries NumPy 1.10.1 and SciPy 0.16.1; see [17]. The resulting
linear systems of equations are solved using the direct solver spsolve included in
the SciPy submodule scipy.sparse.linalg.

Local mesh refinement. Graded meshes are generated using the free software pack-
age LNG FEM; see [22]. To generate meshes with local bisection refinement, we first
create regular and quasi-uniform triangulation T0 of Ω with mesh-width h(T0) =
0.1, using the Delaunay-based mesh generator contained in the Python library
triangle; see [36]. Then the local bisection refinement algorithm in [11] with pa-
rameters h, γ and L is applied. Elements are bisected according to newest vertex
bisection; see, e.g. [29] and the references therein for a specification. Note also that
the elementary bisection of elements needs to include a recursive call in order to
ensure the output of regular triangulations without hanging nodes. In order to
fulfill the second condition in (4.2), we choose L in dependence of h and γ as

L = ⌈−
log2(h)

γ(p+ 1)
− 1⌉. (6.9)

The refinement parameters for locally refined meshes in Definition 4.2 are taken
with respect to δ∗1 in (6.1). That is, for graded meshes, we choose the grading

parameter β1 = β∗
1 = 1 −

1−δ∗1
p as in (4.1); for bisection refinement meshes, we

select γ = γ∗ = 1 − δ∗1 in (4.2). Since bisection refinement meshes are nested with
respect to L in (6.9), the reference solution can be straightforwardly projected onto
coarser grids for error computations.

6.2. Results. We next present the numerical results obtained in the set-up de-
scribed in Section 6.1.

6.2.1. Piecewise linear SIPDG method. We first consider p = 1, j = 10 and depict
the results obtained in this way in Figure 2. The relative errors to the reference
solution are evaluated as in (6.8), i.e., in (the approximate versions of) the norms
‖ · ‖L∞(J;Vp(T )) (labelled ”DG norm”) and ‖ · ‖L∞(J;L2(Ω)) (labelled ”L2 norm”),
respectively. We also display the lines of convergence orders r = 0.5 and r = 1.0,
respectively.

The empirical convergence rates for both graded and bisection refinement meshes
are of the orders r = 0.5 and r = 1.0 for the DG energy norm errors predicted by
our theory. The L2-norm errors, respectively, are also in accordance with Theo-
rem 4.3. As expected, the empirical convergence rate does not change with the
interior opening angle ω1, while the number of degrees of freedom naturally does.

6.2.2. Piecewise quadratic SIPDG method. Next, we consider the piecewise qua-
dratic (p = 2) SIPDG discretization with j = 40, and plot the corresponding results
in Figure 3.

Again, the empirical convergence rates both for graded and bisection refinement
meshes are of the expected orders r = 1.0 and r = 1.5 in the DG energy norm
errors and the L2-norm errors, respectively, thereby confirming Theorem 4.3 also
for this example. As before, these rates are quasi-optimal and do not change with
the interior opening angle ω1.

We remark that in comparison to the meshes in the piecewise linear case, the
number of elements remains the same for graded meshes. However, the elemental
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Figure 2. Convergence plots for piecewise linear (p = 1)
SIPDG discretization with j = 10. Top: graded meshes with
grading parameter β∗

1 . Bottom: bisection refinement meshes with
weight γ∗ = 1− δ∗1 .

mesh sizes now decrease faster at the vertex c1 since the grading is now stronger
according to (4.1). For meshes with local bisection refinement, it is not necessary to
construct the mesh anew, but the number L of local refinements increases according
to (4.2) and (6.9).

7. Conclusions and Extensions

We proved that SIPDG discretizations in space of the wave equation converges
in a space semi-discrete sense with optimal convergence rates, both in the DG en-
ergy norm and the L2 norm (where we use the generalized Aubin-Nitsche argument
from [25, Sect. 5.4.2] for the Galerkin projection). We note that these convergence
rates are lost on quasi-uniform mesh families due to the appearance of singularities
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Figure 3. Convergence plots for piecewise quadratic (p = 2)
SIPDG discretization with j = 40. Top: graded meshes with
grading parameter β∗

1 . Bottom: bisection refinement meshes with
weight γ∗ = 1− δ∗1 .

near corners. Our results are based on employing either graded meshes with appro-
priate grading parameters or local mesh refinement towards the corners by newest
vertex bisection. The theoretical convergence orders are confirmed in a series of
numerical tests.

For simplicity, our analysis was carried out for regular meshes. However, with
only minor modifications, it can be extended to simplicial mesh families with k-
irregular nodes, which are a particular case of the shape-regular and contact-regular
mesh families introduced in [30, Sect. 1.4].

For simplicity, we focussed on constant wave speed coefficients c, but emphasize
that our results can be readily generalized to transmission problems with piecewise
constant coefficient c. In particular, the regularity results in Proposition 2.2 hold
true for this case as well; see [28, Section 2.6.2].
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